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Abstract | For decades, archaea were misclassified as bacteria on account of their 
prokaryotic morphology. Molecular phylogeny eventually revealed that archaea, like 
bacteria and eukaryotes, are a fundamentally distinct domain of life. Genome analyses 
have confirmed that archaea share many features with eukaryotes, particularly in 
information processing, and therefore can serve as streamlined models for 
understanding eukaryotic biology. Biochemists and structural biologists have 
embraced the study of archaea but geneticists have been more wary, despite the fact 
that genetic techniques for archaea are quite sophisticated. It is high time for 
geneticists to start asking fundamental questions about our distant relatives. 
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Ever since microbiology was established by Louis Pasteur and Robert Koch, scientists have wrestled with 

the problem of defining the phylogenetic relationships among bacteria. Classical taxonomy, which relies on 

cell morphology, physiology, and pathogenicity, is useful for identifying specific microorganisms. However, 

it fails to establish meaningful evolutionary relationships that can be used to group species into higher 

taxonomical orders. Carl Woese’s solution was to harness the newly-emerging techniques of nucleic acid 

sequencing, and use small-subunit (SSU) ribosomal RNA nucleotide sequence as a universal molecular 

chronometer (Box 1). When he published his findings in 1977, Woese upset the taxonomic applecart by 

suggesting that prokaryotes are a great deal more diverse than we had previously supposed, and that the 

phylogenetic structure of the prokaryotic DOMAIN should be reassessed1. 

What he found was that a group of anaerobic “bacteria”, which had been studied for years due to their unique 

ability to generate methane, are not bacteria at all. There had been inklings that these microbes have rather 

“unbacterial” aspects, such as the presence of N-linked glycoproteins and a peculiar spectrum of antibiotic 

sensitivity. The rRNA phylogeny revealed that they are no more related to typical bacteria than they are to 

eukaryotes, and Woese therefore renamed this group of microorganisms archaebacteria1. In a subsequent 

paper, he shortened the name to Archaea and suggested that this domain be given equal footing with Bacteria 

and Eukarya2. Unsurprisingly, this proposal ran into stiff resistance. 

Despite numerous attempts to square the taxonomic circle, the three-domain organisation has stood the test 

of time (Box 1). We now recognise that the domain Archaea is home to a great number of microbes that 

were previously misclassified as bacteria on account of their prokaryotic morphology. Archaea are clearly 

MONOPHYLETIC, and their status is underpinned by unique features such as a distinctive cell membrane 

utilising isoprene side-chains that are ether-linked to glycerol3. The SSU rRNA tree also reveals several 

archaeal phyla, which exhibit biological differences that underpin their taxonomic split. For example, 

euryarchaeota contain histones that are strikingly similar to eukaryotic homologues, whereas crenarchaeota 

use completely different DNA-binding proteins4. Further insights has come from genome sequencing 

projects, which have shown that archaea are a chimera of bacterial and eukaryotic features; their core 

metabolic functions resemble those of bacteria, whereas information processing functions have a distinctly 

eukaryotic flavour. One feature that appears to unite archaea is their ability to thrive in harsh and unusual 

environments (Box 2); it is because these organisms are so well suited to conditions that might have existed 

on the early (archaean) earth that Woese gave them their name. However, it would be misleading to think 

that all archaea are EXTREMOPHILES. Recent environmental studies have shown that archaea are much more 

widespread than previously thought, and might constitute as much as 20% of the total biomass5. 

As the domain Archaea has become widely accepted, so researchers have turned to these fascinating 

microorganisms for answers to some of biology’s most pressing questions. Owing to molecular features they 

share with their more complex cousins, archaea have served well as a streamlined model for eukaryotes, 

particularly in the field of DNA replication6 (discussed in detail later). On the other hand, the ability of 
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archaea to thrive at high temperature and salinity has endeared them to structural biologists, who have found 

thermostable and halophilic proteins to be a great boon. For example, the first crystal structure for a 

ribosome was obtained using the large ribosomal subunit from Haloarcula marismortui7. Archaeal enzymes 

are now routinely exploited as a source of high-quality structural data that can be used to predict functional 

interactions in eukaryotic systems, particularly in fields related to information processing such as DNA 

repair8. Exploitation of the extremophilic features of archaea for biotechnology has yet to bear fruit9. Of the 

few examples in current use, those familiar to most scientists are the thermostable enzymes used for DNA 

amplification by PCR (e.g. Pfu DNA polymerase from Pyrococcus furiosus). However, the potential of 

archaea for biotechnological applications is significant. For example, the ability of METHANOGENIC archaea 

to thrive under anaerobic conditions means they are ideally suited for bioremediation in anoxic sludge, such 

as marine coastal sediment. Furthermore, the methane they generate by anaerobic digestion of manure can be 

used as a fuel source. Finally, we should not underestimate the ecological impact of archaea; since methane 

is a powerful greenhouse gas, these organisms might be partly responsible for global warming. 

With all the interesting aspects of archaea, why do so few scientists work on this domain of life? A 

significant factor is the perceived lack of genetic systems. Archaea, or at least the ones that are cultivable, 

are renowned as extremophiles, and organisms that thrive in boiling acid are not conducive to routine genetic 

techniques. Furthermore, when faced with sophisticated model organisms such as Escherichia coli or 

Saccharomyces cerevisiae, it is understandable that scientists are reluctant to switch domain. Unfortunately, 

this means that numerous biochemical and structural studies on archaea are not being underpinned by in vivo 

data; Escherichia coli and Saccharomyces cerevisiae have been such successful models precisely because of 

the synergy of biochemistry and genetics. In this review, we aim to show that archaeal genetics is a great 

deal more advanced than is commonly believed. We will survey the current state of genetic systems – the 

difficulties in establishing genetic tools for archaea will be set out, followed by an update of methodologies 

in current use. We will also review the field of archaeal genomics, illustrating how data from genome 

projects have lead to a reappraisal of the phylogenetic status of archaea, and how the striking similarity 

between archaeal and eukaryotic information processing systems has stimulated a new generation of 

researchers to seek answers in the third domain. 
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Archaeal genomics – lessons from genome comparisons 

While the DNA sequencing revolution of the late 1970s gave birth to the domain Archaea, it was the genome 

sequencing revolution of the last decade that enabled the archaeal concept to pass from adolescence to 

maturity. In retrospect, it was fortuitous that one of the first genome sequences to be published was of the 

methanogenic archaeon Methanococcus jannaschii (now renamed Methanocaldococcus jannaschii; see 

Table 1)10. The new discipline of genomics stimulated interest in these exotic microorganisms, as biologists 

found their genes of interest in a novel context. Archaea proved to be a mosaic of molecular features, which 

are encoded by two different groups of genes: a lineage coding for information processing that is eukaryotic 

in nature, and a lineage coding for operational (housekeeping) functions with a bacterial aspect11. This tidy 

schism is not inviolable, for LATERAL GENE TRANSFER can lead to conflicting phylogenetic signals when any 

one archaeal species is examined in isolation12 (see Box 1). According to the complexity hypothesis of Jain 

& Rivera, informational genes are less prone to lateral transfer than operational genes, as the former are 

typically members of large complex systems13. However, the comparison of complete genome sequences has 

revealed that archaea are far more than a sum of their (eukaryotic and bacterial) parts14. More than anything 

else, it is the high fraction (as much as 50%) of archaeal genes with no clear function that should prompt 

experimental biologists to reclaim the initiative in a post-genomic era. 

Transcription and translation. The revelation that archaeal and eukaryotic information processing systems 

are similar predates genome sequencing, and was noted in the 1980s by Wolfram Zillig and colleagues in 

studies of DNA-dependent RNA polymerases15. The core components of the archaeal and eukaryal (RNA 

polymerase II) enzyme more closely related to each other than to the bacterial version, and the archaeal 

holoenzyme contains additional subunits that have counterparts in eukaryotes but not bacteria. Like eukaryal 

RNA polymerase II, the archaeal enzyme requires additional basal factors for efficient promoter recognition, 

including TATA-box binding protein (TBP) and transcription factor B (TFB)16. Many archaea contain 

multiple homologues of TFB and/or TBP that might play distinct roles in transcription; for example, 

expression of one TFB is upregulated in response to heat shock of Haloferax volcanii17. Nevertheless, the 

basal transcription machinery in archaea is much simpler than the eukaryotic system, and therefore is more 

amenable to analysis. This should lead to a better understanding of the many small subunits conserved 

between archaeal and eukaryal RNA polymerases. 

To considerable surprise, genome analysis has revealed that archaea also encode numerous homologues of 

bacterial transcription regulators18. This suggests that archaea might use a bacterial mode of transcriptional 

regulation where repressors binds at operator sites near the promoter and interfere directly with initiation. 

Indeed, such repressors have been studied in vivo in Archaeoglobus fulgidus and Methanococcus 

maripaludis19,20. However, other systems are more reminiscent of eukaryotic regulation. In an elegant genetic 

analysis of gas vesicle synthesis genes from Halobacterium salinarum, Felicitas Pfeifer and colleagues have 

shown that transcriptional activation by GvpE involves binding upstream of the TFB recognition element, 
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most likely leading to direct contact with the basal machinery21. It is noteworthy that GvpE resembles a basic 

leucine-zipper (bZIP) protein, a motif that is commonly found in eukaryotic regulators. 

Translation in archaea has been studied much less intensively than transcription, but the message is similar22. 

The core components (such as rRNA) are eukaryal in nature, as are the levels of complexity – more than 10 

initiation factors are found in archaea and eukaryotes, whereas bacteria require only 3. Similarly, translation 

initiation in archaea and eukaryotes uses methionine, while bacteria use N-formylmethionine. On the other 

hand, both bacteria and archaea use polycistronic mRNAs, and recognition of mRNA by the ribosome is 

often by means of a purine-rich Shine-Dalgarno sequence in the 5' untranslated region. It should be noted 

that a second mechanism for translation initiation is used in archaea, which operates on leaderless mRNAs 

and is therefore more reminiscent of the eukaryotic pathway23. Studies of these two mechanisms, and the 

circumstances under which they are used, should shed light on the origins of translation initiation. 

Chromatin. The octameric nucleosome, consisting of two copies each of the histones H2A, H2B, H3 and 

H4, has long been considered a hallmark of the eukaryotic cell. Since prokaryotes were thought not to 

require such a baroque machinery for DNA compaction, it came as a considerable surprise when the 

laboratory of John Reeve reported that the methanogenic archaeon Methanothermus fervidus contains a 

homologue of eukaryotic histones24. Genome sequencing has revealed that histones are widespread amongst 

euryarchaeota but absent from crenarchaeota4. 

Archaeal histones dimerise to form a structure resembling the eukaryotic H3-H4 dimer, and assemble into a 

tetramer to bind ~60 base pair (bp) of DNA. However, archaeal histones lack the N- and C-terminal tails that 

are sites of regulatory posttranslational modification in eukaryotes, suggesting that chromatin remodelling is 

not used as a mode of gene regulation in archaea25. By contrast, nucleoid proteins found in crenarchaeota, 

such as Alba, undergo posttranslational modification; a significant proportion of Alba is acetylated at lysine 

residues, and deacetylation (which is mediated by Sir2) leads to transcriptional repression26. The lysine 

acetylase that acts on Alba was recently identified (S. Bell, personal communication), and should be a 

fruitful area of further study. 

DNA recombination and repair. There is considerable interest in studying DNA recombination and repair 

systems in archaea, as they commonly have to contend with harsh conditions that threaten genomic 

stability27. Furthermore, these are highly complex repair processes, doubly so in eukaryotic cells, which have 

a specialised programme of meiotic recombination. The potential of archaeal genomics was plainly 

demonstrated when homology to an archaeal topoisomerase led to the identification of Spo11 as the 

eukaryotic enzyme responsible for double-strand breaks that are formed during meiosis28. 

Strand exchange is the cornerstone of DNA recombination, providing the means to identify and synapse with 

an homologous template, and is carried out by proteins of the RecA family. The archaeal homologue (RadA) 

shows greater similarity to the eukaryotic sequence (Rad51) than the bacterial one (RecA). The resemblance 

is even more striking at the structural level, to the point where functional interactions between eukaryotic 



 6 

proteins can be extrapolated from the archaeal crystal structure8. RadA has been shown to promote strand 

exchange in vitro29, and a radA mutant of Hfx. volcanii has been generated that is defective in recombination 

and highly sensitive to DNA damage30. A RadA paralogue, RadB, has been identified in the genome 

sequences of euryarchaeota. RadB has no strand exchange activity31, and radB mutants of Hfx. volcanii are 

not defective in recombination (T.A. unpublished observations). Genetic studies of RadB, which are 

underway in one of our laboratories (T.A.), should provide some insight into the function of eukaryotic 

Rad51 paralogues; these are largely of unknown function and have no counterparts in bacteria. 

Other forms of DNA repair involve either excision or direct reversal of the lesion. The archaeal homologue 

of eukaryotic XPF (Rad1), a nuclease that recognises junctions between single and double-stranded regions 

of DNA, might function in excision repair. Intriguingly, crenarchaeal XPF lacks the N-terminal “helicase” 

domain present in the euryarchaeal and eukaryotic proteins32. An example of direct reversal of DNA damage 

is the photoreactivation system, which uses photolyase to act on pyrimidine dimers. While this enzyme is not 

widespread amongst archaea, it is found in HALOPHILES that are commonly exposed to solar radiation33. 

Most archaea also lack homologues of mutS and mutL genes, which encode the mismatch repair machinery 

that is conserved from E. coli to humans. In spite of this, genetic studies of Sulfolobus acidocaldarius have 

shown that archaea are just as efficient at repairing DNA damage as E. coli34, suggesting that novel pathways 

of DNA repair have yet to be discovered. Such a repair system for THERMOPHILIC archaea has been 

predicted by genome sequencing and analysis35, and awaits genetic studies. 

DNA replication. Archaea and bacteria share a genomic structure, usually consisting of a single circular 

chromosome, but differ in the machinery used to carry out DNA replication6. As with other aspects of 

information processing, the archaeal proteins are more similar to eukaryotic homologues than bacterial ones. 

Since only a subset of the eukaryotic proteins are found in archaea, the latter system is considerably simpler 

and is therefore more amenable to dissection. The laboratory of Hannu Myllykallio used genome analysis to 

predict (and biochemistry to confirm) the location of the chromosomal replication origin in Pyrococcus 

abyssi36. This prediction was based on the observation that leading strands of replication often contain an 

excess of G over C nucleotides. The origin of replication is highly conserved amongst the three Pyrococcus 

species examined (P. furiosus, P. abyssi and P. horikoshii), and the identity of gene cluster located in this 

region is of particular interest. In addition to sequences encoding RadB (discussed above), a single gene 

similar to eukaryotic cdc6 and orc1 is found directly adjacent to the origin; orc1 codes for a subunit of the 

eukaryotic origin recognition complex, suggesting that Cdc6/Orc1 acts as the initiator protein in archaea. 

This is indeed the case37, and almost every archaeal chromosomal replication origin identified to date is 

adjacent to a cdc6/orc1 gene6. The exception is intriguing: both S. acidocaldarius and S. solfataricus have 

three cdc6/orc1 genes and three replication origins, but only two of these colocalize38,39. Even more 

mystifying is why some species of haloarchaea (such as Halobacterium species NRC-1) should require 10 

distinct cdc6/orc1 genes. This is a question that genetics is best placed to answer. 

Central metabolism and energy conversion. It is commonly stated that operational genes in archaea (coding 
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for central metabolism, energy conversion and biosynthesis) are bacterial in origin11. As with the comparison 

between archaeal and eukaryotic informational genes, this statement is more of a soundbite than a true 

representation of archaea. For instance, methanogenesis is not found in any bacteria. Genome analysis of 

Methanosarcina acetivorans has revealed a surprising diversity of methanogenic pathways that utilise 

acetate and a variety of one-carbon compounds (acetoclastic and methylotrophic pathways, respectively)40. 

However, M. acetivorans is unable to reduce CO2 using H2 (the hydrogenotrophic pathway), as this species 

lacks the ferredoxin-dependent hydrogenase encoded by the ech operon. The pivotal role of this enzyme has 

been confirmed by genetics studies in Methanosarcina barkeri, which have demonstrated that mutants 

lacking Ech are unable to grow on H2/CO2 alone41. 

Amongst HETEROTROPHIC archaea, a significant fraction can metabolise sugars. While glycolytic pathways 

are well conserved in bacteria and eukaryotes, archaea use several variant enzymes that can best be explained 

by independent, convergent evolution42. Support for variant metabolic pathways in archaea has come from a 

number of studies, such as the prediction of a novel aconitase family by comparative genome analysis43. 

Aconitase is an essential part of the tricarboxylic acid cycle, and the canonical gene is found only in a 

minority of euryarchaea. Similarly, genome analysis has indicated that many archaea, such as the 

HYPERTHERMOPHILIC crenarchaeon Thermoproteus tenax, lack the enzymes for an oxidative pentose 

phosphate pathway (PPP)44. Since pentoses are essential for anabolic purposes, it is likely that archaea use a 

variant PPP encoded by genes with no obvious bacterial or eukaryotic homologues. Thus, while it is true that 

well-conserved operational genes in archaea are most similar to their counterparts in bacteria, there are many 

novel or variant enzymes that await discovery. Genomics can point the way, but genetics and biochemistry 

must work hand in hand to unravel these mysteries. 
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Archaeal genetics – back to basics 

In the early years of archaeal genetics, the development of markers and transformation protocols were 

intimately linked – without a selectable phenotype it is impossible to score transformation efficiency, and 

vice versa. This impasse was due to the scarcity of archaeal antibiotics. Bacterial antibiotics such as 

ampicillin are safe for medical use because their targets, such as peptidoglycan cell walls, are not 

encountered in eukaryotic cells. Since these drug targets are also absent from archaea, it is not surprising that 

such antibiotics are ineffective in the third domain. The issue of selectable markers is discussed in a later 

section. Here, we summarise the methods available for introducing foreign DNA in archaeal cells. 

Transformation. To circumvent the bottleneck of developing transformation protocols without genetic 

markers, researchers turned to unconventional methods. Cline and Doolittle assayed TRANSFECTION of 

Halobacterium halobium with naked DNA from phage FH45, enabling them to develop an efficient 

polyethylene glycol-mediated transformation method for Hfx. volcanii46, which was subsequently adapted for 

use in a variety of archaea including M. maripaludis and Pyrococcus abyssi47,48. It is only effective in species 

for which SPHEROPLASTS can be generated readily, usually by removing the paracrystalline glycoprotein 

surface layer (S-layer). By contrast, archaea with a rigid cell wall made of pseudopeptidoglycan, such as 

Methanothermobacter thermautotrophicus, have been recalcitrant to transformation. Although it is possible 

to remove the cell wall enzymatically using pseudopeptidoglycan endopeptidase, the protoplasts fail to 

regenerate (J. Chong, personal communication). 

Other transformation protocols have been used with varying success (see table in Box 3). Electroporation is a 

versatile technique and can be used for Methanococcus voltae and S. solfataricus49-51, but is inefficient in 

species such as M. acetivorans52. Furthermore, it is not universally applicable; P. abyssi cannot be 

transformed by this method48, and electroporation is out of the question for halophilic archaea, which cannot 

tolerate salt concentrations of <1 M NaCl. Heat-shock after treatment with CaCl2, a method commonly used 

for E. coli, can be used with some archaea but is not efficient. It is noteworthy that in Thermococcus 

kodakaraensis, CaCl2 treatment is not essential for DNA uptake53; this is reminiscent of natural 

transformation, which has been observed in M. voltae54. Efficient transformation of Methanosarcina species 

is only possible using a liposome-mediated protocol, which yields >107 transformants per microgram of 

DNA. The drawback of this method is that the requisite cationic liposomes are expensive. 

Other gene transfer mechanisms. Once the DNA is safely inside an archaeal cell, it can be transferred to its 

neighbours by various means. Phage-mediated TRANSDUCTION is a mainstay of E. coli genetics, and similar 

phenomena have been reported in Methanobacterium thermoautotrophicum Marburg55 and M. voltae56. In 

the latter case, the jury is still out; there is no evidence that gene transfer in M. voltae is mediated by viral 

particles56, and the observation that the transfer agent is resistant to DNase does not rule out alternative 

routes. For example, bidirectional genetic exchange has been observed during cell mating in Hfx. volcanii57, 

which involves cell-to-cell contact or fusion rather than transduction, and is actually stimulated by DNase 
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treatment58. Similar cell mating has also been seen in S. acidocaldarius and S. solfataricus. In the former, 

chromosomal marker exchange between two AUXOTROPHIC mutants can be measured by the appearance of 

stable genetic recombinants59. In the latter, conjugative plasmids such as pNOB8 have been shown to 

propagate throughout the culture using a cell-to-cell contact-dependent mechanism60. The kinetics of cell 

mating in Sulfolobus differs from that in Hfx. volcanii, as it does not require that cell-to-cell contacts are 

stabilised by growth on solid media58,61. 

Restriction/modification systems. From the perspective of foreign DNA, the inside of a cell can be a hostile 

environment. Restriction/modification systems are widespread amongst prokaryotes, and archaea are no 

exception. Enzymes that recognise 5'-CTAG-3' are common, having been identified initially in 

Methanobacterium thermoformicicum, where they are plasmid-encoded62. Genome analysis has revealed 

putative CTAG methylases in many species (restriction endonucleases are virtually impossible to identify by 

sequence homology), and DNA isolated from Hfx. volcanii is resistant to cleavage at NCTAGN' sites, 

suggesting modification46. Hfx. volcanii also has a restriction system that recognises adenine-methylated 

GATC sites (which occur frequently in vectors based on E. coli plasmids), resulting in DNA fragmentation 

followed by plasmid loss or chromosomal integration by recombination63. This can be circumvented by 

passaging the DNA through an E. coli dam– strain that is deficient in GATC methylation64. Other 

restriction/modification systems have been documented, such as the SuaI enzyme of S. acidocaldarius that 

recognises 5'-GGCC-3'65. 

Antibiotics. While most bacterial antibiotics are ineffective in archaea, several exceptions have been 

exploited to develop selectable markers for archaeal genetics (see Table 2). Novobiocin is a potent inhibitor 

of DNA gyrase (gyrB), an enzyme present in both bacteria and archaea. To develop a vector for halophilic 

archaea, the laboratory of Mike Dyall-Smith isolated a novobiocin-resistant mutant of Haloferax strain 

Aa2.266 that mapped to the gyrB gene67. Puromycin is another drug that is effective in both bacteria and 

archaea, and has been shown to inhibit growth in M. voltae and other methanogens68; it is the most widely 

used antibiotic for this group of archaea. The resistance marker (puromycin transacetylase) is a bacterial 

gene from Streptomyces alboniger. Owing to differences between bacterial and archaeal gene regulation, it is 

transcribed using an M. voltae promoter69. A similar approach was used to generate a construct for neomycin 

resistance in M. maripaludis (using APH3'I and APH3'II genes from Tn903 and Tn5 respectively70). 

By contrast, the gene for pseudomonic acid resistance originates in archaea, and was generated by 

mutagenesis of the isoleucyl-tRNA synthetase gene from Methanosarcina barkeri71. Similarly, resistance to 

mevinolin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, was isolated from a 

spontaneous hmgA mutant of Hfx. volcanii72. However, pseudomonic acid is not available commercially, and 

mevinolin is difficult to obtain as it is licensed as a cholesterol-lowering drug; by inhibiting the conversion 

of acetyl-CoA to mevalonic acid, mevinolin prevents the synthesis of cholesterol in humans and isoprenoid 

lipid side-chains in archaea. There are additional drawbacks to these antibiotics: spontaneous resistance can 

arise at high frequency due to gene amplification, and plasmids bearing mevinolin or novobiocin markers 
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suffer from instability due to homologous recombination with the chromosome (both these markers were 

derived from Haloferax species and are virtually identical to the chromosomal sequence of Hfx. volcanii). 

This instability can be alleviated by using markers from distantly related species, such as the mevinolin-

resistant hmgA mutant allele from Haloarcula hispanica73. 

Auxotrophic selectable markers. Plasmid instability due to recombination could also be prevented by 

deleting the homologous chromosomal gene. Although this is not possible for mevinolin and novobiocin-

resistance markers (both hmgA and gyrB are essential), it is feasible for genes in amino acid biosynthesis and 

other metabolic pathways where auxotrophic strains can easily be complemented. For example, a leuB 

deletion mutant defective in leucine synthesis can be grown on complete media, unless selection for a 

plasmid-encoded leuB marker is required, in which case leucine-deficient media is used. Such an approach 

has been adopted in yeast genetics, as few bacterial antibiotics are effective against eukaryotic cells. In 

addition to leucine, strains auxotrophic for histidine, proline, tryptophan and thymidine have been isolated in 

several species (see Table 2 for details). The principal drawback with auxotrophic markers is that they 

cannot be developed easily in obligatory AUTOTROPHS, which includes most methanogens. However, many 

Methanosarcina and Methanococcus species are facultative autotrophs that readily take up amino acids, and 

are therefore compatible with auxotrophic markers74. To enable full exploitation of auxotrophic markers, it is 

best if the organism can be grown on chemically defined (minimal) medium, as is the case for P. abyssi75, 

Hfx. volcanii58 and M. maripaludis76. 

Gene knock-out systems. Auxotrophic markers for uracil biosynthesis (ura3, pyrE or pyrF genes) are the 

most useful, as they can be COUNTER-SELECTED using 5-fluoroorotic acid (5-FOA); ura– cells are resistant to 

this compound due to their inability to convert 5-FOA to the toxic analogue 5-fluorouracil. Such markers can 

be implemented in organisms that grow poorly on minimal medium, as complex media deficient in uracil 

(such as casamino acids) can be used. This has enabled the establishment of gene knock-out systems in 

Halobacterium77,78, Hfx. volcanii79,80, and T. kodakaraensis53 (see Table 2). The salient features of these 

systems are that the uracil marker can be reused (see Figure 1b), and that transformation is carried out using 

circular DNA (transformation using linear DNA is inefficient in some species). Uracil-auxotrophic mutants 

have also been isolated in P. abyssi48,81, S. acidocaldarius82 and S. solfataricus83, but gene knock-out systems 

have yet to be developed. A trivial problem is that Gelrite, the gelling agent used in solid media for 

hyperthermophiles, contains trace uracil84 (see Box 3). More seriously, in the widely used S. solfataricus P1 

and P2 strains, gene-targeting constructs fail to recombine with the chromosome83. While it is possible that 

recombination is suppressed in S. solfataricus due to active transposable elements84, Halobacterium also 

suffers from active transposition but is proficient for recombination85. Moreover, a different isolate of S. 

solfataricus is capable of homologous recombination, and has been used for gene knock-out experiments 

(using selection for lactose utilisation)86. 

Counter-selectable markers have recently been developed for methanogens, using the purine salvage enzyme 

hypoxanthine phosphoribosyltransferase encoded by the hpt gene; mutants are resistant to the toxic base 
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analogues 8-aza-2,6-diaminopurine and 8-azahypoxanthine87. Unlike uracil/5-FOA systems, gene knock-out 

with hpt requires an additional marker, for positive selection of plasmid integration. Puromycin and 

neomycin-resistance markers have been used with hpt, to construct a ∆proC mutant of M. acetivorans88 and 

alanine-utilisation mutants of M. maripaludis respectively89. 

Random mutagenesis. As mentioned earlier, homology to bacterial or eukaryotic enzymes can be used to 

predict the function of only half the proteins encoded by archaeal genomes. If we are to elucidate the 

function of the remaining half, we must move beyond targeted gene knock-outs. Random mutagenesis 

provides the means to uncover genes and reaction pathways that are unique to archaea. UV radiation and 

chemical mutagenesis (using ethyl methanesulphonate) have been used to isolate auxotrophic mutants of 

Hfx. volcanii58, M. voltae54 M. maripaludis90, and P. abyssi91. Since these mutations are difficult to map, 

transposon insertion mutagenesis has been attempted. In vitro transposition was used to study the nifH gene 

of M. maripaludis92, although mutagenesis was not random as a defined target (rather than the whole 

genome) was used. The laboratory of Bill Metcalf has developed an elegant in vivo transposition system for 

M. acetivorans using a modified version of mariner-family transposon Himar1, which carries a puromycin-

resistance marker as well as features that allow facile cloning of transposon insertions93. Unfortunately, this 

system is restricted to methanogens, as eukaryotic or bacterial transposons cannot function in the hypersaline 

interior of halophiles, or at the high temperatures demanded by hyperthermophiles. Synthetic transposons 

based on insertion sequences from H. salinarum have been constructed for use in Hfx. volcanii, but have had 

little success94. 

Random insertional mutagenesis is possible without transposition, so long as the species is proficient for 

homologous recombination. In this approach, recombination between a truncated version of the gene and its 

chromosomal copy leads to an insertion/disruption mutation (Figure 2B). A targeted version of insertional 

mutagenesis has been used in M. voltae, to characterise genes encoding flagellins and hydrogenases95-97. For 

random mutagenesis, a genomic library of small fragments (less than a full-length gene) is used to target 

recombination. As with the in vivo transposition system for M. acetivorans, insertion/disruptions are easily 

cloned by cutting and self-ligating genomic DNA fragments from the mutant, followed by introduction into 

E. coli (Figure 2B). Such random insertional mutagenesis has been used to isolate acetate auxotrophs of M. 

maripaludis98. 

Plasmid vectors. There are two basic flavours of vectors for archaeal genetics: INTEGRATING PLASMIDS and 

SHUTTLE PLASMIDS (see Figure 2A and online resources). As their name implies, integrating (or suicide) 

plasmids must integrate into the host chromosome, as they do not have an origin of replication for archaea. 

They are usually employed in gene knock-out or insertion/disruption mutagenesis, where efficient 

homologous recombination is paramount. In strains where this is not possible, such as S. solfataricus P1 and 

P2 isolates, vectors based on the SSV1 virus have been used that integrate into the chromosome by site-

specific recombination83. SSV1 is also capable of stable replication as a circular plasmid, and this faculty has 

permitted the construction of recombinant shuttle vectors for S. solfataricus51,99. An intriguing feature of 
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SSV1 (and derived vectors) is that it spreads efficiently in cultures without lysis of the host cells50. This 

conjugative behaviour eliminates the need for efficient transformation. Self-spreading is also seen with 

pNOB8, another plasmid of Sulfolobus60, but vectors derived from pNOB8 impose a significant burden on 

the host cell and have not been widely used100. 

Shuttle vectors for other species are more conventional, and use replication origins cannibalised from 

plasmids indigenous to the host. For example, the shuttle vector in Figure 2A (pTA230) uses the origin from 

pHV2, a naturally occurring 6.4 kb Hfx. volcanii plasmid. As it is non-essential, Hfx. volcanii could be cured 

of pHV2 by using ethidium bromide, thus generating the widely used strain WFD1146; a strain cured of 

pHV2 without using ethidium bromide (DS70) has since been isolated73. The WFD11 strain enabled the 

laboratory of Ford Doolittle to develop shuttle vectors for halophilic archaea, using the pHV2 origin and a 

mevinolin-resistance marker72. To date, it remains the most commonly used replicon for use in Hfx. volcanii. 

While pHV2-based plasmids are capable of replication in Halobacterium, a number of additional shuttle 

vectors have been derived from plasmids pGRB1101 and pHH163. Interestingly, plasmids based on pHV2 and 

pHH1 fail to replicate in recombination-deficient radA mutants of Hfx. volcanii30, but pHK2 replicons66 do 

not have this problem. 

Shuttle vectors for methanogens are less common. The most useful replicon is based on the naturally 

occurring plasmid pC2A from M. acetivorans. The laboratory of Bill Metcalf has developed a series of 

pC2A derivatives, using puromycin-resistance as a selectable marker, and demonstrated that they are capable 

of transforming a variety of Methanosarcina species52. Shuttle vectors for use in M. maripaludis have been 

derived from the cryptic plasmid pURB500. Early incarnations suffered from instability in E. coli hosts, 

most probably due to the high A+T content of the replicon (~70%)102; stable vectors featuring a gene 

expression cassette for M. maripaludis and a lacZ gene for blue/white screening in E. coli have since been 

constructed103. Plasmids for use in hyperthermophilic euryarchaea are similarly rare. Thus far, only shuttle 

vectors based on the small pGT5 plasmid of P. abyssi strain GE5 have been developed104. They can be stably 

propagated in P. abyssi strain GE9 (which is devoid of pGT5), as well as the crenarchaeote S. 

acidocaldarius48,105,106, indicating that mechanisms of plasmid replication are conserved between the major 

archaeal phyla. 

Analysis of gene expression. Few compounds have had a greater impact on microbial genetics than X-gal 

(5-bromo-4-chloro-3-indoyl-b-D-galactopyranoside), a chromogenic substrate that is converted by b-

galactosidase into an insoluble blue dye. Originally developed by Julian Davies and Jacques Monod for 

studies of the lac operon of E. coli, it has since been put to 1001 uses. In archaea, as in many other 

organisms, it has been employed as a phenotypic reporter for gene expression (Table 3). The E. coli genes 

can be used directly in methanogens: lacZ has been used to monitor gene expression in M. maripaludis20 and 

the b-glucuronidase gene uidA has been used similarly in M. voltae and M. acetivorans88,107. However, since 

methanogens are strict anaerobes and oxygen is necessary for blue colour development from X-gal, replica-

plating is often essential if viable cells are to be recovered; this is not necessary for M .maripaludis, which 
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can tolerate short exposure to oxygen (J. Leigh, personal communication). While such problems are not 

encountered with halophiles (they are aerobic), E. coli lacZ is not active in the high salt concentrations found 

in the haloarchaeal cytosol (up to 5 M KCl). The laboratory of Mike Dyall-Smith therefore isolated a b-

galactosidase gene bgaH from Haloferax alicantei (now called Haloferax lucentensis) that develops a blue 

colour from X-gal108. Moreover, it is functional in H. salinarum and Hfx. volcanii (which lacks detectable b-

galactosidase activity), and has been used as a reporter gene for transcription analyses in both species109,110. 

A similar approach has been taken for thermophilic archaea, using a thermostable b-galactosidase from S. 

solfataricus encoded by lacS111,112. A mutant strain of S. solfataricus is available, where lacS has been 

inactivated by transposition of an insertion element113, and was recently used by the laboratory of Christa 

Schleper to develop a sophisticated gene reporter system83. 

Phenotypic markers other than b-galactosidase have been used (see Table 3). For example, the salt-resistant 

trehalase gene treA from Bacillus subtilis is functional in M. voltae, and its activity can be assayed in cell 

lysates114. Recently, a modified derivative of green fluorescent protein (GFP) was developed that is soluble 

and active in the high salt cytosol of Hfx. volcanii 115. However, researchers are increasingly turning to ersatz 

genetics. Genome sequence data has led to the development of archaeal microarrays, enabling studies of the 

response to UV radiation in Halobacterium sp. NRC-1116, a characterisation of the central metabolism of 

Hfx. volcanii117, and the identification of chromosomal replication origins in Sulfolobus39. It is noteworthy 

that the latter study was only possible because the cell cycle of Sulfolobus has been studied in some detail, 

resulting in a variety of means for synchronising cell cultures 118. No doubt further microarray studies will be 

published in the near future, but if researchers are to make full use of such modern technology, they must 

first confront basic aspects of archaeal cell biology such as the cell cycle. Without bread-and-butter genetics, 

we will continue to operate without a solid foundation of knowledge about these fascinating organisms. 
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Future directions 

Since the field was last reviewed119,120, there has been considerable progress in development of tools for 

archaeal genetics. Gene knock-out systems in particular have made possible the systematic dissection of 

pathways that operate in this domain of life (Figure 1). However, there is much work to be done. For 

example, S. solfataricus P1 and P2 strains stubbornly refuse to integrate foreign DNA into the chromosome 

by homologous recombination, thereby limiting the scope of genetics in this important organism. The way 

forward might be to use a different isolate of S. solfataricus that is proficient for recombination86. With the 

exception of SSV1, archaeal viruses have yet to be harnessed for genetic purposes. Gene transfer by phage-

mediated transduction would speed up the construction of archaeal mutant strains. Gene expression systems 

with tightly regulated promoters are sorely lacking. Heat-inducible chaperonin promoters are available for 

Hfx. volcanii and S. solfataricus83,121, but the use of heat-shock to induce transcription is far from desirable. 

In this respect, progress is being made in M. acetivorans, where an acetate-inducible overexpression system 

has been developed (K. Sowers, personal communication). An improved method of gene regulation would 

also enable the development of archaeal two-hybrid systems, since yeast or bacterial two-hybrid systems are 

seldom of any value for analysing interactions between halophilic or thermophilic proteins. Finally, the 

genome sequences of several key archaea, including Hfx. volcanii, M. voltae and S. acidocaldarius, have yet 

to be published (Table 1). No doubt, this will be rectified in the near future. 

Above all, more researchers should be working on archaea. Neophyte “archae-ologists” can find an 

entertaining introduction to the subject in The Surprising Archaea by John Howland122. There are lab 

manuals containing detailed protocols for methanogens123, thermophiles124 and halophiles125; for the latter, 

the excellent “HaloHandbook” is available online (see Online Links). Above all, researchers thinking of 

switching to archaea (and those who are merely curious) should remember that there is no single model 

organism for this entire domain. The wide range of habitats colonised by archaea is testament to their 

diversity, which is reflected at the molecular level by the bewildering array of metabolic and energy 

conversion mechanisms they employ. Nevertheless, there is a core of functions related to information 

processing that unites and defines archaea, and it is here that they share a common heritage with eukaryotes. 

Exciting discoveries await those who take the third way. 
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Box 1 | Archaeal taxonomy and the impact of lateral gene transfer 

Archaeal taxonomy. The idea of using amino acid sequences as a tool for molecular phylogeny was first 

proposed by Francis Crick in 1958126, but had to wait until the molecular biology revolution of the 1970s, 

when Carl Woese revisited the problem of prokaryotic taxonomy1. His choice of small-subunit (SSU) 

ribosomal RNA sequence as a molecular chronometer was visionary127. As an essential component of all 

self-replicating organisms, rRNA shows remarkable sequence conservation; different parts of the molecule 

exhibit varying rates of base substitution, allowing both coarse and fine-scale phylogenetic analyses. 

Furthermore, rRNA is abundant and easy to isolate, which has proved essential to CULTIVATION-

INDEPENDENT STUDIES (Box 2). 

The rRNA tree (below) reveals that the domain Archaea comprises several phyla. Euryarchaeota is the most 

diverse group, including all known methanogens and halophiles, in addition to thermophilic and 

PSYCHROPHILIC species. Members of Crenarchaeota are renowned as hyperthermophiles (all temperature 

record-breaking species belong to this phylum), but include the psychrophile Cenarchaeum symbiosum. Of 

the remaining phyla, Nanoarchaeota has one known member (Nanoarchaeum equitans128), and to date 

Korarchaeota are indicated only by environmental DNA sequences129. Owing to the paucity of identified 

species, the positions of these phyla within the rRNA tree are uncertain (indicated by dashed branches). 

Lateral gene transfer (LGT). Unfortunately, life is not as simple as the rRNA tree suggests. It is commonly 

assumed that only eukaryotes indulge in sex, whereas prokaryotes rely on vertical inheritance (coupled with 

prodigious reproductive powers) to meet new environmental challenges. In reality, prokaryotes are highly 

promiscuous, and the role of LGT as a driving force in prokaryotic evolution has been grossly 

underestimated12. The fraction of “foreign” (mostly bacterial) genes in archaea might be as high as 20–

30%130. Most are the result of orthologous replacement or acquisition of a paralogous gene. Consequently, 

archaeal genomes resemble fine-scale genetic mosaics131. Occasionally, LGT can lead to a novel gain-of-

function event. It has been suggested that the switch from an anaerobic to aerobic lifestyle by the 

(methanogenic) ancestor of haloarchaea was facilitated by LGT of respiratory chain genes from bacteria132. 

Archaea, like bacteria, often group co-regulated genes in operons, and this arrangement would promote co-

inheritance by LGT. 

The degree to which archaea are “polluted” by bacterial genes depends on the species examined, and LGT 

might account for some variation in archaeal genome sizes (see Table 1). For example, Methanosarcina 

mazei has a bloated genome of 4.10 Mbp, 30% of which is bacterial in origin133. Metabolically diverse 

methanogenic and halophilic archaea are most promiscuous, having motive, means and opportunity for LGT: 

their motive is to acquire genes for novel metabolic functions, the opportunity arises because methanogens 

and halophiles often cohabit with bacteria, and the means is their ability to engage in cell mating, as 

demonstrated for Haloferax volcanii57. 
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LGT has serious consequences for taxonomy. Phylogenetic trees based on individual genes differ 

significantly from the rRNA tree134, and the notion of a “core” of never-exchanged genes has not passed 

muster131; such is the extent of LGT, that no one gene is unique to either archaea or bacteria. Even the gold 

standard of rRNA can be corrupted when multiple copies of the SSU rRNA gene are present, as in 

haloarchaea135. Nevertheless, as more archaeal genomes are sequenced and analysed, so a genomic signature 

is emerging that defines this domain in a holistic way14. 
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Box 2 | The ecological distribution of archaea – not just extremophiles 

The archaea are notorious for inhabiting some of the most forbidding places on earth, and thrive under 

conditions that few bacteria and no eukaryotes would tolerate. Some of these habitats are illustrated in the 

figure. Methanogens are strict anaerobes that inhabit a variety of anoxic habitats such as swamps (a) and 

sewage plants, and have a unique ability to generate energy by reducing carbon dioxide to form methane136. 

This was first noted by the Italian physicist Alessandro Volta, who found that “combustible air” is produced 

in lakes and bogs. Halophilic archaea grow readily in hypersaline ponds (b) and salt lakes such as the Dead 

Sea. Unlike bacteria, which maintain an osmotic balance using organic compatible solutes such as betaine, 

archaea accumulate inorganic salts (mainly K+) in the cytoplasm. While this allows them to grow in 

saturating NaCl solutions, it requires that proteins of haloarchaea be adapted to function in high salt. 

ACIDOPHILES and ALKALIPHILES grow, as their names suggest, at extremes of pH; acidophiles are often 

thermophiles and a significant fraction of alkaliphiles are also halophiles. Thermophiles such as Pyrolobus 

fumarii are found near deep-sea hydrothermal vents (c), where temperatures exceed 100°C, and Sulfolobus 

solfataricus populates hot springs such as those in Yellowstone National Park (d). There are numerous 

molecular adaptations to thermophily, but the most striking is reverse gyrase, an enzyme that introduces 

positive supercoils in DNA and thereby protects it from unwinding137. At the opposite end of the spectrum, 

psychrophilic archaea thrive in permanently cold conditions such as the seawater or dry lakes in the 

Antarctic. However, it is misleading to believe that all archaea have been damned to such a hellish existence. 

Cultivation-independent methods such as ENVIRONMENTAL GENOME SHOTGUN SEQUENCING have indicated 

that mesophilic archaea are remarkably commonplace138 and might represent more than 20% of microbial 

cells in the oceans5. Thus, classical microbiology, with its emphasis on pure culture, is inadequate at 

determining microbial diversity. 

It has been suggested that our inability to culture mesophilic archaea might account for our inability to detect 

pathogenic archaea139. Although indicators of archaeal population density (such as methane levels) have been 

found to correlate with diseases such as chronic periodontitis140, there is not one single example of an 

archaeon being directly responsible for a human malady. Lateral gene transfer between archaea and bacteria 

might have contributed to bacterial pathogenesis, where it has led to the emergence of novel virulence genes 

in the latter141. Although pathogenic archaea might exist, it is also possible that an intrinsic feature prevents 

them from posing a threat to vertebrates. For instance, archaea have unique cell membranes with isoprene 

side-chains3, and liposome adjuvant prepared from archaeal membranes elicit a significantly greater immune 

response than liposomes prepared from bacterial membranes142. Thus, an archaeal pathogen would be an 

easy target for the immune system. 
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a  b  

c  d  

Panel A is a woodcut from the book by Alessandro Volta Lettere sull’Aria Inflammabile nativa delle Paludi, 
and is reproduced with permission from Cold Spring Harbor Laboratory Press; Panel B kindly provided by 
Richard Shand, Northern Arizona University, USA; Panel C kindly provided by Michel Gouillou, French 
Research Institute for the Exploitation of the Sea; Panel D kindly provided by Malcolm White, University of 
St Andrews, UK. 
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Box 3 | Genetics needs a solid (media) foundation 

The primary requirement for any genetic system is the ability to obtain clonal cultures. Robert Koch first 

realised the potential of solid media for pure culture methods, by noting that different colonial forms breed 

true and therefore represent the clonal expansion of a single cell. Thus, he laid the cornerstone for 

microbiology and microbial genetics. Two associates of Koch developed the necessary technology at the end 

of the 19th century: Richard Petri invented the eponymous dish and Walter Hesse (more accurately, his wife 

Fannie) adopted agar as a gelling agent. To this day, little has changed. 

Archaeal genetics is no exception – growth on solid media is essential before techniques such as 

transformation can be developed (see Table). The culture of haloarchaea is trivial, as they are aerobic and 

most grow at 35–45°C and neutral pH. Provided sufficient salt is present in the media, there is little to 

distinguish halophilic methods from those used with E. coli125. Handling methanogens is trickier, primarily 

because they are obligate anaerobes and require an environment with a reducing potential of less than –330 

mV. Efficient cultivation has only been possible since 1950, when the “Hungate” technique for preparing 

and dispensing chemically-prereduced media into stoppered tubes was introduced123. Another innovation due 

to Hungate was the use of roll tubes, where agar is spun horizontally to coat the inner surface of the vessel143. 

A refined version of the Hungate technique is still in use today144, although the introduction of the anaerobic 

glove box has allowed the use of conventional Petri dishes. 

Gellan gum (also known as Gelrite) has been instrumental in the establishment of genetics for 

hyperthermophiles, which grow above the gelling temperature of agar124. Gelrite is a deacetylated 

polysaccharide produced by Pseudomonas elodea, and solidifies in the presence of divalent cations to form a 

matrix that is stable at temperatures as high as 120°C. The major disadvantage of Gelrite is that it contains 

trace nucleic acids, which can interfere with selection for uracil PROTOTROPHY53,84. Transformants are 

therefore grown in selective liquid medium (deficient in uracil) before plating on Gelrite. However, given the 

importance of selection on solid media to the development of genetics, a more elegant solution will no doubt 

be found. 
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Transformation or gene 
transfer method 

Species 
(see Table 1) 

References Notes 

Polyethylene glycol (PEG) Har Hbt Hvo 
Mma Pab 

45,47,48,145,146 Requires spheroplast formation by removal of 
S-layer (usually by treatment with EDTA, but 
not for Methanococcus maripaludis). 

Electroporation Mac Mvo 
Sso 

49-52 Not universally applicable in archaea. 

Liposomes Mac Mba 
Mvo 

52,114 Very efficient, but expensive. 

CaCl2 & heat shock Mvo Pfu Sac 
Tko 

53,54,105 Not very efficient. 

Cell mating/conjugation Hvo Sac 57,59 Chromosomal marker exchange requires stable 
cell contact for Haloferax volcanii, but not 
Sulfolobus acidocaldarius. 

Virus/plasmid-mediated 
conjugation 

Sso 50,51,60,99,100 Mediated by self-spreading vectors based on 
SSV1 virus or pNOB8 plasmid. 

Transduction Mth Mvo 55,56 Mth refers to Methanobacterium 
thermoautotrophicum Marburg. 
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Figure 1 | Gene knockout methods used in archaeal genetics. 
a | Direct replacement of gene with selectable marker, by recombination between linear DNA comprising flanking regions of the gene and a chromosomal target. In 
some archaeal species, recombination using linear DNA is less efficient than circular DNA. 
b | The pop-in/pop-out method uses circular DNA and selection for transformation to uracil prototrophy. Thus, a ura– strain must be used53,77,79. Intramolecular 
recombinants that have lost the plasmid are counter-selected using 5-fluoroorotic acid (5-FOA), which is converted to toxic 5-fluorouracil in ura+ (but not ura–) 
cells. Unless the mutant has a readily screened phenotype, the deletion must be verified by Southern blotting. 
c | Variant of the pop-in/pop-out method for gene deletion, where the gene is replaced with a marker allowing direct selection80. 
d | Combination of gene replacement (with ura marker) and pop-in/pop-out method, suitable for generating point mutants77. Counter-selection with 5-FOA ensures 
that the ura-marked gene deletion is replaced with the desired mutation. 

Figure 2 | Plasmid vectors. 
a | Typical integrative and shuttle plasmid vectors for archaeal genetics (in this case, Haloferax volcanii), with relevant features80. A table of commonly used 
plasmids is available in the online resources. 
b | Random insertional mutagenesis using small-fragment library. Recombination between an integrative plasmid carrying a small (internal) fragment of a gene and 
the chromosome leads to disruption of the gene. Rapid identification of the mutant gene is possible by using DNA sequencing primers (light blue) directed to 
plasmid sequences. The insertion can be cloned directly from genomic DNA by cutting with an enzyme (e.g. EcoRI) to liberate the plasmid and some surrounding 
sequence, which is self-ligated and used to transform E. coli. 
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Species Abbreviation Genome Date Phylum Growth characteristics and optimal temperature Genetics Sequence 
Methanocaldococcus jannaschii  1.66 1996 Eury. Hyperthermophilic methanogen, anaerobic, 85°C  NCBI 
Archaeoglobus fulgidus  2.18 1997 Eury. Hyperthermophile, sulphate-reducing, anaerobic, 

83°C 
 NCBI 

Methanothermobacter 
thermautotrophicus 

Mth 1.75 1997 Eury. Methanogen, anaerobic, 65°C + NCBI 

Pyrococcus horikoshii  1.74 1998 Eury. Hyperthermophile, anaerobic, 96°C  NCBI 
Aeropyrum pernix  1.67 1999 Cren. Hyperthermophile, aerobic, 95°C  NCBI 
Halobacterium sp. NRC-1* Hbt 2.57 2000 Eury. Halophile, aerobic, 42°C +++ NCBI 
Halobacterium salinarum* Hbt ~2.5 2000† Eury. Halophile, aerobic, 42°C +++ MPG 
Thermoplasma acidophilum  1.56 2000 Eury. Thermoacidophile, aerobic, 59°C  NCBI 
Thermoplasma volcanium  1.58 2000 Eury. Thermoacidophile, aerobic, 60°C  NCBI 
Pyrococcus abyssi Pab 1.77 2001 Eury. Hyperthermophile, anaerobic, 96°C ++ NCBI 
Pyrococcus furiosus Pfu 1.91 2001 Eury. Hyperthermophile, anaerobic, 96°C ++ NCBI 
Pyrolobus fumarii  1.85 2001† Cren. Hyperthermophile, aerobic 106°C   
Sulfolobus solfataricus Sso 2.99 2001 Cren. Thermoacidophile, aerobic, 80°C +++ NCBI 
Sulfolobus tokodaii  2.69 2001 Cren. Thermoacidophile, aerobic, 80°C + NCBI 
Ferroplasma acidarmanus  1.87 2002§ Eury. Acidophile, anaerobic, 42°C  ORNL 
Methanopyrus kandleri  1.69 2002 Eury. Hyperthermophilic methanogen, anaerobic, 98°C  NCBI 
Methanosarcina acetivorans Mac 5.75 2002 Eury. Methanogen, anaerobic, 35°C +++ NCBI 
Methanosarcina barkeri Mba 4.86 2002§ Eury. Methanogen, anaerobic, 35°C +++ ORNL 
Methanosarcina mazei Mmz 4.10 2002 Eury. Methanogen, anaerobic, 37°C +++ NCBI 
Pyrobaculum aerophilum  2.22 2002 Cren. Hyperthermophile, nitrate-reducing, aerobic, 100°C  NCBI 
Hyperthermus butylicus  1.67 2003† Cren. Hyperthermophile, sulphate-reducing, anaerobic, 

100°C 
  

Methanogenium frigidum  ~2.5 2003§ Eury. Psychrophilic methanogen, anaerobic, 15°C  UNSW 
Nanoarchaeum equitans  0.49 2003 Nano. Symbiotic hyperthermophile, anaerobic, 90°C  NCBI 
Sulfolobus acidocaldarius Sac 2.23 2003† Cren. Thermoacidophile, aerobic, 80°C ++  
Haloarcula marismortui Har 4.27 2004 Eury. Halophile, aerobic, 37°C + NCBI 
Haloferax volcanii Hvo 4.03 2004† Eury. Halophile, aerobic, 45°C +++ UMBI; 

TIGR 
Methanococcoides burtonii  2.56 2004§ Eury. Psychrotolerant methanogen, anaerobic, 23°C  ORNL 
Methanococcus maripaludis Mma 1.66 2004 Eury. Methanogen, anaerobic, 37°C +++ NCBI 
Methanococcus voltae Mvo ~1.9 2004† Eury. Methanogen, anaerobic, 37°C +++  
Natronomonas pharaonis  2.75 2004† Eury. Haloalkaliphile, aerobic, 40°C   
Picrophilus torridus  1.55 2004 Eury. Acidophile, aerobic, 60°C  NCBI 
Thermococcus kodakaraensis Tko 2.09 2004† Eury. Hyperthermophile, anaerobic, 85°C ++  
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Thermoproteus tenax  ~1.84 2004§ Cren. Hyperthermophile, anaerobic, 86°C  44 
Acidianus brierleyi  ~1.9  Cren. Thermoacidophile, aerobic, 70°C   
Halobaculum gomorrense  ~2.7  Eury. Halophile, aerobic, 37°C +  
Haloquadratum walsbyi  ~3.18  Eury. Halophile, aerobic, 40°C   
Halorubrum lacusprofundi  ~2.6  Eury. Psychrotolerant halophile, aerobic, 30°C +  
Natrialba asiatica  ~3.1  Eury. Halophile, aerobic, 37°C +  
Sulfolobus metallicus  ~1.9  Cren. Thermoacidophile, aerobic, 80°C   
Cenarchaeum symbiosum    Cren. Symbiotic psychrophile, aerobic, 10°C   
Methanococcus 
thermolithotrophicus 

   Eury. Thermophilic halotolerant methanogen, anaerobic, 
62°C 

  

Methanosaeta concilii    Eury. Methanogen, anaerobic, 37°C   
Methanosarcina thermophila    Eury. Thermophilic methanogen, anaerobic, 50°C   
Methanosphaera stadtmanae    Eury. Methanogen, anaerobic, 37°C   
Methanospirillum hungateii    Eury. Methanogen, anaerobic, 37°C   

Table 1 | Archaea with sequenced genomes or ongoing genome projects. 
Abbreviations are given for species described in other tables; Har refers to Haloarcula species and Hbt refers to Halobacterium species. * Halobacterium sp. NRC-1 
and Halobacterium salinarum genome sequences essentially identical. Genome size given in mega base pairs (Mbp) or not determined (no entry). Date indicates 
either completion or publication of genome sequence (no entry indicates ongoing genome project); § genome sequence published but remains incomplete; † genome 
sequence complete but not published. Archaeal phyla comprise Euryarchaeota (Eury.), Crenarchaeota (Cren.) and Nanoarchaeota (Nano.). Genetics: + potential for 
genetics, such as growth on solid media; ++ rudimentary genetics, such as transformation and selectable markers; +++ advanced genetics, including shuttle vectors, 
gene replacement, reporter genes. Where possible, websites hosting genome sequence data are given; for abbreviations and URLs see Online Links. 
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Selection Type Marker Species References Notes 
Alcohol dehydrogenase A adh, adh-hT Pfu Sso 106,147 Alcohol dehydrogenase adh-hT gene from Bacillus stearothermophilus. 
Anisomycin A AniR 

(23S rRNA) 
Hbt 148 Mutant 23S rRNA gene, used for mutation of chromosomal rRNA gene 

but not developed as selectable marker 
Bleomycin A ShBle Hvo 149 Bleomycin-resistance ShBle gene from Streptoalloteichus hindustanus 
Hygromycin B A hph Sso 51,150 Mutated (thermostable) version of the hygromycin B 

phosphotransferase (hph(mut)) gene from Escherichia coli. 
Mevinolin A MevR (hmg) Har Hbt Hvo 63,72,73,145 Use of heterologous MevR gene prevents recombination between 

chromosomal hmg gene and MevR. 
Neomycin A NeoR (APH3') Mma 70 Geneticin not inhibitory to Methanococcus maripaludis. 
Novobiocin A NovR (gyrB) Hvo Sac 66,82 Inhibits DNA gyrase, NovR over-expresses DNA gyrase B subunit. 
Pseudomonic acid A PAR (ileS) Mba Mac Mth 71,151 Mutant isoleucyl-tRNA synthetase ileS gene from Methanosarcina 

barkeri Fusaro. Pseudomonic acid not commercially available. 
Puromycin A PurR (pac) Mac Mba Mma 

Mmz Mvo 

52,69,97,152,153 Puromycin-resistance pac gene from Streptomyces alboniger, widely 
used marker for methanogenic archaea. 

Thiostrepton A ThsR 
(23S rRNA) 

Hbt 148 Mutant 23S rRNA gene, used for mutation of chromosomal rRNA gene 
but not developed as selectable marker 

Trimethoprim A hdrA Hvo 154 Trimethoprim not widely used as selectable marker. 
8-aza-2,6-diaminopurine (8ADP) 
or 8-aza-hypoxanthine 

C hpt Mac Mma 88,89 Used in conjunction with puromycin or neomycin as positive selectable 
marker. 

Uracil/5-fluoroorotic acid 
(5-FOA) 

X/C ura3, pyrE, 
pyrF 

Hbt Hvo Pab 
Sso Tko 

48,53,77,79-

81,83,84 
Very useful marker. Isolation of spontaneous 5-FOA-resistant mutants 
easy, allowing system to be implemented widely53,82,84 

Histidine X hisA, his-1 Mvo Hvo 155,156 his-1 gene of Haloferax volcanii not developed as marker. 
Lactose X lacS (+lacTr) Sso 86 lacS gene in host strain disrupted by transposon or deleted. 
Leucine X leuB, leuA Hvo Mma 76,80 leuB and leuA genes in host strains deleted. M. maripaludis leuA not 

yet developed as marker. 
Proline X proC Mac 88 E. coli proC gene also functions as marker. 
Thymidine X hdrA, hdrB Hvo 80,154 hdrB gene in host strain deleted. Complex media based on yeast extract 

are deficient in thymidine. 
Tryptophan X trpA, trpE Hvo Tko 53,80 trpE mutants (tryptophan auxotrophs) of Thermococcus kodakaraensis 

isolated, but no selectable marker developed. 

Table 2 | Selectable markers used in archaeal genetics. 
Selectable marker type: antibiotic (A); counter-selectable (C); auxotrophic or similar (X). Species abbreviations, see Table 1. In this table, Mth refers to 
Methanobacterium thermoautotrophicum Marburg. 
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Reporter Host Type References Notes 
bgaH Hbt 

Hvo 
Colour 
(X-gal) 

108-110 b-galactosidase from Haloferax alicantei. Wild-type Haloferax volcanii lacks detectable b-galactosidase activity. 

lacS Sso Colour 
(X-gal) 

83,111-113 Thermostable b-galactosidase from Sulfolobus solfataricus. 

lacZ Mma Colour 
(X-gal) 

20 lacZ gene from E. coli. Colour development requires exposure to oxygen. 

uidA Mac 
Mvo 

Colour 
(X-gluc) 

88,107 uidA gene from E. coli. Colour development requires exposure to oxygen. 

treA Mvo Enz. 114 Trehalase gene treA from Bacillus subtilis, enzyme insensitive to moderate salinity. 
GFP Hvo Fluor. 115 Modified variant of green fluorescent protein (GFP), soluble in Hfx. volcanii due to reduced hydrophobicity. 
hdrA Hvo Res. 157 Ferredoxin (fdx) promoter of H. salinarum analysed in Hfx. volcanii using trimethoprim. Dihydrofolate reductase 

(hdrA) is competitively inhibited by trimethoprim. 

Table 3 | Phenotypic markers and reporter genes used in archaeal genetics. 
Species abbreviations, see Table 1. Marker types: blue colouration upon exposure to chromogenic indicator (Colour), 5-bromo-4-chloro-3-indoyl-b-D-
galactopyranoside (X-gal) or 5-bromo-4-chloro-3-indoyl-b-D-glucuronide (X-gluc); enzymatic assay from cell lysate (Enz.); fluorescent reporter protein (Fluor.); 
resistance to antibiotic (Res.). 
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Online summary 
• Archaea comprise the third domain of life, alongside bacteria and eukaryotes. The domain Archaea 

was proposed in 1977 by Carl Woese, as a result of phylogenetic studies using ribosomal RNA 
sequences as a molecular chronometer. 

• Archaea are renowned as extremophiles, but environmental studies suggest that they thrive in all 
habitats. However, to date no pathogenic archaea have been found. 

• Bacteria and archaea share a prokaryotic morphology, and have comparable pathways for central 
metabolism and energy conversion. On the other hand, information processing pathways in archaea 
and eukaryotes use similar enzymes. However, the archaeal systems are much simpler. 

• Lateral gene transfer between archaea and bacteria is common, and might be responsible for some 
evolutionary innovations. 

• As much as 50% of the genes found in archaeal genomes might encode novel proteins with no 
obvious counterparts in bacteria or eukaryotes. 

• Archaeal proteins have proved invaluable to biochemists and structural biologists, but genetic 
studies of archaea are still comparatively rare. 

• Genetic techniques for archaea are more advanced than is commonly believed. A wide range of 
archaeal species can be transformed using integrative and shuttle vectors, carrying a variety of 
selectable markers. Methods for mutagenesis and gene knock-out are available, as are reporter genes 
such as b-galactosidase. 
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Glossary 
ACIDOPHILE 
Organism that requires a low pH for growth, typically less than pH 3. Contrast with alkaliphile. 

ALKALIPHILE 
Organism that requires a high pH for growth, typically greater than pH 10. Contrast with acidophile. 

AUTOTROPH 
Organism that can synthesise its own macromolecules from simple, inorganic molecules such as carbon 
dioxide, hydrogen and ammonia. Contrast with heterotroph. 

AUXOTROPH 
Mutant that requires nutrients not needed by wild-type strains for growth on minimal medium. Contrast with 
prototroph. 

COUNTER-SELECTABLE MARKER 
A marker which if present leads to cell death under selective conditions, usually by conferring sensitivity to 
an antibiotic or by promoting the synthesis of a toxic product from a non-toxic precursor. 

CULTIVATION-INDEPENDENT STUDY 
Method for determining environmental biodiversity without the need to obtain microbiologically-pure 
cultures, using sequences retrieved from environmental samples to construct a molecular phylogenetic 
survey. For example, environmental genome shotgun sequencing. 

DOMAIN 
Highest level of taxonomic division, comprising Archaea, Bacteria and Eukarya. In declining order, other 
levels include: kingdom, phylum, class, order, family, genus, and species. 

ENVIRONMENTAL GENOME SHOTGUN SEQUENCING 
High-throughput sequencing and computational reconstruction of genomic DNA fragments extracted from 
environmental samples, in order to assess microbial diversity in a cultivation-independent manner. 

EXTREMOPHILE 
Organism that requires extreme environments for growth, such as extremes of temperature, salinity or pH, or 
a combination thereof. 

HALOPHILE 
Organism that requires high concentrations of salt for growth, typically greater than 1M NaCl. 

HETEROTROPH 
Organism that requires complex organic molecules such as amino acids and sugars, from which to build 
macromolecules and derive energy. Contrast with autotroph. 

HYPERTHERMOPHILE 
Organism that requires extremely high temperatures for growth, typically greater than 80°C. Compare with 
thermophile. 

INTEGRATIVE VECTOR 
Plasmid vector incapable of replication in archaeal host, which therefore must integrate into the host 
chromosome by homologous or site-specific recombination. Contrast with shuttle vector. 

LATERAL GENE TRANSFER 
Horizontal transfer of genes between unrelated species, as opposed to vertical inheritance within a species. 

METHANOGEN 
Anaerobic organism that generates methane by reduction of carbon dioxide, a variety of one-carbon 
compounds or acetic acid. 

MONOPHYLETIC 
A natural taxonomic group consisting of species that share a common ancestor. 

PROTOTROPH 
Organism capable of growth on minimal medium containing a carbon source and inorganic compounds. 
Contrast with auxotroph. 
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PSYCHROPHILE 
Organism capable of growth at permanently low temperatures, typically less than 10°C. Contrast with 
thermophile. 

SPHEROPLAST 
Cell denuded of the vast majority of its cell wall or surface layer, usually by chemical or enzymatic 
treatment. Also known as protoplast. 

SHUTTLE VECTOR 
Plasmid vector capable of replication in both Escherichia coli and archaeal host. Contrast with integrative 
vector. 

THERMOPHILE 
Organism that requires high temperatures for growth, typically greater than 60°C. Contrast with 
psychrophile. 

TRANSDUCTION 
Transfer of host genes between archaeal or bacterial species, using a virus as a vector. 

TRANSFECTION 
Infection of a host cell by naked DNA or RNA isolated from a virus. 

Online links 
Genome sequence data 
Archaeal genomes at National Center for Biotechnology Information (NCBI): 
http://www.ncbi.nlm.nih.gov/genomes/static/a_g.html 

Halobacterium salinarum genome at Max Planck Gesellschaft (MPG): http://www.halolex.mpg.de/ 

Draft Haloferax volcanii genome at The Institute for Genomic Research (TIGR): 
http://tigrblast.tigr.org/ufmg/index.cgi?database=h_volcanii|seq 

Halophile genomes at University of Maryland Biotechnology Institute (UMBI): 
http://zdna2.umbi.umd.edu/~haloweb/ 

Draft archaeal genomes at Oak Ridge National Laboratory (ORNL): http://genome.ornl.gov/microbial/ 

Draft genomes of psychrophilic archaea at University of New South Wales (UNSW): 
http://psychro.bioinformatics.unsw.edu.au/genomes/ 

Genomes OnLine Database (GOLD): http://www.genomesonline.org/ 

Strain repositories 
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ): http://www.dsmz.de/ 

National Collections of Industrial, Food and Marine Bacteria (NCIMB): http://www.ncimb.co.uk/ 

American Type Culture Collection (ATCC): http://www.atcc.org/ 

Japan Collection of Microorganisms: http://www.jcm.riken.go.jp/ 

Others 
HaloHandbook: http://www.microbiol.unimelb.edu.au/micro/staff/mds/HaloHandbook/ 

Gordon Research Conference (GRC) on Archaea: Ecology, Metabolism & Molecular Biology: 
http://www.grc.org/programs/2005/archaea.htm 
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Online Resources 

Vector Host Archaeal 
replicon 

Archaeal 
marker(s) 

Size 
(kbp) 

References Notes 

pWL102, 
pWL104 

Har 
Hbt 
Hvo 

pHV2 MevR 10.5, 8.7 1-4 pHV2 plasmid from Haloferax volcanii. Laboratory strains WFD11 and 
DS70 are cured of pHV2, enabling use of this replicon for shuttle vectors. 

pWL204 Hvo pHV2 MevR 10.4 5 Expression vector based on pWL102 with tRNALys promoter. 
pMDS99 Hvo pHV2 MevR 7.3 6 MevR marker from Haloarcula hispanica. 
pUBP2 Har 

Hbt 
Hvo 

pHH9 
(pHH1) 

MevR 12.3 2,3 pHH9 is a deletion derivative of pHH1. 

pNG168 Hbt pNRC100 MevR 8.9 4 Polylinker in lacZ' for blue/white screening in Escherichia coli. 
pMPK54, 56 Hbt pGRB1 MevR 8.6, 5.4 7,8 pMPK56 is more stable than pMPK54, but does not have an E. coli replicon 

or marker. 
pNOB102 Har 

Hbt 
pNOB1 MevR 9.1 9,10 pNOB1 from Natronobacterium sp. strain AS7091, see also pNOB103. 

pMLH3 Hvo pHK2 MevR & NovR 11.3 11 Dual-marker plasmid. 
pMDS20 Hvo pHK2 NovR 10 11-13 Derived from pMDS10, see also pMDS1, 2, 8, 9, and 11. 
pWL-Nov Hvo pHV2 NovR 9.4 14 Derived from pWL102. 
pBR-Nov, pUC-
Nov 

Hvo – NovR 5.7, 5.1 14  

pHRZ Hbt ND AniR ThsR 12.6 15  
pHRZH Hbt – AniR ThsR 14.4 15 Derived from pHRZ. 
pMPK408 Hbt – ura3 4.1 16,17 Vector for gene knockout with 5-FOA, requires Halobacterium ∆ura3 host. 
pGB70 Hvo – pyrE2 3.3 18 Vector for gene knockout with 5-FOA, requires Hfx. volcanii ∆pyrE2 host. 
pTA131, 132, 
133, 192 

Hvo – pyrE2 trpA, 
leuB, hdrB 

3.6, 3.9, 
4.1, 3.7 

19 pTA131 vector for gene knockout with 5-FOA. Require Hfx. volcanii 
∆pyrE2, ∆trpA, ∆leuB or ∆hdrB hosts respectively. Polylinker in lacZ' for 
blue/white screening in E. coli. 

pTA230, 231, 
232, 233 

Hvo pHV2 pyrE2 trpA, 
leuB, hdrB 

7.4, 7.7, 
7.8, 7.4 

19 Shuttle vectors derived from pTA131, 132, 133, 192, similar host 
requirement. 

pMIP1 Mvo – PurR 7.4 20 Also contains hisA sequences for integration into Methanococcus voltae 
genome. 

pMEB.2 Mma – PurR 5.0 20,21 pUC18 with pac cassette for PurR. 
pKAS102 Mma – PurR 12.1 22 Derived from pMIP1, with 4.7 kb insert of Methanococcus maripaludis 

argH gene, for integration into genome. 
pWAY1, 2 Mmz – PurR 5.5 23  
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pUC::pac Mvo – PurR 5.0 24,25 pUC BM21 with pac cassette for PurR. 
pJK29, 41 Mac 

Mba 
– PurR 3.2, 3.5 26 Polylinker in lacZ' for blue/white screening in E. coli. Require E. coli pir 

host for replication using oriR6K origin. See also pJK31, 33, 35, 37, and 
39. 

pWLG13, 18 Mma – PurR 4.4, 7.5 27 Contains PhmvA promoter for gene expression in M. maripaludis. pWL18 
contains polylinker in lacZ' for blue/white screening in E. coli. See also 
pWLG11, 12A, 14 

pWM307, 311, 
321 

Mac 
Mba 

pC2A PurR 8.2, 8.7, 
8.9 

28,29 pWM311 contains polylinker in lacZ' for blue/white screening in E. coli. 
See also pWM309, 313, 315, and 317, 319. 

pDLT44 Mma pURB500 PurR 12.7 30 Not very stable in E. coli. 
pWLG30 Mma pURB500 PurR 12.7 27 Derived from pWLG14. Contains PhmvA promoter for gene expression in M. 

maripaludis. See also pWL30+lacZ (contains lacZ' for blue/white screening 
in E. coli) 

pRCZ113 Mma – PurR 16 31 Transcriptional reporter construct using lacZ, includes M. maripaludis argH 
gene for integration into genome. 

Miptre Mvo – PurR 8.7 32 Transcriptional reporter construct using treA, includes M. voltae hisA gene 
for integration into genome. 

pMudpur Mma – PurR 7.3 33 Contains Mud transposon for insertional mutagenesis. 
pWM381 Mac – PurR 7.5 34 Mini-mariner delivery plasmid for in vivo transposon mutagenesis in 

Methanosarcina acetivorans. See also pWM379, 383, 385. 
pPAC60 Mvo – PurR 4.7 35 Vector for insertional mutagenesis, includes hmvA promoter to drive 

transcription of genes downstream of insertion. 
pMP44 Mac – hpt PurR 4.2 36 Counter-selectable plasmid for marker-less gene deletion in M. acetivorans. 

Requires E. coli pir host for replication using oriR6K origin. 
pCRPrtNeo Mma – hpt NeoR 6.5 37 Counter-selectable plasmid for marker-less gene deletion in M. 

maripaludis. 
pJLA5, 6 Mma – NeoR 5.6, 5.8 38  
pHisuid Mvo – hisA 6.6 39 Integration of plasmid reconstitutes hisA gene, requires M. voltae hisA host. 

Also contains hmvA promoter linked to uidA glucuronidase gene of E. coli. 
See also pHisuid-vhc and -frc. 

pPB31–35 Mac pC2A PAR 11.3 29,40 Polylinker in lacZ' for blue/white screening in E. coli. Require E. coli pir 
host for replication using oriR6K origin. 

pJK89 Mac pC2A proC 9.1 36 Requires M. acetivorans ∆proC host. 
pKMSD48 Sso SSV1 – 18.5 41 Derived from SSV1 virus with insertion of pBluescript II SK+. No 

selectable marker, transformants form viral plaques on lawn of sensitive 
cells. 

pEXSs Sso SSV1 hph 6.4 42 Replicon based on SSV1 viral autonomously replicating sequence, copy 
number in Sulfolobus solfataricus increased by exposure of cells to 
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mitomycin C or UV. Not widely used. 
pEXADH Sso SSV1 hph adh-hT 7.7 43 Dual-marker plasmid derived from pEXSs. 
pEXlacOP Sso SSV1 hph 

lacS-lacTr 
11.7 44 Derived from pEXSs. Contains lacTr-lacS operon, requires S. solfataricus 

GqW ∆lacS-∆lacTr host. 
pSSV64 Sso SSV1 pyrEF 20.1 45 Derived from pKMSD48, requires S. solfataricus pyrE or pyrF mutant host. 
pJM03 Sso SSV1 pyrEF lacS 21.8 45 Derived from pSSV64, requires S. solfataricus lacS pyrE/F host. 
pNOB8::lacS Sso pNOB8 lacS 43 46 pNOB8 is self-spreading conjugative plasmid, selectable marker not 

necessary, lacS used as phenotypic marker. pNOB8 imposes severe growth 
defect on host strain. 

pRN1-pUC18 Sso pRN1 – 8.0 47 Used to develop transformation protocols for S. solfataricus. 
pRN1::lacS Sso pRN1 lacS 7.1 48 lacS used as a phenotypic marker. pRN1-based plasmids not widely used. 
pDMI1 Sac 23S rRNA 

intron 
– 3.7 49 Replicon uses self-spreading mobile intron from 23SrRNA gene of 

Desulfurococcus mobilis. Selectable marker not necessary. 
pCSV1 Pfu Sac pGT5 – 6.1 49 pGT5 plasmid from Pyrococcus furiosus, replicates in both euryarchaeota 

and crenarchaeota. 
pAG21 Pfu Sac pGT5 adh 6.5 50 See also pAG1 and 2, less stable in E. coli than pAG21 due to high copy 

number. 
pYS2 Pab pGT5 pyrE 6.4 51 pyrE marker from Sulfolobus acidocaldarius. Requires pyrE mutant of 

Pyrococcus abyssi GE9 strain (devoid of pGT5). 
pUDT2 Tko – pyrF 6.0 52 Plasmid for deletion of trpE gene from genome by double crossover. Used 

to develop gene knockout system for Thermococcus kodakaraensis. 

Commonly used plasmid vectors for archaeal genetics 
Host species abbreviations, see Table 1. Replicon not determined (ND); integrative vector (–). Markers, see Table 2. 
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