Microprocessors

VLIW
Very Long Instruction Word Computing
April 18th, 2002




The Background

lassical CISC

e Instructions fairly short, basically do one thing at a
time. No Iinstruction parallelism.

lassical RISC

e Instructions fairly short, basically do one thing at a
time. Processor introduces instruction parallelism

LIW

e Instructions much longer, do several things at the
same time (several separate operations).

e All these operations are done in parallel




Typical VLIW Machine

Instruction word Is a long packet

e Which is broken down into operations

e Each operation is like a convention microprocessor
Instruction

An example, the Multiflow machine

e Operations are conventional

e But can have 4 or 7 operations/instruction

e Instruction length is 128 (32*4) or 224 (32*7)

e The 4 or 7 instructions are executed in parallel

e Programmer must be aware of parallelism




Multiple Operations

An Instruction contains multiple ops

e For example, instruction might have
e R1<R2, R3¢R4+R5, Jump L3, R6<R7
e Here we do the three assignments
e Then the next instruction comes from L3
e Can only have one effective jump Iin a group
e And the operations need to be independent
e Since they will be executed in parallel




The Notion of Independence

uppose we have two operations In the
same Instruction:

e R1<R2+R3, R4<R1+RY

e This Is not wrong, but these instructions are
executed together at the same time

e Not sequentially
e Not “as If’’sequentially

e S0 second operation uses old value of R1

e Ordering of operations Iin instruction makes
no difference to the result of the instruction




More on Independence

onsider these two operations In a single
Instruction:

e R1<R2, R2<¢R1

e This is OK, results in an exchange, since loa
done from old register values, independent
stores to new register values.

e Program (really compiler) has to be VERY
aware of grouping of operations into
Instructions (unlike classical RISC)




Latency and Interlocks

For classical RISC, we usually use
Interlocks.

e This means that if we try to reference a
register before the result is ready, the pipel
stalls till the result is ready.

e Gives the Iillusion of strictly sequential
execution.

e Some attempts early on (MIPS Load delay) t
avoid this assumption, but since abandoned




More on the MIPS Load Delay

In the original MIPS
e If you load an integer register

e Then you cannot reference the result in the
next instruction, must wait one instruction.

e This Is called a load delay slot

Abandoned in later MIPS designs
e \WWhich use full interlocking




More on MIPS Interlocking

hy did MIPS change their tune

e After all MIPS originally stood for something like
Microprocessor without interlocking pipeline stages

e Because new implementations (with different memcg
latencies) would have required more than one slot
and we don 1 like correctness of code being
dependent on the version of the implementation.

e Because other instructions required interlocking
anyway (e.g. floating-point)
e Because It is not that painful to do interlocking




Back to VLIW: Interlocking

Now that we
same time, w

e could Imp

nave 7 separate operations at the
nat about interlocking

ement interlocking but

e The 7 streams are strictly synchronized, unlike
separate pipelines in a RISC design, so an interlock

would hold u
e The logic for

p all 7 streams
this kind of multiple interlocking woulo

be more complex

So VLIW systems typically do NOT have any
nterlocking, and instead use original MIPS




VLIW Latency Considerations

ach operation has a known latency

or example, a floating-point add might have &
atency of 2, meaning that you have to wait t
nstruction times before using the result of the

operation

he programmer (really the compiler) must
now all latencies and promise not to access
anything too early

ust like the original MIPS, but for all operatio
and compiler must keep track of multiple In
light Instructions.

No checks at runtime if you violate the rules




What about Loads?

ypical pattern for a load Is
e 2 clocks If In primary cache

e 5 clocks if In secondary cache
e 50 clocks If In main memory

an t assume the worst all the time

Assume the best (or at least not the wors
and then If we are unlucky stall the entire
pipeline (and all operations)




VLIW: The Advantages

here Is really only one

reater speed
e We are sure of executing 7 operations on each cloc

e And clock speed can be high, since no complex on t
fly scheduling, and no complex interlocking, just
simple operations with no checking

e Easy to build, no problem in providing 7 sets of gatt
on the chip that operate entirely independently

LIW: Path to future performance gains?




VLIW: The Disadvantages

e need 7 independent operations for
each Instruction

e Can we find them?
e Not easlily
e \We may end up with lots of NOPS

Complex latency assumptions

e Means that code depends on exact model of
chip, since latencies change with new chips.




Finding Parallelism

How shall we fill the operations with goo
stuff, 1.e. useful work

e \We are not interested in NOPS ®

lever compilers look far ahead and
rearrange the program to increase
parallelism (trace scheduling)

peculative Execution




Trace Scheduling

Normally scheduling of instructions
happens only In a basic block

e A basic block Is a sequence of instructions
with no branches

race Scheduling

e Extends the search for a thread of instructio
over many basic blocks

e Gives a better chance of finding independen
operations.




Speculative Execution

e might as well do something rather
han NOPS, since it costs nothing extra |
Ime.

o If we can do anything better, execut
operations that might be useful.

e If they turn out to be useful great

e If not, well we didn t waste any time (not
guite true as It turns out)




Control Speculation

onditional Branches are the Enemy ®
Because we don t know which way to go
0 go both ways at once

ompute two sets of results in different
registers independently

hen throw away the set that Is useless

Better to do something that might be
useful rather than nothing at all.




More on Control Speculation

hat If there are memory operations
involved.

Not so easy to speculate

If we can predict the jump direction:

e Then it may be worth doing stuff that likely
will be OK

e But will need undoing (fixup) code In the
(hopefully unlikely) case that we chose the
wrong way to go.




The Load/Store Problem

e like to do loads early
e Because they have long latency

e like to do stores late

e Because that gives time for computing the
results we need to store

0 In general we would like to move loac
Lip and stores down

e \Which means we would like to move loads
past stores where possible




ore on the Load/Store Proble

If we have
e Load from local variable A
e Store to local variable B

hen we can safely move:
e A load from B

e Past a Store to A
e Since these are obviously independent




ore on the Load/Store Proble

But what Iif we have

o .. .=A()

e A(K) := ..

Or a similar case with pointers

® ... =™(Q;

e *p = ..

| ikely we can do the move of the store past th
oad, but we dont know for sure

e Since J may equal K

e Or p and g may point to same variable




Data Speculation

Data Speculation addresses the
subscript/pointer case where we don t
know If we can move a load past a store

Assume we can do the move

Proceed ahead with the assumption that
he move was OK

heck later on that it was OK
e And If not, execute fixup code




VLIW: The Past

wo Important commercial attempts
e Multi-flow (a VLIW version of the VAX)
e Cydrome

Both companies went bankrupt ®

e Among the problems were performance
e Too hard to find parallelism
e Compilers not clever enough
e Too much fixup code




VLIW: The Future

he Cydrome folk ended up at HP Labs
hey continued to develop their ideas
Intel-HP followed up on their ideas

And volla! The 1a64 architecture, which
borrows on these ideas.

But tries to solve problems (EPIC)

Il that be successful
e Stay tuned for next exciting episode.




