SECRET

-1 -

Note on "Non-Secret Encryption"

In [1] J H Ellis describes a theoretical method of encryption which does not necessitate the sharing of secret information between the sender and receiver. The following describes a possible implementation of this.

- a. The receiver picks 2 primes P, Q satisfying the conditions
 - i. P does not divide Q-1.
 - · ii. Q does not divide P-1.

He then transmits N = PQ to the sender.

b. The sender has a message, consisting of numbers

$$C_1$$
, C_2 , ... C_r with $0 < C_i < N$

He sends each, encoded as D; where

$$D_i = C_i^N$$
 reduced modulo N.

c. To decode, the receiver finds, by Euclids Algorithm, numbers P', Q'

$$Q Q' \equiv 1 \pmod{P-1}$$

Then $C_i = D_i^{P'} \pmod{Q}$

and
$$C_i \equiv D_i^{Q'} \pmod{P}$$

and so C; can be calculated.

Processes Involved

- 2. There is an algorithm, involving work of the order of log M, to test if M is prime, which usually works but can fail to give an answer. Hence as the density of primes is $(\log M)^{-1}$, picking primes is a process of order $(\log M)^{-1}$, where k is a small integer.
- 3. Also, computing $C_t^N \pmod N$ is of order $(\log N)^k$ and the computation of D_t^P and D_t^Q even smaller; hence coding and decoding is a process requiring work of order $(\log N)^k$ where k will be about 2 or 3.
- 4. However, factorising N is a process requiring work of order $N^{1/4}$ (log N), where k is a small integer (alternatively computing C from CN (mod N) requires work of order N if the factorization of N is not known); so decoding for an interceptor of the communication is a process of order about $N^{1/4}$.

SECRET

- 2 -

Reference [1] The possibility of Non-Secret digital encryption.

J H Ellis CESG Research Report January 1970.

Note: There is no loss of security in transmitting C₁...C_r all using the same N. Even if the enemy can guess a crib for eg C₁...C_{r-1}, this gives no information of use in deceding D_r etc. He could in any case provide himself with as many pairs (C_t, D_t) as he pleases, since the encryption process is known to him as well as to the transmitter:

- 2 -

20 November 1973

A NOTE ON 'NON-SECRET ENCRYPTION'

by C C Cocks

A possible implementation is suggested of J H Ellis's proposed method of encryption involving no sharing of secret information (key lists, machine set-ups, pluggings etc) between sender and receiver.