bt e BT T S T

RADC-TR-81-143
Final Techrical Report
June 1981

COMPUTER PROGRAMMING MANUAL
FOR THE JOVIAL (J73) LANGUAGE

AMAL10706 7

Softech, inec.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLlMITED]

IME RLE copy

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Gritfiss Air Force Base, New York 1344|

DTIC

; ELLECTE
! s JUuL 6 1981

D

P N

-

This repcxt has been reviewed by the RADC Public Affairs Office (PA) and
1s releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-143 has been reviewed and is approved for publication.

APPROVED: M £ Srrerde

DONALD L. MARK
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Col, USAE
Chief, Information Sciences Division

[

L FOR THE comNDEWﬁ 1z ,

: JOHN P. HUSS
Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is né longer employed by your organizationm,

please notify RADC.(1sI9 Griffisze AFB NY 13441. This will assist us in

‘maintaining 4 currant mailing list. : oo

Do jnot return this copy. Retain or destroy.

nat typae by onid i e . e

O I L -

+ i et gk et S v e —rtin s L S e o e dantp p e v —

WSS T S MG,

LR e S - T =X

UNCLASSIFIED
SECURITY CINSSIFICATION OF THIS PAGE (When Data Enterad).
READ INSTRUCTIONS

K) REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. R UMBER 2, GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

e
i

.' RADGYTR-81-143 | | AD -4 104

‘ TITLE {and Subtitle) ' 'ry,e RI 4 BERLOD. GOVLRED
) GOMPUTER ZROGRAMMING _yANUAL FOR THE JOVIAL Fina% :;echnical)(epmt . 5
e e

(J73) ‘AANGUAGE ‘ - 3 PERFORMING 010 REA€RT TWBER

e e e s . 4o b e A% W

o

18, DISTRIBUTION STATEMENT (of this Report) Aau.uun Tor

WIS GRAMT x
Approved for public release; distribution unlimited.| pTic Tas (]
3

Unannounced .
Justificationeee !

17. DISTRIBUTION STATEMENT (of the abatract entared in Block 20, i dilterent from Report) B

Y.
Same Distridbution/

Avuuabilitv Codeg
Avail and/or

18, SUPPLEMENTARY NOTES Dist SD.ui.l

RADC Project Engineer: Donald L. Mark (ISIS)

19. KEY WORDS (Continue on reverae side if receaanry and {dentify by block number)

JOVIAL (J73)
MIL~STD~1589A

Programming Manual
yigher Order Language

AUSTRACT (Gontlnus on reverse alde if necessary snd ldentily by block number)

This manual is a combined tutorial and reference manual for the JOVIAL
(J73) language as defined in MIL-STD-1589A dated 15 March 1979. The
main body of the manual describes the entire language, giving motiva~
tion and examples for each feature. This manual is intended for a
reader who has had previous experience with assembly language or some
higher order language, It does not teach the fundamentals of program-

ming. On the other hand, the presentation is informal and non- N

SECURITY CLAJSIFICATION OF THIS PAGE (When

DD " 5°™, 1473 eniTioN OF 1 NOV €515 OBSOLETE UNCLASSTFIED ; 1
DatefEntered)

Ling sy 3o

o — [P S

) T A A IS L T e eyt et

\. b BRI R RUTIPR ATV B ——- 1

L Yaes

e

7 AUTHQR(#®) """"i& 8. CONTRACT OR GRANT NUMBER(s)
(_ || #30602-78-c-0188 /
§. PERFORMING ORGANIZATION NAME AND ADDRESS . 10, ::giR.Awoﬁ KE N MOBJE!RC + TASK
Softech, Inc. . 63728F
460 Totten Pond Road 4_ (J
Waltham MA 02154 (/= Y1 25320203
11, CONTMOLLING OFFICE NAME AND ADDRESS N 18 REPORT oATi .
Rome Air Development Center (ISIS) .y p
Griffiss AFB NY 13441 (/7 "5‘93""“”' FAGES - (a /
. MONITORING AGENCY NAME A ADDRL.SS(If ditferen! ftom Conteolling Otfice) 18. SECURITY CLASS, (aof lj’rlpcrq, 1
Same UNCLASSIFIED
5a, ggﬁééj‘s-lzllCATloN/DOWNG!ADING
N/A

ORI GRS b

E A
e = -

T

T = - T
R T T

3l SE1

v ERET L

- —— Y

-y

UNCLASSIFIED

NECUmITY

CLASSIFICATION OF THIS P AGE(When Data Entered)

mthemtical. o

w

sty o e ————— et © i i mewR e L

UNCLASSIFIED

SECURITY CLABSIFICATION oF Tuir PAGE(When Dala Eritered)

b 4

2

Fi

g T "!_-"',-_h'-""_i" cpan -

i A

PTC
[ﬂ § .""»«..,}'

« CONTENTS

‘ Preface

INTRODUCTION L N I I R R I B A A I S S BN IR S A S B 'Y
The Principal Features of JOVIAL .seisaesen

CHAPTER

1l
2
Values @A & 88 8 2 s e s A E S EEIL I SN B BN 2
StOLBYE vt eieetsetiatsarsrrassrsassacenr 3
Calculations .ievveeciiesesesnssansessess 6
Operators 56 608 000808 s B ELEIIAYIOEELEEI OSSR 7
Built-In FUnctions ssevevrsseessonsccncss 9
Flow Of CONtrol «.icisennvesssenessonnass 1O
Subroutines ..c.icosessnnssrssurorrssasne 12
Pl‘ogramﬁ ® & 8 5 ¢ 8 5 8 P A SN B LS BN RO Y B OE N 14
Compiler DirectiveB s.ceviecreranesnesnes 17
[Compller Maoro8 ..sssvesssassanssssarnes 18
1 Advanced FeatuUres .:viceicecssssssaassses 18
Implementation Dependent Characteristics . 19
Outline of this Manual .sesvecessesesocsses 19
Suggestions to the Reader .i:iesvevsneeras 21

e ® ® & s - ® o e =

= OO !MbWwh M

BN P

CHAPTER PROGRAM ELEMENTS 't ittt asssnnnnssasnssvionsses 23
characters L2 IR T T TR T L Y Y TNY B N B DNN BN BN R BRI I B Y IR BN U B B N A) 24

1 Letters ... tovienctsenrsssnsosnsncsrsseses 24

2 Digits cviveievsnnians ceees 24 :

3 Marka 4 4 8 85 3 4 30 0 00 8 s “ s &8 25 ."‘

4 Special Characters . veews 25

¢ 8 6 8 0 25

* e 0 26 4

veees 27 E

veeas 27 k

..:l.lll 27

S}’mbols & 4 8 6 % 6 0 8 6+ 3 0 h b B A s s d sy
Names «oioeevsveasones
Reserved Words 'sveesssaness
Operators tseeecesans
Separators seessssses
Literals «ivieessonss

[IR

Integer Literals .

e s

Real Literals

Il L]
-2 [I B I 3
.3 Bit Literals «...ieioveses veeee 29 b
.4 Boolean Literals ..c¢iev0se .
.5 ®
.6 .

Character Literals «.cceviovvses

Pointer Literals:00444
Comments s:vsevasassssncnsosna
Other SymboOlBE +sscevetrocssns

Program FOormat ..esessscassssne

LN A]

DR A A 32
D R A A A Y 32
¢ s st 32
teveseesss 33
veasesesss 33 '
terersense 34

.1 Space Characters .«icveissssns
. 2 New Lines +evvvertvsacronnsne
03 Formatting Conventions

R e gy

CHAPTER 3 pRoGRAM STRUCTURE 2 4 8 & 85 % 0 3 8 B ACED PSP EE NS 35 i

3 . l The program 9 8 3 5 8 A% 8 BB 6 0] 00 O 0 SN Sy e o 35)

3 . 2 Moduls ® & 5 3 5 4 4 ¢ B B & B P L L S LG e e 35 L

3.2.1 The Main Program Module ..ciovvrcrvsesss 37 ol

ey T

111

R s el T T L R e e R w—“-—— e

y . s ey e 2 i i

——— T

CHAPTER 4 DECLARATIONS AND SCOPES :seseesescsssssecees 39
4,1 Declarations ..viesecessrseceososnsnsnsasees 39
4.1.1 The Classification of Declarations 4¢
40102 The Null-Declaration AR EEEEEE RN N 42
4.1.3 The Compound-Declarationveccesevse. 42
4.2 scope S & 0 @ 0 & 0 P S E PO SR TSI LS EANS S s 42
4.2.1 The Scope of a Declarationcees0ee. 47
4.2.2 Restrictions on Declarations¢vceeo.. 49
CHAPTER 5 DATA DECLARATIONS .+ oveecoossossnsasannssarsss Bl
5.1 The Classification of Data Declarations .. 52
5.2 Variables and Constants .i.ccceisesererses 52
5.2.1 Variable, Data ObJeCtB .svevseesssarsosrss 52
5.2.2 Constant, Data Objectsocvuesecveenes. 53
5.3 Storage Allocation c.esvsenveccansnrsersss 53
5.3.1 Automatic Allocation ..eveivscversniarses 54
5.3.2 Static Bllucation .evvivvvenneniarieness 54
/
CHAPTER ITEM DECLARATIONS LI I I I RN T Y T ST Y SR I O I S B Y IO B W) 55
.1 Item Declarations iiieesessrsvncctnssrosess 55
.2 Constant Item Declarations sciiesescvscses 56
'3 DataTypes S 8 5 6 0 8 06 0 0 0 T T PP E AN YN e 57
. 3.1 Integer Type-Descriptionsccivvvevsv. 58
.3.2 Floating Type-Descriptions ...cvctvesess 59
l3l3 Fixed Type-DeBcriptions TR EERR] e s s 08 4 61 .
+3.4 Bit Type-Descriptions ...:vviessenneses, 63
«3.5 Character Type-Descriptiongvvev0.. 64
.3.6 Status Type-Descriptions ...iievecieasss 65
. 3.7 Pointer Type-Descriptionscevvevea. 67
04 Item"PreetB L I I I R I I R T S S Y S T R S SR Y W) 68
4.1 The Round-or-Truncate Attribute 69
CHAPTER TABLE DECLARATIONS 4 .vvverinssennnosonnsssss 71 ‘

Table"Attributes 8 & 5 5 5 2 45 6% 08 8 0 8PP s sa 8N 72
Allocation Permanence «.cesesessossossce 72
Table DimenBions +eevecrececcessssescses 72
Bounds ...coceverrorronrosenssssacssnee 73
’rab]e Size % 4 % &2 8 % 5 2 A BB s e E S e b s 75
Maximum Table SizZe ...ivsivaornreesnss 76
Table-Preset S 5 & 5 8 88 N BB P SN 0NN BN 76
Entry"DescriptiQn % & 8 0 8 8 5 0 08 5 208 A a0 s Ve NG 76
Unnamed Entry-Descriptions ...¢seesuva.. 78 :
CQnﬁtant Table Declaratiorlﬂ EEEEEEEEEREEX] 79 ’
Table Initialization ¢cveevenveocnannnnees 79
Table-Presets with Item-Declarations80 |
Table-Presets in the Table-Attributes .. 80 A
values 4 0 8 90 B 5 0 % 4 s 04 4 A BB NA s AN 81 i

. o o
W =

WNNNND-

.
(o

Preset Positionerc.eiiiviiviusnnes 82
- Repetition“‘counte L N N N N Y] 84

NN NNNSS NN NN NSNS N [y W e W e WA T W e I W oLl e N L 2 W e NG

DO ADDADMRWNER S

1
2
3
4 omitted Values 4 8 5 % 8 ¢ & 8 & 005 9SS B s DN DD 82
5
6

CHAPTER

CHAPTER

CHAPTER

CHAPTER

8 BLOCK DECLARATIONS ..¢tecioasnssosscsssaa-ss B7

8.1 Block-Declaration ...ceseeesenssosvecenscas 87

8.1.1 Nested BlOCKS +vuvvevensvoas s .ornaaass 89

8.1.2 Allocation PEIrmManence «s:v sssevenssssse OF

8.1.2 Initial Values .c.eievisennas- 1rssss-00s 90

9 TYPE DECLAMTIONS ® & & 8 & 0 6 4 0 6 0 F S A PE LS e s 93

gol Type'-DEClaratiOn R R Y 93

9.2 Item Type-Declaration ...veeceenesocecass. 95

9.2.1 Allocation and Initial Values :esesseees 95

9.3 Table Type Declarations8 .:ieiososesesssaee 96

2.3.1 Dimension and Structure ..vcecessveroveee &7

9.3.2 Allocation and Initial Values 98

90303 Like"option LRI R N I N N RN N N R N N R N B S SN S S S 99

9.3.3.1 Dimensions and Like-Options ..:ia.vse.. 100
9.4 Block Type Declarations .iieveesnersseaacs 101
90401 Initial Values e 8 ¢ 8 8 5 29 &5 6 b4 O &8 OB OGS D 102
9.4.1.1 omittedvalues ® % 0 ¢ 2 6 % 4 8 e & 88 8 s 0B s 162
lg DATAREFERENCES 4 8 ¢ & & 4 0 5 5 S 0 SN SN s o lm3
1.1 Simple References .cieeeseassesensesasnsss 103
10.2 Subscripted Data Referencesc:e:+.. 104
13.3 Qualified Data Referencescciaveassss 105
10.3.1 Pointer-Qualified References ...seecesss 105
19.3.1.1 Pointers and Ambiguous Names 106
1@.3.1‘2 Examples llll.l...ll.!l!l.‘.I......llll 1”8
11 FORMULAS l.:.l......‘lll!.ll.l...l‘..l..lll 111
11.1 Formula Structure ..sieieesesssecsessseass 111
11.1.1 Operators and Operator Precedence 112
11I1l2 operands 0 0 0 6 5 0 6 0 P 2 BT O E B E L E LSS lls
11.1.3 Formula Types & 8 5 & 4 4 8 % 8B A S BB G SO SPPE Q O 115
11.2 Integer FOrmulas .civivesvasrssrcsconseess 116
11.2,1 Integer Addition and Subtraction 116
11.2.2 Integer Multiplication and Division ... 117
1102'3 Integer Modulus LI I I B 4 & &k 8B A B s SN H e 117
11.2.4 Integer Exponentiation i.ievsvevsveares 117
11.2.5 Examples 8 8 4 8 4 8 8 05 6 40P 4B S8 S P B S8 e 118
11.3 Float FOrmulas ssssssosasscasssnsssssssss 118
11.3.1 Float Addition and Subtraction 119
11.3.2 Float Multiplication and Division 119
11.3.3 Float Exponentiation ..¢ivesreesseseces 120
1103.4 Examplea 4 & & & A 8 5 F 5 5 385 4 SN S B BB BB 4 126
11.4 Fized FOrmulas «.sesoovovvsraaorssonsesss 121
11.4.1 Addition and Subtraction ..cveverssesees 122
11.4.2 Multiplication veecessesevessnenanessns 122
11.4'3 DiViBion e & 6 8 % 4 0 4 O P B S S 40 NS W EE S E P 122
11.4.4 ' EXaAMPleB «tvesonronssorsarsssnssnssenss 123
11.5 Bit FOrmulas .eovevecssstosrosonensasenss 124
11.5.1 Logical Operators sesvsesecoscsnsneacnanss 124
11.5.1.1 Short Circuiting «iesveivsvnrsannasss 125
11.5.2 EXAMPLleB +seevesvesasoreasnssasacnsnsss 125

v
— T AR TR A\ e bty i A

. - T et s R, -

— 3

!

t
\
-
1,
‘-./I.

PRI

CHAPTER

11.5.3
11.5.4
11.6
11.7
11.8
11.9
11.10

Relational OperatOrs ...¢v eeceuenvsens

Examples

® 6 5 5 060 88 A e e e s e tes s s

Character FOrmulas scccsssovesoencancsons
Status FOrmulas ..seicsssnresscsncanansas
Pointer FOrmulas ..ciecceersoconononasonss

Table Formulas

L R R R S N A N A B R AT A S A IR B I)

Compile-Time-FOrmulas ...sossss0s0ncanns

12 BUILT"INFUNCTIONS R EEEEEE R N N I I A N I
The LOC FUnction sveisveiccocsossosonssans
FPunction POXM cueevecsccananesotonsiona

12.1
12.1.1
12.1.2
12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.5
12.5.1
12.5.2
12.6
12.6.1
12.6.2
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.7.6
12.7.7
12.8
12.8.1
12.8.2
12.8.3
12.9
12.9.1
12.9.2
12.14
12.10.1
12.10.2

Examples ...

6 68 0 00900 s aEuE B Bae bt

TheNExT Function LT TS IR I Y B BN O R TN BN BN TR TR SN RN RN R R)
Function POXM cveevsroseonccsanssesonas
Status Value Arguients .c.cescossascens
Pointer Value Arguments ...eicesssonses

The BIT FUNCLiON (i vietvsveanessnannsesse
Function FOIXM ceeevverssrsssntccsonnnsces

Examples ...

L I e R N I I B N IR B R RN IR B I S A N

Pseudo-variable Form L I R A A A R R A A A A N]

Examples ...

L I I I N A N A R A A A

The BYTEFUNCTIO&:.l‘l.l.l.l.l".'."‘f..
Fui‘lcticn Form 5 % 04 8 Es 0B BN E "I B LSRN G

Examples ...

LR I R A R R I N B R R S R Y A R R)

Pseudo-Variable FOXm .seeesessossussaas

Examples ...

¢ 2 0 8 8 24808 e TIPSO een

Shift Functions (eeiverervssrnssososseses
FPUnction FOXIN ceevisssarsosssnnssssvsnss

Examples ...
Sign Functions

LI I I R N K U I N A B RN B A I R N |

@ ¢ 8 5 8 5 % a8 st EBDbe s s

Function FOYM .evessvesorsconossrsonasas

Examples ...
Size Functiens

4 48 8 85 8 5 8 838 s et aAEE PN

LI R I I N A S B R AT R S B I R R A R)

Punction FOIM tcececesessesrssssstosonse

Numeric Data

TYPES cevseccssasenansonrss

Bit and Character Types .i:eiesasassass

Status Types

4 8 5 8 4 8 VU RS E e Vs SN

pointerTypes ® 8 8 2 8 8 0 8 8 38 NS A N 8o

Table Types
Blocks .4

L L I R I I O O B A N S B Y 2 I Y)

LI I S N N R R R A L RN R SR I S B Y N Y

Bounds Punctions «iicecesensrorsosssanass
Function FOXMB s cesenesanavaresnoernsas

Examples ...

LI I R S O R A O A R L I Y S I B R B Y

Asterisk Dimensions (.ciceisereistrnrianns
The NWDSEN Function ® % 0 6 3 3 5 4 8 9 P BB Nt PY O OEDS
PUNCtion FOXM cccvestvesvotassronssssonsa

Examples ...

L I I BT I R I I S I I O I A A A)

Inverse Functions .ceevetiscscssnsncssanss
FUnction FPOYM «vceoesetversssatonssosss

Examples ..

vi

LI S I R R R I R R N A I A A A A A A A)

WA e i A g e e BT AR

126
126
127
127
128
128
128

131
132
133
133
134
134
135
135
136
136
137
138
13g
138
138
139
144
140
140
141
141
142
142
143
143
144
145
146
146
147
147
148
149
149
150
150
151
151
152
152
152
153

EEOSTY

o -

CHAPTER

CHAPTER

13 CONVERSION

13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.4

13.4.8.2

Conversions

Contexts for Conversion
Compatible Data TYPEE ssesvecesasosssssns
Convertible Data TYPe8 icevvnsetsnacnaca

% e 60 0 e 0 00

Type Descriptions ...ceeveesessocnssons
Type'lndicators LR R N I R N I R R B A A A)
UBerType-Names D I A N A I R N B A B A A A A A A N]

LI R R R R A I A R N B TR B BT Y B I N B NI I)

Conversion to an Integer TYpe +.ceeesse
Compatible TYDPEE saesesesssssncansos
Convertible TYpPes .ctstesssocanssaers

Conversion to a Floating Type ..evssses
Compatible TYDPES .sesscsasnosasrsanse
Convertible TYPES8 +cviesersiosacasrans

Conversion to a Fixed Type ..osccrscnns
Compatible TYPE8 ceirssvvnsorsvsnnanss
Convertible TYPEB «covvterierasensoss

Conversion to a Bit TYpe t.ceveeinnsens
Compatible TYPEB «svesssoscassnensans
Convertible Types R
User-8pecified Bit Conversion

REP Conversions

Compatible Types

Conversion to a Table Type ...

Conversion to a Character Typeevn.
Compatible TYpPeB ..sovsressostsannssoe
Convertible Typea D I A S A AN R

Conversion to a STATUS Type sevessassen
Compatible Typeﬁ R T
Convertible Types ... ciinonensonsses

Conversion to a Pointer Type ...eiesses

L I I O A A JC R R N Y B I Y I I]

Convertible TYPES ¢ivevsrtvvnsaananss

¢t o e byes

Compatible TYPEB «eissescnsvssssasess
Convertible TYPe8 .o i vvvrnssssnsonns

14 STATEMENTS L R R R I I A S I I I S Y I B I I A A A N

14.1

14.1.1
14.1.2
14.1.3
14.1.4
14.2

14.2,1
14.2.2
14.3

14.3.1
14.3.2
14.3.3
14.3. 4

If-ftatements

Statement Btructure ...tV iiivrrnnssoancas

Simple"'statements L I I N N N N S R I SRR

Compound-Statements

48 8 ¢ 8B P4 BIE 0

Labels DR I R R R N R A N N R N R R A R R
Null-statement. ® 5 5 8 0 8 80P EEE AN

hAssigmment Statementsccvsesnnssasns

Simple Aﬂﬂigm’ﬂent-statements RRe e s s e
Multiple Assignment-Statements .:.ie04.

L I R I L I A B B R RN B R B N B BN IR I

Compound AlternativeB ..icessrsersavacns
Nested If-StatementB LR I SR SRS BN N RS S N
The Dangling ELSE . ctsvvsrnsscesensnnan
Comp‘l.le—'rime-conﬂtant Te!t’ LRI R BN AR S Y

vii

Povy

155
155
156
156
156
187
158
158
158
159
159
161
161
162
162
163
162
164
164
164
164
166
le6
168
167
168
168
169

17¢
171
171

172

173
173
173
174
175
176
176
176
177
178
179
180
181
182

R T T e e s

f 14.4

Case~-Statementsivetveeeiaosesaraaasaea 183
f 14.4.1 Bound Pairs ...eoevessassssassncsscseses 185
i 14.4.2 The FALLTHRU Clause ..¢essescnasosescss 185
: % 14.4.3 Compile-Time-Constant Conditions 186 ‘
: i 3 1405 LOOp-Statements L R T R O I N S S N A BN I N R AT) 187
- | i 14.5.1 While-LOOPS essesasesrssssesesassarsssss 187
l 14.5-2 FOI‘-LOOpS L O R R N O R T R A I N R R I SN SN S N) 188
: 140502-1 InCIemented FOI‘-LOOPE R N R RN A IR S P 189
% 14.5.2.2 Repeated Assigment LOOPS ¢eesesosssss 191
. 14-5.3 Loop-control [I N R I R A R R O O N I I RN I B RS B R) 192
; 14.5.4 Labels within For-LoOpP8 .ievesseacsasss 193
. 14.6 Exit-StatementB ® 8 45 60 ¢ A S B BB E RN eI IR 193
¢ . 14.7 GOtO-StatementB R R R I A I A] 195
& 140 B Procedure-Ca ll-StatementS oo LR I R I N S N R W Y 196
'; ' 1409 Return"statements “ s PP B eI e RO BLE LI OPLEESEan 196
14.10 Abort-Statements ..cicesscesssssrsaneass 197
! 14.11 Stop-Statements ...cciivrinnererssnsscse 197
, CHAPTER 15 SUBROUTINES . .ccevcesncssraosstsssossossessss 199
I, 15.1 Procedures ..sevvsnssscosrnnosnasssssasss 199
' . 15.101 Procedure-DEfinitiona 8 66 2000008058 199
: ‘ 15.1.2 Simple Procedure~Bodies ...vcceesrsnsee 207
u l ' 15.1.3 Compound Procedure~Bodies s.iceieveesess 201
; 15.1.3.1 Formal Parameters ..sseeseseevasacses 202
; 15,1.4 = Procedure=Calls (.corvsvevnscsonosnsssses 202
: 15-1-4-1 Actual Parameters svssesesseresnsanios 2“3
. 15.2 FUNCLtiOoNs sevisvevorscsacrosssnsnsansnsces 204
' 15.,2.1 Furiction Definitions svsveviivicveenvias 204
! 15'2l2 Function-calls ® 5 4 & 6 & 0 8 2 B s s e e e Y NS 2@5 L}
15.3 Parameters c.vsovesiestsosertsssssnsersnans 206
: 15.3.1 Input and Output Parameters ssivsseeees 2086
! s 1503.2 Parameter Binding S B e Es NP ILIIEEELELEDNS 2“7
) 3 15.3.2.1 Value Binding 4 4
15-3.202 Value-Result Binding " s a0 s 0P r st sae 2”8 ’
. 15.3.2.3 Reference Binding +scvvevecsnrvnnes.ea 209
F 15.3.3 Parameter Data TYpes8 ..civvavssesrsvear 211
15.3.4 Parameter Declarations ...-.vssvevase.e 211
15.3.4.1 Data Name Declarations ...seveceecaas 212
15.3.4.2 Statement Name Declarations 213
15.3.4.3 Subroutine -Declarations «iseeseseseess 214
1504 The UBe-Attribute LR I I R N N B S RS R S S N Y B Y S B) 215
15.4.1 Recursive and Reentrant Subroutines ... 216
15.5 Subroutine Termination (vecveviaranines 217
15-5'1 Return"statement‘ LR R R I N N A S N I N R A B S) 218
15.5.2 Abort-statementa ¢ 8 & U B A S B e P et P I A SN 218
15u503 GOtO-StatementB DR R B B N NN R R U B B R R A A] 22“
15-5-4 Stop"statement' DR I BN R S N I A R N Y SRR N I N O] 22@
, 15.6 Machine Specific Subroutinescc.00.s 220
!\ 15-7 The Inline“DeCI.ﬂration TR R R N B A S BN S B A A I A] 22‘1
viil i
p g
! i
- \ S _ L L T AT R My] SN : i o P g v
[T 4 p—— e ool

v e . T

T

CHAFTER 16 EXTEDNNALS AND MODULES e esoveceoecs
16.1 External Declarations:eocvas

223
223

.
.
.
.
.
.
.
.

1601.1 DEF—SPeCifiCations 2 5 8 5 806 8 0 0 8 BB e e 224
l16.1.1.1 Simple DEF-Specifications ...vonieeve 224
16.1.1.2 ' Compound DEF-Specifications «....s... 225
16.1.1.3 Allocation eseivicinosssssasssonnsreses 225
l16.1.2 REF-Specifications .cevieeenrsecessnses 226
16.1.3 Constant Data «.eveerssresessssanssnsse 228
1602 Mcdules O & & P 2 8 4 0 4 0 AN S b s 228
16.2.1 Main Program Moduleceiceussansnsss 229
160202 Compool—MOdules R EE R I N N I N B R S) 231
16-2-3 Procedure-Modules @ % 6.8 06 5 0 2 s s 6B IS B 237
16.3 Module Communication eceececsvscscaaassses 239
16.3.1 Direct Communication srvsviesenessrseesr 240
cliAPTER 1’/ DIRECTIVES A 0 5 B 48 % & 0 4 8 S QAPPSO EY TN E P 243
17.1 Compool-Directives +svsevsrissasiscanareass 244
17.1.1 Names 8 & 8 8 2 8 4 B A St S AN et 245
17.1.2 Additional Declarations .:.evevecesesse 246
17.1.3 Placement .s.oceviosencrcarsessveasssassses 246
171114 Examples I N T ST SN TR ST IR Y NN BN TR Y Y S RSN AT I IR Y I IR N B RN R 247
17.2 TeXt-Directives cvcivecsersoensssanarenes 247
17.251 copy—DireCtiVe ® % 0 & 8 & 0 2 B s B e e 248
17-2-1-1 Placement T T R R R R R R 248
17.2.1.2 EXample . ovceivrnscasertasrascesnsses 248
17.2.2 Conditional-Compilation~Directives 249
17.2.2.1 Placement seisssnsssnnnssrsssscansress 249
l7.2l2l2 Examples [N R T A N N R I I B Y Y S R R SO L R R T R 249
17.3 Listing-Directivesvevsecaescaansess 255
.L7A.?lol Placement L I I R . R R T T TR T S S S S TS S I S T SN S SN N ?55
17.4 Initialization-Directive ceeieveviireeess 256
17I4l1 placement S 8 5 0 8 6 5 & 2 8 & ¢ 0 0 0 F A 256
1704.2 Example A ¢ 0 0 b & 6 5 0 ¢ 0 & ¥ & 8 N0 a2t Y ER S 256
17.5 Allocation-Order-Directive c.vveveiecrnas 256
17.5.1 Placement sesssevesssnasesssssssssssanss 257
17.5.2 EXAMPle severstsensnsassssasacssenssrans 257
17.6 Evaluation-Order-Directives .+:ivvvsssesr 258
17.6.1 Placement «eovvecosorensorssnssasnscessesrs 258
17.6.2 EXAmMPle ciecierteonsencsanasssasssaenaas 259
17.7 Intevference-Directive ...icivcevvviianas 259
17.7.1 Placement tesveeoresccsonscrscsnsccsnsee 260
17.7.2 Example (oot iiortseenccasasstsssseresss 260
1708 Reaucible“Directive EEEEEEE R e 26(’1
17.8.1 Placement «ceesistorssassnsssssnssessess 261
17!802 Example ¢ & & 8 0 5 L 2 D 4 ¢ 0 s & V4B 261
1709 Register-DirectiVes @ 6 2 0 6 4 8 4 3 B H e O L e 261
17.9.1 Placement seesessrsorassnaasnannss craees 262
17.19 Linkage-Directive ...vivivrivieriisvianse 262
17.19.1 Placement «c.eveseevesncnsssssosssnsanse 262
17.,18.2 Example t.ecirviiiitoagrosonnrassanssans 262
17.11 Trace-Directives it virinsnrstssssaanss 263
17.11.1 Placement e.esveitrsevecavecnsssnaresnsss 263
1x

CHAPTER 18

CHAPTER

18.1
18.2

DEFINE CAPABILITY
Define-Declaration
Define-Calls

Placement

* e 0 v s 8 0 s

LR A A]

L R S Y

L R R A I I A B B I B B I I B A Y Y)

L I I I A B R I B I R N I N BN N IR BRI S)

The Define-string LR A B B AN S IR R I B B I BN Y

Define~Calls in Define-Strings

Comments in Define-Declarations
Define Parameters

Define-Actuals

Missing Define~Actuals
Gerierated Names

Context

Define~Calls in Define-Actual
The List Option «.icevieenrven

19 ADVANCED TOPICS

19.1
19.2
19.2.1

2
l2h1
19.2.2,2
19.2.2.3
12.2.2.4
19.2.3

19!

19,

19.

S e AT LI QL

L R R A IR I R Y B

JOVIAL (J73) Tables «iveunnas

Ordinary Tables

Packing

s 6 8 8 0 0 8 s

S8 60 0 80
" e e .

e W s o o

»
.

LI A A A)
.

Structure

L A N R I I I A I R B I

Serial Structure
Parallel Structure

Serial vs.

s 6 00000

o s 00 00

s s 008 00 00

LU IR B I]

LR I S N

.
.

a0 8 8 40 00
LR I A R)
.

LRI B B)
*® v e s
00 a.
" e 0
LA BN

* s 0.

® 0 5 40 0

LR RN S I I

Parallel Structure
Tight Structure ..c.vvsecnens

LR I]

Conversion and Packed Items ..
Specified Tables «ositivoviainns

Specified Table Type Declarations .
Tables with Fixed-Length Entries ..
The * Character
Overlays
Presets

Spacers

Nested Overlays .
Storage Sharing
Allocating Absclute Data
Allocation Order ...

LI

¢ o 4 e e v

LRI S I S I)

Entry—SiZe P I TN T SR T R TR S B N S IR B I I R)
Tables with Variable-Length Entries
The OVERLAY Declaration

Data Names

¢ 3 B s 8 SV 8 0 s s

L R I I I I A R I O I R I)

" e 4 s

60 s »

L I R R SRR Y I R I)

.

.

.

D R A
.

.

.
.
.
.
.
.
¢ o v o
.
.
.
LI I R Y
.

.

Overlay-Declarations and Blocks ...,

Specified STATUS ListS .vivsvovens

DEF-Block-Instantiations

Ce ¥

LN R S

265
265
266
268
268
268
270
279
271
271
272
273
2723
274

278
275
275
276
281
282
282
283
284
287
287

289
289
290
290
291
293
296
297
298
299
299
299
3o
ng
301
302

W < L vl Spsedy vy e e e e e
piallihs.Fh P T RPN

e —————]

PREERE R ONUNEE

YrogpdiataniBRE e o

L e

.

APPENDIX

PIEDPP PP

APPENDIX

wWww

Index

A

B

Il T e

1
2
3

.

DWW e

LANGUAGE SUMMARY ...vcevronees seceesara et

A-1
Introduction ...ciivecerannnse tevesrrne A-1
Syntax Notation seeieeesesses sessesses A-l
o1 Concatenation ..cecvvvennir. sresenavss A=2
.2 OMigBsion (ivevirvioroecsatccasensnnons A=2
.3 Disjunction «..sciessacocccsaronsaasss A=3 i
.4 Replication ceseserbenssssasasssssesns A=3
Identical DEfinitions ® 8 s PV e PR E PR NSRS A-S
NOEES sttt sssiossssnosossissncnssccsresrsas A=5
Syntax Index L A O I I I I B A R R R A N BN BRI A) A-S
SynﬁaCtic Summary vresrsersecatsersssancsse A-6
Syntax Index L R B R R RY B I BN IR I S B B I I I I I) A"46
IMPLEME'TATION PARAMETERS L R R R S R B S N S A I) B—l
Integer Implementation Parameters B-2
Floating Implementation Parameters B=4
Fixed Implementation Parametersses. B=5

x1

B s L LU R R PTRRRY

Chapter 1

‘ INTRODUCTION

JOVIAL (J73) is a higher-order programming language. It is being
implemented on many computer systems and used in many

applications areas. Typical applications areas are avionics,
command and control, and missile flight control.

Sufficient capability has been provided to permit programming of
most command and control applications in JOVIAL (J73). It is
intended that assembly language programs be combined with
programs written in JOVIAL (J72) to form a total application
software package. The assembly language programs can provide
certain utility operations as well as all hardware-dependent
activities such as input, output, and interrupt services.

s

The language independently processes procedures and functions of
the units of an application. Standard subroutine linkage and
argument transmission with a powerful compool file ¢an be used to
effectively modularize programs and contreol interfaces.

Permissable data structures are simple items, structured tables

of simple items, and composite data blocke containing simple
items and tables.

=y

Types of data in data structures can be eigned or unsigned
integers; enumeration values, floating point numbers, fixed point
(fractional) numbers, character strings, bits strings (logical),
and pointers (address of data objects).

A full complement of language constructs permits looping,
branching, conditional execution, procedure or function calls,
and assignment of values to datz elements.

-1 - 1l: Introduction

,1_ RIS A i S e e A

1.1 THE PRINCIPAL FEATURES OF JOVIAL

The following paragraphs provide an introduction to the principal

features of JOVIAL. They discuss values, storage, calculations, Lo
operators, built-in functions, flow of control, subroutines, . ,
programs, compiler directives, compiler macros, and, finally, the |
advanced features of the language.

l.1.1 Values ﬁ

The kinds of values provided by JOVIAL reflect the applications
of the language; they are oriented toward engineering and control
programming rather than, for example, commercial and business
programming. The JOVIAL values are:

1, 1Integer values, which are signed or unsigned whole
numbers, They are used for counting. For example, an
integer can be used to count the number of times a loop
is repeated or the number of checks perfermed on a
process.

2. Floating values, which are numbers with "floating" scale
factors. They are used for physical guantities,
especially when the range of measurement cannot be
accurately predicted. For example, floating values are
frequently used to represent distance, speed,
temperature, time, and so on.

4
-

3. Fixed values, which are numbers with constant gcale
factors. They are sometimes used for physical
quantities (primarily to save time and/or storage) when
the range of the value is narrow and predictable. For
example, fixed values might be used in a computation
that had to run on a computer for which floacing-point
hardware was not available or was too slow.

4. Bit-string values, which are sequences of binary digits
(bits). They are used for communication with "on-off"
devices or to control parts of the program itself. For f
example, a bit-string could be used to represent '
settings of switches on a control console. f X

5. Character-string values, which are sequences of
characters. They are used for communication with people.

For example, a character-string could be sent to an @ﬁ\ !
operator terminal to report failure of a portion of the ‘ !
system.
|
l: Introduction -2 -

[rS—

6. Status values, which are special words. They are used
to describe the status of the system, or a particular
part of the system, at any given time. For example,
status values of "V(OK)", "V(WEAF)", or "V(BAD)" can be
used to indicate the condition of a power cell.

ok

7. Pointer values, which are data addresses, meaningful
only within the program. They are used to locate data
indirectly. For example, a list of items can use
p?inters to connect each item to the next item in the
list.

8. Table values, which are collections of valuee gathered
: together to form a single data object. They are used

for the constructs called "arrays" and "structures" in :
other languages. For example, a table can be used to !
store temperature readings taken every 10 seconds during ;
a given test period.

9. Block values, which are collections of values gathered , 1

into one region of memory. They are used to support

4 memory management. For example, certain data that must .

ld be paged in and out of memory together can be placed in
a block.

1.1.2 BStorage

When a JOVIAL program is executed, each value it operates on is
stored in an item. The item has a name, which is declared and
then used in the program when the value of the item is fetched or
modified.

P |

An item is declared by a JOVIAL statement called a declaration
statement. The declaration provides the compiler with the
Information it needs to allocate and access the storage for the
item. Here is a statement that declares an integer item:

ITEM COUNT U 1@ I

This declaration says that the value of COUNT is an integer that
is stored without a sign in ten or more bits. The notation is
compact: "U" means it is an unsigned integer, "19" means it
requires at least 1@ bits. We say "at least" ten bits because

. the JOVIAL compiler may allocate more than ten bits. (That

(alloction wastes a little data space, but can result in faster,
more compact code.)

-3 - 1: Introduction

{

TV R A ~ TR TV, YT e RLT

[l

JOVIAL does not require that you give the number of bits in the
declaration of an integer item. If you omit it, JOVIAL supplies
a default value that depends on which implementation of JOVIAL
you are using., An example is:,

ITEM TIME S:

This statement declares TIME to be the name of an integer
variable item that is signed and has the default number of bits.
On one implementation of JOVIAL, this would be equivalent to the
declaration:

v

ITEM TIME 8 15;

The item TIME occupies 16 bits (including the sign). On another
implementation, it would be equivalent to:

ITEM TIME § 31:

This and other defaults are defined in the user's manual for the
implomentation of JOVIAL you are using.

In this brief introduction, we cannot consider each kind of item
in detail (as we just did for integer items). Instead, a list of
examples follow, one declaration for each kind of value.

ITEM SIGNAL S 2@ A signed integer item, which occupies
at least three bits and accomodstes
valueg from ~3 to +3.

"ITEM SPEED F 30: A floating item, whose value is stored
as a variable coefficient (mantissa)
and variable scale factor (exponent).
The "3¢" Bpecifies thirty bits for the
mantissa and thus determines the
accuracy of the value. The number of
bits in the exponent is specified by
the implementation, not the program.
It is always sufficient to accommodate
a wide range of numbers.

ITEM ANGLE A 2,13; A fixed item, whose value is stored
with fixed scaling, namely two bits to
the left of the binary point and
thirteen fractional bits. Thus it
accomodates a value in the range -4 <
value < +4 to a precisimn of
1/(2%*14),

l: Introduction -4 -

—— i

—c——

ITEM CONTROLS B 10; A bit-string item, whose value is a
sequence of ten bits. Thus it can
accommodate, for example, the settings

of ten on/off console switches.

ITEM MESSAGE C 84; A character-string item, whose value
is a sequence of eighty characters.
Thue it can accommodate, for example,
the message "WARNING: Cooling system
failure" (with plenty of character

positions left oyer).

(V(RED) ,V{YELLOW) ,V(GREEN)) ;

A status item, whose value can be
thought of as "V(RED)", "V(YELLOW)",
or "V(GREEN)" but which is, in fact,
compactly stored as an integer. Thus
a programmer can assign "V(RED)" to a
variable to indicate cooling system
failure instead of using a ?presumably
non-mnemonic) integer.

ITEM INDICATOR STATUS

ITEM HEAD P DATA: A pointer item, whose value 1ls the

address of a data object of type DATA.

Items are 3just the scalar (single-value) data of JOVIAL. JOVIAL
also has tables and blocks, which provide for arrays and other
data structures.

An example of a table declaration is:

TABLE GRID (l:1M,
BEGIN
ITEM XCOORD U:
ITEM YCOORD U;
END

1:10@);

The table GRID has two dimensions. Each dimension contains ten
entries. Each entry consists of two items, XCOORD and YCOORD.

An example of a block declaration is:

BLOCK GROUP;
BEGIN
ITEM FLAG B;
TABLE DATA(100);
ITEM POINT U;
END

The block GROUP contains the item FLAG and the table DATA.

-5 - 1:

Introduction

Items, tables, and blocks can also be declared using type-names.
A type-name is defined in a type declaration. An example of a
typre declaration is:

TYPE COUNTER U 10;

The type-name COUNTER can be used to declare ten-bit integers.
For example:

ITEM CLOCK COUNTER:

l1.1.3 Calculations

In the eimplest case, calculation is performed by an asgignment
statement. An example is:

AVERAGE = (X1 + X2)/2;

The right-hand~side of this assignment is a formula; it forms the
sum of X1 and X2 and divides it by 2. The details of the
operation depend on how X1 and X2 are declared. 1If X1 and X2 are
declared float, the calculation is very likely to produce the
expected result. In contrast, if the X1 and X2 are declared
fixed, the mcaling must be worked out by the programmer to make
sure the calculation will succeed. And if X1 and X2 are declared
character-string, the compiler will reject it because JOVIAL does
not automatically convert values into the types reguired by
operators.

In the example just given, the parentheses show that the addition
is performed before the division. When parentheses are not
given, JOVIAL recognizes the usual order of evaluation. Here is
an example:

POLY = BETA*X1%¥%2 - GAMMA*X2 + DELTA;

JOVIAL applies its "rules of precedence" to the formula in this
assignment and thus interprets it as:

POLY = (((BETA*(X1*'2)) - (GAMMA*X2)) + DELTA);:.

The complete precedenée rules are given in Chapter 1l1l.

l: Introduction -6 -

P —

The examples just given illustrate the use of formulas on the
right-hand side of an assignment statement. A formula can also
appear ag part of the left-hand side of an assignment statement;
for example, as the subscript of an array. In addition to their
important role in assignment statements, formulas can appear in
many other places in the language: as actual parameters of
functions and procedures, ae the condition in an if-statement,
and sc on.

Since JOVIAL has quite a few kinds of values, it muset have many

ways of converting one kind of value into another kind. 1In most

gaaes, you must explicitly indicate the conversion. An example
B3

ITEM MARK U 14;
ITEM TIME F;

MARK = (* U 19 *) (TIME):

The value of the floating item TIME is converted to a ten-bit
integer value before it is assigned to the ten-bit integer item
MARK. If you leave the conversion operator out of thie
assignment, the compiler will report an error. The compiler
catches situations in which one type of value is unintentionally
assigned to or combined with a different type of variable.

1.1.4 Operators

The operations provided in JOVIAL reflect the applications of the
language: they determine what the language can and cannot do.
Thus JOVIAL is strong in numerical calculation and control logic,
put has minimal operations for text processing.

JOVIAL does not have any operations for input-output or file
maintenance because it is assumed that a JOVIAL program rune in a
relatively specialized environment that provides subroutines for
those operations.

Some of the operations of JOVIAL are represented by operators,
others by built-in functions.

- 7 - l: int. oduction

PR S 2 S ST e e W ek et e 2+

The JOVIAL operators are summarized in the following table:

Type Operators Operation ‘

: '

; Arithmetic + - prefix sgigns - 5
. * % exponentiate o
, * / MOD multiply, divide, and modulus -
+ - infix add and subtract b

h

' Relational < > = less than, greater than, equal ﬁ
X <m = <> less than or equal, g
{ greater or equal, not equal [
| b
Logical NOT (prefix) "not" !

AND OR "and", "“or" !

XOR EQV "exclusive or", "equivalent" .

LY

An arithmetic operator takes integer, float, or fixed values as
its operands and produces an integer, float, fixed value as its
regult. Type classes cannot be mixed. For example, a fixed
value cannot be added to a float value unless one is explicitly
converted to the type of the other.

LN)

Frere g -

% A relational operator compares any two values of the same type 3

and produces a Hoolean value as its result. A logical operator
takes bit-string values and also produces a Boolean result. (A
Boolean value is a one-bit bit-string, representing "true" or
"falee", depending on whether it is one or zero.)

P S 35 s

The JOVIAL operators are described in detail in Chapter 11, f}
where, for example, you will find the rules for operations on L
fixed values and for the comparison of such objects as

- character-strings and pointers.

1l: Introduction - 8 -

 ——

_~

1.1.5 Built-In Functions

The JOVIAL built-in functions provide advanced, specialized
operations that are not covered by the JOVIAL operators. They
are summarized in the following table:

Function
LoC(x)
NEXT(p, i)
NEXT (s, 1)
BIT(b,i,n)
BYTE(c,i,n)
SHIFTL(D,n)
SHIFTR(b,n)

ABS(x)
BGN(x)

BITSIZE(x)
BYTESIZE(x)
WORDSIZE(x)

LBOUND(t,qd)
UBOUND(t,d)

NWSDEN(+t)

FIRST(s)
LAST(s)

Result
A pointer to the object referenced by r

A pointer to the 1'th data object after
the one selected by p
The i'th status value after status value s

A string of n bite starting at the i'th bit
of the bit string b '

A string of n characters starting at the i'th
character of the character string c

Bit string b shifted left by n bits
Bit string b shifted right by n bits

Absolute value of x
+l1, B, or -1 for x>@, x=0, x<@

Logical size of x in bits
Logical size of x in bytes
Logical size of x in words

Lower bound of d'th dimension of the table t
Upper bound of d'th dimension of the table t

Number of bytes allocated to each entry of
the table t

First status value in status list for s
Last status value in status list for s

An example of the uge of a built-in function is:

C = BYTE("ABCDEF",2,3);

The built-in function extracts "BCD" from the string "ABCDEF".

-9 - 1: Introduction

XL 0 A 5 YL A e TR e s an S

~ &i;ﬂw:ﬂ;;aa— P

— e ———— et

r
Foi

Two of the built-in functions, BIT and BYTE, can be used as
pseudo-variables. 1In that form, they appear as the target of an
assignment, and are interpreted "backwards". An exawmple is:

C = “ABCDEF";
BYTE(C,2,3) = "Xyz";

This assignment changes the second, third, and fourth characters
of C to "XYZ". The value of C after the assigment is therefore
“AXYZEF",

1.1.6 Flow of Control

For structured flow of control, JOVIAL has an if-statement, a
case-statement, and a loop~-statement with an optional exit-
statement. Examples of these statements follow.

Here is an example of an if-statement:

IF SPEED < LIMIT:
FLAG = TRUE:;
ELSE
BEGIN
FLAG = FALSE;
VIOLATION = VIOLATION+1;
END

If SPEED is less than LIMIT, this statement sets FLAG to TRUE and
does nothing else. .If SPEED is not less than LIMIT, the
statement gets FLAG to FALSE and increments VIOLATION., The last
four lines of the example are a compound statement; the BEGIN~END
pair groups the assighments to FLAG and VIOLATIONM into a single
compound statement controlled by the ELSE clause.

The ELSE clause of an if-statement is optional; when it is
omitted, no action is taken when the condition is false.
Furthermore, if-gtatements can be nested, so complicted control
structures can be built up. When if-statements get large and
complicated, however, you can sometimes use a case-gtatement to
clear things up. -

1: Introduction -19 -

e s

[P |

P

.‘. - N

PRI IR TRL VY VAPV PR Ly PPN SIR

Here is an example of a case-statement:

CASE NUM: , - g
BEGIN :
(DEFAULT) 1, TYPE=V (OUT'OF'RANGE) ;
(1,3,5,7,11,13,17,19): TYPE=V (PRIME);
é264,6,a:10,12,14216,18,2a): TYPE=V (NONPRIME)
N

This case statement sets TYPE to one of three status values,
depending on the value of the integer item NUM., If NUM is
ovtside of the range from 1 to 2, the status value i=s
"V(OUT'OF'RANGE)". If NUM is in the range and is prime, the
status value is "V(PRIME)". If NUM is in the range but not
prime, the status value is "V(NONPRIME)". BEach time the
statement is executed, the value of NUM isg compared to the list
of values in parentheses., If it matches one of them, then the
?tateme?t on that line is executed. The notation "8:18" means
'Blgllg L

Ll

The case-selector (NUM in the example just given) can be an
integer, bit, character, or status formula. It is not unusual for
a routine to be dominated by a single case~statement, and case~
statements are often nested within larger case-statements.

LOOp-staﬁements are used to repeat a sequence of statements.
Here is an example of a loop-statement:

FOR I:@ BY 1 WHILE 1<le0a;
BEGIN
VAL = INPUT:
IF VAL < @#;
EXIT:
GIVEN(I) = VAL:
END

This statement vses the function INPUT to get an input value and
assigns that value to VAL. It assigne input values to GIVEN(1l),
GIVEN(2), GIVEN(3), and so on until either GIVEN(999) has been
assigned or a negative input is encountered. The examples uses
an EXIT statement, which causes immediate exit from the enclosing
loop.

- 11 -~ 1: Introduction

b RN o

¥ "ii'l‘”f"'Iuj"=.-?r.:'wquu,;,awmw;..,mn.....u:-.\..v..r [T - EE I O PRTR VAT TH PO

JOVIAL als» has a form of loop that has just the WHILE clause; it
can be used when the loop does not require an index. Many
calculations can be written as a while loop {(which keeps going
until some end condition is met) that encloses a case-statement
(which selects the proper action for each time through the loop).

JOVIAL has GO TO statements and optional statement labels to go
with them. Many psogrammers avold using GO TO statements and
labels, in accordance with current programming style; but they
are there when needed.

Finally, JOVIAL has a STOP statement. Its meaning depends on the
particular implementation; but its purpose is to provide a
controlled return to the program environment.

1.1.7 Subroutines'

A JOVIAL program is a collection of subroutines that are grouped
together in a way described later in this introduction. Ideally,
these subroutines are small. When a2 given subroutine gets too
big, part of it is pulled out and made into a separate
subroutine. In this way, each subroutine is small enough to be
understood, improved, tested, and, later in the life of the
program, modified.

A subroutine can be either a procedure, which is called in a
procedure~call-statement, or a function, which returns a value
and is uged in a formula.

Here is an example of a procedure:

PROC RETRIEVE {CODE:VALUE);
BEGIN
1ITEM CODE U:
ITEM VALUE F;
VALUE = -99999,;
FOR I:@ BRY 1 WHILE 1<1000;
IF CODE = TABCODE(I):

BEGIN
VALUE = TABVALUE(I):
EXIT:
END
END
1y Introduction - - 12 -

51 T - e e eaa - “ . -

S —— e Ao e

The procedure RETRIEVE has one input parameter CODE and one
output parameter VALUE. If the value of CODE is found in the
global table to which the entry TABCODE belongs, the associated
value TABLVALIUE is returned. If the value of CODE is not found,
the value -99999, is returned.

\\

This procedure could 68 written as a function, as follows:

' PROC FIND(CODE) F; '
BEGIN
; ITEM GODE U;
| FIND = -99999,:
\ FOR I:0 BY 1 WHILE I<10¢0:
} IF CODE = TABCODE(I);

BEGIN
FIND = TABVALUE(I);
EXIT;
END
END
(The function FIND has an input parameter CODE and a return value,
which is designated within the function by the function-name

FIND.

The following assignment statement has the samc result as a
procedure-call-statement on RETRIEVE.

VALUE = FIND(CODE); j

(The function FIND returns either the value associated with the '

value of CODE in the table or the value -+29999, indicating that '
the value of CODE was not found.

- 13 - 1l: Introduction ik

KR R TR T T F e T T e T B el MRS RNl R T A
(IO IR WHLLITE - RNV S —‘M% A i Sl , §

', [RESTRA e g o e e . s e e

In these examples, the search took place in a global table with
1922 entries. The subroutines can be written to accept a table
of any length as a parameter. Here is the function FIND
zewritten to search a table provided as a parameter:

PROC FIND(CODE, TAB);
BEGIN
ITEM CODE U:
TABLE TAB(*);
BEGIN
ITEM ‘PARCODE U;
ITEM TABVALUE F;
END
FIND = -~99999,:;
FOR I:@ BY 1 WHILE I<UBOUND(TAB,?);
IF CODE = TABCODE(I):
BEGIN
FIND = TABVALUE(I);
EXIT:
END
END

This function accepts the table to be searched as an actual
parameter. The declaration of the table formal parameter uses
the * character to indicate that the bounds are tu be taken from
the bounds of the table given as the actual parameter. The
built-in function UBOUND, then, is used in the loop-statement to
control the number of times the loop iy executad.

|

Subroutines can also be recursive or reentrant. A recursive
subroutine must have the attribute REC in its declaration and a
reentrant subroutine mus: have the attribute RENT in its i
declaration.

1.1.8 Programs

A program is made up of modules. A module is a separately
compilable porticn of a program. A program must have one, and
only one, main program module. It can have any nunber of
procedure and compool modules.

The main program moduie contains the actions tc be performed in
the program. Execution of the program starts at che first :
statement in the main program module and continues until either a

stop-statement or the last statement in the main program module ;',

is reached.

1: Introduction - 14 -

o y—— R R AR e R e e

it end

;M;wwhn, (aketiitad 1w b i A b

A procedure module containe procedures that are to be shared.
Consider the following procedure module, which contains an
external declaration for the subroutine FIND:

START
{COMPOOL 'DATA';
DEF PROC FIND(CODE,TAB);
BEGIN
ITEM CODE U;
TABLE TAB(*):
BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END '
FIND = =99999,;
FOR I:9 BY 1 WHILE I<UBOUND(TAB,®);
IF CODE = TABCODE({I):
BEGIN
FIND = TABVALUE(I):
EXIT:
END
END
TERM

The procedure module begins with the reserved word START and ends
with the reserved word TERM. It contains a compuol-directive
that provides a link with the compool module DATA and an external
subroutine definition (indicated by the reserved word DEF).

The reserved word DEF indicates that a data declaration or
subroutine definition is external and can, therefore, be used in
other modules. The reserved word REF indicates that a data
declaration or subroutine definition is an external whose
corresponding DEF specification is given in another module.

- 15 - l: Introduction

PPy

A compool module contains information that is to be shared:

START COMPOOL DATA;
DEF TABLE PRIVILEGE(1@@);
BEGIN
ITEM NUMBER U;
ITEM RATING F:
END
DEF TABLE ASSIGNMENT(999);
BEGIN
ITEM KEY U:
ITEM COORDINATE F;
END
DEF ITEM LIMIT U;
REF PROC FIND(CODE,TAB) F;
BEGIN
ITEM CODE U:
TABLE TAB(*):
BEGIN
ITEM TABCODE U:
ITEM TABVALUE F;

END
TERM

The compool DATA contains three external data declarations (DEF
specifications) and an external subroutine reference (REF
specification).

An example of a main program module using these procedure and
compool modules is:

START 1COMPOOL ('PATA');
PROGRAM MAIN;
BEGIN
FOR I:0 BY 1 WHILE I < UBOUND(PRIVILEGE,?):
IF FIND(I,PRIVILEGE) = FIND(I**2,ASSIGNMENT);
STOP 21;

STOP 22;

END
TERM

This main program module uses the tables declared in the compool
module and the function FIND defined in the procedure module and
referenced in the compocol module. The prugram consists of the
main program module, the compool module DATA and the procedure
module.

l: Introduction - 16 -

END .'\

e e .

,‘I;‘

1,1.9 Compiler Directives

Compiler directives give information to the compiler about how to
interpret and process the program. The previous section
introduced the compool-~directive, which provides for sharing data
between modules. Other directives supply information to the
compiler about optimization, register control, listing format,

conditional compilation, tracing, and the like.

o For Module Linkage:

1COMPOOL 'Cl' (AA,BB);
ILINKAGE FORTRAN;

o For Optimization:

ILEFTRIGHT;

| REARRANGE ;

|ORDER;
|INTERFERENCE XX:YY;
IREDUCIBLE;

o For Register Control:

|BASE X'ITEM 2;
|ISBASE X'ITEM 2;
IDROP 2

o For Listing Options:
ILIST:
INOLIS'T;
{INJECT;
o PFor Conditional Compilation:
|BEGIN Ay

LEND;
| 8KIP A:

o0 Miscellaneous:
{COPY 'INSERT';

ITRACE XX:
|INITIALIZE;

Introduction

R

T

i Wi

{.1.1@ Compiler Macros

The define capability of JOVIAL (J73) alleows the definition and
use of macros. Here is an example of a simple macro:

DEFINE REDALERT "CONDITION=V(RED) AND STATIONS=V(CALLED)":

The define-name REDALERT is associated with the define-~string
shown above in double quotes. When a define-name is given in the
text of a program, the compiler substitutes the associated
define-gtring. For example, coneider the following statement:

IF REDALERT;
BATTLEPLAN(1);

The compiller substitutes the define-string for the define-name
REDALERT to get the following statement:

IF CONDITION=V(RED) AND STATIONS=V(CALLED);
BATTLEPLAN(1);

Macros are convenient because they permit a succint
representations that can be easily modified. They are powerful
because they can e used in a structured way to develop a
specialized language.

The define capability of JOVIAL (J73) also permits the use of
parameters in macros. In addition, list controls can be
gpecified in the define-declaration that determine whether the
macro is to be shown in its macro form, ites expanded form, or
both.

1.1.11 Advanced Features

The advanced features of JOVIAL (J73) allow the programmer to
exercise control over the way in which data is represented and
allocated. If the programmer does not specify positioning and
allocation, the compiler performe these tasks. In some cases,
however, the positioning must be nonstandard to allow for

communication with a device that requires a particular format.

1: Introduction - 18 -

C i

L ks 1 e i W POV

P

(. -

Data positioning is accomplished by specified tables and
allocation by the overlay-declaration. A gpecified table is a
table in which the programmer supplies the starting bit and
starting word of each item. The overlay-declaration lets the
programmer specify the allocation crder of data, the machine

address at which to allocate the data, or a physical overlay of
data.

1
\
i

1.2 IMPLEMENTATION DEPENDENT CHARACTERISTICS

Each implementation of JOVIAL(J73) has special characteristics.
The implementation parameters of JOVIAL help the programmer to
write programs that can be machine independent. For example, the
implementation parameter BITSINWORD gives the number of bits in a
word for a given implementation. The information that pertains '
to a particular implementation of JOVIAL (J73), such as the

values of the implementation parameters and the character set, is
given in the user's guide for that implementation.

1.3 OUTLINE OF THIS MANUAL

The first four chapters of this manual provide a general view of
the structure of a program. These chapters are:

1. Introduction

2. Program Elements

3. Program Structure

4, Declarations and Scopes

The chapter on "Program Elements" describes the characters and
symbols from which a JOVIAL (J73) program is constructed: thus it
is concerned with the smallest units of mtructure. In contrast,
the chapter on "Program Structure" describes the largest units of
structure, the program itself and the modules that make up the
program. Finally, the chapter on "Declarations and Scopes"
describes a different kind of structure, namely the assignment of
meanings to names through declarations.

- 19 - 1t Introduction

sty shiune s ot a0 e GR i li ias

—————— i

B

The next' five chapters of the manual are concerned with the
declaration of data. These chapters are:

5. Data Declaretions
6. Item Declarations
7. Table Declarations
8. . Block Declarations
9. Type Declarations

The chapter on "Data Declarations" discusses the data objects of
JOVIAL (73) in a general way. The next three chapters describe

- ppecific kinds of data. The chapter on "Type Declarations"
desaribes a way to give a name to a data type description and
then use that name in the declaration of data. Type declarations
support the use of pointers.

The next three chapters describe the calculation of values.
These chapters are:

12. Data References
11, Formulas

12, Built-ln Functions
13, Conversion

The chapter on "Formulas" describes formulas in general, dealing
with operands, operators, and operator precedence. Then it
describes the formulas for integer, float, fixed, Pbit, character,
status, pointer, and table values. Finally, it describes
formulas that can be calculated at compile time. ‘The chapter on
"Built-In Functions" gives, for each built-in function, the form
of the function call and examples of itm use, The chapter on
"Conversion" describes the conversion operators and the contexts
in whi¢h conversilon can ococur. The next chapter describes all
the executable statements of JOVIAL (J73). It is:

14, Statements

This chapter begins with the assignment statement and continues
with eontrol statements. The latter include statements for
conditional branching, two forms of iteration, unconditional
transfer, procedure invocation, and varioug forms of exit.

The next chuapter describes the definition and call of procedures
and functions. It is:

15, Subroutines
Thie chapter also describes the inline-declaration, which directs

the compiler to replace a subroutine call by the body of the
subroutine itself rather than by a jump to the subroutine.

ls Introduction - 20 -

The next two chapters describe the way modules are put together
to make a program. These chapters are:

16, Modules and Externals
17. Directives

The chapter on "Modules and Externals" describes the three
different kinds of modules and the use of external names for
communication between modules. The chapter on "Directives"
describes a facility for including instructions to the JOVIAL
(773) compiler within a program.

The next two chapters describe special features of JOVIAL (J73).
These chapters are:

18, Define Capability
19. Advanced Topics

The chapter on the "Define Capability" describes the macro
facility of JOVIAL (J73). 'The chapter on "Advanced Topics"
describes the layout of tables in storage, the overlay 1
declaration, specified status ligts, and DEF-block ;
instantiations. |

The appendixes to this manual provide reference information.'!
They are: i

A. Language Summary
B. Implementation Parameters

The "Language Summary" contains a complete syntax of JOVIAL (73).
The appendix on "implementation Parameters" describes the
parameters which specialize a program for a particular computer,
and which can be changed when the program is moved.

1.4 SUGGESTIONS TO THE READER

Probably you have read most of the introduction. From that, you
should have an idea ¢of the scope and power of JOVIAL. If you
have worked with other high order languages, you know which

fea! ures of JOVIAL are familiar to you and which are not.

Now you probably should read through the remaining chapters of
the manual, not stopping to study, but just getting an idea of
how the information is organized. There is more than one way to
describe any language, and you need to know how this manual is
put together. |

- 21 - 1: Introduction

If you have not worked with some form of syntactic notation

before, you may find the syntex of Appendix A obscure. In that

case, let it go for a while. The complete syntax given in

Appendix A becomes more useful when you have learned some of

JOVIAL and done some programming. Then you will have specific, ‘
detailed questions about JOVIAL, and you should f£ind the Appendix P
useful. o

7Y

1: Introduction ' - 22 -

P e e R SO e TR 5 et BT €

el TR 2 o T a2 AR ROl

e m——

-

.-

e

Chapter 2
PROGRAM ELEMENTS

At the simplest level of structure, a JOVIAL (J73) module is just
a sequence of characterg. These characters are the letters,
digits, and punctuation marka that are normally used for computer
input/output.

Consider the following example, which is a.fragment of a JOVIAL
(J73) program:

SPEED3w=20;

This example is a sequence of ten characters. It beginse with the
five letters "g", "p", "E", "E", and "D". The letters are
followed by the digit "3". Next comes the mark "=", After that
is a sequence of two digits, "2" and "@"., The sequence concludes
with the mark ":".

At the next level of structure, beyond characters, a program is a

sequence of symbols. Each symbol is a sequence of one or more
characters that i1s interpreted as a pingle construct.

As an example, consider again the program fragment that was used
to illustrate charascters:

SPEED3Iw2(;

The ten characters of this example form four symbols. ' The
characters "“SPEED2" form a symhol thst is the name of a variable.
The single character "=" is a symbol that indicates assignment of
a value to a variable. The digits "2@" are the symbol for the
nunber twenty. And, finally, the character ":" is the symbol
that marks the end of this construct (which is an assigmment
statement) .

- 23 - 2: Program Elements

e . s, el W

The firet two sections of this chapter define characters and
symbols, respectively. The third section describes the use of
blanks and new lines to make a program module readable.

This chapter lays the foundation for the following chaptere. It
describes the symbols from which the larger constructs of JOVIAL
(373), such as formulas, statements, and entire modules, are
built.

2.1 CHARACTERS

A JOVIAL (J73) character is a letter, a digit, a mark, or a
special character, These characters are described in the
following paragraphs,

2.1,1 Letters

JOVIAL (J73) programe can be written entirely in upper case
letters. If lower case letters are available in a given
implementation, they can be uged. However, a lower case
character 1s considered to be identical to the corresponding
upper case character unless it appears in a character literal
(defined later in this chapter).

For example, consider the following three names:

ARC Abc abe

These names are equivalent in JOVIAL (J73). In contrast,
consider the following character literals:

'ABC' ‘'Abc' ‘abc!

These literals are not identical in JOVIAL (J73) because the
distinction between upper and lower case is retained.

2.1.2 Digits
JOVIAL (J73) uses the ten digit characters, namaly:

g 1 2 3 4 5 6 7 B 9

2: Progran Elements - 24 -~

e
8
e’

¥

TS . A vt i o 3

o~y

2.1.3 Marks

In describing JOVIAL (J73), the word "mark" is used to describe a
character that is used as an operator, delimiter, or separator.
The blank character is a mark. 1In addition, the following
characters are marks:

+ - & / < > = @ . : ' ! () ' " % ! $

In some environmentse, certain marks are not available. In each
such case, a standard alternative character is defined. A

complete list of the alternative characters is given in Appendix
A,

2.1.4 Special Characters

The set of special characters varies from one implementation of
JOVIAL (J73) to another. These characters can be used in
character literals. They have no other role in the language, but
they may have a special purpose in a particular implementation.
Part of the documentation of & particular implementation of
JOVIAL (J73) is m list of ite special characters.

2.2 SYMBOLS

The JOVIAL (J73) characters are combined to form JOVIAL (J73)
symbole. The different kinds of symbols are:

Kind of Symbol Examples
Name VERSION AZIMUTH
Reserved Word CASE IF GOTO
Operator + = ke
Literal 2 3.14159 'GREY WIRE'
Status Constant V(RED) V(CASE)
Comment % Input Preparation Routine %
Define-String "IA+1B"
Define-Call ‘ TALLY (COUNT)
Index-Letter 1 4J
Separator T
- 25 -~ 2¢ Program Elements

2.2.1 Names

A name is a smequence of letters, digits, dollar eigns, and
primes. It must begin with a letter or a dollar sign, and it
must be at least two characters long. A symbol composed of a
single character is not a name; instead, it is an "index letter"
and is used in conjunction with loop-statements.

The following are all valid JOVIAL (J73) names:
ALPHA AA $STATUS PART 'NUMBER
Q$$$ $0165 Plllil $|

POINT 'OF 'DEPARTURE 'FOR'INCOMING 'MESSAGES

A JOVIAL (J73) name can be any length, but the compiler only
looks at at the first 31 characters. Thus the first 31
characters of a name must digtinguish the name from all other
names in the same scope. YFor example, the name

POINT 'OF 'CEPARTURE 'FOR'INCOMING 'TRAINS is considered by JOVIAL to
be the same name as POINT'OF'DEPARTURE'FOR'INCOMING'MESSAGES
because the first 31 characters are the same.

In some implementations, the compiler may look at fewer than the
firgt 31 characters of an external name. (An external name is
one that is used for communication between modules or with the
environment. These nameg are described in Chapter 16 on "Modules
and Externals" .) The exact rule for recognizing external names
is documented in the user's guide for the implementation.

A dollar sign in a name is tranglated to an implementation-
dependent representation. For example, suppose a given JOVIAL
(773) system requires that each external name be prefixed by a
period. The use of the period in a JOVIAL (J73) name is not
allowed, but the dollar sign can be used for this purpose. The

given system can then translate dollar sign to period to obtain a
valid external name.

A prime (') can be used where a blank character (which is not
allowed in a name) would be used, as in the following names:

INITIAL'TIME FINAL'TIME RATE'OF'DESCENT

2: Program Elements - 26 -

et ”v-.»,; S e A et el NG

IO

it

2.2.2 Reserved Words

A reserved word is a symbol that has sgpecial meaning in the
JOVIAL (J73) language. Reserved words are used as keywords in

statcements and as built-in function names. They cannot be used
as names.

For example, the following are reserved words:

IF CASE ABS BIT ITEM

A complete list of the reserved words and their meanings is given
in Appendix A.

2.2.3 Operators

Operators are used in JOVIAL {773) formulas. The operators are:

Classification Qperators H

Arithmetic + = * / %% MOD |
Bit C NOT AND OR XOR EQV ,
Relational = <> < <= > Hm

Dereference @

Assignment =

The arithmetic, bit, and relational operators have their usual
meanings. They are described in Chapter 11 on "Formulas".

The assignment operator is used in the assignment statement, as
described in Chapter 14 on "Statements".

The dereference operator is used to obtain the object referred to
by a pointer, as described in Chapter 1% on "Data References".

2.2.4 Beparators
A separator is used between list elements or logical parts of a

statement. It is 8lso used to terminate statements, to delimit

the beginning and the end of a construct, and to mark special
constructs.

- 27 - 2: Program Elements

R

A e A by

Coawil Y b
N gt

Lt

Y i o

e

For example, the following characters are separators:
, : : () (* ™) !

Consider the following procedure-call:
COMBINATIONS (THINGS, OCCURENCES)

The comma separator ",' separates the arguments in the pzrameter
list. The parentheses delimit the parameter list.

A complete list of the JOVIAL (J72) separators and their purpose
in the language is given in Appendix A.

2.2.5 Literals

.4 literal is a data object whose value and type are inherent in

the form of its representation. JOVIAL (J3J73) has the following
kinds oF literal: e

Integer
Real

Bit
Boolean
Character
Pointer

The different kinds of literals are described in the following
paragraphs.

2,2.5.1 1Integer Literals

In integer literal is a seguence of one or more digiits. It is
interpreted as a decimal representation of an integer value., For
example, the following are all integer literals:

25 39876 77

The type of an integer literal is a signed integer type with sire
equal to the multiple of BITSINWORD -1 used to represent the
minimum number of bits necessary to represent the value of the
literal. BITSINWOKD isg the implementation parameter that gives
the number of bits in a word for a given implementation.

2: Program Llements - 28 -

+

For example, the minimum number of bits necessary to represent
the value 25 is 5. The size, n, of the integer literal 25, thus
is 15 if BITSINWORD is 16,

Note that an integer (or real) literal can be preceded by a sign,
but the sign is an operator (see Chapter 11 on "Formulas") and
not part of the literal.

2.2.5.2 Real Literals

A real literau) is one of the following:

decimal number
decimal number followed by exponent
integer number followed by exponent

A decimal number is a sequence of digits that contains a decimal
point somewhere. An inte‘er number is a seguence of digits that
does not contain a decim#l point. An exponent is the letter "E"
followed by an optionally sigred integer number. No blank
character is permitted within a real literal.

Examples of real litevals are:

67.2 7853,21E-2 25E5 1EQ JARIEAE3
A real literal can be interpreted as a floating or fixed type.
The way in which it is interpreted depends on its context. The

rules four its interpretation are given in Chapter 13 on
"Conversion”,

2.2.5.3 Bi+t Literals

A bit literal represents a bit string value. A bit literal is
composed of a string of beads. The number of bits in each bead is
given at the beginning of the bit literal as bead-size. The form
of a bit literal is:

bead-size B ' bead ... '
This form uses some special notation., The "..." after "bead"
means "a sequerice of one or more beads". Blaaks are not
permitted anywhere in a bit literal.

- 29 - 2: Program Elements

The head-size of a bit literal can be 1 through 5. Bead can be
any digit or any letter from A through V. The digits @ through 9
repregsent their actual values; the letters A through V represent
the values 1@ through 31, respectively.

The beads specified in the bit literal must be consistent with
the specified bead~size. For example, the bead A, which requires

four bits for its representation, cannot be used .in a bit literal
that has a bead-size of 3.

An example of a bit literal is:
4B'1@ACE"

Since the bead-size is 4, this bit literal is in hexadecimal
notation. It is equivalent to the following bit literal:

lB'oop1ee00101011000110"

In this representsation, the bead size is 1, so the bit literal is ?1-
in binary notation. S

- s

The size of a bit literal is the product of the bead-size and the
nunber of bits in a bead. The size of both of the the bit
literals given above is 4*%*5 = 20 bits.

£

2.2.,5.4 Buolean Literals "W
'"3 'l"...L.J» g
A Boolean literal represents a truth value. A Boolean literal can

be either TRUE or FALSE. TRUE is equivalent to the bit literal
JB'1l' and FALCE to the bit literal 1R'0'.

2.2.5.5 <(Character Literals

A cvharacter literal is a string of characters enclosed in
single-quote characters. The form is:

character ... ‘'

The sequence "..." means that one or more characters can be
given.

2t Program Elements - 3 -

e

The following are character literals:

'ABCDEFG' 'RED GREEN BLUE' ‘Greetings’ '242=4'

Each blank within the delimiting single-quotes counts as a
character of the character literal. The size of the character
literal is the number of characters within the enclosing single-

quotes. For example:

Character~Literal Size
' ABC ! 5
' ABC' 4
‘ABC' 3
1]] l

A single-gquote mark is represented in a character literal by two
single-guote marks, and this pair counts as a single character.
Two single-quote marks indicate to the compiler that the
character literal has not yet come to an end. An example is:

'Say '‘'Hello‘''’

This character literal represents the three characters "Say",
followed by a blank character, followed by just cne single-quote
character, followed by the five choracters "Hello", followed by

one single-quote character. Thus the entire literal represents a
sequence of 11 characters.

2.2.5.6 Pointer Literals

JOVIAL (J73) has just one pointer literal, namely:
NULL

Any pointer item, regardless of whether it is typed or untyped, ;
can be set to NULL. A typed pointer is one that is declared with

an associated type-name, as described in the section on "Pointer |
Type Dascriptions”" in Chapter 6.

- 31 ~ 2: Program Elements

" macros.

2.2.6 Comments

A comment is a sequence of characters enclosed in a pair of
double~-quotes or a pair of percent signse. Thus the forms are:

* character ... "

% character .. %

A double-quote cannot be used within a comment that is enclosed

in double~quotes but a percent character can appear. For
example,

"Applies in only 10% of the cases"

Similarly, a percent cannot be used within a comment that is

enclosed in percents, but a double-quote can appear. For
example;

tFor details, see standard publication "Formatting"g

2.2.7 Other Symbols

The following symbols are described later in this manual:

Symbol Reference
Define~String Chapter 18
Define-Call Chapter 18

ndex-Letter Chapter 14

The derine-string and define~call symbols are used to implement

The index-letter is used as a loop-variable in a loop-
statement.

2.3 PROGRAM FORMAT

Space characters and new lines can be used between symbols tc
determine the format of program listings. The compiler ignores

this format, but programmers depend on good format to help them
understand the structure of a program.

2: Program Elemenis - 32 -

i

o e—— -
! e i . o ‘
i !) ey g, AR I LA E A
L LN (hd . o i
el

o 1

{at

¢4

PIRPESE TS

b

et G enp

2.3.1 Space Characters

Lo Space characters, or blanks, can be used between the symbols of a
, JOVIAL (J73) program. Using blanks, the same statement can be
j written in several different waye. For example:

IMPACT = 2¢ % HEIGHT ;
: IMPACT = 28*HEIGHT;
IMPACT~2@*HEIGHT;
These statements are all equivalent. Under varying

circumstances, each of them might be selected as "more readable"
than the others.

A blank can appear in a character literal, a comment, a define
string, or a status-constant. A blank cannot appear in any other
symbol. For example, consider the following assigrment

statement:
t (82 = 'Press HALT';
ﬁ This statement has three blanke in 1t. The first two, before and

after '=', are between symbols and therefore only affect
readability. The third one, inside the character literal,
represents the glxth character in that literal, and is just as
significant as the surrounding letters.

: Now suppose a blank is inserted after "8" in the assignment
(statement just discugssed. It becomes:

"y 8 2 = 'Press HALT';

The insertion of a blank into the name "S2" breaks it into two
symbols, the letter "S" and the integer literal "2". That
changes the interpretation of the example and, in this case,
produces an invalid statement,

2.3.2 New Lines

A new line can be used between symbols to improve readability of
a program and, of course, to keep the lines to a manageable size.
Like the blank character, a new line can alsoc be used in a

(comment or a define string:; but, unlike the blank character, a
N new line cannot be used in a character literal.

- 33 - 2: Program Elemen*s

The way in which a new line is stored in a program file depends
on the implementation and environment of JOVIAL (J73). 1In one
implementation it may be a carriage-return and line-feed, in
another it may be an end of record.

‘ S
2.3.3 Formatting Conventions
The use of blanks and new lines together allows statements to be
formatted. For example, you can write an if-gtatement in the
following way, using blanks and new lines:
‘ IF COND = V(RED);
COUNT1 = COUNTL + 1l
ELSE
COUNT2 = COUNT2 + 1;
The formatting makes the logic of the statement clear to the
reader.
The examples given in this manual follow formatting conventions e
that have been found useful by some programmers. It is difficult
or even unwise to lay down strict conventions. Such rules are
difficult to express and sometimes interfere with legitimate
differences of style between programmers.
Some general suggestions are:
. l. If a construct occupies more than one line, indent the %

middle liner relative to the first and last lines. (Some ! ?

e

programmers indent the last line, too, leaving only the first
line unindented.)

2., Use blanks between the main conetructs of a line, and omit
them (where possible) from high priority operators. Thus,
for example, the agsignment:

ALPHA = 2%B + 1;

3. Similarly, use blank lines between the main constructs nf
the program modules.

4. Use comments, hut place them so that they do not obscure
the indentation structure of the program.

2: Program Elements - 34 ~

e D e v IS

E et

*
|

e

hf S

i

;

4

Chapter 3
PROGRAM STRUCTURE

A program has structure. Not only can it have several modules,
but each module can be divided into parts, and those parts can,
in turn, be divided into smaller parts. For example, a module
can contain a subroutine definition, which can contain a
statement, which can contain a formula. A formula can contain
yet another, smaller formula. Ultimately, each formula ie made
up of symbols, such as: names, numbers and operators.

This chapter describes the largest parte of a program. The first
section describes the construction of the program itself from
modules. The second section describes modules in general and the
"maln program module" in particular.

‘Subsequent chapters desoribe the smaller components of a program

-- the statements, declarations, and so on ~-- that are used to
build modules.

3,1 THE PROGRAM

A program is a collection of one or more modules. Each module is
created and maintained as a separate text file. The modules are
compiled separately and then linked together for execution as a
unit. The details of compilation, linking, and execution are
different for each implementation of JOVIAL (J73), and are given
in the umer's guide for each implementation.

3.2 MODULES

A module is a sequence of symbols separated, where necessary, by
blank characters and new lines.

- 35 - 3: Program Structure

K LRy TR R e S I A T R L R A T

o ———

Special censtructs, the directives, can be inserted at yarious
laces in a module. Directives are an advanced feature of JOVIAL
EJ73) that provide instructions for the compiler. They are

described in Chapter 17 on "Directives”. '

JOVIAL (J?B) has three kinds of module, as follows:

Main Program Module -- A program nmust have exactly one main
program module. Execution of the program begins with
this module.

Procedure Mcdule -- A program c¢an have any number of proce~
dure modules, or none at all. A procedure mcdule con-
tains data and subroutines that could be in the main
program module, but that are placed in a separate
module to improve organization of the program.

Compool Module -- A program can have any number of compool~
modules, or none at all. A compool module contains
declarations that are shared among other modules.

Procedure modules and compool modules help in the development of
large programs in several ways.

1. When one module is changed and the othera are not,
only the changed module and the modules it affects
need be recompiled.

Z. If the gize of the main program module exceeds the
capacity of the compiler, a portion of it can be
removed and embodied in a new procedure module,
After that, each of the resulting modules is amaller
and more likely to fit the ~ompiler.

K When a large project is organized, each program
module can be assigned to a specific programmer. Thus
program organization can parallel staff organization.

q. Certain modules can be shared among projects. Thus
general libraries can be developed for a JOVIAL (J73)
installation.

The description of procedure modules and compool modules is
easier to understand after the other features of JOVIAL (J73)
have been described. Therefore these modules are described much
later in this manual, in Chapter 16 on "Modules and Externals"

3: Program Structure - 36 -

-

Any JOVIAL (J73) program of modest size can be written as just a
main program module, without any other modules. The description :
of the main program module follows.

3.2.1 The Main Program Module

: " The main program module combines declarations of data, executable
]] statements, and subroutine definitions in a single file that can
; be compiled, linked to other modules (if necessary), and » ’
executed.

it e 1 e

The form of the main program module is:

i o

START PROGRAM name T {

BEGIN :
[declaration ...]
(statement ...

[subroutine~definition ...]

END

[subroutine-definition ...]

TERM ;
(‘ In this representation of a main program module, the "..." under :
- "declaration" means "a secuence of declarationsa”, and the

notation has a analagous meaning with “statement” und

by "gubroutine-declaration". The square brackets around the

' declarations and subroutine~definitions indicate that these
constiucts can be omitted.

i

i The symbols given in upper casz in the form are JOVIAL (J73)
; reaserved words. The words in lower case are defined as follows:

name -~ This rame (just afiwr PROGRAM) iz the nume of the

program. It ie us2d by the JOVIAI (J73) environment in
! referring to the program; specific details are imple-
mentation dependent.

PP FEPTR

£
B e

- 37 - 3: Program Structure

B tep, RN - . o PR R 1 AL P

. declaration -- The declarations after BECIN are optional.
If the body of the module does not require declarations,
| none need appear here. On the other hand, each name
used in the module and not otherwise declared must be

declared here. Declarations are described in the next oy
chapter. L

statement ~~ At least one statement is required. Otherwise,
the main program module, and the program as a whole,
would do nothing. In most cases, these statements

i exercise overall control of the program; that is, they

invoke subroutines that do most of the work. The
statements are described in Chapter 14 on "Statementsa".

subroutine-definition -- Subroutine-definitions can appear

| in two places, before and after the END. They are

l : optional in both places; if subroutines are needed,

1 then they must be included. The subroutine-definitions
before the END are called "nested", and those after END
are called "non-nested". Only non-nested subroutines

can be designated as external by the use of the reserved . } |

word DEF. External gubroutines are described in Chapter pRd 1

[16 on "Externals and Modules". Subroutine~definitions are J
ﬁ described in Chapter 15 on "Subroutines".

Execution of the entire program begine with execution of the
first statement of the main program block. Execution proceeds
from one statement to the next, except where redirected by a
subroutine-call, an if-ptatement, or some other control- .
statement. Execution of the program is complete when the last {
statement of the main program block hae been executed. (Theve

are other ways to exlt a program, but that is the only way to
complete it.)

o,
) s
L

0y

3: Program Structure - 38 ~

Chapter 4
DECLARATIONS AND SCOPES

The main program module, described in the previous chapter,
contains declarations. The other kinds of modules, the procedure
module and the compool module, alsc contain declarations. In
fuct, declarations are an important part of a JOVIAL (J73)
program.

. A declaration is a "non-executable" construct. That is, it does
not represent an action taken when the program is executed.
Instead of causing action, each declaration provides information
about a name that is used in the program. That information is
uged by the compller each time it encounters & use of the
declared name.

A declaration does not, in most cases, extend over the entire
program. Instead, it applies to a particular part of the
program, called the "scope" of the declaration. In fact, the
same name can be declared more than once in a program, and each
declaration will apply only to ite scope. Thus you do not need
to worry about conflicts of names in unrelated parts of a
program,

The first section of this chapter describves features that all
declarations have in common and then lists the different kinds of
declarations. The second section describes the scopes to which
declarations apply.

4.1 DECLARATICONS

A declaration always beygins with a reserved word that specifies
the purpose of the name being declared. For cxample, a
declaration that begins with the reserved word ITEM specifies
that the name beinyg declared designates storage for a scalar data
value (a JOVIAL item).

- 39 - 4: Declarations and Scopes

Once the purpose of the name has been established, the
declaration provides further specialized information. As an
example, consider the following declaration:

ITEM VELOCITY 5 15; h

3 -
| S

This declaraticn declares the name VELOCITY. The reserved word
ITEM means that VELOCITY is the name of storage for a scalar data
value; or, to use the technical language of JOVIAL (J73),
VELOCITY "designates a data object". This declaration also gives
some specialized information about VELOCITY. The "S" means that
it is a signed integer, and the "15" means that it ocoupiles
fifteen bits in addition to the sign.

1

As a program is compiled, the compiler refers back to the
information obtained from the declaration of the name each time-
it encounters a use of that name. For example, consider the
following assignment statement:

VELOCITY = 33 -
In order to process this statement, the compiler muset know the "
type of VELOCITY: that is, its type-class and how many bits are

allocated for its absolute value. That information must come
from a declaration of VELOCITY.

4,1.1 The Clagsification of Declarations

4

A declaration is one of the following:

P

N ¥

Data-Declaration -- This construct declares a variable or
constant name; that is, a name that designates a data

object. Data-declarations are described in the next
chapter.

Type-Declaration -- This construct declares a name that can
be used in a data-declaration or conversion operator as
an abbreviation for a data description. Type-
declarations are described in Chapter 9.

Subroutine-Declaration ==~ This construct declares the name
of a subroutine. It describes the parameters of the
subroutine and (if the subroutine is a function) the
result. It may also give certasin special attributes of
the subroutine itself. Subroutine-declarations are
described in Chapter 15. a

4: Declarztions and Scopes - 42 -

N

T A ST

hl“}_‘ul

-

LA e

Spry

Statement-Name~Declaration ~- This construct declares the
name of a statement; that is, a label. Labels are
usually defined t, the label field in a statement; this
declaration is only required for certain labels.
Statement~-name~declarations and the circumstances under
which they are required are described in Chapter 15 on
"Subroutines".

Define~Declaration =~ This construct declares a name that
can be used as an abbreviation for a string of JOVIAL
(173) text. Thus it provides a limited macro facility
for use within a program. .Define-Declarations are
described in Chapter 18.

External~Declaration -- This construct declares a name that
can be used in more than one module. By this means,
both subroutines and data can he shared among modules.
External declarations are described in Chapter 16 on
"Modules and Externals".

Overlay-Declaration -- This construct establishes a
relationship between previously declared data object
namea. It can specify names that designate the same
data object or it can give the absolute address of a
data object. Overiay-declarations are described in
Chapter 19 on "Advanced Topics".

Inline~declaration -~ This conctruct directs the compiler to
replave a subroutine call on a given subroutine by an
inline compilution of tne subroutine body instead of by
a transfer to the subroutine. Inline-declarations are
described in Chapter 15 on "Subroutines".

Readonlv~declaration ~- This construct informs the compiller
that the data within a subroutine is readonly and any
attempt to change the values of the data is an orror.

Readonly~-declarations are described in Chapter 15 on
"Subroutines".

Null and Coumpound Declarations ~- These declarations are
special constructs that make adjusiments in the syntax

of declarations. They are described later in this
chapter,

“ 41 ~ 4: Declarations and Scopes

et =t

G TRNTG VPR SR

B

=

Y

1l

Wl

Mo s

4.1.2 The Null-Declaration

The null declaration has the form:

’ |
That is, it is just a semicolon. You need this declaration when
the syntax calls for a seguence of one or more declarations, but

you have no names to declare. This case arises in the
declaration of a subroutine that does not have parameters.

4.1.3 The Compound-Declaration

The compound-declaration has the form:

BEGIN
declaration
END
The sequence "..." indicates that one ¢r more declarations can be

given within a BEGIN-END pair.

The sequence of declarations can be empty, so that a special form
of the compound declaration is:

BEGIN
END

Compound-declarations enable a group of declarations to be
treated syntactirally as a single declaration.

4.2 SCOPE

Each declaration in a program supplies information about a
particular name. However, a given declaration of a given name
dces not necessarily apply to all cccurrences of that name. The
occurrences of a name to which a declaration does apply is the
scope of that declaration.

Scopes are established during the compilation of = module.

4: Duclacations and Scopes - 42 -

e e R i A, s T 1 B e N

k]
e

£-

PR S

L E e

Rt

PSRN N sap

ZE 2 e isdE

S,
i

X n 4
S s~y 2 >

e T e,

i
A
4
v

\

A systeri-scopn and a compool-scope enclose the module being
compiled. These scopes can be diagrammed as follows:

+gystem-scope=—==~-- e ———— e -— +
4+CcOMPO0]l~ECOpamwmr e e r e m——————— ---T
+modul e-geoper————m=—=—= e ——— + |
| I L R RV
i | |
| | |
| | | R
| | |
| | |
tommmamn ——————— e ——————————————— | |
| | |
L e T L L DL R m———————————t |
|
N L e e ——————————— e e o e e e e - e -

The compool scope and the system scope are not actually part of
the source file for the module being compiled, but they can be
thought of that way.

All names made available from referenced compool modules, as well
as the names of the compools themselves, belong to the compoo!
scope. In addition, the name of the module being compiled is
itself considered to belong to this outer compool scope.

External names and compools are described in Chapter 16 "Modules
and Externals". Mors examples of scope are also given in that
“hapter.

System-defined names, such as implementation-parameters and
maci.ine-specific subroutines belong to the system scope. Such
names can he redefined in the enclosed scopes.

The module being compiled is a mcope and has smaller scopes
within it. The module scope contains the names of any non-nested
subrouines. Within the module-scope, the niodule-body establishes
& Boecpe. It contains the names declared within the module-body.
Within the module-body, subroutine-bodies establish scopes and
within subroutine-bodies, other subroutine-bodies establish
scope, and so on. Ultimately, there are scopes that do not
themselves contain further scopes.

- 43 - 4: Declarations and Scopes

cAbin AP N RIS TETRANEL. AT A

1T

&

The scope of a module thus can be diagrammed as follows:

+ay5tem-scope—_—-————-—---_-—-———--—n - o 02 0 s 1 s s e o o

o s e e et o 0 . 10 L e Ok) o ot e

4; Declarations and Scopes

4+COMPOO)]-BCOPE- === wmm e mm ;- ————————————

e Ov S

A p—

' - s

+module-scope_____—-----—-_—---_-—-+

+module-body-8cope=—~=——==ut

R T, e,

+subr-gscope-=---=~

{ Tsubr-scopé—--~--
: | +subr-scope--+
[]
|
+

+
|
i
I
|

U

et piaZ R

o e o o e i

+ e —— e e e s

L L R P T Y

+--‘-—--"—-ﬁ--m————-----‘--+
| +BULY=DOdY == e :
+BUDIr=ECOopRm~mr—m—m——

Taubr-scope—-—~——

+
|
+ |
| |

|

L I) 'l
l

|
|
} { +aubr-ncope—-T
|

| b mmnwam g |

| dmmmmmcmmmmm——nt |

o i e v v e i i o

e e e e e e e

o e o e) e e e 0 i S 1 i e e 0 b i b b o e

- 44 -

- ,_......-.-—.—--.-»——._{,..1-\,._,?-‘-.'

L e, R 4

-

For example, consider the following main-program-modul~:

START PROGRAM TEST;

. +module-scope==~-==-~ -t e e - et o e e o e e e —————
! +modul e~body~BCcope~==mrmrmcmar o e —a————— e ——————————— +
| BEGIN :
ITEM LENGTH U;
. . PROC CALCULATE (oOPl, opz RESULT) ;
+subr-scope ----- e ——————————— e ———— +
BEGIN | |
ITEM OPl Fj |
ITEM OP2 F; |
ITEM RESULT F; |
ITEM SIZE VU; #
|
END |
b m————— e e e o e e e e
s PROC COMPUTE (QOP1l,0P2:RESULT);
(+subr-scope-recccrmnccsnccanan meee e ——-—t
"~ BEGIN |
ITEM OPl1 F:
ITEM OP2 F;
ITEM RESULT F;
ITEM 8IZE U;
I 480 l
PROC SUBTOTAL(TOTAL:RESULT); |
e +UDr-H00Pe - m e ————— +
{ | BEGIN l
\ | ITEM TOYAL U: |
} ITEM RESULT U; { |
| |
| [| |
| END l
G ——— - 1 e i -————— -
| END , | |
domm e m e ——— e 2ttt e |
I END | |
| eem——e- - - - . ——————————————————— + |
DEF PROC REPORT (IN,OUT); ;
e e 10 e e e e e ke e o B e - s ot o e o e L e e +
TERM
- 45 - 43 Decla-. +lons and Scopes

 ayweail

3 ; aat JIH-MW' A A5

C oaa .

o RCRIRIR Y MY A AL

g et gyt e a

~r el W

i
H
i
i
‘
!

In addition to the system scope and the compool scope, five
additional scopes are defined. The lines in the above program
indicate the acopes. The scope of the module TEST encloses the
scope of the program-body, which encloses the scopes of the
procedures CALCULATE and COMPUTE. The scope of the procedure
COMPUTE encloses the scope of the procedure SUBRTOTAL.

The scopes of the module TEST can be diagrammed as follows:

+sygtem-gcope_- ------ —— e .- —— B e L LT T -t - e e

+oompool=gCope===~=mmmmma——- e ————————— .=+
TEST |
+module-scope----- e ——————— |

+module~body-scope—==-~—--- +

LENGTH | |

CALCULATE
+subr-scope-y--w—=—o=t
} OPl.OPZ,RESULT.SIZE}

b mm————————————— . |
COMPUTE

+Bubr-scope~—mme————— +

|op1,0P2, RESULT, SIZE |

| SUBTOTAL |

+program-body-~—-T ;

I

|

o+

{TOTAL. RESULT

l
I
R — S — +
+

T i 500 s S D S WD G A G M e we

{1

1
|
| i
| REPORT |
| +subr-~scope-===v==cw-a- + |
} | IN, ouT | :
+ +

4: Declarations and Scopes - 46 -

;
|
|
|

o~

'\

ot

o

The item SIZE and the procedure names CALCULATE and COMPUTE are
in the scope of the procedure module. The names OPl and OP2 are
in the scope of both CALCULATE and COMPUTE. The name RESULT is
in the scope of CALCULATE, COMPUTE, and SUBTOTAL. A reference to
RESULT within SUBTOTAL refers to an output parameter of SUBTOTAL
that is an unsigned integer. A reference to RESULT within
COMPUTE refers to an ocutput parameter of COMPUTE that is a
floating object,

.
4 L]

4.2.1 The Scope of a Declaration

The scope of a declaration is the smallest scope that contains
the declaration.

Each use of a name must have a declaration. That declaration is
determined as follows:

1, If the reference to the given name dcem not lie in the
scope of any declaration of that name, then the program
is invaliad.

2. If the reference to the given name lies in the scope of
exactly one declaration of the given name, then that
declaration applies to the given use of the name.

3. If the reference to the given name lies in the scope of
several declarations of that name, then the declaration
with smallest scope applies to the gilven use of the
name.

With these definitions in mind, consider another version of the

example given earlier in this chapter. This example includes
references to names.

- 47 - 4: Declarations and Scopes

S

u*.WR‘.l"". . "."'g|",','Aﬁ,m.‘,'lkj“.rlrr}hr}!r1:l.;.M K

i T

S e el

i e m

[

¢
START PROGRAM TEST;
+module-gCcope-=———-=m-r—mmmemmcm e a———— - e ——— —mmme—t
+modul e-body=B8COpe==~==wmmecmemmaa——— PP PP !
| BEGIN , .
ITEM LENGTH U; ()
; PROC CALCULATE (OP1,OP2:RESULT);
3 +gubr-scope~=-mmmmmme e e n s e L cmu
EEGIN
ITEM OPl F;
ITEM OP2 F;
ITEM RESULT F;
| ITEM SIZE U; v
LENGTH = 21 i
END ‘
J +-_-—--—--‘-—“——-—ﬂ-ﬁ—~ﬁ--ﬁ-----ﬂﬂ—--------+ .,'I
PROC COMPUTE (OPl,OP2:RESULT):]
L +gubr-gcope=—==w- e e e e e - ——————— P
BEGIN S
ITEM OPl F; l
ITEM OP2 F;
ITEM RESULT F;
ITEM SIZE U;
PROC SUBTOTAL (TOTAL 1 RESULT); i
+BUDL-BOOpEm = i e bt
BEGIN [-
ITEM TOTAL U; | ()
L, | ITEM RESULT U; : '
3 a0
RESULT = TOTAL%*2; #
|
. END |
e - - A o o -
| END |
+- ----------- -------_*----‘---------------+
END |
e e e e e e - e e e e
DEF PROC REPORT(IN, oum)r |
et e e e e m e ——————— e ——————
TERM .
: {)
N
b - 4: Declarations and Scopes - 48 -
I
;

e e SR R RO L17. - LLAT

The reference to LENGTH lies within the rcope of exactly one
delcaration of that name. The reference to RESULT lies within
the scope of two declarations of that name. In this case, the

scope, applies.

! declaration given in the procedure SURTOTAL, which is the smaller

4K2.2 Restrictions on Declaratioas

THF following restrictiona apply to the declaration of names:

1.

2.

Two declarations of the same name must not have the same
Bcope. "

A reserved word must not be used as a name and cannhot,
therefore, be declared. The reserved words are listed
in Appendix A.

An external name must be declared by exactly one DEF

declaration in an entire program. External declarations
are described in Chapter 16.

- 49 - 4: Declarations and 3copes

VT

Chapter 5
DATA DECLARATIONS

A data-declaration declares a variable-name or a constant-name.

A variable~name designateg storage for a value that can be
changed during program execution. A constant-riame can be thought
of as designating storage for data that ie set hefore program
exacution and then does not change; in many cases, however,
actual storage is not required for the value cf a constant-name.

JOVIAL (J73) provides abstract storage. Storage is ultimately
implemented as s hardwarae memory composed of words, bytes, and
bits that have numeric addresses. However, JOVIAL (J73) can
goreen out the irrelevant hardware details and present you with a
more convenient and logical storage structure.

Although you can, when necessary, specify an absolute storage
address, the association of storage addresses is normally handled
for you by the compiler. Although you can, when necessary,
request that & variabie he a specific word of hardware memory,
you normally describe the kind of values you want to store and
let the compiler allocate the correct amount of storage at an
appropriate location. JOVIAL (J73) permits you to ignore
hardware details when they are not important but lets you specify
them in considerable detail when conslderations of efficiency and
interfacing regquire.

In order to emphasize this treatment of storage, this manual uses
the term data object to refer to the storage for a value or a
collection of values. You can talk of "fetching the value of a
data object" or "assigning a value to a data object" without any
knowledge of the implementation of the data object.

A Wl TIPS e LR T B kR M

J

G b G Tl

@1- HEGSE00 mwuw

et B R AR S]

- 51 - 5: Data Dmclarations

v e e ey

e R LU T

]

|

W tor L 2l

-y

The first section of this chapter introduces the three kinds of
data declarations. The second and third sections make
distinctions that apply to all data cbjects: the difference
between variable and constant values and between automatic and
static allocation.

5.1 THE CLASSIFICATION OF DATA DECLARATIONS

A data-declaration is one of the following:

Item~Declaration -- This construct declares the name of a
scalar data object; that is, storage for a single value,
Item-declarations are described in Chapter 6.

Table-Declaration -- This construct declares the name of a
table data object; that is, a collection of items.
Table-Declarations are described in Chapter 7.

Block-Declaration == This construct declares the name of a

block data object; that is, a collection of items and i }
tables. Blcck declarations are described in Chapter 8. :

5.2 VARIABLES AND CONSTANTS

A data object can be variable or constant. In an item=- i
declaration or table-declaration, the reserved word CONSTANT '
means that tha declared name designates a constant data object.
This reserved word may be placed at the beginning of any item=-
declaration or table~declaration, as described in the next two
chaptera. The absence of the reserved word CONSTANT means the
declared name designates a data object that is variable.

P
e

5.2.1 Variable Data Objecte

A variable data object has a relatively complicated life cycle.
First, it is allccated; that is, a portion of sitorage is sat
aside to hold the value of the data object. As the following
section shows, allocation can occur either during or before
program execution.

‘.-—‘/i_

5: Data Declarations - 52 -

After the variable data object has been allocated, it can be
initialized. Initialization occurs if the variable name is
declared with a preset, as descridbed in the next three chapters
on item-declarations, table-declarations, and block-declarations.
Initialization also can occur through an initialize~directive, as
described in Chapter 16 on "Directives". If neither a preset nor
a directive applies, the data object is not initialized.

k Next, the variable data object is used; that is, values are

‘ assigned to it and fetched from it. If the data object was not
initialized, its first use must be as a target of an assignment
or as an output parameter of a subroutine. The value of a
variahle data object that does not have an initial wvalue and has
not yet been assigned a value is undefined.

When the execution of the program of procedure that declares the
variable is complete, the variable data object is deallocated:
that is, the storage associated with the data object is taken

5.2.2 Constant Data Objects

A constant data object has a simple life cycle. The data object \
has the same value throughout program execution. That value is
supplied by the same item-preset or table-preset mechanism that :
is used for initializing variable data objects. In some cases, ;
the value of a constant data object may require storage in data

(memory, but in many cases the value is embedded into the code of
the compiled program. A program that attempts to aseign a value
to a conptant data object is invalid.

5,3 STORACE ALLOCATION

The allocation of a variable dota object can be automatic or
static., A data object has automatic allocation only 1if it is
declared in a subroutine body and its declaration does not have !
the STATIC resarved word. A data object has static allocation if
it is not in a subroutine body or it has the STATIC reserved
word, The STATIC reserved word is placed immediately after the
variable name that is being declared.

- —\.

- 53 - 5: Data Daclarations

A e rES e v et AR e 2a) AR SBICAL e Nl o ke " MM 1 AL LR * ¢ LI i " LD ADIN, s o 95 4 MR

[T -

it (g |1 e,

4 U . e e e it

5.3.1 Automatic Allocation }

For automatic allocation, the storage for a data object is
allocated and deallocated when the subroutine jn which the data
object is declared is entered and exited. Automatic allocation
saves storage by holding it only during execution of a
subroutine. However, the value of such a data object is lost
upon exit from a subroutine, and is therefore undefined upon each '
entry to the subroutine. I

5.3.2 8tatic Allocation

For stuatic allocation, the storage for a data object is allocated
before program execution and is deallocated, at earliest, when
program execution is completa, Even when a static Jdata object is
declared within a subroutine, its value is retained from cne
execution of the subroutine to the next.

{)

e i T

£: Data Declarations ~ 84 -

-

o~

Chapter 6
ITEM DECLARATIONS

An item is a scalar variable or constant. This chapter describes
the general form of the item declaration, first for a variable
and then for a constant. It then considers +the different data
types of JOVIAL J73.

6.1 ITEM DECLARATIONS

An item-declaration Bpecifies that an item-name designates a
variable or constant with a given type class and attributes. The
gimplest form of an item~declaration is: '

1TEM item-name type-description ;
This form declares an ltem~name that designates a scalar variable
of the type given by type-description.
For example, consider the following item-declaration:

ITEM COUNT U 5,

Item-name in this declaration is COUNT and type-~description is U
5. This declaration specifies that COUNT demignates a scalax
variuble with the type U 5. The U indicates that the item ig an
vnsigned (that is, non-negative) integer. fThe 5 specifies that
the integer occupies 5 bitw. Data types are described in detail
later in this chapter.

- 55 -~ 6: Item Degclarations

P2 oo M o ¢ e = =

An item~declaration can also give information about the
allocation permanence of the variable and its initial value, as
follows:

ITEM item-name [STATIC] type-description [item-preset 1 ;
The square brackets indicate that STATIC and item-preset are both
optional.
Consider the following item-declaration:

ITEM COUNT U § = §;
This dec¢laration specifies that COUNT designates an unsigned
integer variable with the initial value #. Item-preset, in this

case, consists of an equals sign and the initial value . Item=-
presets are discussed in detall later in this chapter.

The STATIC attribute im provided so that items within subroutines
can have static allocation. The default allocation permanence of
data withln subroutines is automatic.

Consider the following item-declarationt

ITEM COUNT STATIC U 5

This declaration specifies that COUNT designates an unsigned
integer variable with STATIC allocation permanence.,

6.2 CONSTANT ITEM DECLARATIONS

A congtant item-declaration is a special form of an item-~
declaration. It begins with the reserved word CONSTANT anrd
conoludes with an iten-preset. A constant ltem receives its value
before the execution of the program. The value of a constant item
cannot change during the program execution.

61 ltem Declarationas w 56 -

. . .
N)
et 10 e empe— e - . P
4 . I
e S
Ly

e

P oo s - - e

2 [

,‘é 4

ihe form of a constant iten~declaration is:
CONSTANT ITEM item-name type-description item~preset ;

The allcoccation permanence of all constants, even those within
procedures, is STATIC. Physical storage is allocated for all
constant declarations given in a block. For constants not
declared in a block, physical storage may not be allocated if
another terhnique for representing the constant can be ured in
the code generatci by the compiler.

As an example of a constant item-declaration, conzider the
following:

CONSTANT ITEM VERSION U = 22;

Thiz declaration specifies that VERSION designates an unsigned
integer constant whose value is (always) 22. Throughout the
scepe of this declaration, VERSION can be used anvwhere the
integer literal 22 could be used.

6.3 DATA TYPES

& duta type consists of a type class and & set of attributes. The
scalar type classes are: '

Unsigned Integer
gigned Integer
Floating

Fixred

Bit

Tharacter

Status

Pointer

In an integer, floating, or fixed type-description, the number
of bite occupied is given, either explicitly or by default. The
number of bits is interpreted by the compiler as the minimum
storage requirement. 1If it is advantageous for the compiler to
use more bits, it may do so.

The largest (in magnitude) value that such an jtem carn have,
however, is determined by the nunber of bite given or assumed in
ite declaration, not the number of bits actually used by the
compiler. If o value that cannot be accomodated in +he number of
bite given or assumed in its declaration is assigned to an item,
then the program is invalid.

- 857 - 6: Item Declarations

2y

——
£

Type-description in an item-declaration describec the type of the

item. The following sections describe and illustrate each type-~
description.

6.3.1 Integer Type-Descriptions

An integer is a signed or unsigned value that occupies a

specified number of bits. Type-description for an unsigned
integer has the form:

U [integer-size]

Type-description for a signed integer has the form:

8 [integer-size)
The square brackets indicate that integer-size is optional.
Integer-size is an integer compile-time-formula. A compile-
time~formula is a formula whose value can be determined at
compile time. Compile-time-formulas are discussed in Chapter 11
on "Formulas”., Integer-szize determines the minimum number of
bits allocated by the compiler for the integer; it determines the
maximum value that can be accommodated by the item. The compiler
allocates at least integer-size bits for an unsigned integer and
at least (integer-size + 1) bits for a signed integer.
Integer~size must lie in the range:

@ < integer-size < MAXINTSIZE
MAXINTSIZE is the implementation parameter that defines the
maximum size of an integer.

The range of velues that an integer can assume is machine

dependent. A signed integer can take on values in the range:
MININT (integer-size) < value < MAXINT(integer-size)

An unsigned integer variable can take on values in the range:

@ < value < MAXINT(integer-gize)

MAXINT and MININT are the implementation parameters that define
the maximum and minimum values of an integer.

6: Item Declarations - 58 -

NS =

et 5 Dm0 T T

fme

o

S ERRENPCTRRN . DEEEY

e sz .

Some examples of integer item-declarations are:

Declaration

ITEM TIME U 5;

1TEM RANGE S 14;

ITEM POSITION U;

ITEM COUNT STATIC U 1

ITEM TIME U 5 = 20;

Meaning

TIME degignates an unsigned 5-bit
integer variable. It occupies a

" minimum of 5 bits. If it is

declared in a gubroutine, it has
automatic allocation: otherwise, it
has static allocation. Its initial
value is unspecified. It can
assume the values § through
MAXINT(5).

RANGE designates a signed 1@ bit
integer variable. It occupier &
minimum of 11 bite. It can assume
values in the range MININT(18)
through MAXINT(10).

POSITION designates an unsigned
integer wariable. If BITSINWORD is
16, it occupies a minimum of 15
bits. It can assume the values 0
through MAXINT(15).

COUNT designates an unsigned 18-bit
integer variable with STATIC
allocation permanence.

TIME desiynates an unsigned 5-bit
integer variable with an initial
value of 20.

CONSTANT ITTEM LIMIT U = 10;

LIMIT designateg an unsigned
integer constant with the value 14,

6.3.2 Floating Type-Descriptions

A floating value 1s expressed as a mantissa and an exponent. The
form of a floating type-description is:

F [precision]

The square brackets indicate that precision is optional.

AP (Af| A e ettt

- 59 ~ 6: Item Declarations

e e L baE e mBedan e e

i
!
|
i

Precision is an integer compile-time-formula that determines the
minimum number of bits allocated for the mantissa of the
floating~point value. The total storage required for the item is
always more than the precision, because the representation must
include storage for the exponent and sign. Furtheimore, the
compiler may allocate more bits than required.

Precision must lie in the range:

@ ¢ precision < MAXFLOATPRECISION
MAXFLOATPRECISION is the implementation parameter that determines
the maximum precision of a floating type. If no precision is
given, the compiler uses the implementation parameter
FLOATPRECISION as the precigion.
A variable of flecating type can assume the following values:

 MINFLOAY(precieion) ¢ value < MAXFLOAT(precision)

MINFLOAT and MAXFLOAT are implementation paramecters.

Some examples of floating item-declarations are:

Declaration Meaning
ITEM AZIMUTH F 30 AZIMUTH designates a floating

variable with precision Zf. 1Its
mantissa occupies a minimum of 3¢
bits. If it is declared within a
procedure, it has automatic
allocation; otherwisme, it has static
allocation., It is not initialized.

ITEM VELOCITY I'; VELOCITY designates a floating
variable. If FLOATPRECISION is 12,

its mantissa occupies 12 bits.

ITEM DISTANCE STATIC F 24 = .001;
DISTANCE designates a floating
variable with precieion 24, static
allocatiion, and initial value .001.

CONSTANT ITEM COEFFICIENT F = 21.36;
COEFFICIENT designates a floating
constant with the value 21.36.

6: Item Declarations - 60 -

g v 1 L AU PR Y P 3 B

i)

. ,,-)..__’
-

e

B Oy e R

P,

6.3.3 Fixed Type-Descriptions

A fixed number is a real number with a fixed decimal point.
- Fized point representation ie used for numbers whose value range
,' is known to lie within a given, usually small, range. Fixed
point representation can Ye used for numbers that are either very
large or very small and for which only a certain number of
significant digits are required.

M fixed value has a fixed scale factor. Its interpretation is
described by two specifiers, scale and fractien. These
specifiers determine the position of the point and the number of
digits, as described in the next paragraph.
A fixed type-description has the following form:

A scale [, fraction]

The square brackets indicate that the fraction is optional.

When scale and fraction are both positive, scale gives the number
of bits to the left of the binary point (excluding the sign bit)
and fraction gives the number of bits to the right of the binary
point,

For example, suppose you ¢give the following declaration:
{' ITEM AMOUNT A 11,3;

AMOUNT designates a fixed point variable with eleven bits to the

left of the binary point, 3 bits to the right of the binary

point, and 1 bit for the sign. That is, it is laild out as

follows:

S XAARAXXXXXX . XXX where X indicates a bit of storage
and S indicates the sign

The minimum number of bits allocated for AMOUNT is 15.

-~ 61 - 6: Item Declarations

P g T el L 205 - 5200 R A, A W

e —— L e S

i

If Bcale is negative, the binary point is assumed to be the
specified number of bits to the left of the first (non-sign) bit
of the representation. For example:

ITEM COORD A -3,9; i)

COORD deeignates a variable that requires at least 7 bits
(-3+9+1) of storage. The binary point is assumed to be three
bits to the left of firet bit of the stored value. That is:

S PPBXXEXXX where X indicates a bit of storage
If fraction is negative, the binary point is assumed to be the
specified nunber of bite to the right of the least significant
bit of representation. For example:

ITEM LIMIT A 15,-5;
The variable LIMIT requires at least 11 bites (15-5+1) of storage.

The binary point is assumed to be five bits to the right of the
last bit of the representation. That is: P

ey

S XXXXXXXXXXPP000. where X indicates a bit of storage

If fraction is not given, then the compiler assumes that the
precision of the item is the implementation parameter
FIXEDPRECISION and the fraction is FIXEDPRECISION minus the
scale.

For example, suppose you write:

e
g

ITEM FACTOR A 12

If FIXEDPRECISION is 15, then the precision of FACTOR is 15 and
the default fraction is 3. That is:

§ XXXXXXXXXXXX . XXX

Scale and fraction are integer compile-time~formulas. The value
of the scale must lie in the following range:

=127 < scale < 127,

The precision of a fixed point number is the sum of scale and

fraction. The implemented precision may be greater than the ¥
declared precision. However, as mentioned earlier, the values aN‘
set for a fixed point item is determined by the declared T
precision.

6;: Item Declarations - 62 -~

R

FAgy

The precision must lie in the range:
@ < scale+fraction < MAXFIXEDPRECISION

MAXFIXEDPRECISION is the implementation parameter that determines
the maximum precision of a fixed type.

PN .
POV

A variable of fixed type can assume values in the range:

et —

MINFIXED(scale, fraction) < value < MAXFIXED(scale, fraction)

o T s B b

Some additional examples of fixed item-declarations are:

Declaration Meaning

ITEM SUBTOTAL A 6,2; SUBTOTAL designates a fixed
variable with scale 6 and fraction
2.

ITEM TICKS STATIC A& 7,4 = 2.5;
TICKS is a fixed item with scale 7

and fracticnal part 4. It has
static allocation and the initial
value 2.5.

CONSTANT ITEM THRESHOLD A 1%,1 = 1£16.5;
THRESHOLD is a fixed constant with

the value 1016.5.

. —
—
e ot T e AT e i ol o e <

TN

6.3.4 Bit Type-Descriptions

A bit item ig a fixed length string of bits. The form of a bit
type-description is:

B [bit-size]
The square brackets indicate that bit-gilze is optional.

Bit-gize is an integer compile-time~formula that indicates how
many bits are in the bit string. It must lie in the range:

. (. 1 < bit-size < MAXBITS - ‘

number of bits a bit string can occupy.

MAXBITS is the implementation parameter that defines the max?ﬁum

- 63 - 6: Item Declarations f .

g —

If bit-size is not given, the compiler assumes the number of bits
in the string to be 1.

Some examples of the declaration of bit iltems are: ¢

Declaration Meaning

ITEM MASK B 10; MASK designates a bit varlable 1P
bits long.

ITEM FLAG B; FLAG designates a hit variable 1 bit
1ong .

ITEM READY STATIC B 3 = 1B'OfQ';
READY designates a bit variable 3
bits long with static allocation
and an initial value of all zero

bhits.
CONSTANT ITEM SWITCH B = TRUE; ,ﬂ}
SWITCH designates a bit constant o

that has the value TRUE (1BR'l').

€.3.5 Character Type-Descriptions

A character item is a fixed lenygth Btring of characters. The
form of a character type-description is:

R
S

¢ [char-gize]
The square brackets indicate that char-size is optiovnal.
Char-size 1B ar integer compile-time-formula. Char-size must lie
in the following range:

1 < char-size < MAXBYTES
MAXBYTES is the implementation parameter that defines the maximum

number of characters a character string can occupy.

If char-size is not given, the compiler assumes that the number
of characters in the string is 1. 4

-

6: Item Declarations - 64 -~

Declaration

VO
* ITEM ADDRESS C 26

ITEM CODE C:

ITEM RESPONSE STATIC C

Some examples of the declaration of character items are:

Meaning

ADDRESS designates a character
variable 26 characters long. 1If it
is declared within a procedure, it
has automatic allocation; otherwise,
it has static. 1Its initiel value is
unspecified.

CODE designates a character variable
1 character long.

9 = 'NOT READY'y

RESPONSE designates a character
variable 9 characters long with
atmtic allocation and an initial
value of 'NOT READY'.

(CONSTANT ITEM TITLE C 6 = 'JOVIAL':

TITLE designates a character constant
with the value 'OOVIAL'.

6.3.6 Status Type-Descriptions

as follows:

A status item is an item whose value range is a specified list of

symbolic constant that has an ordering relation with the other
; status constants in the list. A status constant provides an
LI efficient way to express values symbolically.

{. symbolI— names, called status-constants. A status-constant is a

, , The simplest form of a status type-description ic the reserved
N word STATUS followed by a parenthesized list of status constants,

STATUS (status-constant ,...)

The sequence ",..." indicates that one or more status-constants
separated by commas can be given within the parentheses.

- 65 - 6: Item Declarations

—— i

4
!

The form of a status-constant is the letter "V" followed by a
parenthesized gtatus~-name, as follows:

Vv (status-namz)
A status-niame can be a name, a letter, or a JOVIAL (J73) reserved
word.,

The use of a name in a status-constant does not constitute a
declaration of the name or a reference to a declared name with
the same apelling. For example, the status-constant V(MOND:.Y)
derlares the name V{MONDAY), not MONDAY. A status-name and a
declared name with the same spelling can exist in the same scope
without any conflict.

The status-constante are represented as the values @ through N-1,
where N is the number of status-constants in the list. The values
@ through N-1 are the default representations of the status-
constants; that is, the compiler uses these values if a specific
representation is not given in the declaration. This form of
STATUS type-description is described in Chapter 19 on "Advanced
Topics".

Suppose you write:
STATUS (V(RED),V(GREEN),V(BLUE),V(YELLOW)):

The status list contains four status constants. The first
constant V(RED) is represented as the value @, the second
V(GREEN) is represented as 1, and so on.

Even though the representation of a status-constant is an
integer, an integer value cannot be assigned to a status item
unless it is first explicitly converted to a status type.

The size of a status item is the minimum number of bits necessary
to hold the representation of the status=-constant with the
largest reprentation.

Another form of the status type-description allows bhoth the
representation of status-constants and the specification of the
status size to be given. This form i3 described in Chapter 19 on
'Advanced Topics".

6: Item Declarations - 66 -

2 {ebdaedied P Y

. " R e . . 17 VRN o A

[P p——

S NN SRR

N S

S e S St . i AL St it Wl R G v e e D

The representation of a status-constant determines its order for

relational operators.

That ls, for the declaration given above,

the status~constants have the following relationship:

V(RED) < V(GREEN) < V(BIUE) ¢ V(YELLOW)

The names in any given status~list must be unique.
same namne can be given in more than one iist.

the
any

However,
In most cases,

ambiguity ie resolved by the context in which the status-constant

is used.

on "Conversion"

Some examples of status items are:
Declaration

ITEM DAY STATUS
(V(8UN,, V(MON), V(TUES),
V(WED), V(THURS), V(FRI),
v(sAT))

ITEM IVY STATIC STATUS
(V(ENGLTISH),V(GRAPE),
V{(FOISON)) = V(ENGLISH)y

CONSTANT ITEM ID STATUS
(V(DESIGN),V{DEBUG),V{RUN))
= V{RUNM);

6.3.7 Pointer Type-Descriptions

A pointer item is used to locate data.

item are addresurs of objects.

Sometimes, however, an explicit conversion operator
nust be used to make the status-constant unambiguous.
discunges both these cases.

Chapter 13

Meaning

DAY designates a status
variable that ocan take on
the values V(SUN) through
v(sat).

1VY designates a status
variable that man take on 3
valuea. It has static
allocation and is initialized
to the status-constant
V(ENMCLISH) .

ID designates & status
constant with the value v(nuu)

The valuec of a pointer

The form of a pointer type-description is:

P [type-name]

The square brackets indicate that

- 67 -

type-name is optional.

6: Item Declarations

S i 1 AT WW‘I‘WWMM» JRET ST BRI

' MMN (e

A puinter that is declared without type-name is called an untyped
pointer. A pointer that is declared with type-name is called a
typed pointer. MType-names are declared by a type-declaration, as
described in Chapter 9 cn "Type Declarations"., Typed pointers

can point only to objects that are declared in terms of the same
type-name.

Pointers are uged with ltems, tables, and blocks that are

declared using a type-name. The pointer makes the referenes to
the data objects unombiguous. Pointers, however, must be used

when referencing data declared using a type, even i1f no ambiguity
is involved.

Some examples of pointer items are:

Declaration Meaning

ITEM PTR P; PTR is an untypred pointer.

ITEM Pl P PARTS; Pl is a typed pointer; it can point

only to objects of type PARTS,
CONSTANT ITEM PDATA P SEQ » LOC(DATA);

PDATA designates a pointer constant
with value of LOC(DATA). DATA must
be of type SEQ.

6.4 ITEM~PRESETS

The item-preset provides an initial-value for an item~declaration

and a permanent value for a constant item=-declaration. The form
of an item-preset is:

w yalue

Value must be a compile-time~formula for all items except
pointers. A pointer can have a LOC function as an initial value.
(The LOC function is a built-in function that gets the addresgs of
a data object. It is described in Chapter 12)., However, if the
argument of a LOC functimn used in a preset is a dats-name, the

data~name must designate an item with STATIC allocation
permanence.

6: Item Declarations - 68 -

o

105 Mgt b4
ERTTRTI

Fin,
=

,
t
)
g

TETSSETRTE T L

TR

BES]

[Iu»{

The value in an item~preset is assigned to the item before
program execution. It must be compatible with the type of the
item, as defined by the type-deacription. The rules for type
compatibility are given in Chapter 13, "Conversion".

For example, the following item-declarations all vontain valid
item-presets:

ITEM COUNT U 17 = 0,

ITEM AZIMUTH ¥ = @1,

ITEM BALANCE A 12,2 = 15.25;

I'"EM MASK B 5 = 1n'@ping’',

ITEM ID C 5 = 'AWC '

ITFM CODE STATUS (V(HAWK), V(WOLF), V(TIGER), V(ENOOPY))
= V(WOLF);

ITEM PTR P = NULL;

6.4.1 The Round-or-Truncate Attribute

The type-description of an integer, floating, or fixed type can
contain a round-or-truncate attribute. The round~or-truncate
attribute is given following the single letter that identifies

the type class, It is separated from that letter by s comma.
The forme are:

U [, round=or-truncate J
8 [, round-or-truncate]
F [, round-or~truncate]
A [, round-or-truncate]
The sgquare brackets indicate that the round-or-truncate attribute

is optional.

The round-or-truncate attribute is either an R or a T. The
attribute R indicates that rounding occurs when the value in the
preset is assigned to the item, The attribute T indicates that
truncation toward minus infinity occurs.

If a round-ct~truncate attribute is not given, truncation in a
machine-dependent manner occurs. Truncetion may be either
towards zero «r towards minus infinity depending on the
inplementation.

~ 69 - 6: Item Declarations

e 8

T e, . AL e

o R A LA AN

e e tamed a T e an L

RS S s At e T RS b

E

./:E iy

SR T

S T

A round-or-truncate attribute in an integer type-description has
no purpose in an item-declaration. However, consider the
following floating item-declaration:

ITEM VELNCITY F 10 = 1200.3;

In some implementations, the value of 1202.3 may not be exactly
representable as a floating point value (e.g. in a binary number
system) and thus it must te rounded or truncated. This
declaration does not include a round-or-truncate attribute, so
hia value is truncated in a machine dependent manner. However,
if you wish the value to be rounded, you can add a round
attribute as follows:

ITEM VELOCITY F,R 18 = 12708.3:

The presest value is then rounded before assignment to VELOCITY.

The round-or-truncite attribute is most useful in a type-

description used as a conversion operator, as will be geen in
Chapter 13 on "Conversion".

€: Item Declarations - 70 -

— CA— - . ot e

Pk, € Skl ma vl e

e T S AT e O AP TR i
~ -

o=l

T T T T e

P aid

P

Chapter 7

TABLE DECLARATIONS

A JOVIAL (J73) table is a collection of data objects. A table
can be dimensioned or undimensioned. An undimensioned table has
only one entry. A dimensioned table is made up of one or more
entries.

The form of a table-declaration ie:
TABLE table-name [table-attributes] ;
entry-description

The square brackets indicate that table-attributes can be
omitted.

The following is an example of a table-declaration:

TABLE MATRIX(1:20);
BEGIN
TTEM XCOCORD U;
ITEM YCOORD U;
END

This declaration declares a table named MATRIX. Table-attributes
in thiv decluration is (1:24), indicating that MATRIX has 20
entries. The first entry is referenced as MATRIX(1) and the laat
entry as MATRIX(20).

Entry-description indicates that each entry in the table contains

twc items, XCOORD and YCOORD. The instance of the item XCOORD in
the first entry is referenced as XCOORD(1).

- 71 - 7: Table Declarations

7.1 TABLE-ATTRIBUTES

Table-attributes gives the attributes of the table. It can

specify the allocation permanence of the table, indicate whether

or not the table is dimensioned, and rrovide any initial values Lo
for the components of the table. Table-attributes has the)
following form:

[sTaTIC] [(dimension-list)] [tablie-preset]

The square brackets indicate that any of the parts of table-
attributes can be omitted.

Table-attributes can alsv contain information about the way in
which the table is structured and packed. A description of table
structure and packing is given in Chapter 19 on "Advanced
Topics",

7.1.1 Allocation Permanence

The allocation attribute STATIC can be given in a table-
attributes..

For example, suppose you declare the table STOCKS within a
procedure and you want it to have STATIC allocation. You can i

write: :
TABLE STOCKS STATIC (1:1@)}; b
BEGIN
ITEM NAME C 6:
L ITEM QUOTE C 3;
END

7.1.2 Table Dimensions '

The table dimensions are given in dimension-list. The dimensions
of a table specify the number of entries in the table and the
number of subscripts reguired in a reference to an item in the
table.

e = i ke e

7« Table Declarations - 72 -

- 5 e

-llllIllllllllllII-liiiIilill--iiillI-lll-lIIll-IllIIIlIiiIIilIiIIiIIlIillllllllllllllllllllllli

DR

-

Dimension-list is a sequence of one or more dimensions, as
follows:

dimension , ...

A table can have as many as seven dimenesions. Entries are
arranged in a table so that the rightmost subscripts vary
faptest, from lower-bound to upper-bound.

7.1.2.1 Bounds

Tor cach dimension of a table = ic¢wer-bound and upper-bound can
be given. The form of a dimenx: w is:

[lower-bound :] upper-bound

The square brackets indicate that lower-bound is optional.

Each bound must be a compile-t’ime-formula of either status or
integer type. Only status i :& with default representations can
be used as kounds. Lower-’ migt be less than or equal to
upper~bound.

A one~dimensional table is a table for which only a eingle
dimension is specified. For example, to declare a one-
dimensional table with lower-bound 1 and upper-~-bound 5, you can
wr i the following declaration:

TABLE TEST (1:5);:
ITEM SUCCESS U 5;

The table TEST contains the following five integers:

SUCCESS (1)
SUCCEBS(2)
SUCCESS(3)
SUCCESS (4)
SUCCESS(5)

1f only upper-bound is given, then the compiler asaumes a lower-
bound based on the type of upper-bound. There are two cases, one
for type integer and one for type status.

- 73 - 7: Table Declarations

AL

5.

e

et

O

If upper~bound is an integer, it must be a positive integer. 1In
this case, the compiler assumes a lower-bound of #. For example,
to declare a one-dimensional table with lower-bound @ and upper:
bound 5, you can write the following declaration:

This table contains six entries.

TABLE TEST(5):
ITEM SUCCESS U 5;

The first entry is the integer

SUCCESS(2) and the sixth entry is the integer SUCCESS(5).

If upper-bound is a status value, the status value must be

A status-value that ls
associated with more than one status type is ambiguous in this
context and must be disambiguated by a conversion operator, as
discussed in Chapter 13 on "Conversion".

associated with only one status type.

For an unambighoua status type, the compiler assumes that lower-
bound is the firet status-constant in the status type of the

- upper-bound.
declarations:

V(FRANCE) is a member of the status list associated with the item

INDEX. The compiler assumes that lower-bound is V(IRELAND). The

For example, suppose you have the folloying

ITEM INDEX STATUS (V(IRELAND}, V(ENGLAND), V(FRANCE)):

TABLE VOYAGE4 (V(FRANCE)):

ITEM TIME U;

table VOYAGE4, therefore,

referred to as TIME(V(IRELAND)),

has three entries.
the second as TIME(V(ENGLAND)),

and the third as TIME(V(FRANCE)).

7t

Table Declarations

- 74 -

The first iten is

[———

S

LA i et e

e e

s e e ——

7.1.2.2 Table Size

The total number of entries in a table is calculated by
multiplying the number of entries in each dimension. 1f the
bounds of a dimension are integers, the number of entries in that
dimension ia found by subtracting lower-bound from upper-bound
and adding 1. Suppose you have the following table declaration:

TABLE INSTALLATIONS (5,2:6,10:20);
ITEM ID U;

The first dimension of the table INSTALLATIONS has lower-bound ¢
and upper-bound 5: the second dimension has lower-bound 2 and
upper-bound 63 the third dimension has lower-bound 10 and upper-
bound 2¢. The number of entries, therefore, is:

(5~B+1)%*(6-2+1)%(20-10+1) = 6%¥5*1]1 = 330
That is, the table INSTALLATIONS contains 330 entries.
If the bounds are status values, the number of entries is found
by subtracting the position of lower-bound in the list of status
constants from the position of upper-bound in that list and
adding 1.

Suppose you have the declarations:

ITEM SEASON STATUS
(V(SPRING),V(SUMMER),V(FALL) ,V(WINTER)):

TABLE WEATHEKR(88,V(FALL));
ITEM RAINFALL U;

The first dimension has lower-bound @ and upper-bound 88 and thus
contains 89 entries.

The second dimension has lower-bound V(SPRING) and upper-bound
V(FALL). The status constant V(SPRING) is the first constant in
the status list given in the declaration of SEASON and the
constant V(FALL) is the third constant on that list. The second
dimension, therefore, contains 3 entries.

The total number of entries in the WEATHER table, therefore, is:

(B88-G+1)% (3-1+1) = BI*3 = 2¢7

- 75 - 7+ Table Declarations

e e ey e -

7.1.2.3 Maximum Table Size

The number of words occupied by a table must not exceed the
following quotient:

MAXBITS/BITSINWORD
MAXBITS is the implementation parameter that gives the maximum

value for a bit string and BITSINWORD is the implementation
parameter that gives the number of bits in a word.

7.1.3 Table-Preset

The initial values that a table is automatically assigned on
allocation are given by table-preset. Initializing a table is
described later in this chapter after the discussion of the entry
description,

7.2 ENTRY=-DESCRIPTION

Entry-description describes the components that make up an entry.
An entry=-description can be either simple or compound.

A table with a simple entry-description does not need the BEGIN
END brackets. It has only one item per entry. A table~

declaration with a simple entry-description has the following
form:

TABLE table-name [table-attributes] :
table-option
The square brackets indicate that table-attributes is optional.
A table-option is either a table item-declaration or a null=-
declaration. A table item-declaration is the same as an item-
declaration, except that it can have a table-preset, which sets
one or more instances of the item, instead of an item-preset,

which sets only one instance. Table-presets are described later
in this chapter.

7: Table Declarations - 76 =

et # =

_...-——.—M!

»
13

Consider the following example of a table with a simple entry-
description:

TABLE TRIAL (5):
ITEM TIME U 10;

This declaration declares a table TRIAL. Table-attributes in
this declaration indicates that the table is dimensioned and
contains 6 entries, indexed from £ through 5. Fntry-description
indicates that each entry contains an unsigned ten-bit integer.
The integer in the first entry is referred to as TIME(®), the
integer in the second as TIME(l), and so on.

A compound entry-description encloses one or more table-cptions
between a BEGIN END pair. The form of a table-declaration with a
compound entry-description is: -

TABLE table-name [table-attributes] ;
BEGIN
table-option ...
END
The square brackets indicate that table-attributes is optional.

The notation "..." indicates that any number of tsble-options can
be given within the BEGIN END pair.

Table-option is either an item~-declaration or a null—declaraiion.

Consider the following example of a table declaration with a
compound entry-description:

TABLE SPECIFICATIONS (50);
BEGIN
ITEM LENGTH U §;
1TEM WIDTH U 9;
ITEM HEIGHT U 5;
END

This table declaration declares the table SPECIFICATIONS, which

has one dimension. The entry-description in this table indicates
that each entry contains three items.

-7 - 71 Table Declarations

i e e —

wm: e

This table can be diagrammed as follows:

SPECIFICATIONS (5@)~--~-—=uu= +
SPECIFICATIONS(l)=r=smcanaat
SPECIFICATIONS (@)==wmmwaa—t |
+LENGTH= == mmmmm et
R —
+HEIGHT=-w-=-== et
+WIDTH= == e e e = + ——————
| l --------------- ---l -+

e e - ——————————

The first item in the first entry is referred to as LENGTH(®),
the gecond item in the first entry as WIDTH(@), and so on.

7.2.1 Unnamed Entry-Descriptions

One additional form of the table-declaration is allowed, namely:

. one with an unnamed entry-description,

TABLE table-name [t

type-description ;

able-attributes]

This form is:

As an example of this form, consider the following table~

declaration:

TABLE SCORE(1000) U 5;

The table SCORE contains 1271 unnamed entries.

be referenced as SCORE(A),
these references, however,

7: Table Declarations

SCORE(1), and so on.

These entries can
The type of

is table and so their use is limited.

- 78 -

o g

P Y

"i:‘

7.3 CONSTANT TABLE DECLARATIONS

A constant table~declaration is a table-declaration preceded by
the word CONSTANT, as follows: '

CONSTANY TAﬁLE table-name tab1e~attribﬁtéb !
entry-description

Constant tables are always allocated in static storage, so
table~attributes in a constant declaration does not have an
allocation attribute. Any of the other table attributes,
however, can be declarad, A constant table can be dimensioned or
undimensioned. A constant table must have some initial values,
but not all the components need be initialized. A partially-
initialized constant table can be used, for example, to set and
reset the constant part cf a variable table.

The values in a conmtant table cannot change during program
execution. That is, a component of 3 constant table cannc“ be
used in a context in which its value can be changed.

An erample of a constant table is:

CONSTANT TABLE THRESHOLDS (1:10);
ITEM LEVEL U = 2,12, 26,45,99,200¢,31%,500,1000,10000;

The elements of a constant table cannot be changed during the

course of progrum execution. These elements, however, cannot be
used in a compile-time-formula.

7.4 TABLE INITIALIZATION

Some or all of the items in a table can be get to initial values.
The set of initial values is called a table-preset. 1t can be
given either for an jitem within the table or in the table-
attributes.

- 79 - 7: Table Declarations

R

| R esEetaie o

7.4.1 MTable-Presets with Item=-Declarations

The table-preset for an item follows the type-description, as
follows:

!_4
e

TABLE table-name [table-attributes]
BEGIN

ITEM item-name type-description table-preset;

* e

END

Consider the following example, which uses a table-preset in an
item-declaration.

TABLE STOCKS(1:19);
BEGIN
ITEM NAME C 6 = "AAA", “ACE", "ACME";
ITEM QUOTE C 3;
END

This preset initializes the first three NAME items. That is, it
is equivalent to the following:

NAME (1)="AAR"

NAME (2)="ACE"
NAME (3)="2CME"

7.4.2 Table-Presets in the Table-Attributes

A table-preset for a table is given as the last part of the
table-attributes, as described earlier in this chapter.

Tf a table-declaration containg a table-preset in its table-
attributes, then no table-presets can be given for the item-
declarations within the table.

- 7: Table Declarstions - 89 -

< A m——— e e mea o By, T b ST e T T T T
T T -
- L -
~——’

b AT e mn T et

v

Consider the following table-declaration, which includes a
table-preset in the table-attributes:

TABLE T@(1:3) = 1,7,2,4,3,8;
' BEGIN
- ITEM SPEED U:

ITEM DISTANCE U;
END

The above declaration is equivalent to the following declaration,
which contains table~presets with the items of thc table:

‘TABLE T@(1:3);
BEGIN
ITEM SPERD U = 1,2,3;
ITEM DISTANCE U = 7,4,8;
END

Both versions set the items as follows:

SPEED(l) = 1
DISTANCE(1) = 7
SPEED(2) = 2
DISTANCE(2) = 4
SPEED(2) m» 3
DISTANCE(3) = 8

o~

7.4.3 Values

P

A table-preset coneists of a list of values, as follows:

value ,..

The notation ",..." indicates that one or moras values, separated
by commas, can be given.

Entries within a dimensioned table sre initialized in order. The
first entry to be initiali~ 1 is the one with the lowest value of
each dimension index. T+ . :xt entry is found by incrementing
the rightmost index. Th! process continues until the rightmost
index has taken on all the values in its range, then the index to
the left of the rightmost is incremented and so con.

- 8l - 7: Table Declarations

W oy =k SR

For example, suppose you have the following table:

TABLE GR1D(1,2) = 1,2,3,4,5,6;
ITEM HITS U;

The items are initialized as follows:

HITS(%,®)
HITS(B,1)
HITS(®,2)
HITS(1,0@)
HITS(1,1)
HITS(1,2)

1
2
3
4
5
6

7.4.4 Omitted Values

If values are omitted in the preset, then the corresponding items
are not set. An omitted value is indicated by a comma. Suppose
you want to omit setting some values in the GRID table. You can
write: '

TABLE GRID(1,2) = ,2,3,,5,6:
ITEM HITS U;

The items are initialized as follows:

HITS(B,@)
HITS(®,l) =
HITS(@,2) =
HITS(1,@)
HITS(1l,1) =
HITS(1,2) =

(not initialized)

(not initialized)

[N5, } (7o 8]

7.4.5 Preset Positioner

A positioner is used to indicate the starting position for a set
of one or more values. The form is:
POS (index, ...) 1 wvalue, ...

The notation “,..." indicates that one or more indexes or values,
separated by commas, can be given.

7: Table Declarations - 82 -

v‘._'. N

L

LR

2

e . - .
T e i s .

e ——————

The number of indexes given within the parentheses must agree
with the number of dimensions given for the table. The indexes

are subscripts and must lie within the valid range given in the
dimensions.

An index is either a compile-time-integer-formula or a compile-

time~status-formula, depending on whether the dimensions are
intager or status types.

For example, suppose you want to initialize items 1, 2, 3, 25,

26, and 38. You can use the following table~preset in the
table-declaration:

TABLE SCHOOLSYSTEM(1:1¢0);
ITEM CLASS'SIZE U = 16,21,24,P0s(25):31,33,P05(32):18;

The first three valuee are assighed to the first three items of
the table (1, 2, and 3), the next two values are assigned with
respect to the positioner 25 (31 and 33)and the final value with

respect to the positioner 2#. That is, the preset sets the
following items:

CLASS'SIZE(l) = 16;
CLASS'SIZE(2) = 21;
CLASS'SIZE(3) = 24;
CLASS'SIZE(25) = 31;
CLASS'SIZE(26) = 33;
CLASE'SIZE(32) = 18;

Suppose you have a two~dimensional table, aes follows:

TABLE MATRIX(4,4):
TTEM ELEMENT F:

You can initialize the diagonal as follows:

TABLE MATRIX(4,4) = POS(2,0): @,
POs(1,1): @,
POS(2,2): @,
POS(3,3): @,
POS(4:4)! 0;

ITEM ELEMENT F;

- 83 - 71 Table Declarations

Tk ekl

[
'
i
v
'
b
1
'

7.4.6 Repetition-Counts

A repetition-count can be used Iin a preset to set a number of
items to the same value. The form of a repetition count is:

repetition-count (list-element ,...)

The notation ",..." indicates that one ¢or more list-elenents,
separated by commas, can be given.

Repetition count is a compile~time~integer-formula that indicates
how many times to repeat the list-elements within the
parentheses, A list-element can be a value or a repetition-count
followed by a parenthesized list, as shown above.

For example, suppoge you want to set all the items of a table to

zero. You can use a repetition-count in the table-preset, as
follows.

TABLE SCHOOLSYSTEM(1:120):;
ITEM CLASS'SIZE U = 180(0);

You can set the first 57 items to 1 and the second 5/ to 2, as
follows:

TABLE SCHOOLSYSTEM(1:1¢¢);
ITEM CLASS'SIZE U = 50(1),52(2);

You can set the odd-numbered items to 1 and the even-numbered
items to g, as follows:

TABLE SCHOOLSYSTEM(1:10%);
ITEM CLASS'SIZE U = 50(1,0);

You can set the items in SCHOOLSYSTEM in sets of 5. Suppowse the
first four values in each set are 26 and the fifth value is 22.

You can use the following table~preset, which containe a nested
repetition count.

TABLE SCHOOLSYSTEM(1:100);
ITEM CLASS'SIZE U = 20(4(26),22);

7: Table Declarations - B4 -

PR

PO

Suppose you warnit to set a block of ten entries to zero, with each

block beginning at various positions in the table. You can write
the following declaration:

TABLE SCHOOLSYSTEM(1:108):
ITEM CLASS'SIZE U = 1@(@), POS(5@).1p(m), POS(70):108(Q);

This declaration pets entries 1 through 1, 5f through 59, and 70
though 79 to zero.

~ 85 - 7: Tabl« Declarations

SO - LR

|

[N A TR o '

LU RN PUSHOEN SWFR UPVEN RO)

DTSSR ——")

Chapter 8

BLOCK DECLARATIONS

A block groups items, tables, and other blocks into contiguous
storage. A block also gives a collection of data objects a name
g0 that the data can be manipulated as a whole. Blocks can, for
example, be passed as parameters «¢r declared external.

8.1 BLOCK-DECLARATION s

The form of a block-declaration is:
BLOCR block-name ;
block-body
Block~body describes the components that make up the block.
Block-body can be either simple or compound. A block with a
simple block-body has only one declaration:
BLOCK block~-name
declaration
Declaration is a data declaration or a null declaration.

A block~declaration with a campound block-body has the form:

BLOCK Dblock-name
BEGIN

block-option ... {

END

Block option can be a data, overlay, or null declaration.
Overlay declarations are described in Chapter 192 on "Advanced
Topics".

- 87 - 8: Block Declarations .

'
PRSNTY: IERITTECHEe T PV I VLRSI e g o PO Y]) :hummi '

FECENING PAGE BLANK-NOT FILM&D

1
st A

LT o mhirecy 1ea rvee by b VILE LR

Rt AR RS o K e

o ey - ity A e s b

hee ,

Suppose you use the three items CODE, KEY, and LIMIT in
connection with the table INVENTORY and you want to ensure that
the items and the table are allocated together so that your table
manipulating routine can access them efficiently. Consider the
following example of a bleck-declaration:

BLOCK INVENTORY'GROUP:

BEGIN
ITEM CODE U;
ITEM KEY U;

ITEM LIMIT U;

TABLE INVENTORY (20083);
BEGIN
ITEM ORDER'NUMBER U;
ITEM VISUAL'ID C 5;
ITEM ONHAND U;
END

END

This block can be diagrammed as follows:

TINVENTORY'GROUP ------------ —————— —-+
| +CODE~-mw=mmeeaae +
| !
For e - +
HKEY-mmmm e mm s mm e T |
e o it 20 0 e e -
+LIMIT- =~ =~ mm—ma T
tmmmm e — e ———— -t
+INVENTORY=~======m—mma——- +
| +ORDER 'NUMBER~=—-~+] |
| | | | | |
I } e et + { |
I +VISUAL'ID==mmrm~w + |
l | | |
| domcmmem—aeaa ———t |
I |
| +ONHAMD==---=-==- + l
| | | |
I S et |
| | |
| e memm e e + |
o e e - - a8 - - —— -
8: Block Declarations - 88 -
e v v et Y T T RE e

Because the items and tables are enclosed in a block, the
compiler allocates them together. However, the compiler is free
to allocate the data within the block in any order. If the order
of alleccation within the block is important, you can preserve it
by giving an order directive. Tne order directive is described
in Chapter 16 on "Directives".

8.1.1 HNested Blocks

Since a data-declaration can be a block-declaration, block-
declarations can be nested.

For example, suppose you want to specify the grouping of your
data as follows:

BLOCK MAINGROUP;
BEGIN
ITEM MASTER U:
ITEM MASTERCODE U;
ITEM MASTERID C 5;
TABLE MASTERTAB(10,1@);
ITEM RECORD U;
BLOCK SUBGROUP;
BEGIN
ITEM MINOR U;
ITEM MINORCODE U;
ITEM MINORID C 5;
TABLE MINORTAB(100,120);
ITEM SCORE U;
END
END !

The compiler allocates this data together because of the block

MAINGROUP. Further, it allocates the items MINOR, MINORCODE, and
MINORID with the table MINORTAB because of the block SUBGROUF.

- 89 - 8: Block Declarations

LA L v o T 1709 ot ML N ool 1 el 2 2 - 2R SR T S

- —— T P e e o LY e
R A SR o

8.1.2 Allocation Permanence

To cause a block declared within a subroutine to have static
allocation, the STATIC attribute is given in the declaration of
the block following block-name, as shown in the following
fragment.
BLOCK block-name [STATIC 1] ;
block=body

The square brackets indicate that STATIC can be omitted.

Only blocke that have static allocation, either explicitly or by

default, can contaid constant declarations or declarations with
presets.

A data declaration within a block cannot include an allocation
attribute.

8.1.3 1nitial Values

Initial values can be given for the data within a block that has

static allocation by giving presets with the data declarations in
the block.,

For example, suppose you want to give the items CODE and LIMIT in
the Block INVENTORY'GROUP the initial values # and 180 and you
want to initialize the first 180 entries of the table. You add
presets to the items and table as shown:

BLOCK INVENTORY'GROUP;

BEGIN

ITEM CODE U = @;

ITEM KEY U,

ITEM LIMIT U = 18@;

TABLE INVENTORY (2200) = 180(M, "XXXXX",2);
BEGIN
ITEM ORDER'NUMBER Uj
ITEM VISUAL'ID C 5;
ITEM ONMAND U;
END

END

8: Block Declarations - 9 -

e

b
A T

[RNSUSTRRSSRIR

(et

{

F)

The same rule applies to blocks within blocks. For example,
suppose you want to preset the items MASTER and MINOR:

BLOCK MAINGROUP;
BEGIN
ITEM MASTER U = 22;
ITEM MASTERCODE U;
ITEM MASTERID C §5;
TABLE MASTERTAB(1.0,10);
ITEM RECORD U}
BLOCK SUBGROUP;
BEGIN
ITEM MINOR U = 6;
ITEM MINORCODE U;
ITEM MINORID C 5:
TABLE MINORTAB(10@,120);
I''EM SCORE U;
END
END

The block declaration includes presets that set MASTER to 22
MINOR to 6.

- 9] - 8: Block Declarations

M A Ay et A N v S0 eI b I A b Ve B e [

sl e . B g e e oY e el LN «

and

e et R

PR e e s e

)

)

Chapter 9

TYPE DECLARATIONS

A type-declaration declares a name for a user~defined type. The
resulting name can then be used in declaring data objects in a
convenient and uniform way.

A type-name is considered to be an abbreviation for its
agsgociated item-description, table-description, or block-
description. It can be used in a declaration to give the type
of the data name being declared or in a conversion operator to
define the type to which the operand is to be converted.

9.1 TYPE-DECLARATION

A type-declaration declares a new type by associating a name with
a data description. The form of type-declaration is:

TYPE type-name data-description

Data-description can be ai. item, table, or block description.

For example, you can declare an item itype~name by giving a type-
description in a type-~declaration, as follows:

TYPE MODIFIER F 20;

You can declare a table type-name by giving a table data-
description in a type~declaration, as follows:

TYPE ARRAY
TABLE (2@,20);
ITEM U POINT;

[R A

FRECKDING PAGE BLAMNK-NOT FILMED

..

'

- 93 - 91 Type Declaratione

it ot e bt i R L AT A s DY

———r T — e - . el R e,

LT T S R R LR

oo ek b

[—Y

You can declare a block type-name by giving a block data-
description in a type-declaration, as follows:

TYPE OUTPARS
BLOCK
BEGIN
ITEM DISTANCE U;
ITEM SPEED U;
TABLE SIGHTINGS (10@);
BEGIN
ITEM LONG F:
ITEM LAT F;
END
END

A type-name can also be declared in terms of another, previously
declared, type-name. For example, an item-type~name can be
declared as follows:

TYPE type-name type=name ;

For example, you can declare another item type-name, as follows:

TYPE SECONDMOD MODIFIER:

Similarly, you can declare other table type-names by giving the
name of a previously defined table. That is, a table type-name
can be de¢fined as follows:

TYPE table-type~name TABLE table-type-nanme ;

For example:

TYPE MOREPARS TABLE OUTPARS:

A type-~declaration does not involve the allocation of storage.
It records the description of the type. When the type is used in
a data~declaration, storage is allocated.

The fcllowing sections consider item, table, and block type-
declarations, in detail.

91 Type Daclarations -~ 94 -

RNty B AL SN s it

9.2 ITEM TYPE-DECLARATION

An item type-declaration has the form:

TYPE type-name type-description ;
Type-descriptions were discussed in Chapter 6 on "Item
Declarationa”.

A type-name declared in this way can be used in an item-

declaration in place of type-description. This alternate form of
item~-declaration is:

ITEM item-name type-name

For example, suppose you frequently use a 1¢-bi+ unsigned integer
for counters. You can declare the type-name COUITER as follows:

TYPE COUNTER ITEM U 18;

Then each time you declare a counter, you can give the type-name
rather than the item-description, thus: '

ITEM CT1l COUNTER;
ITEM CT2 COUNTER:

i

CT1 and CT2 are declared to be 1¥-bit uneigned integers by the
type~name COUNTER.

The use of a type-name in this case provides documentation about
the use of the jitem, ensures that all counters have the same type

and allows you to make a sweeping change at a later time with a
minimum of effort.

0.2.1 Allocation and Initial Values

Information about allocation and initial values cannot be
included in the declaration of a type~name., However, this
information can be given in a declaration that uses a type-name.

- 95 - 9: Type Declarations

I L g e o
[- X T T it ey Y s

B

P

For example, suppose you declare a counter CLOCKTICK within a
procedure and you want it to have static allocation and an
initial value of ©¥. You can write:

ITEM CLOCKTICK STATIC COUNTER = 8

The declaration usges the type-name COUNTER, introduced in the
previous section of this chapter, +to dcciare CLOCKTICK.

9.3 TABLE TYPE DECLARATIONS

A table type-declaration has the form:
TYPE type=-name
TABLE [(dimension-list)]
entry~description
The square brackets indicate that the parenthesized dimension-

list is optional.

Entry~description gives the form of each entry in the table. As
in a table-declaration, entries can be simple, compound, or
unnamed.

A table type-~name can be used in a table declaration in place of
entry-description as follows:
TABLE table-name [STATIC] [(dimension-1ist)]
type~name [table-preset]

The names supplied by a type are potentially ambiguous and must
be qualified by a pointer when used.

9: Type Declarations - 96 -

L . R e [USRI L g
B e e e s et mdncs Al - i -

'

- ——T

The type-declaration capability can be used to declare a number
of tables with the sam= structure. Suppose, for example, that
you have three tables with the same structure. You can define a
type-name and then declare each of the three tables in terms of
that type-name. Suppose the type-declaration declares a table
type-name, as follows:

TYPE PART
TABLE;
BEGIN '
ITEM PARTNUMBER U 5;
ITEM ONHAND U 1l@;
ITEM ONORDER U 18
END

You can now define tables using thie type-name PART, as follows:

TABLE BOLTS PART;
TABLE NUTS(1¢¢) PART:
TABLE WRENCHES(1@,20) PART;

BOLTS is a table of type PART. NUTS is a one-dimensional table,
each of whose entries is of type PART. WRENCHES is a two-
dimensional table, each of whoee entries is of type PART.

Observe that three tables in your program now have items with the
names PARTNUMBER, ONHAND, and ONORDER. To reference one of these
names, you must qualify it to make it unambiguous.

Qualification is achieved by the use of pointers in JOVIAL (.773).

9.3.1 Dimension and Structure

Dimensions and information about the table layout can be given in
a type~declaration. A table, however, can have at most one
dimension-list and one layout., Thus, if a table declared with a
type~name has a dimension-list, then the type-declaration must
not have a dimension-list. Conversely, if the type-declaration
has a dimension~list, then the table~Jeclaration using the type-
name must not have a dimension-~liat.

- 97 - 9: Type Declarations

17157 30 AN e ¥ Rl P o L L WA S s et

.....

P e e e

For example, you can define a type with dimensions as follows:

TYPE SPECIFICATIONS
TABLE (100);
BEGIN
ITEM LENGTH U;
ITEM WIDTH U;
ITEM HEIGHT U;
END

This declaration defines a type with 181 entries. Each entry
contains the items LENGTH, WIDTH, and HEIGHT.

Now you can declare a table using this type-name:

TABLE TRUCK SPECIFICATIONS ;

The table TRUCK contains 1@l entries as described by the type-
name. You cannot, however, declare a table and include a
dimension-list in the table-attributer if you use the type-name
SPECIFICATIONS in the declaration.

Control over bit layouts, if necessary, can be accomplished in
JOVIAL (J73). This capability is discussed in Chapter 19 on
"Advanced Topics",

9.,3.2 Allocation and Initial Values

As with the item type-declaration, allocation permanence and

initial values cannot be given with a table type-declaration.
i However, this information can be given in a table declaration
that uses the type-—name.

For example, suppose you want to declare a ten-entry table type
name with static allocation and initialized to zero. You can
declare the ten-entry table as a type-name, as follows:

TYPE DECADE TABLE(1:18);
ITEM EVENTS U;

Then you can declare the table with static allocation and initial
values of zero, as follows:

TABLE FIRST'DECADE STATIC DECADE = 1@(%);

9: Type Declarations - 98 -

A 1}

A like-option permits the use a previously declared type-name
in the declaration of another ¢, ,pe-name. Like-option follows
dimension-list (if present) in the type-declaration as follows:

TYPE type-name
TABLE [(dimension-list 3] [lixe-option] :
entry-description
The form of the like-opticn is:
LIKE table-type-name

Suppose you want to define two different table types. Each has a
common part, namely the firgt five items. The additional items
in each table, however, are different. You can give a type-
declaration for the common part and then use the like-option in
the two table type-declarations, as follows:

TYPE IDENTIFICATION TABLE;
BEGIN
ITEM NAME C 10:
ITEM RANK C §5;
ITEM SERIALNUMBER C 12;
ITEM ACTIVEFLAG B 1;
END

TYPE INACTIVE TABLE
LIKE IDENTIFICATION;
ITEM RETIREDATE C 6;

TYPE ACTIVE TABLE
LIKE IDENTIFICAT ON;
BEGIN
ITEM STATION C 10;
ITEM REVIEWDATE C 6;
END

The INACTIVE table type containe the iteme NAME, RANK,
SERIALNUMBFER, ACTIVEFLAG, ard RETIREDPATE. The ACTIVE table type :
contains the items NAME, RANK, SERIALNUMBER, ACTIVEFLAG, STATION,

and REV1EWDATE.

'
(AN 4
,

- 99 - 9: Type Declarations

[T AR

et it ek et L YRR N

w————— R . 127 S,

[FEFOSE B

9.3.3.1 Dimensions and Like-Options

1f the type-name given in the like-option contains a dimension,
that dimension applies to the declaration that includes the
like=-option.

Suppose you have the type SPECIFICATIONS with a dimension iist of
100, indicating 1#1 entries, and another type DESCRIFTION, which
references SPECIFICATIONS in a like-option, as follows:

TYPE SPECIFICATIONS TABLE(100);
BEGIN ‘
ITEM LENGTH U 6:
ITEM WIDTH U 6;
ITEM HEIGHT U 6;
END -

TYPE DESCRIPTION TABLE
LIKE SPECIFICATIONS;
BEGIN
ITEM WEIGHT U;

ITEM COLOR U:
END

A table declared with type DESCRIPTION contains 1#1 entries.
Each entry contains the items LENGTH, WIDTH, HEIGHT, WEIGHT, and
COLOR.

Since a table can have only one dimension list, a type=~
declaration with a like-option for a dimensioned type cannot
contain a dimension list. Similarly, a dimensioned table cannot
have a like-option for a dimensioned type.

9: Type Declarations - 10/ -

.1“_;‘ N

Premm——— e E S S b

-

9.4 BLOCK TYPE DECLARATIONS

A block type-declaration has the form:
TYPE type-name
BLOCK
block-body

A type-name declwured in this way can be used in a block-
declaration in , .ce of block-body, as follows:

BLOCK block~name [allocation-spec] type-name ;

For example, suppose you have a standard method for managing
tables and associated with each table you maintain a size and
flag item. You can combine this information in a block type as
follows:

TYPE INVENTORY
BLOCK

BEGIN

ITEM MAXSIZE U;

TABLE PARTS (49);
BEGIN
ITEM ID C 10:
ITEM COUNT U:
END

ITEM FLAG B;

END

Then you can declare blocks using that type, as follows:

BLOCK XSTORE INVENTORY:
BLOCK YSTORE INVENTORY;

The blocks XSTORE and YSTORE each contain a size, flag, and
table.

As with table type-declarations, the names supplied by the type
are potentially ambiguous and must be qualified bv a pointer when
referenced.

- 101 - 9; Type Declarations

L " RN g-.:: IU“NWMPE * gt S T

fewe - - gt ey 3
Vit LA, e RIELY . iy

—— e tmnl®

9.4.1 1Initial Values

A block-declaration that includes a type-name can include a
block-preset, as follows:

BLOCK block-name [allocation-spec] type-name
[block-preset] ;

The square brackets indicate that the allocation~spec and the ' 1
block~preset are both optional.

A block-preset congists of a seguence of values. Like the
table-preset, a block=-preset can contain repetition counts and
positioners. In addition, a block-preset can have parenthesized
table-presets or block-presets. A table- or block-preset within)
a block is enclosed in parentheses.

Suppose you want to declare initial values for the block YSTORE. -
You can write: Cr

BLOCK YSTORE INVENTORY = 5@, (5@(" ",9)),FALSE;

This declaration declares a block YSTORE with an item MAXSIZE
that has an initial value of 57, a table whose items are set to

the blank string and (J, respectively, and a flag that is set to

SN e i

-7

¢
9.4.1.1 oOmitted Values }

An omitted value in a block~preset indicates that the
corresponding item, tuble, or klock remains uninitialized.

Suppose you want to set only the first five entries of the table
in the block and you don't want to set the value of MAXSIZE or
FLAG. You can write the following declaration:

BLOCK XSTORE INVENTORY = ,(5(' ',9));
This declaration does not give MAXSIZE or FLAG an initial value,

but it provides initial values for the items ID and COUNT for
entries @ through 4.

:

9: Type Declarations - 102 - *

P U . , e

Chapter 1@

DATA REFERENCES

The way in which data is referenced depends on its declaration.
Three kinds of data reference can be made, namely:

Simple
Subscripted
Pointer-qualified

The following sections discuss each kind of data reference.

1.1 SIMPLE REFERENCES

A simple reference designates a data object that has only one
instance. A simple reference can reference an item, a table, a
block, or an item in an unsubscripted table. The form of a
simple reference is the name of the declared object, as follows:

name
Consider the following declarations:

ITEM LENGTH U
TABLE STATISTICS;
BEGIN
ITEM COUNT U;
ITEM WEIGHT F';
END
BLOCK PARTLIST;
BEGIN
ITEM DATE C 6;
TABLE PARTS(108);
BEGIN
ITEM ID C 1@
ITEM INVEMNTORY U:
END
END

A simple reference can be made to the item LENGTH, the table
STATISTICS, the itemes COUNT and WEIGHT, the block PARTLIST, the
item DATE and the table PARTS. All these objects can be located
by a such a reference.

- 103 ~ 19: Data References

e eI

The table PARTS, however, contains 1)1 entries. Each entry
contains an instance of the item ID and the item INVENTORY. A
reference to ID or INVENTORY, therefore, must include a subscript
to indicate which instance is indicated.

19,2 SUBSCRIPTED DATA REFERENCES

If a data object is declared within a dimensioned table, then
there are as many instances of that object within the table as
the dimensions indicate., A reference to that object must include
subscripts to indicute the instance.

The form of a subscripted data reference is;
name (subscript ,...)

The sequence ",..." indicates that one or more subscripte can be
given separated by commas.

A reference to a table entry or a table item must contain the

same number of subscripts as there are Jdimensions in the table
declaration. Further, each subscript must lie within the range
specified by the bounds of the dimension.

For example, consider again the table PARTS:

TABLE PARTS(100); P
BEGIN ’
ITEM ID C 10;

ITEM INVENTORY U;
END

This table has one dimension, with lower-bound # and upper=-bound
10¢. A reference to 1D or INVENTORY must contain a aingle
subscript in that range. For example, a reference to the item ID
in the first entry is:

ID(0®)

R S DY

18: Data References - 104 -

Iz Lo

ey o

e

o sl e

nevr - ottt L e bR

FErTOwe
[
o

— . m—

Myl R E IR StLS PRATE RN PN T FuN = POvRD B WYARITAT

=T

As another example, consider the following declaration:

TABLE TRIALX(5,2:6,10:20);
ITEM HITS U;

The table TRIALX has three dimensions. Thus, a reference to an
item in table TRIALX must use three subscripts and the value of
each subscript must lie within the range specified by the
dimeneions, as follows:

HITS(2,2,12)
The first subscript 2 lies within the bounds (@:5) for the first
dimension. The second subscript 2 lies within the bounds (2:8)

for the second dimension. The third subscript 12 lies within the
bounds (1@:2%) for the third dimension.

1.3 QUALIFIED DATA REFERENCES

A reference can be gqualified by the use of a pointer.

Qualification can alwaye be used in referencing a name, but in
some cages qualification is necessary.

If a table is declared using a type-name, the names of the
components of the table are potentially ambiguous and must be
quallified by a pointer when referenced.

19.3.1 Pointer-Qualified References

A pointer in JOVIAL (J73) can be used to locate a particular
table and, in this way, make a reference unambiguous.

A pointer~qualified reference contains a dereference. A
dereference treats the data object found at the addrems given by
the value of the pointer as an cbject of the type associated with
the po.nter.

- le5 - 1?: Data References

Mg, il Sl VAN T Attt o A AR L e 1

PN Y,

i
!
|
|
——— i TS

The forms of a pointer-qualified reference are:
name [(subscript-~list)] dereference
dereference [(subscript-list)]

A dereference consists of an "@" character followed by a pointer

or a parenthesized pointer formula. That is, the two forme of a
dereference are:

@ pointer .)
@ (pointer-formula)

A pointer used in a dereference must be a typed pointer that
points to an object of that particular type.

19.3.1.1 Pointers and Ambiguous Names

When two or more tables are declared using a type-name, ’ X

gqualification must be used to make the names of the components
unambiguous .

Conasider the following declarations:

TYPE DIMENSIONS

TABLE i
BEGIN
ITEM HEIGHT Uy Ty
‘ ITEM WIDTH U Py
; ITEM LENGTH U;
END
B TARBLE ROOM DIMENSIONS;

TAELE BOOKCASE DIMENSIONS:
ITEM PTR P DIMENSIONS;

Rk T T

10: Data References - 106 -

-y

‘“q“ T T T A R A

The pointer PTR is a typed pointer of type DIMENSIONS. It can be
used, therefore, to locate items in a table declared with that
type. Assuming the pointer ies set to point to the ROOM table, a
reference can then be made unambiguously to the item LENGTH in
that table ueing a dereference, as follows:

LENGTH @ PTR;

The LOC built-in function, which is described in Chapter 12 on
"Built-in Punctions" is used to obtain a pointer value. PFor
example, to get a pointer to the table ROOM, you can use the LOC
function, as follows:

PTR = LOC(ROOM);

The LOC function returns a typed pointer if its argument is a
data object declared using a type-name. In thie case, the LOC
function returns a pointer of type DIMENSIONS.

Suppose the table declared using the type-name DIMENSIONS is a
dimensioned table, as follows:

TABLE FACTORY(9) DIMENSIONS:
The LOC function can be used to set a pointer to any given entry
in that table. For example, suppose you want to reference LENGTH

in the first entry of the table FACTORY. You can obtain a
pointer of type DIMENSIONS by using the LOC function, as follows:

PTR = LOC({FACTORY(#));
You can then reference LENGTH as follows:
LENGTH @ PTR

Suppose a type-name describes a dimensioned table. Consider the
following declarations:

TYPE SPECIFICATIONS
TABLE (1:192¢); DIMENSION;
TABLE BOXES SPECIFICATIONS;
ITEM SPECPTR P SPECIFICATIONS;
ITEM PTR P DIMENSIONS;

The table BOXES and the pointer SPECPTR have type SPECIFICATIONS.
Fach entry in the table has the type DIMENSIONS.

- 187 - 17: Data References

01 L W v - N
') s g T

ke] g P T G2 b Mo b £ R A A I, St BRI W - o e

pu—_}

I

The pointer SPECPTR can be set to point to the table BOXES, as
follows:

SPECPTR = LOC(BOXES):

It can then be used to access the item LENGTH in the first entry
of that table, as follows:

LENGTH(1) @ SPECPTR
Another way of referencing LENGTH in the first entry of the table
BOXES is to use PTR, which has associlated with it type
DIMENSIONS, to point to a particular entry, as follows:

PTR = LOC|(BOXES(1)):
The reference, then is:

LENGTH @ PTR

12.3.1.2 Examples

Consider the following declarations:
TYPE DATA
TABLE;
ITEM POINT U:

TABLE FIRST DATA;
TABLE SECOND DATA!:

ITEM DATAPTR P DATA;

The value of the pointer DATAPTR im met by the LOC function, as
follows: . '

DATAPTR = LOC(FIRST)

The LOC function returns a pointer of type DATA that points to
the table FIRST.

l10: Data References - 1908 -~

-

SN N ——— v WL | e Lo kBt
FERCRLA A SV L e laryriiom "

EREy

4,_ -

Some examples of pointer-qualified references are:

@ DATAPTR -- This pointer-qualified reference
references the entire tuble =-- every-
’ thing to which DATAPTR points. ;
POINT & DATAPTR -- This pointer-qualified reference

references the item POINT in the

table to which DATAPTR points. In this
way, the item POINT in table FIRST is
distinguished from the item POINT in
the table SECOND,

As another example, consider the following declurations

TYPE DIMENSIONS
TABLE (1:15);
BEGIN
ITEM LENGTH Uj
{ ITEM HEIGHT U;
. ITEM WIDTH U;
END

TABLE ROOM DIMENSIONS;
ITEM DIMPTR P DIMENSIONS;

The value of the pointer DIMPTR ias set as follows:
DIMPTR = LOC(ROOM):

S &

The LOC function returns a pointer of type DIMENSIONS thot points
to the table ROOM,

Some examples of pointer-qualified reference are:
@ DIMPTR(13) - This pointer-qualified reforence
references the entire thirteenth entry

of the table to which DIMPTR points,
(in this case, the table ROOM).
LENGTH(11l) @ DIMPTR -~ This pointer-qualified reference
references the item LENGTH in the
eleventh entry in the table to which
DIMPTR points.

- 109 « 1d: Data References

S b e A Nl it . [ESRRE

R a1 Y

—xr

Chapter 11

FORMULAS

A formula describes the computation of a value, The value of a
formula has a type assoclated with {t.

This chrpter begins with some general facte about formulas.
After that, the remaining sections describe the formulas for each
f- type class: integer, float, fixed, bit, character, status,
{ pointer, and table. For each of these, rules are given for
determining the value of a formula and the detaills of its type.
Then, a discussion of compile-time-constant formulas is given.

11.1 FORMULA STRUCTURE

A formula is either a single operand or a combination of

, operators and operands. A formula hae one of the following
{ forms:

left-operand infix-operator right-operand
prefix-operator right-operand
operand

The type of a formula is determined by the types of its operands.
The type classes of -the operande of a formula must be the same.

Some examples of formulas are:

ALPHA ALPHA + 1

FLAG OR STATBIT NOT MASK
-Loc (BOLTS) SIZE(INDEX) < BITSINWORD
((ALPHA+1) / (BETA * GAMMA)

- 111 - 11: Formulas

e e N

bbb, b

NGLTA 1Y Todedt 2iu i T bl

~NOT FILMED

The first formula is the operand ALPHA. The second formula is the
sum of two integer operands. The next two formulas are,bit
formulas. The next is a function call. The next is a relational
expression. The last of these examples is a formula whose main
operation is division (as indicated by "/") and whcose operands
are, themselves, parenthesized formulas. By means of this
"nesting" of formulas, one within another, complicated
calculations can be written ag a single formula.

11.1.1 Operators and Operator Precedence

The JOVIAL (J73) operators are:

Arithmetic Operators + = % / w+ MOD

Logical Operators NOT AND OR XOR EQV

Relational QOperators < > ®m <m = O

The operator "+" or "-" can be used either as an infix operator
or as a prefix operator. The operator "NOT" can be used only as

a prefix operator. The remaining operators can be used only as
infix operators.

The order in which the operators and operands are combined is
determined by the precedence of the operators. The precedence of
the JOVIAL (J73) operators is given in the following table:

Cperators Precedence
*w 5
* / MoD 4
+ - 3
< } - {om >-I <> 2
NOT AND OR XOR EQV 1
ll: Formulas - 112 =
[ITVrTI R } "“ s e e

JY

RN

W
Wi

For example, consider the following formula:
PI*RADIUS**2

The exponentiation operator has precedence 5, and the times
operator has precedence 4. Since the exponentiation operator has
the higher precedence, it is evaluated first, and then the result
is multiplied by PI. Thus the formula just given im equivalent
to the following:

PI*(RADIUS**2)

The effect of precedence on a formula can always be made explicit
by adding parentheses to the formula,

Operator precedence does not specify the order in which operators
of the same precedence are evaluated. Within a given level of
parentheses, the order of evaluation of operators of egual
precedence is not specified unless a |LEFTRIGHT directive is in
effect. The compiler, in evaluating operators of equal
precedence, must observe the laws of commutivity, associativity,
and distributivity. That is, the resulting formula must be
algebraically equivalent to the original formula.

For example, conslder the following formula:

Ql+Q24Q3
The compller can compute Q2 + Q3 first and then add Ql to the
result or it can compute Ql + Q3 and then add Q2 or it can use

any computation that it algebraically equivalent to the above
sum.

- 113 - ll: Formulas

A 0 AR e el ALK, sanlllbie OB . VA R I R i T e R Tl e

Ry

As another example, consider the following formula:
QE**BETAY %2

The evaluation of the operators in this case cannot be rearranged
because the resulting formula is not equivalent. (QE*¥BETA)¥**2
is not equivalent to QE**(BETA**2)., This formula, therefore, is

evaluated from left to right. It is equivalent to the following
parenthesized version:

(QE**BETA) **2

Operator precedence can be overridden by parentheses. For
example, suppose you want to express RADIUS as the product of two
other radii Rl and R2. You can write:

PI*(R14R2)**2

The parentheses force the addition of Rl and R2 +o¢ be performed
first. Then the exponentiation is performed. Finally the result
in multiplied by PI.

You can, and should, use parentheses when you do not feel the
grouping of cperands with operators is obvious. For example,
consider the following formula:

(W13/2)/BASE
This formula has the same meaning without the parentheses. But
the formula is more readable with the parentheses because most
people do not know, without consulting the ruleo given here,

which division is performed first. The use of such "extra"
parentheses does not slow Jdown execution of the program.

11: Formulas - 114 -

S KLy tenes

o ¥

11.1.2 Operands

Each operand of a formula can be any of the following:

Form Examples

Literal 28.3 'Message 3'
Implementation Parameter BITSINWORD
Variable COUNT LENGTH(I)
Constant PI

Function Call FACTORIAL(NN)

(Formula) ((ALPHA+1) %#*2)

Conversion-operator (formula) U(2*SPEED) (*B 3*)(SPEED)

Conversion operatore are discussed in Chﬁpter 13 on "Conversion".
Function calls are discussed in Chapter 15 on “Subroutines".

Bach operator imposes certain restrictions on the type and value
of its operand. For example, the addition operator cannot be
applied to a character-literal, and the division operator cannot
have zero as ite second operand. These restrictions are given
later in this chapter, when the various types of formula are
described.

11.1.3 Formula Tvpes

The value of each formula has a type (that is, a type class and
attributes).

Formulas are classified according to the type ©f th2 value of the-

formula. Under this classification scheme, the permitted types
of formula are:

Integer Formulas
Flcat Formulas
Fixed Formulas

Bit Formulas
Character Formulas
Status Formulas
Pointer Fourmulas
Table Formulas

The remainder of this chaptexr desacribes the types of formula
according to thie classification.

- 115 - 11: Formulas

. L e e m,,*mmw‘”‘- e a0 L e A Y v b A TRV 0T by &t
e M T e e . B .

TR ke L et foc v

- Fetue

PG B

: 11.2 INTEGER FORMULAS

An integer formula is a formula whose operands are both of an
integer type and wpose operator is one of the following:

, + addition S
.- subtraction
» multiplication
/ division

, . exponentiation

r MOD modulus

The type of the result of an integer formula is:
S n

The size, n, is the multiple of BITSINWORD minus 1 used for the
larger operand.

For example, suppose you have the following declarationes:

: ITEM LENGTH U 27;
q ITEM HEIGHT U 10:

If you combine HEIGHT and LENGTH in a formula, the type of the
result is:

S n where 31if BITSINWORD is 16, n is 31 (2%*le-1)
if DITSIMWORD is 24, n is 23 (1%24-1)
i1f BITSINWORD is 32, n is 31 (1%31-1)

and so on.

More examples are given later in this section.

11.2.1 Integer Addition and Subtract on

For an integer formula with "+" or "-" as an infix operator, the
result of the formula is the sum or difference of the operands,
respectively.,

For an integer formula with "' or "-" ag a prefix operator, the Rt
result of the formula is the operand or the negation of the
operand, respectively.

11: Formulas - 116 -

e |

11.2.2 Integer Multiplication and Division

For an integer formula with the "*" operator, the result is the
product of the operands.

For an integer formula with the "/" operator, the result is
computed exactly and then truncated, if necessary. No truncation
is required if the guotient is an exact integer. Integer division
is always truncated even if both operands are declared with a
round attribute. Truncation is performed in a machine-dependent
manner, either towards zero or towarde minus infinity. If the
truncation is towards minus infinity, 2.5 is truncated to 2 and
-2.5 is truncated to =-3. If the truncation is towards zero, 2.5
is truncated to 2 and -2.5 to -2,

The value of the second operand of "/" must not be zero.

11.2.3 Integer Modulus

For an integer formula with the "MOD" operator, the result is the
remainder of the division of the first operand by the second.
Suppese the values of the operands are vl and v2. Then the value’
of the formula is:

vl = (vl/v2) % v2

where "/" is integer division as defired in the previous section.
Examples will be given later.

The value of the second operand of the MOD operator must not be
zero.

11.2,4 Integer Exponentiation

An integer exponentiation formula is a formula whose operator is
“w¥l and (1) whose operands are of type integer (as reguired for
all integer formulas) and (2) whose right operand has a non-
negative value that can be calculated at compile time.

- 117 - 1l: Formulas

R TR AT S

fe— -

The value of an integer exponentiation formula is the same as the

value produced by repeated multiplications. If the second operand
is n, the result of the formula is the product obtained by

multiplying the first operand by itself (n-1) times. If n is 4,
the result is 1.

11.2.5 Examples

Here are examples of integer formulas. For each example, the data
type and value of the result is also given.

Suppose the following declarations apply:

ITEM BALANCE & 1@ = §5;
ITEM CONTRIBUTIONS U 20 = 6&;
ITEM PROFITS U 15 =18;
ITEM FACTOR F = 2,67

Assuming BITSINWORD is 16 and the items still have thelir
initialized values at the time the formulas are evaluated, the
following formulas produce the indicated results:

Formula Result
BALANCE + PROFITS Value 15, type 8 15.

BALANCE-S (FACTOR) Value 3, type S8 15. The floating

item FACTOR is converted to a signed

integer by the conversion operator
8. The conversion truncates the
value of FACTOR to 2.

BALANCE*CONTRIBUTIONS Value 3@, type S 31.
PROFITS / 3 Value 3, type S 15,
PROFITS MOD 3 Value 1, type § 15.

11.3 FLCAT FORMULAS

A float formula is either a formula whose operands are both of
type float or a float exponentiation formula. A float
exponentiation formula is any formula with the "#**" gperator that
is not an integer exponentation formula, as defined previously.

11: Formulas - 118 -

e

b,

{ il ol

3 A MR AT A S TR e B SR i

o__

A A d B NN AN i o F AR

The operator in a float formula must be one of the following:

+ addition

- subtraction

* multiplication
/ division

o exponentiation

The MOD operator is not defined for float operands.

The type of the result of a float formula is:
F n

The precision, n, of the formula is the precision of the
operande. If the precisions of the operands are not the same,
then the larger precision is used for the type of the result.

Floating formulas are evaluated in an implementation-dependent
manner with respect to how exact results are approximated to the
implemented precision. The round-or-truncate attribute associated
with variables or constants used as operands does not affect the
computation of a floating formula result.

11.3.1 Float Addition and Subtraction

For a float formula with "+" or "-" as infix operator, the result
of the formula is the sum or difference of the operands,
respectively, rounded or truncated in an implementation-dependent
manner.

For a float formula with "+" or "-" as prefix operator, the
result of the formula is the operand or tne negation of the
operand, respectively.

11.3.2 Float Multiplication and Division

For a float formula with "*" or “/" »p infix operator, the result
of the formula is the product or quotient of the operands,
respectively.

The value of the smecond operand of "/" must not be A,

- 119 - 11: Formulas

T T e -

11.3.3 Float Exponentiation i

A formula whose operator is "**" is a float exonentiation formula

unless it is an integer exponentiation formula; that is, unless

(1) both operands are of type integer and (2) the second operand ?
is a non-negative compile-time value.

If an operand of a floating exponentiation is an integer, it is
converted automatically to a floating type using default
precision and rounding before the computation. 1In floating
exponentiation the left operand must not be negative (because a !
floating point exponent could be a fraction and a negative number '
raised to a fractional power may produce a complex value).

The value of the formula is the first operand raised to the power.
specified by the second operand. The value is calculated by a
logarithmic method:; that is, by the following expression:

v2*log(vl)
e il

where e is 2.73..., log i8 the natural logarithm funEtion. and vl
and v2 are the first and second operands, respectively.

11.3.4 Examples

Here are some examples of float formulas, For each example, the
data type and the value of the formula is given.

l1: Formulas - 120 - |

\3 i" e e— et

_—

G b R R Y S AR i e e Sl

Suppose the following declarations apply:

ITEM DISTANCE F 15 = 37,2
ITEM SPEED F,R 12 = 55,;
ITEM COUNT U = 3;

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following formulas produce
the indicated results:

Formula Result
2.3*DISTANCE The result is a floating type with

precision 15 and the value 85.56.

DISTANCE/SPEED The result is a floating type with
precision 15 and value .6763.

SPEED**2 The result is a floating type with
preclision 12 and value 3825.9.

SPEEDYF (COUNT) The result is floating type. The precision
is that of the most precise operand. The
precision of SPEED is 12 and the precision
o§5F(COUNT) is FLOATPRECISION. The value is
165.0.

COUNT**COUNT The result is a floating type. COUNT is
automatically converted to a floating type
with precision FLOATPRECISION. Thus the
precision of the result is FLOATPRECISION.
The value of the result is 27.1,

11.4 FIXED FORMULAS

A fixed formula is a formula with one operand that is fixed and a
remaining operand (for infix operators) that is fixed or integer.
Its operator must be one of the following:

+ addition

- subtraction

" multiplication
/ division

Exponentiation and the MOD operator are not defined for fixed
operands.

- 121 - 11: Formulas

- i ™Y

11.4.1 Addition and Subtraction

Operands of addition and subtraction must have identical scales.
For addition and subtraction the mscale of the result is the scale
of the operands. The fraction of the result is the maximum of
the fractions of the operands and the precision is the maximum of
the precision of the operands.

11.4.2 Multiplication

For multiplication, two cases are distinguished, one for the case
in which one operand is an integer and the other for the case in
which both operands are fixed point.

If one operand of a multiplication is an integer, then the scale,
fraction, and precision of the result are the same as those of
the fixed point operand.

If both operands are fixed point types, then the scale, fraction,
and precision of the result are the sum of the gcale, fraction,
and precision respectively of the operands. If the scale and
precision of the result exceeds MAXFIXEDPRECISION or if the scale
does not lie in the range -127 through +127, then an explicit
conversion must be applied to the result to yield a valid scale
and precisgion.

11.4.3 Division

For division, there are also two cases, one for the case in which
the divisor is an integer and one for the case in which both
operands are fixed point types.

If the divisor is an integer, the scale and precision of the
result are the acale and precision of the fixed point numerator.

If both the numerator and denominator are fixed point types or if
the numerator is an integer and the denominator is a fixed point
type, the result must be explicitly converted to the desired
(legal) scale and precision.

11: Formulas - 122 -

U e—— e
L K e ’ S,

il

[

BRI R AT S)

l1.4.4 Examples

Here are some examples of fixed point formulas. For each
formula, the data type and value is given. 1

| Suppose you have the following declarations:
!

; ITEM TIME A 16,5 = 12.5;

: ITEM DELTA A 14,5 = .125; ;

i ITEM DISTANCE A 18,-2 = 325.0; * 1
ITEM COUNT U = 4;

Assuming the items still have their initialized values at the |
time the formulas are evaluated, the following formulas produce !
the indicated results: v

Formula Result
1
TIME+DELTA The sum of TIME plus DELTA is a fixed point ‘
, type with scale 1¢, fraction 5, and !

{ precision 15. The value is 12,625,

6 *TIME The product of 6 times TIME is a fixed point
formula with scale 19, fraction 5, and
precision 15. The value 1s 75.4,

« DELTA*TIME The product of DELTA times WIME is a fixed
point formula with scale 2f, fraction 12 and
preciaion 3@. The value is 1.5625,

(DISTANCE*TIME The product of DISTANCE times TIME is a
. fixed point formula with scale 24, fraction
3, and precision 23. The value is 4162.5.

b ‘ TIME/COUNT The quotient of TIME over COINT is a fixed
point type with scale 19, friction 5, and
precision 15. The value is 3.125.

(* A 10,5 *)(TIME/DELTA) The quotient of TIME over DELTA is
a fixed point type whose value is first
computed exactly and then converted to a
scale of 12 and a fraction of 5 by the
conversion operator (*A 1¢,5%). Conversion
operators are described in Chopter 13 on
“Conversion". The value is 100.9,

|
|
i
i
!
|
1
- 123 ~ 11l: Formulas :

ol e e e A ESETIRAFE, V- T 4&;;.%“;&,%”"‘ i S A “ s - t
t ' LT o

. L e - i ————R . N 4
R tasulad SRR TV A et TN ALY TR L L L LW S alts '

11.5 BIT FORMULAS %

A bit formula nonsists of bit operands and a bit operator.
bit operaturs are NOT, AND, OR, XOR, and EQV.

11.5.1

Logical Operators

The logical operator NOT produces a value that is the logical

complement of its operand.

The operators AND, OR (inclusive or),

XOR (exclugive or), and EQV (equivalence) perform their usual

logical operation on a bit by bit basis, as follows:

Operand Value

Left Right
o 4]
e b
1]
1 1
et o o s et 0 e o

fre S S R T B A e S S R D VR S e O e WY P SN S S0 ey

Result Value
AND OR XOR EQV

o a a 1
@ 1 1 o
5] 1 1]
1 1 ol 1

The operands used with a logical operator must have the type bit.

TR LY P T P L T Y T

When the number of bits in the two operands is not equal, the

smaller operand is padded with zero bits on the left until the
two operands are the same size.

The result has type bit with

size equal to the number of bites in the larger operand.

If a formula contains only one kind of logical operator,
e written without parentheses.

For example:

FLAG AND STATBIT AND 1B'l111l’

The formula is evaluated in any order unless 2 |LEFTRIGHT

Airective is in effect.

However, if a formula contains more than one kind of logical

operator, it must contain parentheses to indicate the order of
For example:

evaluation.

FLAG AND (STATBIT OR 1B'111') or
(FLAG AND STATBIT) OR 1B'l11l'

The NOT operator can be used as a prefix operator only. The
other operators are infix operators.

1l: Formulas

- 124 -

Sy .
,n-WM{Q" KR Coe
- ERTT na

T

The

~
ab

it can

¢ 4
;.t';'!!:s:s._: T e

S F

s

SR E e X R

¥

° l W g RO T 0 VA4 - R T iy s A KR N0 s A bk

11.5.1.1 short Circuiting

If the value of a bit formula containing operands of type B 1 is
determined before all the operators are avaluated, the evaluation
of the remaining operators is omitted or "sghort=-circuited".

For example, consider the following formula:
I < 180 OR COEF(1l) <> @

If the relational expression I<1@% ie computed first and if ite
value is TRUE, the value of the bit formula is TRUE and the
relational expression COEF(I)<>@ is not evaluated.

11.5.2 Examples
For example, suppose you have the following declarations:

ITEM FLAG B 3 = 1B'010"';
ITEM STATBIT B 5 = 1B'00100';

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following forinulas produce
the indicated results:

Bit Formula Result

FLAG AND STATBIT The AND of FLAG and STATBIT is a bit type
five bits long., The shorter item FLAG is
padded with zeroes on the left to produce
the bit atring 1B'0AdQ1Q'., The value of
the formula is 1B'QO7AR',

FLAG OR 1B'1¢' The OR of FLAG and the iiteral 18'lQ' is
a bit type three bits long. The literal
is padded and the value of the formula is
l1p'ogle’

FLAG OR (STATBIT AND 1E'l1l1l')
The AND of STATBIT and the literal
produces a five bit string with the value
1'P0120'. The OR of FLAG and this
formula is a five bit string with the
value 1B'%2114'.

- 125 - ll:t Formulas

o M1 e VT T VT R o 11 1 e AN 4 o ¢

| I——

11.5.3 Relational Operators

A relational operator compares two operands. The result of
applying a relational operator to ite operand is a relational
expression. A relationa) expression has type bit with size 1.

The relational ¢perators are:

Operator Meaning

= Equals

< Lesp than

” Greuter than

< Not Equal

(= Less than or Equal to

>m Greater than or Equal to

The operands in a relational expressinn must be both of the same
type. They can be integer-formulas, floating-formulas, fixed=-
formulas, character-formulas, status-formulas, or pointer-
formulas.

Integer, floating, and fixed comparisons are made on the basis of
the value of the operands. Character comparisons are made nn the
basis of the collaiing seguence of the character set for a given
implementation. Status comparisons are made on the baslas of the
representation of the gtatus values. Pointer comparisons are
made on a target machine dependent basis.

The equals (@) und not equals (<>) operators can be used with bit
operands. But the other relational operators cannot be used ae
no collating sequence is assocliated with a hit string.

The type of a relational expression is B 1, The value 1R'1l’
represents the Boolean literal TRUE and the value IB’w'uthe
Boolean literal PFALSE,

11.5.4 Examples

Here are some examplen of relational exprassions. For each
example, the data type and the value of the formula is given.

11: Fornulas - 126 -~

I T A [

e S

7~

P T O RS MR I R b b s ek

Suppose the following declarations apply:
ITEM COUNT U = 5;
ITEM TIME U = 12;
ITEM DISTANCE F 15 = 37.2;
ITEM SPEED F,R 12 = 55,;

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following formulas produce
the indicated results:

Formula Result

COUNT<TIME The type is B 1. The value is TRUE,

SPEED=DISTANCE The type is B 1. The value is FALSE.

11.6 CHARACTER FORMULAS

A character formula consiste of a variable, constant, literal, or

function call of type character. 1In addition, a character
formula can be a parenthesized character formula or a bit formula
to which a character conversion operator is applied.
Some examples of character formulas are:

'Out of Bounds'

(* C 10 *)(CODE)
The sequence (¥ C 1@ *) ims a conversion operator. <Conversion

operators are described in Chapter 13 on "Conversion".

No character operators are defined in JOVIAL (J73).

11.7 STATUS FORMULAS

A status formula consists of a variable, constant, literal,
function call, or parenthesized formula of type status or a
formula converted to type status by a conversion operator.

- 127 - ll: Formulas

L VO R T L oS e T SR

p
3

W

Some examples of status formulas are:

V(RED)

V (SUNDAY)

11.8 POINTER FORMULAS

A pointer formula consists of a variable, constant,

liternl,

function call, or parenthesized formula of type pointer or
formula convertsd to type pointer by a conversion operator.

Some examples of pointer formulas are:

LOC (CODETAB)

NULL

11.9 TABLE FORMUIAS

A table formula consists of a variable,

constant,

or

perenthesized formula whose type class is table or a formula

converted to type table by a conversion operator.

Bome examples of table formulas are:

GRID
GRID(3)

SPEC(IX*5)

No table operators are defined in JOVIAL (J73).

11.182 COMPILE~TIME-FORMULAS

A compile-time-formula is a formula whose value is required to be

computed at compile time by all JOVIAL (3J73) compilers. While

values of som2 other formulas are known at compile-time by some
or all compilers, they cannot be used where complle-time-formulas

are required.

1l: Formulas

-128 -

I o L YN

PRBIRSIRIIY L

P

A formula is a compile-time-~formula if its operands are taken
from the following list:

A literal
A status-constant
An implementation parameter

A constant item, except for a constant item of type
pointer or an item from a constant table.

A type conversion, except a REP conversion, provided
the value of the formula being converted is a
compile~time-formula.

A formula whose operands are compile-time-formulas.

One of the following Luilt-in functions, subject to the
given restrictions:

Function-Name Restriction

LBOUND }

FIRST } none

LAST }

UBOUND The argument cannot be a table
with * dimensions.

NEXT }

BIT }

BYTE } The arguments of the functions

SHIFTL } must be complle~time-formulas.

SHIFTR)}

ABR3 }

SGN }

NWDSEN Its argument must not contain a

reference to a name whose
deciaration is not completed
prior to the point at which
the function appears.

For example, a table T1 cannot
contain an item that is preset
to NWDSEN(T1).

- 129 - l1l: Formulas

T PR SOURVE] TFTPUY SIS AR a s)

[

R o R e e

¥

BITSIZE
BYTESIZE
WORDSIZE

}
}
}

Their arguments must be compile-
time-formulas. An argument must
not be either a block or a table
with * dimension. An

argument must not contain a
reference to a name whose
declaration is not completed
prior to the point at which

the function appears.

Consider the following declarations:

Some

1l

CONSTANT ITEM VERSION U = 5;
CONSTANT ITEM FACTOR F = 2,36;

CONSTANT ITEM ALPHABET C 26 = ‘'ABCDEFGHIJKLMNOPQRSTUVWXYZ':

compile-time=-formulas are:

2%5-3

VERSION+1
FACTOR* *3
BITSINWORD*B

BYTE (ALPHABET, 3, 6)

- 130 -

Formulas

R T

A
3
-_—

)

A et i i =

[,

-

Chapter 12
BUILT-IN PUNCTIONS

A built-in function is a function that ie predefined as part of
the JOVIAL (373) language. Such functions are called in the same
way that user-functions are called, but, unlike user-functions,
no definition is necessary.

The JOVIAL (J73) built-in functions provide a way of getting
information that would otherwise be inaccessible to the user.
For example, they provide information about the physical address
or physical repregentation of a data object, the sign of a daka
object, or the limits of bounds or status lists.

In addition, two functions BIT and BYTE are supplied. These
functions select a substring from a bit or character formula,
respectively. These functions can also be ueed as pseudo-~

variables on the left-hand~-gide of an assignment statement or
other target contexts to set the values of the selected bits.

- 131 - 12: Built-in Functions

4

The JOVIAL (J73) built-in functions are summarized on the
following page. o

Function-Name Purpose
Loc To find the machine address of a

data obect, subroutine, or statement.

NEXT To obtain the arithmetic sum of a
pointer argument and an increment,
or to obtain the successor or
predecessor of a status argument.

BIT To select a substring from a bit-
formula,

BYTE To select a substring from a
character~formula.

SHIFTL To shift a bit-formula left or

SHIFTR right an indicated number of bits.

ABS To get the absolute value of a
numeric=-£formula.

SGN To determine if a numeric-formula
is negative, zero, or positive.

BITSIZE To return the logicul size in bits,

BYTESIZE To return the logical size in bytes.

WORDSIZE To return the logical size in words.

LBOUND To get the lower or upper bound

UBOUND of a given dimension.

NWDSEN To get the number of words of
storage allocated to each entry
in a table.

FIRST To find the lowest or highest

LAST value in the status-~list argument.

12.1 THE LOC FUNCTION

The LOC function is used to find the machine address of the word
in which ite argument ies contained.

12: Built-in Functions - 132 =~

o

12.1.1 Function Form

The form of the LOC function is:
LOC (argument)

The argument of the LOC function can' ke a data object name; a
statement~-name, a procedure-name or a function~name. The LOC
function returns a pointer value. If the argument of a LOC
function is declared using a type-name, then the LOC function
returns a typed pointer for the type given in the declaration.
Otherwise, the LOC function returns an untyped pointer.

The LOC function is used most often to obtain a value for a
pointer to be used in a pointer-qualified reference.

If the argument of a LOC function is o statement-name,
procedure-name, or function-name, the LOC function returns the
machine address used to access the designated statement or
subroutine. The LOC function cannot be used, however, to get the
address of a buillt-in function.

The LOC of a subroutine whose name appears in an inline-
declaration or of a statement name within an inline subroutine is

implementation defined.

12,1.2 Examples
Suppose you have the following declarations:

TYPE GRID
TABLE;
BEGIN
ITEM XCOORD U;
ITEM YCOORD U;
END
TABLE BOARD1(2¢) GRID;
TYPE DIMENS I[ONS
TABLE(12);
BEGIN
ITEM LENGTH U;
ITEM HEIGHT U;
ITEM WIDTH Uy
END
TABLE ROOM DIMENSIONS;

- 133 - 12: RBullt=in Functions

e e e, o e e -

A s ey

table BOARD1l by using the following LOC function:
LOC (BOARDL (@)) f

The LOC function of BOARD1(@) returns a value whose type is k') 3 ;
pointer and whose pointed-to attribute is GRID. You can then use i \
that pointer to reference an itenm 'in that entry of BOARD1l., For
example, you can write:

\
l
You can obtain the machine address of the first entry in the | \

XCOORD @ (LOC(BOARD1(2)))

You can obtain the address of the table ROOM by using the |
following LOC function:

LOC (ROOM)

This LOC function returns the address of the table ROOM, The
type of this value is pointer with a pointed-to attribute of
DIMENSIONS. You can reference an item in the ROOM table as

follows: i }
HEIGHT(1) @ (LOC(ROOM)) |
A
This pointer-qualified-reference locates the item HEIGHT in the g
Ith entry of the table ROOM. 2
kB
12,2 THE NEXT FUNCTION :
- {
The NEXT function has two separate purposes, depending oh the i } §
type of its argument. It can be used either to obtain the ' :
arithmetic sum of a pointer argument and an increment or to :

F'n obtain a successor or predecessor of the value of a atatus
formula.

12,2.1 PFunction Form

The form of the NEXT function is:

Al s e TR e

NEXT (argument, increment)

The argument can be elther a status formula or a pointer. The
increment is an integer formula,

L

12: Built-in Punctions - 134 -

>
E 4
_
- TS R I et e Sy i S B X e

12,2.2 §Status Value Arguments

If the argument is a status formula, the NEXT function returns a
successor of the value of the statua argument if the increment is
positive, oy predecessor if the increment is negative.

For cxample, suppose you have the following status item:

ITEM SPECTRUM STATUS ‘
(V(RED), V(ORANGE), V(YELLOW),
V(GREEN), V(BLUE), V(VIOLET)):

Now suppcose you set the status variable SPECTRUM to V(YELLOW) and
then apply the NEXT function as follows:

NEXT (SPECTRUM, 1)

Since the inorement is 1, the NEXT function returns the first
succesaoyr, the status value V(GREEN).

If you give a negative increment, the NEXT function returns the
predecessor indicated by the argument. For example, suppose the.
value of SPECTRUM ig V(YELLOW) and you give the following NEXT
function:

NEXT (SPECTRUM, -2)

Since the increment is -2, the NEXT function returns the second
predecessor, the status value V(RED).

The increment must not cause the NEXT function to return » value
that is outside the status list. Further, the argument of a NEXT
function cannot be a status-constant that belongs to more than
one status type, unless it is explicitly disambiguated by a
conversion operator.

12.2.3 Pointer Value Arguments

If the argument is a pointer formula, the NEXT function returns
the arithmetic sum of the pointer formula and the product of the
increment times the implementation parameter LOCEINWORD. The type
of the result is a pointer of the same type as that of the
argument.

- 135 - 12: Built-in Functions

b,

}
{
H
)
)

g

For example, consider the use of the NEXT functlon in the :
following program fragment: : 1

TYPE FORM
TABLE (100);)
ITEM CODE U:; v,
TABLE CIPHER FORM;
FOR I:LOC(CIPHER) THEN NEXT(I,5) WHILE CODE@I<> &;
ACTION(CODER@I);

The for-loop examines every fifth entry of the table for a zero
code. If the code is not zero, the procedure ACTION is called.

The value of the pointer-formula and the value of the sum of the
pointer value and the increment must lie in the implementation-
defined set of valid values for a pointers of the given type.
The argument of the NEXT function cannot be the pointer literal
NULL.

12,3 THE BIT FUNCTIONM o

The BIT function selects a pubstring from a bit formula. It can ‘
be used as a function or as a pseudo-variable. ‘

12.3.1 Function Form

The form of the bit~function is: e‘)

a2y

BIT (bit-formula, first-bit, length)

First-bit and length are integer formulas. First-bit indicates
the bit at which the gubstring to be extracted starts. Length
specifies the number of bits in the substring. Bite in a bit
string are numbered from left to right, beginning with zero.
Length must be greater than zero. The sum of first-bit and
length must not exceed the length of the bit-formula. '

The type of the result returned by the BIT function is a bit
atring with size attribute equal to the size attribute of the
bit-formula argument. Zeros are autiomatically added on the left’
of the value of the result to produce the correct size.

Ll

121 Built-in Functions - 136 - v

T ‘

o ':"Wm'.r o P R e

| g WAl ey 2y

12.3.2 Examples
Suppose you have the following item declaration:

ITEM MASK B 10 = 1B'01lAP110001°';
And suppose you apply the following BIT function:
BIT(MASK, 3,4)

The BIT function returns a bit string whose rightmost bits have
the value of bits 3 through é of the bit item MASK. The type of
the result is a bit string of length 1. Assuming the item MASK
still contains the preset value before the function call, the
value of the function iss

1B 'Qooo0e0@110"

This result is produced by taking bits 3 through 6 of MASK and
then padding on the left with zeros to get a 12-bit string.

Since padding and truncation are automatically applied by the

compller for bit strings, you can assign the BIT function to &
string of the appropriate length and get the expected result.

For example, suppose you have the following declaration:

ITEM SUBMASK B 4:

You can write the following staterent to assign bits 3 through 6
to SUBMASK:

SUBMASK = BIT(MASK,3,4);

The result of the BIT function 1s a ten-bit string as indimated
above. The sBix zeroe that were automuticully uscd as pxdding on
the exscution of the function are automatically truncated when
the result is aseigned to SUBMASK. Assuming the {ten MASK stil)
contains its preset value, the value of SUBMASK after the
execution of the above statement im:

lB'glig’

- 137 - 12: Built~in Functions

i
i
!
|
i

12.3.3 Peeudo~Variable Form

The BIT function can also be used as a pseudo-variable. It can

be given on the left-hand aide of an assignment statement or as

an output parameter. The first argument of a BIT function used |
as & pseudo~variable must be a variable and not s formula. The

form is:

BIT (bit-variable, first-bit, length)

The PIT pseudo-variable designates a epecified substring of the
bit-variable.

12.3.4 Examples

For example, suppose you want to change only the first bit of
MASK. You can write the following assignment atatement:

BIT(MASK.G;J.)‘]-B‘I': ey g

Assuming that MASK has its initial value before this assignment
statement, then its value after the assignment ie:

18'1100110001"

u -.
T R A

12.4 THE BYTE FUNCTION

R R 5. 1

Vagncs?

The BYTE function selects a substring from a character formula,
It can be used as a function or ae a pseudo~variable. '

l12.4.1 Function Form

The form of the BYTE function is:

R i e T NP 2

BYTE (character-formula, first-byte, length)

First-byte and length are integer formulas. PFirst-byte indicates
the character where the subetring to be extracted starte, and

' length specifies thz number of charivcters in the substring to be
extracted. Characterg are numbered frow left to right, starting

.

at gero. Length must be greater than zero. The sum of firast- ‘ $

byte and length must not exceed the number of charactere in the ‘rwv)

charactar formula. e i

N i

)

" i
12: Built-in Functiona - 138 -

-

LR T T U A EVDANGRY TNt
R o ARG L EORTRERLAS S y ‘ﬂ"\ "y)

v

e e
¥

[

v obail gl gy it e 3 gt o et W R Lt AL Y™ P
R hnj&'_.,_.\,.u\‘ A ..’;\Eu e "“"““"W"?‘Di-}fJMMULM"',

The type of the result returned by the BYTE function is character
with a size attribute equal to that of the character-formula
argument. Blanks are automatically added on the right to produce
the correct size.

12.4.2 Examples
Suppose you have the following item-declaration:

ITEM ALPHARET C 26 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
And suppose you apply the BYTE function as follows:

BYTE (ALPHABET, 8,4)
The BYTE function returns a character string with size attribute
26, Assuming the item ALPHABET still contains its preset value
before the function call, the value of the function is:

*IJKL

That is, it consists of the character sequence IJKL followed by
22 blanks.

Just as in the case of the BIT function, you can assign the BYTE
funation to a string of the appropriate length and get the
expected result since padding and truncation are automatically
applied to character strings.

For exampie, suppose you have the followiny declaration:

ITEM SUBSET C 4:

You can write the following statement to assign characters 8
through 11 to SUBSET:

SUBSET = BYTE(ALPHABET,8,4);

The result of the BYTE function is a 26 character string as
indicated above. The 22 blanks that are automatically added to
the selected characters on the execution of the function are
automatically truncated when the result is assigned to SUBSET.
Assuming ALPHABET still hae its preset value, the vaue of SUBSET
after the execution of the above statement is:

'IJKL'

- 139 - 12: Built~in Functions

1
1]
i
{

e b s e e i e .

i

km\’ “

12.4.3 Pgeudo-Variable Form

The BYTE function can also be used as a pseudo-variable on the
left-hand side of an assignment statement or ag an output
parameter. The form is:

BYTE (character-variable, first-byte, length)

The BYTE function in this case designates a specified substring
of the character~variable.

12.4.4 Examples
Suppose you have the feollowing:

ITEM CODE C 1@
CODE = 'ABQFGHIAAZ':

And suppose you want to change characters 5 through 9 of CODE.
You can write the following assignment statement:

BYTE(CODE,5,5) = 'ZXXXY';

Assuming that CODE has the value shown above before this
assignment statement, then its value after the assignment is:

'ABQFGZXXXY' v

12.5 SHIFT FUNCTIONS . '

The shift functions perform logicel shifting of a bit formula.
Two shift functions are defined, one for left shifting and one
for right shifting. '

oy
"

12: Built-in PFunctions = 140 -

Rl

L ATAY I 1 RIS [t > TIUT S WP

i T R

T G s s Al S o Bk

e

BTTYR B

o

12.5.1 Function Form

The form of the shift functiorns is as follows:

SHIFTL (bit-formula , shift-count)
SHIFTR (bit-formula , shift-count)

Execution of shift function shifts the bit-formula specified as
the first argument by thc number of bits specified by the ghift~
count. Bits that are vacated as a result of the shift are filled
with zeros and bits that are shifted out are lost.

Shift-count is an integer-formula. The value of the shift-count
must be less than or equal to the implementation parameter
MAXBITS, whith is the maximum supported value for a bit string.
Further, the shift-count must not be negative., 1If the shift~
count is zero, no shift occurs. If the shift-count is greater
than or equal to the size of the bit-formula to be shifted, then
the result of the function is a bit-string with all zero bits.

)
f

The type of the value returned by the shift functions is the same
ag the type of the bit~formula given as the first argument.

12.5.2 Examples

Suppose you have the following item declaration:
ITEM MASK B 5 = 1B'10101';

Suppocse you apply the SHIFTL function to shift MASK left 3 bits,
as follows:

SHIFTL(MASK, 3)
he SHIFTL function returns a bit string of length 5. Assuming
MASK still contains its preset value before the shift, the value
of the SHIPTL function is:

1B'01090"'
The first three bits were shifted out and lost. The last twe

bits were shifted left three positions. The remaining three bit
peaitions were filled with zeros. '

- 141 - 12: Built-in Functions

G A T T N L LG

BTG VALY T DI Wk 00 L s o7 I s g,)

4 A dtita o0 17

12.6 SIGN FUNCTIONS

Two sign functions can be applied to numeric fcrmulas, the ABS
function and the SGN function.

12.6.1 Function Form

The forms of the sign functions are:

ABS (numeric-formula)

SGN ({ numeric-formula)
The ABS function produces a velue that is the abgolute value of
the numerde formula. The 8GN function returns a value according

to whether the numeric-formula is positive, zero, or negative, as
follows:

Value of Formula Value of SGN Function
> @ +1
=0 o
< g -1

The type of the result produced by the ABS function is the same
as the type of the numeric~formula argument. The type of the
fesult produced by the SGN function is a gijned one-bit integer
S 1)!

12: Built~in Functicns - 142 -~

PRt
i

»

-

T L TR

I e v mim s+

i
i --.w:vl‘

L e v < e et £ b 5 P ST
R 5 i oo e e P e i >

12,6.2 Examples
For example, suppose you have the following declarations:

ITEM TIME U 5 =2,
ITEM VELOCITY F= 2.356;
ITEM RANGE 8 1@ = ~25;

Assuming these items still contain their preset values before the
function calls, the sign functions produce the indicated values:

Function Call Function Value ;
ABS (RAN. &) 25
ABS (TIME) 2
ABS (RANGE/TIME) 12 or 13, depending on implementation
SGN (VELOCITY) +1
. SGN(RANGE) -1
* SGN(TIME/RANGE) # or -1, depending on implementation

12.7 BSIZE FUNCTIONS

The size functions return the logical size of the argument given.
Three size functions are defined. BITSIZE returns the size in
bits, BYTESIZE returns the size in bytes, arl WORDSIZE returns
the size in words.

- 143 - 12: Bujlt=-in Functions

PR SN

e N

R U ORI -S

i
Bl
|
i
1
1
|
!
)
i
f
i
i
|

———

A — b -

12.7.1 PFunction TForm

The forms of the size functions are:
BITSIZE (size-argument)
BYTESIZE (size-argument)
WORDSIZE (size-argument)

The values returned by the BYTESIZE and WORDSIZE functions are
defined in terms of BITSIZE, as follows:

Function Value Condition

BYTESIZE BITSIZE/BITSINBYTE BITSIZE MOD BITSINBYTE = @
BITSIZE/BITSINBYTE+l BITSIZE MOD BITSINBYTE <> 0

WORDSIZE BITSIZE/BITSINWORD BITSIZE MOD BITSINWORD = 0

BITSIZE/BITSINWORD+1l BITSIZE MOD BITSINWORD <> 0

R

EY
i
-

The value returned by the BITSIZE function is defined for each

of the data types to which the function can be applied in the
following sections.

[N
p

12: Built-in Func:ions - 144 -

- T e T D

e m Rt 2

e . ot T it (B e e e

I

n. s

12.7.2 Numeric Data Types

The bitsize of integer and fixed type. in related to the size
given in the declaration. The bitsize of a floating item is the
number of bits actually occupied by the item. The bitsizes for
numeric data types are defined as follows:

Duta Type Bitsize

U integer-size integer-size
£ integer-size integer-size + 1

F ‘The number of bits actually occupied
by the floating item

A scale, fraction scale+fraction+l
For example, consider the following declarations:
ITEM TIME U 5
ITEM RANGE S 1@;
ITEM POSITION U;

ITEM AZ2IMUTH F 38;
ITEM VELOCITY F:

ITEM SUBTOTAL A 6,2;
The fcllowing calls return the following values:

Function Call Function Value

BITSIZE(RANGE) 11
BITSIZE(POSITION) BITSINWORD=1
BITSIZE(AZIMUTH) actual number of bits

BITSIZE(VELOCITY*S) actual number of bits
BITSIZE(SUBTOTAL) 9

Assuming that BITSINWORD is 16 and BITSINBYTE is 8, the following
function calls have the following values:

Function Call Function Value

BITSIZE(POSITION) 15
BYTESILE (POSITON) 2
WORDSIFE(POSITION) 1l
BITSIZE(AZIMUTH) actual number of bits

- 145 - 12: Built=in Functions

T

12,7.3 Bit and Character Types

The bitsize of a bit type is the bit-size associated with the

item in its declaration., The bitsize of a character type is the

char-size associated with the item times BITSINBYTE. That is:

Data Type Bitsize
B bit-size bit-size
C char-size char-gize * BITSINBYTE

Suppose you have the following declarations:

ITEM MASK B 10;
ITEM FLAG B;

ITEM ADDRESS C 26
ITEM CODE C;

Some examples of the result of the BITSIZE function for bit and
character types are:

Function Call Function Value
BITSIZE (MASK) 1p
BITSIZE(FLAG) 1
BITSIZE(MASK AND FLAG) 10
BITSIZE(ADDRESS) 26%8
BITSIZE(CODE) 1%g

12,7.4 Status Types

The bitsize of an item with status type is the atatus size
associated with the item in its declaration. The status size is
determined by the number of bits necessary to accomodate the
representation. The status~size can also be specified in the
typi—description. as will be soen in Chapter 19 on "Advanced
Topics".

12: Built=in Functions - 146 -

s e =

it o

T

[TR T R RS R JRSLE T S

F S 1ot

54

e g R el e BaEE

- EaE

s = s

e |

g, v S e o

Suppose you have the following declarations:

ITEM LETTER STATUS

(V(A),V(B) ;V(C) IV<D)OV(E)IV(F) oV(G) 'V(H))7
ITEM SWITCH STATUS

(V(ON),V(OFF))

The following calls produce the following values:

Function Call Function Value
BITSIZE(LETTER) 3
BITSIZE(SWITCH) 1

12.7.5 Pointer Types

The bitsize of an item with pointer type is BITSINPOINTER, the
implementation dependent parameter that defines the length of a
pointer.

12.7.6 Table Types

The bitsize of a table depends on its structure. Table structure
is dimcussed in Chapter 19, "Advanced Topics". Briefly, a table
that 1s specified to have tight structure is one in which as many
entries as possible are packed within a word, 1If the table ia
not tightly structured, the bitsize of a table or table entry is
the number of bits from the leftmost bit of the first word
occupied to the rightmost bit of the last word occupied.

For a tightly structured table, the bitsize of the table is the
number of bits from the leftmost bit of the first word to the
rightmost bit of the last entry. The bitsize of a table entry is
either the number cf bits specified in the declaration as the
size of the entry or, if no size ias specified, the number of bits
needed for each entry.

- 147 - 12: Built-in Functions

i VAL o O A

Suppose you have the following declarations:

TABLE ATTENDANCE (1:1#) T 6; :
ITEM COUNT U 5; |
TABLE CONDITION(2@) T: - S
BEGIN L
ITEM ALERT B;
ITEM CONTROL B: :
END :
TABLE SPECIFICATIONS(99); 4
BEGIN ;
ITEM LENGTH U 5; ;
ITEM WIDTH U 9;
ITEM HEIGHT U 5;
END

The table ATTENDANCE has tight structure with 6 bits per entry.
The table CONDITION has tight structure, but the number of bits
per entry is not given. The default entry-size is 2.

The following function calls have the following values: i

-

Function Call Function Value

s S

BITS1ZE(ALERT(I))

BITSI%E(CONDITION(I))
BITSIZE(ATTENDANCE(I))
BITSIZE(SPECIFICATIONS) A%1@MEBITSINWORD

[o 3 S B

aim\ﬂ
‘o)
12.7.7 Blocks
The bitsize of a block is the number of words in the block
times BITSINWORD.
Suppose you have the following block declaration:
BLOCK GROUP;
BEGIN
ITEM COUNT U;
ITEM VELOCITY P
TABLE TIMES(99);
ITEM SECONDS U;
END R
The block GROUP occupiee 172 words. Thus the value of :} 3
BITSIZE(GROUP) 1s 102*BITSINWORD, .
b

12: Built=-in Functions - 148 -

T N AN AR,) AT T

12.8 BOUNDS FUNCTIONS

The bounds functions obtain the bound of a specified dimension of
a given table. Two bounds functions are supplied, one to obtain
the lower bound and one for the upper bound.

12.8.1 Function Forms

The forms of the bounds'functiona are:
LBOUND (argument , dimensionenumber)
UBOUND (argument , dimension-number)
Argument is a table~name.
The LBOUND function returns the lower bound of dimension-number
of argument. The UBOUND' function returns the upper bound. The

dimensions of a table are numbered from lefit to right, starting
at zero.

Dimension-number is a compile-time-integer~formula. It must be
greater than or equal to zero and less than the actual number of
dimenasions for the specified table.

The type of the functlon value is either integer or status,
depending on the declaration of the given table.

“ 149 ~ 12: Built-in Punctions

12.8.2 Examples
Suppose you have the following declarations:

TABLE DATA (1:.@,2:26,3:38);

ITEM DATAPOINT F:
ITEM SEASON STATUS

(12 V(SPRING), V(SUMMER), V(FALL), V(WINTER):
TABLE WEATHER(B8,V(WINTER);

ITEM RAINFALL U;

The following calls return the indicated values:

Function Call Function Value
LEOUND (DATA, @) 1

UBOUND (DATA, 2) 1@
LBOUND(DATA, 1) 2

UBOUND (DATA, 2) 30

LBOUND (WEATHEK, 1) V(SPRING)
UBQUND (WEATHER, 1) V{WINTER)

] L

12.8.23 Asterisk Dimensions

If a bounds function is applied to & table that is a formal
parameter declared with an asterisk (*) dimension, the bounds
function returns ithe bounds of the table that is the actual
parameter, normalized to begin at zero.

The use of the bounds functions makes the following routine a
general routine for any two dimensional table with entry
attributes that matc¢h those of the formal parameter.

PROC CLEAR (3iTABNAME)

BEGIN

TABLE TABNAME (%,%),
ITEM TABENT U;

FOR I:10 BY 1 WHILE I <= UBOUND(TABNAME,?):
FOR J1@ BY 1 WHILE J <= UBOUND(TABNAME,1);

TABENT(I,J) = o,
END

The LBOUND function always returns the value ¢ for a table

declared with asterisk dimenwions. Thus, the value f, rather than
the LEOUND function is used in this example.

121 Built-in Functions - 150 -

g o B m

Lo S

- otk A o

e

4
;
|

You can clear the following two tables using CLEAR:

TABLE GRAPH (1:10,2:20);

ITEM POINT U
ITEM SEASON STATUS

(1¢ V(SPRING), V(SUMMER), V(WINTER), V(PFALL):
TABLE WEATHER(88,V(FALL)!?

ITEM RAINFALL U:

CLEAR(GRAPH)
CLEAR(WEATHER);

As a result of the execution of calls on CLEAR, all the items in

the table GRAPH and all the items in the table WEATHER are set to
Zero.

12,9 THE NWDSEN FUNCTION

The NWDSEN function returns the number of words of storage
allocated to each entry in the table or table type given ar an
argument.

12.9.1 Function Form

The form of the NWDSEN function is:
NWDSEN (srgument)

The argument can be either m tsble-name or a table-type-name.

The return type 1s a migned integer with defavlt size.

- 151 - 12: Built~in Punctions

rf.! 3
T a

Pt At

12,9.2 Examples

Suppose you have the following declarations:

TYPE PART TABLE;
BEGIN
ITEM PARTNUMBER U 5;
ITEM ONHAND U 1@;
ITEM ONORDER U 1¢:
END

TABLE BOLTS PART;

TABLE NUTS(18@) PART:

A table entry of type PART occuples three words. The following
calls on NWDSEN produce the following values:

Function Call Function VYalue

NWDSEN (PART) 3
NWDSEN (BOLTS } 3
NWDSEN (NUTS) 3

12.19 INVERSE FUNCTIONS

The inverse functions are used to find the lowest and highest
permissable values for their argument.

12.16.1 Function Form

The formas of the inverse functions are:
FIRST (argument)
LAST (argument)
The argument can be either a status formula or a status type-—

name.

The type of the result returned by an inverse function is the
sume as the type of the argument.

12: Built-in Punctions - 152 -~

L st
N L2

el
\4_ -

e e P

The FIRST function gives the value of the lowest valued status-
constant in the status~list asscciated with the argument and the
LAST function gives the value of the highest valued status-
constant in that list.

12.12.2 Examples
Suppose you have the followiny declarations:

L ITEM LETTER STATUS

(V(A) OV(B) lv(c) vv(D) OV(E) IV(F) :V(G) aV(H))?
ITEM SWITCH STATUS
(V(ON),V(OFF));
The following functions have the following results:
Tunction Call Function Value
PIRST (LETTER) V(a)
(LAST(LETTER) V(H)
» FIRST(SWITCH) V(ON)
:.'
(
e
)
'
1
Asl :
- 153 ~ 12: Built-in Punctions %

1A b T o e B ettt e

Chapter 13

CONVERSION

JOVIAL (J73) requires that if a value with one data type is
assigned to a data object with a different data type, the source
data type must be converted to the target data type. In some
cases, the compiler performs the conversion outomatically. In
other cases, an explicit conversion operator must be supplied.

The following sections discuss contexts for conversion, type
eguivalence, automatic conversion, and the conversion operators.
Then, each data type is considered separately and the data types
t?at aredcompatible with and convertible to that data type are
discussed,

13.1 CONTEXTS FOR CONVERSION

A context that requiree conversion is one in which a target and
gournca data oblect exist, such ag: an assigrnment statement or a
subroutine-~call. The type of the source data object, in such

cages, must be converted to the type of the target data obilect.

In an asslgnment statement, the target data object is given on
the left-hand-side of the agsignment operator (=) and the source
data object on the right., Closely related to assignment
statements are loop control clauses and prenats.

In a subroutine~call, only parametera that are passed by value or
value-result are subject to conversion. In these cases, the
formal parameter is the target parameter and the actual parameter
is the source parameter on entry to the subroutine and, for
value-result parameters, the actual parameter is the target and
the formal parameter is the source on exit from the subroutine.

~ 155 - 13: Conversion

e o e E

PN A g,

R A TN

W PG B i O

et

—rtee T

13.2 COMPATIBLE DATA TYPES

Data objects are compatible if their types are equivalent or if
the compiler automatically converts the source type to the target

type.

A data object is equivalent to another data object only if it
agrees in type and attributes. The one exception to this rule is
a table, in which the names of the items within the tables need
not agree for compatiblg tables. '

A data object is automatically convertible to another data type
if the compiler performs the conversion. ‘A neceasary but not
sufficient condition for automatic conversion is that the type
clagses agree. The cases in which automatic conversion occurs
are given for each data type later in this chapter.

13.3 COONVERTIBLE DATA TYPES

A data object is convertible to anoher data type if a conversion
operator can be added to make the type of the source equivalent
to the type of the target. Three kinds of conversion operator
are provided:

(* type-description ¥) "
type~indicator .
user~-type-name

The following sections consider each kind of conversion operator
in detail.

13.3.1 Type Descriptions

The first kind of conversion operator is a type-description
enclosed in the special conversion brackets '(*' and '%*)', The
type-description can give the type-class and attributes. The form
is:

(* type-description *) (formula)

The forms of the type-description were given in Chapter 6 in
connection with item-declarations.,

13: Conversion - 156 -

Voot b0 CXRFLEE UL i L rorvin PRI G e

For example, supposd you went to assign the floating item RANGE
to a 10-bit signed integer and you want the floating item to be
rounded before assignirent. You can do this by applying a
conversion operator ¢hat gives the full type-description enclosed
in conversion brackets, ac follows:

INTRANGE = (* 8,R 10 *) (RANGE);

If the value of RANGE is 12.526, the value assigned to INTRANGE
is 13.

’ 13.3.2 7Type~Indicators

Type-indicators are eingle letter keywords that are used in
type-descriptions:
Type-Indicator Type
i |8, Unsigned integer
(s Signed integer
F Floating
B Bit
c Cha.uuter
P Pointer
The type~-indicator for a fixed type, A, is not prec-at in this
list because the scale of a fixed type must be given. In all
other cases, the attributes of the type-description have
defaults.
The type-indicators can be used as conversion operators without
;» the special conversion brackets. The form is:
; type-indicator (formula)
[When a type-indicator is used, the attributes assur.d are the
; game as those assumed for omitted attributes in a declaration.
{
For example, suppose you want to assign a floating item RANGE to
a signed integer. You can do this by using a type-indicator to
convert the source data object RANGE, as fcllows:
FIELDRANGE = 5(RANGE);

(The floating item RANGE is converted to a signed integer with the i
default size BITSINWORD - 1. RANGE is truncated in & machine- !
dependent nanner before assignment.

N
- 157 - 13: Conversion
b
3
- — e P —« ———— -— R IR TR TN AR I S ,‘ﬁ‘ﬂ'f-ﬂﬁp*ﬁjﬁvi}:‘f.‘f~' e mww PR LSRR E W TR o R e N A SRR g

-

If FIELDRANGE is declared to be a migned integer of default size,
then RANGE is converted and assigned. 1I1f FIELDRANGE is declared
to be a signed ten-bit integer, then RANGE is converted first to
a signed integer of default size by the type-indicator and then
to a ten-bit integer by automatic conversion.

13.3.3 User Type-Names

A user type-name is one that is declared in a type-declaration.
A user type-name can be used as an abbreviation for a type-
description. Like a type-indicator, it can be used as a
conversion operator without the conversion brackets, as follows:

type-name (formula)

For example, if you have a type-name declared for a l@-bit
rounded signed integer, then you can use that type~name to get
the same result as the example in which a bracketed type-~
description was used.

TYPE SF S,R 10;
INTRANGE = SF {RANGE);

The type-name SF describes the type and attributes of an item

and, when it is applied aB a conversion operator, the compiler
converts RANGE to a ten-bit, rounded, signed integer.

13.4 CONVERSIONS

The following sections consider, for each data type, the types
that are compatible with that type and the types that can be
‘onverted to that type.

13.4.1 Conversion to an Integer Type

An integer type is one of the type clueses 5§ or U with an
assocliated size attribute. An integer type is compatible with
any other integer type. Numeric, bit, and pointer types can be.
converted to an integer type. o

13.4.1.1 Compatible Types

An integer type is equivalent to another integer type if both are
either 8 or U and if their size attributes are equal.

13: Conversion ~ 158 =-

e e s W

f

l 9 R AR A 18 e

An integer type is automatically converted to any other integer
type. For example, suppose you have the following declarations:

ITEM CARGO'Q2 U,R 2#:
ITEM BOX U,T 14;

You can write the following assignments:

CARGO'Q2 = BOX;
BOX = CARGO'Q2;

In the first case, BOX is automatically converted to a 27-bit
integer type. In the second case, CARGO'Q2 is automatically
converted to a 1@-bit integer type.

If the value of the 2¢-bit integer CARGO'Q2 requiree more than
ten bits and if the implemented precision of BOX is not
sufficient to hold the value, then some significant bits are
truncated. Suppose BITSINWORD is 16. The implemented precision
of BOX is 15 and the implemented precision of CARGO'Q2 is 31. If
the value of CARGE'Q2 requires more than 15 bits, truncation
occurs when it is assigned to BOX.

13.4.1.2 Convertible Types

Data objects of the following type can be explicity converted by
a user-specified conversion operator to an integer type.

integer
float
fixed
bit
pointer

Numeric Conversion -~ An integer, floating, or fixed type is
converted with the rounding or truncation that is either given or
assumed in the conversion operator. BSuppose you have the
following declarations: '

ITEM DISTANCE U 10;
ITEM MEASURE F=112.68;

- 159 - 13: Conversion

T A PRI T IR

__asact

B mi

e

Assuming MEASURE has its preset value, the following assignments
produce the following values of DISTANCE:

Assignment Value of DISTANCE
DISTANCEs=(%U 18*) (MEASURE); 112
DISTANCE=(*U,R 1#%) (MEASURE); 113

The use of a conversion operator results in the loss of most
significant digits only if the conversion is from one implemented
precision to another. Suppose, for example, DISTANCE is
declared to be a five bit integer. That is, we have the
following declarations: i

ITEM DISTANCE U 5;
ITEM MEASURE F=112,68;

Consider the following assigmment:
DISTANCE = {%U 5*) (MEASURE); P

The value of MEASURE (112.68) is vonverted to the implemented =
| precision for a five bit integer. Suppuse BITSINWORD is 16. The
implemented precision then ie 15, which is sufficient to hold the
value 112, and the value 112 is assigned to DISTANCE.

Bit Conversion --Conversion of a bit string is legal only if the
Bize of the bit string is less than or equal to the bit-size of
the integer type. If the size of the bhit string is less than the .
bit-gize of the integer, the string is padded on the left with i X :
zeroces. For example, suppose you have the following

declarations:

L ITEM MASK B 3

MASK can be explicitly converted to a five-bit integer as
followe:

(%U 5%) (MASK)
The size of the bit string is 3, so it is padded on the left with

two zeros. However, MASK cannot be directly converted to a one
or two-bit integer.

13: Conversion - 160 -

Pointer Conversion -- Converting a pointer to an integer type is
equivalent to flrst converting the pointer to type B
BITSINPOINTER and then converting the bit string to integer. For
example, suppose BITSINPOINTER is 24. The following conversion
is legal:

(*U 24%)(PTR)

However, conversion to an integer type whose size is less than
BITSINPOINTER is illegal.

13.4.2 Conversion to a Floating Type

A floating type has the type-class F and a precision attribute,
A floating type is compatible with any other floating type of
egqual or greater precision. Integer, floating, fixed, or bit
types can be converted to a floating type.

13.4.2.1 Compatible Types

A float!mg type is equivalent to another floating type if the
precisicr attributes of both are equal.

A floating type is automatically converted to a floating type of
greater precision. For example, suppose you have the following
items:

ITEM POWER F 3@;
ITEM FACTOR F 15;

You can assign FACTOR as defined above to POWER but not POWER to
FACTOR. That is:

POWER = FACTOR; permitted
FACTOR = POWER; not permitted
~ 161 ~ 13: Conversion

TP 1N DA g g s e, Y | e
RGN e i L e

O R L e Lty

e o ¢ walle w e e

S

A real-literal is automatically converted to a floating-literal

when it is used as a preset, assigmment-value, operand, actual
parameter, or initial-value for a loop in connection with a

floating data object. The real-literal takes the type of the

target value, even if that entaila the loss of precision. For P
example: R

CONSTANT ITEM PI F = 3.14159265235;
Since no precision is given in this declaration, the precision is
given by the implementation parameter FLOATPRECISION. If

necessary, the value "3.1415926535" is truncated to fit in the
number of bite indicated by FLOATPRECISION.

13.4.2.2 Convertible Types

Data objects of the following types can be converted to a
floating type by a user-gpecified-conversion operator:

integer oy
fixed e
float

bit

A uger~-specified~-conversion operator can also be applied to
real-literals to convert them to floating types.

Numeric Conversion -~ An integer, fixed, or floating type is
converted to a floating type with the rounding or truncation x"‘
specified in the conversion operator. Rounding and truncation are
performed with respect to the implemented precision of the type
specified by the conversion.

Bit Conversion -~ Conversion of a bit string to a floating type
is legal only if the size of the bitstring equals the actual
number of bits used to represent the floating type. The actual
number of bits can be found by using the BITSIZE built-in
function, which is described in Chapter 12.

A o T v T

13.4.3 Conversion to a Fixed Type

A fixed type has a type-class A and scale and fractior o
attributes. { X

13: Conversicn - 162 -

13.4.3.1 Compatible Types

A fixed type is equivalent to another fixed type data object if
the scale and fraction attributes of both are equal.

A fixed type is automatically converted to another fixed type
with greater scale and fraction attributes. For example,
suppose you have the following items:

ITEM HEIGHT A 11,4,
ITEM LATITUDE A 1@, 2:
ITEM LONGITUDE A 1@,3;

You can assign either LATITUDE or LONGITUDE to HEIGHT, but you
cannot assign LONGITUDE to LATITUDE without applying a conversion
operator. ‘That is:

HEIGHT = LATITUDE;

LATITUDE is mutomatically converted to a fixed type with scale 1l
and fraction 4, The assignment of LONGITUDE to LATITUDE regquires
a conversion operator, as follows:

LATITUDE = (%A 1¢,2%)LONGITUDE;

A real-literal is automatically converted to a fixed-literal when
it is used as a preset, assignment-value, operand, actual
parameter, or initial-value for a loop in connection with a fixed
data object.

13.4.3.2 Convertiblie Types

A user-specified-conversion-ocperator for fixed conversion can be
applied to data object of type integer, fixed, float, and bit.
It can also be applied to real-literals.

Numeric Conversion ~- An integer, fixed, or floating type is
converted to a fixed tyve with the rounding or truncation
specified in the conversion operator. As in the case for floating
types, rounding or truncation is performed with respect to the
implemented precision of the type spacified by the conversion.

- 163 - 13: Convermion

£

Bit Conversion -~ Conversion of a bit string to a fixed type is

legal only if the size of the bitstring equale the BITSIZE of the
fixed type.

13.4.4 Conversion to a Bit Type

A bit type has a type class B and a size attribute.

13.4.4.,1 Compatible Types

P Ty v

A dats object of type bit is equivalent to another data object of _
type bit 1f the size attributes of both are equal. !

A bit type is automatically converted to a bit type with a
different size attribute by truncating or adding zeros on the
left. For example, suppose yocu have the following items:

ITEM MASK B 3 = 1B'@10";
ITEM FLAG B = 1B'1'y

-
-
s - e m e

You can aasign MASK to PLAG or FLAG to MASK. 1In the first case,
the value of MASK is truncated on the left to produce the value
1B'0', which is then assigned to FLAC.

remdaa

T .

13.4.4.2 Convertible Types i)

A bit conversion can be given for any data object except a block.
Two types of bit conversion are defined, a user-specified-bit-
conversion and a REP conversion.

13.4.4.3 User-Specified Bit Conversion

P S

A user-specified-bit~conversion to a type B NN takes the
rightmost NN bits of the data object's representation. 1If the
data object being converted contains less than NN bits, the
object is padded on the left with zeros.

- {
!

13: Conversion - 164 -

AL e

If the object being converted is a table or table entry, all
filler bits are included in the string. However, if the data
object being converted is a character string, filler bite between

?ytol and unused byteu following the end of the string are not
ncluded.

1)

Suppose you have the following declaration:

TABLE COEFFICIENTS (3) T 8 w 4(63);
ITEM CC U 67

This declaration spacifies a tight table. A tight table is one
in which as many entries as possible are packed within a word.
Tight tables are described in Chapter 19 on "Advanced Topics".
The table COEFFICIENTS consists of 6-bit unsigned integers, each
of which has the decimal value 63, packed in an 8-bit field. The
bit pattern of each item equalm:

63(decimal) = 77(octal) = 1B'111111'(binary)

Assuming BITSINWORD is 16, the table COEFFICIENTS has the
following pattern:

xxllllllxxllllll word @
xxllllllxxllllll word 1

e .

The character "x" indicates a filler bit. That is, a bit that is
not set or used.

Now 1f you apply the following user-specified~conversions, you
get the following results:

Conversion Operator Value
(*B 6*) 1B'1l11111"
(vB 8%) 1B'xx111111' where x iz a filler bit
("B 16%") 1B'xx)11111%x111111"
{%B 20%) 1B'1111xx1111211x%xx1213111"
(*B 36%) 1B'002Pxx1113111%xx1111211%x%x111111xx111111"
- 165 = 13: Conversion

e b T+ 5 et s i e =

e — i I

b i i e o e

=

13.4.4.4 REP Conversions

A REP-conversion obtains the repreasentation of a data cbject. It
converte a data object to a bit string whose size is the actual
number of bits occupied by the object.
The form of the REP conversion is:

REP
Suppose you have the following declaration:

ITEM COUNT U 3 = 7;
If BITSINWORD is 16, the result of the RFP conversion is:

REP(COUNT) --> 1B'O¢@o¢aooanmrolll’

A REP=-conversion can be appplied to named variablee only.
However, it cannot be applied to tables with * dimensions or to
entries in parallel tables.

A REP«conversion can be used on the left-hand-side of an
assignment statement.

13.4.5 Conversgion to a Character Type

A character type has the type clags C and a size-attribute that
indicates the number of bytes occupled by the character string.

13.4.5.1 Compatible Types

A character data object is egquivalent to another character data
ohject 1if the size attributes of both are equal.

- 166 -

13: Conversion

B i

V)

o e T e = TaE dem e 7

o e - e AT et

e s

A character string is automatically converted to a character
string by truncating or adding blanks on the right. For
example, guppose you have the following declarations:

(ITEM BOY € 6 = "NORMAN';
ITEM GIRL C 5 = "TRACY";

If you agsign the item BOY to the item GIRL, the value of BOY is
trunzated on the right and the value "NORMA" is assigned to GIRL.

—Or

13.4,5.2 Convertible Types

A user~gpecified-character-conversion can be applied to data
objects of bit or character type.

Conversion of a bit string to a character type is legal only if
] the cize of the bitstring equals the actual number of bits used
‘ to represent the character type, excluding filler bites between
| : (bytes, which can be found by using the BITSIZE built-in function
: described in Chapter 12. The number of bits in the character
string, including filler bits, can be found by first using a
REP-conversion.

Consider the following declaration:

TABLE NAMES;
ITEM FIRSTNAME C 8

If BITSINWORD is 36 and BITSINBYTE is B, the following functions

= yield the given results:

b
Call Result
BITSIZE (NAMES) 72
BITSIZE(FIRSTNAME) 64
BITSIZE(REP(NAMES)) 72

BITSIZE(REP(FIRSTNAME)) 72 [

A character string is converted to type C NN by taking the
leftmost NN characters. 1If the data object to be converted

: ' contains fewer than NN characters, the value is padded on the
. (right with blanks.

- 167 = 1331 Conversion

AL Lt P sl a2 s i i

13.4.6 Conversion to a STATUS Type

A ptatus type has type class STATUS and an attribute consisting
of a list of status~conastants. It can also have a size and
specified representations for its status-constants, as described
in Chapter 19 on "Advanced Topics'.

13.4.6.1 Compatible Tvypes

A data object of type statue is equivalent to another dats object
of type status if both status lists contain the game status
values in thée same order. In addition, the status size and the
representation of the status-constants must almo agree.

A status constant thet belongs to more than one status list is
automatically interpruted unambiguously in the following
contexts:

e When it is the source value of an assignment statement, it
takes the type of the target variable.

e Vhen it is an actual parameter, it takes the type of the
corresponding formal parameter.

v When it is in a table subscript or used in a preset to
specify an index, it takes the type of the corresponding
dimension in that table's declaration.

@ VWhen it is a loop initial-value, it takes the type of the
loop-control variable.

o When it ie in an item-preset or table-~preset, it takes
the type of the item or table item being initlalized.

L) When it is an operand of a relational operator, it takes
the type of the other operand.

@ VWhen it ie in a case-index-group, it takes the type of the
case~-gelector.

) When it is a lower-bound or upper-bound, it takes the type
of the other bound.

13: Conversion - 168 -

i ‘;
“

¢t

s

= =T <

*v
v b

oL

For example, suppose you have the following declarations:

ITEM COLOR STATUS (V(RED),V{(ORANGE),V(YELLOW),V(GREEN),
V(BLUE),V{(VIOLET))}
ITEM CONDITION STATUS ((V(RED),V(YELLOW),V(GREEN)):

The status constants V(RED), V(YELLOW), and V(GREEN) all appear
on both the list for COLOR and the list for CONDITION. However,
in any of the contexts given above, any ambjiguity is
auiomatically rescolved by the compiler. For example, if you
write:

CONDITION = V(RED)
The compiler assumes that the type of V(RED) is the same as the
type of CONDITION.

The compiler also performs automatic conversion between status
types that are the same except for the size attribute.

13.4.6.2 Convertible Types

A user-specified status-conversion can be applied to a data
object of bit or etatus type.

Conversion of a blt string to a status type is legal only if the
size of the bitetring equale the actual number of bits used to
represent the status type and the range of values of the bit
string is within the range of values for the status type. The
actual number of bite can be found by using the BITSIZE buiit-in
function, which is described in Chapter 12,

For example, suppose you have the following declaratiovnm:

TYPE COLOR STATUS (V(RED),V(ORANGE),V(YELLOW),V(GREEN),
V(BLUE) ,V(VIOLET)):

ITEM BITS B 3 = 1B'@Ql';

ITEM BIXBITS B 6 = 1B'0@200)"';

You can convert BITS to the status type COLOR because COLOR
reguires three bits for its representation. Thusg, the size of
BITS and its value are both valid for conversion purposes. You
can convert SIXBITE to the atatus type COLOR if you provide a
conversion operator, as follows:

COLOR((*B 3*) (SIXBITS))

- 169 - 13: Conversion

e Dzt e bty S 1B e 00 i B £ e i R ISR s o R L

W e et L TP

3

A ptatus-conversion for a status type is necessary only when the
status conatant is given in more than one list and is not used in
one of the contexts given above.

For example, suppose you give the status-constant V(GREEN) as an
upper-bound in a table declaration. If no lower-%bound is given
or if the lower-bound is also ambiguous, you murt use a
conversion operator to indicate the type of the status-constant.
You can write it as follows:

TABLE DATA((*COLOR") (GREEN));
ITEM POINT F;

13.4.7 Conversion to a Pointer Type

A pointer type has type class P and an attribute that asspclates
a type-name with the pointer.

13.4.7.1 Compatible Types

A pointer data object is eguivalent to another pointer data
object only if both data objects are untyped or if both are typed
with the same type-name attribute. Type~name attributes are
considered the same if the names are identical and they are
declared in the same type declaration.

rr

A typed pointer is automatically converted to an untyped pointer.
For example, suppose you have the following declarations:

ITEM Pl P;

ITEM P2 P SUMMARY:

TYPE SUMMARY TABLE:
ITEM COUNT U:

You can assign the typed pointer P2 to the pointer Pl. The
compiler automatically converts P2 to an untyped pointer. You
cannot, however, assign Pl to P2 without firet applying an
explicit convereion to Pl.

L d.]

13.4.7.2 Convertible Types 3

-

A user-specified-pointer-conversion can be applied to a bit,
integer or pointer data object.

13: Conversion - 179 -

P T marye Peor AN s
iy |

U—

e

P s

P 1Y

Conversion of a bit string to a pointer type is legal only if the
size cf the bitstring equals the actual number of bits used to
represent the pointer type. The actwal number of bits can be
found by using the BITSIZE built-in function, which is described
in Chapter 13.

e

Converting an integer to a pointer is equivalent to first
converting the integer to type B BITSINWORD and then converting
the bit string to a pointer.

A pointer can be converted to a pointer of another type by the
addition of a user-specified-conversion-operator.

13.4.8 Conversior to a Table Type

A table type has type clas.: TABLE and the following attributes:

structure~specifier

number of dimensions

number of elements in each dimension
number of items in each entry

the tvpe and order of each item

the paxking of items

13.4.8.1 Compatible Types

Two tables have equivalent types if:
® Their s*ructure specifiers are the same,
) They have the same number of dimensions,
® They have the same number of e¢lementa in each dimension,
e They have the same number of items in each entry,

e The typea (including attributes) and the textual order
of the items are equivalent,

[The explicit or implied packing-spec on each of the items
is the same,

¢ And, the IORDER directive is either present or absent in
both tables.

- 171 - 13: Conversion

.*zgﬂ e e

S P e N

m—

The names of the items, as well as the types and bounds of the
dimension, need not be the same for the tables to be equivalent.

A table entry is considered to have no dimensions.

A table whose entry contains an item-declaration is not

considered equivalent to a table whose entry is declared using an
unnamed item-description.

The compiler does not perform any automatic conversion for the
table type.

13.4.8.2 Convertible Types

A user-gpecified table conversion can e applied to a data object
of type bit or table.

Conversion of a bit string to a table type is legal only if the
size of the bitstring equals the actual number of bits used to
represent the table type. The actual number of bits can be found

by using the BITSIZE built-in function, which is described in
Chapter 12.

A table conversion can be applied to a table object of that type
merely to assert its type. A table object cannot be converted to

a table object of a different type without first converting it to
a bit string.

13: Conversion - 172 -

-

-~

:*ﬂf

Chapter 14
STATEMENTS

A statement specifies an action that is taken when a program is
executed.

14.1 STATEMENT STRUCTURE

A statement is a simple-gtatement or a compound-statement. A
statement can be preceded by labele.

The following paragraphs describe simple-~statements, compound-
statements, and labels.

14.1.]1 Simple~Statements

Simple-statements perform computations, control program flow, and
call procedures., A simple-statement is one of the following:

Assignment-Statement
If-Statement
Case-Statement
Loop-Statement
Exit-Statement
Goto-Gtatement
Procedure-Call-Statement
Return-Statement
Abort-Statement
Stop-Statement
Null-Statement

Each simple-statement ia considered in its own section, later in
this chapter.

- 173 - 14: Statements

e

14,1.2 Compound-Statements

A compound-statement groups a sequence of statements together.
The grouped sequence of statements can then be used where &

pingle statement is required. The form of a compound-statement
is:

BEGIN
statement

LY

END

In this definition, the character pequence "..." below

"statement" means that a sequence of any number of statements can
appear between BEGIN and END.

Suppose you want to perform several computations if a particular
condition is satisfied. You can write:

IF LIGHT = V(RED):
BEGIN
COUNT = COUNT + 1;
FACTOR w« 2.3 % PREVIOUS;
PAYOFF = ANALYSIS(FACTOR):
END

The entire example just given is an if-statement, and the last
five lines are a compound-statement. The execution of the if-
statement begins with the evaluation of the condition LIGHT =
V(RED). 1If the condition is true, the three gtatements in the
compound-statement are executed: otherwise they are skipped. If
the statements were not grouped in a compourid-statement, only the
assignment to COUNT would be executed conditionally.

14.1.3 Labels
A label is a name followed by a colon, as follows:

name 3

Any number of labele can be placed immediately before a simple-
statement. The form is:

[label ...] sgimple-statement

The square brackets indicate that the labels are optional.

14: Statements - 174 -~

— o

L

Labels can also be placed immediately before the BEGIN and/or the
END of a compound-statement. The form is:

[label ...] BEGIN
statement

[label ...] END

A statement is labelled so that it can be the destination of a
control statement. Statement labels are also useful for marking
gsections of code as reference points for documentation or for
run-time debugging purposes.

An example of the use of labels is:

BEGIN
IF COUNT < 20;
GOTO Ll:

(other statementes appear here)

Ll: 1IF SPEED » SMAX:;
GOTO L2;

(other statemente appear here)
L2: END

In this example, the second if-statement ls labelled with the
statement-name L1, and the END is)abelled with L2, If COUNT is
less than 20, then some statements are skipped. If SPEED is
greater than SMAX, then the remaining statements in the
compound-statement are skipped.

The example of labels just given is valid, but it is not a
recommendad programming style. JOVIAL (J73) provides better ways
- if-gtatements, case-ptatements, and loop-statements -- for
directing flow of control.

- 175 - 14: Statements

e et e b D o 5 % e "

!

14.1.4 Null-Statements

A null-statement fulfills the requirement for a statement but
does not perform any action. The null-statement has one of the
following forms: i }

BEGIN [label ...] END

An example of the use of the null-statement is given in the
section on "The Dangling Else" later in this chapter.

14.2 ASSIGNMENT STATEMENTS

An assignment statement evalusates a formula and assigns the
result of the evaluation to one or more varisbles.

An assignment-statement is simple or multiple. A simple L
assighment-statement sets a given variable to the value of a

given formula. A multiple assignment-statement sets storage for

several variables.

14.2.1 Simple Assignment-Statements

‘The form of & simple assignment-statement is:

variable = formula ;

The formula is evaluated, then the designated veriable is
located, and finally the value of the formula is placed in that |
variable.

The data type of the formula on the right of an assignment must
be compatible with the data type of the variable given on the
left. ‘The data type of the variable is established by the
declaration of the variable. The data type of the formula is
determined by the data types of the operands, as described in
Chapter 11 on "Formulase”.

14; Statements - 176 -~

e ittt s

L s ettt

w

For example, you can write:
FORCE = MASS * ACCELERATION:

This statement computes the product of MASS times ACCELERATION
and assigns that value to the variable FORCE. The data type of
the formula is determined by the data types of MASS and
ACCELERATION. 1If that data type is compatible with the data type
declared for FORCE, the assignment is valid.

14.2,2 Multiple Assignment-Statements

The form of a multiple assignment-statement is:
variable ,... = formula ;

The formula is evaluated first., Then the variables are
processed, from left to right. For each variable, the designated
variable is located and the value of the formula is placed in
that variable.

For example, auppose you want to set three variables to zero.
You can write:

TIME, DATE, STATUS = n;

The type clases of all the variables on the left side of the
assignment must be the same. The type of the formula must be
compatible with the type of each of the variables given.
For example, suppose you have the following declarations:

ITEM HEIGHT U 5;

ITEM LENGTH U 10;

ITEM SIZE U 15;
The following assignment is valid:

HEIGHT, LENGTH = SI2E:

The type class of HEIGHT and LENGTH is the same (U). The type of

the formula is U 15, which is compatible with the type of HEIQHT
(U 5) and with the type of LENGTH (U 14).

- 177 - 14: Statements

et T PR W a5 41,21 ¥

LI et s

TG

Ll % AT R T

[EREDYSN S——

i

e St B P s

i
3

The order in which assignments are performed is sometimes
significant. Suppose, for example, you write the following
assignment statement

INDEX, PARTS(INDEX) = 5;

The leftmost variable INDEX is processed first and assigned the
value 5. The next variable PARTS(INDEX) is processed next. Since
the value of INDEX has already been changed to 5, PARTS(5) is
assigned the value 5.

However, if you give the variables in a different order, the
result of the assignment could be different. Suppose the value
of INDEX is 1 and you write:

PARTS (INDEX), INDEX = 5;
This statement assigns the value 5 first to PARTS(INDEX). Since

INDEX is 1, PARTS(1) receives the value 5. Then the statement
assigne the value 5 to INDEX.

14.3 ‘'IF-STATEMENTS

An if-statement controls the flow of a program. The simplest
form of if-statement executes & statement when a gliven condition
is true. The form of this if-statement is:

IF test ;
true-alternative

Test is a Boolean formula. If the value of test is TRUE, the
true-alternative is executed; otherwise, the true-alternative is
skipped.

For example, suppose you want to call an error routine if the
value of a counter exceeds a specified threshold. You can write
the following if-statement:

IF COUNT > THRESHOLD:
ERROR(11);

If the value of COUNT ie greater than the value of THRESHOLD, the
value of test is TRUE and the true-alternative, which invokes the
procedure ERROR, 18 executed. If COUNT is less than or equal to
THRFSHOLD, the value »f test is FALSE and control passea to the
next statement.

14: Statements - 178 -

T
f
i
.
t
i
i
i
ol

x

[T

o

. Tk etas i s g A st o I W TS
—————~- N -

A second form of the if-statement executes either of two given
statements, depending on the value of the test. The form is:

IF test ;
true-alternative

ELSE
false-alternative

If the value of test is TRUE, then the true-alternative is
executed; otherwise, the false-alternative is executed.

The feollowing statement is an example of the second form of if=-
statement:

IF INDIC = V(RED);
COUNT1=COUNTL+1;

ELSE
COUNT2=COUNT2+1;

This statement increments COUNT1 if INDIC = V(RED) and COUNT2
otherwise.

14.3.1 Compound Alternatives

True-alternative and false-alternative are each a single

statement. A compound-statement can be used to include more than

one statement in a true-alternative or false-alternative.

- 179 = 14: Statements

B ———— = -

o el

ey

An example of a compound-statement in an if-statement appears
earlier in this chapter, under "Compound-Statements". Another
example is:

IF INDIC = V{RED);
COUNT1 = COUNT1 + 1
ELSE
BEGIN
COUNT2 = COUNTZ2 + 1:
MASK = FLAGS AND MONITOR:
END

In this example, true-slternative is a simple-rtatement, but
false-alternative is a compound-statement that groups two
simple-statements together. When the value of test is FALSE, the
statement not only increments COUNT2 but also sets the variable
MASK.

14.3.2 Nested I1f~-Statements

If-gtatements can be nested, one inside another, to perform
complex tests. For example, suppose you want to call one of four
procedures based on the value of the status variable COND and the
counter COUNT, as follows:

IF COND = V{(RED);
IF COUNT < TX:
CASEL (TMAX, COUNT) ;
ELSE
CASE2 (TMAX, COUNT) ;
ELSE
IF COUNT < TX:
. CASE3 (JMAX, THRESHOLD) ;
ELSE
CASE4 (JMAX, THREXHOLD)

If COND ie V(RED) and COUNT is less than TX, the procedure CASEl
is called. 1If COND is V(RED) and COUNT is not less than TX, the
procedure CASE2 is called., 1If COND is no:t V(RED) and COUNT is
less than TX, the procedure CASE3 im called. If COND im not
V{(RED) and COUNT is not less than TX, the procedure CASE4 is
called.

14: Statements - 180 -

RN

FEN S

s mie e

P'y

The behavior of this if-statement is diagrammed in the following

table:

COND = V(RED)

COND <> V{RED)

COUNT < TX COUNT »= TX

COUNT ¢« TX

COUNT >= TX

CASElL CASE2

—— e et e it et e et el

CASE3

|
|
|
I
|
!

CASE4

14,3.3 The Dangling ELSE

In a nested if-gtatement,

JOVIAL,
statements of which it ¢ould be a part.
dangling ELSE, consider the following:

IF COND = V(RED);

IF FF = V(SET);
ACTION = 1;
ELSE
ACTION = 23

an ELSE clause that could be part of
several if-statements is sometimes called a “"dangling ELSE".

such an ELSE clause 1s associated with the closest of the
As an example of a

In

The ELSE clause is associuted with the cloger if-statement, which

containg the test FF = V(SET).

statement is shown in the following table:

The action taken by this if-

1 | 1

% COND = V(RED) } COND <> V(RED)

i 1 |

| IF = V(SET) | FFP <> V(SET) |

; } ‘ (No action) !
]

} ACTION w) } ACTION = 2 :

- 181 =~ 14: Statements

bbby L Len

LT e A D il r s

f Am

i e wd e

U VR U N —

e T T

If you want to associate the dangling ELSE with the test CCND =

V(RED) rather than with the test FF = V(SET), you can use a
‘compound-gtatement as follows:

IF COND = V(RED):
BEGIN
IF FF = V(SET);
ACTION = 1;
END
ELSE
ACTION = 2;

Alternatively, you can use a null-satatement as the false-

alternative for the test FF = V(8SET),

The action taken by these statements is equivalent.

IF COND = V(RED):
IF FF = V(SET);
ACTION = 1;
E L]
ELoE
ACTION = 27

in the following table:

| I ‘ T
{ COND = V(RED) ‘ COND <> V(RED) }
| 1 l I
| FF = V(SET) | FF <> .V(SET) | |
| ! | ACTION = 2 Y
| l I | s
} ACTION = 1 ; (No action) ; {
Note that the indentation of the ELSE clause in the first example
of this section is differenet from the indentation in th second
and third examples. The purpose of the indentation 1s to make
the intent of the code clearer tn the reader. 1Indentation has no
effect on the syntax analysis of a JOVIAL (J73) program.
14.3.4 Compile-Time-Conutant Tests
If test in an if-statement is a complle-time-formula, the
coempiler evaluates test and reduces the if-statement to a single
statement. The compiler generates object code for the selected 1E
alternative, but not for the test or the other alternative.

14;

‘as follows:

It ie shown

Statements - 182 -

e

e fane s

So sk o

&4

T i R e R ST

i fam R

F-3

= [ﬁ;:.;g:_, -

FRIPRRENLIF .Y GO £ ¢

Tw i

L

~rasies

e

e

g A

.

BT it o

s
fisie: -

!

5

F Y

TR .

The compiler examines the unselected alternative at compile-time.
Thus, it must be syntactically correct and directives in the
unselected alternative are processed. However, since no object
code is generated for the unselected alternative, labels in that
alternative are not defined when the program is executed and
cannot be used either in goto-statements or 2s actual parameters
outside the alternative.

The same label cannot be used in both the alternatives even
though only one alternative is selected. All labels in a scope ‘
must be unique.

14.4 CASE-STATEMENTS

.A. case-statement provides four the execution of one or more of a

number of statemente based on the value of the case~pelector.
The case-statement has the following form:

CASE case-gelector
BECIN
[default-option]°
case-option N f
END
The square brackets indicato that the default-option can be
omitted. The sequence "..." indicates that one or more case-
options can be given,
Case-option has the form:
(case-index ,...) : statement
The valve of case-selector determines the option that is
executed. After the execution of that option, control passes to
the statement after the case-ptatement (that is, following the

END) unless a FALLTHRU clause is given. The FALLTHRU clause is
explained a little later in this section.

Case-selector can be an integer, bit, character, or status
formula. The case~indexes demignate the statement to be performed
for a particular value of the case-selector.

- 183 -~ 14y Statements

If the value of the case-selector does not lie in the specified

ranges, then the statement associated with the DEFAULT selection,
if present, is selected. The default-option has the form:

{ DEFAULT) : statement

L

For example, suppose you want to perform a calculation based on
whether a number in the range 1 through 2¢ ig prime or non-prime.
You can write the following case-statement:

CASE FACTOR;
BEGIN
DEFAULT: ERROR(FACTOR);
(1,3)5)7'11013'17'19)3 PRIME;
(2,4,6,8,9,10,12,14,15,16,18,207): NONPRIME;
END

If the value of FACTOR is a prime number in the range from 1l

through 28, the procedure PRIME is called. If the value of "
FACTOR is in that range but is not a prime, NONPRIME is called.
If the value of FACTOR is outside the specified range, an error .
procedure 1s called.

If default-option is given, it must be the first option in the
cape-gtatement. If it is not given, then it is an error if a
run-time value of the cose~Belector has a value for which there
18 no case-option. In this cir¢umstance, the effect of the
case-statement 1is undefined.

The type of case-index must be compatible with the type of case-
selector. The case-indexes must be distinct, so that a value of
the case-selector unambigously Belects a case-index and an
aseociated case-option.

Each case-index must be known at compile time. It can be any
integer, bit, character, or statug compile-time-formula.

“h

14: Statements - 184 -

- S W e R e T LI Sy

: ' ek s, Ry
st Y . L . N T - M L TP TYR

. et

14.4.1 Bound Pairs

A case index can be a bound-pair. The form of a bound-pair is:
first-case : last-case

For example, consider the following case-statement:

CASE ACTIONSELECT:

BEGIN
(DEFAULT) : ACTION{));
(1:5,101,103,125:107) ACTION(2);
(6:10): ACTION(3);
(11:120); ACTION(4);
END

If the value of the case-selector ACTIONSELECT is between 1 and
5, equal to 1%l or 183, or between 185 and 1#7, then the
procedure ACTION is called with the parameter 2. If the value of
ACTIONSELECT is between 6 and 1#, then ACTION is called with
parameter 3, and so on. If the value is less than 1 or greater
than 1@¢, then the statement associated with the default option
is executed and, in this case, ACTION is called with ‘the
parameter 1.

14,4.2 The FALLTHRU Clause

An option in a case-statement can also have a PALLTHRU clause.
The FALLTHRU clause follcws the statement in an option, as
follows:

CASE case-selector

BEGINM
[(DEFAULT) : statement I FALLTHRU 1]
(case-index, ...) :+ statement [FALLTHRU]

END

The FALLTHRU clause can be present on any or all of the options
in a cese-statement.

- 18% - 14: Statementsn

B e M AT R 4 . o it i i ot

LS e . e e S ’
Lo ', - ——r S o h

If, when a case-statement is executed, a FALLTHRU clause is
present on the selected option, then after the exscution of the
statement in that option, the statement in the next option is
executed. Then, if that option has a FALLTHRU clause, the
statement in the next option is executed after the execution of
the statement in the current option is complete. This "falling
through" continues until the case-statement is terminated either

by an option that does not have a FALLTHRU clause or by the end
of the case statement.

Suppose you want to use the value of PROFIT to determine which of

a set of procedures is executed. You can write the following
CASE statement:

CASE PROFIT;
BFEGIN
{ DEFAULT): ERROR(21):
(19909:9999): DIVIDEND(PROFIT); FALLTHRU
(50@:999): BALANCE (PROFIT):

(1L00*:499) REEVALUATE;
(B:99): CLOSEOUT;
END

If the value of the case-selector PROFIT is between 140 and
9999, the opticn for that case-index is executed. The procedure
DIVIDEND is called, and then, since that option has a FALLTHRU
clause, the procedure-call BALANCE, which is the statement in
the next option, is executed. If the value of PROFIT is between
5e9 and 999, the procedure BALANCE is called. If PROFIT is
between 10 and 499, REEVALUTE is called. 1If PROFIT is between &
and 99, CLOSEOUT is called. Any other value of PROFIT causes the
default-option to be selected and the procedure ERROR to be
called.

14.4.3 Compile-Time-Constant Conditions

If the case-selector in a case~statement is a compile-time-
formula, as defined in Chapter J1, the compiler evaluates it and
reduces the case~statement to the appropriate gtatements. 1In
this case, the compiler generates object code for the selected
option and, if the selected option contains a FALLTHRU clause,
for all statements selected by the FALLTHRU sequence of the
case-gstatement.

14. Statements - 1B6 -

oty r R R e T

¢4

y

i et A

The compiler examines the unselected options at compile-time.
Thus, they must be syntactically correct., Directives in the
unselected options are processed. No object code, however, is
generated for the unselected options, and labels in thoee options
cannot be used either in goto-statements or as actual parameters
outside those options. The labels in an unselected option do not

exist at run time. Even so, all labels in a case-statement must
be unique.

14.5 LOOP-STATEMENTS

A loop-statement provides for the iterative execution of a
statement. A loop-statement is a while-loop or a for-loop.

14.5.1 While—LooEs

A while-loop specifies a condition which, if true, calls for the
execution of the statement within the loop. As long as that
condition is true, the statement is executed. If the condition
is false, control passes to the next statement. The form of a
while~loop 1is:

WHILE condition ; statement

Condition is a Boolean formula., The statement in a while-loop is
executed repeatedly as long as the value of the condition is
TRUE. Each repetition begins with an evaluation of the condition

and continues, if the value of condition is TRUE, with an
execution of the statement.

~ 187 - 14: Statements

R

i 0, st Mol Ve s

RpERe———Y . N A eemeserag s

For example, suppose you want to execute a case-statement as long

as the value supplied by each execution lies within a given
range. You can write the following while-loop:

WHILE READY;
CASE INDEX:

BEGIN

(DEFAULT) : READY = FALSE;

(1:10): INDEX = LEVEL1(INDEX):
(11:28): INDEX = LEVEL2(INDEX);:
(22:10m) ¢ INDEX = PEAK(INDEX);
(1991: 2000) INDEX = SUPER(INDEX):;
END

In this example, the case-options each call a function that
performs some computaticns and returns a new value for INDEX.
the value of INDEX is not within the specified ranges for case-
indexes, the default-option sets READY to FALSE. Until that
circumstance ariees, the case-statement ieg executed repeatedly.

14.5.2 For-Loops

The for-loop includes a mechanism for setting and changing a
variable, the loop-control. One form is:

FOR 1loop-control : initial-value ;

statement
The initial~-value is evalueated and assigned to loop-control and
then the statement is executed repeatedly. That is, the
execution is as follows:

l. Evaluate initial-value and assign ite value to
loop-contrel.

2. Execute the sptatement.
3. Return to Step 2.

In this case, some condition within the statement must transfer
outside the loop to terminate the for-loop.

1l4: Statements - 188 -

i)

-'a

T

R~

PSP

= A

i,

The for-loop can also include a WHILE phrase, as follows:
FOR loop-control : initial-value [WHILE condition] :
statement
If a WHILE phrase is given, the condition in the WHILE phrase
governs the number of times the for-loop ie executed. The
execution of the statement is as follows:

l. Evaluate initial-value and assign its value to
loop~control.

2. Evaluate the condition in the WHILE phrase.
If the value of the condition is TRUE,
continue to step 3. If the value of the
condition is FALSE, terminate the for-loop.

3. Execute the statement.

4. Return to step 2.

The for-loop can also include a clause that changes the value of
the loop-control in either of two ways, by incrementation (or
decrementation) or by repeated assignment.

14.5.2.1 1Incremented For-Loops

An incremented for-loop has the following form:

FOR loop-control
: initial-value BY increment [WHILE condition] ;

statement

The square brackets indicate that the WHILE phrase is optional.

A BY clause indicates that the value of increment is to be added
to loop-control.

If a WHILE phrase ie not given, initial-value is evaluated and
its value assigned to loop-control, the statement is executed,
and then the value of loop=control ie changed, This process
continues until aome condition within the statement transfers
outside the loop to terminate the for-loop.

- 189 - 14: Statements

— e Y

If a WHILE phrase is given, the condition in the WHILE phrase
governs the number of times the for-loop is executed.

The while phrase can also be given before the BY clause, as
follows:

FOR loop-control
: initial-value [WHILE condition] BY increment

statement

The execution of the statement is as follows:

1. Evaluate initial-value and amsign its value to
loop=control. ’

2. If a WHILE phrase is present, evaluate the
condition in the WHILE phrase., If the value
of the condition is TRUE, continue to Step 3.
Otherwise, terminate the for=-loop.

3. Execute the statement.

4, Evaluate increment and add its vaue to the
value of loop=-control.

5. Return to step 2.

Suppose, for example, you want to exchange the items of two
tables. Fach table has 25 entries. You can write:

FOR IX:@ BY 1 WHILE IX<25;
BEGIN
TEMP = DAY(IX):
DAY(IX) = NIGHT(IX):
NIGHT(IX) = TEMP:
END

This statement sets the loop-control item IX to @ and evaluates
the condition in the WHILE phrase. £ince the value of the loop-
control IX is less than 25, the statement exchanging DAY(®) and
NIGHT(¢) is executed. Then, IX ie incremented by 1 and the WHILE
phrase condition is evaluated again. The value of the loop-
control is now 1, which is 1less than 25, and the statement is
executed again, exchanging DAY(1l) and NIGHT(l). This process
continues until the loop-control is 25 and the conditioen is
false. Control then passes to the next statement.

14: Statements - 190 -

s v . ¢

s pemanny Ve el OB L I T e
L ek

-y

Lrd

%

o~

P

14.5.2.2

Repeated Assigment Loops

The form of a repeated assignment loop is:

FOR loop-control

: initial-value THEN formula [WHILE condition] ;

statement

The THEN clause indicatesg that the value of the formula is to be
assigned to the loop-contreol on each iteration of the loop.

If a WHILE phrase is given, the condition in the WHILE phrase
governs the number of times the for-loop is executed. The VHILE
phrase can be given before the THEN clause in a repeated
assignment loop just as it can be given before the TO clause in
an incremented loop.

The execution of a repeated-assignment loop is as follows:

hl.

2.

I R e e e Ry PSR T

Evaluate the initial-value and assign it to the
loop-control.

If a WHILE phrase is present, evaluate the
condition in the WHILE phrase. If the value
of the condition is TRUE, continue to Step 3.
Otherwise, terminate the for-lnop.

Execute the statement.

Evaluate the formula in the THEN clause and
assign it to loop-control.

Return to step 2.

- 191 - 14: Statements

R

As an example of the THEN clause, suppose you have the entries of
a table linked in a list. Each entry contains two items. The
first item, VALUE, contains a value and the second item, LINK,
contains an index to the next entry in the list. The beginning
of the list is given in the item LISTHEAD and the end of the list
is indicated by a @8 link. You can process each item in the list
by following the links to the end as follows:

FOR IX:LISTHEAD THEN LINK(IX) WHILE IX <> #;
PROCESS(VALUE(IX)):

This statement sets the loop-control IX to the beginning of the
list. If that value is zero, then the list is null. That is, it
contains no entries. If it is not zero, then the body of the
loop, which invokes the procedure PROCESS, is executed. Then the
link LINK(IX) is assigned to IX. 1If IX is not zero, the
statement is executed again. This process continues until the
end of the list is reached.

14.5.3 Loop-Control

The loop-control in a for-loop with a BY or THEN clause receives
a new value for each iteration of the loop.

Loop-control can be an item=-name or a single letter. A single
letter loop-control is implicitly declared for the loop
statement. If loop~control is a declared item, the formulas given
to set and change it must be compatible in type with loop-
control. If loop-control is a single letter, the values given in
the BY or THEN clauses must be compatible with the initial-value.
In either case, the formula given in a BY clause must have data
type and value such that it can be added to the loop-control.

The value of loop-control should not be altered in a loop-~
statement. The compiler does not allow the value of a single
letter loop-control to be changed in a for-loop. It allows the
value of a declared item loop-control to be changed, but it
issues a warning message in that case.

If the value of loop-control is not needed before or after the
execution of the for-loop, a single letter loop-control is
convenient. It does .l0t require declaration and its scope is the
for-loop statement itself. Thus no conflict with other loop-
controls can exist,

14: Btatements - 192 -

- Y, . T e e . e RN B2

e

For example, suppose you want to perform a computation for all
items, COUNT, of a table with 10 entries. You can write:

FOR I:1 BY 1 WHILE I <= 109;
COMPUTE (COUNT (1)):

This loop calls the procedure COMPUTE for each entry in the
table.

If the value of loop-control is needed for use after the
execution of the loop statement, a declared item-name rather
than a single letter loop~control must be used.

Suppose you want to sum all the items of the table but you also
want to terminate the loop if the sum exceeds a given threshold.
If you want to know the index of the item that caused the sum to
exceed the threshold after the loop is terminated, you must use .
declared item for loop-contreol, as follows:

FOR INDEX:1l BY 1 WHILE INDEX <= 100,
BEGIN
SUM = SUM + COUNT(INDEX);
IF SUM > TMAX:
GOTO OVERFLOW;
END

If SUM exceeds the threshold, control is transferred to OVERFLOW
and the value of INDEX can be used to determine the item st which
the overflow condition occurred.

14.5.4 Labels within For-Loops

A label within the body of a for-loop cannot be used outeide the
for-loop. That is, control cannot be sent into a for-loop. The
body of a for-loop can be cxecuted only by executing the for-loop
statement. A GOTO statement within the for-loop, however, can
transfer control to a labelled statement within the for-loop.

14.6 EXIT-STATEMENTS

An exit-gtatcment is used to terminate a loop at the point within
the loop where the exit-statement is executed.

- 193 - l4: Statements

TR) - T e re—ee———r B A VN
[i PRy

b 2" e

A e

aitm e =

[T

An exit-statement terminates the execution of the immediately
enclosing loop-statement. The form of the exit-statement is:

EXIT ;

The effect of an exit-statement is the same as the effect of a
GOTO statement that transfers control out of the controlled-
statement to the point following the loop-statement.

For example, suppose you are processing a table of 1l70# entries,

each of which contains three items, and you want to terminate if

the value of one of the items is zero., You can include a test in
the WHILE phrase as follows:

FOR I:@ BY 1 WHILE HEIGHT(I) <> @ AND I <= 999;
BEGIN
PROCESS {LENGTH(I));
PROCESS (HEIGHT(I)*WIDTH(I)):
END

This statement performs the computatione if HEIGHT(I) is not
zero. If HEIGHT(I) is zero, the for-loop is terminated.

However, suppose you want to call the procedure PROCESS for the
item LENGTH(I) before terminating if the value of HEIGHT(I) is
zero. Then you can use the exit-~statement, as follows:

FOR I:@ BY 1 WHILE I <= 999;
BEGIN
PROCESS (LENGTH(I));
IF HEIGHT(I) = o
EXIT;
PROCESS(HEIGHT (I)*WIDTH(1));
END

This statement performs the computations if HEIGHT(I) is not
zero. 1f HEIGHT(I) is zero, it invokes PROCESS for LENGTH(I) and
then terminates.

14: Statements - 194 -

o

-

14.7 GOTO-STATEMENTS

A goto—statemeﬁt transfers control to the statement labelled by
the given statement-name. The form is:

GOTO statement-name ;

Statement-name must be known in the scope in which the goto-
statement appears. It must not be the label of a statement
within the controlled-statement of a loop-statement, unless the
goto-statement is also within that same controlled-statement or
within a nested controlled-statement. Further, it must not be
the label of a statement that is in an enclosing subroutine or in
another module,

A goto-statement should not be used for the cases in which JOVIAL
supplies another statement for the transfer of control. The
exit-gtatement, for example, terminates a for-loop statement and
the return- and abort-statements terminate a subroutine. Cases
exist, however, in which the goto-statement can be effectively
used.

For example, suppose you are summing the items of a table with
two dimensions and you want to terminate the summation process if
the sum exceeds a specified threshold. Since the table has two
dimensions, the summation process requires a nested for-loop.

You can use a GOTO statement to terminate the execution of both
for-loops, as follows: i

FOR I:1 BY 1 WHILE I < 100;
FOR J:1 BY 1 WHILE J < 1@a;
BEGIN
S5UM = SUM + COUNT(I,J):
IF SUM > TMAX:
GOTO OVERFLOW:
END

- 195 - 14: Statements

T 1 T I SR A T A At A 55 LW At 19 4 e s

U A Py 1 e el b - B T TN o P

14.8 PROCEDURE~CALL-STATEMENTS

A procedure-call-statement invokes the named procedure and
associates the actual parametere of the call with the formal
parameters of the definition. The form is:

procedure-name [(actual-list)]
[ABORT statement~name] ;

Both the parenthesized parameter list and the ABORT phrase are
optional. If a procedure~definition does not declare formal
parameters then the call does not include any actual parameters.
The ABORT phrase is used to provide a statement-name to be used
in connection with any ABORT statement within the procedure or
procedures called by the procedure.

The procedure-call statement is described in detail in Chapter 15
on "Subroutines", in which subroutine definitions and subroutine
calls are considered together.

14.9 RETURN-STATEMENTS3

A return-statement effects a normal return from a subroutine.
The form is:

RETURN :
The return~statement gets any parameters for normal subroutine

termination and then transfers control to the point following the
invocation of the subroutine.

The return-statement is described and illustrated in Chapter 15
on "Subroutines".

14: Statements - 19¢ -

PR

o

B B T S R T R FU

14.10 APBORT-STATEMENTS

An abort-staterent effects an abnormal return from a procedure.
The form is:

ABORT ;

wWhen an abort~statement ip executed, control passes to the
statement-name given in the most recently executed, currently
active procedure-call-statement that has an abort phrase. 1If no
currently-active procedure-~call-statement hae an abort phrase, -
then the effect of an ahort-statement is the same as that of a
STOP statement.

Whenh an abort-statement is executed, all intervening subroutine
invocations are terminated and thé parameters of these
subroutines are not set (as they would be if normal termination
of the subroutine occurred).

The abort-statement is further described and illustrated in
Chepter 15 on "Suuroutines"

14.11 STOP-STATEMENTS

A stop-~statement causes execution of the program to terminate.
The form is:

STOP [stop-vode] ;

If the stop-code is given, it is an integer formula whose value
is supplied to the environment in which the JOVIAL program is
running. The meaning of the value of the stop-code is
implementation-dependent. The range of legal values for stop-
code is defined by the implementation parameters MINSTOP through
MAXSTOP.

If a stop-statement is executed within a subroutine, the
parameters of any active subroutine are not set as they would be
on normal termination of the subroutine.

- 197 - 14: Statements

- e ma—t

S

L}

Chapter 15

SUBROUTINES

A subroutine is an algorithm that can be executed from more than
one place in a program. A subroutine can be either a procedure or
a function. A procedure is executed by a procedure-call
statement. A function returns a value and is executed within a
formula by a function-call.

The following sections describe the definition and use of
procedures and functions.

15.1 PROCEDURES

A procedure describes a self-contained portion of a program. A
procedure can interact with its environment through its
parameters or global data. A procedure-definition defines the
name, attributes, and logic of a procedure. A procedure=~call
invokes that logic and supplies actual parameters to be used in
the execution of the procedure's statements.

15.1.1 Procedure-Definitions

A JOVIAL (J73) procedure-definition gives the procedure name,
declarations for all formal parameters and locel data, the
executable statements of the procedure and the definitions of any
subroutines local to the procedure.
A procedure-definition has the following form:

PROC procedure-name

[use-attribute] [{ formal-1ist) J

procedure-body

- 199 - 15: Subroutines

s T i

;. MASCEDNG PAGE BLAMK-WOT FLLI.D

0

S S St TIEANTIRL — LT eeaeHEN o

L O T

The square brackets indicate that use-attribute and the
parenthesized list of formal parameters can be omitted. Use-
attribute indicates whether the subroutine is recursive or
reentrant. The compiler uses thisg attribute to allocate data
within the procedure properly. Use-attribute and the parameters
are described in detail later in this chapter.

Procedure~-body contains the declarations of any parameters,
declarations of any local dat>. the statements of the procedure,
and definitions of any local sroutines used in the procedure.

Procedure-body c¢an be simple or compound. In either case, it must
contain at least one executable statement.

15.1.2 8Simple Procedure=Bodies

The simplest form of a procedure-body contains only an executable
statement, as follows:

statement

Only a procedure without parameters can have a simple procedure-
body, because parameters must be declared. If a procejure has
parameters, it must have a compound procedure-body.

As an example of the simple form of a procedure-body, suppose you
want to write a proucedure TABMULT that multiplies each item in
one table by the corresponéding item in another table and saves
the product in a third table. The tables to be multiplied are
declared as follows:

TABLE PHASEl(l:1¢e0);
ITEM COUNTP1 F;
TABLE PHASE2(1:1000);
ITEM COUNTP2 F;
TABLE PHASES(1:1€M0);
ITEM RESULTS F:

You can write the procedure TABMULT as follows:

PROC TABMULT;
FOR I:1 BY 1 WHILE I <= 1pQd;
RESULTS(I) = COUNTP1(I)*COUNTP2(I);

TABMULT is a very specialized routine that only works for the

given tables. A more general routine for this kind of table
manipulation is described later in this chapter.

15: Subroutines - 200 -

o —— e e S ———

T e AR e e W i T T L et

T

15,1.3 Compound Procedure-Bodies

The compound form of a procedure-~body can contain declarations,
statements, and definitions of subroutines used in the
computation, as follows:

BEGIN

{ declaration ... 1]

gtatement ...

[subroutine-definition ...]
END

The square brackets indicate that declarations and subroutine-
definitions are optional in » compound procedure~-body.

Data declared in a subroutine is allocated in automatic storage
unless the declaration contains a STATIC allocation attribute.

As an example of the compound form of a procedure, suppose you
want to dispatch on the value of variable to one of a number of
subroutines. You can write s dispatch procedure with that
variable as an input parameter as follows:

PROC DISPATCH(CODE);
BEGIN
ITEM CODE INTEGER S
CASE CODE**2;

(DEFAULT):

(/) ACTIONI;
(1:25): ACTION2:
(26:1000) ACTION3;

(1PAP1:25008): ACTION4G;
(2501:5600): ACTIONS:
END

The procedure DISPATCH has one formal parameter CODE. The
parameter CODE is declared within the procedure to he a signed

integer. The statement of the procedure is a case-gtatement that

uses the square of the parameter CODE to select one of five
different action routines.

- 2071 - 15: Subroutines

ot
e AR e e e e el B e
. L o - MR Rhas!

e

15.1.3.1 Formal Parameters

The formal parameters are given in formal-list. - The parameters
in formal~list are divided into input parameters and output
parameters by a colon, as follows:

{ input-parameter ,...] [: output-parameter, ...]

The square brackets indicate that formal-list can consist of only
input-parameters, only output-parameters, or both kinde. If the
list contains only output-parameters, the colon must be present
to indicate that they are output-parameters. The formal-list,
which is enclosed in parentheses, cannot be null; it must
contain at least one parameter.

Formal parameters and actual parameters are discussed later in
this chapter, after the discussion of procedure-calls.

e

15.1.4 Procedure-Calls .

A procedure-call is a statement. It causes the invocation of the
associated procedure and the association of the actual parameters
of the call with the formal parametere of the definition.
The form of the procedure-call is:
procedure-name [(actual-list) 1 [abort-phrase 1 ; '3
)
The square brackets indicate that both the parenthesized list of

actual parameters and the abort-phrase are optional.

The abort-phrase provides a label to which control is sent if an
abort-statement 1is encountered during the execution of the
procedure. The abort-phrase has the form:

ABORT statement-name

A detailed discussion and examples of the abort-phrase are given
later in this chapter.

15: Subroutines - 2A2 -

The simplest form of the procedure-call is used for a procedure
that is defined without parameters. That is:

procedure-~name ;

For example, to call the procedure TABMULT, which was declared
earlier in this chapter without parameters, you can write:

TABMULT;
The execution of the pfocedure multiplies each item of PHASE]l by

the corresponding item of PHASE2 and saveer the product in the
corresponding item of PHASES.

If the procedure has parameters, then the procedure-call coneists
of the procedure-name fcllowed by the parenthesized list of
actual parameters, as follows:

procedure-name (actual-list);

For example to call the DISPATCH routine, which was declared
earlier in this chapter with a single parameter, you can write:

DISPATCH({4)
The execution of the procedure sguares the input parameter and

uses that result in a case-statement. This call results in
ACTION2 being called by the DISPATCH procedure,

1%.12.4.1 Actual Parameters

The parameter list suppliled with a subroutine invocation defines
the actual parameters to be used for that invocation.

As in the formal parameter list, the actual parameters are
divided into input and output parameters by a colon, as follows:

[input-actual, ... 1 [: output-actusl ,...,]

The scquare brackets indicate that the list of actual parameters
can consist of only input parameters, only output parameters, or
a combination of both. The actual=list, which in enclosed in
parentheses, cannot be null: it must contain at least one
paramter.

- 213 - 15: Subroutines

e e de -

I

An input-actual can be a formula, a statement-name, a procedure

or function-name, or a block-reference. An output-actual must be
a variable,

The relaticnship between the actual parameters and the formal
parameters is discussed later in this chapter.

15.2 PFUNCTIONS
A function is different from a procedure in the following ways:
® The function-definition must contain a type description
for the result. The function returns a value of that
type.

@ The function-call is used in a formula (or as a formula)
and cannot be used as a gtatement.,

) A function=-call cannot contain an abort-phrase.

15.2.1 PFunction Definitions

A function-definitlon has the following form:
PROC function-name [use-attribute 1 [(formal-list))
type-description
procedure-body
The type-description defires the type of the :eturﬁ value of the

function. The return value must be determined during execution
of the function-body by an assignment to the riame of the

function. :

|

The name of the function .s used to designate the return value.
The name of the function, when used *o designate the return
value, can be used only on the left~hand-side of an assignment
statement within the function-body. When the name of the
function is used on the right-hand-side of an assignment
statement or in other permissable contexts for a formula, it

designates a recursive function-call. |

15: Subroutines - 204 -~

L R— 1T

LTI LA g p————— 41 oy AULEY - b

s

o e

[

For example, suppose you want to write a function that gets the
factorial of its argument. The factorial is defined for non-
negative integers as follows:

: factorial(g) = 1
factorial(n) = 1*,.,.(n-1)*n

You can write the following function:

PROC FACTORIAL(ARG) U:

BEGIN

ITEM ARG U:

ITEM TEMP U;

! TEMP = 1;

FOR I:2 BY 1 WHILE I<=ARG:
TEMP = TEMP*I:

FACTORIAL = TEMP;

END

The value of the function ies an unsigned integer, as indicated by
., the type-description following the parameter list. The return
‘{ value is get in the last statement of function~body when TEMP is
. asslgned to FACTORIAL. Observe that TEMP ls necessary because
the name of the function can be used to designate the return
value only on the left-hand-gide of an assignment statement
within the function-body.

15.2.2 Function-Calls
FE A function=-call can be used as a formula or as an operand in a
'(formula. The form of the function-call is:

function~name [(actual-list)]

If the function is defined without parsmeters, then the
function-call is simply the function-name. If the function has
parameters, the function-call is the function~name followed by
the parenthesized list of actual parameters.

For example, suppose you want to calculate the combination of NN
obects taken KK at a time. You can use the factorial function as
fellows:

C2 = FACTORIAL(NN)/(FACTORIAL(NN)-FACTORIAL(KK));

q” The factorial function is called three times in this statement.

- 205 -

15: Subroutines

15.3 PARAMETERS

The parameters given in a subroutine-definition are called formal
parameters because they represent the parameterg for the purpose
of defining the computations to be performed by the subroutine
using the parameters. The parameters given in a subroutine-call
are called actual paramzters because they are the parameters for
that invocation of the subroutine. -

15.3.1 1Input and Qutput Parameters

A formal input parameter designates a parameter that receijves a
value from the corresponding actual parameter. A formal output
parameter designates a parameter that receives a value from the
corresponding actual parameter when the subroutine is cslled and
returns a value to the corresponding actual when the subroutine
is terminated in a normal way.

If, in the course of the execution of a procedure, a formal
parameter is used in a context in which its value can be altered,
then it must be declared as an output parameter. That is, the
value of a formal /nput parameter cannot be changed within a
subroutine.

The number of input actual parameters in the call must be the
same as the number of input formal parameters in the definition.
Similarly, the number of output actuals must be the same as the
number of output formals.

The first (leftmost) actual parameter in a call is associated
with the first (leftmost) formal parameter in the definition of
the given subroutine; the second actual is associated with the
second formal; and so on. However, the order in which the actual
parameters are evaluated is not specified. Consider the
following procedure declaration:

PROC TALLY(:Al);
BEGIN
ITEM Al U;
Al = Al + 1;
END

15: Subroutines - 206 -

-

-
<)

-

el

e

I -~

R,

EN TS S

FETET T e

R =

RS

==

FoTE

tF

A=

i

= et i | AR T ok,

¥

g

ﬂ The preceding definition defines a procedure TALLY with a single
parameter. The parameter is an output parameter. It is
incremented in the procedure body. Consider a call on TALLY:

' TALLY (: COUNT);
If the value of the item COUNT is 5 before the procedure TALLY ig

called, then the value of item COUNT is € after TALLY is
executed.

TALLY is an unrealistically simple function. Usually a function
involves more computation. Incrementation like this can be
accomplished by a simple assighment stutement or, in some cases,
by a define-call, as will be seen in Chapter 138,

15.3.2 Pparameter Binding ¢

The way in which a formal parameter is bound depends on ite type
and input/output status. JOVIAL (J73) uses three types of
binding: value, value-result, and reference.

-

—
.

A formal input parameter that is an item is bound by value., A f
formal output parameter that is an item is bound by value-result. j
A formal parameter that is a table or block is bound by

reference. |

,(_ For all three types of binding, actuval parameter values or the
location of actual parameter values are evaluated when the
Ny subroutine is invoked and are not reevaluated while the
subroutine is being executed.

15.3.2.1 Value Binding

If a formal parameter is bound by value, it denotes a distinct
object of the type Bpecified in the formal parameter declaration.
When the subroutine is called, the value of the actual parameter
is assigned to that object.

s £ o e ¢ e v

4
!
i
} - 207 - 15: Subroutines §
!
F b1 e 1 S st . N , . o
.\ i Fri b i Vil S LRI & e e R g e JUNRIEIET T "W o IR Al R SOOI ikl 12 Pt bkl < Jal T e M, B

! : L ——— . L evia v e

Lt ,.u_” . . (s 1AL ke, e

For example, suppose you have the follewing procedure-
declaration:

PROC RUNTIMER({ARG1);
BEGIN
ITEM ARGl U:;
FOR I:@ BY 1 WHILE I < ARGlW%¥2;
CORRELATE(ARGL, I);
END

Now suppose you call the procedure:
RUNTIMER(CLOCK1)}

The formal parameter ARGl is assigned the value of CLOCKl when
the procedure is called.

15.3.2.2 Value=Regult Binding

If a formal parameter is bound by value-result, it denotes a
distinct object of the type specified in the formal parameter
declaration to which the value of the actual is assigned when the
subroutine is called. 1In addition, when the subroutine is exited
normally, the value of the formal is assigned to the
corresponding actual. If the subroutine is terminated in an
abnormal way, the value of the formal is not assigned to the
actual., Normal and abnormal returns from subroutines are
discussed later in this chapter.

Suppose you define the following procedure:

PROC MINMAX (VECTOR:MIN, MAX);
BEGIN
TABLE VECTOR(99):
JITEM V1 U;
ITEM MIN U;
ITEM MAX U;
MIN, MAX = V1(@):
FOR I : 1 BY 1 WHILE I <= 99;
BEGIN
IF V1(I) < MIN;
MIN = v1(I);
IF V1(I) > MAX:
MAYX = v1(1);
END
END

15: Subroutirnes - 208 ~

—

-,

Now suppose you call the procedure:
MINMAX (RETURNS : RMIN, RMAX) ;
The procedure MINMAX finde the minimum and maximum values in the

table RETURNS and, on completion, sets the value of RMIN to the
minimum value (MIN) and RMAX to the maximum value (MAX).

15.3,2.3 Reference Binding

If a formal parameter is bound by reference, the actusl parameter
and the formal parameter denote the same phnysical object. Any
change in the formal parameter entails an immediate change in the
value of the actual parameter.

Suppose you want to square the items of a table and then
calculate the sum of the pairwise guotients. The item SIZE gives
the number of entries in the table currently in use. SIZE is
always an even number. You can write:

PROC MEAN(:ARGBLOCK);
BEGIN
BLOCK ARGBLOCK
BEGIN
ITEM SIZE U;
ITEM SUM U;
TABLE ARGTAB(l:1000);
ITEM VALUE 8;
END
SUM = o
FOR I : 1 BY 2 WHILE I < SIZE;
BEGIN
IF VALUE(I+l) = @;
ABORT;
VALUE(I) = VALUR(I)*%*2;
VALUE(I+l) = VALUE(I+41)%*2,
SUM = SUM + VALUE(I)/VALUE(I+1);
END
END

- 209 - 15: Subroutines

HEPIPESETRIOL, STREART A F-RY I SPe T T e S TR S U

AR S

e ——

bt i -

Suppose STATISTICS is a block that is declared aes follows:

BLOCK STATISTICS:
BEGIN
ITEM STATSIZE U = 10,
ITEM STATSUM U;
TABLE STATTAB(999):
ITEM STATVALUE S = 2,4,3,4,8,6,9,7,11,3;
END

Suppose you call the procedure MEAN with the actual parameter
STATISTICS, as‘followsz

MEAN (:STATISTICS);

The block STATISTICS is bound by reference to the formal
parameter ARGBLOCK. Each change to SUM results in an immediate
change to STATSUM. Similarly, a change in VALUE(I) results in a
change in STATVALUE(I). If the procedure terminates abnormally as
a result of finding a zero value in the table, STATSUM has the
value computed up to that point and the values of the table
STATTAB are changed up to the point st which the zero quotient

was encountered.

Assuming the item STATSIZE and the table STATTAR have the values
assigned in the preset, the procedure terminates abnormally when
I is 9. The values of STATSUM and STATTAB on termination are:

Item Value
STATSUM 4/16 + 9/16 + 64/36
STATVALUE (1) 4
STATVALUE(2) 16
STATVALUE(3) 9
STATVALUE (4) 16
STATVALUE (5) 64
STATVALUE (6) 36
STATVALUE (7) o
STATVALUE (8) ¢
STATVALUE (9) 11
STATVALUE (190) 3

15: Subroutines - 2100 -

R MM LI e T e

e e B M e ¥ 2o o -

15.3.2 Parameter Data Tvpes

The data type of an actual parameter must match the data type of
the corresponding formal parameter. The rules for type matching

of actual and formal parameters depend on the data types of the
parameters:

Items -~ The data type of an actual parameter must be
compatible with the data type of the
corresponding formal parameter.

Tables -- The data type of the actual and formal parameter
must be equivalent. The attributes and
allocation order of all components of the table
must be equivalent,

Blocks -- The data type of a block actual matches the data
type of a block formal if (1) the types and order
of the components match exactly, (2) an !ORDER
directive is elther present or absent in both,
and (3) overlay declarations in both blocks have
the same effect.

Data type equivalence and compatibility are discussed in detail
in Chapter 13 on "Conversion".

15.3.4 Parameter Denlarations

All parameters must be declared within a subroutine. A formal
input parameter can he a data-object, a label, or a subroutine.
A formal output parameter can be a data-name only.

A formal parameter cannot be declared to be a constant or a type.
Declarations of formal parameters must not contain allocation
specifiers or initial values. Formal parameters cannot be
declared to be external.

The following sections consider the declarations of data-names,
statement-names, and pubroutine-pames.

- 211 - 15: Subroutines

S snam b . KA Ly T R s B R e e e

PROVRREPPYE . L LT Pubmy g

15.3.4.1 Lata Name Declarations

If a formal parameter is a data name, it igs declared by an item,
table, or block declaration. The only difference between the
form of a data declaration for » data object and that for a
formal parameter occurs in the case of a table. A formal
parameter that is a table can be declared with asterisk(¥)
dimensions. The bounds of a table declared in this way are

determined from the actual parameter on each invocation of the
subroutine.

The use of the asterisk dimensions allows a subroutine to handle
E tables with different size dimensions. With this capability,

general purpose subroutines for table manipulation can be
written. ‘

For example, suppose you want to write a procedure that clears to

zero the items of a two dimensional table. You can write the
following:

BEGIN
TABLE TABNAME(*,*);
ITEM TABENT U:
FOR I:LBOUND(TABNAME,#) PY 1 WHILE I<=UBOUND(TARNAME,{):

FOR J:LBOUND(TABNAME,1) BY 1 WHILE J<=UBOUND{TARNAME,1);
TABENT(I,J) = @;
END

The LBOUND and UBOUND built-in functions provide the lower and
1 upper bhounds of the table that is the actual parameter of the

call. More infoimation on these built~in functions is given in
T Crapter 12,

| For example, suppose you have the following declaration::

TABLE SCORE(1:2¢,1:3);
ITEM GRADE U;

TABLE RESULTS(99,4):;
ITEM RES Uj

You can call ZERO as follows:
ZERO(SCORE);

The first call on ZFRO esets the sixty items of SCORE to zero.
N The epecond call sets the five hundred items of RLSULTS to gzero.

15: Subroutines - 212 -

PROC ZERO({:TABNAME); .

‘ You can call the procedure ZERO with any two dimensional table. - \
b

ZERD(RESULTS) ; A

- e e

ceor Ereedbare i

e e e et e e T

T BB T TR A e i 1A R, R

15.3.4.2 Statement Name Declarations

i I1f a formal-parameter is a statement-name, it is declared by a
' statement-name declaration. The form of a statement-name
declaration is:

LABEL statement~name ,... ;

A GOTO statement to a label that is a formal parameter results in
the subroutine being exited and control being sent to the label
that is supplied as the actual parameter.

Statement~name parameters are useful for subroutines that have
more than one possible error exit. For example, consider the
following subroutine:

PROC VERIFY(TAR,L1,L2:SUM);
. BEGIN
(TABLE TAB(*);
ITEM TABENT F;
LAREL L1,L2; '

ITEM SUM F;
SUM = 0.0;
FOR I : LEOUND(TAB,#) BY 1 WHILE I <= UBOUND(TAR,®);
BEGIN
IF TABENT(I) < THRESHOLD;
GOTO Ll

SUM = SUM 4+ TABENT(I)%*2
IF SUM > MAXSUM;
GOTO L2:
END
END

oy

Suppose you call the procedure VERIFY as follows:
VERIFY{NEWDATA, ERROR], FRRORS: NEWSUM) ¢

The procedure VERIFY is terminated abnormally under two separate
conditions. If an entry in NEWDATA is less than THRESHOLD, the
procedure is terminated abnormally and control is sent to the
label ERRORl, 1If SUM ir greater than MAXSUM, the procedure is
terminated abnormally and control is sent to the label ERRORS.

, The use of a statement label formal parameter to exit a

f' subroutine constitutes an abnormal termination from the
subroutine. Subruutine termination is discussed in detail later
in this chapter.

- 213 -~ 15: Subroutines

At 8

N ""”L"ﬁ'.ﬁ»t"--‘u.q;vsqz-myw,;,\«';'ﬂu w o

iy " s et st WY

15.3.4.3 Subroutine Declarations . '

If a formal parameter is'a subroutine-name, it is declared by a
subroutine~declaration. A subroutine-declaration contains the
information necessary to describe a call on the subroutine.

The form of a sﬁbroutine-declaration is:
PROC procedure-name. [use-attribute] [(formal-list)]
type~-description i
parameter~declaration

If the subroutine has parameters, then a declaration must be
given for each parameter. If the subroutine does not have any
parameters, then a null declaration must be given instead of the
parameter declarations. No other declarations can be given in a
subroutine~declaration. Declarations of local data, as well as
the executable statements and any local subroutine-definitions,
are not given in a subroutine-declaration: they can appear only
in the subroutine~definition.

If the subroutine-declaration includes a type-description, then
it declares a function; otherwise, it declares a procedure.

15: Subroutines - 214 -~

o
T

e
j S

£

o o

.

As an example of the use of a subroutine parameter, suppose that
in the VERIFY subroutine just given you want to call a subroutine
on an error condition instead of transferring out to a label.

You can modify the VERIFY routine as follows:

' PROC VERIFY(TAB,SUBl,SUB2:SUM);
BEGIN
TABLE TAB(*):
ITEM TABENT F;:
PROC SUB1;
BEGIN
END
PROC SUBZ2;
BEGIN
END
ITEM SUM F:
SUM = 0.0;
FOR I:LBOUND(TAB,#) RY 1 WHILE I <= UBOUND(TAB,@):
BEGIN
IF TABENT(I) < THRESHOLD;
£ SUB1;
{ SUM = SUM + TABENT(I)¥%*2;
IF SUM » MAXSUM:
SUB2;
END

Suppose you call the procedure VERIFY as follows:
VERIFY (NEWDATA , LOWDATA, OVERFLOW : NEWSUM) 3
If an entry within the table NEWDATA is less than THRESHOLD, the

§ procedure LOWDATA is invoked. If SUM is greater than MAXSUM,
\ OVERFLOW is invoked.

15.4 THE USE-ATTRIBUTE

Use~attribute is used to designate a subroutine as either
reentrant or recursive,

- 215 - 15: Subroutines

|
R o

TUREREP AR

T rond el QLA a6) VAR 4

e S T 1V S O R R

Use~attribute is one of the following reserved words:
RENT
REC

The use~attribute follows the subroutine-name as indicated
earlier in this chapter. If a subroutine is recursive, it must be
declared with the REC use-attribute. If it is reentrant, it must
be declared with the RENT use-attribute.

15.4.1 Recursive and Reentrant Subroutines

A recursive subroutine is one that calls itself, either directly
or indirectly. A reentrant subroutine is one that can be called
from several different concurrent tasks.

The compiler must use dynamic storage allocation for & recursive
subroutine esince the maximum number of recursive invocations and
hence the maximum number of copies of automatic data cannot be
determined at compile time., If the compiler knows the maximum
number of separate tasky that can invoke a reentrant subroutine
in a given system, it can allocate storage for the subroutine
statically. In generasl, though, the compiler dynamically
allocates storsge for reentrant subroutines.

A an example of a recursive function, consider the following,
which computes the factorial.

PROC RFACT REC (ARG) Ug
BEGIN
ITEM ARG U;
IF ARG = 0,
RFACT = 1;
ELSE
RFACT = RFACT(ARG-1)*ARG;
END

The function RFACT computes the factorial recursively instead of
iteratively as did the function FACTORIAL given earlier. The
function~declaration contains the use-attribute REC to indicate
that it is used recursively.

15;: Subroutines - 216 -

P ———

-

T e e bR e

4

This function illustrates the use of recursion clearly. 1In
practice, however, a function like this is not written
recursively because the computation is too simple to justify the

_overhead associated with the repetitive function calling

mechanism., In the above example, dynamically allocated memory is
required for every integer from 1l to the value ¢f ARG, since
there is a separate function call for each of these values.

The function RFACT is obviously recureive because it calls
itself. GSome subroutines are lesg obviously recursive because
they call other subroutines that, in turn, call them.

15,5 SUBROUTINE TERMINATION

The execution of a subroutine is terminated either nermally or
abnormally.

The execution of a subroutine is terminated in a normal way by
ohe of the following:

o A return-atatément
° The execution of the last statement in the subroutine
When » subroutine is terminated iIn a normal way, the value-result
output parameters are set.
The execution of a subroutine is terminated in an abnormal way by
one of the following:
o An abort-statement
o A goto-statement to a statement-name supplied as a pasameter
o A stop-statement

When a subroutine is terminated abnormally, the value-result
output parameters are not set.

- 217 - 15: Subroutines

e i

15.5.1 Return-Statements

The return~-statement is used to effect a normal return from a
gubroutine. When a return-statement is executed, the execution
of the subroutine is terminated, any parameters that have value- 1
result binding are set, and control returns to the point ' ‘
following the subroutine-call.

Suppose you want to search for a particular character string in a
table of character strings. You want to stop the search either
when you find the character string or when you reach the end of
the table. You can use a return~statement for the case in which
the character string match is found, as follows:

e

PROC SEARCH(TABNAME, STRING: POSITION);
BEGIN
TABLE TABNAME(999);

ITEM TABSTRING C 10 P
ITEM STRING C 17 :]
ITEM POSITION U; i
FOR POSITION : @ BY 1 WHILE POSITION < 1mp0; .

IF TABSTRING(POSITION) = STRING: ‘. i

RETURN
NOTFOUND (STRING); .
END !

If the character string STRING is found in the table TABNAME, the
RETURN is executed and the output parameter POSITION gives the

entry number in the table where the match occurred. If the : i
character string is not found, the procedure NOTFOUND is called ¥
and the output parameter POSITION contains the value 1704, -

A return-statement causes a return only from the subroutine in
which it is given, not from any subroutines in which the
subroutine containing the return is nested.

15.5.2 Abort-Statements

The aburt-gtatement is used to effect an abnormal return from a
subroutine. When an abort-statement is executed, control passes '
to the statement named in the abort-phrase of the most recently
executed, currently active procedure call that has an abort-
phrase. All intervening subroutine invocations are terminated.
No value-result parsmeters are set.

15: Bubroutines - 218 - i '
|

For example, suppose you want to cause an abnormal termination
from the FACTORIAL function if the value of the argument is
larger than a specified value. You can include an abort-
statement, as follows:

PROC FACTORIAL(ARG) U;

BEGIN

ITEM ARG U:

ITEM TEMP U;

IF ARG > MAXARG;
ABORT:

TEMP =];

FOR I 1 ARG BY =1 WHILE I>0;
TEMP = TEMP*I;

FACTORIAL = TEMP;

END

Suppose further that you have another function that gets the
combinations of n things taken k at a time using the factorial
routine, as follows:

PROC COMBINATIONS (NN,KK) U;
BEGIN
ITEM NN U;
ITEM KK U;
COMBINATIONS = FACTORIAL(NN)/(FACTORIAL(NN)-FACTORIAL(KK));
END .

And suppose you want to take the combinations of objects and
trials in a table using the following procedure:

PROC QUANTIFY (OBJECTS, TRIALS, THRESHOLD: BELOW, EQUAL, ABOVE) s
BEGIN
TABLE OBJECTS(9¢2);
ITEM OBJ U;
TABLE TRIALS(99);
ITEM TR U;
ITEM THRESHOLD U,
1TEM BELOW U;
ITEM EQUAL U;
ITEM ABOVE U:
BELOW, EQUAL, ABOVE = 01
FOR I : @ BY 1 WHILE I <1920;
IF COMBINATIONS (OBJ(I),TR(I)) < THRESHOLD;
BELOW=BELOW+1 ;
ELSE
IF COMBINATIONS(OBJ(I),TR(I)) = THRESHOLD;
. EQUAL = EQUAL + 1}
" ELSE
ABOVE = ABOVE + 1
END

- 219 - 15: Subroutines

oo TR NS o L A N O N O OO S 3 A W1 1. S Al i

———— n——— - .
. 1, e .

AT b s s ke

—

i

Suppose you call QUANTIFY as follows:
QUANTIFY(HITS,GAMES:SUB, EQ, SUPER) ABORT ERROR22:

If any of the values in the tables HITS or GAMES results in the
factorial being given an argument that exceeds MAXARG, the ABORT
statement in the FACTORIAL function is executed and the FACTORIAL
function is exited, the COMBINATIONS function is exited, and the
QUANTIFY procedure is exited. Since the call of the QUANTIFY

procedure has an abort-phrase, control is then sent to the
statement labelled ERROR22. .

Observe that the name ERROR22 does not need to be khnown in the
scope in which the abort~statement appears. It need be known

only in the scope in which the abort-clause on the procedure-call
appears.

15.5.3 Goto-Statements

A goto-statement to u formal label parameter transfers control
from a subroutine prematurely. If a GOTO to a formal parameter
is executed, control is sent to the statement whose label was
passed as an actual parameter in the subroutine call.

Value-result parameters are not set if a subroutine is exited by
transferring to a label parameter.

15.5.4 Stop-statements

A stop-statement stops the execution of the antire program at the
point it is given., Value-result parameters are not set if a
stop-statement is executed in a subroutine.

15.6 MACHINE SPECIFIC SUBROUTINES

Machine specific subroutines are those subroutines provided by an
implemenitation to enable programs to invoke single niachine
instructicns peculiar to the given machine. 1In general,

subroutines are provided for machine instructions that cannot be
executed through the languaqge.

15: Subroutines - 2200 ~

\

R SN 1T el e e o - 74

!

X

e
il

u!?'\

——

15.7 THE INLINE-DECLARATION

The inline-~declaration directs the compiler to ingert the object
code for the body of the subroutines named at the points cof their
invocation instead of generating object code to call them. The
form is:

INLINE subroutine-name ,... !

The effect of an inline~declaration extends for just the name
scope in which the inline-declaration apears. It does not affect
calls in enclosing scopes. Subroutine-names whose definitions
appear in other modules cannot be used in an inline-declaration.

Suppose you have the following statements:

ITEM COUNT U;
TABLE DX1(999);
ITEM DXCOUNT U;
INLINE TALLY:
COUNT = @; .
FOR I:0 BY 1 WHILE I<10p0;
IF DXCOUNT(I) < THRESHOLD;
TALLY (: COUNT);
PROC TALLY(:ARG);

BEGIN

ITEM ARG U;
ARG = ARG +1;
END

The code generated for the loop-gtatement is the same as the code
generated for the following loop-statement:

FOR I:% BY 1 WHILE I<lpan;
1F DXCOUNT{I) < THRFSHOLD:
COUNT = COUNT + 1:

If any actual parameters of a subroutine that ig deciared inline
are constants, the inline expansion may cause some formulas to be
evaluable at compile-time. 1In asuch a case, compile-time
evaluation of these formulas will occur and any corresponding
error messages will be generated.

Inline subroutines can contain subroutine-calls, which can in
turn be inline. However, an inline subroutine cannot contain
subroutine-definitions. Also, it 1l illegal to have an inline
subroutine invocation of a subroutine that is already being
expanded inline (that is, recursive invocation of inline
subroutines is not allowed).

- 221 - 15; Subroutines

RO S

e

=
*

N T

-t;;.

sES

Cﬁapter 16
EXTERNALS AND MODULES

A JOVIAL (J73) program consists a main program module and one or
more conpool or procedure modules. Execution of the program
Yegins at the first statement of the main-program module and
continues until the last statement of the program or a stop-
statement is executed.

A module is the smallest entity in the languuge that canh be
compiled separately. The modules of a program are compiled
soparately and subsequently bound together for execution zs a
unit.

Communication between separately compiled modules is accomplished
by external names. An external name ig a name declared in one
module and usred in one or more other modules.

This chapter begins by discussing external declarations. Then it
considers the different types of module. Finally, the subject of
scope is revisited in the context of module compilation and
module communication is considered.

16.1 EXTERNAL DECLARATIONS

An external declaration declares an external name, that is: a
name with the external attribute. An external name can be made
avallable for use in other modules.

Two kinds of external declaraticnsz are defined in JOVIAL (J73),
DEF-gpecifications and REF-specifications. A DEF-specification
declares an external name and allocates storage for that name. A
REF-gpecification provides information about an external name
that is declared in another module by a DEF-specification.

- 223 -~ 16: Externals and Modules

-—

Each DEF-specification identifies a unique object that can be
referenced by a2 REF-specification in any number of modules. It is
illegal to have a second DEF-specification with the same name
anyplace in the entire program, unlike other data objects, not
declared with a DEF-specification, which can have identifical
names providing scope rules prevent conflict.

The following sections describe the DEF- and REF-specifications
in detail. ’

16.1.1 DEF-Specifications

A DEF-specification is used to declare a name that can be used in
other modules. A DEF-gpecification can be either simple or
compound.

16.1.1.1 §&imple DEF-Specifications

The form of a simple DEF-specification is:
DEF declaration
Consider the following simple DEF-specification:
DEF TABLE GRID (2@,28);
BEGIN
XCOORD U 5
YCOORD U 53
END

This declaration declares the table GRID and associates with it
the external attribute.

161 Externals and Modules - 224 -

L1

‘t\ }

.“-“;

a_m

W e LT . F

e
CR

I Cy

=R

SRR e

Fess

[

Y

§

16.1.1.2 Compound DEF-Specifications

The form of a compound DEF-specification is:
DEF BEGIN

declaration

e

END

Consider the following compound DEF-specification:
DEF

BEGIN

ITEM RATE U)@;

ITEM TIME U 15;

TABLE STOCKS(100);
BEGIN
ITEM NAME C 6;
ITEM QUOTE C 2
END

END

This declaration declares the items RATE and TIME and the table

STOCKS and associates the external attribute with each of those
data objects.

A DEF-specification can be uged to declare an iltem, table, bhlock,
or statement name. A DEF-specification can be used to define a

subroutine in a main program or procedure module, but not in a
compool module,

A DEF~-specification for a statement name makes the address of the
statement available for linkage purposes. The statement name,
however, cannot be used as the target of a GOTO statement that is
in another module, or in any other way to cause control to
transfer outside the given scope.

}6.1.1.3 Allocation

Data or subroutines declared by a DEF-specification in a module
are physically allocated in that module.

A DEF-specification can only be used with data objects that are
allocated statically. Data declared external in a subroutine,
therefore, must have a STATIC allocation-spec.

- 225 - 16: Externals and Modules

o e, g b | v

BT AR S T e

it AL T AL b ¢ AU TR 1800700 0 IR N e pr B[Rt Ay A I A i g e

For example, to declare the external item FLAGS within the
procedure MONITOR, you can write:

PROC MONITOR(STATE);
BEGIN
DEF ITEM FLAGS STATIC B 5;

END

The item FLAGS is declared uas an external name. The declaration
includes the STATIC allocation-spec because the declaration is
given within the subroutine MONITOR.

16.1.2 REF-Specifications

A REF-gpecification is used to reference a name that ie declared
by a DEF-specification in another module. A REF-specification
can be either simple or compound. It his one of the following two
forms:

REF declaration

REF BEGIN

declaration

END

A REF-gpecification can be used to declare an item, table, block, !
or subroutine.

A REF-specification is used to make available within a compool-

.module information about externals declared by a DEF-

specification in other modules.

16: Externals and Modules - 226 ~

A Y gl e R A R T

e

b

T%,

Pﬁ,
r

—_—

For example, you can use a REF-specification in the compool-
module SPECS to make the subroutine AVERAGE available through
that module. AVERAGE is defined in a procedure-module as

follows:

START) .

DEF PROC AVNRAGE (TABSIZE, TABNAME: RESULT):
BEGIN .
ITEM TABSIZE U;

ITEM RESULT U;

TABLE TABNAME(1:1¢0);
ITEM ENTRY U;

RESULT = 3@,

FORI : 1 BY 1 WHILE I « TABSIZE: °
RESULT = RESULT + ENTRY(I);

RESULT = RESULT/TAESIZE;

END “

TERM

You can include a REF-specification ln the compool-module SPECS

as followa:

START COMPUOL SPECS;

DEF ITEM RATE U 1¢;

DEF ITEM FLAGS B 3;

DEF TABLE SUBSCRIBERS(107);
BEGIN
ITEM NAME C 5:
ITEM ADDRESS C 20;
ITEM CITY C 10;
ITEM STATE C 3:
END

REF PROC AVERAGE (TABSIZE, TARBNAME: RESULT):
BEGIN
ITEM TABSIZE U;
ITEM RESULT U;
TABLE TABNAME(1:100);

ITEM ENTRY U;

END

TERM

The REF-specification in the compool-module contains the

procedure-declaration for AVERAGE. The DEF-gpecification in the

procedure-modu’e contains the procedura~definition. Since

external subroutines cannot be defined in a compool-module, a

REF-specification is the only way information about the
subroutine can be given in the compool.

Data can also be declared physically in a non-compool module and

made available in the compool by a REF-specification.

- 227 - 16: Externals and Modules

B T B T =

A name declared in a REF-gpecification must agree in name, type,

and all other attributes with the name declared in the DEF-

gspecification. The compiler checks the agreement of REF- and
DEF-gpecifications under certain circunstances, which are

discussed later in this chapter in connection with the compool- , }
directive. :

Presets must not be given in a REF-specification for an item or a
table. Presets can be given in a REF-specification for a block
ouly in one special case, which is discussed in Chapter 19 on
"Advanced Topics".

16.1.3 Constant Data

A constint declaration cannot be declared external directly with
either a DEF~ or REF-sgpecification. However, a block containing
a constant declaration can be made external.

b iad

The following js a valid declaration: .-
DEF BLOCK PBEUDOBLCCK:
BEGIN

CONSTANT ITEM PI F = 3.14159;
END

16.2 MODULES ! \
A module can be any of the following:

Main-Program-Module

Compool=Module

Procedure-Module
When a module is compiled, it existe within the two additional

scnpes described earlier in Chapter 4, the system scope and the
conpool scope.

The following sections consider the form and content of each of :
the three kinds of module. Then module compilation is fmﬁ
considered.) .

16: Externals and Modules - 228 ~

T - 1 N S U

ST ekl e balineSel A

P Y

O

L e et

e R e i Lk

VRS VR TN

AT =1t L RPN

=¥

BN T

T el A s g,

_ kN S

i

Tow Mk W b MM R D o gl 1

16.2.1 Main Program Module

A main-program-module contains a program-body and an optional
sequence of non-nested-subroutines. The form of the main-
program-module is:
START PROGRAM program-name
program-body
[non-nested-subroutine ...,]

TERM

A program-body is the same as a subroutine-body. It is either a
single statement or a sequence of declarations, statements, and
subroutine-definitions, as follows:
BEGIN
[declaration eee]
statement ...
[subroutine-definition ...]
[label ...]
END
The declarations and subroutine-definitions are optional, bu’ "*..

program=budy must contain at least one executable statement.

A non-nested-subroutine is a subroutine definition that can be

made external by the addition of the DEF reserved word, as
follows:

[DEF] subroutine-definition

A non-nested-subroutine can contain nested subroutines.

When a program is executed, the statement or statements of the
program-body of the main-program-module are executed, astarting
with the first and continuing until the execution is complete.

- 229 - 16: Externals aﬁd Modiules

WS T IR IR UGS S o N

o'

Consider the following main-program-module:

START PROGRAM SEARCH;
BEGIN
TYPE KEY STATUS (V(RED),V(GREEN),V(YELLOW)):
TYPE DBASE
TABLE (1000);
BEGIN
ITEM CODE KEY:
ITEM VALUE U; :
END
TABLE DATA DBASE;
ITEM CURVAL U;
GETVALUE (DATA);
CURVAL=RETRIEVE (V(RED))
PROC RETRIEVE (ARG1l) U;
BRGIN
ITEM ARGl KEY;
FOR I:@ BY 1 WHILE I<=1000;
IF CODE(1) = ARGl:
RETRIEVE = VALUE(I):
ERROR(2@);
END
END
DEF PROC GETVALUE (ARGTARB):
BEGIN
TABLE ARGTAB DEASE;
END
DEF PROC ERROR(ERRNO);
BEGIN
ITEM ERRNO U;
END
TERM

This main-program-module consists of & program-body and two non-
nested subroutines. The program-body contains two type-
declarations, a table-declaration, an item-declaration, two
statements, and a nested subroutine-definition.

This main-program-module is independent and could be compiled and
executed. The following sectione will illustrate how some of the

informetion in this main-progvam-module can be put in other
modules.

16: Externals and Modules - 230 -

P

16.2.2 Compool-Modules:

A compool~module provides for the communication of names between
separately compiled modules. A compool-module can contain only
declarations. The form is:

START COMPOOL compooi-~name !

oh
' declaration ...

TERM

The following kinds of declaration are allowed in a compool-
module:

constant declarsation

type declaration

define declaration

overlay declaration

DEF-specification for a data or statement name declaration
REF-specification for a data or subroutine declaration

Constant declarations were discuseed in Chapters 6 and 7. Type
declarations were discussed in Chapter 9. Define delarations
will be discussed in Chapter 18 and overlay declarations in
Chapter 19. DEF- and REF-specifications are described later in
this chapter.

As an example of a compool-declaration, consider the following:

START COMPOOL TYPEDEFS:
TYPE KEY STATUS (V(RED),V(GREEN),V(YELLOW));
TYPE DBASE
TABLE (1000);
BEGIN
ITEM CODE KEY;
ITEM VALUE U;
TND
TERM

‘fhe compool TYPEDEFS containg two type declarations, one for the
item type KEY and one for the table type DBASE.

- 231 =~ 16: Externals and Modules

MRS e e

A A o TSI NN BN VLI s w4

L,

The information in a compool-module is made available to the

module being compiled by a ICOMPOCL directive. |COMPOOL .
directives are given immedlately following the START in the :
module being compiled. A iCOMPOOL directive makes available L ‘
either the declarations for a set of given names or all the) Y R
declarations in the compool, depending on ite form. The !COMPOOL
directive is discussed in more detail a little later in this

chapter and fully in Chapter 17, "Directives".

With this compool, the main-program-module given earlier could be
written using a ICOMPOOL directive to supply the necessary type- .
declartions, as follows: i

START |COMPOOL ('TYPEDEFS'); :
PROGRAM SEARCH; d
BEGIN
TABLE DATA DBASE;
ITEM CURVAL Uy :
GETVALUE (DATA); !
CURVAL=RETRIEVE (V(RED)); T
PROC RETRIEVE(ARGL) U; -~
BEGIN
, ITEM ARGl KEY; A .
\ FOR I:0 BY 1 WHILE I<=1000; }
IF CODE(I) = ARGl; i
RETRIEVE = VALUE(I): B
ERROR(24); li
END Iy
END 4
DEF PROC GETVALUE (ARGTAB) N
BEGIN .
TABLE ARGTAB DBASE; -
END
r\ DEF PROC ERROR(ERRNO):
b BEGIN
ITEM ERRNO U:
END
TERM

The fact that the compool name TYPEDEFS is parenthesized }
indicates that all the declarations in that compool are made ‘
available to the main-program-module. Thus, the declarations for
the type KEY and the type DRASE are made available from the

compool and can be used, without declaration, in the main- o
program-nodule. :

£

16: Externals and Modules - 232 -

o

These declarations are in the compool scope, as discussed earlier
in Chapter 4 on "Declarations and Scop=2". The scopes of the
main-program-module SEARCH can be diagrammed as follows:

3, Tsystem—scope---— ------------ —————————————— —mmm———— --------—T.
+COoIMPO0) -BCOpEe ==~ e~ r e e e r st e, s m e —— - =-—+
DBASE, KEY, SEARCH
+module-gCope—===w-mmcowannnna— -—"-—-~----T
+module-body-gcope~m=m=c—mmcmmmc———a +
| DATA, CURVAL |
| RETRIEVE |
| +BUDYr-800pe=~=mm=m~=t |
| | ARGTAB \ | l
| $mmmm e et !
| |
e o e e e e o e
GETVALUE
+8Ubr~BCOpe=-===wmmmmcauct
y | ARGl]
(TS USSR ——
ERRCR
+BUbr-gCope=-==~======m=v= + |
| ERRNO .
o e e e e ——+
o e et e o ;
L T T - o v i b o e
TSy — e ——————— e e e e e e +
(‘ The module name SEARCH and the type-names DBASE and KEY are in

the compool ecope. The names of the non-nested subroutines
GETVALUE and ERROR are in the module scope. The names of the
data objects DATA and CURVAL and the name of the subroutine
RETRIEVE are in the module-body scope. The name of the formal
parameter ARGTAB is in the subr~body scope of RETRIEVE, and so
on.

Declarations are placed in a compool principally so that they are
available for use by more than one module. The use of compools
provides a logical program structure that can be readily
generalized. In some cases, declarations that are not shared are
also placed in a compool for structural purposes.

- 233 ~ 16: Externals and Modules

Wi+ I e, o Sl i s oo SN ko O Ot

UOMNSISARSN M HOR, o11 t AALna TOMRL, csiobb s1
y— B e e died o

.

DL ARk ez et Y AR s s e

e et b AT LS T s et - Deien Wewrlonia

Suppose, in our example, that the table DATA is needed in several
modules. If each module is t0 use the same table, that table-

must be located in a compool. Consider the following compool-
declaration:

START |COMPOOL { ‘TYPEDEFS');
COMPOOL DATABASE;
BEGIN
DEF TABLI DATA DBASE;
DEF ITEM CURVAL U;
END
TERM

This compool module contains a |COMPOOL directive, which makes
the declarations of the compool TYPEDEFS available. Thus, the
type~names DBASE and CURVAL do not need to be declared in this

module.
The scopes during the compilation of the module DATABASE are as
follows:
+EY Bt EM= G OOPE = == = e i e e e e e e e -t
+COMPOOl-gCope~ mmm e e e — - ——— - e ———— +
| DBASE, KEY, DATABASE | l
+module-scope~=—i-=—== e e e T
I +module-body=-8COope===ma=mm=mu—- ——— |
; ; DATA, CURVAL = }
| tecemmceccdicddecdcdccdccacccc e nee + |
| | I l
L ettt bttt et - | l
+—-—-—o ----- E D R e P T T T T L ot e e et 8o i s e
l
o - e e e e o e e e -————— +
16: Externals and Modules - 234 -

o —— s

-

¢ iy

o s s

A

—— e

B I ITEY St

C

The main-program module can be written uesing the compool
DATABASE, as follows:

START (COMPOOL ('DATABASE');:
PROGRAM SEARCH:
BEGIN
GETVALUE (DATA);
CURVAL=RETRIEVE (V(RED));
PROC RETRIEVE (ARG1l) U;
BEGIN
ITEM ARGl KEY;
FOR I1:28 BY 1 WHILE I<=1000;
IF CODE(I) = ARGl:
RETRIEVE = VALUE(I):
ERROR(20) ;
END
END
DEF PROC GETVALUE(ARGTAB):
BEGIN
TABLE ARGTAB DBASE;
END
DEF PROC ERROR(ERRNO);
BEGIN
ITEM ERRNO U;
END
TERM

The data objects DATA and CURVAL are declared in the compool
DATABASE and therefore do not need to be declared in the main-
program-module. The type-names are needed only for the
declaration of the data objects and so the main-program~module
does not need to have a |COMPOOL directive for the compool
TYPEDEFS. The type~names DBASE and KEY are not known in the
main~-program-module,

- 235 - 16: EBxternals and Modules

T N G i b

PYPRPRUIIE3 S P S

[

1”{
!

The scopes during the compilation of the main-program-module can

now be diagrammed as follows:

|

Y S OMm B OO PO = = = e e e e e e e e
+Ccompool-8cope-~—ec—mnam—n e ————— e ===t
DATA, CURVAL, SEARCH
+module-BCope~==mmuucnnna m—me—meea——— -~-—~T
| | | +module-body-scope-=~==remmemcn———— T
| RETRIEVE l
| +BUbr-8cope=—m=mmmm= + |
I | ARGTAB I l
| o —————— + |
| ! ‘ l
I tome e ————— ,ee———— —————— e ———— +
| GETVALUE
| | +8ubr-scope~-==-~--=mu=-u- +
| ARGl |
o m—— - o e B e +
I ERROR
+subr-scope=——==w=- —m—————
| ERRNO !
| e e e e —————— |
tmm—— e e e e
+—~—- ————————— - s ma s s - v v - e vy o wad e et AT W e - +
o e 20 e s 4 o B o e o 1 P e e e o e O . Y e o o A 1 6 o

16;: Externals and Modules - 236 -

The next step in aimpIifQing the main-program is to place the
subroutines in.a module. Subroutine-definitisns must e given in
a procedure-module.

L]
16.2.3 Procedure-Modules
A procedure-module provides a way in which the subroutines of a
program can be compiled separately. A procedure moduvle contains
declarutions and subroutine definitions. The form is:
START
[declaration ...]
[[DEF] subroutine~declaration o]
. TERM '
. Any typ2 of declaration can be given in a procedure module.

P
: P
T e

e AT e AT sl el

.

el

B ezl T

gurerT g

A

As an example of a procvedure-module, consider the following:

START |COMPOOL ('TYPEDEFS'):
DEF PROC GETVALUE (ARGTAR);
BEGIN
TABLE ARGTAB DBASE; \
END
DEF PROC ERROR(ERRNO);
BEGIN
ITEM ERRNO.U;
END
TERM

The procedure module contains two external subroutine

definitions. The type-name DBASE ia provided by the declaration
of DBASE in the compool TYPEDEFS,

In order to make these subroutine definitions available to a
another module, a link must be made with a compool, by including

a REF-gmpecification in the compool and a [COMPOOL directive in
the procedure module,

Suppose we include the REF-specifications in the DATABASE module
as follows:

START |COMPOOL ('I'YPEDEFS');
COMPOOCL DATABASE:
BEGIN
DEF TABLE DATA DBASE:
DEF ITEM CURVAL U:
REF PROC GETVALUE(ARGTAB):
TABLE ARGTAB NBASE;
REF PROC ERROR{ERRNO);
ITEM ERRNO U;
END
TIERM

Now, we compile the compool module DATABASE in the compool scope
which includes the declarations from TVPEDEFS.

- 237 - 16: Externals and Modules

AN Bkt b o

PRI o S SR "

T PRLLB AL 5 o LA L N it sy

e e

We then include a compool~directive for the compool DATABASE in
the procedure module, so that the compiler can check the agreement
of the corresponding DEF- and REF-specifications. .
START 1COMPOQL 'DATABASE' GETVALUE, ERROR;
lcoMPCOL ('TYPEDEFS');
DEF PROC GETVALUE (ARGTAB);
BEGQIN
TABLE ARGTAB DBASE:
END
DEF PROC ERROR(ERRNO):
BEGIN
ITEM ERRNO U:
END
TERM

Then we compile the procedure~module in the compool scope which
includes the REF-gpecifications from the compool DATABASE and the
type-declarations from the compool TYPEDEFS.

The scopes for the compilation of the procedure module can he
diagrammed as follows:

+gystem-scopes==—=~ ---—-------—-----—----—--—--—-------—-f--T
4+COMPOO) -8COpE~==mm—-= —————————— m——————————— ————— + |
| DBASE, KEY, GETVALUE, ERROR |
+MOAUL @ =8 COPE === mmm e e = e ----~~---T | }
| +modu1e—body-scope-——~--*-~--—--—--T |
GETVALUE | |
| | +BUDr-BCOpe==m= - ——— e + ‘ |
| | I | ARGl [l |
demm————— ————————— ——— | |
ERROR | |
+8ubr-scope==-~~m-=== ————— |
ERRNO | l
.- —————— A — l
| | 1 |
I IS
A i ————————— i |
| |
o e o e s - et 1m e ot e et 7 e e o o e e e e e +
I
Fmmm—————— e e m e m s ——————————— IS —————

The compller checks that the REF-gpecifications in the compool
agree with the DEF-specifications in the module being compiled.

16: BExternals and Modules - 238 -

DAl i 17 ¢

AR o VT TEITTERTR LR T et ety

RS E—]

i
fa
s

i

SR S

|
8

rﬂm‘i T T 5. NS W TS A
Ak

]

The main-program module now can be written using the compool
DATABASE, as follows:

START |COMPOOL (DATABASE);
PROGRAM SEARCH;
BEGIN
GETVALUE (DATA);
CURVAL=RETRIEVE (V(RED));
PROC RETRIEVE (ARGl) U;
BEGIN
TTEM ARGl KEY;
FOR I:2 BY 1 WHILE I<=slQ0@;
IF CODI(I) = ARGl;
RETRIEVE = VALUE(I);
ERROR(28); "
END \ :
END K)
TERM

l16.3 MODULE COMMUNICATIOM

As has been illustrated in the preceding sections, moduler can

communicate by compool directives. If a declaration is to be used

in more than one module, it is placed in a compool. Then it can

be referenced in each module that needs it by a compool-
directive.

A compocl-directive can make &ll the declaratione in a given
compoo) available or it can make a selected set of declarations
available. A compool=directive that makes all declarations

available has the form:
| COMPOOL (compool-file) i

A compool-directive that makes selected declarations available
has the form:

| COMPOOL compool-~file name ,... !
Only the declarations of those names given are made available in
this form.

Compool=~£file is a character literal designated by the

implementation to correspond to a given compool. Name is a name
declared in the compool.

- 239 - 16: Externals and Modules

" 'MW&P,

WU

L R ST Y L P G

PRI IPIT SRR SRR S S

1o SRR e R e e

oy

PN

'a'blmu.{ !

¢

Other forms of the compool-directive, as well as a complete ¢
discussion of this directive, are given in Chapter 1l6.

i v 16.3.1 Direct Communication

; If communication between modules is accomplished through

X compool-directives, the compiler provides the declaration of the
; shared object. If the module using that object does not use it in !
: .a manner that is consistent with its declaration, the compiler : u
4 detecte and reports the error.

PR I U R

A REF-gpecification can be used in one module to directly
communicate with another module, but in this case, no checking
can be performed. The compiler must assume that the type class
and attributes given in the REF-sgpecification are accurate. At
link time, the references to the name are bound together, but no

check of type or attributes can be made because that information
is not avallable at link time.

TTETII TERA - Ll i e

4 Thus, 1f the REF-specification declares an object of one type and

the DEF-apecification declares an object of another type, the
program that is formed by linking the separately compiled modules
ig invalid and the results of its execution are unpredictable.

e e e g T

As an example of direct communication, suppose we have a
procedure module that contains some external subroutine v -
definitions as followe: L)

START |COMPOOL (TYPEDEFS);
N DEF PROC GETVALUE (ARGTAB);
3 BEGIN

TABLE ARGTAR DBASE;

END

DEF PROC ERROR(ERPNO):

BEGIN

ITEM ERRNO U;

END : j
TERM -

l6: Externals and Modules - 2403 -

n . S = fo) p——— v B R e R I ta)y f
) ! .] » N I - .

f“ﬁ

Now, suppose that the module DATABASE does not contain a REF-
specification for the subroutine ERROR, but instead the main~
preogram module includes a REF-specification for ERROR, as
follows:

START |{COMPOOL (DATABASE);
PROGRAM SEARCH;:
BEGIN
REF PROC ERROR(ERRNO);
ITEM ERRNO U;
GETVALUE (DATA) »
CURVAL=RETRIEVE (V (RED) } ;
PROC RETRIEVE(ARG1l) U:
BEGIN
ITEM ARGl KEY:
FOR I:¥ BY 1 WHILE I<=1000;
IF CODE(I) = ARGl:
RETRIEVE = VALUE(I);
ERROR(2¢);
END
END
TERM

In this case, the REF-specification for ERROR agrees with the
DEF-specification, and the resulting program operates correctly.
However, suppose the REF-specificaticn indicated that the
subroutine ERROR has two arguments. The compiler cannot detect
any error, the linker makes the connection and the resulting

program is invalid but no indication of its invalidity can be
made.

- 241 - 16: Externals and Modules

AN ATl L1 10 ORI A0 o SN e WRIN, MHAN rt Talori NHN S i, eL
. va v e A N i . .

R VR

T aeea m e

I S

RS A P T i L d W el e S

Chapter 17

DIRECTIVES

Directives are used to provide supplemental information to the
compiler about the program., Directives affect output format,
program optimization, data and subroutine linkage, debugging
information, and other aspects of program processing.

Most directives change the way a program is processed without
changing the computation performed by the program. Perhaps the
simplest example of such a directive is "IEJECT", which starts a
new p&ge in the compiler's listing of the program.

In general, directives can appear after the reserved word START
and before any statement, declarction, or optionally labelled
END. Some directives can only be placed in certain positions.

This chapter describes the directives in detail and indicates the
placement of each directive. Each section considers a particular
class of directive. The classes of directives and the names and
form of the directives in each ¢laes are given on the next page.

- 243 ~ 17: Directives

4t
¥

L

| BASGMENS PAGE BLAMG-NOP FILMED

R

e

Class Directive Form

compool {COMPOOL (compool-file) ;
|COMPOOL compool-file name ,... i

text lcory file ; K
ISKIP letter
IEEGIN letter ;

e

JEND ; :
1
listing LIS
INOLIST ; i
|EJECT ; {
initialization IINITIALIZE ;

allocation-~order 10RDER

evaluation~order ILEFTRIGHT

I|REARRANGE ;
interference | INTERFERENCE datu-name : data~name ,... sy
redueible |REDUCIBLE ;
regieter |BASE data-name register-number

|ISBASE data-name reglster-number ;
IDROP register-number i

linkage ILINKAGE symbol ; \
oY
trace ITRACE (control) name ,... ! }
ITRACE name ;... }
17.1 COMPOOL-DIRECTIVES
A compool-directive is used to identify the compcol and the set
of names from that compocl that are to be umed in the compool .
scope for the module being compiled. é

17: Directives - 244 -

Depending on its form, a compocl-directive can make s~ilable all
the declarations in a compool or a selected set of declarations.
A compool-directive that provides access to all the definitions
declared in the compocl gives the compool-file enclosed in
parentheses, as follows: '

ICOMPOOL (compool=file) :

This form makes available all the declarations in the compool.
Declarations used in the named compool that were obtained from
other compools by a compool-directive, however, are not made
available. This case was illustrated in Chapter 16.

Compool-file is an implementation-designated character literal
that identifies the given compool. If compool-file is not given,
the compiler assumes an unnamed compool.

A compool-directive that provides access to a selected set of
definitions from a compool has the following form:

|COMPOOL compool~file name ,... :

The module that contains this compool-directive has access only
to the declaratione of the names given in this directive, plus
any additional names that are associated with these names and aru
automatically included.

17.1.1 Names

The names given in a compool-directive must be declared in the
designated compool. Further, a given name cannot be the name of
an entity declared in a type~declaration or the name of a formal
parameter.

- 245 - 17: Directives

o

v

17.1.2 Additional Declarations

Additiunal declarations are, in some cases, made available to
permit the full use of a given name. Additional declarations are
provided in the following cases: ‘

(=]

17.1.3

If the name given in a compool~directive is the name of
an item, table, or block declared using a type-name,
then the declaration of the type-name is also made
available, provided it is declared within the compool
and not brought in by a compool-directive.

For a 'pointer item, the definition of the type-name that
ig the pointed~to type is also made available, provided

it is declared within the compool and not brought in by

4 compool-directive.

If the given name is the name of an item within a table,
then the table name is also made available.

If the given name is a table name, the definitlons of
any status-lists or status-type-names assoclated with
the table's dimeneions are alsoc made avajlable, provided
they are declared ln the compool.

If the given name is a table type-name or block tyre-
name, the definitions of the components are made
available.

If the given name is & status item name, ite amsociated
status-list and status type-name (if any) are also made
available, provided they are declared in the compool.

If the given name is the name of a subroutine, any
type-names associated with the gubroutine's formal
parameters or return value are also made avallable,
provided they are declared in the compool.

Placement

A compool-directive can be given only immediately following the
START reserved word of a module or following another compool-
dirsctive.

17: Directives - 246 -

_.i";

a

17.1.4 Examples
Suppose you have the following compool:

DEF ITEM HEIGHT U;
! DEF ITEM WIDTH U;
DEF ITEM LENGTH U;
DEF TABLE GRID(2@,20):
BEGIN
ITEM XCOORD U;
ITEM YCOORD U; 1
END :
TERM

The following list givee different forms of the compool-directive
and indicates the declarations that are made available for each

‘ START COMPOOL BSQUATA: n

fornm. \ .

’ Directive Available Declarat:ons ?

Q {T I COMPOOL 'BSQDATA' LENGTH; LENGTH ;

* ” |COMPOOL 'BSQDATA' LENGTH,WIDTH; LENGTH, WIDTH i
| | COMPOOL 'BSQDATA' GRID; GRID f
}‘ |COMPOOL 'BSQDATA' (GRID): GRID, XCOORD, YCOORD ;
| 1COMPOOL ('BSQDATA'); LENGTH, HEIGHT, WIDTH, GRID, '

XCOORD, YCOORD

17.2 TEXT-DIRECTIVES

The text-directives are used to modify the source program. Tha

|COPY text-directive is used to copy the contents of a file into

a program at a particular point and the conditional directives 0
are used to permit conditional compilation, by indicating those ‘
portions of the program that are and are not to be compiled. ‘

- 247 - 17: Directives 4 \

g am e g

17.2.1 Copy-Directive

The copy-directive names the file that is to be copied into the
program at the point where the copy-directive is given. The form .
of the copy-directive is: . ! }

ICOPY file ;

File is a character literal that is an implementation dependent
file-name,

17.2.1.1 Placement

The copy-directive can be placed anywhere a directive can be
given.

17020102 ExamEle Ha
An example of the copy-directive is:

ICOPY 'IDENT.NEW';

The compiler replaces the copy-directive by the file named in the
directive. A define-call, as will be seen in Chapter 18 lao

produces a text replacement. A copy-directive is different from

a define-call in that it refers to an external file, it cannot be
parameterized, and it can be given only in places where .
directives can appear. .)

I 17.2.2 Conditional-Compilation-Directives

Three conditional-compilation-directives are defirned. The forms
of the directives are as follows:

I|SKIP letter ;

IBEGIN letter

IEND : fd
The ISKIP directive identifies the blocks of source program that ﬁ
are to be skipped. The other two directives, the IBREGIN and i
IEND directives delimit the bhlock that ias to be included or

. skipped depending on the |SKIP directives that are included in
\ the program. kd

&t

17: Directives - 248 - it

. il

i~

17.2.2.1 Placement

The conditional-compilation~directives can be given anywhere a
directive can be given. The ISKIP directive must be given before
the associated |BEGIN and !END directives. For each |BEGIN
directive, a matching !END directive must be given.

17.2.2.2 Examples

Suppose a program includes a computation that can be written
either to execute efficiently or to conserve storage. You can
include both versions of the computation in your program and
choome between the two versions by changing the letter on the
|SKIP directive, as follows:

START PROGRAM MAIN;
BEGIN

(Aeclarations and statements)

I8KIP Ay
I|BEGIN A;

(time efficient computation)

|END:
I|BEGIN B

(space-efficient computation)

JEND;
END
TERM

If the letter A is used with the 18KIP directive, 2s shown above,
this directive instructs the compiler to omit the conditional
block labelled A. As a result, the program uses the space-
efficient computation. 1If the letter B is used with the ISKIP
directive, the compiler omits the conditional block labelled E
and uses the time-efficlent computation.

17y Directives

- 249 ~

TR, ARt

L T St Lor LT e ek A b st il Y i O L e A 2 S 2B

——— e

AL Y MR B T

As another example, suppose you want to select one of two

possible functions that produce a random number, hased on the
ISKIP directive. You can write:

START PROGRAM MAIN
BEGIN
{SKIP Y;
ITEM RESULT U;
ITEM COUNT U;
|BEGIN X
REF PROC RND U;
BEGIN
END
RESULT = RND;
|END;
IBEGIN Y
REF PROC RANDOM U;
BEGIN
END
RESULT = RANDOM;
LEND : .
COUNT w @; ih
CASE RESULT; -~
BEGIN '
(DEFAULT)1
(11100): COUNT = COUNT + 1;
(1611500): COUNT = COUNT + 2
(5¢1:9¢2): COUNT = COUNT + 3;
END
. END
TERM

17t Directives - 2%0 -

e i

. =-2

el L. L L,

The ISKIP directive indicates that the information in the block
associated with Y is to be skipped. The program that is compiled
then ia:

BEGIN
ITEM RESULT Up
ITEM COUNT U;
REF PROC RND U;
BEGIN

: END

: RESULT = RND;
o COUNT = @,
o CASE RESULT;
' J

t

. START PROGRAM MAIN

RSTeT L,

BEGIN
{ DEFAULT) 1t
(1:100) COUNT = COUNT + 1;
(101:50@): COUNT = COUNT + 2;
(501:900): COUNT = COUNT + 3;
END
\ END
{ TERM

Conditional compilation blocks can be nested. If a ISKIP
directive indicates that the outer block is to be skipped, then
the inner block is processed only to associate BEGIN END pairs.
If the outer block is not skipped, then a ISKIP directive can be
included to skip an inner block.

B e VLU B~)

T e e i T e e T e+ e el e e

- 251 - 17+ Directives

] RN MRS G R 0 R TERA T AL il
R , ———

¢
Suppose you want to square the result in some cases when you use
the function RANDOM. You can associate the squaring of the result
with a conditional block as follows:
START PROGRAM MAIN;
BEGIN
| 8K1IP X:
ITEM RESULT U;
ITEM COUNT U;
|BEGIN X:
REF PROC RND U:
BEGIN
END
RESULT = RND;
|END;
I|BEGIN Y
REF PROC RANDOM U:
BEGIN
END
RESULT = RANDOM;
|BEGIN Ay
RESULT = RESULTW¥*2:
JEND;
{END}
COUNT = @y
CASE RESULT:
BEGIN
(DEFAULT):
(lil00): COUNT = COUNT + 1:
(191:507) : COUNT = COUNT + 2
(501:900): COUNT = COUNT + 3
END
END
‘. ’ TERM
1+
17: Directives - 252 -
\’,
p

Cre ey RN - ¢ G it

42

i

.

L AT

; conditional block associated with X. The program that is
| compiled im: ,

k L The ISKIP directive instructs the compiler to omit the
l‘ ' START PROGRAM MAIN;
BEGIN
I ITEM RESULT U;
“ | ITEM COUNT U:
- REF PROC RANDOM U:
| BEGIN ,
{ o END 1
pooL RESULT = RANDOM; ! |
| i Lo
| .

RESULT = RESULTW*2;
COUNT = 0; -
- CASE RESULT;
i BEGIN
(DEFAULT) &
: (1:1@@): COUNT = COUNT + 1
; (1¢1:502): COUNT = COUNT + 2
i (501:90¢2)1 COUNT = COUNT + 3;
. J END
1 1(END
H : TERM

e W i ®, @ e b b ¢ T

|

I

|

']

- 253 - 171 Directives

You can then omit the squaring of RESULT
directive for A, as follows:

START PROGRAM MAIN:
BEGIN
| SKIP X;
I SKIP A;
ITEM RESULT U:
ITEM COUNT U;
IBEGIN X;
REF PROC RND U;
BEGIN
END
RESULT = RND;
‘ LEND;
| |BEGIN Y
REF PROC RANDOM U:
BEGIN
END
RESULT = RANDOM;
{BEGIN A}
RESULT = RESULT¥*2;
| END;
|END
COUNT =
CASE RESULT;
BEGIN
{ DEFAULT }: ;
(L:100) COUNT
(101:500)t COUNT
(5741:90@): COUNT

u COUNT + 1:
= COUNT + 2%
m COUNT + 33

END
END
'y TERM
Lﬁ
171 Directives - 254 -

“
B N R e vt
e S Wil "

uh."n |

e

by including a ISKIP

e

- iar

e P e LA

% S mEame: =25

!

e

e

et 2 e TSR

= Foarm mmm -

T e

gy

Ry LAY TRENTA TR IR, 4 BRI

As a result the following program is compiled:

START PROGRAM MAIN;
BEGIN
ITEM RESULT U;
ITEM COUNT U;
REF PROC RANDOM U;
BEGIN
END
RESULT = RANDOM;
COUNT = @&
CASE RESULT;
BEGIN
(DEFAULT):
(1:100): COUNT = COUNT + 1:
(181:5¢0): COUNT = COUNT + 2!
(5@1:9¢7): COUNT = COUNT + 3;
END
END
TERM

17.3 LISTING-DIRECTIVES

The listing-directives are used to provide the compiler with
information about whiuvh parts of the source listing are to
printed and where page ejects are desired. Three listing-
directives are defined:

ILIST;

INOLIST ;

{EJECT
If no listing~&irectives are ygiven, the compiler prints a listing
of the source program, inserting page breaks in an implementation
dependent manner. The INOLIST directive tells the compllexr to
suppress the listing of the source program. The !LIST directive

tells the compiler to resume listing ‘he source program. The
IEJECT directive tells the compiler to insert a page break.

17.3.1 Placement

The listing-directives can be placed anywhere a directive can be
given.

- 255 - 17: Directives

o, oA DA A 0 W1 700 A il R Ao 541 T PR .

| it ¥ . A T o A v wdl L) g 3 N s

e

N

S WS e 1T

Adredee Lkt

s SFMRERS 4t AT - T e e et e e

D

e - ————T

L |

17.4 INITIALIZATION-DIRECTIVE

The initia)ization-directive is usmed tc Ret all atatic data that
is not initialized by a preset to zero bits. The form of the
initialization directive is:

{INITIALIZE ;

“ne effect of the initialization directive extends from the point
at which it is given to the end of the current scope.

i",4,1 Placement

The initjalize-directive can only be given hefore a declaration.
However, it cannot be given before a declaration that is within a
table or a block. Further, it cannot be given before a
subrouvtine~declaration.

17.4.2 Example

Consider the following program fragment:

IINITIALIZE;
ITEM COUNT U;
TABLE SPECS(108);
BEGIN
ITEM LENGTH U:
ITEM WIDTH U = 191(5);
ITEM HEIGHT U;
END

The irnitialize-directive causes COUNT and the 1?1 instances of
the iteme LENGTH and HEIGHT of the table SPECS to be initializec.
The 141 instances of the item WIDTH are preset to 5 and are,
therefore, not affec :d by the initialize-directive.

17.5 ALLOCATION-ORDER~DIRECTIVE

The allocation-order~directive instructs the compiler to allocate
storage for the data objects in a block cr table in same order as
their declarations are given. If an allocation~order~-directive
is not given, the compiler can rearrange the physical ‘storage
layout of the data objecis within a block or table to provide for
better access or better use of storage.

17: Directives - 256 -~

L e Y. T e e R anah 15 . B GIY e

Pt e

Sy’

i rrmitmnm ne e

e ey gy gy

The form of the allocation-order-directive is:

{ORDER

17.5.1 Placement

The allocation-order-directive can be given only as the first
entity in a block-description or entry-description. The effect
of an allocation-order-directive extends from the point at which
it is given to the end of the current block or table.

An allocation-order-directive can also be given in a type=-
declaration. When the type-name declared in this way is used,
the allocvation-order-directive applies to the object being
declared.

17.5.2 Example
Supppose you have the following table:

TABLE PARTS(10@0) D;
BEGIN
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B:
END

The letter D in the table-attributes indicates dense packing.
Dense packing is an advanced topic described in Chapter 19.

If the compiler is allowed to change the order of allocation, it
can allocate ID and FLAG in a single word and conserve storage.
(Not all compilers perform this sort of rearrangement.)
Hecuvever, if you want to be certain that no rearrangement occurs,
you can iriclude an sallocation-order-directive as follows:

TABLE PARTS(16@8) D:
BEGIN
|ORDER:
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B:
END

- 257 - 17: Directives

R R e e e i

I ST NP

- b L e

Lo e aan -

|
i
!

) ﬁ -gﬂ;__‘gﬁg;-' A e i % =

o - ——————-

17.6 EVALUATION-ORDER-DIRECTIVES

The evaluation~order-directives are used to indicate whether or
not the compiler can rearrange computations within a formula.

The evaluation-order-directives are:
|LEFTRIGHT
{REARRANGE

The |LEFTRIGHT directive tells the compiler that it must evaluatu
operators at the same precedence level from left to right within
a formula. The |REARRANGE directive tells the compiler that it
can evaluate operators at the same precedence level in any order
when such a rearrangement produces more efficient code.
Evaluation order is of course, constrained by parentheses.

If no directive is given, the compller assumes that it can

rearrange the evaluation order of operators of the same
precedence.

17.6.1 Placement

These directives can be placed anywhere a directive can be given.

The effect of an evaluation-order-directive extends from the
point at which it is given to the end of the scope or to the next
evaluation-order-directive, whichever comes first.

17: Directives ~ 258 -

.—\
e

e R N o s F o r o A an = e anor o g Ay

e s s

17.6.2 Example
Suppose you have the following formula:
HEIGHT*LENGTH*WIDTH

If no evaluation-order-directive is given, the compiler can
rearrange the formula as follows:

LENGTHYHEIGHT*WIDTH
Or it can rearrange in any other way to produce efficient code.
However, if the |LEFTRIGHT directive is in effect, the compiler

must first multiply HEIGHT times LENGTH and then multiply the
result by WIDTH.

17.7 INTERFEREZNCE-DIRECTIVE

The interference-directive is used to inform the compiler that it
cannot assume that the storage for the given names is dietinct.
The form of the interference-directive is:

INTERFERENCE data-name : data~name ,...

The interference-directive indicates that the storage for the
first data~name is not necessarily distinct from +the storage for
the list of data names following the colon.

The names glven in the interference-directive must have been
previously declared.

If an interference-directive is not given, the compiler assumes
that distinct data names refer to distinct storage and makes
optimizations tused on that assumption.

Ti.e compiler ie aware of storage that overlaps because of
langu~rde features that allow overlaying. These language
features, specified tables and overlay declarations, are
described in “hapter 19 on "Advanced Topics". However, there are
cases in which ti:~ compiler is not aware of cverlaps and for
these cases an inte:ference directive must be given. For
example, if two data obj)ccts are assigned the same absolute
address in different overlay-declarations, an interference-
directive should be used to warn the compiler.

- 259 - 17: Directives

e 5 DAt e e -

LRy

17.7.1 Placement

An interference-directive can be given only before « declaration.

17.7.2 Example

As an example of the use of the interference~-directive, consider
the follewing:

TABLE PARTS(17):

ITEM PARTNO U;
ITEM SIZE F:
ITEM ID F;
OVERLLY POS(3310) PARTS;
OVERLAY POS(3314) SIZE:
|INTERPERENCE PARTS : SIZE, ID;

Thie directive informs the compiler that it should not assume

that the storage for PARTS is distinct from the storage for SIZE
and ID,

17.8 REDUCIBLE-DIRECTIVE

The reducible-directive is used to allow additional optimizations
of function calls. The form is:

|REDUCIBLE

A reducible function is one that has the following
characteristics:

o All calls with identically valued actual parameters

result in identical function values and output parameter
values.

o The only data that is modified by the function call is
that data declared within the function.

The compiler c¢can, in some cases, detect Lhe existence of common
calls on a reducible function, save the values produced by the

first call, delete subsequent calls and use the values produced
by the first call.

17: Directives - 260 -

4

17.8.1 Placement
A reducible-directive is given following the semicolon of the

function heading. A reducible function must have the reducible-
directive in its definition and all its declarations.

17.8.2 Example
Trigonometric functions are good examples of reducible functions.

SIN(ANGLE) alwaye produces the same result for the same value of
ANGLE and the function has no side effects,

17.9 REGISTER~DIRECTIVES

Register-directives are used to affect target-machine register
allocation. Three register-directives are defined, namely:

IBASE data-name register-number;
|1SBASE data-name register-number;
IDROP register-number ;

Register-number is an integer Jiteral that specifies the register
in a target-machine-dependent way.

Both the |BASE and |ISBASE directives cause the compiler to
dedicate the register to the value it currently contains. The
I|BASE directive instructs the compliler to load the specified
register with the address of the given data-name. The |ISBASE
directive instructs the compiler to assume tha. the specified
register contains the address of the data object.

The IDROP directive frees the specified register for other use by
the compiler.

Register allocation is not meaningfu) for all machines.
Register-directives are ignored for machines that do not use
registers.

- 261 -~ 17: Directives

. e

17.9.1 Placement

E ' The register-directives can be given anywhera a directive can be

given.
|)
A 17.1¢ LINKAGE-DIRECTIVE
; The linkage-directive ie used to identify a subroutine that does I
! not obey standard JOVIAL (J73) linkage conventions. The form of ‘
% the linkage-directive is:
ILINKAGE symbol ... ; !
Symbol in a linkage-directive is a string that specifies the :
implementation-dependent linkage type toc be used in linking the
procedure. . :
17.1¢.1 Placement vy
A linkage~directive can be given only in a subroutine declaration
or a subroutine definition. It is given there between the
heading and the declaration of the formal parameters. :
:
X
17.19.2 Example)
L
Suppose you want the following subroutine to have non~standard ¢ i
linkage. You can write the following subroutine-declaration: i) .
b PROC INTERFACE(CHANNEL:UNIT); . |
) |LINKAGE ASSEMBLY; I
BEGIN ' '

ITEM CHANNEL U

ITEM UNIT U; !

END {
t
i

]
*h‘
H

17; Directives - 262 -~

a

17.11 TRACE-DIRECTIVES

|
|
b The trace~directives are used to follow program execution and §
i monitor data assignments. The trace~directive has one of the '
: following forms:

1

ITRACE (control) name ,... ! ;
3 ' ITRACE name ,... !
The first form of the tramce-directive is a conditional trace. It A

causes tracing only if control, which is a boolean formula, is
I TRUE. The second form is an unconditional trace. !

The names given in the trace-directive are the names to be §
traced. A name can be a statement name, a subroutine name, or a '
data name.

o For a statement name, the trace notes each time the
agsociated statement is executed.

For a subroutine name, the trace notes each call on the
gubroutine. If the subroutine name given is the subroutine
that containg the trace~direoctive, the trace notes both
entry to and exit from the subroutine,

—
(o]

o) FPor a data name, the trace notes any modification of the
value of the deta oblect, The new value is included in
the trace printout. If the data name is a table, the
trace notes any modification of & table item, a table
entry, or the entire table. 1f the data name is a block,

(the trace notes modification of any enclosed object.

e s A o e et bt

\b t

Data names given in the control or as names to be traced must be
declared previously. Statement or subroutine namee can be '
declared later.

17.11.1 Placement

A trace~directive can be given only before a statement. It
applies from the point at which it is given to the end of the
scope.

i
|
{

~ 263 = 17: Directives

Pt A Gt R b Sl S 00 ik i BT i B b G AL o bl T Vi

L

_ .

g s

Chapter 18 ' i
DEFINE CAPABILITY

The define capability is used to associnte a name with a string
of JOVIAL (J73) text. When the name is used in a program, the
compiler substitutes the associated string for the name.

. The following sections describe the declaration and use of P
«{ define-names. :

i8.1 DEFINE~DECLARATION

At LTMX Ttk et A

The simplest form of the define-declaration simply associates a
string with a name, aa follows:

DEFINE define-name "define-string" :

{, The Jefine-string is any seguence of JOVIAL (J73) characters.

Suppose you want to defire a name MAXSIZE as the quotient of the
implementation parameters MAXBITSE over BITSINWORD. You can use &
define-declaration as follows:

DEFINE MAXSIZE "MAXBITS/BITSINWORD";

This declaration declares the define-name MAXSIZE and assocliates
with it the define-string "MAXBITS/BITSINWORD".

A define-declaration can also contain parameters. The form with
parameters is:

it A e e AR e S e

(“ DEFINE define-name (define-formal ,...) "define-string" :

The character sequence ",..." indicates that one or more define-
formals can be given separated by commas.

- 265 - 18: Define Capability

EHAR S SREL

A define~formal is a single letter. Within the parenthesized
parameter list, define-formals are indicated by that single
letter., Within the define-string, define-formals are indicated
bv that letter preceded by an exclamation point. A define-formal

receives its value from the corresponding define~actual given in
a call on the define-name.

For example, to provide a convenient rotation for incrementution,

you can define a name TALLY and associate it with the following
string:

DEPINE TALLY(A) "lA = A + 1" ;
The define-name TALLY has one define-formal, A, agmsociated with
it.

A define~declaration can alsgo include a list-option, which
degcribes how much information is to be given in the output
lieting. The general form of the define-declarations im:
DEFINE define-name [(define-formal ,...)] [list-option]
"define-string" i
The square brackets indicate that both the parenthesized list of
define-formals and the list option are optional.

The parameters, define-string, and list-option are discussed in
detail later in this chapter.

18.2 DEFINE-CALLS

A define-call directs the compiler to make a copy 6f the define-~
string associated with the define~name, replace the define-
formals by the define-actuals in that copy, and replace the

?efine-call by the resulting strine, The form of the define-call
81

define-name [(define-actual ,...)]

The square brackets indicate that the parenthesiged list of
define-actuals is optional. The sedquence “,..." indicates that if

more than one define~actual is given, the define~actuals are
separated by commas.

18: Define Capability - 266 -

[RSEFIRRPE I Y ey ool Ll e

Bach '
iy

L

AR T

T ST

g L s

=

T TR A R R

A define-call for a define-name that is declared without
parameters is simply the define-name alone.

For example, a define-call for the define-name MAXSIZE, declared
earlier in this chapter, is simplys '

MAXSIZE

When the compiler sees MAXSIZE, it substitutes the associated
define~string MAXBITS/BITSINWORD., For example, you can write:

IF SIZE < MAXSIZE:
EXIT:

The compller substitutes the define-string associated with
MAXS1ZE Lo get the followingi

IF SIZE < MAXBITS/BITSINWORD:
EXIT: '

A define-call for a define-~name that is declared with parameters
can have a list of define-actuale. Define-actuals can be omitted,
if a meaningful result is produced. Examples of define-calls
with migsing define-actuals ure given later in this chapter.

For example, the define-name TALLY, declared earlier in this
chapter, has one define-formal associated with it. Omitting the
define-actual does not produce a meaningful result, so a defige-
call for TALLY must have one define-actual, as follows:

TALLY (COUNT);

In place of this define-call, the compiler uses a copy of the
define-string associated with the name TALLY in which the
define-formal A is replaced by the define-actual COUNT. That is,
it supplies the following substitution:

COUNT = COUNT + 1

- 267 - 18: Define Capability

© ISR 11 YRIRYPRRNG o A i L R . gl

L T P e N CEC IR THIR TR "L 102 N I

T I |

18.2.1 Placement

The compiler only interprets a define-~call that is a symbol
within the program. It does not process the characters within
comments and character literals. Therefore, a define-call in
either of those places ls not expanded.

18.3 THE DEFINE-STRING

The define-string can consist of any string of characters within
the enclosing quotes. Since the gquote and exclemation poiint
characters have special meaning within a define-string, these
characters must be doubled to be used as simple characters within
a define-string.

Suppose you want to define a statement that includes a comment,
as followa:

DEFINE ALERT "IF READY; ALARM: "'"PHASE 1""":
The quotes cnclosing the comment are doubled so that the compiler

can interpret them as characters and not as delimiters of the
define-string.

When you use ALERT in your program, the compiler substitutes the
aggociated define-string, as follows:

JIF READY; ALARM:; "PHASE 1"

18,3,1 Define-Calls in Define-Strings

A define-string can include define~calls. The compiller, in
expanding a define-call, first makes a copy of the associated
define-string, then substituter the define-actuals for the
define-formals, then examines the resulting string to see 1f it
contains any define-calls. TIf it does, the cumpiler expands
these define-calls in the same way. Expansion is complete when
the resulting string cannot be processed further; that is, does
not contain any more define-calls.

18: Define Capability - 268 -

LR ——— ¢ or e RN

-

L9,

ws

s i b i

L B AT

' 5»-!'- s

Suppose you have the following declarations:

DEFINE T1(A,B) "1A/\BR**EXP";
DEFINE EXP "2";

‘ Now conmider the use of the define-name Tl:
XCOORD = T1(YCOORD,5);
The compiler first expands Tl to get the following:
L XCOORD = YCOORD/S**EXP;

It then expandes EXP and substitutes the resulting string in the
assignment statement as follows:

XCOORD = YCOORD/5%%2;

Suppose that two different define-declarations exist for EXP in
different scopes, as follows:

re PROC CALCULATE;
- BEGIN
DEFINE T1(A,B) "IA/!IB**EXP":

(declarations and statements)

PROC COMP1:
" BEGIN
DEFINE EXP "2";

P (declaraticns and statements)

‘ . L{

i ; : XCOORD = T1(YCOORD,5);

r‘ : (statemente)
END

PROC COMP2Z2:
BEGIN |
DEFINE EXP "§";
(declarations and statements)
XCOORD = T1({YCOORD,5):

(statements)

' END
q; END

- 269 - 18: Define Capability

P et I W bt i duimela e i e S A . i

2 [p——

R el T

R]r

T e e T e

— 0.

The define-call on Tl in the procedure COMP1l is expanded as
follows:

YCOORD/5**2

The define-~call on Tl in the procedure COMP2 iz expanded as
follows:

YCOORD/5 % *5

18.3.2 Commentg in Define-Declarations

Comments can appear anywhere in the language except between the
define~name and the define~string. The compiler interprets the

first quoted string it finds following the define-name as the
define-string.

Suppose you write the following: R
DEFINE COEF " (2*FACTORIAL(NEXT)-1)" “BEST APPROXIMATION";

The compiler assumes that COEF is followed by a define-string and
then a comment. Suppose you ure COEF as follows:

TERM = COBF % LAST;
The compller substitutes the define-string as follows:
TERM = (2*FACTORIAL(NEXT)-1) * LAST; v}

18.4 DEFINE PARAMETERS

The define-actuals given in the define-call are assocliated with
the define~-formals given in the define~declaration. The first
(leftmost) define~actual in the define~cal) is asscciated with
the first (leftmost) define-~formal in the declaration: the second
define-actual with the second define-formal, and so on.

18: Define Capability - 270 ~

e 17 LT

.

18.4.1 Define-Actuals

A define-actual can be any sequence of characters. It can include
the comma character and the parentheses charactere. The rule for
delimiting a define-actual is to use the characters upd to but not
including one of the following:

l, The first right parenthesie not balanced by a left paren-
thesis that is part of the define~actual.

2. The first comma that is not within a pair of balanced
parentheeces within the define-actual.

Quotes can be used around define-actuals that must include an
unbalanced right parenthesis or a comma that is not within
parentheses. Two quote characters must be used to represent a

gingle quote character within a define~actual that is enclosed in
quotes.

The following list gives some define-actuals for the associated
define~call.

Define-Antuals
Define-Call No. Value
TASK(A,B,C) 1 A
2 B
3 c
TASK(A(B,)C) 1 A(R,)C
TASK!"A,","B,",C) 1 A,
2 B,
3 c
TASK((A,B,C)) 1 (A,B,C)
TASK("AB""C") 1 AB"C

18.4.2 Missing Define-Actuals

If a define-actual ia not given for a define-formal, a null
string is substituted for the define-formal. Define-actuals can
be omitted at the end of the parameter list. Within the

paramcter ljet, adjacent commas indjicate the omission of a
define~actual.

- 271 - 18: Define Capability

Akl s e

Suppose you have the following define-declaration:
DEFINE 7OMPUTE(A,2) "VELOCITY = RATEIA/DISTANCE!Z:"

The following define-calls produce the indicated results:

Define=Call Result

COMPUTE(Q1,X2) VELOCITY = RATEQLl/DISTANCEX2;:
COMPUTE(1) VELOCITY = RATE1l/DISTANCE;
COMPUTE(, OBS) VELOCITY = RATE/DISTANCEOBS;
COMPUTE() VELOCITY = RATE/DISTANCE;

18.5 GENERATED NAMES

A define-declaration can be used to generate names by the

placement of the define-~formals, as shown in the declaration

COMPUTE.
As another example, suppose you have the following define-
declaration:
DEFINE NEWSYMBOL(A) "XYZ!A";
You can use the define-call as a variable, as follows:
NEWSYMBOL(1) = 03

e generated name XYZ1 is substituted in this statement to
produce:

XYZ1 = @;

A define-call must not be used, however, as the name being
declared in a declaration., Generated names must be declared
previously in the conventioanal way.

18: Define Capability - 272 -

s R R e T T T

o e

o i el . AL

Further, define-calls cannot be used to ¢reate a new symbol by
virtue of concatenating the define-call with the surrounding
text. Suppose you have the fnllowing define-declaration:

DEFINE STAR "*'";

Now, suppose you uge that define-name in a statement as follows:

LENGTH = OBSERVED STAR% 2;
The compiler expands the define-call STAR, but does not interpret

the result as an exponentiation operator. It treats the

statement as having two multiplication operatocrs and rejects it
as syntactically incorrect.

The define-name STAR can be used in a valid way as follows:

LENGTH = OBSERVED STAR CORRECTION:

The compiler expands +he define-name STAR to create the following
valid statement:

LENGTH = OBSERVED * CORRECTION;

18.5.1 Context

The expansion of a define~call must produce a meaningful result.

Suppose you have the following define-declaration:

DEFINE SQUARE(A) " iA = [AW#2,%,

The Sefine-actual in this case must be a variable to produce a
valid statement.

18.6 DEFINE-CALLS IN DEFINE-ACTUALS

A define-call can be included in a define-actual. As described
earlier in this chapter, the compiler expands a define-call by
making a copy of the associated define-string and then

substituting the define-actuals for the define-formals. If the

resulting string contains any define-calls, the compiler expands
them in the same way.

- 273 - 18 Define Capability

b A e e

Thus a define~call that is part of a define-actual is expanded i
! if, after the substitution of the define-actual, the define-call
! is a symbol and not part of a symbol.

o
Suppose you have the following define-declarations:)

) DEFINE DF1(A) "“1Al = IA;"; !
DEFINE FUNCTION "SIN";

| Consider the following define-call: :
‘ DF1 (FUNCTION)

[NEUNRE .

i The compiler copies the define-string associated with DF1l and
substitutes the define-actual FUNCTION for the define-formal A to
produce the following string:

et L

FUNCTION1 = FUNCTION:

The first ingtance of PUNCTION is part of a symbol and,

therefore, the compiler does not recognize it as a define-call. vk
u The second instance of FUNCTION is a define-call and is expanded. e
The result of that expansion is:

e St

FUNCTION]1 = SIN;

The text is now fully expanded,

PO SR N AT

18.7 THE LIST OPTION

7
e The list option lets you specify whaether you want to see the
P define~string in your program, or the define-call, or both. The
list options are:
LISTEXP Include the expanded define-string in the
listing in place of the define-call.
LISTINV Use the define-call in the listing and do not
include the expansion.
LISTBOTH Include both the define-call and the resulting :
expansion in the listing. g
The exact format of the output listing is implementation .
dependent.) } .
3 1

| 18: Dafine Capability ~ 274 -

..-.-..-llllllllllllll:lll.ﬁ

p_—

e

Chapter 19

ADVANCED TOPICS

This chapter considers some advanced topics. It begins by
describing the different ways in which you can lay out a JOVIAL
(J73) table in storage. It next describes the overlay-
declaration, which lets you determine the data objects that can
share storage and lets you allocate data at specific machine
addresses. It then considers the way in which you can determine
the size and representation of status constants. It concludes
with a discussion of DEF-block-instantiations.

19.1 JOVIAL (J73) TARLES

A JOVIAL (J73) table can be either an ordinary table or a
gspecified table. An ordinary table is one in which the compiler
determines the storage layout subject to information supplied in
the declaration about the structure and packing of the table. A
specified table is one in which the declaraticn completely
describes the storage layout of every item.

The following sections describe these two types of tablesg in
detail.

19.2 ORDINARY TABLES

The declaration of ordinary tables was described in Chapter 7.
This section considers two additional specifiers that can be
included in the table-declaration for an ordinary table.

- 275 - 19: Advanced Topics

| e

These specifiers provide information about the structure and
packing of the table. The structure-spec describes the structure
of the table in memory (serial or parallel) or the number of
entries to be packed per word (tight structure). The packing-spec
describes the way in which items within a word are packed.

19.2.1 Packing

Table packing refers to the allocation of items within an entry
to worde of storage. If a table entry contains more than one
item, the way in which the items of the entry are packed can be

specified by giving a packing-spec:
The packing-spec can be given as part of the table declaration,
as follows:
TABLE table-name [(dimensions)]
[packing-spec] :
entry-description
The square brackets indicate that the parenthesized dimensions,
the structure-spec and the packing-spec are all optional.
A packing-spec can also be given for any item in the table, as
follows:

ITEM item-name item-description [packing-spec] :

If the packing~spec is given in the table-attributes, it applies
to the entire table. That is, all items are packed according to
that packing-spec except those items that have a packing~spec in
their declaration.

19: Advanced Topics - 276 -

-~

RN s = it S

S, -

s P

p—

T

The packing-spec is one of the following:
N No packing occurs. Each item begins in a new word.

M Medium packing occurs. The amount of packing depends
on the implementation.

D Dense packing occurs, The compiler packs as many items
as possible within a word, making use of all available
bits within the word., However, items that occupy one
word or more are always allocated at a word boundary
and the bytes of a character item are always aligned on
a byte boundary. Further, if the structure of the table
is parallel, no item is allocated so that it crosses a
word boundary.

1f a packing-spec is not given, the compiler assumes N (no
packing) for serial and parallel tables and D (dense packing) for
tables with tight structure. Table structure is described in the
next section. .

- 277 - 191 Advanced Topics

s

e - ————

Consider the following declaration:

TABLE TRACK(1:180);
BEGIN
ITEM DIST U 5;
ITEM SB B 3;
ITEM ANGLE § 10;
END

Suppose that BITSINWORD is 16. ¢ince no atructure-spec or
packing~-spec is given, the compiler assumes a serial table with
no packing and allocates each item to a separate word. It can be
diagrammed as follows:

TRACK

e o ot e e e e 1 o e

| DIST(1)

l
e om e ee—m e |
|
!

| sB(1) TRACK (1)

U

; DIST(100) |

e ———

| sB(10#) | TRACK(1010)

| ANGLE(192¢) |

The table TRACK, in thie case, reqguires 370 words of storage.

19: Advanced Topics - 278 -

———— el e

. e R TV e i o et
DD IS

P

P
| Now consider a table declaration for the same table that includes
: a packing-spec of Di
| TABLE TRACK(1:10@) D;
| ' BEGIN
; 3 ; ITEM DIST U 5;
i] ITEM SB B 3;
. 1. ITEM ANGLE S 10;
g END
k Again asssuming that BITSINWORD is 16, the compiler packs as many
items of the entry as posaible within a word. The total number
of bits required is 19 and thus the compiler uses two words for
.each entry. The exact layout of the items within those words is
implementation dependent. It can be diagrammed as follows:
TRACK BITSINWORD is 16
bomm e —————— - e
; DIST(1) ! SB(l) {
{‘ | ANGLE(1) I TRACK(1)
o —————— -
| DIST(126) | sB(lon) {
| ANGLE(12#) | TRACK(102)
o ——— e ————— ———
‘{,, The table, in this case, requires 200 words of storage.
| If BITSINWORD is 32, then the compiler is able to pack all three
items of an entry into a single word. That layout can be
diagrammed as follows:
TRACK BITSINWORD ims 32
tommm e —————————— m————— ————
= DIST(I) | sB(1) | ANGLE(l) | 'rRACK(1)
| | mmmememm e oo e m e m e mm e ae |
I DIST(lEﬂ)| sa(lna)l ANGLE(109) | 'TRACK(120)

(e o o o 2 = om0 e ——————— ———

The table, in this case, needs only 180 words of storage.

- 279 - 19: Advanced Tupics

© - e i

Now, consider a table declaration for the same table that includes a
D packing-spec in the table-attributes and an N packing-spec in the

item-declaration of SB:

TABLE TRACK (1:16@) D;
BEGIN
ITEM DIST U 5;
ITFM 8B B 3 N;
ITEM ANGLE § 10;
END

The packing-spec for the table indicates dense packing, but the
packing-spec for item SB indicates no packing. All other items

in the table can be packed densely, but item SB must occupy a
word by itself.

If the given implementation reorders items and if an |ORDER
directive is not in effect, it can pack DIST and ANGLE in one

word and allocate SB in another word. Such a layout can be
diagrammed as follows:

TRACK BITSINWORD is 16

| sB(1) { TRACK(1)

{ DIST(lﬁﬂ) [ANGLErlmw) |

- . 5 61 e = Y 84 G WD A G WD M A e e

| sB(100)] TRACK(100)
T -——

If the implementation does not perform reordering or if an !ORDER
directive is in effect, then the items each occupy a word and the
table requires 300 words of storage,

19: Avanced Topics - 280 -

~et

T A e ok Y

e TeL

o

i

e -

P ey

e S TE———

Consider another case in which the tzble dces not have a
packing-spec and therefore N (no packing) is asaumed. Several
items within the table, however, have packing-specs of D, as
follows:

TABLE SUPERTRACK(146);
BEGIN
ITEM DIST U 5;
ITEM SB B 3 D;
ITEM ANGLE S 10;
ITEM MASK1 B 4 D
ITEM MASK2 B 2 D
END :

7

This declaration effectively directs the compiler to allocate a
separate word for DIST and a separate word for ANGLE and to pack
MASKl and MASK2 within a single word.

If the implementation of the compiler performs recrdering and if
the |ORDER directive is not present, it can pack 8B, MASK1l, and
MASK2 in the same word.

19.2.2 Structure

Table structure refers to the way in which the entries of a table
are lald out in memory. JOVIAL (J73) permits two fundamental
tyres of structure, serial and paraliel.

A serial table can be structured as either an ordinary serial
table, in which the compiler starts each entry in a new word, or
a tight serial table, in which the compiler packe as many entries
as possible within a word.

The structure-spec is given in the table declaration following
the parenthesized dimension-list.

TABLE name (dimensions) [structure-spec
[packing-spec] ;

entry-description

The square brackets indicate that the structure-spec is optional.
Although the parenthesized dimension list is optional in a
table~declaration, a structure-apec is meaningful only when the
table is dimensioned.

- 281 - 19: Advanced Topics

ERE A

Structure-spec is one of the following:

PARALLEL

T [entry~size]

The square brackets indicate that entry-size is optional.

The letter T indicates a tight structure. Entry-size is a
compile-time-integer~-formula that gives the number of bits for
each entry. If entry-size is not given, the compiler uses the
minimum number of bits necessary to represent the entry for

entry-size. If no structure-spec is given, the compiler assumes
that the table is an ordinary serial table.

19,2,2.1 Serial Structure

The compiler lays out a serial table by taking the first word of

the first entry, followed by the second word of the first entry,
and so on. ’

19.2.2.2 Parallel Structure

The compiler lays out a parallel table by taking the first word
(word 9) of the first entry followed by the first word of the
second entry and so on to the first word of the last entry, then

the second word {(word 1) of the first entry, the second word of
the second entry, and so on.

An important restriction on the use of parallel tables ig that
PARALLEL structure can be specified only for a table in which

none of the items of an entry occupy more than one word. A table

is layed out in a parallel structure on a word-by-word basis,
even for packed tables.

19: Advanced Topics - 282 -

e

*F
"

5

e

2 eme s AT

o e AR PRt L 1o R WY

) ?gfmiﬂfi?’-‘

19.2.2.3 Example of Serial ve. Parallel Structure

Consider the following two table declarations:

TABLE RACE1(128); TABLE RACE2(17206) PARALLEL:

REGIN BEGIN

ITEM SPEED U; ITEM SPEED U!
ITEM DISTANCE S ITEM DISTANCE S:
END END

These declarations are the same except that table RACEL ie
specified (by default) as having a serial structure and table
RACE2 is specified as having a parallel structure.

The compiler lays out these tables a follows:

RACELl (Serial) RACE2 (Parallel)
Fom———————— ————— o e ———t
! spEED(m) | | SPEED(®) |
| stmancn(ﬁ) | } SPEED(l) *
| spEED(l) | srmsn(z) |
| DISTANCE(l) } } SPEED(3) ‘
| - |rm e -
| SPEED(lﬂzp | } DISTANCE(99) |
| pisTAaNcE(1e@) | | pIisrTance(leg) |
e ———————— + e ———— +

The serial organization of RACEL is appropriate if your program
uses SPEED and DISTANCE together. 1If your program processes an
item in the first word of each entry, then later an item in the
second word of each entry, you can localize addreesing by
creating a parallel table, Buch localization may produce a more
efficient program, but the effect of localization depends on the
langth of the table, the machine's methnd of addressing and many
other factors.

- 283 - 19: Advanced Topics

v R PR e i o SETTALTIR A O MO s

¢ e Y

19,2,2.4 Tight Structure

If the entries of a table each occupy less than one word, the

entries can be packed. Entries in tight tables can have more

than one item, but the entire entry cannot exceed a word in .
length. In fact, in order for entry packing to occur, the entry b
cannot exceed half the word length.

If a tight structure is not specified, the compiler begins each
entry in a new word. Consider the following declaration:

TABLE ATTENDANCE(l:1000);
ITEM COUNT U 5;

This declaration causes the compiler to create a serial table.
This table can be diagrammed as follows: -

T e ey

ATTENDANCE
i
o - ELLE TN "; '
: COUNT(1) { ATTENDANCE (1) .-
y
ces {
;
[—— R .y !
| counT(12e0) |
fmm———— ——————— - -t
Bach entry in the tuble occupies cne word and thus the table is ‘ .”} ﬁ

1¢0¢ worde long.

.

19: Advanced Topics - 284 -

. —— e m——— W

i

P~

Now consider a declaration of the same table with tight

structure:

TABLE ATTENDANCE(1:1000) T:
ITEM COUNT U 5;

The T structure-spec directs the compiler to pack as many entries

as possible within a word.

ATTENDANCE
e e e e
| COUNT (1) | COUNT(2) | COUNT (3)

| COUNT (4) | COUNT(5) | COUNT(6)

| e e e ———————
| COUNT(997) |COUNT(998) |COUNT(999)
|counT (1900)

tomr e e e r e e — e —— . ————————— ———+

Suppose BITSINWORD is 16. The
compiler can pack three entries per word. The table can be
diagrammed as follows:

BITSINWORD=16

The table now occupies 334 words.

- 285 -

19: Advanced Topics

MR)) B RN o i S kil W R

T ey rign . oy

U———

Entry-size allows the packing to be given such that entries begin
on addressable units. For example, consider a declaration of the
same table with a specified entry-size:

TABLE ATTENDANCE(1:1080) T 8: i
ITEM COUNT U 5; : :

If BITSINWORD is 16, the compiler can pack two entries per word
since it must use B bits for each entry. If BITSINBYTE is 8,
each entry begins on a byte boundary. This table can be
diagrammed as follows: .

ATTENDANCE BITSINWORD is 16 : {
i
e — e — e ——————— -—— :
| counT(l) xxx|COUNT(2) xxx| =
! | COUNT(3) =xxx|COUNT(4) xxx|
e DL EE P BRI P ! x indicates an unused bit

[mmmo e mm—m e mm e e m e e |

JCOUNT(999) xux|COUNT(1e00)xxx| !
e o e e 0 o S e e et e o |

This table occupies 52¢ words. I

The default packing-spec for a tight serial table is D (dense).
A tight table uses the minimum necessary storage. For example, ,
suppose you declare the following table: \

TABLE GRID (20) T:
N BEGIN '
I'PEM XCOORD U 5; ,
ITEM YCOORD U 5: .
END

The compiler uses dense packing. Since entry-gize is not given,
the compller uses the minimun number of bits necessary for an
entry ~ in this case, 1¢ bits. If BITSINWORD ig 32, the compiler
can then pack three entries per word.

19.2.3 Conversion and Packed Items

When an item is given in a packed table, the implemented oo b
precision is the same ag the declared precision. Thus, an .
assignment to an item in a packed table can result in loss of !
significart digits in some cases. :

19: Advanced Topics - 286 ~

For example, automatic conversion of a fixed data okject does not
change the numeric value of the data object except when the
implemented precision of the result value is lass than the
implemented precision of the value being converted. In this
case, rounding or truncation occurs with respect to the
implemented precision of the converted value. This situation
occurs cnly when agsigning to a packed fixed table item. The
round-or-truncate attribute of the table item determines whether
the assigned value is rounded or truncated.

For example, suppose you have the following declarations:

TABLE FACTORS (1:10@) D;
BEGIN
ITEM FIRST A 2,4;
ITEM SECOND A 2,4:
ITEM LAST A 2,4;
END

ITEM TEMP A 2,4;

The implemented precision of TEMP may be greater than the nominal
precision given by the scale and fraction. The precision of
FIRST, howeveyr, is 6 bits as indicated by the scale and fraction.
Assigning TEMP to FIRST(I) thus probably involves rounding or
truncating TEMP,

19.3 SPECIFIED TARLES

A specified table~declaration containe information about the
position of each item of each entry.

19,3.1 Specified Table Type Declaratione

A specified table can be used in any context in which an ordinary
table can be used. 1In particular, it can be used in a type-

declaration to create a type for a table with a particular
layout.

- 287 - 19: Advanced Topics

N

A specified table has the same general form as an ordinary table,
namely:

TABLE table-name table-attributes ;

entry-description

The specified table-kind is given in the table-attributes instead
of a packing-spec, as follows:

[(dimensions)] [structure-spec] [table-king 1]

The table-kind indicates whether the table has fixed-length
entries or variable-length entries. The forms are:

W entry-size

v

The W indicates that the table has fixed-length entries. fThe V
indicates that the table has variable-length entries. Entry-size
is an integer compile-time-formula that gives the number of words
each entry occupies for a fixed length entry table.

The two kinde of specified table are considered in detail later
in this chapter.

The position of ecach ltem in a specified table entry is given by

a POS clause following the each item-description in the table, as
follows:

ITEM item-name item-description

POS { startbit, startword) ;
Startbit and startword are integer compille-time-formulas. The
first bit of a word is numbered # and the first word of an entry
is numbered 9.

Item positioning must take into account the number of bits in a
word., An item that occupies one word or less must not be
positioned so that it crosses a word boundary.

19: Advanced Topics - 288 -~

L) pore o RS e -
s bt o o

- et

-

e

19.3.2 Tables with Fixed-Length Entries

A specified table with fixed-length entries is indicated by the
specified-table~kind W followed by the entry size. A specified

table with fixed-length entries can contain information about the
structure and initial values. The form is:

TABLE table-name (dimensions) [structure-spec]

W entry-size [table-preset] ;

BEGIN
ITEM item-name item-description
POS (startbit , startword) [table-preset] :

END

Suppose you need a table layout that corresponds to the format of
a particular peripheral device. This format ccnsists of two words
per entry. Each word contains an unsigned, ten-bit integer 1left

justified in that word. You can.write the following table
declaration:

TABLE DEVICE (5) W 2;
BEGIN
ITEM CHANNEL. U 1M POS(f,8);
ITEM CHANNEL2 U 10 POS(®,1):
END

The table is a fixed-length specified table containing six
entries. Each entry occuples two words. The first word contains
the item CHANNELl in bits # through 9. The second word contains
the item CHANNEL2 in bits @ through 9.

19.3.2.) The * Character

Every item in a specified table muet be positioned. The asterisk
character "%*" can be used for startbit to indicate that the item
should occupy the same amount of storage and be aligned in the
same way as if it were sllocated outside the specified table. 1In
thie way, the item can be accessed efficiently.

- 289 - 19: Advanced 71 >ics

o et i ¥

EN e e AL T TN 134 e

For example, suppose you use a specified table in the following "

way: %
TABLE SURVEY(1@) W 5;
BEGIN Cy i
ITEM FLAG B 3 POS(15,@); T
ITEM HISTORY B 10 POS(a,0): :
ITEM CASEl U POS(*,1); 3
ITEM CASE2 U POS(*,2);
| The items FLAG and HISTORY are positioned as indicated. The items %
CASEl and CASE2 are positioned for efficient usage. :
i
i
19.3.2,2 Overlays il
The values of startbit and startword can be selected to overlay ﬁ
data. Por example, consider the following declaration: M
- i
TABLE PERSONNEL(1208) W 3; o
BEGIN DR
ITEM FLAG B 3 POS(15,2); 1'
ITEM NAME C 10 POS(D,1); A
ITEM RANK C 2 POS(%,6):]
ITEM ID C 4 POS({M,1): j
ITEM RATING C 2 POS(2,3); :
END !
The items ID and RATING, in this declaration, overlay the iltem o
NM‘E- y }I
-)
]
[19.3.2.3 Presets
L If a table~preset is given in the table-attributes, then none of
L the item-declarations within the entry-descripticn can have :
table-presets. If two items overlap, only one item can be given !
a preset.

19: Advanced Topics - 290 -

Suppose you have the following table-declaration:

TABLE SPECS (100) W 2 = 2,4,,,6,8,,,10,12;
BEGIN
ITEM LENGTH U PO5(0,0);
ITEM HEIGHT U POS(0@,1);
ITEM HIPOINT U 8 POS(%,1);
ITEM LOPOINT U 8 POS(8,1):
END

The items are initialiized in order. and values are omitted for
overlayed items. The first value 2 is used to set LENGTH(A), 4
is used to set HEIGHT(@). The omitted values prevent HIPOINT and

LOPOINT from being initialized. The value 6 is used to set
LENGTH(1), and so on.

19.3.2.4 Entr!—Size

A specified table with fixed-length entries that does not have
tight structure gets its entry size from the entry-size given
following the W in the specified-table~kind®. A specified table
with fixed-length entries and tight structi.e gets its entry-size
from the entry-size elther given or aersumed for the siructure- !
spec. If a specified table has tight structure, entry-size must

not be given as part of the specified-table-kind.

Suppose you declare the followlng table:

TABLE XR(Q) T W:
BEGIN
ITEM READY B POS(7?,0);
ITEM STATBIT U 5 POS{(1,0M);
END

Fach entry contains a one-bit item and a five-bit item, Since
the structure~spec does not give the number of bits in an entry,
the compiler uses the minimum number of bits necessary to
represent an entry, namely: six bits,

- 291 - 19: Advanced Topics @
‘f

P 1 - IR T T e T L g

R

E i e IT
-

Assuming that BITSINWORD is 16, the items are allocated as
follows:

The starting bit in the position clause is assumed to be relative
to the start of an entry.

Itqg

READY (@)
STATBIT(®)
READY (1)
STATBIT(1)

READY (2)
STATBIT(2)

LI IRY

Word

I

(e

6 of the first word.

remain unused.

You may want to specify an entry size so that the entries of the

The item READY(1)

Its position, however,
the start of the entry.

table are allocated on addressable boundaries.
suppose BITSINWORD is 16 and BITSINBYTE is 8.

following declaration to accomplish this:

The items are then allocated as follows:

BEGIN

ITEM READY B POS({

TABLE XR(9) T 8 W;

ITEM STATRIT U

END

Item

READY (®)
STATBIT(@)
READY(1)
STATBIT(1)

READY (2)
STATBIT(2)

Worad

QoI

—

19: Advanced Topics

2]
P

)2
0s8(a,1);

Bits

.y R

is allocated at bit
is bit 7 relative to
Observe that bits 12~15 of each word

For example,
You can write the

el AR v

s

P

ek Iy T A e

P N i

19.3.3 Tables with Variable-Length Entries

A table with variable-length entries in JOVIAL (J73) is indicated
by the table-kind V. Such a table creates the illuesion of being

4 variable length entry table, but it is, in fact, a table in
which sach entry is one word long.

A table with variable-length entries provides a way to save space '
by eliminating unnecesgsary items from entries.

A specified table with variable-length entries cannot contain a
Btructure-spec or a table-preset. The form is simply:

TABLE table-name (dimensions) V:

BEGIN
ITEM item-name item-description POS (startbit , word)

1
LI Y

END

A physical entry in a table with variable~length entries is one ¢
word long. A logical entry in such a tahle can be, and usually

is, composed of many items and may be several words long. The

dimensions in a table with variable length entries determine the

number of physical entries in the table. The number of logical

entries depends on the way in which the table is built.

/o
As a simple, but unjgalistic, example of a table with variable-
length entries, consider the following table-declaration:

TABLE ALTERNATOR(99) V;

BEGIN

ITEM Al U POS(#,0);
ITEM A2 U POS(P,1):
ITEM Bl U POS(%,0);
ITEM B2 U POS(@,1);
ITEM B3 U POS(0,2);
END

The table ALTERNATOR has two kinds of logical entry, a two word

entry (consisting of Al and A2) and a three word entry
{consisting orf Bl, B2, and B3).

~ 293 - 19: Advanced Topics i

Suppose the table has alternating two and three word entries. -
The first logical entry consists of two words (Al and A2) and N
begins at word @. The second logical entry consists of three H
words (Bl, B2, and B3) and begins at word 2. The third logical .
entry consists of two words and begins at word 5. And so on. y

“h
That is, the table looks as follows:

2 Al
S a2
;T 2T |
, T T |
s B3 ;
s Al o |
6 a2 -
_________________ 1
05 T 2T |
To locate an item, the beginning of the logical entry is found fm
and the position of the item vwithin that entry is added to this

base. The next entry is located by adding the number of items in
the current entry to the base of the current entry.

19: Advanced Topics - 294 -

/

- ot e T
VN T 2 P

4

T

-

Ty e

Suppose you want to increment A2 in each two-word logical entry
and B3 in each three~word logical entry. You can write:

TWO ' WORD=TRUE ;
FOR IX:d WHILE IX<99;
IF TWO'WORD;
BEGIN
TWO 'WORD=FALSE ;
A2(IX)=A2(IX)+1;
IX = IX+2;
END
ELSE
BEGIN
TWO 'WORD=TRUE;
B3(IX)=B3(IX)+1;
IX=IX+3;
LND

This fragment takes advantage of the fact that the logical
entries alternate. It uses a switch TWO'WORD to determine which
type of logical entry it is processing. This example is
unrealistic because if the entries did alternate as shown, a
five-word entry would be used. Normally, a logical entry must
contain something within it to distinguish it.

Suppose you have a table that contains entries that are two,
three and four words long, as follows:

Two~word-entry Three-word-entry Four-word-entry

____________ - ———— e ————— e —————
ENTRY'SIZE ENTRY'SIZE ENTRY'SIZE

" PART'NUMBER PART'NUMBER "PART'NUMBER

""""""""""" oN'HAND “oN'maND

"""""""""" DEFLCTIVE

ENTRY'SIZE distinguishes the different kinds of logical entry.
That is, A two-word entry contains ENTRY'SIZE with the value 2
and the number of the part (PART'NUMBER). A three-word entry
contains ENTRY'SIZE with value 3, PART'NUMBER, and the number of
units of that part currently available (ON'HAND). A four-word
entry contains ENTRY'SIZE with the value 4, PART'NUMBER, ON'HAND,
and the number of units of that part that have been found to be
defective (DEFECTIVE),

- 295 - 19: Advanced Topics

I mrgm- v oy g e e T

- . - ety - ‘§:>~‘=. j.

B

T e

You could use an ordinary table with four items in each entry for
this table, but two words would then be wasted in entries that

only need two words, and one word would be wasted in entries that
only need three words.

You can, instead, use a table with variable-length entries, as
follows:

TABLE PARTS (10¢) V;
BEGIN
ITEM ENTRY'SIZE U POS(9,0):
ITEM PART'NUMBER C 5 POs{#,1);
ITEM ON'HAND U POS(%,2);
ITEM DEFECTIVE U POS(#,3):
END

Assuming a program has filled this table with entries, suppose
you want to calculate the total number of defective items in the
file. To do this, you look through the file and for each entry

that contains a defective count, ycou add that count to a counter,
COUNT.

You can locate those entries that have a DEFECTIVE item by the
fact that the value of ENTRY'SIZE for an entry with a DEFECTIVE
item is 4. The calculation is as follows:

COUNT = ¢
FOR I:? THEN ENTRY'SIZE(I)+I WHILE I <100
IF ENTRY'SIZE(I)=4 THEN COUNT = COUNT + DEFECTIVE(I);

The lcop statement uses ENTRY'SIZE to calculate the position of
the next entry in the table. If that entry has four words, then

it contains a defective unit count and that count is added to the
counter COUNT.

19.4 THE OVERLAY DECLARATION -

The overlay-declaration can be used for allocating several data
objects in the same storage, for assigning data to a specified

machine address, or for specifying the allocation order of a set
of items.

19: Advanced Topics - 296 -

. s e R

;
i
!
!
|
!
.
|

e i

The general form of the overlay-declaration is:
OVERLAY [POS (address)]
overlay=-expression

An overlay-expression is a sequence of one or more overlay-
strings separated by colons, as follows:

overlay-string :...

An overlay-string consists of one or more overlay-elements,
separated by commas, as follows:

overlay=-element ,...

An overlay element is a name, a spacer, or a parenthesized

overlay expression. The following sections consider these three
types of overlay-element.

The data objects in 2n overlay-declaration can all be statically
allocated or dynamically allocated, as long as all data obhijects
have the same allocation permanence. An overlay-declaration must

not be used to specify more than one physical location for any
data object.

19.4.1 Data Names

The data names given in an overlay declaration must be previocusly
declared. They can be item, table, or block names. But they
cannot be the names of items within a table or items or tables
within a block.

Further, an overlay-declaration can only name data that is

declared without a REF-declaration and in the same scope as the
overlay-declaration.

- 297 - 19: Advanced Topics

D DR . il -
[,

i o o

aaﬂﬁ’ AL T VM -

P el

Consider the following declarations:

ITEM COUNT U;
ITEM TIME U;
ITEM MASK B 10;
ITEM RESULT F;
TABLE SPECIFICATIONS (99);
BEGIN
ITEM HEIGHT U:
ITEM LENGTH U;
ITEM WIDTH U;
END
TABLE TEST(1:5@);
ITEM SUCCESS U;

Now consider the following overlay-declarations:

OVERLAY COUNT:TIME:RESULT;
OVERLAY SPECIFICATIONS:TEST, MASK:

The first overlay-declaration containsg three overlay-strings.
Each string contains one overlay-element. It specifies that the
items COUNT, TIME, and RESULT are to share the same storage.

The second overlay declaration contains two overlay-strings. The
first contains one overlay-element and the second contains two
overlay-elements. It specifies that the table SPECIFICATIONS is
to share the same storage as the table TEST and the item MASK.
The table SPECIFICATIONS occupies 30@ words. The first fifty
words are shared with the table TEST and the fifty-first word is
shared with the item MASK.

19.4.2 Spacers

An overlay element can also be a spacer, which indicates how many
worde to skip over when assigning storage. The form of the
spacer is:

W words-to~skip
Words-to-skip is a compile-time integer formula that indicates

how many words are to be skipped when allocating data in the
overlay.

19: Advanced Topics - 298 -

L P

e 2B L TR

ad
-

s

s X

-

L s o Tom e A 3

- mmmn

Suppose in the example given above, you want MASK to share the
hundredth word with SPECIFICATIONS. You can write:

) OVERLAY SPECIFICATIONS:TEST.,W 49,MASK;
| The table SPECIFICATIONS shares the first fifty words with TEST

and the hund-edth word with MASK. The words between TEST and)
MASK are not shared. i

19.4.3 Nested Overlays ‘

An overlay element can also be a parenthesized overlay element.
For example, suppose you want TEST and COUNT to phare the same
storage as SPECIFICATIONS, and you want TIME to occupy the same
storage as COUNT., You can write:

OVERLAY SPECIFICATIONS:TEST, (COUNT:TIME);
The table TEST shares the first fifty words of storage with

SPECIFICATIONS and COUNT and TIME share the fifty-first word with
{ SPECIFICATIONS and with each other.

19.4.4 Storage Sharing ;
|

When an overlay-declaration is used for storage sharing, it must)
have more than one overlay-string, as follows: ‘

OVERLAY overlayl : overlay?2 :... ;
L\ (The overlay-declaration asserts that the data objects in the
N first overlay occupy the same storage as the data objects in the

subsequent overlays.

19.4.5 Allocating Absolute Data

The overlay declaration can also be used to allocate data at a
specific machine address. The form of the overlay declaration
for this case includers a positioner, as follows:

OVERLAY POS (address) overlayl : ... r

‘ Address is an integer compile-time-~formula that gives the address
X for a word.

g - 299 - 19; Advanced Topics

Suppose you want to allocate COUNT at machine word 4504, You can
write:

OVERLAY POS(4500) COUNT;
You can allocate 'a segquence of words, as follows:
OVERLAY POS(45@¢@) COUNT, TIME, SPECIFICATIONS;
The item COUNT is allocated to word 4524, TIME to 451, and

SPECIFICATIONS to 4502 through 4872, assuming that 4500 is a
decimal address.

You can also combine storage sharing with assigning absolute
addresses. For example:

OVERIAY POS(4508) COUNT:TIME:TEST;
The jtems COUNT, TIME, and TEST are all allocated at machine
address 4500,

An overlay-declaration with an absolute address cannot be given
within a block.

19.4.6 Allocation Order

An overlay declaration can also be used to specify the order of
allocation. Unlike the order-directive, which i3 used to specify
allocation order within a table or block, the overlay-declaration
is used to specify order in a more global way.

Suppose you want the items COUNT, TIME, and TEST to be allccated
in that order. You can write:
OVERLAY COUNT, TIME, TEST:

This declarations assuresg the order of allocation for the three
items given there.

19.4.7 Overlay-Declarations and Blocks

An overlay-declaration within a block must not reference names
declared outside the block and an overlay-declaration outside a
block must not reference names declared within the block.

19: Advanced Topics - 300 -

-

A €,y s

il

Further, an overlay-declaration must not be given in a block if
an order-directive is included in the block.

19.5 SPECIFIED STATUS LISTS

A status list can be given a gpecified representation. A

specified representation associates given values with status
congtants.

The general form of a status type-description is:
STATUS [size] (status=-group ,...)

The square brackets indicate that size is optional. Size i3 a
compile-time-integer-formula that gives the number of bits to be
used for the representation of the status-constants.

The characters ",..." indicate the one or more status~-groups,

separated by commas, can be given. Each status group has the
form:

[status-index] status-constant ,...

If the status~index is not given, then the status~group hasg a
default representation, as described earlier in Chapter 6. If
the status-Iindex is given, the status-group has a specified
representaticn. Only status types with default representations
can be used 28 dimensions in table declarations.

Suppose you want the status constants A through F t6 be
represented as the values 10 through 15. You can write:

STATUS (10 V(A), V(B), v(C), V(D), V(E), V(F))

If you want ALPHA to be represented as 2, BETA as 4, and GAMMA as
8, you can write:

STATUS (2 V(ALPHA), 4 V(BETA), 8 V(GAMMA))

A status type-description can begin with a default list and
continue with a specified list.

- 3p1 ~ 19: Advanced Topics

oyt A o A L Bty st -
e g) b e et L -

e, e e

Suppose you want to associate the values @ through 2 with the
status constants CAR, VAN, and TRUCK, the values 8 through 9 with
the status constantas TRAIN and AIRPLANE, and the value 2/ with
the status constant SATELLITE: You can write:

STATUS (V(CAR), V(VAN), V(TRUCK), 8 V(TRAIN)}, V(AIRPLANE),
2¢ V(SATELLITE))

No two status-constants in a given status list, however, can have
the same representation.

19.6 DEF-BLOCK-INSTANTIATIONS

A def-block-instantiation is a special kind of external block
declaration, A def=-block-instantiation makes the name of the
block external and allocates the block. The form is:

BLOCK INSTANCE block-name;
For each def-block-inetantiation, a corresponding REF-declaration

must be given, either in the same or in another module. The
REF-declaration provides information about the components.

19: Advanced Topics - 3p2 ~

i)

==

W

Appendix A
LANGUAGE SUMMARY

This appendix provides a syntactic summary for the JOVIAL (J73)
language. The summary is divided up into a sequence of logical
unite. For each unit, the syntactic rules and a series of
notes are given. The notes describe some of the most important
facts and restrictions associated with the language contructs
presented in the syntactic rules. At the end of the summary,
and index to the syntactic terms is given.

A.l INTRODUCTION

The following paragraphe define the notation used to present
the syntax of JOVIAL (J73) and discuss the organization of this
language summary.

A.l.1 Syntax Notation

A syntactic rule defines a syntactic name in terms of a string
of syntactic terms. 'The syntactic terme can be terminale (such
as: reserved words, separators, and the like), which are
displayed in upper-case or syntactic names, which are displayed
in lower~case.

Syntactic rules are dieplayed in boxes. 'The box is divided
into a left~side and a right-side by a vertical line. On the
left-gide, the syntactic name being defined is given; on the
right-side, the string that defines the name is wiven. For
example, consider the following:

allocation-spec STATIC

In the above rule, the syntactic¢ name allocation-spec is
defined to be the reserved word STATIC.

A=l A: Language Summary

[RERY R AT S B e ey ol AN A

T

.
;
i
i
.
"
i

‘A.l1.1.1 Concatenation

A concatenation is a sequence of two or more syntactic terms

written one after the other. An example of a concatenation in

a syntactic rule isg:

block~-preset

= block-preset=-value

Samrepy s_m e

The above rule states that a block-preset is the character "='

followed by a block-preset-value.

A.l.1.2 ggission

If a construct is optional in a syntactic rule, it is encloeed

in square brackets to indicate that it can be omitted.

ﬂ An example of a rule with an omlssion is:

¢t

bit-type-
description

P [bit-size]

This rule states that a bilt-type~description is the letter B
followed by an optional bit-eize.

the following:
B

B bit-size

A.1.1.3 Disjunction

That is,

A diejunction in a syntactic rule shows the set of possible
choices in a syntactic definition.

indicate disjunction. Within the curly braces, the choices are ; }
either separated from one another by vertical bars or are given e |
on separate lines.

‘A1 Language Summary A-2

Curly braces are used to

it can be either of

it B s e -~

An example of a disjunction in which the choices are separated
by vertical bars is:

ref-aspecification REF {simple-ref | compound-ref}

This rule states that a ref-specification is the reserved word
REF followed by either a simple-ref or a compound~ref. That
is, it can be either of the following:

REF simple-ref

REF compound~ref

An example of a disjunction in which the choices are given on
separate lines is:

name
status-constant v {(letter)
reserved~word

This rule states that m status-constant is the letter V
followed by a parenthesized name, letter, or keyword. That is,
it can be any of the following:

vV (name)
V (letter)

V (reserved-word)

A.1.1.4 Replication

A replication indicates that one or more repetitions of a
construct can be given. The character pegquence "..." is used
to indicate replication. If the repetitions are separated by a
punctuation character, then that character is given just before
the three periods. For example, if the repetitions are
separated by commas, the character sequence ",..." is used.

A-3 A: Language Summary

s ———c— R R i AL A B LE LI P

e e T

[P T

- it o e

P KT I e i R B

An example of a replication is:

positioner POS (index ,...)

This rule states that a positioner is the reserved word POS
foliowed by a left parenthesis followed by one or more indexes
separated by commas followed by a right parenthesis. That is,
it can be any of the following:

POS (index)

POS (index, index)

POS (index, index, index)
(and so on.)

If the construct to be repeated coneists of more than one
syntactic term, then curly braces are used to delimit the terms

to be repeated, For example:

table-preset-valuewul.{ [positioner] preset~option }.,...

This rule states that a table-preset-value is one or more pairs
of optional positioner followed by preset-option separated by
commas. That is, it can be any of the following:

[positioner] preset-option
[poeitioner] preset-option , [positioner] preset~opticn

(and so on)

A: Language Summary A-4

-
s

N

2

=

S el

= 3

TSR . ST

o et i e

A.l1.2 Identical Definitions

If more than one syntactic name is defined by the same rule, a
curly brace is used on the left-side of the box to indicate
this fact. For example:

true-alternative statement
falge~alternative :

This rule states that a true-alternative is a statement and a
false-alternative is a statement.

A.1.3 Notes

The notes that follow a set of syntax rules list some important
or hard-to-remember facts about the rules.

A.l.4 Syntax Index

The appendix ie organized sc that, wherever possible, syntactic
terms that are used in a rule are defined on the mame page.
However, since this organization cannot always be achieved, a
special index of syntactic terms is provided at the end of this
appendix.

For example, consider the following rule:

item-declaration ITEM item-name [STATIC]

type-degcription
item-type~riame [item-preset) ;J

Item-naime and type-description are defined on the same page,
but to conveniently locate the definitions for item-type-name
and item-preset, you need to use the syntax index.

A~5 A: Language Summary

R T e S O R AN U1 ey 1w

L]
i

e

™

A.z

SYNTACTIC SUMMARY

module ' main-program-module
compool-module
procedure-module
main~program-
module START [dir ...] PROGRAM name ;
[dir ...] program-body
[[DEF] subroutine-definition ...]
[dir ...] TERM
compool-module START [dir ...] COMPOOL name ;

[declaration ... J
I dir ...] TERM

e i AR

procedure-module START

[declaration ...]
[[DEF] subroutine-definition ...]

[dir ...] TERM

Notes:

1.

2,

3.

A program is a set of modules. The modules are not
necessarily all in the same fille; detaile depend on the
implementation.

A program must have exactly one main-program-module. It
can have any number (perhaps none) of compoocl-modules or
procedure modules.

A compool-module must not contain an inline-declaration
or an item, table, block, statement-name, or
subroutine declaration that does not begin with a DEF.

A: Language Summary A-6

R T R T e (- B e
SRR S RO N) Whiak

o mmaA IR W 11180 G 4 i
5 .

o

dir

{COPY character-literal
ISKIP [letter] :
IBEGIN [letter] ;
IEND

ILINKAGE symbol ... ;
ITRACE [trace~control

IREDUCIBLE ;

4 INOLIST :
ILIST ;

IEJECT

l1ISBASE data-name
IDROP integer-literal :
ILEFIRIGHT ;

| REARRANGE
JINITIALIZE

thRDER H

[1coMPoOOL [compool-list] A

|INTERFERENCE interference~control ;

I|BASE data~name integer-literal ;
integer-literal ;

.
’

] name ... }

compool-list

[compool-file] name
([compool-file])

,---:}

compool~file

character-~literal

trace~control

{ boolean~formula)

interference-
control

data-name : data-name ,

data-name

item-name
table-name
block-name

symbol

letter ...

3

1
l

RS E RN LI AL AP
+

s S¥y1
oy ey v

A: Language Summary

T T N R A N it i ik e sl e A o MR VRO PRI 1 i A at s pt URTWINOTY TR

ORI s AT L

P

Notes:

1.

2.

7.
8.

10.

11l

l2.

13.

A ICOMPOOL directive can be given only immediately after a
START or imwmediately following another !COMPOOL directive.

The names given in the !COMPOOL directive must be declared
in the compool module designated by compool=-file.

A name in a I|COMPOQL directive cannot be the name of
a component of a type-declaration, nor can it be the name
of a formal parameter.

A ILINKAGE directive can only occur in a subroutine-~
declarstion or subroutine-definition between the heading
and the declarations of the formal parameters.

If a subroutine with a ILINKAGE directive is declared and
defined, the !LINKAGE directive must appeat in every
declaration of the subreutine as well as in the definition.

All names in a !TRACE directive, including names used in
the trace-control, except for statement names, must have
been declared prior to theilr use in the |TRACE directive.

A ITRACE directive can only oceour within a statement.

An |INTERFERENCE directive con occur only within a
declaration.

A |REDUCIBLE directive can be placed only immediately
following the semicolon of the subroutine-heading for a
function.,

If a function designated as reducible is both defined and
declared, the IREDUCIBLE directive must appear in all the
declarations as well as in the definition.

The |INITIALIZE directive can appear only in declarations,
but not in an entry description or in a block-body or in a
subroutine-declaration.

A block affected by an IORDER directive cannot contain an
overlay declaration.

The |ORDER directive must be given first in an entry-
description or block~body.

Language Summary A-8

L iR eNEL e . N e paerr apmivem 8 14 e e Vot (T 7, 1 P

- Ty

S

TRE

D e e

CP R e o e

program-body

simple-body
compound-body

gimple~body statement
compound-body BECIN
[declaration ...]
statement ...
[subroutine-definition ...]
[@ir ... J [label ...] END
declaration

[dair ...] simple~-declaration
compound-denlaration

}

compound-denlaration

BEGIN
declaration ...

END

simple-declaration

< statement-ramc-declaration r

rdata—declaration
type-declaration
subroutine-declaration
inline-declara%tion

external-declaration

define-declaration

overlay-declaration
Lnull-declaration

data-declaration

item-denslaration
table-declaration
block-declaration
constant-declaration

null-declaration

{z | BEGIN END}

L ST P PR SRR e A v Py

A-9 A: Language Summary

item-declaration | ITEM item-name [STATIC)
type-description
' item~type=-name [item-preset] ;
- -
type-description integer-type-description
floating-type~description
fixed-type-description }
3 bit~type-description } :
char-type-description f
status-type-description .
pointer-type-description
-
integer-type- %
description s R :
vyl , T) [integer-size 1
| i
floating-type- - ..
description R
FL, T] [precision 1 f
fixed~type- t
description R i
AL ,\NT] scale [, fraction]]
e
integer-gize 1) t
precision integer-ctf
scale ¥
fraction ;
item~name name
J il
\“)‘ ’
A: Language Summary A-10 fg
RRVRRE EECETRPEE T TS PRI T N

Py

Notes:

1, R indicates rounding. T indicates truncation.

2. A compile-time-formula is abbreviated in this syntax to
ctf. Thus an integer-ctf is a compile-time-formula of
type integer.

3. Only items with static allocation permanence can have a
preset.

4. Integer-gize must be greater than zero and less than or
equal to MAXINTSIZE. If integer-size is omitted,
BITSINWORD - 1 is assumed.

5. Precision must be greater than gero and less than or eqgual
to MAXFLOATPRECISION. 1If precision is omitted,
FLOATPRECISION is assumed.

6. The sum of scale and fraction must be greater than zero and
less than or equal to MAXFIXEDPRECISION.

7. The value of scale must must lie in the range =127 through

+127.

A-11 A: Language Summary

S

ey

bit-type=~
description B[bit-size]
char-type-
description C [char-size 1]
status-type-
description STATUS [status-size] (status-list)
status-list | default~list
\ [default-list] sapecified-list
default-list status-const , ...
specified-list status-group ...
status-group ptatus-index {status-constant } P
name
status-conetant v (letter)
regserved-word
pointer-type-
description P [type-name]
bit-size
char-size integer-ctf
gtatus-size
statue-index
item-type~name
type-name table-type-name
block~type~name
A: Language Summary A-12

bt
-

'
L1

-~

S

RPN

i < i

e

R T F T

P A X

RN

B TR ot B DTt~ T . B IR 7T QP

e At e sttt

Notes:

1. Bit-size must be greater than or equal to 1 and less than
or equal to MAXBITS. If bit-size is omitted, 1 is assumed.

1 ‘ 2. Char-size must be greater than or equal to 1 and less
' than or equal to MAXBYTES. 1If char-size is omitted,
l is assumed.

3. The status-constants must be unique within a status-list.

4, All status-constants in a status-list must have a unique
spelling.

5. In a default-list, the status constants are assigned rep-
resentations starting with ¢ and continuing to n-1, where
n is the number of the status-constants in the ;
default-list. i

6. If status~size is omitted, a default status size that is
o the minimum necessary to represent the largest status
{ constant is used to represent the value of all status-
' constants in a status~list.

A-13 A: Language Summary ? '

table-declaration

T

TABLE table-name [table-attributes]
table-body
table-body ; entry-description
table-type~name [table-preset] ;
unnamed-entry [table-preset]
.)
item-type-namne } packing-spec
unnamed-entry type~description table~kind
table-attributes [sraTICc 1 [(dimension ,...)]
packing-spec
[structure-spec] [| table~kind]
[table-preset]
dimension

{ [lower-bound :] upper-bound }
L]

lower-bound }

{integer-ctf

upper-bound status-ctf
structure-spec { PARALLEL | T [bits-per-entry]]
bites-per~entry integer-ctf

packing-spec

{v1nip}

table-kind { W entry-size | V -}
entry-size integer-ctf
table-name name

A: Language Summary A-14

it
s

e
s

",

R O

[P

e i 3 e

ST

A S

v

BN

Notes:

1.
2'

The maximum number of dimensions is 7.

The * dimension can be used only with a table that is a
formal parameter. If any dimension of such a table is ¥,
then all dimensions must be ¥,

The lower-bound and upper-bound must both be integer for-
mulas or koth be status formulas.

If a lower-bound is not given, a lower-bound of ¢ is assumed
for an integer dimension and a lower~bound that is the first
status-constant in the status list for a status dimension

is assumed for a status dimension.

A packing-spec of N indicates no packing, M indicates medium
packing, and D indicates dense packing.

A table-kind of W indicates a fixed~length-entry table and
a table-~kind of V indicates a variable-length-entry table.

If a table is declared in terms of a structure-spec or
packing-sgpec, table~kind cannot be given. .

If a table is declared in terms of a type-name, the'preset
is given following the type-name, not in the table-heading.

If T structure is gpecified for a table with a W table-kind,
entry-size must not be given. The compiler uses the
bits-per-entry either given or assumed as the size of the
entry.

A-15 A: Language Summary

e s LD e iw

~— a

PO

4

A: Language Summary

entry-description simple-entry-~description
compound-entry-description
simple-entry- , '
description table-item-declaration
dir
null-declaration
table-item=- item-type-name
declaration ITEM item~name Jtype-description
[packing-spec] [table-preset J
position
compound=-entry-
description BEGIN
simple~entry-description ...
END
position POS (starting-bit , starting-word)
starting-bit { integer-ctf | *‘}
starting-word integer-ctf
[
Notes:

1. If the table-declaration contains a table-kind, position
must be given for every item.

2. If the table-declaration does not contain a table-kind,
packing~spec can be given.

3. If packing-spec is not given for such a table, each item
begins in a new word.

A-16

Ly g rener e el e ot L . -

e R 177, ! T

- AR erDo

ot S

EaE ok

T et s s A W i ns

et e g

Y

SR O e oo Rt R TR T e

block~declaration BRLOCK block-name [allocation-spec]
7+ Dblock-body
block-type-name [block-preset] i
block=~body simple~block-body }
compound=-block~body
simple-block~-body data-declaration}
null-declaration
compound-block~
body BEGIN
data-declaration
overlay-declaration ‘o
dir
null-declaration
END
block=~name name
Notes:

1. No allocation order is implied by the order of the
declarations within the block, unless an IORDER directive
is given within a compound-block-body.

8
.

that has static allocation permanence.

3. A data~declaration within a block must not have an

allocation=-spec.

siug ;
U R el

The declaration of a constant can be given only in a block

D - e

e —— g o e, A W i s e e s e o~ S

' constant-
declaration constant-item-declaration
constant-table-declaration
constant-item-
declaration CONSTANT ITEM constant-item-name
type-~description
item-type-name item-preset

constant~table-~

declaration CONSTANT TABLE constant-table-name

[(dimension-list)] [structure-spec]
. packing-spec]
table-kind [table-preset]
table-body

constant-

item-name

name

constant-

table-~name

Notes:
w 1. Some of the itema of a constant table must be set by a

table-preset. That presct can be given in the table-attributes

or as part of the table options.

2. The allocation permanence of all constant declarations,
even thoge within subroutine definitions, is static.

3. The value of a constant item, except a pointer, can be used
in a complle~time~formula. The value of a constant table
or an item from a constant table cannot be used in a
compile~time=~formula,

A: Language Summary A-18

us

vy
-

e

- et ¥,

,hu_.’,.‘l‘,\\.mw,.M‘l\.{oy(!jg,.y..\,,s'm.)

e

ST T T "

T v et 7 b e

-

= -

L

s

e

oy W

item-preset = jtem-preset-value
l item-preset-value ctf
{ LOC (loc-arg) }
table-preset = . tabla-preset-value

table-preset-value :[[positioner] preset-optionf]',...

poeitioner POS (index ,...)} 1
preset-option J item-preset-value
repetitions (preset-option ,...)
-
, repetitions integer-ctf
block-preset = block-preset=-value
block-preset~-value preset;option
i ((table-preget-value)
! ! (block-preset-value)

"

=

Notes:
1. An item must not be initialized more than once.

2. The type of the initial value must be compatible with the
type of object being initialized.

3. If positioner is used, the indexes must correspond in type
and number to the dimensions of the table.

4. Repetitions muet be non-negative.

A-19 A: Language Summary

Sy A e TEEREAY S o o) ol A A K 0T S A el
- ——— -

Rk ! RN T S SRR Sl o R

e e

type~-declaration item~type-declaration
TYPE table-type-declaration
block-type-declaration
item-type=-
declaration item~-type~-name
type-description
item-type-name :
table-type
declaration table~-type-name
TABLE [(dimension-list) I
table~-type~description
table~type-name ;
table-type~
description [structure-spec]
[LIKE table-type-name]
[packing-spec]
table-kind
1 entry-description 9
unnamed-entry
block-type~
declaration block-type-name BLOCK blonk-body
item~type-name
table-type~-name name
block~-type-name
A: Language Summary A-20

[

¥=)

-

i)

AR e A il BRI S I L B, e B Lo AT S

L am ofimeete =T . xe

W
-
T e GRS R T Tad

Ebati

e e

Notes:

1. STATIC or presets cannot be given in a type-declaration.

2. A table can have only one dimension-~list., The dimension-
list can be given either in the table~declaration or in
the type-declaration., Further, if a table-type-~declaration
contains a dimension-list, then it must not contain a
table-type-name, either directly or in a like-option, that
has a dimension-list.

3. The table-type-name in the like-option must agree in kind
and structure with the table-type-declaration in which it

is used.
(
\
A-21 A: Language Summary

Nl gt o LT, A 00 b ki bl AL A e bl

g ——

W TT T T T -

- S U e Ty

—— e, e A

subroutine~-

So——id.

declaration PROC sub-name [sub-attributes] : <
declaration 5)
' 1]
A
subroutine- |
definition { dir ...] '
g
PROC sub-name [sub-attributes] |
¥
[dir ..] subroutine-body 1{
sub-attributes [use-attribute 1 [(formal-list)] fﬁ
! [type-desgeription) F
' z
sub-name {procedure—name | function-name } .
. iu ; !‘
B | .
use-attribute { REC | RENT } ;%
4
formal-list input-formals o

[input-formals] : output-formals}

:]

T TR

input-formals data-name : hat "
statement-name P ﬁmﬁ‘ L
subroutine -name

output-formals data-name , ...
subroutine-body simple-body }
, compound-body
N
A: Language Summary ' A-22

. e e e e e e e e — RO, o ' e .
N ik o LMY s

inline-declaration INLINE 1
| gub-name , ... ;

statement~-name- LABEL !
\ declaration statement-name ,... ; ‘
i i
statement-name name é

Notes:

l. 1If sub-attributes contain a type-description, then the
subroutine being declared or defined is a function. Other-
wige, it is a procedure.

2. A declaration must be given for all parameters in formal- .
list, Such declarations must not contain allocation-specs
or presete and must not be external, constant, or type
declarations.

—.
m_c.

3. The actual parameters in a subroutine call must match in
number and kind (input or output) the formal parameters in
the subroutine declaration or definition. Further, the i
actual and formal parameters must be compatible in type.

———e e emm o e

4. Item parameters that are input-formals are bound by value, .
, Item parameters that are output-formals are bound Ly value=-
i regult. Puarameters that are tables or blocks are bound by
. re erence,

5. A subroutine must not be invoked recursively unless it is
declared with the REC attribute. It must not be invoked

reentrantly unless it is declared with the REC or RENT
attribute.

6. A subroutine-body must contain at least one non-null
statement.

7. Inline subroutines may themselves contain (possible inline)
subroutine-callu, but not nested subroutine-definitions.

8. Names of subroutines whoae definitione appear in othLer
modvles

A-23 A: Language Summary

‘;:_—-AE' igﬁg‘ P

-
4 ' L o T R e & < A TR

; external-
- declaration def-specification }
; ref-specification
| def-specification DEF { gimple-def | compound-def }
compound~def BEGIN
, simple-def ...
END
simple-def P adir... 1
data-declaration
statement-name~declaration
null-declaration
def-block-instantiation
def-block=- |
instantiation BLOCK INSTANCE
block~riame !
ref-gpecification REF { simple-ref | compound-ref } i
compcund~-ref BEGIN
Bimple-l‘ef “ e
END
simple~ref [eir ...] (data-declaration
subroutine=-declaration
null-declaration

A: Language Summary

h-24

- .

e

S’

e S et o et e

= SRPS

PR,

Loy Tt S ppemec

Notes:

1,

2.
3-

A data declaration in a def-specification and a correspon-
ding declaration in a ref-specification must agree in
name, type, and all attributes. However, the compiler
checks this agreement only if a connection is established
between the modulees via a compool directive.

External data must have static allocation permanence.

The data~declaration in a def-specification or
ref-specification cannot be a constant declaration.

In a ref-specification, presets are not allowed in the
declaration of items or tables, and are permitted in the
declaration of a block only if there is a corresponding
DEF BLOCK INSTANCE. :

For each subroutine-declaration in a ref-specification,
a corresponding subroutine~definition, preceded by DEF,
must exist in some procedure module.

A~25 A: Language Summary

S e e a m— E men et e e e m

S ST

overlay-declaration |

OVERLAY [POS (overlay-address) :]

overlay-string :t... ¢

overlay-address number
overlay-string spacer

data-name ress

(overlay-string ..,)
spacer W integer-ctf
define-declaration DEFINE define-name

[(define-formal-1ist)]
[1ist-option]
define-string

define~formal-list define-formal ,...
define-formal letter
list-option { vLisTEXP | LISTINV | LISTROTH }

define-string

" character ... "

define~call

define~name [(define-actual-list)]

define-cactual-1list

define~-actual ,...

define-actual

[character ...]
* [ch.razter ...

)

define-name

name

A: Language Summary

A-26

-

§ b

4

gy w1y 0

L PETs LT
QAP iR

1.

5.

g

v

i
r. --r‘" T TR YR kRS FA R kA S A,

Notes:

An overlay-declaration can only name data that is declared
without a REF declaration in the same scope in which the
overlay-declaration appears.

Declarations for all cata names must precede the overlay-
declaration.

An overlay-declaration within a block~declaration must not
reference data names declared outside the block or within
nested blocks and it must not contain an overlay-address.

An overlay-declaration outside a block-declaration must
not reference data names declared within the block.

Define-actuals that are omitted are replaced by a null
string., If the number of define-formals exceeds the
number of define-actuals, a null string ie substituted for
each missing define-actual.

A'quotation mark within a define-~actual enclosed in
quotation marks must be doubled.

If a define-declaration has a define-formal-list, then a
define~call on the define-name must include the
parentheses that enclose the define-actual~ liut, even
though the 1list may be null.

A define-call cannot be juxtaposed with surryrounding
symbols to ¢reate, after substitution, a new symbol.

A define-call must not be used as the name being declared
in a declaration or as a formal parameter within a
subroutine heading.

A-27 A: Lenguage Summary

[

AL e e e

-l

e e e

e
4

At
iy
: ‘i’-

&

i

T, &

statement [label ... 1 [dir ...]

simple-statement }. -
compound-statement }

compound-
statement BEGIN [dir ...]

statement ...

[label ...] END

label statement-name :

gsimple~ , .
statement agsignment-statement

if~-statement
cage-gtatement
loop=-statement
exit-ptatement
4 goto~sptatement -

procedure=-call-gtatement
return~gtatement
abort-gtatement
stop-statement ,
L null-gtatement J

)

S’
B Ls e T R S 1)

null-gtatement { $ | BEGIN [1label ...] END }

! A: Language Summary A-28

assignment-
statement variable-list = formula ;
variable-1list variable , ...
if-statement | IF test ; +true-alternative
[ELSE false-alternative 1]
test boolean-formula
true-alternative statement
false-alternativz J
case~-gtatement CASE case-gelector ; [dir +..]
BEGIN i
[[dir ...] default~option]
{ [d¢ir ...] case-option } Ve
[label ...] END
default-option (DEFAULT) : statement [FALLTHRU)

case-option

(case-index ,...) : statement

[PALLTHRU]

case~-gelector

formula

case-index

{ ctf | lower-bound : uppéf-bpund }

A=-29 A1 Language Summary

I}

My b

Notes:

1. In an assignment-statement, the formula is evaluated and
then the variables are evaluated and assigned the value of
the formula, starting with the leftmost variable and
proceeding from left to right to the rightmost varialle
before the equals sign.

2. The types of the variables in the list must be the game
and the type of the tformula must be compatible with this
! type.

3. The type of each case-~index must be compatible with the
i type of the case-selector. The valid types for
A case-selector and case indexes are integer, bit,
character, and status.
4. The values specified by the case~indexes must not overlap.

5. If a default-option is not given, the value of the
case~-gelector must be represented by a case-index.

As Language Summary A-30

. e e A

1
«
4

—-
A W
5 f

i)

v

Pt

|t b

T g i et il <

e - pannaae

loop-statement { for-loop | while-loop }

for-loop for-clause

statement “
while-loop while-phrase :; statement
for~clause FOR loop-control 1 initial-value

[continuation]

continuation while-phrase [by-or-then-phrase] o
: by-cr-then-phrase [while-phrase) 1
by-or-then- BY increment } B
phrase THEN next-value . '
while-phrase WHILE condition |
Loop=-control { item-name | letter }
initial-value . !
increment formula
next-value
condition boolean-formula ‘
exit~statement EXIT E
i
goto-statement GOTO statement-name ' ﬁ . ‘

IRITARER WY1 TRTI P (T AY |)

A-31 A: Language Summary

Notes:

E PR

1. The while~phrase is performed before each execution of

; the statement within the loop and the by-or-then-phrase
! after the execution of that statement.

‘ 2. If loop-control is a'letter, it must not be used in a
1 ' context in which its value can be changed.
il

——

The type of initial-value, increment, and next-value must

be compatible with the type of loop-control. The type of

increment must be such that its value can be added %o
initial-value

5. If loop~control is a letter, initial-value must not be an
ambiguous status~constant. A single letter locop-control
is implicitly declared within the loop-statement. Its
value 18 not known outside the loop-statement.

b
(Ah.‘)‘ i
r\
| A
¥
4
4
3§
' |
.,"l
M
s
Al
A: Language Summary A-32 :

procedure-call procedure-name [(actual-list)]
[abort-phrase] ;

actual-list input-actuals
{ input-actuals] : output-actuals
input~actuals formula
statement-name ' o
subroutine-name
block~reference
output-actuals variable ,...
abori-phrase ABORT gtatement-name
procedure-name user-defined-procedure~name
machine-specific~procedure-nanme
return-statement RETURN
abort~statement ABORT
stop-statement sSTOP [integer-formula]

machine-gpevific-

procadure-name name
Notes:
1. An abort-phrase must not be given in a procedure-call for

a machine-specific procedure.

2. Actual parameters in the proceduire-call must match the
formal parameters of the called procedure in number, kind,
anéd parameter list position.

3. The statement-name in an abort~phrase or input-actusl must be
known in the scope that contains the procedure-call-statement.

A-33 A: Language Summary

e e T i

formula

operator

(formula

operand
operand operator operand

relational-expression

operator

| - 1 |

+ | *«* | MOD
AND | OR | NOT | XOR | EQV

}.

cperand

literal
variable
constant
function~=call
formula
conversion (

implementation-parameter J

formula)

Notes:

1.

A: Language Summary

The types of the operands in a formula must agree. The
type of the formula is determined by the types of the

operands.,

NOT is a prefix operator.

used as either infix or prefix operators.
operaters are infix operatore.

The operatore + and - can be
All other

The precedence of the operators is deflned as followsi

Precedence

WS,

Operators
*
* / Mob
e -

- <= = <>

NOT AND OR. FQV XOR

< D>

i,
Vowe
o

v

If the operators in a logical formula are not the same,
parentheses must be included to indicate the.ordef of

evaluatiqn.

A formula cannot have two adjacent operators.

a-34

R e e

s el

e oo

Lt ” SO

5. The following table gives the permissable operators and
the formula type for each type of operand.

Operand Operators Formula Type

(Integer 4 = % / w* MOD S n-1 = where n is the actual

: number of bits supplied by the
implementaticn for a signed
integer item with the sige
attribute of the larger of the
operands (for exponentiation, the
formula type is integer only if
the right operand is a non-negative
integer compile-time-formula)..

Floating + = % [W F p - where p is the precision of
: the meoat precise operand.

Fixed + - * [/ A s, f -~ where 8 and f are as
follows depending on the operator:

(+ or -~ 8 equals the scale of the

\ ' operands and f is the
maximum of the fraction of
the operands.

* If one operand ie a integer, s
is the scale of the fixed
operand and f is the fraction !
of the fixed operand. If both
operands are fixed, s is the
sum of the scales and £ is the

(sum of fractions of the
operands.
N / 1f the denominator is an

integer, s and £ are the scale
and fraction of the numerator.
If the denominator is a fixed
type value, the result is exact ‘
and must be explicitly §
converted to a specified scale :
and fraction. '

Bit AND OR NOT B n - where n is the number of
EQV XOR bits in the longest operand.

A-35% A: Language Summary

relational-expression

formula

relational~op formula

relational-op {b< > | = | <= | >m | < }

Notes:

l. The type of the formulas in a relational expresssion must
match,

2, When both formulas are status-constants, at least one must
be unambiguously agsociated with a single status type.

3. When the two formulae are status formulas, their types
must be identical.

4. When the two formulas are pointer formulas, their types
muet be identical cor one must be an untyped pointer.

5. When both formulas are fixed formulas, a type to which

both are automatically convertible must exist.

A: Language Summary

A=-36

&

o - e -

LAY -
Yo

ST h L ek

v;;j

4
r

Ik NEde ad FEEEL L - i

s i

Time S L

e FHSoczin- b ad

s

R R R IR T O 5 b e v o i N

! literal integer-literal |
floating-literal
fixed~literal
bit-literal S
boolean~-literal
character~literal
pointer-)iteral |

integer-literal number
floating~literal number exponent o
fixed-literal [number] . [number] [exponent]
exponent E[L+ | - 3 number
number digit ...
bit-literal bead-sgize B “{‘bead N } !
-
bead-size { 1121314158 }
bead {atgie 1at1s 1 o1y }
—
| aigit fetri .19}
boolean-1iteral {Troz | Farsz }
character-literal ' { character ... }'
peinter-literal NULL

A-37

wwn yene -

A: Language Summary

e ——— N st R S v

R T s

'y

Notes:

1. In a floating~ or fixed-literal, a number must be given
elther pefore or after the decimal peint, or both before
and after. |

2. An integer-literal denotes a decimal value. Its t{pe is &
n, where n is IMPLINTSIZE(MINSIZE(integer-literal)).

3. A floating~ or fixed-literal denotes a decimal value. 1Its
type is determined from the context in which it is used,
as follown:

Use Type
preset type of the object being preset
asgignment value type of the target being assigned the
value

operand type of the other operand
actual parameter type of the formal parameter
initial-value for type of the loop-control

loop-control

4. TRUE reprecent the bit value 1B'l'. FALSE represents 1B'@'.

5. A ' character within a character-literal is represented by
two adjacent ' characters.,

A: Language Summary A-38

)

T e e

o

-

s e

A,

variable data-reference
psuedo~variable
function-name
data-reference | name [(subscript-list)] [dereference)
subscript-list index ,...
dereference e pointer-name .
(pointer-formula)
pseudo- '
variable BIT (variable, first, number }
BYTE (variable, first, number)
REP (variable)
congtant constant-name [(subscript-list)]
control-letter
cfirst)' integer-ctf
cnumber
constant-name constant-item-name
constant~table-name
pointer~-name name
index

integer-formule }
status-formula

A-39

A: Language Summary

s —e e ot o

e e

e chra FEm R

Notes: ;

1. Name in a dsta~reference and constant-name mug. ~¢ either
an item-name or a tahle-name.

2. A subscript-liet muast be used to reference an entry of an o
item in a dimensioned table. The gubscript~list must f
contain the same number of indexes as the dimension-list i
of the table contained dimensions. : : [

I
3. Each index must agree in type with its corresponding dimen- @
sion and be within the range specified by that dimension.

il L arBape FiF

4. The indexes in a reference to a table that is a formal
parameter declared with * dimensiorns must be integer
\formulas, even if the dimensions of an actual parameteér
are status types. The value of each index must be in the
range @ to n-1, where n is the number of entries in that
dimension.” ' ’ :

ey e e

5. A dereference must be'uaed'to reference an item or table
declared using a type-declara+ion.

6. In a BIT pseudo-variable, the argument variable must have
type Lit. In a BYTE peeudo-variable, the argument
variable must have type character.

7. A pseudo-variable or function-name cannot be used as the
argument of a REP function.

At Language Summary A-40

function-call function-nama [(actual-list)]
(function~name user-defined-function~name
built-in=function-name
machine~specific=-function-name %
conversion (* type-description %) !
(* type-name * !
type-nama b
type-indicator .
REP | |
|
type~-indicator { sluvilirplBlcley } ;
I,('
machine- :
(specific= |
, function-name name
Notes:
1. User-defined-function~names are those names defined <o be
functions in subroutine declarations or definitions.

2. Machine-specific-funntion-names are given in the user's
guide,

. T et . i .

A-41 41 Language Bummary

FPEERPETRA TR v S T T A

g e

e e e

A% 8,

built~-in-
function [Loc (loc~-argument)
NEXT (next-arg , incr))
. BIT { bit-formula, first, number)

BYTE (char-formula , first , number)

SHIFTL (formula , count)

SHIFTR (formula , count)

ABS (formula)

J 8GN (numeric~formula)

BITSIZE (size-arg)

BYTESIZE (size-arg)

WORDSIZE (size-arg)

LBOUND (table-name , dim-number)

UBOUND (table~name , dim-number)

NWDSEN (nwdsen-arg)

FIRST (stat-arg)

| LAST { stat-arg)

loc-arg data-reference

gubroutine-name

statement~name
next-arg { pointer-formula | status-formula ‘}
size~arg { formula | block-name | type-name }
nwdsen-arg { table-name | table-type-name '} |
stat-arg {utatus-formula | status-type-name]" |
iner |
first integer=-formula
number |
count

k: Language Summary

A-42

g PR NI O 5

L T
P

{)

o e atai e =

T, - S

ey

Lot

d

Notes:

i) 1. The LOC of a subroutine whose name appears in an inline-

.) declaration; or of a statement-name whose definition

i N . appears in such a sub-routine is implementation defined.

u 3 2. First and number must not designate a substring beyond the
r 2 bounds of the bit or character formula.

3. Next-arg cannot be an ambiguous status-constant or the
pointer literal NULL.

4. The type of the status~formula must be a status type with
default representation.

5. When the next-arg is a status formula, the increment nust
not cause the NEXT function to return a value out of range
of the next-arg.

6. The value of the pointer formula and the value of the
pointer result must be in the implementation~defined set
"- of valid values for pointers of its type.

el et ML e

A-43 A: Language Summary

i, S

ety e B s L

‘dll‘

3 et
. \i:.
| ‘ name ! letter } ! ;?‘w'
,! l $' i name'char ot n ".;,“’%"w}
3
E‘ name-char {letter | aigit | § b } j3,\¥"3v
b L
h«

g letter {AlBlCI | 2 }
i
digit {prr121 .0 19}
character {letter | digit | mark | other-char }
mark + | = %] /1] ¢l =
el .|z, y L) |
‘1Tl 118§ plank : -
— : <
reserved-word ™ ABORT | ABS | AND | BEGIN | BIT
BITSIZE | BLOCK | BY | BYTE
BYTESIZE | CASE | COMPOOL
CONSTANT | DEF | DEFAULT | DEPINE
ELSE | END | BQV | EXIT | PALLTHRU
FALSE | PIRST | FOR | GoTO | I® i
INLINE | INSTANCE | ITEM | LABEL |
Y LAST | LBOUND | LIKE | LoC | MOD ;
NEXT | NOT | MULL | NWDSEN | OR -~
OVERLAY | PARALLEL | POS | PROC | 93
PROGRAM | REC | REF | RENT | REP
v RETURN | 8GN | SHIFTL | SHIFTR
T START | STATIC | BTATUS | STOP
TABLE | TERM | '"HEN | TRUE | '"YPE
| UBOUND | WHILE | WORDSIZE | XOR
3
ctf
integer~cif .
integer-formula formula
floating-formula
status-formula i
pointer-formula
| |
lﬂ'.
A: Language Summary A-44

N
r o — N st st . ML, Ao

"‘ “""'"""*‘” mﬁ"‘:ﬁ‘(ﬁﬂhﬁhf—-.‘-v:y-mib‘/\!"' AN L. o

r3

Notes:

l.

2.

Only the first 31 characters of a JOVIAL J73 name are used
to determine unigqueness. Adlitional characters are ignored.

The other-chars are the remaining implementation-
dependent characters accepted in character literals or
comments., See the user's guide for a list of these
characters and their collating seguence.

The following alternate characters are provided for
implementations that do not have the given characters:

Standard Character Alternate

@ $ or ?
! - or _
" *
! 14
% %

A=-45 A: Language Summary

S FRE P

o e

 sem it

e

R R

Syntax Index

Abort-phrase, A-33
Abort-gtatement, A-33
Actual-list, A-33
Assignment-sgtatement, A=-29
Bead, A-~37

Bead-size, A-37
Bit~literal, A-37
Bit-size, A-12
Bit«type~description, A-12

Ty e A R

Bits-per-entry, A-14 ;fw i
Block=body, A=~17 Tt
! Block«declaration, A-17
’ Block=-name, A~17

Block~preset, A-l%

Block-preset~value, A-1lY

Block~type~daclaration, A-27

Block~-type-name, A-2M ‘
Boolean~literal, A~37

Built-in~function, A-42

By-or-then-phrase, A-31 ey
Case-index, A~29 {
Cage-option, A-29 '
Case-selector, A-29

A Cage-statement, A-29°

Cfirst, A-39

Char~type~-description, A-12

Character, A-44

Character-literal, A-37

Char-size, A-12

Cnumber, A-39

Compool=~£file, A=-7

Compool=-list, A-7

Compool -module, A=-6

Compound-~block-body, A=17

Compound-body, A-9 -

Compound-declaration, A-9 ‘
Compound-def, A-24 . v~¥
Compound-entry-description, A-16 .
. Compound-ref, A-~24

AT Surse el

e

—aiad

~,

R s

TS i D S

e

=
e

=%

WA

&
Eew_ NS

A: Language Summary A-46

—_——

Compound-statement, A-28
Condition, A-31

Constant, A-39
Constant-declaration, A-18
Constant-item-declaration, A~1l8
Constant-item-name, A-18
Constant-name, A-39
Constant-table-declaration, A-18
Constant-table~name, A-18
Continuation, A-=31
Conversion, A-41

Count, A-42

tho A"44

Data-declaration, A-9
Data-name, A-7]
Data-reference, A-~39
Declaration, A-9
Def-block~instantiation, A-24
Def-gpecification, A-24
Default~list, A-12
Default-option, A-29
Define-actual, A-27
Define-actual-list, A-27
Define~call, A-27
Define-declaration, A-27
Define-formal, A~27
Define-formal-list, A-27
Define~name, A-27
Define-string, A-27
Dereference, A-239

Digit' A-37' A"44

Dimension, A-14

Dir' A"'7

Entry-description, A-l6
Entry-size, A-14
Exit-statement, A-31
Exponent, A-37
External-declaration, A-24
False-alternative, A-29
FirBt, A-42

Fixed-literal, A~37
Fixed-type-description, A-~10
Floating=-formula, A-44
Floating-)iteral, A-37
Floating-type~description, A-10
For-clause, A-31

For-Joop, A-31

Formal-list, A-22

Formaula, A=-34

Fraction, A-l0

A-47

Az

Language Summary

et e L

I CTIEY TEETIPE SR

R I n TRt rd A el _aBRTO k. P s b T2

l.. e ———— —ce

Function-call, A-41

Function~-name, A-41

Goto-statement, A~-31
If-statement, A-29

Incr, A-42

Increment, A-31

Index, A-39

Initial-value, A~-31
Inline~declaration, A-23
Input-actuals, A-33
Input-formels, A-22
Integer-ctf, A-44
Integer~formula, A-44
Integer~literal, A-37
Integer-size, A-10

Integer~type~description, A-10

Interference=-control, A-7
tem-declaration, A-1Q
ltem-name, A-10

Item-preset, A-19
ltem=-preset-value, A-19

Item-type-declaration, A-20
Item-type~name, A-20

Label, A~-28

Letter, A-44

List-option, A-27.

Literal, A-237

Loo-arg, A-42

Loop~contreol, A-31

Loop~statement, A=-231

Lower-bound, A=-14

Machine-sgpecific=function«name, A-41

Machine-gpecific-procedure-name, A-33

Main-program-module, A-~6

Mark, A-44
Module, A-6
Name, A-44

Name~char, A-44
Next~arg, A-42
Next-value, A-3l
Null-declaration, A-9
Null-statement, A-28
Number, A-37
Nwsden=-arg, A-42
Operand, A-34
Operator, A-34
Output-actuals, A-33
OQutput=-formals, A-22
Overlay-address, A-27
Overlay-declaration, A-~27

A1 Language Summary A-48

-,

Lalll ST T KT SO T

=== -

o

e

P

R

RSV Iy . S

Packing-spec, A-14

Pointer-formula, A-=44

Pointer-literal, A-37

i Pointer-name, A-39

. Pointer-type~description, A-12

Position, A-16
Positioner, A-19
Precision, A-10 |
Preset-option, A-19 i

| Procedure-call, A-33

. Procedure-module, A-6
Procedure-name, A-33
Program~-body, A-9 \
Paeudo-variable, A-39 j
Ref-specification, A-24 A ;
Relational-expression, A~36 l
Relational-op, A-36
Repetitions, A-19
Reserved-word, A=-44
Return-statement, A-33

(. Scale, A~-l9

!
i } Overlay-string, A-27
(

i
;
!
S8imple~block-body, A=17?
~ gimple~-body, A~9 l
Simple-declaration, A-9 L ?
Simple~def, A-24
Simple-entry-description, A-16 !
Simple~ref, A-24 fV
Simple-statement, A-28 i
Size-arg, A-42 !
Spacer, A=27 |
Specified=-1ist, A-12 f
q" Starting-bit, A-1l6 i
, ‘ Starting~word, A-1l6
f\ ' Stat-arg, A=42
Statement, A-28
Statemsnt~-name, A-27
Statement~name~declaration, A-23 ;
Status~constant, A-12 !
Status~-formula, A-44
8tatue~group, A=~l2)
Status=-Index, A~-1l2
Status-list, A~12 |
Status~size, A-12 {
Status=-type-description, A-12 1
‘ Stop-statement, A-32 !
' Structure-spec, A-l4) 3
Sub-attributes, A=-22 ‘ Q
i
}
'
i

X | . Sub-name, A-22
: (; _ Subroutine-body, A-22

A-49 A: Language Summary $

O ALY H et R4 SN 5 1 et Wt i

M A i

B R s oA SRR TR o " VE

Subroutine-declaration, A-22
Subroutine-definition, A-22
Subscript~ligt, A-39

Symbol, A-7
Table-~attributes, A-~14
Table~body, A-14
Table~declaration, A-~-14
Table~item-declaration, A-16
Table-kind, A-l4

Table~name, A-14
Table~preset, A-19
Table-preset~value, A-=19
Table-type~declaration, A-2¢
Table-type-description, A-20
Table-type-name, A-201

Test, A-29

Trace-control, A-7
True-alternative, A-29
Type-declaration, A-20
Type-degcription, A-10
Type-indicator, A-41
Type-name, A=17
Unnamed-entry, A-14
Upper-bound, A-14
Use-attribute, A-22
Variable, A=-39
Variable-1iast, A-29
While~loop, A-31
While-phrase, A-31

A: Language Summary A-50

S

Appendix B

IMPLEMENTATION PARAMETERS

The way in which the memcry of a machine is partitioned into
addressadle unite is a fundamental part of the machine's
architecture., JOVIAL (J73) assumes the following partitions:

Bit The smallest unit of storage. It can contain one of

two values, @ or 1.

Byte A group of bits that can hold 1 character of information.

Word A group of one or more consecutive bits that serves
as the unit of allocation of data st . je.

Addregs Unit - The machine dependent unit used to identify a

location or address in memory.

The number of bits per byte, per word, and per address varies
from implementation to implementation. These gquantities affect

the representativn and behavior of data in a high level
language.

JOVIAL (573) supplies implementation dependent parameters that
allow these quantities to be referenced symbolically. The
values of these constants must be specified in the user's guide
for any implementstion of JOVIAL (J73).

The following list gives the implementation parameters and a
short description of the meaning of each. First the
implementation parameters of type integexr are given, then those
of tvpe float, then those of type fixed.

P-1 B: Implementation Parametere

e AR O R T SR e R Wt A b

e a—n e

et ot e

-

B.l INTEGER IMPLEMENTATION PARAMETERS

The implementation parameters of type integer have the same
size as an integer literal with the same value.

Paramter Meaning

BITSINBYTE Number of bits in a byte,

BITSINWORD Number of bits in a word.

LOCSINWORD Number of locations (address units)
: in a word.

BYTESINWORD Number of complete bytee in a word.

BITSINPOINTER Number of bits used for a pointer

value.
FLOATPKECISION: Number of bites supplied to hold the

value of the mantissa of a floating
item declared with default
precision.

FIXEDPRECISION Number of bits, not including sign
bit, supplied to hold the value of a
fixed item declared with a default
frection.

FLOATRADIX Base of the floating point
representation, given as an integer,

IMPLFLOATPRECISION { precision) Number of bits, not
including sign bit, in the mantissa
for a floating point value with the
given precision.

IMPLFIXEDPRECISION (scale, fraction) Number of bits,
not inciuding sign bit, used to
represent an unpacked fixed item
with the given scale and fraction.
This value also determinesm the
accuracy of fixed formula results.

IMPLINTSIZE (integer-size) Number of bits, not
including sign bit, used to
represent an unpacked U or 8§ integer
item with the given integer-size.

B: Implementation Parameters B-~2

—_ e ———

d"""g

MAXFLOATPRECISION

MAXFIXEDFRECISION

MAXINTSIZE
MAXBYTES

MAXBITS

MAXINT (integer-size

MININT (integer-size

MAXSTOP
MINSTOP

MAXSIGDIGITS

Maximum precision that can be given
for a floating item.

Maximum value for the sum of the
scale and fraction of a fixed item.

Maximum size, not including sign
bit, for signed and unsigned
integers.

Maximum value for a character string
item gize. MAXBYTES must not exceed
MAXBRITS/BITSINBYTE.

Maximum value for a bit string size.
The maximum value of words per entry
in a table is MAXBITS/BITSINWORD.
The maximum BITSIZE of a table is
MAXBITS.

) Maximum integer value
representable in integer-gize + 1
bits, including sign bit.

) Minimum signed integer value
representable in integer-sgize +)
bits, including sign bit, using the
implementation's method of
repregenting negative numbers.

Maximum value that can be given for
an integer formula in a stop
si.atement.

Minimum value that can be given for
an integer formula in & stop
statement.

Maximum number of significant digitm
processed for a fixed or floating
point literal.

MINSI2E (integer-compile-time-formula) Minimum valuve of

integer-size such that the value of
the integer-compile-time~formula is
leas than or equal to
MAXINT(integer-size) and greater
t?an)or equal to MININT(integer-
size).

B=3 B: Implementation Parameters

i
{
1
[
i
)

ST

MINFRACTION (floating-compile~-time-formula) Minimum
value cf n such that 2**(-n) is R
greater than the value of the ! !
floating-compile~time-formula. 1

MINSCALE (floating-compile-time-formula) Minimum value
of n such that 2**n is greater than
the value of the floating-compile-
time-formula.

MINRELFRECISION (floating-compile-time-formula) Minimum
value of precision such that
FLOATRELPRECISION(precision) is less N
than or equal to the value of the {
floating=-compile-time-formula,

B.2 FLOATING IMPLEMENTATION PARAMETERS

AP e AR i e 2T

The implementation puarameters of type float have the precision ;AF
as an argument. -
Parameter Meanin %
’ Parameter i
MAXFLOAT (precision) Maximum floating point value

that can be represented in the
number of mantissa bits specified by
precision, not including sign bit.

A e i T

MINFLOAT (precision) Minimum floating point value 9 ¥
that can be represented in the C
number of mantissa bits specified by
precigion, not including sign bit,
using the implementation's method of
representing negative numbers.

FLOATRELPRECISION (precision) Smallest positive
floating point value that can be
represented in the number of
mantisea bits specified by
precision, not including the sign
bit, such that:

1.0 - FLOATRELPRECISION(precision)
is less than 1.0 and

1.0 is less than 1.0 +
FLOATRELPRECISION(precision). o

O

i T e I P

s

B: Implementation Parameters B-~4

e IR s

e T

L EARIVEWETSRE Fr e Ml e et B R

FLOATUNDERFLOW (precision) Smallest positive floeting
point value that can be represented
in the number of mantissa bits
specified by precision, not
including sign kit, such that both
FLOATUNDERFLOW(precision) and
FLOATUNDERFLOW(~precision) are
representable as floating point
values.

B.2 FPIXED IMPLEMENTATION PARAMETERS

The implementation parameters of type f£ixed have the scale and
fraction specified as arguments.

Parameter Meaning

MAXFIXED (scale, fraction) Maximum fixed value that
can bte represented in
scale+fraction+l bits, including
sign bit.

MINFIXED (scale, fraction) Minimum fixed value that
can be represented in
gcale+fractiontl bits, including
sign bit, using the implementation's
method of representing negative
values.

B-5 B: Implementation Parameters

e e et o T e 2 =

~——— 3

INDEX

A (fixed), 61
Abnormal termination, 217
Abort-Statements, 197, 218
ABS function, 142
Actual Parameters, 203
addition

fixed, 122

float, 119

integer, 116
Additional Declarations, 246
Advanced Peatures, 18
Allocating Absolute Data, 299

Allocation and Initial values, 95, 98

Allocation Order, 300
Allocation Permanence, 72, 99
Allocation, 225

Allocation-Order-Directive, 256

Example, 257

Placement, 257
Alternative character, 25
Assignment Statements, 176

Multiple Assigmment-Statements, 177
Simple Assigmment-Statements, 176

Asterisk Dimensions, 150
Attributes

round, 69

truncate, 69
Automatic Allccation, 54

B {bit), €3
Base
of literals, 24
Binding
reference, 209
value, 207
value-result, 208
Bit and Character Types, 146
Bit Formulas, 124
Examples, 125, 126
Logical Operators, 124
Short Circuiting, 128
Relational Operators, 126

Index-1

e

W
&
[f

R

=

l‘J

lllﬂllull FAGE lllll-ﬁlllﬂlﬂlb
MR A 5 S L s it

O b ol eadi

WG N, e

i T

4 i i . ol i diaie . 3
ey, Al PR -
" - A,!‘
s Ry Ao b

Friopmimie (Pt ot s+ ey

Ix

BIT Function, 136
Examples, 137, 138
Function Form, 136 X
Pseudo-Variable Form, 138 W

Bit Literals, 29 I
Bit Type-Descriptions, 63 o
Bit-size, 63 s
BITSINWORD 3

use of, 76 ,&
BITSIZE function, 143 ~ W
Blanks, 33 yﬁ

Block Type Declarations, 121 5
Initial Values, 102
Omitted Values, 142
Block~body, 87
Block-Declaration, 87
Allocation Permanence, 9¢
Initia) Values, o7
Nested Blocks, 89
Block~presets, 102

R
e

E

oY

SIS

Blocks, 148

nested, B9 i %
Boolean Litorals, 30 s %
Bound, 185 w
Bounds Functions, 149 A

Asterisk Dimensions, 150
Examples, 15¢
Function Forms, 149
Bounds, 73
Built-in functione, 132, 9

o Ei i o

x

BY clause, 189 §

BYTE FUNCTION, 138 i é

Examples, 139, 140 S

Function Form, 138 S

Pseudo-Variable Form, 140 A

e BYTESI2ZE function, 143 %
C (character), 64 I

Calculations, 6 %

Carriage return, 34
case-index, 183
Case-gelector, 183 !

L N

Case-Statements, 183 Ayl

Bound, 185 :ﬁ
Compile-Time-Constant Conditions, 186 .j

The FALLTHRU Clause, 185 I

Case-Variants) :@

Unnamed Entry-Descriptions, 78 ﬁﬁ

Char-size, 64 . m ‘;ﬁ

‘ Character Formulas, 127 S
\ Character Literals, 30 fﬁ

Character Type-Descriptions, 64

Index~2

1 o s e oabbp b il
o L

Character

alternative, 25
Characters, 24

Digits, 24
Letters, 24
Marks, 25

Special Characters, 25
Classification of Data Declarations, 52
Classification of Declarations, 4#
Comments in Define-Declarations, 27¢
Comments, 32
Compatible Data Types, 156
Compile~time statements

case-gtatements, 186

if-statement, 182
Compile~Time-Constant Conditions, 186
Compile~-Time~-Constant Tests, 182
Compile-Time~Formulas, 128
Compiler Directives, 17
Compiler Macros, 18
Compool~directive, 231
Compool=-Directives, 244

Rdditional Declarations, 246

Examples, 247

Mames, 245

Placement, 246
Cormpool~-Modules, 231
Compound Alternatives, 179
Compound DEF=-Specnifications, 225
Compound Procedure-Bodies, 201

Formal Parameters, 202
Compound~-Declaration, 42
Compound-sStatements, 174
Condition

in if-statement, 178

in while=loops, 187
Conditional statment, 178
Conditional~Compilation-Directives, 249

Examples, 249

Plucement, 249
Constant Data Objects, 53
Constant Data, 228
(Constant Item Declarations, 56
Constant Table Declarations, 79
Context, 273
Contexts for Conversion, 155
Conversion and Packed Items, 287
Conversion operators, 156

Index-3

et s

Conversions, 158
Conversion to a Bit Type, 164
Compatible Types, 164
Convertible Types, 164
REP Conversions, 166
User-Specified Bit Conversion, 164
Conversion to a Character Type, 166
Compatible Types, 166
Convertible Types, 167
Conversion to a Fixed Type, 162
Compatible Types, 163
Convertible Types, 163
Conversion to a Floating Type, 161
Compatible Types, 161
Convertible Types, 162
Conversion to a Pointer Type, 17#
Compatible Types, 17¢
Convertible Types, 171
Conversion to a STATUS Type, 168
Compatible Types, 168
. Convertible Types, 169
Conversion to a Table Type, 171
Compatible Types, 172
Convertible Types, 172
Conversion to an Integer Type, 158
Compatible Types, 159
Convertible Types, 159
Convertible Data Types, 156
Type Descriptions, 156
Type-Indicators, 157
User Type-Names, 158
Copy-~Directive, 248
Example, 248
Placement, 248

D (dense packing), 277

Dangling ELSE, 181

Data Name Declarations, 212

Data Names, 297

Data type
automatically convertible, 156
of formula, 115

Data Types, 57
Bit Type-Descriptions, 63
Character Type-Descriptions, 64
compatibility, 156
Fixed Type-~-Descriptions, 61
Floating Type-Descriptions, 59
Integer Type-Descriptions, 58
Pointer Type-Descriptions, 67
Status Type-Deecriptions, 65

Decimal Digitse, 24

Index-4

Iy
=

| —

s
(S

o

TRELTER G

e

g g

A

L

Declaration p

table, 71
Declarations, 39
block, 87
constant items, 56
Items, 55 .

The Classification of Declarations,
The Compound-Declaration, 42
The Null-Declaration, 42
type, 93
DEF=-Block-Instantiations, 302
DEF-Specifications, 224
Allocation, 225
Compound DEF-Specifications, 225
Simple DEF=-Specifications, 224
Default representation
of status lists, 66
DEFAULT, 184
Define Parameters, 270
Define-Actuals, 271
Missing Define-Actuals, 271
Define-Actuals, 271
Define-Calls in Define-Artuals, 273
Define-Calle in bDefine-Strings, 268
Define-Calls, 266
Placement, 268
Define-Declaration, 265
Define-formal, 266
Define-String, 268
Comments in Define-Declarations, 277
Define-Calls in Define-Strings, 268
Dense packing, 277
Dereference operator, 27
Digits, 24
Dimension and Structure, 97
Dimension=list, 73
Dimensions, 72
Direct Communication, 24@
Directive
compool, 231
Division
firted, 122
float, 119
integer, 117
Dollar sign
in names, 26

Entry-Description, 76
compound, 77
simple, 76
Entry~size, 282, 288, 291
Equivalent data types, 156

Index-5

e T T e e =

Evaluation-Order~Directives, 258
Example, 259
Placement, 258
Exit~-Statements, 193
Explicit conversion, 156
Exponentiation
float, 120
integer, 117
External Declarations, 223
Constant Data, 228
DEF-Specifications, 224
Allocation, 225
Compound DEF-Specifications, 225
Simple DEF~-Specifications, 224
REF~Specifications, 226

F (floating), 59
FALLTHRU Clause, 185
FALLTHRU, 185
false-alternative, 179
FIRST function, 152
Fixed Formulas, 121

Examples, 123
Fixed Implementation Parameters, B=-5
Fixed Type-Descriptions, 61
Float Forinulas, 118, 124
Floating Implementation Parameters, B-4
Floating Type-Descriptions, 5%
FLOATPRECISION

use of, 6R
Flow of Control, 1@
For-Loops, 188

Incremented For-Loops, 189

Repeated Assigment Loops, 191
Formal Parameters, 202
Formatting Conventions, 34
Formula Structure, 1lll

Formula Types, 115

Operands, 115
Formula Types, 115
Fraction, 61
Function Definitions, 204
Function-Calls, 295
Function

ABS, 142

BIT, 136

BITSIZE, 143

BYTE, 138

BYTESIZE, 143

FIRST, 152

LAST, 152

LBOUND, 149

Index~6

SR S UIIPNESEE

e

5 EIE

sy

.f?f"

Function (Cont'd)
1..OC, 132
NEXT, 134
NWDSEN, 151
SGN, 142

' SHIFTL, 140

SHIFTR, 140
UBOUND, 149
WORDSIZE, 143

Functions, 204
built=-in, 132
Function Definitions, 204
Function-Calls, 205

Generated Names, 272
Context, 273
Goto~Statements, 195, 224

If~Statements, 178
Compile-Time~Constant Tests, 182
Compound Alternatives, 179
- Nested (f-Statements, 180
(The Dangling ELSE, 181
Implementation Dependent Characteristics, 19
Implicit conversion, 156
Incremented For-Loops, 189
Initial) values, 172, 68, 90
for table, 76
Omitted Values, 102
Initialization-Directive, 256
Example, 256
Placement, 256
{ Inline-Declaration, 221
Input~parameters, 202
Integer Formulas, 116
Examples, 118
Integer Implementation Parameters, B-2
Integer Literals, 28
Integer operators, 116
Integer Type-Descriptions, 58
Integer-size, 58
Interference-Directive, 259
Example, 260
Placement, 260
Intrinsic functions, 132
Inverse Functions, 152
Examples, 153
Function Form, 152
‘ Itew Declarations, 55
(" Item Type-Declaration, 95
Allocation and Initial Values, 95
Item-Presets, 68

Index~7

Ve WA e, W 11 STt i S el T et

[OOSR

JOVIAL (J73) Tables, 275

Labels within For-Loops, 193
Labels, 175
LAST function, 152
LBOUND function, 149
Letters, 24
‘ ag loop-controls, 192
Like~Option, 99
, 1g¢ ' .
Linkage-Directive, 262 i
Example, 262
Placement, 262
List Option, 274
LISTBOTH, 274
LISTEXP, 274
lListing-Directives, 255, 255
LISTINV, 274
Literals, 28
Bit Literals, 29
Boolean Literals, 3¢
Character Literals, 30 ";
Integer Literals, 28 , -
Pointer Literals, 31
Real Literals, 29
LOC Function, 132
Examples, 133
Function Form, 133
Logical Operators, 124
Short Circuiting, 128%
Loop~Control, 192
Loop-Statements, 187 vy
For-Loops, 188 . x
Incremented For-Loops, 189 -
N Repeated Assigment Loops, 191
Labels within For~Loops, 193
Loop-Control, 192
While-Loops, 187
Loops, 188 by
Lower Case Letters, 24 A
Lower-bound, 73 B

/
B b

LB SR S K T L B

o L HE

M {medium packing), 277
Machine Specific SBubroutines, 220
Main Program Module, 229, 37
Marks, 25
MAXBITS
use of, 64, 76
. MAXBYTES ‘
. use of, 64
< MAXFIXED
use of, 63

Index-~8

LT o 2o LS

[

=

MAXF IXEDPRECISION
use of, 63
MAXFLOAT
use of, 692
MAXFLOATPRECISION
use of, 60
Maximum Table Size, 76
MAXINT
use of, 58
MINFIXED
use of, 63 .
MINFLOAT
use of, 67
MINIMT
use of, 58
Miseing Define-Actuals, 271
MOD, 117
Module Communication, 239
Direct Communication, 246
Modules, 228, 35
Compool=Modules, 231
Main Program Module, 229, 37
Procedure-Modules, 237
Modulus
integer, 117
Multiple Assignment-sStatements, 177

Multiplication
fixed, 122
float, 119

integer, 117

M (no packing), 277
Names, 245, 26
dollar sign in, 26
Nested Blocks, €9
Nested If-Statements, 180
Nested Overlays, 299
Nested repetition-counts, 84
Nested subroutines, 38
New Lines, 33

_ NEXT Function, 134

Func:ion Form, 134

Pointer Value Arguments, 135

Status Value Arguments, 135
Non-nested subroutines, 38
NMon-nested-gubroutines, 229
Normal termination, 217
Null-Declaration, 42
Null-Statements, 176
Numeric Data Types, 145

Index-9

R et i N AN L0 et g A oA O A S BT I

TS i,

L Lot

e

i'rﬂiEtj

NWDSEMN Function, 151
Examples, 152
Function Form, 151

Omitted Values, 102, 82 ’ .
Operands, 115 b
Operator precedence, 112
Operators, 112, 27, 7
conversion, 156
fixed, 121
float, 119 B
integer, 116 1
Ordinary Tables, 275 "
Conversion and Packed Items, 287
Packing, 276
Structure, 281
Example of Serial ve. Parallel Structure, 283
Parallel Struvcture, 282 -
Serial Structure, 282 ‘

Tight Structure, 284 it
Outline of this Manual, 19 S
Output-parameters, 202 } !

OVERLAY Declaration, 296
Allocating Absclute Data, 299
Allocation Qrder, 300
Data Names, 297
Nested Overlays, 299
Overlay-Declarations and Blocks, 340
Spacers, 298 it
Storage Sharing, 299 i
Overlay-Declarations and Blocks, 340 £
Overlays, 2979 k i

Sr T

P (pointer), 67 ’ ;
Packing, 276 : d
v Padding ;
b of bit strings, 164]
of character strings, 167 ¥,
Parallel Structure, 282 ; @
PARALLEL, 282 N o
Parameters, 206 :
Parareter Bincing, 207 &
Reterence Binding,, 209 #
Value Binding, 207
Value-lkesult Bindling, 268
Parameter Data Types, 211
Parameter Neclarations, 211

TEEITTT S
iy e

——————— ———— - =

Data Name Declarations, 212 %&

Statement Name Declarations, 213 t o)

Subroutine Declarations, 214 ']
Pointer Formulas, 123 l
Pointer Literals, 31

Index-10 i

<

Pointer Type-Descriptions, $7
Pointer Types, 147
Pointer Value Argumsnts, 135
Pointer-Qualified References, 165
Examples, 1@8
Pointers and Ambiguous Names, 1@6
Pointers and Ambiguous Names, 106
Pointers
typed, 67
untyped, 67
POsS, 288, 297
in presets, 82
Precedence
of operators, 112
Precision, 59
Preset Positioner, 82
Preset
table, 76
Presets, 290
for items, 68
Principal Features of JOVIAL, 2
Advanced Features, 18
Built~In Functions, 9
Calculations, 6
Compiler Directives, 17
Compiler Macrosg, 18
Flow of Control, 10
Operators, 7
Programs, 14
Storage, 3
Subroutines, 12
Values, 2
Procedure-~Call-Statements, 196
Procedure-Calls, 202
Actual Parameters, 203
Procedure-Definitions, 199
Procedure-Modules, 237
Procedures, 199
Compound Procedure-Bodies, 2€1
Formal Parameters, 202
Procedure-Calls, 202
Actual Parameters, 203
Procedure~Definitions, 199
Simple Procedure-~Bodies, 207
Program Format, 32
Formatting Conventions, 34
New Lines, 33
Space Characters, 33
Pregrams, 14, 35
Pseudo-Variable Form, 138, 140

Index-11

Qualified Data References, 185
Pointer~-Qualified References, 105
Examples, 188
Pointers and Ambiguous Names, 106

R (round), 69
Radix
of literals, 24
Real Literals, 29
REC, 216
Recursive subroutines, 216
Reducible~Directive, 260
Example, 261
Placement, 261
Reentrant subroutines, 216
REF-Specifications, 226
Reference Binding, 209, 209
Register-Directives, 261, 262
Relational Operators, 126
RENT, 216
REP Conversions, 166
Repeated Assigment Loops, 191
Repetition-~Cournts, 84
Reserved Words, 27
Restrictions on Declarations, 49
Return~Statements, 196, 218
Round attribute, 69

8 (signed integer), 58
Scale, 61
Scope of a Declaration, 47
Scope, 233, 42
Restrictions on Declarations, 49
The Scope of a Declaration, 47
Separators, 27
Serial Structure, 282
Serial tables, 281
SGN function, 142
Shift Functions, 140
Examples, 141
Function Form, 141
SHIFTL function, 1484
SHIFTR function, 140
Short Circuiting, 125
Sign Functions, 142
Examples, 143
Function Form, 142
Simple Assignment-Statements, 176
Simple DEF-Specifications, 224
Simple Procedure-Bodies, 200
Simple References, 103
Simple-Statements, 173

Index-12

;!bcrt-".

b

R

Size Functions, 143
Bit and Character Types, 146
Blocks, 148
Function Form, 144
Numeric Data Types, 145
Pointer Types, 147
Status Types, 146
Table Types, 147
Size
of table, 75
Space Characters, 33
Bpacers, 298
Special Characters, 25
Specified STATUS Lists, 371
Specified Table Type Declarations, 287
Specified Tables, 287
Specified Table Type Declarations, 287
Tables with Fixed-Length Entries, 289
Entry-Size, 291
Overlays, 29¢
Presets, 290
The ¥ Character, 289
Tables with Variable-Length Entries, 293
Standard alternative character, 25
Startbit, 288
Startword, 288
Statement Name Declarations, 213
Statement Structure, 173
Compound-Statements, 174
Labels, 175%
Null-Statements, 176
Simple-Statements, 173
Statement-names, 175
Static Allocation, 54
STATIC, 72
Status Formulas, 127
Status Type-Descriptions, 65
Status Types, 146
Status Value Arguments, 135
STATUS, 65
Statug-constant, 65
Status~index, 371
Status-name, 65
Stop-Statements, 197, 220
Storage Allocation, 53
Putomatic Allocation, 54
Static Allocation, 54
Storage Sharing, 299
S8torage, 3
Structure, 281
Structure~-spec, 281

Index-~13

Cm .

v Ut e T S W R MU oy ey

.ﬁﬁﬁﬁ’

- e S

R

Structure
Example of Serial vs. Parallel Structure, 283
Parallel Structure, 282
Serial Structure, 282
Tight Structure, 284
Subroutine Declarations, 214
Subroutine Termination, 217
Abort-Statements, 218
Goto~Statements, 220
Return-Statements, 218
Stop-statements, 220
Subroutines, 12
Subscripted Data References, 104
Subtraction
fixed, 122
float, 119
integer, 116
Suggestions to the Reader, 21
Symbols, 25
Comments, 32
Literals, 28
Bit Literals, 29
Boolean Literals, 34
Character Literals, 32
Integer Literals, 28
Pointer Literals, 31
Real Literals, 29
Names, 26
Operators, 27
Regerved Words, 27
Separators, 27

T (truncate), 69
T, 282
Table Dimensions, 72
Bounds, 73
Maximum Table Size, 76
Table Size, 75
Table Formulas, 128
Table Initialization, 79
Omitted Values, 82
Preset Positioner, 82
Repetition-Counts, 84
Table-Presets in the Table-Attributes, 6¢
Table-Presets with Item~Declarations, 8¢
Values, B1
Table Size, 75
Table Type Declarvations, 96
Allocation and Initial Values, 98
Dimension and Structure, 97
Like-Option, 99
Table Types, 147

Index~14

L

Bkl Y

et

—

MR

Table-Attributes, 72
Allocation Permanence, 72
Table Dimensions, 72

Bounds, 73

Maximum Table Size, 76

Table Size, 75
Table-Preset, 76

Table-declaration, 71

Table-option, 77

Table-Presgset, 76

Table-Presets in the Table-Attributes, 89

Table-Presets with Item-Declarations, 8%

Tables with Fixed-Length Entries, 289
Entry-Size, 291
Overlays, 29%@

Presets, 290
The * Character, 289 ,

Tables with Variable-Length Entries, 293

Templates, 93

Termination
of subroutines, 217

Test
in if«statement, 178

Text-Directives, 247
Conditional-Compilation-Directives, 249

Examples, 249
Placement, 249
Copy~Directive, 248

Example, 248
Placement, 248

Tight Structure, 284

Trace-Directives, 263
Placement, 263

true-alternative, 178

Truncate attribute, 69

Truncation
of bits trings, 164
of character strings, 167

Type Descriptions, 156

TYPE, 93

Type-Declaration, 93

Type-Indicators, 157

type~-name, 67, 92

Type
bit, €3
character, 64
fixed, 61
floating, 59
integer, 58
pointer, 67
status, 65

Typed pointers, 67

Index-15

é3
! Types, 57)Iﬁ
| U (unsigned integer), 58 Yoo
I UBOUND function, 149 ¥
! Unnamed Entry-Descriptions, 78 o
?5 Untyped pointers, 67 o
b upper-bound, 73 i
; Use-Attribute, 215 !
. User Type-Names, 158 5
’ _ User-Specified Bit Conversion, 164 ,
v, 288, €5 bl
Value Binding, 287, 207 o
Value-Result Binding, 208, 208 Y
Values, 2, 81 §
Variable Data Objects, 52 3
Variables and Constants, 52 %
Constant Data Objects, 53 K
Variable Data Objects, 52 X
W, 288 , %
While-Loops, 187 ; P R
L WORDSIZE function, 143 I A
i
§
L
4., "‘.
\)I .
o f;
J “’.
A
¥
3
| &
B
'_:“:'.!.
| g
oy
Index-16
!
#

-

»

MISSION
of

Rome Air Development Center

RADC plLans and executes hesearch, development, test and
selected acquisdtion proghams Ln support of Command, Control
Communications dnd Inteléigence (C31) activities, Teahnical
and engineering support wlthin areas of technical competence
L8 provided to ESD Progham Ofﬁécu (POA) and other ESD
elements. The princeipal tecnnical mission areas are
communieations, electromegnetic guidance and controf, sur-
velllance of ground and agrospace obfects, Lintelligence data
collecition and handling, infonmation system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic heliabifity, maintainability and
compatibLeity.

i s

[ES e

. - L AR T B

Y

I
xds mE .
I R

S
% T

5 i e
e g =
FERT. L Ll

e e

s

R O

ey

T |)
2 A

