
MicroprocessorsMicroprocessors

VLIWVLIW
Very Long Instruction Word ComputingVery Long Instruction Word Computing

April 18th, 2002April 18th, 2002



The BackgroundThe Background

Classical CISCClassical CISC
ll Instructions fairly short, basically do one thing at aInstructions fairly short, basically do one thing at a

time. No instruction parallelism.time. No instruction parallelism.
Classical RISCClassical RISC
ll Instructions fairly short, basically do one thing at aInstructions fairly short, basically do one thing at a

time. Processor introduces instruction parallelismtime. Processor introduces instruction parallelism
VLIWVLIW
ll Instructions much longer, do several things at theInstructions much longer, do several things at the

same time (several separate operations).same time (several separate operations).
ll All these operations are done in parallelAll these operations are done in parallel



Typical VLIW MachineTypical VLIW Machine

Instruction word is a long packetInstruction word is a long packet
ll Which is broken down into operationsWhich is broken down into operations
ll Each operation is like a convention microprocessorEach operation is like a convention microprocessor

instructioninstruction
An example, the An example, the MultiflowMultiflow machine machine
ll Operations are conventionalOperations are conventional
ll But can have 4 or 7 operations/instructionBut can have 4 or 7 operations/instruction
ll Instruction length is 128 (32*4) or 224 (32*7)Instruction length is 128 (32*4) or 224 (32*7)
ll The 4 or 7 instructions are executed in parallelThe 4 or 7 instructions are executed in parallel
ll Programmer must be aware of parallelismProgrammer must be aware of parallelism



Multiple OperationsMultiple Operations

An instruction contains multiple opsAn instruction contains multiple ops
llFor example, instruction might haveFor example, instruction might have

llR1R1ßßR2, R3R2, R3ßßR4+R5, Jump L3, R6R4+R5, Jump L3, R6ßßR7R7
llHere we do the three assignmentsHere we do the three assignments
llThen the next instruction comes from L3Then the next instruction comes from L3
llCan only have one effective jump in a groupCan only have one effective jump in a group
llAnd the operations need to be independentAnd the operations need to be independent
llSince they will be executed in parallelSince they will be executed in parallel



The Notion of IndependenceThe Notion of Independence

Suppose we have two operations in theSuppose we have two operations in the
same instruction:same instruction:
llR1R1ßßR2+R3, R4R2+R3, R4ßßR1+R7R1+R7
llThis is not wrong, but these instructions areThis is not wrong, but these instructions are

executed together at the same timeexecuted together at the same time
llNot sequentiallyNot sequentially
llNot Not ““as ifas if”” sequentially sequentially

llSo second operation uses old value of R1So second operation uses old value of R1
llOrdering of operations in instruction makesOrdering of operations in instruction makes

no difference to the result of the instruction.no difference to the result of the instruction.



More on IndependenceMore on Independence

Consider these two operations in a singleConsider these two operations in a single
instruction:instruction:
llR1R1ßßR2, R2R2, R2ßßR1R1
llThis is OK, results in an exchange, since loadsThis is OK, results in an exchange, since loads

done from old register values, independentdone from old register values, independent
stores to new register values.stores to new register values.

llProgram (really compiler) has to be VERYProgram (really compiler) has to be VERY
aware of grouping of operations intoaware of grouping of operations into
instructions (unlike classical RISC)instructions (unlike classical RISC)



Latency and InterlocksLatency and Interlocks

For classical RISC, we usually useFor classical RISC, we usually use
interlocks.interlocks.
llThis means that if we try to reference aThis means that if we try to reference a

register before the result is ready, the pipelineregister before the result is ready, the pipeline
stalls till the result is ready.stalls till the result is ready.

llGives the illusion of strictly sequentialGives the illusion of strictly sequential
execution.execution.

llSome attempts early on (MIPS Load delay) toSome attempts early on (MIPS Load delay) to
avoid this assumption, but since abandoned.avoid this assumption, but since abandoned.



More on the MIPS Load DelayMore on the MIPS Load Delay

In the original MIPSIn the original MIPS
ll If you load an integer registerIf you load an integer register
llThen you cannot reference the result in theThen you cannot reference the result in the

next instruction, must wait one instruction.next instruction, must wait one instruction.
llThis is called a load delay slotThis is called a load delay slot
Abandoned in later MIPS designsAbandoned in later MIPS designs
llWhich use full interlockingWhich use full interlocking



More on MIPS InterlockingMore on MIPS Interlocking

Why did MIPS change their tuneWhy did MIPS change their tune
ll After all MIPS originally stood for something likeAfter all MIPS originally stood for something like

Microprocessor without interlocking pipeline stagesMicroprocessor without interlocking pipeline stages
ll Because new implementations (with different memoryBecause new implementations (with different memory

latencies) would have required more than one slotlatencies) would have required more than one slot
and we donand we don’’t like correctness of code beingt like correctness of code being
dependent on the version of the implementation.dependent on the version of the implementation.

ll Because other instructions required interlockingBecause other instructions required interlocking
anyway (e.g. floating-point)anyway (e.g. floating-point)

ll Because it is not that painful to do interlockingBecause it is not that painful to do interlocking



Back to VLIW: InterlockingBack to VLIW: Interlocking
Now that we have 7 separate operations at theNow that we have 7 separate operations at the
same time, what about interlockingsame time, what about interlocking
We could implement interlocking butWe could implement interlocking but
ll The 7 streams are strictly synchronized, unlikeThe 7 streams are strictly synchronized, unlike

separate pipelines in a RISC design, so an interlockseparate pipelines in a RISC design, so an interlock
would hold up all 7 streamswould hold up all 7 streams

ll The logic for this kind of multiple interlocking wouldThe logic for this kind of multiple interlocking would
be more complexbe more complex

So VLIW systems typically do NOT have anySo VLIW systems typically do NOT have any
interlocking, and instead use original MIPSinterlocking, and instead use original MIPS
approach.approach.



VLIW Latency ConsiderationsVLIW Latency Considerations
Each operation has a known latencyEach operation has a known latency
For example, a floating-point add might have aFor example, a floating-point add might have a
latency of 2, meaning that you have to wait twolatency of 2, meaning that you have to wait two
instruction times before using the result of theinstruction times before using the result of the
operationoperation
The programmer (really the compiler) mustThe programmer (really the compiler) must
know all latencies and promise not to accessknow all latencies and promise not to access
anything too earlyanything too early
Just like the original MIPS, but for all operationsJust like the original MIPS, but for all operations
and compiler must keep track of multiple inand compiler must keep track of multiple in
flight instructions.flight instructions.
No checks at runtime if you violate the rulesNo checks at runtime if you violate the rules



What about Loads?What about Loads?

Typical pattern for a load isTypical pattern for a load is
ll2 clocks if in primary cache2 clocks if in primary cache
ll5 clocks if in secondary cache5 clocks if in secondary cache
ll50 clocks if in main memory50 clocks if in main memory
CanCan’’t assume the worst all the timet assume the worst all the time
Assume the best (or at least not the worst)Assume the best (or at least not the worst)
and then if we are unlucky stall the entireand then if we are unlucky stall the entire
pipeline (and all operations)pipeline (and all operations)



VLIW: The VLIW: The AdvantaqesAdvantaqes

There is really only oneThere is really only one
Greater speedGreater speed
ll We are sure of executing 7 operations on each clockWe are sure of executing 7 operations on each clock
ll And clock speed can be high, since no complex on theAnd clock speed can be high, since no complex on the

fly scheduling, and no complex interlocking, justfly scheduling, and no complex interlocking, just
simple operations with no checkingsimple operations with no checking

ll Easy to build, no problem in providing 7 sets of gatesEasy to build, no problem in providing 7 sets of gates
on the chip that operate entirely independentlyon the chip that operate entirely independently

VLIW: Path to future performance gains?VLIW: Path to future performance gains?



VLIW: The DisadvantagesVLIW: The Disadvantages

We need 7 independent operations forWe need 7 independent operations for
each instructioneach instruction
llCan we find them?Can we find them?
llNot easilyNot easily
llWe may end up with lots of NOPSWe may end up with lots of NOPS
 Complex latency assumptions Complex latency assumptions
llMeans that code depends on exact model ofMeans that code depends on exact model of

chip, since latencies change with new chips.chip, since latencies change with new chips.



Finding ParallelismFinding Parallelism

How shall we fill the operations with goodHow shall we fill the operations with good
stuff, i.e. useful workstuff, i.e. useful work
llWe are not interested in NOPS We are not interested in NOPS LL
Clever compilers look far ahead andClever compilers look far ahead and
rearrange the program to increaserearrange the program to increase
parallelism (trace scheduling)parallelism (trace scheduling)
Speculative ExecutionSpeculative Execution



Trace SchedulingTrace Scheduling

Normally scheduling of instructionsNormally scheduling of instructions
happens only in a basic blockhappens only in a basic block
llA basic block is a sequence of instructionsA basic block is a sequence of instructions

with no brancheswith no branches
Trace SchedulingTrace Scheduling
llExtends the search for a thread of instructionsExtends the search for a thread of instructions

over many basic blocksover many basic blocks
llGives a better chance of finding independentGives a better chance of finding independent

operations.operations.



Speculative ExecutionSpeculative Execution

We might as well do something ratherWe might as well do something rather
than NOPS, since it costs nothing extra inthan NOPS, since it costs nothing extra in
time.time.
So if we canSo if we can’’t do anything better, executet do anything better, execute
operations that might be useful.operations that might be useful.
ll If they turn out to be useful greatIf they turn out to be useful great
ll If not, well we didnIf not, well we didn’’t waste any time (nott waste any time (not

quite true as it turns out)quite true as it turns out)



Control SpeculationControl Speculation

Conditional Branches are the Enemy Conditional Branches are the Enemy LL
Because we donBecause we don’’t know which way to got know which way to go
So go both ways at onceSo go both ways at once
Compute two sets of results in differentCompute two sets of results in different
registers independentlyregisters independently
Then throw away the set that is uselessThen throw away the set that is useless
Better to do something that Better to do something that might might bebe
useful rather than nothing at all.useful rather than nothing at all.



More on Control SpeculationMore on Control Speculation

What if there are memory operationsWhat if there are memory operations
involved.involved.
Not so easy to speculateNot so easy to speculate
If we can predict the jump direction:If we can predict the jump direction:
llThen it may be worth doing stuff that likelyThen it may be worth doing stuff that likely

will be OKwill be OK
llBut will need undoing (But will need undoing (fixupfixup) code in the) code in the

(hopefully unlikely) case that we chose the(hopefully unlikely) case that we chose the
wrong way to go.wrong way to go.



The Load/Store ProblemThe Load/Store Problem

We like to do loads earlyWe like to do loads early
llBecause they have long latencyBecause they have long latency
We like to do stores lateWe like to do stores late
llBecause that gives time for computing theBecause that gives time for computing the

results we need to storeresults we need to store
So in general we would like to move loadsSo in general we would like to move loads
up and stores downup and stores down
llWhich means we would like to move loadsWhich means we would like to move loads

past stores where possiblepast stores where possible



More on the Load/Store ProblemMore on the Load/Store Problem

If we haveIf we have
llLoad from local variable ALoad from local variable A
llStore to local variable BStore to local variable B
Then we can safely move:Then we can safely move:
llA load from BA load from B
llPast a Store to APast a Store to A
llSince these are obviously independentSince these are obviously independent



More on the Load/Store ProblemMore on the Load/Store Problem
But what if we haveBut what if we have
ll …… := A(J) := A(J)
ll A(K) := A(K) := ……

Or a similar case with pointersOr a similar case with pointers
ll …… = *q; = *q;
ll *p = *p = ……

Likely we can do the move of the store past theLikely we can do the move of the store past the
load, but we donload, but we don’’t know for suret know for sure
ll Since J may equal KSince J may equal K
ll Or p and q may point to same variableOr p and q may point to same variable



Data SpeculationData Speculation

Data Speculation addresses theData Speculation addresses the
subscript/pointer case where we donsubscript/pointer case where we don’’tt
know if we can move a load past a store.know if we can move a load past a store.
Assume we can do the moveAssume we can do the move
Proceed ahead with the assumption thatProceed ahead with the assumption that
the move was OKthe move was OK
Check later on that it was OKCheck later on that it was OK
llAnd if not, execute And if not, execute fixupfixup code code



VLIW: The PastVLIW: The Past

Two important commercial attemptsTwo important commercial attempts
llMulti-flow (a VLIW version of the VAX)Multi-flow (a VLIW version of the VAX)
llCydromeCydrome
Both companies went bankrupt Both companies went bankrupt LL
llAmong the problems were performanceAmong the problems were performance

llToo hard to find parallelismToo hard to find parallelism
llCompilers not clever enoughCompilers not clever enough
llToo much Too much fixupfixup code code



VLIW: The FutureVLIW: The Future

The The CydromeCydrome folk ended up at HP Labs folk ended up at HP Labs
They continued to develop their ideasThey continued to develop their ideas
Intel-HP followed up on their ideasIntel-HP followed up on their ideas
And voila! The ia64 architecture, whichAnd voila! The ia64 architecture, which
borrows on these ideas.borrows on these ideas.
But tries to solve problems (EPIC)But tries to solve problems (EPIC)
Will that be successfulWill that be successful
llStay tuned for next exciting Stay tuned for next exciting episode.episode.


