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ABSTRACT

Occurrence number of red tides in Osaka Bay in Japan is more than 20 cases every year.
Diatom red tide was dominant in Osaka Bay, but the non-diatom red tide was dominant in
early 1990’s. Therefore, the material cycling in Yodo River estuary in Osaka Bay in August
from 1991 to 2000 was analyzed by using the numerical ecosystem model and field
observation data to clarify the reasons of change in red tide species. Limiting nutrient of
primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it
was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom
was able to grow because of good physical and nutrient conditions from 1994 to 1996. And
diatom dominated again under the good physical condition, and phosphorus supply was not

enough for non-diatom to grow from 1998 to 2000.
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INTRODUCTION

Red tides in Osaka Bay in Japan occur more than 20 cases every year. Osaka Bay is the
semi-enclosed bay and located in the west of Japan as shown in Fig.l1. There are many
factories and residential areas around Osaka Bay, moreover, the major rivers, Yodo River,
Yamato River and so on, empty into Osaka Bay through the big cities, Kyoto, Osaka and so
on. Much nutrient is loaded to Osaka Bay, and organic matter accumulates in the bottom and
nutrients are released from the bottom sediment. Osaka Bay is one of the eutrophic areas in
Japan, and the lower trophic level ecosystem of Osaka Bay is complex.

Diatom red tide was dominant in Osaka Bay but the occurrence number of non-diatom red
tide was dominant in the early 1990’s as shown in Fig.2. The silica deficiency hypothesis may
be related to this phenomenon ((Billen et al., 1991, Humborg C. et al., 1997, Yamamoto and
Hatta, 2004). Therefore, the reason of this remarkable change was investigated using the
numerical ecosystem model including nitrogen, phosphorus and silicate cycling in August,

summer in Japan, from 1991 to 2000.

OBSERVED DATA

Analyzed area is the surface layer of Yodo River estuary in Osaka Bay shown in Fig.1,
where the red tide has occurred every summer. Analyzed month is August, summer in Japan,
and the period is from 1991 to 2000. It is assumed as the one box with 3 m depth which is the
mixed layer depth in summer in this area.

Figure 3 shows the Yodo River discharge in August observed by the Ministry of Land

Infrastructure and Transport (MLIT). Loading nitrogen and phosphorus from Yodo River were



estimated by the river discharge, Total Nitrogen (TN) and Total Phosphorus (TP)
concentrations in the downstream of Yodo River in August observed by MLIT. Dissolved
Silicon (DSi) concentration in Yodo River was observed in August in 1973, 1995 and 2002
(Harashima et al., 2006, Mishima et al., 1999). And the year-to-year variation of DSi
concentration is small. Therefore DSi concentration in Yodo River is assumed constant of
108.8 uM during the analyzed period. Figure 4 shows TN, TP and Total Silicon (TSi) fluxes
from land area in August, which are the sum of the loading fluxes from Yodo River and the
direct fluxes from plant around Osaka Bay.

Figure 5 shows water temperature (a) and salinity (b) in Osaka Bay in August. And Figure 6
shows Dissolved Inorganic Nitrogen (DIN) concentration (a), Dissolved Inorganic
Phosphorus (DIP) concentration (b) and DSi concentration (c) in Osaka Bay in August. Figure
7 shows chl.a concentration in Osaka Bay in August. These data were observed by Osaka
Prefectural Fisheries Experimental Station and National Institute for Environmental Studies
(Harasima et al., 1997). Photon in the water shown in Fig. 8 was estimated by light intensity

observed by Japan Metrological Agency (Parsons et al., 1984).

NUMERICAL MODEL
Ecosystem Model

The numerical ecosystem model, shown in Fig.9, has five compartments, nutrients (DIN,
DIP and DSi), phytoplankton (diatom and non-diatom), zooplankton, detritus and Dissolved
Organic Nitrogen and Phosphorus (DON and DOP). Material cycling in the box is based on

the bio-chemical processes between compartments. And also, the model includes material



load from the land area, sinking of diatom and detritus, diurnal motion of non-diatom and
advection and diffusion related to the estuarine circulation. Temporal change in concentration
of each compartment is represented by the equations. For example, equation 1 represents the
temporal change in DIP concentration. It consists of three parts, biochemical process,

boundary condition and physical process.

d[;lpu =—-A,,DTMP, = A . NDMP, + B,ZOOP, + C,DETP, + D,DOP,
+Vi(D|F>Ioad —F,UDIP, + FW DIP,
K, K
+F, =" (DIP, ~DIR)) + F, - (DI - DIR), (1)

where Az, B,, C; and D; are the coefficients of biochemical processes, subscript dtm refers to
diatom, subscript ndm refers to non-diatom, DTMP is phosphorus concentration in diatom,
NDMP is phosphorus concentration in non-diatom, ZOOP is phosphorus concentration in
zooplankton, DETP is phosphorus concentration in detritus, DOP is dissolved inorganic
phosphorus concentration, subscript U refers to the upper layer, subscript | refers to the lower
layer, subscript 0 refers to the adjacent area. V| is the volume of box, Fy is the surface area of
the box, Fs is the boundary area, L is the horizontal length between the box and the adjacent
area, H is the vertical length between the upper and lower layers, U is the horizontal advection
speed, W is the vertical advection speed, Ky is the horizontal eddy diffusivity and Ky is the
vertical eddy diffusivity.

Biochemical processes are represented by other equations. For example, A; represents
photosynthesis speed and is the functions of nutrients concentration, water temperature (T)

and photon in the water (1), as shown in equation 2.
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where Vi, denotes the maximum specific nutrient uptake rate, K is the half saturation constant,
subscript n refers to nitrogen, subscript p refers to phosphorus, subscript s refers to silicon,
Topt 1s the optimum water temperature, lop is the optimum photon.

Parameters of the ecosystem model are referred to Kawamiya et al. (1995), Okaichi (1997)
and Yamamoto (1998), and they are shown in Table 1. The half saturation constants are

selected from the references when calculation results reproduced the observation values.

Physical Model
U, W, Ky and K, are estimated by the physical model shown in Fig.10. The governing

equations based on salt and water balances are given in equation 3 and 4.

R+FW =UF, 3)

SSWF,-S,U Fu+KV%FS+Kh S —S,

F, =0, (4)

u

where R is river discharge and S is salinity. We suppose that advection is driven by an

estuarine circulation. So U is directly related to river discharge, defined by equation 5.

U=m—, 5)

m

where m is unknown quantity, Ry, is average river discharge. K, is inversely proportional to

stratification. So, Ky is inversely proportional to river discharge, as defined by equation 6.



|
K, = ma (6)

where | is unknown quantity. The unknown quantities, Kp, m and k are calculated by the least

squares method using monthly observed values.

RESULTS AND DISCUSIONS

The time step of the calculation was 1 hour. Calculations were carried out for August at
each year. We obtained the quasi-steady state on the 10th days after the calculation beginning
in every year. The year-to-year variations in calculated Total Phosphorus (TP) concentration
and chl.a concentration in the box in August by the ecosystem model well reproduced the
observed values as shown in Fig.11. Calculated DIN, DIP and DSi concentrations also
reproduced the observed ones. According to the later description, phosphorus is the most
dominant parameter of photosynthesis shown in equation 2. Therefore the sensitivities of kj to
TP and chl.a concentrations are confirmed. The range of k, shown in the references is double
from half of the number used by the calculation. The ranges of calculated TP and chl.a
concentrations are from - 1.5 % to + 1.8 % and from - 21.4 % to + 15.9 %, respectively. It
doesn't have the influence to the conclusion qualitatively.

Figure 12 shows the year-to-year variations in calculated concentration ratio and observed
total red tide days ratio in diatom (a) and non-diatom (b) in August. The concentration ratio
means the rate of diatom or non-diatom concentrations in chl.a concentration. And the total
red tide day ratio means the ratio of diatom or non-diatom red tide days to total red tide days.

The year-to-year variations in calculated concentration ratio agree with the observed total red



tide day ratio. The diatom ratios from 1991 to 1993 and from 1998 to 2000 are higher than the
non-diatom ratio. But the non-diatom ratios from 1994 to 1996 are relatively high than other
years. Figure 13 shows the year-to-year variations in limiting factor to diatom (a) and
non-diatom (b) in August calculated by the ecosystem model. Small factor is more effective to
primary production. Limiting nutrient of primary production for diatom and non-diatom was
phosphate over the period. Figure 14 shows the year-to-year variations in inflow fluxes (a)
and outflow fluxes (b) for TP concentration in the box in August calculated by the ecosystem
model. Bar charts mean advection plus diffusion, and details (DIP, DOP and Particulate
Organic Phosphorus) are also shown.

From 1991 to 1993, water temperature and photon limiting were relatively strong, and
phosphorus limiting was small. In these years water temperature and light intensity were low,
and photosynthesis was not active, because much photon was necessary for non-diatom than
diatom. Therefore diatom ratios in these years were relatively high than other years.

Physical conditions were good after 1994. But phosphorus supply from the lower layer was
small from 1998 to 2000 because of weak estuarine circulation and low phosphorus
concentration. Therefore phosphorus was exhausted by diatom, and non-diatom could not
grow, because non-diatom has higher half-saturation concentration of phosphate compared to
diatom (Justi¢, D. et al., 1995). On the other hand, phosphorus supply from the lower layer
was large from 1994 to 1996. Therefore phosphorus concentration in the upper layer was high,

and it was good nutrient condition for non-diatom.

CONCLUSIONS



Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to
the limitation by physical condition. Non-diatom was able to grow because of good physical
and nutrient conditions from 1994 to 1996. Diatom again dominated under the good physical
condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000.
Phosphate concentration in the lower layer of Yodo River estuary was important to the

variation in red tide species in the upper layer of Yodo River estuary.
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Fig.1 Study area.

Fig.2 Year-to-year variations in occurrence number of red tide in a year in Osaka Bay.

Fig. 3 Year-to-year variations in Yodo River discharge in August.

Fig.4 TN, TP and TSi fluxes from land area in August.

Fig.5 Year-to-year variations in water temperature (a) and salinity (b) in Osaka Bay in August.

Fig.6 Year-to-year variations in DIN (a), DIP (b) and DSi (c) concentrations in Osaka Bay in
August

Fig.7 Year-to-year variations in chl.a concentration in Osaka Bay in August

Fig.8 Year-to-year variations in light intensity in Osaka Bay in August

Fig.9 Ecosystem model.

Fig.10 Physical model.

Fig.11 Comparison between calculation and observation in TP and chl.a concentrations in
August.

Fig.12 Comparison between calculated concentration ratio and observed total red tide days
ratio in diatom (a) and non-diatom (b) in August.

Fig.13 Year-to-year variations in limiting factor to diatom (a) and non-diatom (b) in August
calculated by the ecosystem model.

Fig.14 Year-to-year variations in inflow flux (a) and outflow flux (b) of phosphorus in August

calculated by the ecosystem model.

Table 1 Parameters of the ecosystem model
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Parameters Value unit

Surface layer depth 3 m

Length of the boundary line 19 km
Surface area of study area 57.6 km?
Length between the upper and lower layer 6.5 m

Length between the box and outer area 6 km
Maximum specific nutrients uptake rate by diatom 4.0 day!
Maximum specific nutrients uptake rate by non-diatom 3.0 day!
Ratio of extracellular excretion of DON and DOP by photosynthesis 0.135 gm?s’!
Mortality speed of phytoplankton at 0 deg-C 8.0 m’ gP! day’!
Temperature dependency of mortality of phytoplankton 0.069 °c!
Threshold of phytoplankton density for grazing 0.1 mg chla’!
Ivlev constant 0.47 (1 g chla™)!
Grazing speed of phytoplankton by zooplankton at 0 deg-C 0.1 day’!
Temperature dependency of grazing by zooplankton 0.069 °c!
Constant for urine generation 0.4

Constant for fecal pellet generation 0.3

Mortality speed of zooplankton at 0 deg-C 30.0 m3 gP! day’!
Temperature dependency of mortality of zooplankton 0.069 °c!
Decomposition speed of detritus to Dissolved Inorganic Matter at 0 deg-C 0.03 day!
Decomposition speed of detritus to Dissolved Organic Matter at 0 deg-C ~ 0.03 day!
Decomposition speed of DOM to DIM at 0 deg-C 0.03 day!
Temperature dependency of decomposition of detritus to DIM 0.069 °c!
Temperature dependency of decomposition of detritus to DOM 0.069 °c!
Temperature dependency of decomposition of DOM to DIM 0.069 °c!

Half saturation constant of nitrogen to diatom 1.0 uM
Half saturation constant of phosphorus to diatom 0.3 uM
Half saturation constant of silicon to diatom 1.3 uM
Half saturation constant of nitrogen to non-diatom 3.0 uM
Half saturation constant of phosphorus to non-diatom 0.9 uM
Optimum water temperature 30.8 °c
Optimum photon 120 Em?s’!

Table 1



