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Chapter 1

The free scalar field

1.1 Why Quantum Field Theory?

In (non-relativistic) Quantum Mechanics, the dynamics of a particle is described by the time-evolution
of its associated wave-function ψ(t, ~x) with respect to the non-relativistic Schrödinger equation

ih̄
∂

∂t
ψ(t, ~x) = Hψ(t, ~x), (1.1)

with the Hamilitonian given by H = ~̂p2

2m + V(x̂). In order to achieve a Lorentz invariant framework, a
naive approach would start by replacing this non-relativistic form of the Hamiltonian by a relativistic
expression such as

H =

√
c2 ~̂p2 + m2c4 (1.2)

or, even better, by modifying the Schrödinger equation altogether such as to make it symmetric in
∂
∂t and the spatial derivative ~∇. However, the central insight underlying the formulation of Quantum
Field Theory is that this is not sufficient. Rather, combining the principles of Lorentz invariance and
Quantum Theory requires abandoning the single-particle approach of Quantum Mechanics.

• In any relativistic Quantum Theory, particle number need not be conserved, since the relativistic
dispersion relation E2 = c2~p2 + m2c4 implies that energy can be converted into particles and
vice versa. This requires a multi-particle framework.

• Unitarity and causality cannot be combined in a single-particle approach: In Quantum Me-
chanics, the probability amplitude for a particle to propagate from position ~x to ~y is

G(~x,~y) = 〈~y| e−
i
h̄ Ht |~x〉 . (1.3)

One can show that e.g. for the free non-relativistic Hamiltonian H = p̂2

2m this is non-zero even
if xµ = (x0, ~x) and yµ = (y0,~y) are at a spacelike distance. The problem persists if we replace
H by a relativistic expression such as (1.2).

Quantum Field Theory (QFT) solves both these problems by a radical change of perspective:

9



10 CHAPTER 1. THE FREE SCALAR FIELD

• The fundamental entities are not the particles, but the field, an abstract object that penetrates
spacetime.

• Particles are the excitations of the field.

Before developing the notion of an abstract field let us try to gain some intuition in terms of a mechan-
ical model of a field. To this end we consider a mechanical string of length L and tension T along the
x-axis and excite this string in the transverse direction. Let φ(x, t) denote the transverse excitation of
the string. In this simple picture φ(x, t) is our model for the field. This system arises as the continuum
limit of N mass points of mass m coupled by a mechanical spring to each other. Let the distance of
the mass points from each other projected to the x-axis be ∆ and introduce the transverse coordinates
qr(t), r = 1, . . . , N of the mass points. In the limit ∆ → 0 with L fixed, the profile qr(t) asymptotes
to the field φ(x, t). In this sense the field variable x is the continuous label for infinitely many degrees
of freedom.
We can now linearise the force between the mass points due to the spring. As a result of a simple
exercise in classical mechanics the energy at leading order is found to be

E =
N∑

r=0

(1
2

m
(
dqr(t)

dt

)2

+ k(q2
r − qrqr−1)

)
+O(q3), k =

T
L

. (1.4)

In the continuum limit this becomes

E =

L∫
0

1
2
ρ

(
∂φ(x, t)
∂t

)2

+
1
2
ρc2

(
∂φ(x, t)
∂x

)2 dx (1.5)

in terms of the mass density ρ of the string and a suitably defined characteristic velocity c. Note that
the second term indeed includes the nearest neighbour interaction because(

∂φ(x, t)
∂x

)2

'

(
lim
δx→0

φ(x + δx, t) − φ(x, t))
δx

)2

(1.6)

contains the off-diagonal terms φ(x + δx, t)φ(x, t).
The nearest-neighbour interaction implies that the equation of motion for the mass points qi obey cou-
pled linear differential equations. This feature persists in the continuum limit. To solve the dynamics
it is essential that we are able to diagonalise the interaction in terms of the Fourier modes,

φ(x, t) =
∞∑

k=1

Ak(t) sin
(
kπx
L

)
,

E =
L
2

∞∑
k=1

(
1
2
ρȦ2

k +
1
2
ρω2

k A2
)

,

(1.7)

where ωk = kπc/L. We are now dealing with a collection of infinitely many, decoupled harmonic
oscillators Ak(t).
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In a final step, we quantise this collection of harmonic oscillators. According to Quantum Mechanics,
each mode Ak(t) can take energy values

Ek = h̄ωk(nk + 1/2) nk = 0, 1, 2, ...,∞. (1.8)

The total energy is given by summing over the energy associated with all the modes, E =
∑

Ek. A
state of definite energy E corresponds to mode numbers (n1, n2, ..., n∞), where we think of nr as an
excitation of the string or of the field φ, i.e. as a quantum. In condensed matter physics, these quan-
tised excitations in terms of harmonic modes are called quasi-particles, e.g. phonons for mechanical
vibrations of a solid. Note that the above decoupling of the degrees of freedom rested on the quadratic
form of the potential. Including higher terms will destroy this and induce interactions between modes.

The idea of Quantum Field Theory is to adapt this logic to particle physics and to describe a particle
as the quantum of oscillation of an abstract field - just like in solid state physics we think of a
quasi-particle as the vibrational excitation of a solid. The only difference is that the fields are now
more abstract objects defined all over spacetime as opposed to concrete mechanical fields of the type
above.
As a familiar example for a field we can think of the Maxwell field Aµ(x, t) in classical electrody-
namics. A photon is the quantum excitation of this. It has spin 1. Similarly we assign one field to
each particle species, e.g. an electron is the elementary excitation of the electron field (Spin 1/2). We
will interpret the sum over harmonic oscillator energies as an integral over possible energies for given
momentum,

E =
∞∑

k=1

h̄ωk(nk + 1/2)→
∫

dp h̄ωp(np + 1/2). (1.9)

A single particle with momentum p corresponds to np = 1 while all others vanish, but this is just a
special example of a more multi-particle state with several npi , 0. In particular, in agreement with
the requirements of a multi-particle framework, at fixed E transitions between various multi-particle
states are in principle possible. Such transitions are induced by interactions corresponding to the
higher order terms in the Hamiltonian that we have discarded so far. As a triumph this formalism also
solves the problem of causality, as we will see.

1.2 Classical scalar field: Lagrangian formulation

We now formalise the outlined transition from a classical system with a finite number of degrees
of freedom qi(t) to a classical field theory in terms of a scalar field φ(t, ~x) ≡ φ(xµ). In classical
mechanics we start from an action

S =

t2∫
t1

dt L(qi(t), q̇i(t)) with L =
1
2

∑
i

(q̇i(t))2 − V(q1, , qN), (1.10)
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where we have included the mass m in the definition of qi(t). In a first step replace

qi → φ(xµ) ≡ φ(x), (1.11)

q̇i(t) →
∂φ(x)
∂t

, (1.12)

thereby substituting the label i = 1, ...N by a continous coordinate ~x ≡ xi with i = 1, 2, 3. For the
moment we consider a real scalar field i.e. φ(x) = φ∗(x) which takes values in R, i.e.

φ : xµ → φ(xµ) ∈ R. (1.13)

We will see that such a field describes spin-zero particles. Examples of scalar particles in nature are
the Higgs boson or the inflaton, which cosmologists believe to be responsible for the exponential ex-
pansion of the universe during in inflation.

To set up the Lagrange function we first note that in a relativistic theory the partial time derivative can
only appear as part of

∂µφ(x) ≡
∂

∂xµ
φ(x). (1.14)

Thus the Lagrange function can be written as

L =

∫
d3xL(φ(x), ∂µφ(x)), (1.15)

where L is the Lagrange density. The action therefore is

S =

∫
d4xL(φ(x), ∂µφ(x)). (1.16)

While, especially in condensed matter physics, also non-relativistic field theories are relevant, we fo-
cus on relativistic theories in this course.

Note furthermore that throughout this course we use conventions where

h̄ = c = 1. (1.17)

Then L has the dimension mass4, i.e. [L] = 4, since [S ] = 0 and [d4x] = −4.

The next goal is to find the Lagrangian: In a relativistic setting L can contain powers of φ and1

∂µφ∂
µφ ≡ ηµν∂µφ∂νφ, which is the simplest scalar which can be built from ∂µφ. The action in this

case is

S =

∫
d4x

[
1
2
∂µφ∂

µφ − V(φ) +O(φn(∂φ)m)

]
, (1.18)

where
1
2
∂µφ∂

µφ =
1
2
φ̇2 −

1
2
(∇φ)2 (1.19)

1Note that the only remaining option ∂µ∂µφ is a total derivative and will therefore not alter the equations of motion under
the usual assumptions on the boundary terms.



1.2. CLASSICAL SCALAR FIELD: LAGRANGIAN FORMULATION 13

and the last type of terms consists of higher derivative terms with m ≥ 2 or mixed terms with n ≥ 1.
Notice that

• the signature for the metric is, in our conventions, (+,−,−,−), such that the sign in the action
is indeed chosen correctly such that the kinetic term appears with a positive prefactor;

• φ has dimension 1 (mass1).

The potential V(φ(x)) is in general a power series of the form

V(φ(x)) = a + bφ(x) + cφ2(x) + dφ3(x) + . . . . (1.20)

We assume that the potential has a global minimum at φ(x) = φ0(x) such that

∂V(φ)
∂φ

|φ=φ0 = 0, V(φ0) = V0 (1.21)

By a field redefinition we ensure that the minimum is at φ0(x) ≡ 0 and expand V(φ(x)) around this
minimum as

V(φ(x)) = V0 +
1
2

m2φ2(x) +O(φ3(x)). (1.22)

Here we used that the linear terms vanish at the extremum and the assumption that we are expanding
around a minimum implies m2 > 0. The constant V0 is the classical contribution to the ground state or
vacuum energy. Since in a theory without gravity absolute energies are not measurable, we set V0 = 0
for the time being, but keep in mind that in principle V0 is arbitrary. We will have considerably more
to say about V0 in the quantum theory in section (1.8).
Therefore the action becomes

S =

∫
d4x

[
1
2
(∂φ)2 −

1
2

m2φ2 + ...
]

. (1.23)

We will find that m2, the prefactor of the quadratic term, is related to the mass of the particles and that
the omitted higher powers of φ as well as the terms O(φn(∂φ)m) will give rise to interactions between
these particles.
As an aside note that a negative value of m2 signals that the extremum around which we are expanding
the potential is a maximum rather than a minimum. Therefore m2 < 0 signals a tachyonic instability:
quantum fluctuations will destabilise the vacuum and cause the system to roll down its potential until
it has settled in its true vacuum.
We will start by ignoring interaction terms and studying the action of the free real scalar field theory

S =

∫
d4x

[
1
2
(∂φ)2 −

1
2

m2φ2
]

, φ = φ∗. (1.24)

The equations of motion are given by the Euler-Lagrange equations. As in classical mechanics we
derive them by varying S with respect to φ and ∂µφ subject to δφ|boundary = δ∂µφ|boundary = 0. This
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yields

0 !
= δS =

∫
d4x

[
∂L(φ(x), ∂µφ(x))

∂φ(x)
δφ(x) +

∂L(φ(x), ∂µφ(x))
∂(∂µφ(x))

δ∂µφ(x)
]

=

∫
d4x

[
∂L(φ(x), ∂µφ(x))

∂φ(x)
δφ(x) +

∂L(φ(x), ∂µφ(x))
∂(∂µφ(x))

∂µδφ(x)
]

.
(1.25)

Integrating by parts gives∫
d4x

[
∂L(φ(x), ∂µφ(x))

∂φ(x)
− ∂µ

∂L(φ(x), ∂µφ(x))
∂(∂µφ(x))

]
δφ(x) + boundary terms. (1.26)

Since the boundary terms vanish by assumption, therefore the integrand has to vanish for all variations
δφ(x). This yields the Euler-Lagrange equations

∂L(φ(x), ∂µφ(x))
∂φ(x)

= ∂µ
∂L(φ(x), ∂µφ(x))

∂(∂µφ(x))
. (1.27)

By inserting (1.24) into (1.27) we find the equations of motion for the free scalar field

∂µ
∂L

∂(∂µφ)
= ∂µ∂

µφ =
∂L

∂φ
= −m2φ, (1.28)

i.e. the Klein-Gordon equation
(∂2 + m2)φ(x) = 0. (1.29)

Note that (1.29) is a relativistic wave equation and that it is solved by

e±ipx with p ≡ pµ = (p0, ~p) (1.30)

subject to the dispersion relation −p2 + m2 = 0, i.e. p0 = ±
√
~p2 + m2. We now set

E~p :=
√
~p2 + m2 ≡ Ep (1.31)

and write the general solution of (1.29) in the form

φ(x) =
∫

d3 p
(2π)3

1√
2Ep

(
f (~p)e−ipx + g(~p)eipx

)
, (1.32)

where p := (Ep, ~p) and f ∗(~p) = g(~p) for real φ and px = p · x = pµxµ .

1.3 Noether’s Theorem

A key role in Quantum Field Theory is played by symmetries. We consider a field theory with La-
grangian L(φ, ∂µφ). A symmetry of the theory is then defined to be a field transformation by which
L changes at most by a total derivative such that the action stays invariant. This ensures that the
equations of motion are also invariant. Symmetries and conservation laws are related by Noether’s
Theorem2:

2Emmy Noether, 1882-1935.
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Every continuous symmetry in the above sense gives rise to a Noether current jµ(x) such
that

∂µ jµ(x) = 0 (1.33)

upon use of the equations of motion (≡ "on-shell").

This can be proven as follows:

For a continuous symmetry we can write infinitesimally:

φ→ φ+ εδφ+O(ε2) with δφ = X(φ, ∂µφ). (1.34)

Off-shell (i.e. without use of the equations of motion) we know that

L → L+ εδL+O(ε2) with δL = ∂µFµ (1.35)

for some Fµ. Now, under an arbitrary transformation φ → φ+ εδφ, which is not neces-
sarily a symmetry, δL is given by

δL =
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ)

= ∂µ

[
∂L

∂(∂µφ)
δφ

]
+

[
∂L

∂φ
− ∂µ

∂L

∂(∂µφ)

]
δφ.

(1.36)

If δφ = X is a symmetry, then δL = ∂µFµ. Setting

jµ =
∂L

∂(∂µφ)
X − Fµ (1.37)

we therefore have

∂µ jµ = −
(
∂L

∂φ
− ∂µ

∂L

∂(∂µφ)

)
X (1.38)

off-shell. Note that the terms in brackets are just the Euler-Lagrange equation. Thus, if
we use the equations of motion, i.e. on-shell, ∂µ jµ = 0. �

This immediately yields the following Lemma:

Every continuous symmetry whose associated Noether current satisfies ji(t, ~x)→ 0 suffi-
ciently fast for |~x| → ∞ gives rise to a conserved charge Q with

Q̇ = 0. (1.39)

Indeed if we take
Q =

∫
R3

d3x j0(t, ~x), (1.40)
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then the total time derivative of Q is given by

Q̇ =

∫
R3

d3x
∂

∂t
j0

= −

∫
R3

d3x ∂i ji(t, ~x) = 0
(1.41)

by assumption of sufficiently fast fall-off of ji(t, ~x). We used that ∂µ jµ = 0 in the first
step. �

The technical assumption ji(t, ~x)→ 0 for |~x| → ∞ is really an assumption of ’sufficiently fast fall-off’
of the fields at spatial infinity, which is typically satisfied. Note that in a finite volume V = const., the
quantity QV =

∫
V

dV j0(t, ~x) satisfies local charge conservation,

Q̇V = −

∫
V

dV ∇~j = −
∫
∂V

~j · d~s. (1.42)

We now apply Noether’s theorem to deduce the canonical energy-momentum tensor: Under a global
spacetime transformation xµ → xµ + εµ a scalar field φ(xµ) transforms like

φ(xµ)→ φ(xµ − εµ) = φ(xµ) − εν ∂νφ(xµ)︸   ︷︷   ︸
≡Xν(φ)

+O(ε2). (1.43)

Because L is a local function of x it transforms as

L → L− εν∂νL = L− ηµνε
ν∂µL

= L− εν∂µη
µ
νL.

(1.44)

For each component ν we therefore have a conserved current ( jµ)ν given by

( jµ)ν =
∂L

∂(∂µφ)
∂νφ︸︷︷︸
≡Xν

− η
µ
νL︸︷︷︸

≡(Fµ)ν

. (1.45)

With both indices up, we arrive at the canonical energy-momentum tensor

T µν =
∂L

∂(∂µφ)
∂νφ − ηµνL with ∂µT µν = 0 on-shell. (1.46)

The conserved charges are the energy E =
∫

d3x T 00 associated with time translation invariance and
the spatial momentum Pi =

∫
d3x T 0i associated with spatial translation invariance. We can combine

them into the conserved 4-momentum

Pν =
∫

d3x T 0ν (1.47)

with the property Ṗν = 0.
Two comments are in order:
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• In general, T µν may not be symmetric - especially in theories with spin. In such cases it can
be useful to modify the energy-momentum tensor without affecting its conservedness or the
associated conserved charges. Indeed we state as a fact that the Belinfante-Rosenfeld tensor

Θµν
BR := T µν + ∂ρS ρµν (1.48)

can be defined in terms of a suitable S ρµν = −S µρν such that Θµν
BR is symmetric and obeys

∂µΘµν
BR = 0.

• In General Relativity (GR), there exists yet another definition of the energy-momentum tensor:
With the metric ηµν replaced by gµν and

S =

∫
d4x
√
−gLmatter(gµν, φ, ∂φ), (1.49)

where g ≡ detg, one defines the Hilbert energy-momentum tensor:

(ΘH)
µν = −

2
√
−g

∂(
√
−gLmatter)

∂gµν
, (1.50)

which is obviously symmetric and it the object that appears in the Einstein equations

Rµν +
1
2

Rgµν = 8πG(ΘH)µν. (1.51)

In fact one can choose the Belinfante-Rosenfeld tensor such that it is equal to the Hilbert energy-
momentum tensor.

1.4 Quantisation in the Schrödinger Picture

Before quantising field theory let us briefly recap the transition from classical to quantum mechanics.
We first switch from the Lagrange formulation to the canonical formalism of the classical theory. In
classical mechanics the canonical momentum conjugate to qi(t) is

pi(t) =
∂L

∂q̇i(t)
. (1.52)

The Hamiltonian is the Legendre transformation of the Lagrange function L

H =
∑

i

pi(t)q̇i(t) − L. (1.53)

To quantise in the Schrödinger picture we drop the time dependence of qi and pi and promote them to
self-adjoint operators without any time dependence such that the fundamental commutation relation

[qi, p j] = iδi j (1.54)
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holds. Then all time dependence lies in the states.

This procedure is mimicked in a field theory by first defining clasically

Π(t, ~x) :=
∂L

∂φ̇(t, ~x)
(1.55)

to be the conjugate momentum density. The Hamiltonian is

H =

∫
d3xH =

∫
d3x[Π(t, ~x)φ̇(t, ~x) −L], (1.56)

whereH is the Hamiltonian density. For the scalar field action (1.24) one finds

Π(t, ~x) = φ̇(t, ~x) (1.57)

and therefore

H =

∫
d3x

[
φ̇2(t, ~x) −

1
2
(∂µφ)(∂

µφ) +
1
2

m2φ2(t, ~x)
]

=

∫
d3x

[
1
2
φ̇2(t, ~x)︸     ︷︷     ︸

= 1
2 Π2(t,~x)

+
1
2
(∇φ(t, ~x))2 +

1
2

m2φ2(t, ~x)
]
.

(1.58)

Note that as in classical mechanics one can define a Poisson bracket which induces a natural sym-
pletic structure on phase space. In this formalism the Noether charges Q are the generators of their
underlying symmetries with the respect to the Poisson bracket (see Assignment 1 for details).

We now quantise in the Schrödinger picture. Therefore we drop the time-dependence of φ and Π
and promote them to Schrödinger-Picture operators φ(s)(~x) and Π(s)(~x). For real scalar fields we get
self-adjoint operators φ(s)(~x) = (φ(s)(~x))† with the canonical commutation relations (dropping (s)

from now on)

[φ(~x), Π(~y)] = iδ(3)(~x −~y) , [φ(~x), φ(~y)] = 0 = [Π(~x), Π(~y)]. (1.59)

1.5 Mode expansion

Our Hamiltonian (1.58) resembles the Hamiltonian describing a collection of harmonic oscillators,
one at each point ~x, but the term

(∇φ)2 ≈

(
φ(~x + δ~x) − φ(~x)

|δ~x|

)2

(1.60)

couples the degrees of freedom at ~x and ~x + δ~x. To arrive at a description in which the harmonic
oscillators are decoupled, we must diagonalise the potential. Now, a basis of eigenfunctions with
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respect to ∇ is ei~p·~x. Thus the interaction will be diagonal in momentum space. With this motivation
we Fourier-transform the fields as

φ(~x) =
∫

d3 p
(2π)3 φ̃(~p)e

i~p·~x,

Π(~x) =
∫

d3 p
(2π)3 Π̃(~p)ei~p·~x,

(1.61)

where φ̃†(~p) = φ̃(−~p) ensures that φ(~x) is self-adjoint. To compute H in Fourier space we must
insert these expressions into (1.58). First note that

1
2

∫
d3x(∇φ(~x))2 =

1
2

∫
d3x

(∫
d3 p
(2π)3∇ei~p·~xφ̃(~p)

)2

=
1
2

∫
d3x

∫
d3 pd3q
(2π)6 (−~p · ~q)ei(~p+~q)·~xφ̃(~p)φ̃(~q).

(1.62)

Thanks to the important equality∫
d3x ei(~p+~q)·~x = (2π)3δ(3)(~p + ~q), (1.63)

the latter equation yields

1
2

∫
d3x(∇φ(~x))2 =

1
2

∫
d3 p
(2π)3 ~p

2 φ̃(~p)φ̃(−~p)︸        ︷︷        ︸
≡|φ̃(~p)|2

, (1.64)

and therefore with (1.58) altogether

H =

∫
d3 p
(2π)3

[
1
2
|Π̃(~p)|2 +

1
2
ω2

p|φ̃(~p)|
2
]

, (1.65)

where ωp =
√
~p2 + m2. This is a collection of decoupled harmonic oscillators of frequency ωp - and

indeed the Hamiltonian is diagonal in momentum space.

The next step is to solve these oscillators in close analogy with the quantum mechanical treatment of
a harmonic oscillator of frequency ω with Hamiltonian

H =
1
2

Π2 +ω2q2. (1.66)

The quantum mechanical definition of ladder operators a, a† such that

q =
1
√

2ω
(a + a†) , Π = −

√
ω

2
i(a − a†) (1.67)

and with commutation relation [a, a†] = 1 can be generalised to field theory as follows: By taking
into account that

φ̃(~p) = φ̃†(−~p) , Π̃(~p) = Π̃†(−~p), (1.68)
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we define the operators

a(~p) =
1
2

√2ωp φ̃(~p) + i

√
2
ωp

Π̃(~p)

 ,

a†(~p) =
1
2

√2ωp φ̃(−~p) − i

√
2
ωp

Π̃(−~p)

 .

(1.69)

Solving for φ̃(~p) and Π̃(~p) and plugging into (1.61) yields

φ(~x) =
∫

d3 p
(2π)3

1√
2ωp

(
a(~p)ei~p·~x + a†(~p)e−i~p·~x

)
,

Π(~x) =
∫

d3 p
(2π)3 (−i)

√
ωp

2

(
a(~p)ei~p·~x − a†(~p)e−i~p·~x

)
.

(1.70)

From (1.61) and (1.59) we furthermore deduce the commutation relations

[φ̃(~p), Π̃(~q)] =
∫

d3xd3ye−i~p·~xe−i~q·~y [φ(~x), Π(~y)]︸         ︷︷         ︸
=iδ(3)(~x−~y)

= (2π)3iδ(3)(~p + ~q), (1.71)

where again (1.63) was used, and

[φ̃(~p), φ̃(~q)] = 0 = [Π̃(~p), Π̃(~q)]. (1.72)

The ladder operators therefore obey the commutation relation

[a(~p), a†(~q)] = (2π)3δ(3)(~p − ~q),

[a†(~p), a†(~q)] = 0 = [a(~p), a(~q)].
(1.73)

The Hamiltonian (1.65) in mode expansion is

H =

∫
d3 p
(2π)3

[
1
2

i √ωp

2

2 (
a(~p) − a†(−~p)

) (
a(−~p) − a†(~p)

)
+
ω2

p

2
1

2ωp

(
a(~p) + a†(−~p)

) (
a(−~p) + a†(~p)

) ]
.

(1.74)

Only cross-terms survive due to the commutation relations:

H =

∫
d3 p
(2π)3

ωp

4

[
a(~p)a†(~p) + a†(−~p)a(−~p)

]
· 2

=

∫
d3 p
(2π)3

ωp

2

[
a(~p)a†(~p) + a†(−~p)a(−~p)

]
=

∫
d3 p
(2π)3

ωp

2

[
a†(~p)a(~p) + (2π)3δ(3)(~p − ~p) + a†(−~p)a(−~p)

]
.

(1.75)
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Therefore H in its final form is given by

H =

∫
d3 p
(2π)3ωp a†(~p)a(~p) + ∆H , (1.76)

where we renamed −~p→ ~p in the second term. The additional constant ∆H is

∆H =
1
2

∫
d3 pωp δ

(3)(0), (1.77)

which is clearly divergent. An interpretation will be given momentarily. By explicit computation one
finds that H obeys the commutation relations

[H, a(~p)] = −ωp a(~p),

[H, a†(~p)] = ωp a†(~p).
(1.78)

Similarly one computes the spatial momentum operator

Pi =

∫
d3x φ̇(~x)∂iφ(~x), (1.79)

to be

Pi =

∫
d3 p
(2π)3 pia†(~p)a(~p) + ∆pi , (1.80)

with
∆pi =

1
2

∫
d3 p pi δ(3)(0) ≡ 0. (1.81)

We combine H and P into the 4-momentum operator

Pµ =
∫

d3 p
(2π)3 pµa†(~p)a(~p) + ∆pµ , (1.82)

with pµ = (p0, ~p) = (ωp, ~p). It obeys the commutation relations

[Pµ, a†(~p)] = pµa†(~p),

[Pµ, a(~p)] = −pµa(~p).
(1.83)

1.6 The Fock space

We now find the Hilbert space on which the 4-moment operator Pµ acts. The logic is analogous to the
considerations leading to the representation theory of the harmonic oscillator in Quantum Mechanics:

• Since Pµ is self-adjoint it has eigenstates with real eigenvalues. Let |kµ〉 be such an eigenstate
with

Pµ |kµ〉 = kµ |kµ〉 . (1.84)
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Then as a result of (1.83)

Pµa†(~q) |kµ〉 = a†(~q)Pµ |kµ〉+ qµa†(~q) |kµ〉

= (kµ + qµ)a†(~q) |kµ〉
(1.85)

and similarly

Pµa(~q) |kµ〉 = (kµ − qµ)a(~q) |kµ〉 . (1.86)

This means that a(~q) and a†(~q) are indeed ladder operators which respectively subtract and add
4-momentum qµ to or from |kµ〉.

• Next we observe that the Hamiltonian H = P0 given by (1.76) is non-negative, i.e. 〈ψ|H|ψ〉 ≥
0 ∀ states |ψ〉 because

〈ψ|H|ψ〉 =
∫

d3 p
(2π)3ωp〈ψ|a†(~p)a(~p)|ψ〉+ ∆H〈ψ|ψ〉 ≥ 0. (1.87)

Thus there exists a state |0〉 such that

a(~q) |0〉 = 0 ∀ ~q. (1.88)

Otherwise successive action of a(~q) would lead to negative eigenvalues of H. |0〉 is called the
vacuum of the theory. It has 4-momentum

Pµ |0〉 = ∆pµ |0〉 =

 ∆H , µ = 0
0 , µ = i

. (1.89)

• We interpret the divergent constant ∆H given in (1.77) as the vacuum energy. A more thorough
discussion of the significance of the divergence will be given later. For now we should note that
in a theory without gravity absolute energy has no meaning. We can hus discard the additive
constant ∆pµ by defining

P̃µ := Pµ − ∆pµ =

∫
d3 p
(2π)3 pµa†(~p)a(~p), (1.90)

with P̃µ |0〉 = 0. From now on we only work with P̃µ and drop the tilde.

• The state a†(~p) |0〉 then has 4-momentum pµ,

Pµa†(~p) |0〉 = pµa†(~p) |0〉 , (1.91)

with pµ = (Ep, ~p) and Ep =
√
~p2 + m2. Since this is the relativistic dispersion relation for

a single particle with mass m we interpret a†(~p) |0〉 as a 1-particle state with energy Ep and
momentum ~p.
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• More generally an N-particle state with energy E = Ep1 + ... + EpN and momentum ~p =

~p1 + ...~pN is given by
a†(~p1)a†( ~p2)...a†(~pN) |0〉 . (1.92)

So much about the formalism. To get a better feeling for the objects we have introduced, let us recap
what we have done: We have started with the assertion that spacetime - in our case R1,3 - is filled with
the real scalar field φ(~x), which we have taken to be a free field with LagrangianL = 1

2 (∂φ)
2− 1

2 m2φ2.
This field is interpreted as a field operator, i.e. in the Schrödinger picture at every space point ~x the
object φ(~x) represents a self-adjoint operator that acts on a Hilbert space. This Hilbert space possesses
a state of lowest energy, the vacuum |0〉. The vacuum corresponds to the absence of any excitations of
the field φ (at least on-shell). If one pumps energy Ep and momentum ~p into some region of spacetime
such that the relativistic dispersion relation Ep =

√
~p2 + m2 holds, a particle a†(~p) |0〉 is created as

an excitation of φ(~x). In particular, for the free theory the parameter m in L is interpreted as the mass
of such a particle. Since the underlying field φ(x) is a scalar field, the associated particle is called
scalar particle. This realizes the shift of paradigm advertised at the very beginning of this course that
the fundamental entity in Quantum Field Theory is not the particle, but rather the field:

The field φ(~x) is the property of spacetime that in the presence of energy and momentum
(Ep, ~p) a particle of energy (Ep, ~p) can be created.

In particular, this naturally gives rise to a multi-particle theory. The particles are just the excitations
of the field and transitions with varying particle number can occur as long as the kinematics allows it.
A first new, non-trivial conclusion we can draw from the formalism developed so far is the following
special case of the spin-statistics theorem:

Scalar particles obey Bose statistics.

All we have to show that the N-particle wavefunction is symmetric under permutations. This follows
immediately from the commutation relations, specifically the second line in (1.73):

|~p1, ..., ~pi, ..., ~p j, ..., ~pn〉 ' a†(~p1)...a†(~pi)...a†(~p j)...a†(~pN) |0〉

= a†(~p1)...a†(~p j)...a†(~pi)...a†(~pN) |0〉

' |~p1, ..., ~p j, ..., ~pi, ..., ~pn〉,

(1.93)

where we have not fixed the normalization of the Fock state yet.

1.7 Some important technicalities

1.7.1 Normalisation

For reasons that will become clear momentarily, we choose to normalise the 1-particle momentum
eigenstates as |~p〉 :=

√
2Epa†(~p) |0〉 and, more generally,

|~p1, ..., ~pn〉 :=
√

2Ep1 · ... · 2EpN a†(~p1)...a†(~pN) |0〉 . (1.94)
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Then
〈~q|~p〉 =

√
2Ep

√
2Eq 〈0| a(~q)a†(~p) |0〉 . (1.95)

To compute the inner product of two such states we use an important trick: Move all a’s to the right
and all a† to the left with the help of

a(~q)a†(~p) = a†(~q)a(~p) + (2π)3δ(3)(~p − ~q). (1.96)

This gives rise to terms of the form a(~q) |0〉 = 0 = 〈0| a†(~p). Therefore

〈~q|~p〉 = (2π)32Epδ
(3)(~p − ~q). (1.97)

Note that, as in Quantum Mechanics, momentum eigenstates are not strictly normalisable due to the
appearance of the delta-distribution, but we can form normalisable states as wavepackets

| f 〉 =
∫

d3 p f (~p) |~p〉 . (1.98)

1.7.2 The identity

With the above normalisation the identity operator on the 1-particle Hilbert space is

11−particle =

∫
d3 p
(2π)3

1
2Ep
|~p〉 〈~p| . (1.99)

One should notice that
∫ d3 p

(2π)3
1

2Ep
is a Lorentz-invariant measure. This, in turn, is part of the motiva-

tion for the normalisation of the 1-particle momentum eigentstates. To see this we rewrite the measure
as ∫

d3 p
(2π)3

1
2Ep

=

∫
d3 p
(2π)4

2π
2Ep

=

∫
d4 p
(2π)4 2πδ(p2 −m2)Θ(p0),

(1.100)

where we used that δ(ax) = 1
aδ(x) and that

δ(p2 −m2) = δ
(
(p0 − Ep)(p0 + Ep)

)
(1.101)

in the last step. (1.100) is manifestly Lorentz-invariant: First, d4 p → det(Λ)d4 p under a Lorentz-
transformation, and since the determinat of a Lorentz-transformation is 1, it follows that d4 p is
Lorentz-invariant. Moreover the sign of p0 is unchanged under a Lorentz transformation.

1.7.3 Position-space representation

In Quantum Mechanics, the position eigenstate is related by a Fourier transformation to the momen-
tum eigenstates, |x〉 =

∫ dp
2πe−ipx |p〉 with 〈x|p〉 = eipx. Due to our normalisation

|~p〉 =
√

2Epa†(~p) |0〉 , (1.102)
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the correct expression for |~x〉 in QFT is

|~x〉 =
∫

d3 p
(2π)3

1
2Ep

e−i~p·~x |~p〉 (1.103)

because then

〈~x|~p〉 =
∫

d3q
(2π)3

1
2Eq

ei~q·~x〈~q|~p〉 = ei~p·~x, (1.104)

where we used (1.97). Note that

|~x〉 =
∫

d3 p
(2π)3

1√
2Ep

(
e−i~p·~xa†(~p) + ei~p·~xa(~p)

)
|0〉 = φ(~x) |0〉 . (1.105)

In other words, the field operator φ(x) acting on the vacuum |0〉 creates a 1-particle position eigenstate.

1.8 On the vacuum energy

We had seen that originally

H =

∫
d3 p
(2π)3ωpa†(~p)a(~p) + ∆H , ∆H =

1
2

∫
d3 p
(2π)3ωp (2π)3δ(0), (1.106)

where ∆H is the vacuum energy E0 such that H |0〉 = ∆H |0〉 ≡ E0 |0〉. E0 is the first example of a
divergent quantity in QFT. In fact, it realises the two characteristic sources of a possible divergence in
QFT:

• The divergent factor (2π)3δ(3)(0) is interpreted as follows: We know that∫
R3

d3x ei~p·~x = (2π)3δ(3)(~p), (1.107)

so formally the volume of R3 is given by

VR3 =

∫
R3

d3x = (2π)3δ(3)(0). (1.108)

The divergence of δ(3)(0) is rooted in the fact that the volume of R3 is infinite, and the cor-
responding divergent factor in E0 arises because we are computing an energy in an infinite
volume. This divergent factor thus results from the long-distance (i.e. small energy) behaviour
of the theory and is an example of an infra-red (IR) divergence. Generally in QFT, IR diver-
gences signal that we are either making a mistake or ask an unphysical question. In our case,
the mistake is to consider the theory in a strictly infinite volume, which is of course unphysical.
One can regularise the IR divergence by instead considering the theory in a given, but finite
volume. What is free of the IR divergence is in particular the vacuum energy density

ε0 =
E0

VR3
=

1
2

∫
d3 p
(2π)3ωp. (1.109)
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• Nonetheless, even ε0 remains divergent because

ε0 =
E0

VR3
=

∫
d3 p

2(2π)3

√
~p2 + m2 =

1
2

4π
(2π)3

∞∫
0

dpp2
√

p2 + m2, (1.110)

which goes to infinity due to the integration over all momenta up to p → ∞. This is an ultra-
violet (UV) divergence. The underlying reason for this (and all other UV divergences in QFT)
is the breakdown of the theory at high energies (equivalently at short distances) - or at least a
breakdown of our treatment of the theory.

To understand this last point it is beneficial to revisit the mechanical model of the field φ(t, x) as an
excitation of a mechanical string as introduced in section 1.1. Recall that the field φ(t, x) describes the
transverse position of the string in the continuum limit of vanishing distance ∆ between the individual
mass points at position qi(t) which were thought of as connected by an elastic spring. However,
in reality the string is made of atoms of finite, typical size R. A continuous string profile φ(t, x) is
therefore not an adequate description at distances ∆ ≤ R or equivalently at energies E ≥ Λ ' 1/R
resolving such small distances. Rather, if we want to describe processes at energies E ≥ Λ, the
continuous field theory φ(t, x) is to be replaced by the more fundamental, microscopic theory of
atoms in a lattice. In this sense the field φ(t, x) gives merely an effective description of the string valid
at energies E ≤ Λ. Extrapolation of the theory beyond such energies is doubtful and can give rise to
infinities - the UV divergences.
In a modern approach to QFT, this reasoning is believed to hold also for the more abstract relativistic
fields we are considering in this course. According to this logic, QFT is really an effective theory
that eventually must be replaced at high energies by a more fundamental theory. A necessary
condition for such a fundamental theory to describe the microscopic degrees of freedom correctly
is that it must be free of pathologies of all sort and in particular be UV finite.3 At the very least,
gravitational degrees of freedom become important in the UV region and are expected to change the
qualitative behaviour of the theory at energies around the Planck scale MP ' 1019GeV .
Despite these limitations, in a ’good’ QFT the UV divergences can be removed - for all practical
purposes - by the powerful machinery of regularisation and renormalisation. We will study this
procedure in great detail later in the course, but let us take this opportunity to very briefly sketch the
logic for the example of the vacuum energy density:

• The first key observation is that in the classical Lagrangian we can have a constant term V0 of
dimension mass4,

L =
1
2
(∂φ)2 −

1
2

m2 φ2 − V0 , V0 = V |min, (1.111)

corresponding to the value of the classical potential at the minimum around which we expand.
We had set V0 ≡ 0 in our analysis because we had argued that such an overall energy offset
is not measurable in a theory without gravity. However, as we have seen the vacuum energy

3To date, the only known fundamental theory that meets this requirement including gravity is string theory.
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density really consists of two pieces - the classical offset V0 and the quantum piece ∆H . Thus,
let us keep V0 for the moment and derive the Hamiltonian

H =

∫
d3x

(
1
2

Π2 +
1
2

m2 φ2 +
1
2
(∇φ)2

)
+

∫
d3x V0. (1.112)

• Next, we regularise the theory: Introduce a cutoff-scale Λ and for the time being only allow for
energies E ≤ Λ. If we quantise the theory with such a cutoff at play, the overall vacuum energy
is now

H |0〉 = VR3(ε0(Λ) + V0) |0〉 (1.113)

with

ε0(Λ) =
1

(2π)2

Λ∫
0

dp p2
√

p2 + m2. (1.114)

Note that the momentum integral only runs up to the cutoff Λ in the regularised theory.

• Since V0 is just a parameter, we can set

V0 = V0(Λ) = −ε0(Λ) + χ, χ finite as Λ → ∞. (1.115)

With this choice

H |0〉 = VR3 χ |0〉 (1.116)

independently of Λ!This way we absorb the divergence into a cutoff-dependent counterterm
V0(Λ) in the action such that the total vacuum energy density is finite. This step is called
renormalisation. Crucially, note that the finite piece χ is completely arbitrary a priori. It must be
determined experimentally by measuring a certain observable - in this case the vacuum energy
(which is a meaningful observable only in the presence of gravity - see below).

• Finally, we can remove the cutoff by taking Λ → ∞.

To summarize, we define the quantum theory as the result of quantising the classical Lagrangian
L = 1

2 (∂φ)
2 − 1

2 m2 φ2 − V0(Λ) with V0(Λ) = −ε0(Λ) + χ and taking the limit Λ → ∞ at the very
end. Since Λ appears only in the classical - or bare - Lagrangian, but in no observable, physical
quantity at any of the intermediate stages, we can safely remove it at the end. In this sense, the theory
is practically defined up to all energies.
This way to deal with UV divergences comes at a prize: We lose the prediction of one observable per
type of UV divergence as a result of the inherent arbitrariness of the renormalisation step. In fact,
above we have chosen V0(Λ) such that H |0〉 = VR3 χ |0〉. It is only in the absence of gravity that
the vacuum energy is unobservable and thus χ is irrelevant. More generally, the value of the vacuum
energy must now be taken from experiment - χ is an input parameter of the theory rather than a predic-
tion. While we have succeeded in removing the divergence by renormalising the original Lagrangian,



28 CHAPTER 1. THE FREE SCALAR FIELD

the actual value of the physical observable associated with the divergence - here the vacuum energy
density - must be taken as an input parameter from experiment or from other considerations. In a
renormalisable QFT it is sufficient to do this for a finite number of terms in the Lagrangian so that
once the associated observables are specified, predictive power is maintained for the computation of
all subsequent observables.

The Cosmological Constant in gravity
In gravity, the vacuum energy density is observable because it gravitates and we have to carry the
vacuum energy with the field equations

Rµν −
1
2

Rgµν = −8πGTµν + (ε0 + V0)gµν. (1.117)

This form of the Einstein field equations leads to accelerated expansion of the Universe. Indeed,
observations indicate that the universe expands in an accelerated fashion, and the simplest - albeit not
the only possible - explanation would be to identify the underlying ’Dark energy’ with the vacuum
energy. Observationally, this would then point to ε0 + V0 = χ = (10−3eV)4. Of course in our
QFT approach it is impossible to explain such a value of the vacuum energy because as a side-effect
of renormalisation we gave up on predicting it. In this respect, Quantum Field Theory remains an
effective description. In a fundamental, UV finite theory this would be different: There the net vacuum
energy would be the difference of a finite piece V0 and a finite quantum contribution ε0, both of which
would be computable from first principles (if the theory is truly fundamental). Thus the two quantities
should almost cancel each other. There is a problem, though: On dimensional grounds one expects
both V0 and ε0 to be of the order of the fundamental scale in the theory, which in a theory of quantum
gravity is the Planck scale MP = 1019 GeV. The expected value for the vacuum energy density is
thus M4

P, which differs by the observed value by about 122 orders of magnitude difference. Thus, the
difference of V0 and ε0 must be by 122 orders of magnitude smaller than both individual numbers.
Such a behaviour is considered immense fine-tuning and thus unnatural. The famous Cosmological
Constant Problem is therefore the puzzle of why the observed value is so small.4

1.9 The complex scalar field

We now extend the formalism developed so far to the theory of a complex scalar field, which classi-
cally no longer satisfies φ(x) = φ∗(x). A convenient way to describe a complex scalar field of mass
m is to note that its real and imaginary part can be viewed as independent real scalar fields φ1 and φ2

of mass m, i.e. we can write

φ(x) =
1
√

2
(φ1(x) + iφ2(x)) . (1.118)

The real fields φ1 and φ2 are canonically normalised if we take as Lagrangian for the complex field

L = ∂µφ
†(x)∂µφ(x) −m2φ†(x)φ(x). (1.119)

4In fact, the problem is even more severe as becomes apparent in the Wilsonian approach to be discussed in QFT2. For
more information see e.g. the review arXiv:1309.4133 by Cliff Burgess.
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It is then a simple matter to repeat the programme of quantisation, e.g. by quantizing φ1 and φ2 as
before and rewriting everything in terms of the complex field φ(x). At the end of this rewriting we can
forget about φ1 and φ2 and simply describe the theory in terms of the complex field φ(x). The details
of this exercise will be provided in the tutorials so that we can be brief here and merely summarise the
main formulae.

• The fields φ(x) and φ†(x) describe independent degrees of freedom with respective conjugate
momenta

Π(t, ~x) =
∂L

∂φ̇(t, ~x)
= φ̇†(t, ~x),

Π†(t, ~x) =
∂L

∂φ̇†(t, ~x)
= φ̇(t, ~x).

(1.120)

The Hamiltonian H is

H =

∫
d3x

(
Π†(~x)φ̇†(~x) + Π(~x)φ̇(~x) −L

)
=

∫
d3x

(
Π†(~x)Π(~x) + ∇φ†(~x)∇φ(~x) + m2φ†(~x)φ(~x)

)
.

(1.121)

• These fields are promoted to Schrödinger picture operators with non-vanishing commutators

[φ(~x), Π(~y)] = iδ(3)(~x −~y) =
[
φ†(~x), Π†(~y)

]
(1.122)

and all other commutators vanishing.

• The mode expansion is conveniently written as

φ(~x) =
∫

d3 p
(2π)3

1√
2Ep

(
a(~p)ei~p·~x + b†(~p)e−i~p·~x

)
φ†(~x) =

∫
d3 p
(2π)3

1√
2Ep

(
b(~p)ei~p·~x + a†(~p)e−i~p·~x

)
,

(1.123)

where the mode operators a(~p) and b(~p) are independent and a†(~p) and b†(~p) describe the
respective conjugate operators. A quick way to arrive at this form of the expansion is to plug
the mode expansion of the real fields φ1 and φ2 into (1.118). This identifies

a =
1
√

2
(a1 + ia2),

b† =
1
√

2
(a†1 + ia†2).

(1.124)

In particular this implies that

[a(~p), a†(~q)] = (2π)3δ(3)(~p − ~q) = [b(~p), b†(~q)], (1.125)

while all other commutators vanish.



30 CHAPTER 1. THE FREE SCALAR FIELD

• The mode expansion of the 4-momentum operator is

Pµ =
∫

d3 p
(2π)3 pµ

(
a†(~p)a(~p) + b†(~p)b(~p)

)
. (1.126)

Crucially, one can establish that it has 2 types of momentum eigenstates

a†(~p) |0〉 and b†(~p) |0〉 , (1.127)

both of energy Ep =
√
~p2 + m2. I.e. both states have mass m, but they differ in their U(1)

charge as we will see now:

• The Lagrange density is invariant under the global continuous U(1) symmetry

φ(x)→ eiαφ(x), (1.128)

where α is a constant in R. Recall that the unitary group U(N) is the group of complex N × N
matrices A satisfying A† = A−1. The dimension of this group is N2. In particular eiα ∈ U(1).
According to Noether’s theorem there exists a conserved current (see Ass. 3)

jµ = −i(φ†∂µφ − ∂µφ†φ) (1.129)

and charge

Q =

∫
d3x j0 = −

∫
d3 p
(2π)3

(
a†(~p)a(~p) − b†(~p)b(~p).

)
(1.130)

This Noether charge acts on a particle with momentum ~p as follows:

Qa†(~p) |0〉 = − a†(~p) |0〉 : charge − 1,

Qb†(~p) |0〉 =+ b†(~p) |0〉 : charge + 1.
(1.131)

We interpret a†(~p) |0〉 as a particle of mass m and charge −1 and b†(~p) |0〉 as a particle with
the same mass, but positive charge, i.e. as its anti-particle. For the real field the particle is
its own anti-particle. Note that the term ’charge ±1’ so far refers simply to the eigenvalue of
the Noether charge operator Q associated with the global U(1) symmetry of the theory. That
this abstract charge really coincides with what we usually call charge in physics - i.e. that it
describes the coupling to a Maxwell type field - will be confirmed later when we study Quantum
Electrodynamics.

1.10 Quantisation in the Heisenberg picture

So far all field operators have been defined in the Schrödinger picture, in which the time-dependence
is carried entirely by the states on which these operators act. From Quantum Mechanics we recall
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that alternatively quantum operators can be described in Heisenberg picture (HP), where the time-
dependence is carried by the operators A(H)(t) and not the states. The HP operator A(H)(t) is defined
as

A(H)(t) = eiH(S )(t−t0)A(S )e−iH(S )(t−t0), (1.132)

where A(S ) is the corresponding Schrödinger picture operator and H(S ) is the Schrödinger picture
Hamilton operator. At the time t0 the Heisenberg operator and the Schrödinger operator coincide,
i.e. A(H)(t0) = A(S ). We will set t0 ≡ 0 from now on. The definition (1.132) has the following
implications:

• H(H)(t) = H(S ) ∀t.

• The time evolution of the Heisenberg picture operators is governed by the equation of motion

d
dt

A(H)(t) = i[H, A(H)(t)]. (1.133)

• The Schrödinger picture commutators translate into equal time commutators, e.g.

[q(H)
i (t), p(H)

j (t)] = i δi j. (1.134)

In field theory we similarly define the Heisenberg fields via

φ(H)(t, ~x) ≡φ(x) = eiH(S )tφ(S )(~x)e−iH(S )t,

Π(H)(t, ~x) ≡Π(x) = eiH(S )tΠ(S )(~x)e−iH(S )t,

H (H)(t, ~x) ≡H(x) = eiH(S )tH (S )(~x)e−iH(S )t.

(1.135)

These obey equal-time canonical commutation relations

[φ(t, ~x), Π(t,~y)] = iδ(3)(~x −~y)

[φ(t, ~x), φ(t,~y)] = 0 = [Π(t, ~x), Π(t,~y)].
(1.136)

The Heisenberg equation of motion for φ(x) reads

∂

∂t
φ(t, ~x) = i[H, φ(t, ~x)] = i

∫
d3y[H(t,~y), φ(t, ~x)], (1.137)

with

H(t,~y) =
1
2

Π2(t,~y) +
1
2
(∇φ(t,~y))2 +

1
2

m2φ2(t,~y) (1.138)

for a real scalar field. In the latter equation we used that H is time-independent, i.e. we can evaluate
the commutator at arbitrary times and thus choose equal time with φ(t, ~x) so that we can exploit the
equal-time commutation relations.
In evaluating (1.137) we observe that the only non-zero term comes from

1
2
[Π2(t,~y), φ(t, ~x)] = (−i)Π(t,~y)δ(3)(~x −~y), (1.139)
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where used the standard relation [A, BC] = [A, B]C + B[A, C] together with (1.136). This gives

∂

∂t
φ(t, ~x) = Π(t, ~x) (1.140)

as expected. One can similarly show that

∂

∂t
Π(t, ~x) = i[H, Π(t,~y)]

= ∇2φ(t, ~x) −m2φ(t, ~x).
(1.141)

Therefore altogether we can establish that the Klein-Gordon equation

(∂2 + m2)φ(x) = 0 (1.142)

holds as an operator equation at the quantum level.
The covariantisation of (1.137) is

∂µφ(x) = i[Pµ, φ(x)] (1.143)

with Pi =
∫

d3y Π(y) ∂iφ(y). Indeed this equation can be explicitly confirmed by evaluating the
commutator [Pi, φ(x)]. As a consequence we will check, on sheet 3, that

φ(xµ + aµ) = eiaµPµφ(x)e−iaµPµ . (1.144)

This, in fact, is simply the transformation property of the quantum field φ(x) under translation.
Let us now compute the mode expansion for the Heisenberg field. From the mode expansion for the
Schrödinger picture operator we find

φ(H)(t, ~x) =
∫

d3 p
(2π)3

1√
2Ep

(
eiHta(~p)e−iHtei~p·~x + eiHta†(~p)e−iHte−i~p·~x

)
. (1.145)

To simplify this we would like to commute eiHt through a(~p) and a†(~p). Since [H, a(~p)] = −a(~p)Ep,
we can infer that

Ha(~p) = a(~p)(H − Ep) (1.146)

and by induction that
Hna(~p) = a(~p)(H − Ep)

n. (1.147)

Thus
eiHta(~p) = a(~p)ei(H−Ep)t, (1.148)

which gives the mode expansion in the Heisenberg picture

φ(H)(t, ~x) ≡ φ(x) =
∫

d3 p
(2π)3

1√
2Ep

(
a(~p)e−ip·x + a†(~p)eip·x

)
, (1.149)

with

p · x = p0x0 − ~p · ~x, (p0, ~p) = (Ep, ~p). (1.150)
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In other words, the coefficient of e−ip·x in the mode expansion of the Heisenberg field corresponds to
the annihilator and the coefficient of eip·x to the creator. Note that indeed this mode expansion solves
the operator equation of motion (1.142).
For later purposes we also give the inverted expression

a(~q) =
i√
2Eq

∫
d3x eiq·x

↔

∂0φ(x),

a†(~q) =
−i√
2Eq

∫
d3x e−iq·x

↔

∂0φ(x),
(1.151)

where

• u(x)
↔

∂0 v(x) := u(x)∂0v(x) − (∂0u(x))v(x),

• the integrals
∫

d3x are evaluated at arbitrary times t = x0.

You will check these expressions in the tutorial.

1.11 Causality and Propagators

We are finally in a position to come back to the question of causality in a relativistic quantum theory,
which in section 1.1 served as one of our two prime motivations to study Quantum Field Theory. We
will investigate the problem from two related points of view - via commutators and propagators.

1.11.1 Commutators

For causality to hold we need two measurements at spacelike distance not to affect each other. This is
guaranteed if any two local observables O1(x) and O2(y) at spacelike separation commute, i.e.

[O1(x),O2(y)]
!
= 0 for (x − y)2 < 0. (1.152)

By a local observable we mean an observable in the sense of quantum mechanics (i.e. a hermitian
operator) that is defined locally at a spacetime point x, i.e. it depends only on x and at most on a
local neighborhood of x. Any such local observable is represented by a local (hermitian) operator, by
which we mean any local (hermitian) expression of the fundamental operators φ(x) and ∂µφ(x) such
as products or powers series (e.g. exponentials) of the operators. Indeed such operators are local in
the sense that they depend only on a local neighborhood of the spacetime point x.
To check for (1.152) we thus need to compute the commutator

∆(x − y) := [φ(x), φ(y)] (1.153)

not just at equal times x0 = y0, but for general times. In Fourier modes we have

∆(x − y) =
∫

d3 p
(2π)3

1√
2Ep

∫
d3q
(2π)3

1√
2Eq

×
[
a(~p)e−ip·x + a†(~p)eip·x, a(~q)e−iq·y + a†(~q)eiq·y

]
.

(1.154)
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Using the commutation relations for the modes yields

∆(x − y) =
∫

d3 p
(2π)3

1
2Ep

(
e−ip·(x−y) − e−ip·(y−x)

)
. (1.155)

Now assume (x − y)2 < 0. Since
∫ d3 p

(2π)3
1

2Ep
is Lorentz invariant (see the discussion in section 1.7.2)

we can apply a Lorentz transformation such that (x0 − y0) = 0. Indeed this can be always be achieved
if two points are at spacelike distance. This gives

∆(x − y)
∣∣∣∣∣
(x−y)2<0

=

∫
d3 p
(2π)3

1
2Ep

(
ei~p·(~x−~y) − e−i~p·(~x−~y)

)
, (1.156)

which is evidently zero because we can change the integration variable from ~p to −~p in the second
term. Consequently, also commutators of the form [∂xµφ(x), φ(y)] = ∂xµ [φ(x), φ(y)] vanish for x and
y at spacelike distance. Therefore for all local operators we have

[Oi(x),O j(y)] = 0 if (x − y)2 < 0. (1.157)

This establishes that causality is maintained at the operational level.

Remark:
In the above we have been able to derive (1.157) because we are working with a free theory, for which
the free mode expansion implies [φ(x), φ(y)] = 0 for (x − y)2 < 0. In an interacting theory, such a
derivation may not be possible since in this case a free mode expansion is no longer available. More
generally, therefore, one must postulate [φ(x), φ(y)] = 0 for (x− y)2 < 0 in form of an axiom of QFT.

A note on Quantum Entanglement

As we have seen, locality in Quantum Field Theory refers to the fact (or requirement) that local
operators commute at spacelike distances. By contrast, the states on which these operators act, i.e.
the elements of the Hilbert space, do exhibit non-local behaviour just as in non-relativistic Quantum
Mechanics. Indeed the fact that in QFT local operators commute is not at odds with the existence of
entangled states, known from Quantum Mechanics. Consider e.g. an entangled 2-spin state |12 ,− 1

2 〉 −

|−1
2 , 1

2 〉. Even though the state is entangled, the spin operator S 1 for measurement of the spin of particle
1 at x and S 2 for measurement of the spin of particle 2 at y commute. In particular the expectation
value of S 2 is not changed by measuring S 1. Therefore by measuring the expectation value of S 2 we
cannot determine if S 1 was measured and vice versa and the two measurements ’do not affect each
other’ in this sense. More generally, the states of the Quantum Field Theory are non-local objects. We
will understand this better when discussing the Schrödinger Representation of states in the context of
path integral quantization in QFT 2. The states are represented as functionals of the field configuration
and are necessarily dependent on non-local information.
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1.11.2 Propagators

Consider now the probability amplitude for a particle emitted at y to propagate to x (where it can be
measured). This is given by the propagator

D(x − y) := 〈0| φ(x)φ(y) |0〉 , (1.158)

because |x〉 = φ(x) |0〉 is a position eigenstate. In particular, unlike in the non-relativistic expression
(1.3), the time-evolution operator need not be inserted by hand because |x〉 contains information about
the time variable x0. By a mode expansion we find

D(x − y) =
"

d3 p
(2π)3

1√
2Ep

d3q
(2π)3

1√
2Eq
〈0|

(
a(~q)e−iq·x + a†(~q)eiq·x

)
×

(
a(~p)e−ip·y + a†(~p)eip·y

)
|0〉 .

(1.159)

Using a(~p) |0〉 = 0 = 〈0| a†(~q) we find that the only contribution is due to the term

e−iq·xeip·x 〈0| a(~q)a†(~p) |0〉 = e−iq·xeip·x(2π)3δ(3)(~q − ~p). (1.160)

This yields

D(x − y) = 〈0| φ(x)φ(y) |0〉 =
∫

d3 p
(2π)3

1
2Ep

e−ip(x−y). (1.161)

We see that D(x − y) is non-zero even for x and y at spacelike distance. On the other hand, in view
of (1.156) this cannot affect causality. So how can this be consistent? What saves the day is the
observation that

[φ(x), φ(y)] = D(x − y) − D(y − x). (1.162)

We can therefore interpret the commutator as describing 2 physical processes, whose quantum prob-
ability amplitude apparently cancel each other for (x − y)2 < 0:

• D(x − y) is the quantum amplitude for a particle to travel from y→ x,

• D(y − x) is the quantum amplitude for a particle to travel from y→ x.

Indeed if x and y are at spacelike distance from each other, there is no Lorentz invariant notion of
whether (x0 − y0) is bigger or smaller than zero. Therefore both processes can occur. In the ex-
pression for [φ(x), φ(y)] these two processes cancel each other in the sense of a destructive quantum
mechanical interference.
Even more interestingly we can consider a complex scalar field, which contains the mode operators
according to

φ(x) ∼ a(~p), b†(~p),

φ†(x) ∼ a†(~p), b(~p).
(1.163)
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For a complex scalar field [φ(x), φ(y)] = 0 for all x, y. More interesting is the commutator

[φ(x), φ†(y)] = 〈0| φ(x)φ†(y) |0〉 − 〈0| φ†(y)φ(x) |0〉 , (1.164)

which vanishes for (x− y)2 < 0 while being in general non-zero otherwise. The first term corresponds
to a particle which travels from y to x, while the second term corresponds to an anti-particle travel-
ling from x to y. Again both processes cancel each other in the expression for the commutator. The
important conclusion is that the field formalism saves causality in the QM sense even though the QM
probability for a propagation x → y itself is non-zero if (x − y)2 < 0. This is why a single-particle
approach must fail. The field commutators, on the other hand, know about processes of all possible
particles and anti-particles. Thus it is the intrinsic nature of Quantum Field Theory as a multi-particle
framework which is responsible for causality.

1.11.3 The Feynman-propagator

We will see in the next chapter that an object of crucial importance in QFT is the Feynman-propagator

DF(x − y) := 〈0|Tφ(x)φ(y) |0〉 , (1.165)

where

Tφ(x)φ(y) =

 φ(x)φ(y) if x0 ≥ y0,
φ(y)φ(x) if y0 > x0 (1.166)

is the time-ordered product. The Feynman-propagator can be written as

DF(x − y) = Θ(x0 − y0) 〈0| φ(x)φ(y) |0〉︸             ︷︷             ︸
D(x−y)

+Θ(y0 − x0) 〈0| φ(y)φ(x) |0〉︸             ︷︷             ︸
D(y−x)

= Θ(x0 − y0)

∫
d3 p
(2π)3

1
2Ep

e−ip·(x−y)

∣∣∣∣∣∣
p0=+Ep

+ Θ(y0 − x0)

∫
d3 p
(2π)3

1
2Ep

eip·(x−y)

∣∣∣∣∣∣
p0=+Ep

.

(1.167)

Relabeling ~p by −~p in the second term gives∫
d3 p
(2π)3 ei~p·(~x−~y)

[
Θ(x0 − y0)

1
2Ep

e−iEp(x0−y0) + Θ(y0 − x0)
1

2Ep
eiEp(x0−y0)

]
. (1.168)

The term in brackets can be rewritten as a complex contour integral. As a preparation recall Cauchy’s
integral formula:

Let g : U → C be a holomorphic function defined in an open subset U of C and consider
a closed disk D with C = ∂D ⊂ U. Then for z0 in the interior of D we have

g(z0) =
1

2πi

∮
C

g(z)
z − z0

dz. (1.169)



1.11. CAUSALITY AND PROPAGATORS 37

In this spirit the first term in DF(x − y) can be written as

Θ(x0 − y0)
1

2Ep
e−iEp(x0−y0)

= −Θ(x0 − y0)
1

2πi

∮
C1

dp0 e−ip0(x0−y0)

(p0 − Ep)(p0 + Ep)
,

(1.170)

where

• the poles are avoided in ε-surroundings as drawn in the picture.

• we close the contour in the lower half-plane such as to pick up the residue at p0 = +Ep and

• the integral is clockwise, which explains the overall minus sign.

Figure 1.1: Contour C1.

It is important to note that this result holds for any contour that encloses the poles as drawn. In
particular, since x0 − y0 > 0 the integral along the lower half-plane asymptotically vanishes if we
choose to deform the contour to infinity, corresponding to R→ ∞. For the second term in (1.168) we
can similarly write

Θ(y0 − x0)
1

2Ep
eiEp(x0−y0)

= −Θ(y0 − x0)
1

2πi

∮
C2

dp0 e−ip0(x0−y0)

(p0 − Ep)(p0 + Ep)
.

(1.171)

This time C2 runs counter-clockwise, but picks up the pole at p0 = −Ep, which again yields an overall
minus.
Now, as stressed above both expressions hold for any R > Ep, but if R → ∞, then the integral
in the lower-/upper halfplane each vanishes due to the appearance of Θ(x0 − y0) and Θ(y0 − x0),
respectively. It is at this place that the time ordering becomes crucial.
We can therefore evaluate both integrals for R → ∞, add them with the help of 1 = Θ(x0 − y0) +

Θ(y0 − x0) and arrive at

DF(x − y) =
∮
C

d4 p
(2π)4

i
p2 −m2 e−ip·(x−y), (1.172)
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Figure 1.2: Contour C2.

Figure 1.3: Contour C of the Feynman propagator.

where (p0 − Ep)(p0 + Ep) = p2 −m2 was used. In this expression the contour integral in p0 must be
taken along the path C shown above.
Since this is a complex contour integral, all that matters is the relative position of the contour to the
poles. Therefore we can equivalently pick the contour C on top of the real axis but shift the poles e.g.
by an amount ±iε̃/Ep in the limit ε̃ → 0.

Figure 1.4: Shifted poles.

This modifies the denominators as

p0 = −Ep + iε̃/Ep and p0 = Ep − iε̃p/Ep. (1.173)
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This must be combined with taking the limit ε̃ → 0 after performing the integral. With this understood
and using furthermore (p0 − (Ep − iε̃/Ep))(p0 + (Ep − iε̃/Ep)) =

(
p0

)2
− E2

p + 2iε̃ + ε2/E2
p =

p2 −m2 + iε with ε = 2iε̃ − iε̃/Ep, the Feynman propagator can be written as the integral

DF(x − y) =
∫

d4 p
(2π)4

i
p2 −m2 + iε

e−ip·(x−y) (1.174)

with the p0 integration along the real axis and with the limit ε → 0 after performing the integral.

1.11.4 Propagators as Green’s functions

Direct computation reveals that DF(x − y) is a Green’s function for the Klein-Gordon equation

(∂2
x + m2)DF(x − y) = −iδ(4)(x − y). (1.175)

The general solution to the equation

(∂2 + m2)∆(x) = −iδ(4)(x) (1.176)

is found by Fourier transforming both sides as

∆(x) =
∫

d4 p
(2π)4 ∆̃(p)e−ip·x, δ(4)(x) =

∫
d4 p
(2π)4 e−ip·x (1.177)

and noting that the Klein-Gordon equation becomes an algebraic equation for the Fourier transforms,

(−p2 + m2)∆̃(p) = −i ⇒ ∆̃(p) =
i

p2 −m2 . (1.178)

Special care must now be applied in performing the Fourier backtransformation for this solution due
to the appearance of the two poles at p0 = ±

√
E2
~p. Any consistent prescription to avoid divergences

in performing the contour integral in p0 leads to a solution to the original equation (1.175).
In fact, there are 2 × 2 different ways to evaluate the contour integral in p0 by avoiding the two poles
in the upper and lower half-plane. As will be shown in the tutorials, if we avoid both poles along a
contour in the upper half-plane, the solution is the retarded Green’s function

DR(x − y) = Θ(x0 − y0)[D(x − y) − D(y − x)]

≡ Θ(x0 − y0) 〈0| [φ(x), φ(y)] |0〉
, (1.179)

while avoiding both poles in the lower half-plane yields the the advanced Green’s function

DA(x − y) = Θ(y0 − x0)[D(x − y) − D(y − x)]. (1.180)
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Figure 1.5: The retarded contour. Figure 1.6: The advanced contour.

Note that DR and DA appear also in classical field theory in the context of constructing solutions to
the inhomogenous Klein-Gordon equation, where they propagate the inhomogeneity forward (DR)
and backward (DA) in time. In particular the classical version of causality is the statement that DR and
DA vanish if (x − y)2 < 0, which we proved from a different perspective before.
By contrast DF(x− y) is the solution corresponding to the contour described previously in this section.
It does not appear in classical field theory. The reason is that DF(x− y) propagates ’positive frequency
modes’ e−ipx forward and ’negative frequency modes’ eipx backward in time (see (1.168)). Remember
that DF(x − y) is non-vanishing, even for x and y at spacelike distance. Finally there is a fourth
prescription which has no particularly important interpretation in classical or quantum field theory.



Chapter 2

Interacting scalar theory

2.1 Introduction

So far we have considered a free scalar theory

L0 =
1
2
(∂φ)2 − V0(φ) (2.1)

with V0(φ) =
1
2 m2

0 φ
2.

• The theory is exactly solvable: The Hilbert space is completely known as the Fock space of
multi-particle states created from the vacuum |0〉.

• There are no interactions between the particles.

Interactions are described in QFT by potentials V(φ) beyond quadratic order. We can think of V(φ)
as a formal power series in φ,

V(φ) =
1
2

m2
0 φ

2︸   ︷︷   ︸
V0

+
1
3!

g φ3 +
1
4!
λ φ4 + ...,︸                       ︷︷                       ︸

Vint

(2.2)

and decompose the full Langrangian as

L = L0 +Lint, Lint = −Vint. (2.3)

This yields the decomposition of the full Hamiltonian as H = H0 + Hint. Introducing interaction
terms leads to a number of important changes in the theory:

• The Hilbert space is different from the Hamiltonian of the free theory.

– This is true already for the vacuum, i.e. the full Hamiltonian H has a ground state |Ω〉
different from the ground state |0〉 of the free Hamiltonian H0:

|0〉 ↔ vacuum of H0 : H0 |0〉 = E0 |0〉 ,

|Ω〉 ↔ vacuum of H : H |Ω〉 = EΩ |Ω〉
(2.4)

with |Ω〉 , |0〉.

41
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– The mass of the momentum eigenstates of H does no longer equal the parameter m0 that
appears in L0.

– Bound states may exist in the spectrum.

• The states interact.

The dream of Quantum Field Theorists is to find the exact solution of a non-free QFT, i.e. find the
exact spectrum and compute all interactions exactly. This has only been possible so far for very
special theories with a lot of symmetry, e.g. certain 2-dimensional QFTs with conformal invariance
(Conformal Field Theory), or certain 4-dimensional QFTs with enough supersymmetry.
However, for small coupling parameters such as g and λ in V(φ) we can view the higher terms as
small perturbations and apply perturbation theory. Note that depending on the mass dimension of
the couplings it must be specified in what sense these parameters must be small, but e.g. for the
dimensionless parameter λ this would mean that λ � 1 for perturbation theory to be applicable.
Before dealing with interactions in such a perturbative approach, however, we will be able to establish
a number of non-trivial important results on the structure of the spectrum and interactions in a non-
perturbative fashion.

2.2 Källén-Lehmann spectral representation

We take a first look at the spectrum of an interacting real scalar field theory in a manner valid for
all types of interactions and without relying on perturbation theory. As a consequence of Lorentz
invariance the Hamiltonian and the 3-momentum operator must of course still commute, [H, ~P] = 01,
and can thus be diagonalised simultaneously. By |λ~p〉 we denote such an eigenstate of H and ~P in the
full theory such that

H |λ~p〉 = Ep(λ) |λ~p〉 ,

~P |λ~p〉 = ~p |λ~p〉 .
(2.5)

Each |λ~p〉 is related via a Lorentz boost with the corresponding state at rest, called |λ0〉. We can have
the following types of |λ~p〉:

• 1-particle states |1~p〉 with Ep =
√
~p2 + m2 and rest mass m. Remember that m is no more

identical to m0 in L0.

• Bound states with no analogue in the free theory.

• 2- and N-particle states formed out of 1-particle and the bound states. In this case we take ~p to
be the centre-of-mass momentum of the multi-particle state.

1This is simply the statement that the momentum operator is conserved - cf. (1.137).



2.2. KÄLLÉN-LEHMANN SPECTRAL REPRESENTATION 43

All these states are created from the vacuum |Ω〉. The crucial difference to the free theory is, though,
that φ(x) cannot simply be written as a superposition of its Fourier amplitudes a(~p) and a†(~p) because
it does not obey the free equation of motion, i.e.

(∂2 + m2)φ , 0. (2.6)

Rather,
(∂2 + m2)φ = j (2.7)

for a suitable current j. Thus, acting with φ on |Ω〉 does not simply create a 1-particle state as in the
free theory.
We will make frequent use of the completeness relation of this Hilbert space,

1 = |Ω〉 〈Ω|+
∑
λ

∫
d3 p
(2π)3

1
2Ep(λ)

|λ~p〉 〈λ~p| . (2.8)

Here the formal sum over λ includes the sum over the 1-particle state, over all types of bound states
as well as over all multi-particle states, while the integral

∫ d3 p
(2π)3

1
Ep(λ)

refers to the centre-of-mass
momentum of a state of species λ. In particular, since specifying a multi-particle state requires spec-
ifying the relative momenta of the individual states (in addition to the centre-of-mass momentum ~p),
the sum over λ is really a sum over a continuum of states.
Our first goal is to compute the interacting Feynman-propagator

〈Ω|Tφ(x)φ(y) |Ω〉 (2.9)

and to establish a physical interpretation for it. Even though we cannot rely on the mode expansion of
the field any more, we will be able to make a great deal of progress with the help of two tricks.

• First we insert 1 between φ(x) and φ(y)2. We first ignore time ordering. Then, without loss of
generality we can assume that

〈Ω| φ(x) |Ω〉 = 0, (2.10)

because since
φ(x) = eixµPµφ(0)e−ixµPµ (2.11)

(cf. (1.144)) and Pµ |Ω〉 = 0 we have

〈Ω| φ(x) |Ω〉 = 〈Ω| φ(0) |Ω〉 ∀x. (2.12)

So if c ≡ 〈Ω| φ(0) |Ω〉 , 0 we simply redefine φ→ φ − c to achieve (2.10). Therefore

〈Ω| φ(x) 1 φ(y) |Ω〉 =
∑
λ

∫
d3 p
(2π)3

1
2Ep(λ)

〈Ω| φ(x) |λ~p〉 〈λ~p| φ(y) |Ω〉 . (2.13)

2Whenever we do not know what to do, and Fourier transformation is not the answer, we insert a 1.
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Now
〈Ω| φ(x) |λ~p〉 = 〈Ω| eiP·xφ(0)e−iP·x |λ~p〉 , (2.14)

and with 〈Ω| eiP·x = 〈Ω| and e−iP·x |λ~p〉 = |λ~p〉 e−ip·x we find

〈Ω| φ(x) |λ~p〉 = 〈Ω| φ(0) |λ~p〉 e−ip·x. (2.15)

• The next trick is to relate |λ~p〉 to |λ0〉 by a Lorentz boost. To this end we investigate the trans-
formation behaviour of a scalar field under a Lorentz transformation

x 7→ x′ = Λx. (2.16)

In the spirit of Quantum Mechanics the action of the Lorentz group is represented on the Hilbert
space in terms of a unitary operator U(Λ) such that all states transform like

|α〉 7→ |α′〉 = U(Λ) |α〉 . (2.17)

What is new to us is that also the transformation of the field is determined in terms of U(Λ).
More precisely, the scalar field transforms as

φ(x) 7→ φ′(x′) = φ(x(x′)) (2.18)

with φ′(x′) = U−1(Λ)φ(x′)U(Λ), i.e.

U−1(Λ)φ(x′)U(Λ) = φ(x). (2.19)

To see this we start with the familiar transformation of a classical scalar field under a Lorentz
transformation given by

φ 7→ φ′(x′) = φ(x). (2.20)

We now need to find the analogue of this equation for operator-valued fields. The analogue
of the classical value of φ(x) is the matrix element 〈α| φ(x) |β〉 evaluated on a basis of the
Hilbert space. The transformed field φ′(x) then corresponds to transformed matrix elements
〈α′| φ(x) |β′〉. Thus the classical relation (2.20) translates into

〈α′| φ(x′) |β′〉︸          ︷︷          ︸
〈α|U−1φ(x′)U |β〉

= 〈α| φ(x) |β〉 , (2.21)

for all states |α〉 and |β〉.

Now, let U denote a Lorentz boost such that

|λ~p〉 = U−1 |λ0〉 . (2.22)

We can then further manipulate (2.15) by writing

〈Ω| φ(x) |λ~p〉 = 〈Ω|U−1︸   ︷︷   ︸
〈Ω|

Uφ(0)U−1︸       ︷︷       ︸
φ(0)

U |λ~p〉︸︷︷︸
|λ0〉

e−ip·x. (2.23)
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Figure 2.1: Spectral function.

Thus the Feynman propagator without time ordering can be expressed as

〈Ω| φ(x)φ(y) |Ω〉 =
∑
λ

∫
d3 p
(2π)3

1
2Ep(λ)

e−ip·(x−y)
∣∣∣ 〈Ω| φ(0) |λ0〉

∣∣∣2, (2.24)

which is to be compared with the free scalar result (1.161). Including time ordering, we can peform
the same manipulations for the integral as in the free theory and therefore conclude

〈Ω|Tφ(x)φ(y) |Ω〉 =
∑
λ

∫
d4 p
(2π)4

i
p2 −m2

λ + iε
e−ip·(x−y)

∣∣∣ 〈Ω| φ(0) |λ0〉
∣∣∣2. (2.25)

One can define

DF(x − y; M2) :=
∫

d4 p
(2π)4

i
p2 −M2 + iε

e−ip·(x−y) (2.26)

to write

〈Ω|Tφ(x)φ(y) |Ω〉 =

∞∫
0

dM2

2π
ρ(M2)DF(x − y; M2) (2.27)

in terms of the spectral function

ρ(M2) =
∑
λ

2π δ(M2 −m2
λ)

∣∣∣ 〈Ω| φ(0) |λ0〉
∣∣∣2, (2.28)

which has a typical form like in Figure 2.1. It is crucial to appreciate that the 1-particle states leads
to an isolated δ-function peak around M2 = m2. Therefore below M2 � (2m)2 or M2 � m2

bound the
spectral function takes the form

ρ(M2) = 2π δ(M2 −m2) Z. (2.29)

Here we have defined the field-strength or wavefunction renormalisation

Z =
∣∣∣ 〈Ω| φ(0) |10〉

∣∣∣2, (2.30)
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where |10〉 is a 1-particle state at rest.

Consider now the Fourier-transformation∫
d4x eip·(x−y) 〈Ω|Tφ(x)φ(y) |Ω〉 =

∞∫
0

dM2

2π
ρ(M2)

i
p2 −M2 + iε

(2.31)

=
i Z

p2 −m2 + iε
+

∫ ∞

m2
bound

dM2

2π
ρ(M2)

i
p2 −M2 + iε

.

This identifies the 1-particle state as the first analytic pole at m2. This is an important observation:

The mass-square m2 of the particle is the location of the lowest-lying pole of the Fourier
transformed propagator.

I.e. computation of the propagator gives us, among other things, a way to read off the mass of the
particle. Note furthermore that

• bound states appear at higher isolated poles and

• N-particle states give rise to a branch cut beginning at p2 = 4m2.

The field-strength renormalisation Z was 1 in free theory because φ(0) just creates the free particle
from vacuum. In an interacting theory∣∣∣ 〈Ω| φ(0) |10〉

∣∣∣ = √Z < 1 (2.32)

because φ creates not only 1-particle states and thus the overlap with the 1-particle states is smaller.
In fact, by exploiting the properties of the spectral function one can prove formally that

Z = 1 if and only if the theory is free.

We give a guided tour through this proof in the tutorials.

2.3 S-matrix and asymptotic in/out-states

We now consider scattering of incoming states |i〉 to outgoing states | f 〉 with the aim of computing
the QM transition amplitude, i.e. the probability amplitude for scattering of |i〉 to | f 〉. The process is
formulated in terms of the theory of asymptotic in- and out-states.

• In the asymptotic past, t → −∞, the in-states |i, in〉 are described as distinct wave-packets
corresponding to well-separated single particle states. Being far apart for t → −∞, they travel
freely as individual states. This is a consequence of locality of the interactions, which we
assume in the sequel.

• As these states approach each other, they start to "feel each other", interact and scatter into the
final states | f 〉.
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• For t → ∞ these final states are again asymptotically free and well-separated 1-particle states.

The concept of free asymptotic in/out states is formalised by the so-called in- and out-fields φin and
φout with the following properties:

• The in-state |i, in〉 is created from the asymptotic vaccum |vac, in〉 by action of φin as t → −∞.
We will see that

|vac, in〉 = |Ω〉 , (2.33)

the vacuum of the interacting theory.

• |i, in〉 has E =
√

p2 + m2 with m the value of the 1-particle pole in the Feynman propagator of
the full interacting theory. In particular m , m0. Therefore, φin is a free field obeying the free
Klein-Gordon-equation, but with the full mass m , m0,

(∂2 + m2)φin = 0. (2.34)

It is thus possible to expand φin in terms of ain(~p) and a†in(~p) so that

φin(x) =
∫

d3 p
(2π)3

1√
2Ep

(
ain(~p)e−ip·x + a†in(~p)e

ip·x
)

, (2.35)

where p0 =
√
~p2 + m2.

• φin satisfies the following relation to the interacting field φ: Asymptotically for t → −∞ the
above logic suggests identifying φin(x) with φ(x), at least in weak sense that their their matrix
elements with a basis of the Hilbert space must agree in a suitable manner. We therefore make
the ansatz

φ→ C φin (2.36)

in the weak sense only, i.e.
〈α| φ |β〉 → C 〈α| φin |β〉 (2.37)

for all |α〉 and |β〉 as t → −∞. With this input one can show (see Examples Sheet 5 for the proof)
that

〈1~p| φ(0) |Ω〉 = C 〈1~p| φin(0) |Ω〉 . (2.38)

Since by construction 〈1~p| φin(0) |Ω〉 = 1 this identifies C =
√

Z with Z the wavefunction
renormalisation of the full theory as defined in (2.30). Thus

〈α| φ |β〉 →
√

Z 〈α| φin |β〉 (2.39)

as t → −∞. Note that this is really true only in this weak sense. What does not hold in an
interacting field theory is that operator products (i.e. powers of φ(x)) approach corresponding
products of φin(x).3

3If this were to hold, then the field theory would be free: Indeed the assumption that φ(x)φ̇(y) → Z φin(x)φ̇in(y) and
similarly for φ̇(y)φ(x) implies that Z = 1 by exploiting the commutation relations for the fields.
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• φout has of course analogous properties as t → +∞.

Our considerations can be summarised as follows: φin/out are free fields with single particle states of
energy Ep =

√
p2 + m2, with the mass m of the full theory. We can think of switching off all inter-

actions of the theory as t → ∓∞ except for self-interactions of the field. This leads to mass m , m0

and Z , 1. We will be able to understand what is meant by these self-interactions very soon when
discussing the resummed propagator, and it will become clear then that indeed it is imperative to take
into account m , m0 and Z , 1 for φin/out.

The Hilbert spaces of asymptotic in- and out-states are isomorphic Fock spaces. Thus there exists
an operator S which maps the out-states onto the in-states, i.e.

|i, in〉 = S |i, out〉 . (2.40)

On Examples Sheet 5 we prove the following properties of S :

• S is unitary, i.e S † = S −1,

• φin(x) = Sφout(x)S −1,

• |vac,in〉 = |vac,out〉 = |Ω〉 and S |Ω〉 = |Ω〉.

Our aim is to compute the transition amplitude

〈 f , out| i, in〉 = 〈 f , in| S |i, in〉︸          ︷︷          ︸
S -matrix element

, (2.41)

so that | 〈 f , in| S |i, in〉 |2 it the probability for scattering from the initial states to the final states.

2.4 The LSZ reduction formula

Let us now compute the S -matrix element

〈p1, ..., pn, out| q1, ..., qr, in〉 (2.42)

for scattering of asymptotic in- and out-states of definite momenta. One can think of this as the build-
ing block to describe scattering of asymptotically localised wave-packets | fin〉 =

∫
d3 p f (~p) |pin〉.

• We first use the definition of |qi, in〉 in terms of the creation operator of the in-field

φin(x) =
∫

d3k
(2π)3

1
√

2Ek

(
ain(~k)e−ik·x + a†in(

~k)eik·x
)

(2.43)

given by

|qi, in〉 =
√

2Eqia
†

in(qi) |Ω〉 . (2.44)
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We will use that

ain(~q) =
i√
2Eq

∫
d3x eiq·x

↔

∂0 φin(x)
∣∣∣
x0=t ,

a†in(~q) =
−i√
2Eq

∫
d3x e−iq·x

↔

∂0 φin(x)
∣∣∣
x0=t ,

(2.45)

(cf. (1.151)), where the integral can be evaluated at arbitrary time t. This allows us to trade |qi〉

by φin(x) as follows:

〈p1, ..., pn, out|q1, ..., qr, in〉 =
√

2Eq1 〈p1, ..., pn, out| a†in( ~q1) |q2, ..., qr, in〉

=
1
i

∫
d3x e−iq1·x

↔

∂0 〈p1, ..., pn, out| φin(t, ~x) |q2, ..., qr, in〉
∣∣∣
x0=t.

(2.46)

• Since t is arbitrary, we can take t → −∞ because in that limit we can make use of the relation

lim
t→−∞

〈1~p| φin(t, ~x) |Ω〉 = lim
t→−∞

Z−1/2 〈1~p| φ(t, ~x) |Ω〉 , (2.47)

or more generally

lim
t→−∞

〈p1, ..., pn, out| φin(t, ~x) |q2, ..., qr, in〉 = lim
t→−∞

Z−1/2 〈p1, ..., pn, out| φ(x) |q2, ..., qr, in〉 .
(2.48)

This leads to

〈p1, ..., pn, out| q1, ..., qr, in〉

= lim
t→−∞

Z−1/2 1
i

∫
d3x e−iq1·x

↔

∂0 〈p1, ..., pn, out| φ(x) |q2, ..., qr, in〉︸                                                               ︷︷                                                               ︸
≡
∫

d3 x f (t,~x)

. (2.49)

• Our next aim is to let φ(x) act from the right on the out-states in order to annihilate one of the
states. To this end we need to relate the above matrix element with t → −∞ to a matrix element
in the limit t → ∞, where we can re-express φ(x) by φout(x). We can do so by exploiting that
for all functions f (t, ~x)

( lim
t→∞
− lim

t→−∞
)

∫
d3x f (t, ~x) = lim

t f→∞

ti→−∞

t f∫
ti

dt
∂

∂t

∫
d3x f (t, ~x)

︸                              ︷︷                              ︸
≡
∫

d4 x ∂0 f (x)

, (2.50)

i.e.

lim
t→−∞

∫
d3x f (t, ~x) = lim

t→+∞

∫
d3x f (t, ~x) −

∫
d4x ∂0 f (x). (2.51)

Therefore we can write the overlap of the in- and out-states as

〈p1, ..., pn, out| q1, ..., qr, in〉 = A − B (2.52)
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with

B =

∫
d4x Z−1/2 ∂0

[
e−iq1·x 1

i

↔

∂0 〈p1, ..., pn, out| φ(x) |q2, ..., qr, in〉
]

(2.53)

and

A = lim
t→∞

∫
d3x

1
i

e−iq1·x
↔

∂0 Z−1/2 〈p1, ..., pn, out| φ(x) |q2, ..., qr, in〉︸                                              ︷︷                                              ︸
for t→∞: 〈p1,...,pn,out|φout(x)|q2,...,qr ,in〉

= 〈p1, ..., pn, out| a†out(~q1) |q2, ..., qr, in〉
√

2Eq1 . (2.54)

Altogether

〈p1, ..., pn, out| q1, ..., qr, in〉 = 〈p1, ..., pn, out| a†out(~q1) |q2, ..., qr, in〉
√

2Eq1 (2.55)

+i
∫

d4x Z−1/2 ∂0

[
e−iq1·x

↔

∂0 〈p1, ..., pn, out| φ(x) |q2, ..., qr, in〉
]

.

• The first term gives

〈p1, ..., pn, out| a†out(~q1) |q2, ..., qr, in〉
√

2Eq1 =

=
n∑

k=1

2Epk(2π)
3δ(3)(~pk − ~q1) 〈p1, ..., p̂k, ..., pn, out| q2, ..., qr, in〉,

(2.56)

where p̂k has to be taken out. This describes a process where one of the in- and outgoing
states are identical and do not participate in scattering. Such an amplitude corresponds to a
disconnected diagram and its computation reduces to computing an S-matrix element involving
only (r − 1) in- and (n − 1) out-states (since one in- and out-state factor out). The second term
in (2.55) gives

i
∫

d4x Z−1/2∂0
[
e−iq1·x∂0〈...〉 −

(
∂0e−iq1·x

)
〈...〉

]
= i

∫
d4x Z−1/2

[
e−iq1·x∂2

0〈...〉 −
(
∂2

0e−iq1·x
)
〈...〉

]
,

(2.57)

because the cross-terms cancel each other. Now consider that

−∂2
0e−iq1·x =

(
q0

1

)2
e−iq1·x =

(
q2

1 + ~q2
1

)
e−iq1·x =

(
m2 −∇2

)
e−iq1·x. (2.58)

With respect to the spatial variable we can integrate two times by parts,∫
d4x

(
m2 −∇2

)
e−iq1·x〈...〉 =

∫
d4x e−iq1·x

(
m2 −∇2

)
〈...〉, (2.59)

since boundary terms at spatial infinity vanish. To justify this recall that the momentum eigen-
states are to be thought of as convoluted with a wavefunction profile as in | fin〉 =

∫
d3 p f (~p) |pin〉

so that the full states are really localised in space. Altogether this gives

〈p1, ..., pn, out| q1, ..., qr, in〉 =
n∑

k=1

2Epk(2π)
3δ(3)(~pk − ~q1) 〈p1, ..., p̂k, ..., pn, out| q2, ..., qr, in〉

+ i Z−1/2
∫

d4x1 e−iq1·x1
(
�1 + m2

)
〈p1, ..., pn, out| φ(x1) |q2, ..., qr, in〉 .

(2.60)
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• Now we repeat this for all remaining states. First consider replacing 〈p1| by φout as follows:

〈p1, ..., pn, out| φ(x1)|q2, ..., qr, in〉

=
√

2Ep1 〈p2, ..., pn, out| aout(p1)φ(x1)|q2, ..., qr, in〉

= lim
y0

1→∞
i Z−1/2

∫
d3y1 eip1·y1

↔

∂y0
1
〈p2, ..., pn, out| φ(y1)φ(x1) |q2, ..., qr, in〉 .

(2.61)

We would like to repeat the previous logic and transform this into a sum of two terms, one
of which being the disconnected term 〈p2, ..., pn, out| φ(x1)ain(~p1) |q2, ..., qr, in〉. However, we
need to be careful with the ordering of operators as we cannot simply commute ain(~p1) through
φ(x1). This is where the the time-ordering symbol T comes in. Namely, observe that for finite
values of x0

1

lim
t f→∞

ti→−∞

t f∫
ti

dy0
1

 ∂

∂y0
1

i Z−1/2
∫

d3y1 eip1·y1
↔

∂y0
1
〈p2, ..., pn, out|Tφ(y1)φ(x1) |q2, ..., qr, in〉


= lim

y0
1→∞

[
i Z−1/2

∫
d3y1 eip1·y1

↔

∂y0
1
〈p2, ..., pn, out| φ(y1)φ(x1) |q2, ..., qr, in〉

]
− lim

y0
1→−∞

[
i Z−1/2

∫
d3y1 eip1·y1

↔

∂y0
1
〈p2, ..., pn, out| φ(x1)φ(y1) |q2, ..., qr, in〉

]
︸                                                                                            ︷︷                                                                                            ︸

≡〈p2,...,out|φ(x1)ain(~p1)|q2,...,in〉
√

2Ep1 → disconnected term

.

(2.62)

Note the different ordering of φ(y1)φ(x1) in both terms. Indeed since the limit x0
1 → ±∞

appears outside of the correlator in eq. (2.60), the time-ordering symbol precisely yields these
orderings as y0

1 → ±∞. The term on the lefthand-side of (2.62) is, as before,

i Z−1/2
∫

d4y1 eip1·y1
(
�y1 + m2

)
〈p2, ..., pn, out|Tφ(y1)φ(x1) |q2, ..., qr, in〉 . (2.63)

• This can be repeated for all in- and out states to get the Lehmann-Symanzik-Zimmermann
reduction formula

〈p1, ..., pn, out| q1, ..., qr, in〉 ≡ 〈p1, ..., pn, in| S |q1, ..., qr, in〉

= (Σ disconnected terms)+

+
(
i Z−1/2

)n+r
∫

d4y1...d4yn

∫
d4x1...d4xr

× ei(
∑n

k=1 pk ·yk−
∑r

l=1 ql·xl)

×
(
�y1 + m2

)
...

(
�x1 + m2

)
... 〈Ω|Tφ(y1)...φ(yn)φ(x1)...φ(xr) |Ω〉 .

(2.64)

This formula reduces the computation of the S -matrix to the computation of time-ordered
correlation functions of the full interacting theory.
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• In terms of the Fourier transformed quantities it reads as follows. First note that(
�y + m2

)
φ(y) =

∫
d4 p̃
(2π)4

(
−p̃2 + m2

)
e−ip̃·yφ̃( p̃). (2.65)

We can plug this into (2.64), perform the integrals
∫

d4yk ei(pk− p̃k)yk = (2π)4δ(4)(pk − p̃k) (and

similarly for xl, where we define accordingly
(
�y + m2

)
φ(x) =

∫ d4q̃
(2π)4

(
−q̃2 + m2

)
eiq̃·xφ̃(q̃))

and arrive at

〈p1, ...pn| S |q1, ..., qr〉
∣∣∣
connected =

(
iZ−1/2

)n+r
n∏

k=1

(
−p2

k + m2
) r∏

l=1

(
−q2

l + m2
)

× 〈Ω|T φ̃(p1)...φ̃(pn)φ̃(q1)...φ̃(qr) |Ω〉 .

(2.66)

Note that the p1, . . . , pn and q1, . . . qr which appear on both sides of this equation are on-shell
since these correspond to the physical 4-momenta of the out- and incoming 1-particles states.
Therefore p2

k −m2 = 0 = q2
l −m2. In order for 〈p1, ...pn| S |q1, ..., qr〉

∣∣∣
connected to be non-zero,

the correlation function appearing on the right must therefore have a suitable pole structure such
as to cancel precisely the kinematic factors

∏n
k=1

(
−p2

k + m2
)∏r

l=1

(
−q2

l + m2
)
.

In fact, as will be confirmed by explicit computation, 〈Ω|T φ̃(p1)...φ̃(pn)φ̃(q1)...φ̃(qr) |Ω〉 will
in general be a sum of terms with different poles in the momenta. Only the term with the
pole structure given precisely by

∏n
k=1

1
p2

k−m2

∏n
l=1

1
q2

l −m2 contributes to the connected S-matrix

element 〈p1, ...pn| S |q1, ..., qr〉
∣∣∣
connected. The terms with fewer poles will contribute at best to

disconnected scattering processes. On the other hand, since the S -matrix, being a QM prob-
ability amplitude, is non-singular, the correlation functions cannot have more poles than what
is cancelled by the kinematic factors on the right, and this prediction of the LSZ-formula will
indeed be confirmed in explicit computations.

Thus
n∏

k=1

∫
d4yk eipk ·yk

r∏
l=1

∫
d4xl e−iql·xl 〈Ω|T

∏
k

φ(yk)
∏

l

φ(xl) |Ω〉

=

 n∏
k=1

i
√

Z
p2

k −m2


 r∏

l=1

i
√

Z
q2

l −m2

 〈p1, ...pn| S |q1, ..., qr〉

∣∣∣∣∣
connected

.

(2.67)

We have arrived at a very precise prescription to compute the connected piece of the S-matrix element

〈p1, ...pn| S |q1, ..., qr〉

∣∣∣∣∣
connected

:

• Compute the Fourier transformation of the corresponding time-ordered (n + r)-correlation

function and take all momenta pk and ql on-shell, i.e. p0
k =

√
~p2

k + m2 and q0
l =

√
~p2

l + m2.

• The result will be a sum of terms each a function of the momenta, which are distinguished by
the structure of their poles.

• The connected S -matrix element (times (i
√

Z)n+r)) is the residue with respect to∏n
k=1

1
p2

k−m2

∏r
l=1

1
q2

l −m2 .
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2.5 Correlators in the interaction picture

To further evaluate the LSZ formula we need to compute the (n+r)-correlation function

〈Ω|Tφ(y1)...φ(yn)φ(x1)...φ(xr) |Ω〉 (2.68)

of the full interacting theory with Hamiltonian

H = H0 + Hint. (2.69)

There are two ways how to do this, either by performing a path-integral computation, or by computing
in the Interaction Picture. The path-integral formalism is reserved for the course QFT II. In the sequel
we consider the latter approach. Our strategy is to reduce the computation of the full correlator to a
calculation in terms of

• free-field creation/annihilation operators and

• the free-field vacuum |0〉.

This is achieved in the Interaction Picture (≡ Dirac picture). Let φ(t, ~x) denote the Heisenberg Picture
field of the full interacting theory and fix some reference time t0. Then we define the Interaction
Picture operators

ΦI(t, ~x) =eiH0(t−t0)φ(t0, ~x)e−iH0(t−t0)

ΠI(t, ~x) =eiH0(t−t0)Π(t0, ~x)e−iH0(t−t0).
(2.70)

The motivation behind this definition is that ΦI(t, ~x) satisfies the free Klein-Gordon-equation

(∂2 + m2
0)ΦI(t, ~x) = 0 (2.71)

with mass m0 as in H0. One can see this as follows: The defintion (2.70) implies that

∂tΦI(t, ~x) = i[H0, ΦI(t, ~x)]

= eiH0(t−t0) i[H0, φ(t0, ~x)]︸           ︷︷           ︸
Π(t0,~x)

e−iH0(t−t0). (2.72)

Here we are using that Π(t0, ~x) = i[H, φ(t0, ~x)] = i[H0, φ(t0, ~x)] because H and H0 differ only by
powers in φ(t, ~x).4

Therefore
∂tΦI(t, ~x) = ΠI(t, ~x) (2.73)

and likewise

∂2
t ΦI(t, ~x) = eiH0(t−t0) i[H0, Π(t0, ~x)]︸            ︷︷            ︸

(∇2−m2
0)φ(t0,~x)

e−iH0(t−t0) (2.74)

= (∇2 −m2
0)ΦI(t, ~x). (2.75)

4If we allow also for time derivative terms in the interactions, we should be writing here and in the sequel
i[H0, φ(t0, ~x)] = Π0(t0, ~x) with Π0(t0, ~x) , Π(t, ~x). It can be checked that this does not alter the conclusions.
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Here it is crucial to appreciate that m0 appears because the commutator involves only H0 and the
computation of i[H0, Π(t0, ~x)] proceeds as in the free theory.

Equ. (2.71) implies that ΦI(t, ~x) enjoys a free mode expansion of the form

ΦI(x) =
∫

d3 p
(2π)3

1√
2Ep

(
aI(~p)e−ip·x + a†I (~p)e

ip·x
)

, p0 = E~p = ~p2 + m2
0. (2.76)

Furthermore it is easy to see that the interaction picture fields and, as a result of (2.73), also the modes
satisfy the free-field commutation relations

[ΦI(t, ~x), ΠI(t,~y)] = iδ(3)(~x −~y), [aI(~p), a†I (~q)] = (2π)3δ(3)(~p − ~q). (2.77)

One then verifies that

[H0, aI(~p)] = −EpaI(~p), [H0, a†I (~p)] = +Epa†I (~p) (2.78)

as in the free theory. This can be seen e.g. by noting that H0 = eiH0(t−t0)H0e−iH0(t−t0) ≡ (H0)I

and therefore we can replace in H0 all fields φ(x) by φI(x) so that all free field results carry over.
Consequently by the same arguments as in the free theory there must exist a vacuum state annihilated
by all aI(~p) and by H0. This identifies this state as the unique vacuum of the free theory, H0 |0〉 = 0,
and therefore

aI(~p) |0〉 = 0. (2.79)

At t , t0, the Heisenberg Picture φ(t, ~x) and the Interaction Picture ΦI(t, ~x) relate as

φ(t, ~x) = eiH(t−t0)φ(t0, ~x)e−iH(t−t0)

= eiH(t−t0)e−iH0(t−t0)ΦI(t, ~x)eiH0(t−t0)e−iH(t−t0),
(2.80)

which yields

φ(t, ~x) = U†(t, t0)ΦI(t, ~x)U(t, t0), (2.81)

where

U(t, t0) = eiH0(t−t0)e−iH(t−t0) (2.82)

is the time-evolution operator. Note that, since H and H0 do not commute, this is not just e−iHint(t−t0).

The logic is now to replace the Heisenberg Picture operators φ(x) in the correlator (2.68) by the
Interaction Picture operators ΦI(x) because these obey a free-mode expansion. To further evaluate
the resulting expression, we first derive a useful expression for U(t, t0) and second establish a relation
between the vacuum |Ω〉 of the interacting theory as appearing in (2.68) and the free vacuum |0〉 on
which the interaction picture modes act.
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2.5.1 Time evolution

To compute U(t, t0) we note that the time-evolution operator satisfies

i
∂

∂t
U(t, t0) = HI(t)U(t, t0) (2.83)

with HI(t) = eiH0(t−t0)Hinte−iH0(t−t0) because

i∂teiH0(t−t0)e−iH(t−t0) = i
[
iH0eiH0(t−t0)e−iH(t−t0) + eiH0(t−t0)(−iH)e−iH(t−t0)

]
= eiH0(t−t0)(H − H0)e−iH(t−t0)

= eiH0(t−t0)Hinte−iH0(t−t0)eiH0(t−t0)e−iH(t−t0)

= HI(t)U(t, t0).

(2.84)

As in Quantum Mechanics we solve the differential equation (2.83)by rewriting it as an integral equa-
tion,

U(t, t0) =
1
i

t∫
t0

HI(t′)U(t′, t0)dt′ + U(t0, t0). (2.85)

The latter can be solved iteratively with initial value U(0)(t, t0) = 1,

U(1)(t, t0) =1 +
1
i

t∫
t0

dt1 HI(t1)U(0)(t1, t0)︸       ︷︷       ︸
=1

,

U(2)(t, t0) =1 +
1
i

t∫
t0

dt2 HI(t2)U(1)(t2, t0),

(2.86)

and so on at each iteration. The exact solution is given by the n-th iteration for n→ ∞,

lim
n→∞

U(n)(t, t0) ≡ U(t, t0). (2.87)

Indeed it is easy to check that this expression, which is just

U(t, t0) = 1 +
∞∑

n=1

(
1
i

)n t∫
t0

dt1

t1∫
t0

dt2...

tn−1∫
t0

dtnHI(t1)HI(t2)...HI(tn), (2.88)

solves equ. (2.83). Note that the HI(ti) under the integral are time-ordered.
The solution can be simplified further. Consider e.g. the second term and observe that it can be
rewritten as

t∫
t0

dt1

t1∫
t0

dt2HI(t1)HI(t2) =
1
2

t∫
t0

dt1

t∫
t0

dt2T (HI(t1)HI(t2)) . (2.89)
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Indeed the right-hand side is

1
2

t∫
t0

dt1

t1∫
t0

dt2HI(t1)HI(t2)

︸                              ︷︷                              ︸
a) t1>t2

+
1
2

t∫
t0

dt1

t∫
t1

dt2HI(t2)HI(t1)

︸                              ︷︷                              ︸
b) t2>t1

(2.90)

and intgral b) is in fact the same as integral a). To see this rotate the square in the t1 − t2 plane over
which we integrating by 90◦, which gives

b) =
1
2

t∫
t0

dt2

t2∫
t0

dt1HI(t2)HI(t1) ≡ a) . (2.91)

With this reasoning the time-evolution operator is

U(t, t0) =
∞∑

n=0

(−i)n

n!

t∫
t0

dt1

t∫
t0

dt2...

t∫
t0

dtn T HI(t1)HI(tn). (2.92)

For the latter infinite series one introduces the notation

U(t, t0) = Te
−i

t∫
t0

dt′HI(t′)
. (2.93)

From the series expression one can verify that the time-evolution operator has the following properties:

• U†(t1, t2) = U−1(t1, t2) = U(t2, t1),

• U(t1, t2)U(t2, t3) = U(t1, t3) for t1 ≥ t2 ≥ t3.

2.5.2 From the interacting to the free vacuum

Having understood how to relate the full Heisenberg fields to the free interaction picture fields, we
now try to set up a relation between the free vacuum |0〉 and the interacting vacuum |Ω〉. Let |n〉 be an
eigenstate of the full Hamiltonian, i.e.

H |n〉 = En |n〉 with H = H0 + Hint. (2.94)

Then the time-evolution of the free vacuum |0〉 is5

e−iHT |0〉 = e−iHT
∑

n

|n〉 〈n| 0〉

=
∑

n

e−iEnT |n〉 〈n| 0〉

= e−iEΩT |Ω〉 〈Ω| 0〉+
∑
|n〉,|Ω〉

e−iEnT |n〉 〈n| 0〉.

(2.95)

5You must not confuse time ordering T and time T over the next pages.
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If H0 |0〉 = 0, then H |Ω〉 = EΩ |Ω〉 with EΩ , 0, because we now compare the vacuum energy of 2
theories or, put differently, the counter-term V0 in the Lagrangian has already been used to set E0 = 0
so that we are stuck with EΩ, whatever it is. Be that as it may, we have En > EΩ ∀ |n〉 , |Ω〉. So
if we formally take the limit T → ∞(1 − iε), then e−iEnT is stronger suppressed and only the vacuum
|Ω〉 survives in6

lim
T→∞(1−iε)

e−iHT |0〉 = lim
T→∞(1−iε)

e−iEΩT 〈Ω| 0〉 |Ω〉 . (2.96)

Solving this for |Ω〉 yields

|Ω〉 = lim
T→∞(1−iε)

e−iHT |0〉
e−iEΩT 〈Ω| 0〉

. (2.97)

Note that we are assuming here that 〈Ω| |0〉 , 0, which is guaranteed at least for small perturbations
Hint in H.
To bring this to a form involving the time-evolution operator we shift T → T + t0 = t0 − (−T )) and
write for e−iH(T+t0) |0〉

e−iH(t0−(−T )) e−iH0(−T−t0) |0〉︸            ︷︷            ︸
=|0〉 since H0 |0〉= 0

= U(t0,−T ) |0〉 , (2.98)

because

U(t0,−T ) = U(−T , t0)−1 =
[
eiH0(−T−t0)e−iH(−T−t0)

]−1

= e−iH(T+t0)e−iH0(−T−t0).
(2.99)

So the vacuum is

|Ω〉 = lim
T→∞(1−iε)

(
e−iEΩ(t0−(−T )) 〈Ω| 0〉

)−1
U(t0,−T ) |0〉 . (2.100)

Likewise, starting from limT→∞(1−iε) 〈0| e−iHT one gets

〈Ω| = lim
T→∞(1−iε)

〈0|U(T , t0)
(
e−iEΩ(T−t0) 〈0|Ω〉

)−1
. (2.101)

Finally we can compute 〈Ω|Tφ(x)φ(y) |Ω〉. Suppose first that x0 ≥ y0 ≥ t0: Then 〈Ω|Tφ(x)φ(y) |Ω〉
becomes

〈Ω| φ(x)φ(y) |Ω〉 = lim
T→∞(1−iε)

(e−iEΩ(T−t0) 〈0|Ω〉)−1

× 〈0|U(T , t0)U(x0, t0)†ΦI(x)U(x0, t0)︸                           ︷︷                           ︸
φ(x)

×U(y0, t0)†ΦI(x)U(y0, t0)︸                           ︷︷                           ︸
φ(y)

U(t0,−T ) |0〉
(
e−iEΩ(t0−(−T )) 〈Ω| 0〉

)−1

= lim
T→∞(1−iε)

(
| 〈0|Ω〉|2e−iEΩ2T

)−1

× 〈0|U(T , x0)ΦI(x)U(x0, y0)ΦI(y)U(y0,−T ) |0〉 .

(2.102)

6Alternatively, the argument can be phrased as follows: Renormalise your theory such that EΩ = 0, but E0 , 0. Then it
is clear that only the term involving |Ω〉 survives unsupressed. The following equations must then be adjusted, but the final
result is the same.
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Note that the contraction U(x0, t0)U(t0, y0) = U(x0, y0) only works because of time-ordering. We
can eliminate the constant prefactor by noting that

1 = 〈Ω|Ω〉 = lim
T→∞(1−iε)

(
| 〈0|Ω〉|2e−iEΩ(2T )

)−1
〈0|U(T , t0)U(t0,−T ) |0〉 . (2.103)

For x0 ≥ y0 ≥ t0 we arrive at

〈Ω| φ(x)φ(y) |Ω〉 = lim
T→∞(1−iε)

〈0|U(T , x0)ΦI(x)U(x0, y0)ΦI(y)U(y0,−T ) |0〉
〈0|U(T ,−T ) |0〉

. (2.104)

The nominator is
〈0|T ΦI(x)ΦI(y)U(T , x0)U(x0, y0)U(y0,−T )︸                                ︷︷                                ︸

U(T ,−T )

|0〉 , (2.105)

where the time-ordering symbol takes care of order. Similar conclusions are obtained for x0 ≤ y0.
Therefore altogether

〈Ω|Tφ(x)φ(y) |Ω〉 = lim
T→∞(1−iε)

〈0|T
(
ΦI(x)ΦI(y)e−i

∫ T
−T dtHI(t)

)
|0〉

〈0|Te−i
∫ T
−T dtHI(t) |0〉

. (2.106)

This same reasoning goes through for higher n-point correlators. Our master formula for computing
correlation function becomes

〈Ω|T
∏

i

φ(xi) |Ω〉 = lim
T→∞(1−iε)

〈0|T
∏

i ΦI(xi)e−i
∫ T
−T dtHI(t) |0〉

〈0|Te−i
∫ T
−T dtHI(t) |0〉

. (2.107)

This formula can be applied to concrete interactions, i.e.

L = L0 +Lint, e.g. Lint = −
λ

4!
φ4(x), (2.108)

where λ has mass-dimension 0. The interaction picture Hamiltonian is then

HI =

∫
d3x

λ

4!
ΦI(t, ~x)4 (2.109)

and we can expand the time-evolution perturbatively order by order in λ if λ � 1 by expanding the
exponential

lim
T→∞(1−iε)

e−i
∫ T
−T dtHI(t) = lim

T→∞(1−iε)
e−i

∫
d4 x λ

4! Φ4
I (x). (2.110)

As we will see the (1 − iε) prescription for the boundaries of the integral will pose no problems (cf.
discussion after (2.133)).
There are basically two remaining problems:

• Perform a systematic evaluation of 〈0|T
∏

i ΦI(xi) |0〉 and

• deal with the denominator.

We will solve these problems by exploiting the action of the creation and annihilation operators on
the vacuum.
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2.6 Wick’s theorem

To compute an expression of the form 〈0|T
∏

i ΦI(xi) |0〉 we decompose ΦI into free modes,

ΦI =

∫
d3 p
(2π)3

1√
2Ep

aI(~p)e−ip·x

︸                             ︷︷                             ︸
=: Φ+

I (x)

+

∫
d3 p
(2π)3

1√
2Ep

a†I (~p)e
ip·x

︸                            ︷︷                            ︸
=: Φ−I (x)

. (2.111)

Now we want to commute all Φ−I (x) to the left of all Φ+
I (x) to use

Φ+
I (x) |0〉 = 0 = 〈0|Φ−I (x). (2.112)

To do so we definie normal-ordering:

An operator O is normal-ordered if all creation/annihilation operators appear on the
left/right. For such O we write : O :

Consider for example the operator:

: a†(~p1)a(~p2)a†(~p3) : = a†(~p1)a†(~p3)a(~p2) = a†(~p3)a†(~p1)a(~p2). (2.113)

It is obvious that
〈0| : O : |0〉 = 0 (2.114)

for every non-trivial operator O , c1 for c ∈ C. We begin with 〈0|T ΦI(x)ΦI(y) |0〉 and drop the
subscript "I" from now on. There are two cases to consider, either x0 ≥ y0 or y0 ≥ x0. If x0 ≥ y0, then
T Φ(x)Φ(y) = Φ(x)Φ(y) and

Φ(x)Φ(y) = Φ−(x)Φ−(y) + Φ−(x)Φ+(y) + Φ+(x)Φ+(y) + Φ+(x)Φ−(y) (2.115)

The first three terms are already normal-ordered and the last term can be put in normal-ordered form
by commuting the fields through each other,

Φ(x)Φ(y) = : Φ(x)Φ(y) : + [Φ+(x), Φ−(y)]. (2.116)

Similar expressions follow for x0 ≤ y0, so altogether

T (Φ(x)Φ(y)) = : Φ(x)Φ(y) : + Θ(x0 − y0)[Φ+(x), Φ−(y)]

+ Θ(y0 − x0)[Φ+(y), Φ−(x)].
(2.117)

We notice that the last two terms are a C-number c and with

〈0|T Φ(x)Φ(y) |0〉 = 〈0| : Φ(x)Φ(y) : |0〉︸                    ︷︷                    ︸
≡0

+ 〈0| c |0〉 = c ≡ D(0)
F (x − y) (2.118)
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we find that

T (Φ(x)Φ(y)) = : Φ(x)Φ(y) : +D(0)
F (x − y). (2.119)

We use the notation D(0)
F (x − y) for the free Feynman propagator in the sequel to emphasize that this

object is defined in terms of the free mass parameter m0 appearing in the Lagrangian. If we define the
contraction

Φ(x)Φ(y) = D(0)
F (x − y) = D(0)

F (y − x), (2.120)

we can write this as

T (Φ(x)Φ(y)) = : Φ(x)Φ(y) + Φ(x)Φ(y) : . (2.121)

Note that by definition : c := c for a C-number, which explains the notation : Φ(x)Φ(y) :.7 This
generalises to higher products. E.g. one can show by direct computation that

T (Φ(x1)Φ(x2)Φ(x3)) ≡ T (Φ1Φ2Φ3)

= : Φ1Φ2Φ3 : + : Φ1 Φ2Φ3 : + : Φ1Φ2 Φ3 : + : Φ1Φ2Φ3 :

= : Φ1 : D(0)
F (x2 − x3)+ : Φ3 : D(0)

F (x1 − x2)+ : Φ2 : D(0)
F (x1 − x3).

(2.122)

Wick’s theorem generalises this for N fields,

T (Φ1...ΦN) = : Φ1...ΦN :

+
∑

1≤i< j≤N

: Φ1... Φi...Φ j ...ΦN :

+
∑

1≤i<k< j<l≤N

(
: Φ1... Φi...Φk ... Φ j...Φl ...ΦN :

+ 2 more contractions
)

+ ...

(2.123)

Indeed one can prove this by induction and summarize Wick’s theorem as

T (Φ1...ΦN) = : Φ1...ΦN : + : all contractions of distinct pairs : . (2.124)

The proof is reserved to Examples Sheet 6.
Wick’s theorem together with (2.114) has two important consequences:

• 〈0|T Φ1...Φ2N+1 |0〉 = 0, because there is always an odd number of normal-ordered fields re-
maining and

• 〈0|T Φ1...Φ2N |0〉 = D(0)
F (x1− x2)D

(0)
F (x3− x4)...D

(0)
F (x2N−1− x2N)+

∑
(all other contractions).

7See also the remark right after equ. (2.114).



2.7. FEYNMAN DIAGRAMS 61

2.7 Feynman diagrams

There exists a practical graphical representation of the systematics of contractions in terms of Feyn-
man diagrams. Consider for instance

〈0|T (Φ1Φ2Φ3Φ4) |0〉 = D(0)
F (x1 − x2)D

(0)
F (x3 − x4)

+ D(0)
F (x1 − x3)D

(0)
F (x2 − x4) + D(0)

F (x1 − x4)D
(0)
F (x2 − x3).

(2.125)

The result can be translated into a Feynman diagram as follows:

• First, draw 1 point for all xi in Φ(xi) and connect these by lines in all possible ways. This gives,
in the present case, three distinct diagrams displayed in Figure 2.2. Note that these are distinct
because we distinguish between x1, x2, x3, x4.

Figure 2.2: Possible connections between all xi.

• Then, to each line between i and j we attach a factor of D(0)
F (xi − x j).

• We then multiply all D(0)
F (xi − x j) and sum over all distinct diagrams.

In interacting theories also contractions involving fields at the same spacetime point occur. For exam-
ple consider the propagator in Φ4-theory up to first order in λ:

〈0|T Φ(x)Φ(y)e−i λ4!

∫
d4zΦ4(z) |0〉 =

〈0|T Φ(x)Φ(y) |0〉+ 〈0|T Φ(x)Φ(x)
∫

d4z
(
−

iλ
4!

)
Φ4(z) |0〉+O(λ2).

(2.126)

The O(λ0)-term corresponds to a straight line between x and y, i.e. the propagation from x to y, which
is assigned a factor D(0)

F (x − y). The term to first order in λ is

−iλ
4!

 ∫ d4z φ(x)φ(y)Φ(z)Φ(z)Φ(z)Φ(z)
alalalaaaaaaaaaaaaaaaaaaaa

(2.127)

+

∫
d4z

alalalaaaaaaaaaaaaaaaaaaa

Φ(x)Φ(y)Φ(z)Φ(z)Φ(z)Φ(z)

. (2.128)



62 CHAPTER 2. INTERACTING SCALAR THEORY

This can be written as ∫
d4zD(0)

F (x − y)
(
4
2

)
1
2

D(0)
F (z − z)D(0)

F (z − z)

+

∫
d4z D(0)

F (x − z)D(0)
F (y − z)D(0)

F (z − z) · 4 · 3.
(2.129)

The graphical representation of these two different contributions is given in Figure 2.3. Note the
appearance of the point z, which is integrated over. The first term is proportional −iλ1

8 , while the
second term has a factor of −iλ1

2 .

Figure 2.3: First and second term of O(λ1).

To give an interpretation of these combinatorial factors of 1/8 and 1/2, we observe that they coincide
with 1 over the order (≡ number of elements) of the symmetry group of the diagrams. These are called
the symmetry factors. The symmetry factors are given by the number of ways one can exchange
components of the diagram without changing the diagram, where by components we mean either the
two ends of a line starting and ending on the same point, entire lines between points or internal points
(vertices - see below).
For the two diagrams these are in turn:

• The single loop at z is symmetric under the exchange of the out- and in-going end of the loop, but
the direction must be consistent (i.e. one out- and one ingoing arrow). Therefore the symmetry
group is G = Z2 and its order is |G| = 2.

• The double loop is separately symmetric under exchange of the out- and in-going end of both
loops, which gives a Z2 ×Z2 as well as under exchange of the two loops as a whole. Therefore
the symmetry group is G = Z2 ×Z2 ×Z2 and its order is |G| = 8.

One can show in general that if a Feynman diagram with symmetry group G always carries a combi-
natorial factor 1

|G| . This is because if some symmetry remains the factor of 1
n! in the interaction term

− λ
n!φ

n is only partially cancelled by counting the various contractions that yield the same diagram. In
the above examples the symmetry group was due to the ambiguity in assigning arrows to the lines at a
vertex. In addition, if k vertices are identical, the symmetry group includes the group of permutations
of these k vertices of order |S k| = k!.

Let us introduce some jargon:

• The points x, y associated to Φ(x)Φ(y) in the correlator, which are not integrated over, are
called external points.
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• All other points - here z - over which is integrated over are internal points.

• For a Φn interaction, at an internal point n lines meet. Such points are called vertices.

2.7.1 Position space Feynman-rules

The translation of Wick’s theorem into Feynman-graphs as exemplified above can be proven to hold
generally (the only non-trivial aspect being the symmetry factors). We summarize this in terms of the
position space Feynman-rules for the computation of

〈0|T
m∏

i=1

Φ(xi)e−i λn!

∫
d4z φn(z) |0〉 (2.130)

at order λk, where we are assuming that all xi are distinct:

• Draw one external point for all xi and k internal points z j.

• Connect the points by lines such that

– to each external point xi 1 line is attached,

– to each internal point z j n lines are attached.

• To each line between points yi and y j (both external and internal) we associate a free propagator

D(0)
F (yi − y j) = D(0)

F (y j − yi), (2.131)

where we stress again that the superscript reminds us to take the Feynman propagator of the
free theory.

• To each vertex associate a factor −iλ
∫

d4 z j.

• To each external point associate a 1.

• Multiply all factors, Feynman propagators etc. and divide by the symmetry factor of the dia-
gram.

• Then sum up all distinct such Feynman diagrams.

2.7.2 Momentum space Feynman-rules

More practical are the momentum space Feynman-rules: To each free propagator

D(0)
F (x − y) =

∫
d4 p
(2π)4

i
p2 −m2

0 + iε
e−ip·(x−y) (2.132)

associate an arrow and momentum p in that direction. This means an arrow from x to y corresponds
to the propagator D(0)

F (x− y). Obviously the direction is arbitrary because D(0)
F (x− y) = D(0)

F (y− x),
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but let us make one such choice for each line. We can then perform the integral
∫

d4z at each vertex
explicitly. E.g. for the Φ4-theory 4 lines meet at a vertex, and if, say, the momenta p1 and p2 point
into that vertex and p3, p4 point out of it, this integral yields∫

d4z eip1·zeip2·ze−ip3·ze−ip4·z = (2π)4δ(4)(p1 + p2 − p3 − p4). (2.133)

This implements momentum conservation at each vertex. The delta-function will effectively eliminate
one integral

∫
d4 pi per vertex.8

Note at this point that the formal prescription that we integrate limT→∞(1−iε)

∫ T
−T in (2.107) translates

into a corresponding prescription for
∫

d4z. We should therefore view this integral as a complex
contour integral. From the fact that such integrals can be deformed in the complex plane as long as no
poles are hit it follows that the (1 − iε) prescription does not affect the result.
The momentum-space Feynman rules9 for the computation of the n-point function

〈0|T
m∏

i=1

Φ(xi)e−i λn!

∫
d4z φn(z) |0〉 (2.134)

at order λk are:

• Draw one external point for all xi and k internal points z j.

• Connect the points by lines such that

– to each external point xi 1 line is attached,

– to each internal point z j n lines are attached.

• To each line between points yi and y j (both external and internal) we associate a free propagator

D(0)
F (yi − y j) (2.135)

with one choice of direction and to each such D(0)
F (yi − y j) we associate directed momentum p

from yi to y j and a factor
i

p2 −m2
0 + iε

. (2.136)

• For each vertex we multiply a factor of (2π)4δ(4)(
∑

ingoing pi −
∑

outgoing pk) × (−iλ).

• For each external point we multiply a factor of e−ip·x for momentum pointing out of the external
point, or eip·x for momentum pointing into the point.

8The elimination of the zi-integration works this way only if the vertex is connected to at least one other point, either
internal or external. This is, for example, not the case for the second diagram in Fig. 2.3. More generally, one overall factor
of

∫
d4zi = VolR1,3 = (2π)4δ(4)(0) remains for diagrams not connected to any of the external points. We will see in the

next subsection how to deal with such ’disconnected diagrams’.
9Careful: By momentum space Feynman rules we do not mean that we compute the Fourier transform of the correlator,

but rather that we give an equivalent set of rules for the computation of the correlator where the integral over the vertex
positions has been performed explicitly.
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• Integrate over each momentum
∫ d4 p

(2π)4 and divide by the symmetry factor.

• Then sum up all distinct such Feynman diagrams.

For example, consider again the Φ4 theory to order λ, i.e.

〈0|T
4∏

k=1

Φke−i λ4!

∫
d4 xΦ4

|0〉 . (2.137)

λ0 corresponds to the diagrams in Figure 2.2. For λ1 we can have

Figure 2.4: Diagrams for λ1.

Consider the first diagram at order λ, make a consistent choice of momenta and assign eik·x for in-going
arrows at external points, e−ik·x for out-going arrows and −iλδ(4)(k1 + k2 − k3 − k4) at the vertex due
to momentum consvervation. We end up with

〈0|T
4∏

k=1

Φ(xk)

(
−

iλ
4!

∫
d4z Φ4(z)

)
|0〉

∣∣∣∣∣
Diagram ×

=
4∏

j=1

∫
d4k j

(2π)4 e−ik1·x1e−ik2·x2eik3·x3eik4·x4

× (−iλ)(2π)4δ(4)(k1 + k2 − k3 − k4)
4∏

j=1

i
k2

j −m2
0 + iε

.

(2.138)

As we will see soon, in the context of the LSZ formalism we actually need not the correlation function,
but rather its Fourier transform. E.g. we will need expressions of the form∫

d4x1 eip1·x1

∫
d4x2 eip2·x2

∫
d4x3 e−ip3·x3

∫
d4x4 e−ip4·x4 〈0| ... |0〉

∣∣∣∣∣
Diagram ×

= (2π)4δ(4)(p1 + p2 − q3 − q4)(−iλ) × (2.139)
i

p2
1 −m2

0 + iε
i

p2
2 −m2

0 + iε
i

p2
3 −m0 + iε

i
p2

4 −m0 + iε
.

2.8 Disconnected diagrams

A typical diagram contains disconnected pieces, i.e. subdiagrams which are not connected to any of
the external points. For example consider the second diagram in Figure 2.4: The double loop in this
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case is not connected to any external point and therefore called ’disconnected piece’ (or disconnected
diagram). A disconnected piece contains only internal points. By contrast, the part of the diagram
which is connected to at least one external point is called ’partially connected diagram’.
According to the Feynman rules disconnected pieces appear as overall factors of the Feynman dia-
gram. If we sum up all Feynman diagrams that contribute to

〈0|T Φ(x1)...Φ(xk)e−i λN!

∫
ΦNd4 x |0〉 (2.140)

the result factorises into the sum of all ’partially connected diagrams’ in the above sense multiplied
by the sum of all disconnected diagrams. If you don’t believe this, just draw a few pages of Feynman
diagrams relevant for, say, the 4-point function in φ4-theory and convince yourself that the infinite
sum over all relevant diagrams can be organized this way.
Let {V j} denote the set of all individual disconnected pieces (i.e. Vi is a Feynman diagram containing
only internal points which itself is connected as a diagram). Then the sum over all diagrams not
connected to any of the external points can be organized as a sum over all Vi, where each Vi appears
ni-times with ni = 0, 1, ...,∞. If some Vi appears ni-times we must divide its contribution by ni!
to account for the symmetry factor from interchanging identical Vi. For instance, the sum over all
disconnected diagrams contains

1 + 8+ 1
2!88 + 1

3! 888 + ... + arbitrary products and number of loops.

Denoting by Vi also the value of the corresponding diagram, we have that the sum over all discon-
nected diagrams is ∏

i

∞∑
ni=0

(Vi)
ni

1
ni!

=
∏

i

eVi = e
∑

i Vi . (2.141)

This is called exponentiation of disconnected pieces. The final result for (2.140) is therefore of the
form ∑

( at least partially connected pieces) × e
∑

i Vi . (2.142)

Now consider the full correlator

〈Ω|T
∏

i

φi |Ω〉 =
〈0|T

∏
i φie−i

∫
HIdt |0〉

〈0|Te−i
∫

HIdt |0〉
. (2.143)

The denominator contains no external points and thus yields precisely

〈0|Te−i
∫

HIdt |0〉 = e
∑

i Vi ≡ the partition function. (2.144)

This cancels the factor from the nominator and thus

〈Ω|T
n∏
i

φi |Ω〉 =
∑

(all partially connected diagrams with n external points). (2.145)

Note that the partition function plays an important role also in Statistical Mechanics. In computing
the partition function in that context you will encounter many times the same reasoning that organizes
the sum over all its contributions in a form similar to the one above. In fact, when discussing the path
integral approach to Quantum Field Theory in QFT II we will see that this is no coincidence.
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2.8.1 Vacuum bubbles

The disconnected diagrams contributing to the partition function are called vacuum bubbles and they
have a remarkable physical interpretation: From eq. (2.103) we recall that

e
∑

i Vi = 〈0|Te−i
∫

dtHI |0〉 = lim
T→∞(1−iε)

∣∣∣ 〈Ω| 0〉∣∣∣2e−iEΩ2T (2.146)

so
− iEΩ2T

∣∣∣
T→∞(1−iε) =

∑
Vi − log

(
| 〈Ω| 0〉|2

)︸           ︷︷           ︸
finite number

(2.147)

and therefore
EΩ = lim

T→∞(1−iε)

i
∑

Vi

2T
(2.148)

because the finite term plays no role in the limit we are taking. EΩ is the vacuum energy of the
interacting theory in the scheme where E0 - the vacuum energy of the free theory - has been set to
0 by renormalisation of the original Lagrangian after adding a term − E0

Vol
R3

to L. In terms of the
corresponding energy density this means

EΩ

VolR3
= lim

T→∞(1−iε)

i
∑

j V j

2TVolR3
= i

∑
j V j

(2π)4δ(4)(0)
. (2.149)

Note that the factor of (2π)4δ(4)(0) in the denominator cancels a corresponding factor appearing in
the computation of each of the Vi from an uncancelled overall

∫
d4z - see footnote 8. This factor

represents the familiar IR divergence of the vacuum energy from integration over spacetime. As
we will see later when actually computing loops of this type, EΩ

Vol
R3

is also UV divergent because

of divergent momentum integration for the vacuum loops. This is no surprise as already E0
Vol

R3
was

divergent. We organise these divergences order by order in perturbation theory and can renormalise
them away by counter-terms, i.e. by adding to the classical Lagrangian terms of form10

L → L− λ1V(1)
0 − λ2V(2)

0 − ..., (2.150)

just like we did for E0 (i.e. at order λ0) in the free theory.

2.9 1-particle-irreducible diagrams

As a first application of our formula for the computation of n-point functions in an interacting theory
we consider perturbative corrections to the propagator in Φ4-theory,

DF(x − y) = 〈Ω|T Φ(x)Φ(y) |Ω〉 =
∑

i

O(λi). (2.151)

Some of the first few Feynman diagrams are shown in Figure 2.5.

10In fact, due to renormalisation of the other operators order by order in λ this is a bit of an oversimplification, but we
will come to this in more detail later in the course.
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Figure 2.5: Perturbative corrections.

To organise the sum over Feynman diagrams it is useful to define the concept of 1− particle-irreducible
(1PI) Feynman diagrams. These are diagrams out of which one cannot produce 2 separate non-trivial
diagrams (diagrams containing more than just one line) by cutting a single line. E.g. in Figure 2.5
only the 4th diagram is not 1PI (one can cut it in 2 by cutting the line between the two loops). It is
standard to introduce the notation

���
1PI =

∑
(all non-trivial 1PI diagrams), (2.152)

where it is understood that we do not attach external points to both ends (i.e. no factors e−ip·x or
i/(p2 −m2

0 + iε) from the left or right of ���
1PI.

We now define −iM2(p2) to be the value of ���
1PI, where p2 denotes the in- and outgoing momentum.

Clearly computing −iM2(p2) can be a hard task, and the result will be a complicated function of p2.
In particular this quantity may be divergent (again due to integration over internal momenta). We will
compute −iM2(p2) explicitly for an electron in Quantum Electrodynamics, in which case it is called
self-energy, later in the course and find ways to deal with its divergence systematically. Irrespective
of the outcome for −iM2(p2), the sum over all diagrams contributing to 〈Ω|T Φ(x)Φ(y) |Ω〉 can
be organised as a geometric series in 1 PI diagrams. Let us compute the Fourier transform DF(p2)

defined such that

DF(x − y) =
∫

d4 p
(2π)4 e−ip(x−y)DF(p2). (2.153)

DF(p2) can be expanded as

DF(p2) =ff
i

p2−m2
0+iε

+f
i

p2−m2
0+iε

���
1PI f

i
p2−m2

0+iε

+f���
1PIf���

1PIf+ ... (2.154)

The fact that we are not drawing points at the two ends of diagrams symbolizes that we are omitting
the factors of eipx or e−ipy as these are, by definition, not part of DF(p2). The Fourier transformed
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propagator is then

DF(p2) =
i

p2 −m2
0 + iε

+
i

p2 −m2
0 + iε

(
−iM2(p2)

) i
p2 −m2

0 + iε
+ ...

=
i

p2 −m2
0 + iε

1 +
M2(p2)

p2 −m2
0 + iε︸          ︷︷          ︸
≡q

+

 M2(p2)

p2 −m2
0 + iε

2

+ ...


=

i
p2 −m2

0 + iε
1

1 − M2(p2)

p2−m2
0+iε

.

(2.155)

Here we assumed that q < 1 so that the geometric series
∑∞

n=0 qn converges to 1
1−q . Once again, we

will deal with the explicit form of −iM2(p2) later in QED and justify this assumption. This procedure
is called Dyson resummation and yields the resummed propagator

DF(p2) =
i

p2 − (m2
0 + M2(p2)) + iε

≡fpf (2.156)

Now, −iM2(p2) is a complicated function of p2 that we compute order by order in λ. We can then
extract the first analytic pole in DF(p2) and call it m2. Then

DF(p2) =
i Z

p2 −m2 + iε
+ terms regular at m2 (2.157)

for some Z. I.e. Z is by definition the residue (in the above sense) of DF(p2) at its first analytical pole
m2. This way we can compute

• m2 - the physical 1-particle-mass ≡ pole mass,

• Z - the wavefunction renormalisation,

perturbatively to given order in λ. This is a beautiful result because we can now understand quantita-
tively why the mass of the 1-particle momentum eigenstates in an interacting theory differs from m0:
The reason are the self-interactions of the field, which are resummed as above to shift the pole of the
full propagator from m0 to m. In particular this picture justifies our assertion made in the context of
asymptotic in- and out-states that the asymptotic states behave as free particles, but with fully ’renor-
malised mass’ m , m0: By sending the particles infinitely far apart from each other we effectively
’switch off’ the interactions between the different particles, but we cannot switch off the interactions
of the asymptotic particles with themselves (or rather of the field with itself). These are precisely the
1PI contributions to DF(p2) and thus the in-and out-states do have the fully resummed mass m2 , m2

0.
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2.10 Scattering amplitudes

Recall the LSZ-reduction formula for r in- and n out-states

n∏
k=1

∫
d4yk eipk ·yk

r∏
l=1

∫
d4xl e−iql·xl 〈Ω|T Φ(y1)...Φ(x1)... |Ω〉

=
∏

k

i Z1/2

p2
k −m2 + iε

∏
l

i Z1/2

q2
l −m2 + iε

〈p1...| S |q1...〉
∣∣∣
connected,

(2.158)

where all ql and pk are on-shell. Now, recall that 〈p1...| S |q1...〉
∣∣∣
connected itself cannot be proportional

to p2
k − m2 or q2

l − m2 because otherwise it is zero on-shell and thus no scattering occurs; likewise
〈p1...| S |q1...〉

∣∣∣
connected cannot contain any factors of (p2

k −m2)−1 or (q2
l −m2)−1 because then it would

be divergent on-shell, in contradiction with its definition as a quantum mechanical amplitude. As a
result only those Feynman diagrams are relevant with exactly (n + r) poles at m2 in the above sense.
It is not hard to see that these are precisely the ones that contribute to the fully connected correlation
function. A fully connected correlation function has the structure displayed in Figure 2.6.

Figure 2.6: Fully connected correlation function with r in and n out states.

Here xfpf denotes the fully resummed propagator from lines connected to external points.
The fully resummed propagator would appear if we computed to all orders in perturbation theory.
More realistically, to a given finite order in perturbation theory we should think of the propagator as
computed to suitable order.

The big blop in the middle denotes the amputated correlator. By amputated correlator we mean the
Feynman diagram after cutting off all external legs carrying xfpf or fpfx. Since
each external leg carries a factor of i Z

p2−m2+iε near m2 if p2 is on-shell, all (n + r) external legs yield
together yield the right singularity structure.
By contrast, partially connected diagrams such as the one in Figure 2.7 carry fewer factors of i

p2−m2+iε
and thus do not contribute to 〈p1...| S |q1...〉

∣∣∣
connected. Therefore the final result for the computation
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of scattering amplitudes is

〈p1, ..., pn| S |q1, ..., qr〉
∣∣∣
connected =

(√
Z
)n+r
× (2.159)(∏

k

∫
d4ykeipk ·yk

∏
l

∫
d4xle−iql·xl 〈Ω|T Φ(y1)...Φ(x1)... |Ω〉 |fully connected

)
|Amputated

Note that the wavefunction renormalisation factor Z itself is of the form 1 + O(λ) in perturbation
theory, so to leading order in the coupling constant λ the Z-factors play no role as only O(λ) diagrams
can be fully connected.

x1 xfpfx y1

x2 xfpfx y2

Figure 2.7: Partially connected diagramm, i.e. (n − 2) and (r − 2).

As an example we consider again the Φ4-theory to leading order. The only fully connected diagram
at O(λ) is the first diagram in Figure 2.4. We make a consistent choice of ingoing versus outgoing
momenta and recall the result

〈Ω|T Φ(x1)Φ(x2)Φ(y1)Φ(y2) |Ω〉
∣∣∣
×
=

=
4∏

j=1

∫
d4k j

(2π)4 e−ik1·x1e−ik2·x2eik3·y1eik4·y2

× (−iλ)(2π)4δ(4)(k1 + k2 − k3 − k4)
4∏

l=1

i
k2

l −m2
0 + iε

.

(2.160)

To compute 〈p1, p2| S |q1, q2〉 |connected we take first the Fourier transform as∫
d4x1e−iq1·x1

∫
d4x2e−iq2·x2

∫
d4y1eip1·y1

∫
d4y2eip2·y2

× 〈Ω|T Φ(x1)Φ(x2)Φ(y1)Φ(y2) |Ω〉
∣∣∣
×

= (−iλ)(2π)4δ(4)(q1 + q2 − p1 − p2)
2∏

j=1

i
q2

j −m2
0 + iε

i
p2

j −m2
0 + iε

(2.161)
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and then we amputate by discarding all propagators from external lines. The result is

〈p1, p2| S |q1, q2〉
∣∣∣
connected, O(λ) = (−iλ)(2π)4δ(4)(q1 + q2 − p1 − p2), (2.162)

where we have discarded the factor
√

Z4 because, as discussed, it does not contribute to the leading
order result.

2.10.1 Feynman-rules for the S -matrix

This procedure can be summarised in general in terms of the Feynman-rules for the computation of
〈p1, ..., pn| S |q1, ..., qr〉

∣∣∣
connected as follows:

• Draw the relevant fully connected Feynman diagrams with (n+ r) external points to given order
in λ.

• Assign ingoing momenta ql and outgoing momenta pk and label momenta of internal lines with
k j.

• Each vertex carries (−iλ)(2π)4δ(4) (
∑

ingoing momenta − outgoing momenta).

• Each internal line carries i
k2

j−m2
0+iε

.

• Integrate over all internal momenta
∏

j

∫ d4k j

(2π)4 and divide by the symmetry factor.

• Sum up all diagrams and multiply by
(√

Z
)n+r

to given order in λ.

Deeper interpretation of the Feynman rules

The connection between correlation functions and S -matrix elements gives Feynman diagrams an
intuitive physical meaning: In Figure 2.8 two particles come in and interact at Z1 to form two so-
called "virtual" particles, which in turn join again at Z2 and form two outgoing states. The obvious

Figure 2.8: Feynman graph with two virtual particles.

interpretation of the Feynman diagram elements is therefore:

• A linef corresponds to the worldline of a particle.
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•F e−ip·x is the wavefunction for a momentum-eigenstate.

• A vertexP Z is a localised interaction at a spacetime point Z.

• Summing up diagrams and integrating over
∫

d4z amounts to coherently summing up the QM
probability amplitudes for all possible processes - called "channels" - with the same macro-
scopic result. In particular, this will lead to QM interference between the different channels.

Intermediate particles, e.g. those running in the loop as k1 and k2 in Figure 2.8, are called virtual
because they are generally off-shell: This means that these particles do in general not satisfy the
relation k2

i −m2
0 = 0. E.g. for the loop-diagram above we integrate over all internal momenta (where

the delta-functions at the vertices implies that some of these integrals become trivial). In the present
diagram momentum conservation at the first vertex implies that

q1 + q2 = k1 + k2 ⇔ k2 = q1 + q2 − k1, (2.163)

where k1 is free and thus integrated over. For most values of k1 we have k2
1 − m2

0 , 0. We can
think of this as a quantum-mechanical violation of the energy-momentum relation because E2

j ,

~k j
2
+ m2

0 for virtual particles. In Quantum Mechanics this is allowed for sufficiently short times - in
fact this precisely what is meant by the energy-time uncertainty relation arising in quantum mechanical
perturbation theory. Note, however, that 4-momentum conservation is guaranteed at each vertex due
to the factors

(2π)4
(∑

ingoing momenta − outgoing momenta
)

. (2.164)

LSZ versus Interaction Picture Perturbation Theory

On assignment 7 will work out a detailed a comparison of the LSZ approach to scattering as com-
pleted in this chapter and a more naive approach based on quantum mechanical Interaction Picture
perturbation theory.

2.11 Cross-sections

S -matrix elements are in general of the form

〈 f | S |i〉 = δ f i︸︷︷︸
no scattering

+ i(2π)4δ(4)(p f − pi)︸                   ︷︷                   ︸
momentum conservation

· M f i︸︷︷︸
=:scattering amplitude

(2.165)

In particular, momentum conservation is a consequence of the insertion of delta-functions at each
vertex in the Feynman diagrams. The first summand δ f i accounts for the situation that the initial and
final states are identical, in which case no scattering occurs. In the sequel we will usually exclude this
possibility and focus on non-trivial scattering events.
The QM probability for scattering of a given initial state {|i〉} into a range of final states {| f 〉} is

P|i〉→{| f 〉} =
∑
| f 〉∈{| f 〉}

∣∣∣ 〈 f | S |i〉 ∣∣∣2. (2.166)
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Assume now that |i〉 < {| f 〉} (so that in particular the term δ f i is irrelevant), then

P|i〉→{| f 〉} =
∑
| f 〉∈{| f 〉}

[
(2π)4δ(4)(p f − pi)

]2︸                      ︷︷                      ︸
=(2π)4δ(4)(p f−pi) (2π)4 δ(4)(0)︸          ︷︷          ︸

=V
R1,3

∣∣∣M f i
∣∣∣2. (2.167)

We define the transition rate as the probability normalised per spacetime volume,

ω f i =
P|i〉→{| f 〉}

unit time × unit volume
(2.168)

and therefore

ω f i =
∑
| f 〉∈{| f 〉}

(2π)4δ(4)(p f − pi)
∣∣∣M f i

∣∣∣2. (2.169)

For scattering into N identical particles this is

ω f i =
1

N!

N∏
n=1

∫
d3kn

(2π)3

1
2En

(2π)4δ(4)
∑

i

pi −
∑

n

kn

 ∣∣∣M f i
∣∣∣2, (2.170)

where the symmetry factor 1
N! accounts for the indistinguishability of the N identical particles.

Now, a typical scattering experiment is of the form

Incoming beam of density ρB and length lB F Target A of density ρA and length lA ,

where ρA,B denote the respective number densities (i.e. number of particles per volume). The number
(#) of scattered particles is proportional11 to lA lB

∫
d2x ρa(x) ρB(x). The factor of proportionality has

dimension [Area] and is called cross-section σ,

# of events =: σ lA lB

∫
d2x ρA(x) ρB(x). (2.171)

If ρA and ρB are constant and both beams overlap over the areaA, then

σ =
# of scattered particles

lA lB ρA ρBA
. (2.172)

This suggests the following intuitively clear interpretation of the meaning of σ: The cross-section σ
is the effective area of the beam B that participates in the scattering.

Consider now a 2 → N scattering process such that all out-going states |k j〉 are momentum eigen-
states. The initial states are the momentum eigenstates |pA〉 and |pB〉. Let us go to the rest frame of

11Here we are assuming that all particles of the beam hitting the target get to interact with the target particles with equal
probability. For simplicity we are also assuming that the particle density varies only in the directions x1, x2 transverse to the
beam.
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the target A called lab frame. Suppose for simpilcity that the beam B hits the target A over its entire
areaA and that the densities of beam and target do not vary much. Then

# of events
Volume × Time

=
σρA ρB lA lBA

Volume × Time
= σρA ρB

∣∣∣~vL
B

∣∣∣, (2.173)

where the relevant interaction volume is is just Volume = A lA and the relevant interaction time is
what it takes for the beam to pass over a given slice in the target orthogonal to the beam direction, i.e.

lB
Time =

∣∣∣~v(L)B

∣∣∣. Sometimes it is also useful to think in terms of the beam flux F defined as

ρB
∣∣∣~vL

B

∣∣∣ =: F . (2.174)

Since E = γm and ~p = mγ~v we can use

∣∣∣~vL
B

∣∣∣ = ∣∣∣~pL
B

∣∣∣
EB

(2.175)

to obtain
# events

Volume × Time
= σρA ρB

∣∣∣~pL
B

∣∣∣
EB

= σρA F . (2.176)

What we actually compute in evaluating the S-matrix elements are not absolute numbers of events,
but rather QM probabilites. In order make the transition between both these concepts we replace the
particle number densities ρA and ρB by the quantum mechanical densities of the corresponding single
particles states, i.e. the probabilities of finding a particle A or B per given volume. If 〈pA|pA〉 = 1 this
probability would be 1/VR3 = 〈pA|pA〉/VR3 . With our normalisation of momentum states

〈pA|pA〉 = (2π)3 2EA δ
(3)(~pA − ~pA) = 2EAVR3 , (2.177)

we must replace

ρA →
〈pA|pA〉

VR3
= 2EA and ρb → 2EB. (2.178)

Since we are in the rest frame of A we have 2EA = 2m. Therefore in the lab frame (~v(L)A = 0)

ω f i =
QM probability
Volume × Time

= 4σm p(L)B . (2.179)

Note that
4mp(L)B = 4 EA EB|~v

(L)
B | = 4EA EB|~v

(L)
A −~v(L)B | (2.180)

in the lab frame. Finally, one can show that 4 EA EB|~v
(L)
A − ~v(L)B | is invariant under Lorentz boosts

in direction A → B. Therefore ω f i = 4 EA EB|~vA − ~vB|σ is the correct general expression for the
transition rate valid in any frame 12. To conclude, the differential cross-section is

dσ =
(2π)4

4EA EB |~vA −~vB|
dΠN δ

(4)

pa + pB −
∑

i

ki

 ∣∣∣M f i
∣∣∣2, (2.181)

12For a more formal, but also considerably more complicated proof see Peskin-Schröder p.102 − 108.
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where

dΠN ≡
1

N!

N∏
n=1

∫
d3kn

(2π)3

1
2En

. (2.182)

For example consider 2 − 2 scattering as shown in Figure 2.9. On Assignment 7 we show that if all

Figure 2.9: 2 − 2 scattering.

four particles have the same mass, the differential cross-section is

dσ
dΩ3

=
1
2!

1
64π2

1
s
|M|2, (2.183)

where the relativistically invariant Mandelstam variable

s = (p1 + p2)
2 = (p3 + p4)

2 (2.184)

appears. Note that in Φ4-theory |M|2 = λ2 to first order in λ, i.e. for the maximally localised,
pointlike interaction given by the first Feynman diagram in Figure 2.4. Therefore

dσ
dΩ
∼

1
s

(2.185)

to first order in λ. This is a famous result, which in fact holds more generally:

The differential cross-section for hard scattering off a pointlike target (i.e. a target with
no substructure of length l ≥ 1/

√
s) falls off as 1/s.

This characteristic behaviour as observed in deep inelastic scattering experiments with hardons was a
crucial clue to the the parton structure of hadrons as you will surely recall from your particle physics
course.



Chapter 3

Quantising spin 1
2-fields

3.1 The Lorentz algebra so(1, 3)

Relativistic fields as representations of the Lorentz algebra

Relativistic fields are classified by their behaviour under Lorentz transformations

xµ 7→ x′µ = Λµ
ν xν , Λµ

ν ∈ S O(1, 3). (3.1)

Quite generally a field Φa(x) transforms as a representation1 of the Lorentz group S O(1, 3) - or, more
precisely, as we will see momentarily, of its double cover Spin(1, 3). This means that the classical
field Φa(x) is a map

Φa : R1,3 → V , (3.2)

x 7→ Φa(x), a = 1, . . . , dim(V) (3.3)

with V a vector space such that the specific transformation behaviour of the field Φa(x) under (3.1) is
given by

Φa(x) 7→ R(Λ)a
bΦb(Λ−1x′) = R(Λ)a

bΦb(x). (3.4)

Here for every element Λ ∈ S O(1, 3) the object R(Λ) is an automorphism (an invertible linear map)
acting on V in a manner compatible with the group action of S O(1, 3). Specifying the representation
in which the field transforms amounts to assigning such an automorphism R to every element Λ ∈
S O(1, 3), where compatibility with the group action of S O(1, 3) means that2

R(Λ2)
a
b R(Λ1)

b
c =R(Λ2Λ1)

a
c

R(Λ−1)a
b =

(
R(Λ)−1

)a

b
.

(3.5)

1The concept of Lie groups, Lie algebras and their representations has been discussed in detail in the course on Quantum
Mechanics. A good book in the present context is: Urbantke, Sexl: Relativity, Groups, Particles. As a quick reminder of the
main points see e.g. http://www.thphys.uni-heidelberg.de/$\sim$weigand/Skript-QM2011/skript.pdf.

2In short, a representation R of a group G is a group homomorphism from G to Aut(V) for some vector space V .
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The vector space V is also called representation space. Note that the index a refers to the components
of the fields with respect to a basis of the vector space V - called the representation space -, while µ, ν
are spacetime indices. These two are in general completely different objects.

Consider the following examples:

• For a real (or complex) scalar field Φ(x) the representation space V is just R (or C) and

R(Λ) = 1 ∀Λ. (3.6)

The scalar field is said to transform in the trivial or scalar representation and describes parti-
cles with spin 0.

• A vector field Aµ(x) (e.g. the gauge potential of electro-magnetism) transforms in the vector
representation: The representation space V is identified with spacetime R1,3 itself (or rather
its tangent space) and

R(Λ)µν = Λµ
ν ∀Λ. (3.7)

Since here V = R1,3, we have in this case that a, b = µ, ν. A field in the vector representation
describes particles with spin 1 (as we will see later in this course when quantising such vector
fields).

An important concept in representation theory is that of an irreducible representation (irrep): An
Irreducible representation is one whose representation space does not split into a direct sum of two
vector spaces in a manner respected by the group action, i.e. it is not possible to find a basis of the
representation space in which

R(Λ) =

 ? 0
0 ?

 ∀Λ. (3.8)

Irreducible representations form the building blocks of which larger representations can be formed by
considering direct sums of representation spaces.

Spin 1/2 particles are described by fields in the spinor representation. To find this representation
our starting point will not be the irreducible representations of the Lorentz group S O(1, 3), but of

The Lorentz algebra so(1, 3)

This is the algebra of infinitesimal Lorentz transformations connected to the identity. This is analo-
gous to the precedure applied in quantum mechanics to find spin 1

2 representations of the algebra of
spatial rotations so(3) ' su(2).

A Lorentz transformation can be written infinitesimally as

Λµ
ν = δ

µ
ν +ω

µ
ν. (3.9)
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Since the metric must be invariant under a Lorentz transformation in the sense that

Λµ
α Λν

β η
αβ = ηµν, (3.10)

the infinitesimal transformations satisfy ωµν = −ωνµ. We introduce a basis of antisymmetric 4 × 4
matrices into which we would like to expand ωµν. This basis contains 6 elements. Let the basis be(

MA
)µν

with A = 1, ..., 6. (3.11)

Then
ωµν = −

i
2

ΩA
(
MA

)µν
(3.12)

for some ΩA with summation over A understood. We introduce the double-index notation A = ρσ

with ρ,σ = 0, 1, 2, 3 such that
(Mρσ)µν = −(Mσρ)µν (3.13)

is antisymmetric in σρ. Therefore

ωµν = −
i
2

Ωρσ(Mρσ)µν. (3.14)

So an infinitesimal Lorentz transformation is

Λµ
ν = δ

µ
ν −

i
2

Ωρσ(Mρσ)µν. (3.15)

A finite transformation is given by applying the infnitesimal version N times for N → ∞ in the sense

Λµ
ν(Mρσ) = lim

N→∞

(
δ
µ
ν −

1
N

i
2

Ωρσ(Mρσ)µν

)N

=
[
e−

i
2 Ωρσ(Mρσ)

]µ
ν
.

(3.16)

This is what is meant by saying that the Mρσ are the generators of the Lie group S O(1, 3), or equiva-
lently form a basis of the Lie algebra so(1, 3).
The structure of the Lie algebra so(1, 3) is encoded in the commutation relations of its basis elements.
To find these one expands the defining relation of the underlying Lie algebra S O(1, 3)

Λµ
α Λν

β η
αβ = ηµν (3.17)

to second order in Ω to conclude that

[Mρσ, Mτν] = −i (ηρνMστ + ηστMρν − ηρτMσν − ησνMρτ) . (3.18)

This defines the structure constants of the Lie-algebra so(1, 3). Recall that in general a basis T A of a
Lie algebra satisfies

[T A, T B] =
∑

C

i f AB
CTC , (3.19)

where f AB
C are the structure constants. They obey
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• f AB
C = − f BA

C

• and the Jacobi identity

f AB
D f CD

E + f CA
D f BD

E + f BC
D f AD

E = 0. (3.20)

We view the commutator (3.18) as the defining relation for abstract objects Mρσ. An n-dimensional
representation of the Lie algebra so(1, 3) is an assignment that associates to each Mρσ an invertible
map

(Rρσ)a
b = R(Mρσ)a

b (3.21)

acting on an n-dimensional vector space V such that the same relation (3.18) holds for the represen-
tation matrices (Rρσ)a

b. The indices a, b = 1, . . . , n refer to a basis ea of V in the sense that v ∈ V is
expanded as v = vaea. Note again that in general a and b are unrelated to µ and ν.
Consider as a special case the vector representation by choosing V = R1,3 (viewed as the tangent
space to spacetime). In this case we do identify a, b ≡ µ, ν and set

(Jρσ)µν := i(ηρµησν − ηρνησµ). (3.22)

One can check that this indeed satisfies the so(1, 3) relations (3.18) and that

ωµν = −
i
2
ωρσ(J

ρσ)µν. (3.23)

Therefore

Λµ
ν =

[
e−

i
2ωρσJ

ρσ
]µ
ν
. (3.24)

We can use this result to deduce the matrix representation of spatial rotations by an angle α around an
axis ~n. The corresponding ωµν can be written as

ωi j = αεi jk nk. (3.25)

E.g. for a rotation around the x1-axis we have

~n =


1
0
0

 ⇒ ωρσ =


0 0 0 0
0 0 0 0
0 0 0 α

0 0 −α 0

 . (3.26)

The corresponding infinitesimal rotations are then of the form

Λµ
ν = δ

µ
ν +ω

µ
ν =


1 0 0 0
0 1 0 0
0 0 1 −α

0 0 α 1

 , (3.27)
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whose finite version is

Λµ
ν =


1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα

 . (3.28)

3.2 The Dirac spinor representation

To find the spinor representation of so(1, 3) we start from the Clifford algebra Cliff(1, 3) defined
as the algebra spanned by n × n-matrices (γµ)A

B, µ = 0, 1, 2, 3 and A, B = 1, . . . , n such that the
anti-commutator is

{γµ, γν} := γµγν + γνγµ = 2ηµν 1. (3.29)

Reinstating for clarity the indices A and B the defining relation is

(γµ)A
B(γ

ν)B
C + (γν)A

B(γ
µ)B

C = 2ηµν 1A
C . (3.30)

This implies

γµγν =

 ηµν if µ = ν

−γνγµ if µ , ν
. (3.31)

Therefore

(γ0)2 = 1, (γi)2 = −1. (3.32)

The central point is that given (γµ)A
B as above the objects

(S ρσ)A
B :=

i
4
[γρ, γσ]AB (3.33)

form a representation of so(1, 3), i.e.[
S ρσ, S τk

]
= −i

(
ηρkS στ + ηστS ρk − ηρτS σk − ησkS ρτ

)
, (3.34)

therefore (3.18) holds. Thus we have constructed a representation of so(1, 3) from the Clifford alge-
bra:

Every representation of Cliff(1,3) induces a representation of so(1,3).
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One can prove this by direct computation. To this end note that

S µν =

 0 if µ = ν
i
2γ

µγν if µ , ν

 =
i
2
(γµγν − ηµν). (3.35)

The claim then follows with the help of the anti-commutation relations (3.29) after some algebra as
worked out in the tutorial.

Now we want to find an explicit representation of the Clifford algebra. Since it is useful to know
the result for an arbitrary number of spacetime dimensions let us give the general result valid for
Cliff(1, d − 1). The problem is therefore to find n × n-matrices

(γµ)A
B with µ = 0, 1, 2, ..., d − 1 and A, B = 1, ..., n (3.36)

subject to (3.29). This will then also give a representation of the Lorentz algebra so(1, d − 1). In the
tutorials we will prove the following famous theorem:

The irreducible representations of Cliff(1, d − 1) are of dimension

n = 2
d
2 if d is even

n = 2
1
2 (d−1) if d is odd

. (3.37)

Let us now specialise to d = 4 as is relevant for QFT in four spacetime dimensions. In this case
n = 4. One choice of γµ called chiral or Dirac representation is

γ0 =

 0 12

12 0

 , γi =

 0 σi

−σi 0

 , (3.38)

where σi are the Pauli matrices

σ1 =

0 1
1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0
0 −1

 (3.39)

with
{σi,σ j} = 2δi j. (3.40)

Given an invertible matrix U, every other choice UγµU−1 is also a representation of Cliff(1, 3). The
complex vector space on which (γµ)A

B acts is called the space of Dirac spinors ψA, A = 1, ..., n with
n = 4 for d = 4.
Now, from the above it is clear that the ψA also form a representation of so(1, 3) because the γµ

induce a representation of so(1, 3). More precisely, a Dirac spinor ψA transforms under a Lorentz
transformation

Λµ
ν =

[
e−

i
2ωρσJ

ρσ
]µ
ν

(3.41)

as
ψA 7→

[
e−

i
2ωρσS ρσ

]A

B
ψB. (3.42)
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A Dirac spinor field ψA(x) transforms as

x 7→ x′ = Λx, (3.43)

ψA(x) 7→ [S (Λ)]AB ψ
B(Λ−1x′) = [S (Λ)]AB ψ

B(x) (3.44)

with
[S (Λ)]AB =

[
e−

i
2ωρσS ρσ

]A

B
. (3.45)

The indices A = 1, ..., n, with n = 4 for Cliff(1, 3) are called spinor indices. Even though in 4
dimensions A happens to run from 1, . . . , 4, we must not cunfuse them at any time with spacetime
indices µ, ν.

Now that we found a new type of representation of the Lorentz algebra so(1, 3) we would like to
give it a physical interpretation. The important claim is that

A Dirac spinor field ψA(x) behaves like a spin 1
2 -field.

To prove this we consider a spatial rotation around ~n with

ωi j = α εi jk nk (3.46)

and
S [Λ] =

[
e−

i
2ωi jS i j

]A

B
. (3.47)

Now,

S i j =
i
4
[γi, γ j] =

− i
2σ

iσ j 0
0 − i

2σ
iσ j

 = 1
2σ

k 0
0 1

2σ
k

 (3.48)

with (i jk) cyclic permutations of 123. The latter equations follows from the properties of the Pauli
matrices. So

S [Λ] =

e−i α2 ~n ~σ 0
0 e−i α2 ~n ~σ

 . (3.49)

What is crucial is the factor of 1
2 , which indeed indicates a transformation as a spin 1

2 under the
subalgebra so(3) ⊂ so(1, 3) of spatial rotations. In particular consider a rotation by α = 2π around
~nT = (0, 0, 1),

S [Λ] = exp

−iπσ3 0
0 −iπσ3

 = −1. (3.50)

Therefore
ψA 7→ −ψA (3.51)

under a rotation by 2π. �
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While we have found a representation of the Lorentz-algebra so(1, 3), this does not give a representa-
tion of the Lorentz-group S O(1, 3), but rather of its double cover Spin(1, 3). The latter is isomorphic
to S L(2, C), the group of complex 2× 2 matrices with determinant 1 (not to confuse with S U(2), the
group of complex unitary such matrices). In the tutorial we will investigate this isomorphism and the
corresponding description of spinors.

A Dirac spinor forms a representation of Spin(1, 3) ' S L(2, C), not of S O(1, 3).

The reason is that S [Λ = 1] , 1, which is incompatible with the group law of S O(1, 3). In Spin(1, 3)
by contrast, a rotation around 2π does not correspond to the 1 because it is defined as the double cover
of S O(1, 3).3 This is the relativistic version of the statement familiar from Quantum Mechanics
that the j = 1

2 spinor representation of the algebra of spatial rotations so(3) does not furnish a
representation of the Lie group S O(3) but only of its double cover S U(2).

3.3 The Dirac action

We now want to construct Lorentz scalars and vectors out of ψA(x) in order to construct a covariant
action. To do so we define the conjugate spinor ψ† := (ψ∗)T , i.e.

ψ† =
(
(ψ1)∗, (ψ2)∗, (ψ3)∗, (ψ4)∗

)
. (3.52)

We now would like to know how ψ†(x)ψ(x) behaves under a Lorentz transformation Λ, under which

x 7→ x′ = Λx, (3.53)

ψ(x) 7→ S (Λ)ψ(Λ−1x′), (3.54)

ψ†(x) 7→ ψ†(Λ−1x′) S †(Λ). (3.55)

In order for ψ†(x)ψ(x) to transform as a Lorentz scalar, we would need S (Λ)† = S −1(Λ). However,

S †(Λ) = e[−
i
2ωρσS ρσ]

†

= e
i
2ωρσ(S

ρσ)† (3.56)

and

(S ρσ)† =
( i
4
[γρ, γσ]

)†
= −

i
4

[
γσ†, γρ†

]
=

i
4

[
γρ†, γσ†

]
. (3.57)

It is not possible to pick all γµ hermitian at the same time since

(γ0)2 = 1 → real eigenvalues,

(γi)2 = −1 → imaginary eigenvalues.
(3.58)

Therefore, (S ρσ)† , (S ρσ) and thus S (Λ)† , S −1(Λ).

3For further reading see e.g. Urbantke, Sexl: Relativity, Groups, Particles.
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Rather, it is possible to pick γµ such that

(γ0)† = γ0, (γi)† = −γi, (3.59)

which is indeed satisfied by the Dirac representation above. In this case

(γµ)† = γ0γµγ0, (3.60)

because γ0γ0 = 1 and γ0γi = −γiγ0. Therefore

γ0(S ρσ)†γ0 =
i
4
γ0

[
γρ†, γσ†

]
γ0 =

i
4
[γρ, γσ] = S ρσ (3.61)

and so
γ0S [Λ]†γ0 = S [Λ]−1. (3.62)

Inspired by this result we define the Dirac conjugate spinor

ψ̄ := ψ†γ0. (3.63)

It transforms as

ψ̄(x) 7→ ψ†(Λ−1x′)S †(Λ)γ0 = ψ†(Λ−1x′)γ0S −1(Λ) = ψ̄(Λ−1x′)S −1(Λ). (3.64)

Thus the spinor bilinear ψ̄(x)ψ(x) transforms as

ψ̄(x)ψ(x) 7→ ψ̄(Λ−1x′)S −1(Λ)S (Λ)ψ((Λ−1x′)) = ψ̄(Λ−1x′)ψ(Λ−1x′). (3.65)

So ψ̄(x)ψ(x) is a scalar quantity. Furthermore one can show that ψ̄(x)γµψ(x) transforms as a vector
because

ψ̄(x)γµψ(x) 7→ ψ̄(Λ−1x′)S −1(Λ)γµS (Λ)ψ(Λ−1x′) (3.66)

and
S −1(Λ)γµS (Λ) = Λµ

νγ
ν, (3.67)

as will be proven in the tutorials. This logic can be repeated for tensors of rank n.

We can now build an action for ψ(x), where we follow the principle of simplicity. The simplest
Lorentz scalars built from ψ(x) which include non-trivial dynamics (i.e. at least one derivative has to
appear) are

ψ̄(x)γµ∂µψ(x), ψ̄(x)ψ(x). (3.68)

So we take as the action for the free classical Dirac spinor field

S =

∫
d4x ψ̄(x) [iγµ∂µ −m]ψ(x), (3.69)

where
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• the factor i is required for the action to be real

• and |m| will be the mass of the Dirac spinor particle.

This is the simplest action we can build. Interestingly - unlike in for the scalar field - it is possible to
construct a Lorentz invariant action with only one derivative. Furthermore note that ψ(x) has mass
dimension [mass]3/2.

Since ψ(x) is complex we treat ψ(x) and ψ†(x) as independent when deriving the equations of motion.
Varying with respect to ψ†(x) yields the Dirac equation

(iγµ∂µ −m)ψ(x) = 0, (3.70)

which is linear in the derivatives. In order to see that this indeed describes a field with mass |m| we
note that

0 = (iγµ∂µ + m)(iγµ∂µ −m)ψ

= (−γµγν∂µ∂ν −m2)ψ

= −
( 1

2
{γµ, γν}︸    ︷︷    ︸
=ηµν

∂µ∂ν + m2
)
ψ

(3.71)

and thus obtain the Klein-Gordon equation (1.29) for the spinor field ψ(x). Loosely speaking:

Dirac equation =
√

Klein-Gordon equation. (3.72)

This is a consequence of the particular manner how we constructed a representation of the Lorentz
algebra from the Clifford algebra. Equ. (3.71) also justifies the relative factor of i in the Dirac action,
for which we can take m to be real.

3.4 Chirality and Weyl spinors

The Dirac spinor representation of Cliff(1, 3) is not irreducible as a representation of Spin(1, 3).
Indeed for our special choice of Dirac matrices

γ0 =

 0 12

12 0

 , γi =

 0 σi

−σi 0

 (3.73)

ψA transforms under a spatial rotation as

ψ 7→

e− i
2α~n·~σ 0
0 e−

i
2α~n·~σ

ψ (3.74)

and under a Lorentz boost with ω0 j = χ j as

ψ 7→

e− 1
2 ~χ·~σ 0
0 e+

1
2 ~χ·~σ

ψ. (3.75)
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Therefore the subspaces spanned by

ψT
− = (ψ1,ψ2, 0, 0) and ψT

+ = (0, 0,ψ3,ψ4) (3.76)

transform separately. Irrespective of the concrete representation the reducibility of the Dirac spinor
repsentation as a representation of Spin(1,3) can be seen as follows: Define

γ5 = iγ0γ1γ2γ3 (3.77)

with the properties

(γ5)2 = 1, {γ5, γµ} = 0, [S ρσ, γ5] = 0 (3.78)

following from the properties of the Clifford-algebra. Now consider the orthogonal projection opera-
tors

P± :=
1
2
(1 ± γ5) (3.79)

with the properties

(P±)
2 = P±, P+P− = 0 = P−P+, 1 = P+ + P−. (3.80)

Defining

ψ± := P±ψ (3.81)

yields

P±ψ∓ = 0. (3.82)

Now, since [S ρσ, γ5] = 0 we have P∓S [Λ]ψ± = 0, i.e. the ± subspaces transform separately under
Spin(1, 3). The ψ± are called positive/negative-chirality spinors.
In the special representation

γ0 =

 0 12

12 0

 , γi =

 0 σi

−σi 0

 , γ5 =

−12 0
0 12

 (3.83)

we find

ψ− =

u−0
 , ψ+ =

 0
u+

 . (3.84)

The 2-component objects u± are called Weyl-spinors. It is the Weyl spinors that form irreducible
representations of Spin(1,3).

It is instructive to rewrite the Dirac action in this language. The Dirac action decomposes as fol-
lows: Since γ0γ5 = −γ5γ0 we have

γ0P± = P∓γ
0 (3.85)

and therefore

ψ± = (P±ψ)
†γ0 = ψ†P±γ

0 = ψ̄P∓. (3.86)
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This means

ψ±ψ± = ψ̄P∓P±ψ = 0,

ψ±ψ∓ = ψ̄P∓ψ , 0
(3.87)

and similary (using in addition that γµP± = P∓γ
µ)

ψ±γ
µψ± = ψ̄γµP±ψ , 0

ψ∓γ
µψ± = 0.

(3.88)

The Dirac action can then be written as

S =

∫
d4x ψ̄(iγµ∂µ −m)ψ

=

∫
d4x

[
ψ+iγµ∂µψ+ + ψ−iγµ∂µψ− −m(ψ+ψ− + ψ−ψ+)

]
,

(3.89)

or in Weyl-spinor notation as

S =

∫
d4x

[
u†+ iσµ ∂µ u+ + u†− iσ̄µ ∂µ u− −m(u†+u− + u†−u+)

]
. (3.90)

Here
σµ ≡ (12,σi) and σ̄µ = (12,−σi). (3.91)

From the decomposed Dirac equation we can draw the following important conclusions about the
underlying physics:

• If m = 0, u+ and u− decouple and describe independent degrees of freedom subject to the Weyl
equations

iσµ∂µu+(x) = 0, iσ̄µ∂µu−(x) = 0. (3.92)

Both u+ and u− transform in the s = 1
2 representation of SU(2) ⊂ Spin(1, 3), in the sense that

under spatial rotations

x 7→ R x, (3.93)

u±(x) 7→ e−
i
2α~n·~σ u±(R−1x). (3.94)

We define the helicity

h = εi jk p̂iS jk =
1
2
~̂p · ~σ, (3.95)

which is the projection of the spin onto the momentum direction ~̂p. To solve the Weyl equations
of momentum pµ one makes the ansatz (see the next chapter for details)

u±(x) = u±(p)e−ip·x (3.96)

and finds

h u±(p) = ±
1
2

u±(p), (3.97)

where u+ corresponds to right-handed and u− to left-handed spinors.
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• If m , 0, u+ and u− do not decouple. In this sense the full 4-component Dirac spinor ψ is
needed to describe massive spin- 1

2 fields. Note for fields of mass m , 0 it is impossible to
define a Lorentz invariant notion of helicity because massive particles travel with a velocity
v < c and it is always possible to find a Lorentz frame in which the particle moves into the
opposite direction. This causes a change in the helicity.

3.5 Classical plane-wave solutions

To solve the classical equation of motion (3.70) we make the ansatz

ψ(x) = u(~p)e−ip·x (3.98)

with p = (Ep, ~p) and Ep =
√
~p2 + m2. Here we have used that the dispersion relation p2 −m2 = 0

is satisfied because ψ(x) obeys the Klein-Gordon equation (3.71). Plugging this ansatz into the Dirac
equation yields

(pµγµ −m)u(~p) = 0. (3.99)

For our choice of γµ this is  −m pµσµ

pµσ̄µ −m

 u(~p) = 0. (3.100)

We make the ansatz

u(~p) =

u1

u2

 , (3.101)

which leads to the relations
pµ σµ u2 = m u1,
pµ σ̄µ u1 = m u2.

(3.102)

These are consistent because

(pµσµ)(pµσ̄µ) = (p0)2 − pi p j σ
iσ j︸︷︷︸
δi j

= m2. (3.103)

The general solution can be parametrised by introducing some 2-component Weyl spinor ξ′ and writ-
ing

u(~p) =

 1
m p ·σξ′

ξ′

 . (3.104)

We make a conventional choice
ξ′ =

√
p · σ̄ ξ (3.105)

with ξ†ξ = 1. Here
√

M denotes the matrix whose eigenvalues are the square root of those of M.
With this choice we find the so-called positive frequency solution

ψ(x) = u(~p)e−ip·x, u(~p) =

√p ·σξ√
p ·σξ

 . (3.106)
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Likewise

ψ(x) = v(~p)eip·x (3.107)

is a solution if

(γ · p + m)v(~p) = 0. (3.108)

This yields the negative frequency solution

ψ(x) = v(~p)eip·x, v(~p) =

 √p ·σξ
−

√
p ·σξ

 . (3.109)

Let us introduce a basis of the space of 2-spinors by ξs with

ξ 1
2
=

10
 , ξ− 1

2
=

01
 (3.110)

and therefore

ξ†sξs′ = δss′ . (3.111)

Note that ξs, viewed as a Weyl spinor, transforms in the s = 1
2 representation of SU(2). In particular

1
2
σ3 ξ± 1

2
= ±

1
2
ξ± 1

2
. (3.112)

Correspondingly us and vs with s = ± 1
2 describe spinors with spin ± 1

2 in direction x3. In the tutorial
we will convince ourselves of the important identities

ūs(~p)us′(~p) = 2m δss′ , u†s(~p)us′(~p) = 2p0 δss′ ,

v̄s(~p)vs′(~p) = −2m δss′ , v†s(~p)vs′(~p) = 2p0 δss′ ,

ūs(~p)vs′(~p) = 0

(3.113)

and ∑
s

us(~p)ūs(~p) = γ · p + m,∑
s

vs(~p)v̄s(~p) = γ · p −m.
(3.114)

Let us consider the following example: Suppose we have chosen coordinates such that pµ = (E, 0, 0, p3).
According to the above, the Dirac spinor solution u 1

2
(~p) with spin 1

2 along x3 is given by

u 1
2
(~p) =

√σ · p ξ 1
2√

σ̄ · p ξ 1
2

 =

√

E − p3 ξ 1
2√

E + p3 ξ 1
2

 . (3.115)
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If m = 0, then E = p3 and

u 1
2
(~p) =

√
2E


0
0
1
0

 ≡ u+(~p) (3.116)

since ξ 1
2
=

10
. The solution correspnding to ξ− 1

2
=

01
 is

u− 1
2
(~p) =


√

E + p3 ξ− 1
2√

E − p3 ξ− 1
2

 m=0
−→
√

2E


0
1
0
0

 ≡ u−(~p). (3.117)

The helicity of the solutions is

h u+(~p) =
1
2

u+(~p)⇒ right-handed,

h u−(~p) = −
1
2

u−(~p)⇒ left-handed.
(3.118)

3.6 Quantisation of the Dirac field

So far our analysis of spinors has been classical. To define the quantum theory of spinor fields we
follow the same procedure as in the scalar case, but we will encounter a problem if we just impose the
same commutation relation as in the scalar case. Its resolution will prove the fermionic nature of spin
1
2 particles.

3.6.1 Using the commutator

Starting from the classical Lagrangian

S =

∫
d4x ψ̄(iγµ∂µ −m)ψ (3.119)

we find the conjugate momentum density

ΠA =
∂L

∂ψ̇A
= iψ†A. (3.120)

We promote ψ(x) and Π(x) to Schrödinger picture quantum operators and expand these as

ψ(~x) =
∑

s

∫
d3 p
(2π)3

1√
2Ep

[
as(~p)us(~p)ei~p·~x + b†s(~p)vs(~p)e−i~p·~x

]
,

ψ†(~x) =
∑

s

∫
d3 p
(2π)3

1√
2Ep

[
bs(~p)v†s(~p)e

i~p·~x + a†s(~p)u
†
s(~p)e

−i~p·~x
]

,
(3.121)
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where us and vs are the spinor-valued solutions to the classical equation (3.70) corresponding to the
ansatz (3.98). The quantum operators as and bs are independent because the field ψ is complex. This
expansion guarantees that the corresponding Heisenberg fields with e±i~p·~x 7→ e∓ip·x satisfy the Dirac
equation as an operator equation.

We are now careful with operator orderings and proceed without specifying the commutation rela-
tions. The Hamiltonian density is

H = Πψ̇ −L = ψ̄(−iγ j∂ j + m)ψ. (3.122)

Now,

(−iγ j∂ j + m)ψ =
∑

s

∫
d3 p
(2π)3

1√
2Ep

[
(−γ j p j + m)us(~p)as(~p)ei~p·~x

+ (γ j p j + m)vs(~p)b†s(~p)e
−i~p·~x

] (3.123)

because
∂ j ei~p·~x = ∂ j e−ipk xk

= −ip j ei~p·~x. (3.124)

Now use that vs and us solve the classical equation of motion, i.e.

(γµpµ −m)us(~p) = 0 ⇒ (−γ j p j + m)us(~p) = γ0 p0 us(~p),

(γµpµ + m)vs(~p) = 0 ⇒ (γ j p j + m)vs(~p) = −γ0 p0 vs(~p),
(3.125)

and therefore

(−iγ j∂ j + m)ψ =
∑

s

∫
d3 p
(2π)3

√
Ep

2
γ0

[
as(~p)us(~p)ei~p·~x − b†s(~p)vs(~p)e−i~p·~x

]
. (3.126)

To compute the Hamiltonian

H =

∫
d3xψ†γ0(−iγ j∂ j + m)ψ (3.127)

we furthermore exploit the spinor identities

v†r (~p)us(~p) = 0 , u†r (~p)vs(~p) = 0,

u†r (p)us(p) = 2p0δrs = v†r (p)vs(p),
(3.128)

which eventually give

H =

∫
d3 p
(2π)3 Ep

∑
s

[
a†s(~p)as(~p) − bs(~p)b†s(~p)

]
. (3.129)

So far no re-ordering of operators has been performed. Now, the naive guess would be to impose, at
the next step, canonical commutation relations as for the scalar field,[

ψA(~x), ΠB(~x′)
] ?
= i δA

B δ
(3)(~x − ~x′),[

ψA(~x),ψ†B(~x
′)
] ?
= δA

B δ
(3)(~x − ~x′),[

ψA(~x),ψB(~x′)
] ?
= 0.

(3.130)
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We will now show why this is wrong. The commutation relations would imply for the modes[
ar(~p), a†s(~q)

]
= (2π)3, δrs, δ(3)(~p − ~q),[

br(~p), b†s(~q)
]
= − (2π)3, δrs, δ(3)(~p − ~q),[

ar(~p), b(†)s (~q)
]
= 0.

(3.131)

Indeed we have

[ψ(~x),ψ†(~y)] =
∑
r,s

∫
d3 p
(2π)3

d3q
(2π)3

1√
4EpEq

([
ar(~p), a†s(~q)

]
ur(~p)us(~q)†ei(~p·~x−~q·~y)

+
[
b†r (~p), bs(~q)

]
vr(~p)v†s(~q)e

−i(~p·~x−~q·~y)
)
.

(3.132)

Then, using
∑

s us(~p)ūs(~p) = γ · p + m and
∑

s vs(~p)v̄s(~p) = γ · p − m, the commutator relations
(3.130) of the field ψ would follow from the commutator relations (3.131) of the modes. Note that

[ar(~p), a†s(~q)] and [b†r (~p), bs(~q)] (3.133)

appear on same footing in the commutator of the field. This ordering is the reason for the crucial
relative minus sign in (3.131). If this were correct, then we could reorder the Hamiltonian to find

H =

∫
d3 p
(2π)3 Ep

∑
s

[
a†s(~p)as(~p) − b†s(~p)bs(~p) + (2π)3δ(0)

]
. (3.134)

To give the mode operators a physical interpretation we observe that

[H, as(~p)] = −Ep as(~p),

[H, a†s(~p)] = Ep a†s(~p)
(3.135)

and also

[H, bs(~p)] = −Ep bs(~p),

[H, b†s(~p)] = Ep b†s(~p)
(3.136)

because the minus sign in the Hamiltonian cancels with the sign we pick up in the commutator. So as
in the scalar theory we would interpret

as(~p), bs(~p) ↔ annihilation operators (3.137)

a†s(~p), b†s(~p) ↔ creation operators (3.138)

and define |0〉 such that as(~p) |0〉 = bs(~p) |0〉. The creation operators give positive energy modes by
construction.
While at first sight everything looks fine, in actuality this whole construction is in deep conflict with
unitarity. The reason is that due to the minus sign in the commutator[

br(~p), b†s(~q)
]
= −(2π)3 δrs δ

(3)(~p − ~q) (3.139)
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the b-mode excitations are negative norm states. To see this note that

〈0| [br(~p), b†s(~q)] |0〉 = −(2π)
3 δrsδ

(3)(~p − ~q) 〈0| 0〉. (3.140)

Evaluated for r = s and ~p = ~q we conclude

0 > −(2π)3δ(3)(0) = 〈0| [br(~p), b†r (~p)] |0〉 = 〈0| br(~p)b†r (~p) |0〉 = ||b
†
r |0〉 ||

2. (3.141)

Therefore no positive norm Hilbert space interpretation is possible!
One might hope to avoid this problem by switching the interpretation of creation versus annihilation
operators for the b-modes. But then the energy spectrum becomes arbitrarily negative by exciting
more and more such states from the vacuum because of the minus sign in H ∼ −b†b!
We therefore conclude that this procedure results in

• either loss of unitarity due to appearance of negative-norm states

• or unboundness from below of H, i.e. instability of the vacuum.

The origin of this problem lies in the fact that the signs in the spinor theory conspire such that to
establish a commutation relation of the schematic form [ψ,ψ†] ∼ 1 we must impose

[a, a†] ∼ 1 and [b†, b] ∼ 1 → [b, b†] ∼ −1. (3.142)

If instead we impose a relation symmetric in ψ and ψ† this minus sign for the b-mode relation would
not occur. The task is therefore to promote the classical Poisson-bracket relations not to operator
commutation relations, but to an analogous ’bracket’ which is symmetric in both entries. The simplest
such bracket is the anti-commutator. It turns out that this procedure is successful.

3.6.2 Using the anti-commutator

The correct procedure for quantisation of spin- 1
2 fields is to impose the canonical anti-commutation

relations
{ψA(~x),ψ†B(~x

′)} = δA
B δ

(3)(~x − ~x′),

{ψA(~x),ψB(~x′)} = 0 = {ψ†A(~x),ψ
†

B(~x
′)},

(3.143)

where {A, B} = AB + BA = {B, A}. This induces the mode relations{
ar(~p), a†s(~q)

}
= (2π)3 δrs δ

(3)(~p − ~q),{
br(~p), b†s(~q)

}
= (2π)3 δrs δ

(3)(~p − ~q),{
ar(~p), b(†)s (~q)

}
= 0.

(3.144)

Starting from H ∼
∑

a†a − bb† we now find

H =

∫
d3 p
(2π)3 Ep

∑
s

[
a†s(~p)as(~p) + b†s(~p)bs(~p) − (2π)3δ(0)

]
. (3.145)
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The divergent vacuum energy has opposite sign compared to a scalar theory. In theories with scalars
and spin- 1

2 fields cancellations in the vacuum energy are indeed possible.4

Since for this Hamiltonian the anti-commutation relations still imply the commutation relations (3.135)
and (3.136), the vacuum is again defined by as(~p) |0〉 = 0 = bs(~p) |0〉. From this vacuum we define
the Fock space of a- and b-mode excitations. Let us start with the a-modes, which we will call the
particle sector.

1-particle states

The state |~p, s〉 :=
√

2Epa†s(~p) |0〉 is a 1-particle state with momentum ~p, energy Ep =
√
~p2 + m2

and spin s in the x3-direction, normalized such that

〈~p, s| ~q, r〉 = 2Ep(2π)3δ(3)(~p − ~q)δrs. (3.146)

N-particle states

The state

|p1, s1; ...; pN , sN〉 =
N∏

i=1

√
2Epia

†
s1
(~p1)...a†sN

(~pN) |0〉 (3.147)

is an N-particle momentum eigenstate. This allows us, in complete analogy to the scalar field, to state
the following theorem

The wavefunction of N-particle states of spin 1
2 particles is anti-symmetric under particle

exchange.

Indeed, if we exchange two particles, we pick up a minus sign due to the anti-commutation relations:

a†si
(~pi)a†s j

(~p j) = −a†s j
(~p j)a†si

(~pi). (3.148)

This leads to the following Corollary

Spin 1
2 particles obey Fermi-statistics, i.e. they are fermions.

In particular they obey the Pauli exclusion principle:

No two fermionic states of exactly the same quantum numbers are possible.

4More generally, scalars and spinors contribute with opposite signs in loops and theories with supersymmetry, i.e. with
an equal number of bosonic and fermionic degrees of freedom, therefore have a chance to exhibit better UV properties.
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The Pauli exclusion principle is again a result of the anti-commutation relation because

a†s(~p)a
†
s(~p) |0〉 = 0. (3.149)

This exemplifies the much more general Spin-Statistics-Theorem5:

Lorentz invariance, positivity of energy, unitarity and causality imply that:

• Particles of half-integer spin are fermions and

• particles of integer spin are bosons.

Excitations b†s(~p) |0〉 describe the corresponding anti-particles. Indeed the Lagrangian

L = ψ̄(iγµ∂µ −m)ψ (3.150)

enjoys a global U(1) symmetry because it is invariant under

ψ 7→ e−iαψ, ψ̄ 7→ ψ̄eiα, α ∈ R. (3.151)

The associated conserved Noether current will be found in the tutorial to take the form

jµ = ψ̄γµψ, (3.152)

with Noether charge

Q =

∫
d3x j0 =

∫
d3xψ†ψ =

∫
d3 p
(2π)3

∑
s

(
a†s(~p)as(~p) − b†s(~p)bs(~p)

)
, (3.153)

after dropping a normal ordering constant. The charge acts on the 1-particle state as follows:

Q a†s(~p) |0〉 = + a†s(~p) |0〉 , thus defining a fermion,

Q b†s(~p) |0〉 = − b†s(~p) |0〉 , thus defining an anti-fermion.
(3.154)

Finally, a careful analysis of the angular momentum operator via Noether’s theorem reveals that

Jx3 a†s(~p = 0) |0〉 = s a†s(~p = 0) |0〉 , (3.155)

but

Jx3 b†s(~p = 0) |0〉 = −s b†s(~p = 0) |0〉 , (3.156)

with s = ± 1
2 , For details of the derivation see Peskin-Schröder, page 61. This shows that b†s(~p = 0) |0〉

has spin (in x3-direction) −s, while a†s(~p = 0) |0〉 has spin +s.

5For a general proof see Weinberg (1, 5.7).
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3.7 Propagators

As for the scalar fields, we now move to the Heisenberg picture by considering the time-dependent
free fields (with free mass denoted by m0 to avoid confusion)

ψ(x) =
∑

s

∫
d3 p
(2π)3

1√
2Ep

[
as(~p)us(~p)e−ip·x + b†s(~p)vs(~p)eip·x

]
,

ψ†(x) =
∑

s

∫
d3 p
(2π)3

1√
2Ep

[
bs(~p)v†s(~p)e

−ip·x + a†s(~p)u
†
s(~p)e

ip·x
]

,
(3.157)

which, as noted already, satisfy the free Dirac equation as an operator equation.

To examine causality of the theory we define the anti-commutator

S A
B(x − y) := {ψA(x), ψ̄B(y)} (3.158)

and compute

S (x − y) =
∑
s,r

∫
d3 p
(2π)3

1√
Ep

∫
d3q
(2π)3

1√
Eq

×

[
{as(~p), a†r (~q)}︸           ︷︷           ︸
δsr(2π)3δ(3)(~p−~q)

us(~p)ūr(~q)e−ip·xeiq·y

+ {b†s(~p), br(~q)}vs(~p)v̄r(~q)eip·xe−iq·y
]
.

(3.159)

The identities ∑
s

us(~p)ūs(~p) = γ · p + m0 and
∑

s

vs(~p)v̄s(~p) = γp −m0 (3.160)

imply that

S (x − y) =
∫

d3 p
(2π)3

1
2Ep

[
(γ · p + m0)e−ip·(x−y) + (γ · p −m0)e−ip·(y−x)

]
(3.161)

or in a more compact form

S (x − y) = (iγµ∂xµ + m) [D(0)(x − y) − D(0)(y − x)]. (3.162)

Here

D(0)(x − y) =
∫

d3 p
(2π)3

1
2Ep

e−ip·(x−y) (3.163)

is the propagator from the scalar theory with mass m0. In particular this implies that S (x − y) = 0
for (x − y)2 < 0. This in turn guarantees that [O1(x),O2(y)] = 0 for (x − y)2 < 0 for Oi(x) any
local expression of fermion bilinears ψ̄ψ. Since all physical observables are bosonic this establishes
causality of the Dirac theory.
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The time-ordering symbol in the fermionic theory is defined as

T (ψ(x)ψ̄(y)) =

 ψ(x)ψ̄(y) if x0 ≥ y0,
−ψ̄(y)ψ(x) if y0 > x0.

(3.164)

Note the crucial minus sign. It is required because if (x − y)2 < 0, we have

ψ(x)ψ̄(y) = −ψ̄(y)ψ(x), (3.165)

because S (x − y) = 0 for (x − y)2 < 0. Now, for (x − y)2 < 0 the question of whether x0 ≥ y0 or
x0 < y0 depends on the Lorentz frame we have chosen. To arrive at a Lorentz frame independent
definition of the time-ordering symbol T the expression for T (ψ(x)ψ̄(y)) for x0 ≥ y0 and y0 ≥ x0

must agree.
The Feynman propagator is

S F(x − y) = 〈0|Tψ(x)ψ̄(y) |0〉 , (3.166)

while
〈0|Tψ(x)ψ(y) |0〉 = 0 = 〈0|T ψ̄(x)ψ̄(y) |0〉 . (3.167)

Now by the usual tricks one evaluates

S F(x − y) = Θ(x0 − y0) 〈0|ψ(x)ψ̄(y) |0〉 −Θ(y0 − x0) 〈0| ψ̄(y)ψ(x) |0〉

= Θ(x0 − y0)

∫
d3 p
(2π)3

1
2Ep

(γ · p + m0)e−ip·(x−y)

− Θ(y0 − x0)

∫
d3 p
(2π)3

1
2Ep

(γ · p −m0)e+ip·(x−y)

= (iγ · ∂x + m) D(0)
F (x − y)︸        ︷︷        ︸

free scalar theory

,

(3.168)

with

D(0)
F (x − y) =

∫
d4 p
(2π)4

i
p2 −m2

0 + iε
e−ip·(x−y). (3.169)

This gives

S F(x − y) =
∫

d4 p
(2π)4

i(γ · p + m0)

p2 −m2
0 + iε

e−ip·(x−y). (3.170)

Due to (γ · p + m0)(γ · p −m0) = p2 −m2
0 it is convenient to write

(γ · p + m0)

p2 −m2
0

= (γ · p −m0)
−1. (3.171)

The Feynman propagator S F(x − y) is a Green’s function in that it represents one of the 4 possible
solutions to

(iγµ∂µ −m)G(x − y) = iδ(4)(x − y). (3.172)

The interpretation and closure procedure in the complex plane for these are as in the scalar theory.
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3.8 Wick’s theorem and Feynman diagrams

The time ordering of several fields picks up a minus sign whenever 2 fermionic fields are exchanged,
e.g.

T (ψ1ψ2ψ3) =


(−1)ψ1ψ3ψ2 if x0

1 > x0
3 > x0

2,
(−1)2ψ3ψ1ψ2 if x0

3 > x0
1 > x0

2,
(−1)3ψ3ψ2ψ1 if x0

3 > x0
2 > x0

1,
...

(3.173)

We define normal-ordered products as expressions with all creation operators to the left of all anni-
hilation operators, where, unlike in the scalar theory, each exchange of two operators induces a minus
sign, e.g.

: bs(~p)a†r (~q)b
†
v(~k) : = (−1)2a†r (~q)b

†
v(~k)bs(~p) (3.174)

and so on. Then
T (ψ(x)ψ̄(y)) = : ψ(x)ψ̄(y) : +ψ(x)ψ̄(y), (3.175)

with
ψ(x)ψ̄(y) = 〈0|Tψ(x)ψ̄(y) |0〉 = S F(x − y) (3.176)

and
ψ(x)ψ(y) = 0 = ψ̄(x)ψ̄(y) . (3.177)

Direct computation confirms that Wick’s theorem goes through, with the understanding that we in-
clude the minus signs from operator exchanges. For instance

T (ψ1ψ̄2ψ̄3) = : ψ1ψ̄2ψ̄3 : + : ψ1ψ̄2 ψ3 :

+ : ψ1ψ̄2ψ̄3 :︸      ︷︷      ︸
−:ψ1ψ̄3 ψ̄2: =−S f (x1−x3):ψ̄2 :

. (3.178)

With this in mind Wick’s theorem becomes

T (ψ̄1ψ̄2ψ3...) = : ψ̄1ψ̄2ψ3... + all contractions with signs : (3.179)

In particular
〈0|T

∏
i

ψ(xi)
∏

j

ψ̄(x̄ j) |0〉 , 0 (3.180)

only for equal numbers of ψ and ψ̄ fields. Physically this just reflects charge conservation.

To compute a 2n-point function of this type, we draw the corresponding Feynman diagrams, but
now

• label the points xi associated with ψ(xi) and x̄ j associated with ψ(x̄ j) separately,

• only connect xi with x̄ j and
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• associate each directed line from x̄ j to xi with a propagator S F(xi − x̄ j).

Be sure to always draw the arrow from x̄ j to xi in order to account for the correct sign in S F(xi − x̄ j).
Apart from an overall sign (which is typically unimportant because we will eventually take the square
of the amplitude), the relative signs between the diagrams (which are important due to interference)
equal the number of crossing lines. For instance, for

〈0|Tψ(x1)ψ̄(x̄2)ψ(x3)ψ̄(x̄4) |0〉 (3.181)

this prescription gives (see Figure 3.1)

S F(x1 − x̄2)S (x3 − x̄4) + (−1)1S F(x1 − x̄4)S (x3 − x̄2). (3.182)

�̄
2

1

4̄

3

�̄
2

1

4̄

3

Figure 3.1: Possible Feynman diagrams

3.9 LSZ and Feynman rules

We will examine interacting spin 1
2 fields in great detail in the context of Quantum Electrodynamics.

Another example of an interesting interacting theory is Yukawa theory, which couples a spin 1
2 field

to a real boson via a cubic coupling. Its form is given in the tutorial.

In this section we only briefly summarise the logic behind the computation of scattering amplitudes
with spin 1

2 . As in the scalar theory, in the presence of interactions we define asymptotic in- and
out-fields satisfying the free Dirac equation with mass m , m0, where m0 is the mass in the free Dirac
action. We then express the creation and annihilation modes by the in- and out-fields, e.g. for the



3.9. LSZ AND FEYNMAN RULES 101

in-fields

ain,s(~q) =
1√
2Eq

∫
d3x ūs(~q)eiq·xγ0ψin(x),

a†in,s(~q) =
1√
2Eq

∫
d3x ψ̄in(x)γ0e−iq·xus(~q),

bin,s(~q) =
1√
2Eq

∫
d3x ψ̄in(x)γ0eiq·xvs(~q),

b†in,s(~q) =
1√
2Eq

∫
d3x v̄s(~q)e−iq·xγ0ψin(x).

(3.183)

Using these one can perform exactly the same LSZ reduction procedure as in the scalar field case to
extract the S -matrix. In this process we make heavy use of the equations

(γ · p −m)u(~p) = 0, (γ · p + m)v(~p) = 0, (3.184)

where now m is the fully renormalized physical mass. Consider incoming fermions |q, s,+〉 and anti-
fermions |q′s′,−〉 and outgoing fermions 〈p, r,+| and anti-fermions 〈q′, r′,−|. The final result for the
S-matrix element is

〈...(p, r,+)...(p′r′,−)....| S |...(q, s,+)...(q′, s′,−)...〉
∣∣∣
connected

=
(
(−iZ)−

1
2

)n (
(iZ)−

1
2

)n′ ∫
d4x...

∫
d4x′...

∫
d4y...

∫
d4y′

× e−i(q·x+q′·x′−p·y−p′·y′+...)ūr(~p)(iγ · ∂y −m)...v̄s′(~q′)(iγ · ∂x′ −m)...

× 〈Ω|T ...ψ̄(y′)...ψ(y)...ψ̄(x)...ψ(x′)... |Ω〉 (−iγ ·
←

∂x −m)us(~q)...(−iγ ·
←

∂y −m)vr′(~p′).

(3.185)

Thus to compute the S-matrix we compute the Fourier transform of the amputated fully connected
associated Feynman diagram, where for each external particle we include

• us(~q) for an incoming particle of spin s,

• v̄s′(~q′) for an incoming anti-particle of spin −s′,

• ūr(~p) for an outgoing particle of spin r,

• vr′(~p′) for an outgoing anti-particle of spin −r′.

Alternatively, the appearance of these spinor polarisations can also be deduced by the Interaction
picture procedure discussed in the tutorials. We will exemplify this for Yukawa theory in the tutorial
and later in the course for Quantum Electrodynamics.
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Chapter 4

Quantising spin 1-fields

4.1 Classical Maxwell-theory

Let us first recall the main aspects of classical Maxwell theory.

• The classical Maxwell equations are

~∇ · ~E = ρ , ~∇× ~E = −
∂~B
∂t

,

~∇× ~B = ~j +
∂~E
∂t

, ~∇ · ~B = 0,

(4.1)

where the sources are subject to local charge conservation, i.e.

∂

∂t
ρ+ ~∇ · ~j = 0. (4.2)

• By virtue of the inhomogeneous Maxwell equations and Helmholtz’s theorem the fields ~E and
~B can locally be expressed as

~E = −~∇φ −
∂~A
∂t

, ~B = ~∇× ~A. (4.3)

• This description in terms of the scalar potential φ and the vector potential ~A is redundant because
~E and ~B are invariant under a gauge transformation, i.e. a transformation

φ(x)→ φ(x) +
∂

∂t
α(x),

~A(x)→ ~A(x) − ~∇α(x).
(4.4)

• To establish a Lorentz invariant formulation we introduce the 4-vector gauge potential Aµ and
the 4-current jµ as

Aµ =

φ~A
 , jµ =

ρ~j
 . (4.5)

103
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The fields ~E and ~B are really components of the field strength tensor Fµν,

Fµν = ∂µAν − ∂νAµ, (4.6)

which in matrix notation reads

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (4.7)

• Using the field strength tensor the inhomogenous Maxwell equations can be written as

∂µFµν = jν. (4.8)

The homogenous Maxwell equations are automatically satisfied because they were used to ex-
press ~E and ~B in terms of the potentials. Indeed they correspond to the Bianchi identity

∂[µFνρ] = 0, (4.9)

where [ ] denotes all cyclic permutations. Note that ∂µ jµ = 0 follows as a consistency condition
because ∂ν∂µFµν = 0 since we contract the symmetric tensor ∂ν∂µ with the anti-symmetric
tensor Fµν.

• We stress again that Fµν and thus ~E and ~B are invariant under a local gauge transformation

Aµ(x)→ Aµ(x) + ∂µα(x). (4.10)

Configurations related by gauge transformations are physically equivalent. Gauge symmetries
merely denote a redundancy in the description of the system. To determine the true local physi-
cal degrees of freedom we must be sure to divide out by this redundancy. This will be the main
difficulty in quantising the system.

• The Maxwell equations follow as the equation of motion of Aµ from the action

S =

∫
d4x

(
−

1
4

FµνFµν − Aµ(x) jµ(x)
)

. (4.11)

Note that S is gauge invariant if and only if ∂µ jµ = 0. The equation of motion can be rewritten
as

�Aµ − ∂µ(∂νAν) = jµ. (4.12)

• Due to gauge invariance we can always pick Aµ such that

∂µAµ = 0. (4.13)
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This partially fixes the gauge in Lorenz gauge, but we are still free to perform a residual gauge
transformation

Aµ → Aµ + ∂µφ with �φ = 0 (4.14)

without violating the Lorenz gauge condition. In Lorenz gauge the equation of motion is

�Aµ = jµ. (4.15)

• Lorenz gauge can be implemented by adding a Lagrange multiplier term in the action:

S =

∫
d4x

(
−

1
4

FµνFµν −
λ

2
(∂ · A)2 − Aµ jµ

)
. (4.16)

Therefore we now have two equations of motion, namely for Aµ

�Aµ − (1 − λ)∂µ(∂ · A) = jµ (4.17)

and for λ
∂ · A = 0, (4.18)

where by equation of motion for λ we mean that the variation of S with respect to λ is propor-
tional to ∂ · A.

4.2 Canonical quantisation of the free field

We now set the current jµ = 0 and consider the free gauge potential. The free non-gauge fixed
Lagrangian is

L = −
1
4

FµνFµν = −
1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ). (4.19)

It is not suitable for quantisation because the momentum density canonically conjugate to Aµ is

Πµ =
∂L

∂Ȧµ
= Fµ0, (4.20)

and since

Π0 = 0, (4.21)

(Aµ, Πµ) are no good canonical variables. Instead quantisation starts from the gauge fixed Lagrangian

L = −
1
4

FµνFµν −
λ

2
(∂ · A)2, (4.22)

with
Πµ = Fµ0 − ληµ0(∂ · A). (4.23)

We could proceed for a general Lagrange multiplier λ, but for simplicity we set

λ = 1 corresponding to Feynman gauge. (4.24)
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Explicitly the Lagrangian in Feynman gauge is

L = −
1
2
∂µAν∂µAν together with ∂ · A = 0. (4.25)

Since the Lagrangian multiplier λ has been integrated out by setting λ = 1, its equation of motion
∂ · A = 0 must now be imposed by hand as a constraint.

Note two important facts about the gauge fixed Lagrangian:

• The Langrangian L = − 1
2∂µAν∂µAν is simply the Lagrangian of 3 free massless scalars Ai,

i=1,2,3, but for µ = 0 the sign of the kinetic terms is wrong. This will be important in the
sequel.

• The extra constraint ∂ · A = 0 is a consequence of the underlying gauge symmetry of the system
and will ensure that a consistent quantization is possible despite the wrong sign for µ = 0.

The equation of motion for Aµ which follows from (4.25) is

�Aµ = 0 together with ∂ · A = 0. (4.26)

With (4.25) as a starting point, the canonical momentum density is

Πµ = −Ȧµ. (4.27)

We quantise the system by promoting Aµ and Πν to Heisenberg picture fields with canonical equal-
time commutators

[Aµ(t, ~x), Πν(t,~y)] = iδµνδ
(3)(~x −~y) (4.28)

and therefore
[Aµ(t, ~x), Ȧν(t,~y)] = − iηµνδ(3)(~x −~y),

[Aµ(t, ~x), Aν(t,~y)] = 0 = [Ȧµ(t, ~x), Ȧν(t,~y)].
(4.29)

As observed above there is an odd minus sign for µ = ν = 0. Despite this issue we proceed and
consider the mode expansion

Aµ(x) =
∫

d3 p
(2π)3

1√
2Ep

3∑
λ=0

εµ(~p, λ)
[
aλ(~p)e−ip·x + a†λ(~p)e

ip·x
]

, (4.30)

which is compatible with the equation of motion �Aµ = 0 as an operator equation provided

p2 = 0 ⇒ Ep = |~p|. (4.31)

Furthermore the vectors εµ(~p, λ), λ = 0, 1, 2, 3 are the 4 linearly independent real polarisation vectors
whose definition depends on the value of the lightlike vector pµ (satisfying p2 = 0). Our conventions
to define these are as follows: Let nµ denote the time axis such that n2 = 1.
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• εµ(~p, 0) ≡ nµ is the timelike or scalar polarisation vector.

• εµ(~p, i) for i = 1, 2 are called transverse polarisation vectors. They are defined via ε(~p, i) · n =

0 = ε(~p, i) · p and
ε(~p, i) · ε(~p, j) = −δi j. (4.32)

• εµ(~p, 3) is called longitudinal polarisation and is defined via ε(~p, 3) · n = 0 = ε(~p, 3) · ε(~p, i)
for i = 1, 2 and ε(~p, 3)2 = −1. Since p2 = 0 it can therefore be expressed as

ε(~p, 3) =
p − n(p · n)

p + n
. (4.33)

So altogether
ε(~p, λ) · ε(~p, λ′) = ηλ,λ′ . (4.34)

We stress that this basis of polarisation vectors depends on the concrete momentum vector p with
p2 = 0. Consider e.g. a momentum vector pµ = (1, 0, 0, 1)T , then

ε(~p, 0) =


1
0
0
0

 , εµ(~p, 1) =


0
1
0
0

 , εµ(~p, 2) =


0
0
1
0

 , εµ(~p, 3) =


0
0
0
1

 . (4.35)

The canonical commutation relations imply for the modes

[aλ(~p), a†λ′(~p
′)] = −ηλλ′(2π)3δ(3)(~p − ~p′) (4.36)

and
[aλ(~p), aλ′(~p′)] = 0 = [a†λ(~p), a†λ′(~p

′)]. (4.37)

Note again the minus sign for timelike modes λ = λ′ = 0.
The Hamiltonian is

H =

∫
d3x (−ȦµȦµ −L) =

1
2

∫
d3x

[
−ȦµȦµ + ∂iAµ∂iAµ

]
(4.38)

and in modes

H = −

∫
d3 p
(2π)3 |~p|

∑
λ

a†λ(~p)aλ(~p)ε
µ(~p, λ)εν(~p, λ)ηµν

=

∫
d3 p
(2π)3 |~p|

∑
i

a†i (~p)ai(~p) − a†0(~p)a0(~p)

 (4.39)

after dropping the vacuum energy. This leads to the following commutation relations (valid ∀λ)

[H, a†λ(~p)] = + |~p| a†λ(~p),

[H, aλ(~p)] = − |~p| aλ(~p).
(4.40)
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We define again the vacuum |0〉 such that aλ(~p) |0〉 = 0 and the 1-particle states

|~p, λ〉 :=
√

2Epa†λ(~p) |0〉 (4.41)

as the states of momentum ~p and polarisation λ. The corresponding particles are called photons.

Two crucial problems remain though:

• The previous analysis seems to suggest that the theory gives rise to 4 independent degrees
of freedom per momentum eigenstate, but from classical electrodynamics we only expect 2
transverse degrees of freedom.

• Timelike polarisation states have negative norm,

〈~p, 0| ~q, 0〉 ∝ 〈0| [a(~p, 0), a†(~q, 0)] |0〉 = −(2π)3δ(3)(~p − ~q). (4.42)

Such negative norm states are called ghosts and spoil unitarity.

4.3 Gupta-Bleuler quantisation

The two above problems arose because the quantisation procedure so far is incomplete: The point
is that the constraint ∂ · A = 0 has not been implemented yet. It is impossible to implement this
constraint as an operator equation for Heisenberg fields because then we would conclude

0 !
= [∂µAµ(t, ~x), Aν(t,~y)] =

[
Ȧ0(t, ~x), Aν(t,~y)

]
= iη0νδ(3)(~x −~y). (4.43)

The idea of the Gupta-Bleuler formalism is to implement ∂ · A = 0 not at the level of operators, but
directly on the Hilbert space, i.e. as a defining constraint on the so-called physical states. The naive
guess would be to require

∂ · A |φ〉 !
= 0 (4.44)

for |φ〉 to be a physical state. Let us decompose

A(x) = A+(x) + A−(x), (4.45)

with

A+(x) =
∫

d3 p
(2π)3

1√
2|~p|

∑
λ

ε(~p, λ)aλ(~p)e−ip·x,

A−(x) =
∫

d3 p
(2π)3

1√
2|~p|

∑
λ

ε(~p, λ)a†λ(~p)e
ip·x

(4.46)

so that the physical state condition would be

(∂ · A+ + ∂ · A−) |φ〉 !
= 0. (4.47)
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But this is still too strong because then not even the vacuum |0〉 would be such a physical state - after
all

∂ · A+ |0〉 = 0, but ∂ · A− |0〉 , 0. (4.48)

However, the milder constraint
∂ · A+ |φ〉

!
= 0 !

= 〈φ| ∂ · A− (4.49)

suffices to guarantee

〈φ| ∂ · A |φ〉 = 〈φ| (∂ · A+ |φ〉) + (〈φ| ∂ · A−) |φ〉 = 0. (4.50)

So in the spirit of Ehrenfest’s theorem the classical relation ∂ · A = 0 is realised as a statement about
the expectation value 〈φ| ∂ · A |φ〉 = 0 in the quantum theory.
To summarise: Out of the naive Fock space we define the physical Hilbert space by

φ ∈ Hphys ↔ ∂ · A+ |φ〉 = 0. (4.51)

This is the Gupta-Bleuler condition.

It suffices to construct the physical 1-particle states of definite momentum since Hphys is spanned by
the tensor product of these. Consider a state |~p, ζ〉, i.e. 1 photon of polarisation ζµ, where we define a
general polarisation 4-vector

ζµ =
∑
λ,λ′

αληλλ′ε
µ(~p, λ). (4.52)

The state |~p, ζ〉 is defined as

|~p, ζ〉 :=
√

2|~p|
∑
λ

αλa†λ(~p) |0〉 . (4.53)

Therefore
〈~q, ζ | ~p, ζ′〉 = −(2π)3 · 2|~p|δ(3)(~p − ~q)ζ · ζ′. (4.54)

The physical state condition ∂µA+µ |~p, ζ〉 !
= 0 implies that pµζµ = 0 because

∂µA+µ |~p, ζ〉 =
∫

d3q
(2π)3

√
2|~p|√
2|~q|

∑
λ

(−iqµ)εµ(~q, λ)e−iq·x aλ(~q)
∑
γ

αγa†γ(~p) |0〉︸                     ︷︷                     ︸
=−(2π)3 ∑

γ αγ ηλγδ
(3)(~p−~q)|0〉

= ipµζµ |0〉 .

(4.55)

Therefore
|~p, ζ〉 ∈ Hphys ↔ pµζµ = 0. (4.56)

Since p2 = 0 for a massless photon, such ζµ can be decomposed as

ζµ = ζ
µ
T + ζ

µ
S , (4.57)
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with ζS = c · p, ζ2
S = 0 and ~ζT · ~pT = 0, ζ2

T < 0,. So |~p, ζ〉 ∈ Hphys can be written as

|~p, ζ〉 = |~p, ζT 〉+ |~p, ζs〉 (4.58)

where

• |~p, ζT 〉 describes 2 transverse degrees of freedom of positive norm, ‖ |~p, ζT 〉 ‖ > 0,

• |~p, ζS 〉 describes 1 combined timelike and longitudinal degree of freedom of zero norm, ‖ |~p, ζS 〉 ‖ =

0.

For example consider

pµ =


1
0
0
1

 ⇒ ζT =


0
ζ1

ζ2

0

 , ζs = c


1
0
0
1

 (4.59)

and |~p, ζS 〉 ∝ (a†0(~p) − a†3(~p)) |0〉. Up to now, the Gupta-Bleuler procedure has eliminated the neg-
ative norm states and left us with 3 polarisation states, but in fact one can prove the following theorem:

The state |~p, ζS 〉 decouples from all physical processes.

Such a zero-norm state that decouples from all physical processes is called spurious, hence the sub-
script S . The meaning of this decoupling of null states is as follows:

• For the free theory decoupling means that

〈~p, ζS | O |~p, ζS 〉 = 0 (4.60)

for all observables O. As an example it is easy to check that

〈~p, ζS |H |~p, ζS 〉 = 0. (4.61)

Without loss of generality we take pµ = (1, 0, 0, 1)T and |~p, ζS 〉 ∝ (a†0(~p) − a†3(~p)) |0〉 and
confirm 〈~p, ζS |H |~p, ζS 〉 = 0 by noting the structure of the Hamiltonian

H ∼
∑

i

a†i ai − a†0a0 (4.62)

and the relative minus sign in the commutation relations for timelike and spacelike modes.

Furthermore the spurious states decouple in the sense that |~p, ζS 〉 has zero overlap with |~p, ζT 〉

because ζS · ζT = 0.

• The decoupling statement becomes actually non-trivial in the presence of interactions: As long
as the interactions respect gauge invariance, a spurious state |~p, ζS 〉 decouples from the S -matrix
as an external (in or out) state. This follows from the Ward identities as will be discussed later.
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The conclusion is that only the 2 transverse polarisations are physically relevant as external states.
These have positive norm.
This does not mean that spurious states play no role at all:

• Spurious states do appear as internal states in S -matrix processes and are important for consis-
tency of the amplitudes.

• Spurious states are required to establish Lorentz-invariance of the theory because ζT may pick
up a spurious component ζS by going to a different Lorentz frame.

Let |ψS 〉 denote any multi-photon state constructed entirely out of spurious photons with polarization
ζS . Since it decouples in the above sense, we can add and substract it without affecting any physical
properties of a state. This establishes an equivalence relation onHphys:

|φ1〉 ∼ |φ2〉 if ∃ |ψs〉 : |φ1〉 = |φ2〉+ |ψS 〉 . (4.63)

This is the analogue of the residual gauge symmetry in classical theory: Indeed, one can show that1

〈ψs| Aµ(x) |ψs〉 = ∂µΛ(x) (4.64)

for a function Λ(x) with

�Λ(x) = 0. (4.65)

Therefore:

Adding |ψs〉 in |φ〉 → |φ〉+ |ψs〉 is the quantum version of the residual transformation

Aµ → Aµ + ∂µΛ with �Λ = 0 (4.66)

in Lorenz gauge.

A more general perspective on massless Spin 1 fields

Our starting point was not an arbitrary massless vector field Aµ(x), but the very specific gauge po-
tential that arises in Maxwell-theory. More generally we might ask: Given a general massless vector
field Aµ(x), how can we quantise it?

The definitive treatment of this question can be found in Weinberg, Vol. I, Chapter 8.1, which we
urgently recommend. Following this reference, the arguments are:

• By Lorentz invariance alone, any massless vector field Aµ(x) must describe precisely two he-
licity or polarization states (the two transverse degrees of freedom we found above).

1See Itzykson/Zuber, p.132 for a proof.
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• On general grounds one can show that Lorentz vector fields describing two polarization states
transform under a Lorentz transformation as

Aµ(x)→ Λµ
νA

ν(Λ−1x) + ∂µε(x, Λ) (4.67)

for a spacetime-dependent function ε(x, Λ). Therefore Lorentz invariance requires invariance
of the action under gauge transformations.

• The LagrangianL = −1
4 FµνFµν is the unique Lorentz invariant and gauge invariant Lagrangian

for a massless free vector field (i.e. up to quadratic order).

This proves the general statement:

Massless vector field theories must be gauge theories.

4.4 Massive vector fields

Theories of massive vector bosons on the other hand are consistent despite the lack of gauge invari-
ance: Consider the Lagrangian for "massive electrodynamics"

L = −
1
4

FµνFµν +
1
2
µ2AµAµ (4.68)

with the classical equation of motion, the so-called Proca equation,

∂µFµν + µ2Aν = 0. (4.69)

One can show that this Lagrangian is the unique Lorentz invariant Lagrangian for a free massive spin-
1 field (without any spin-0 components - see Weinberg I, 7.5 for a proof). The mass term explicitly
breaks gauge invariance. So it is not possible to arrange for ∂ · A = 0 by gauge-fixing. However, the
Proca equation implies

0 = ∂µ∂νFµν︸   ︷︷   ︸
=0

+µ2∂νAν ⇒ ∂ · A = 0. (4.70)

Thus, if m , 0, the constraint ∂ · A = 0 arises classically as a consequence of the equations of motion,
not of gauge invariance. In the quantum theory it can indeed be justified to impose ∂ · A = 0 as
an operator equation.2 The physical Hilbert space now exhibits 3 positive-norm degrees of freedom
corresponding to the polarisations

|~k, ζ〉 with ζµkµ = 0 and k2 − µ2 = 0. (4.71)

Since no residual gauge transformation is available, there is no further decoupling of one degree of
freedom. To summarise:

2See Weinberg I, 7.5 for details. The main difference to the massless theory is that Π0 ≡ 0 now poses no problems
because, unlike in the massless case, we can solve A0 for the spacelike degrees of freedom and simply proceed with the
quantisation of (Ai, Πi). In more sophisticated terms, the system is amenable to quantisation with Dirac constraints, see
again Weinberg.
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Massive vector fields have 3 physical degrees of freedom.
Massless vector fields have 2 physical degrees of freedom.

Some comments are in order:

• One might be irritated that the constraint ∂ · A = 0, which in this case rests on the equations of
motion, is imposed as a constraint in the quantum theory - quantisation must hold off-shell. For
the free theory this is not really a problem: We can take the classical on-shell relation ∂ · A = 0
as a motivation to simply declare the physical Hilbert space to consist of the transverse polari-
sations only, thereby defining the quantum theory. That this remains correct in the presence of
interactions rests again on the Ward identities, which, for suitable interactions, still guarantee
that the - now negative norm - states with polarisation ζ ∼ k decouple from the S-matrix. We
will discuss this in detail in the context of the Ward identities.

• The procedure for quantising the Proca action breaks down if we set µ → 0. A framework
where a smooth limit m→ 0 is possible is provided by the Stückelberg Lagrangian3

L = −
1
4

FµνFµν +
1
2
µ2AµAµ −

λ

2
(∂A)2. (4.72)

4.5 Coupling vector fields to matter

We would now like to couple a vector field Aµ(x) to a matter sector, e.g. a Dirac fermion or a scalar
field. Let us collectively denote the matter fields by φ and the pure matter action (excluding any term
involving the gauge fields) by S rest

matter[φ]. Then we would like to construct an action

S = S 0
A[A] + S int[A, φ] + S rest

matter[φ] (4.73)

that describes the coupling of this matter sector to a vector field Aµ(x) with free action (prior to
coupling) S 0

A[A] and interaction terms S int[A, φ]. Naively, we would think that we can simply write
down all possible Lorentz invariant terms in S int[A, φ] involving Aµ and φ and then organize these
as a series in derivatives and powers of fields, as we have done when writing down the most general
interaction for a scalar field. This time, however, S int[A, φ] is subject to an important constraint: It
must be chosen such that the successful decoupling of negative norm states and zero norm states (in
the case of a massless vector) in the free vector theory is not spoiled by the interaction. More precisely,
if we denote by

M = ζµ(k)Mµ (4.74)

the scattering amplitude involving an external photon of polarisation vector ζµ(k) and momentum k,
then consistency of the interaction requires - at the very least - that

kµMµ = 0. (4.75)

3Cf. Itzykson, Zuber, p. 136 ff. for details. Note that a priori this action does include spin-0 components in agreement
with the above claim that the Proca action is the most general action describing spin-1 degrees of freedom only.
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This is equivalent to the requirement that external photons of polarisation ζµ(k) = kµ decouple from
the interactions. As we will see this is necessary and also sufficient to ensure that if we start with
a physical photon state of positive norm, no negative or zero norm states (in the case of a massless
vector theory) are produced via the interaction.
Now, one can (and we will somewhat later in this course) prove very generally the following two
important theorems:

1.) The decoupling of unphysical photon states with polarisation ζµ(k) = kµ, i.e. equ. (4.75), is
equivalent to the statement that

δS int[A, φ]
δAµ

= − jµ (4.76)

for jµ the conserved current associated with a global continuous U(1) symmetry of the full action
S under which

φ(x)→ φ(x) − eα δφ(x), α ∈ R (4.77)

infinitesimally. Here we have rescaled the symmetry parameter α by a coupling constant e to com-
ply with later conventions. In particular, ∂µ jµ = 0 on-shell. This is the statement that the vector
theory must couple to a conserved current. That coupling to a conserved current is equivalent to
(4.75) is ensured by the Ward identities to be discussed in detail later in this course.

2.) If the vector theory is massless, i.e. if S 0
A[A] is invariant under the gauge symmetry

Aµ(x)→ Aµ(x) + ∂µα(x), (4.78)

then (4.76) is equivalent to the statement that the full action S is invariant under the combined
gauge transformation

φ(x)→ φ(x) − eα(x) δφ(x) Aµ(x)→ Aµ(x) + ∂µα(x), (4.79)

where in particular φ(x) now transforms under a local symmetry since we have promoted the
constant α appearing in (4.77) to a function α(x). This process of promoting the global continuous
symmetry (4.77) to a combined gauge symmetry as above is called gauging.

As indicated, for pedagogical reasons we postpone a proof of both these assertions and first exemplify
the consistent coupling of a massless vector theory to matter via gauging by discussing interactions
with a Dirac fermion and a complex scalar theory.

4.5.1 Coupling to Dirac fermions

Let us start with the free Dirac fermion action

S rest
matter =

∫
d4x ψ̄(iγµ∂µ −m0)ψ. (4.80)
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The only available vector Noether current of this action is due to the a priori global U(1) symmetry

ψ(x)→ e−ieαψ(x), ψ̄(x)→ ψ̄(x)eieα α ∈ R, (4.81)

where α ∈ R is the symmetry parameter and as above we have introduced a dimensionless coupling
constant e.
With the normalisation conventions of eq. (1.37), the corresponding Noether current is

jµ = e ψ̄γµψ and ∂µ jµ = 0 (4.82)

on-shell for ψ(x). As prescribed by the above theorem we proceed by gauging this global U(1)
symmetry. This means that we promote the global U(1) symmetry to a local one, i.e. we promote the
constant α ∈ R to a function α(x). Now the kinetic term is no longer invariant because

ψ̄(iγ · ∂ −m)ψ 7→ ψ̄eieα(x)(iγ · ∂ −m0)e−ieα(x)ψ

= ψ̄ (iγµ(∂µ − ie ∂µα(x)) −m0)ψ

= ψ̄(iγ · ∂ −m0)ψ+ [∂µα(x)] jµ(x).

(4.83)

However, we observe that the interaction term

ψ̄(iγµ∂µ −m0)ψ − Aµ jµ, jµ = eψ̄γµψ (4.84)

is invariant under the combined gauge transformation

ψ(x)→ e−ieα(x)ψ(x), Aµ → Aµ + ∂µα(x). (4.85)

Thus the interaction is gauge invariant off-shell and fully consistent. One can rewrite the interaction
in terms of the covariant derivative

Dµ := ∂µ + ieAµ. (4.86)

Under a combined gauge transformation

ψ(x)→ e−ieα(x)ψ(x), Aµ → Aµ + ∂µα(x) (4.87)

the covariant derivative transforms as

Dµψ(x)→ e−ieα(x)Dµψ(x). (4.88)

Thus the Lagrangian

L = −
1
4

FµνFµν + ψ̄(iγµDµ −m0)ψ = −
1
4

F2 + ψ̄(iγ · ∂ −m0)ψ − Aµ jµ, jµ = eψ̄γµψ (4.89)

is manifestly gauge invariant off-shell. In QED we set e = −|e| equal to the elementary charge of one
electron such that

Q a†s(~p) |0〉 = − |e| a
†
s(~p) |0〉 for an electron,

Q b†s(~p) |0〉 = + |e| b†s(~p) |0〉 for a positron,

.

(4.90)
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where Q is the Noether charge associated with jµ.

Let us stress that global and gauge symmetries are really on very different footings:

• A gauge symmetry is a redundancy of the description of the system.

• A global symmetry is a true symmetry between different field configurations.

Note furthermore that, by construction, the gauge symmetry (4.87) reduces for α(x) = α = const. to
the global symmetry

ψ→ e−ieαψ, A→ A, (4.91)

from which, in turn, charge conservation follows. In particular the appearance of a combined U(1)
gauge symmetry of the system matter plus gauge fields requires an underlying global U(1) symmetry
of the matter system.

4.5.2 Coupling to scalars

Conserved vector currents are available only for complex scalars. Put differently, real scalars are
uncharged. Let us therefore consider a complex scalar theory, whose action prior to coupling to the
Maxwell field reads

S rest
matter = ∂µφ

†(x)∂µφ(x) −m2φ†(x)φ(x). (4.92)

The Noether current of the free theory associated with the global U(1) symmetry φ → e−ieαφ with
α ∈ R is jµfree = ie (φ†∂µφ − (∂µφ†)φ).
The naive guess for the coupling to the gauge sector would therefore be

Lnaive
int = −Aµ jµfree. (4.93)

However - unlike in the fermionic case - this coupling does not exhibit off-shell gauge invariance
under

φ→ e−ieα(x)φ, Aµ → Aµ + ∂µα(x). (4.94)

Let us instead follow the general route of replacing the usual derivative ∂µφ by the covariant derivative

Dµφ(x) = (∂µ + ieAµ)φ. (4.95)

and consider the action

S =

∫
d4x

(
−

1
4

F2 + (Dµφ)
†Dµφ −m2φ†φ

)
. (4.96)

The interaction which follows by expanding Dµ = ∂µ + ieAµ is

S int[A, φ] = −
∫

d4x
(
ie(φ†∂µφ − (∂µφ†)φ)Aµ − e2AµAµφ†φ

)
. (4.97)



4.6. FEYNMAN RULES FOR QED 117

The last term quadratic in Aµ is required for gauge invariance and was missed in the naive guess (4.93).

To see what had gone wrong in the naive guess (4.93) note that for constant gauge parameter α ∈ R

the combined gauge transformation (4.94) reduces to a U(1) global symmetry of the full action (4.96).
One can check that the Noether current associated with this global U(1) symmetry of (4.96) is just

jµ = −2e2Aµφ†φ+ ie
(
φ†∂µφ − (∂µφ†)φ

)
= ie(φ†Dµφ − (Dµφ)†φ) (4.98)

and this does agree with the formula

δS int.[A, φ]
δAµ

= − jµ. (4.99)

The point is that in general the Noether current may itself depend on Aµ once the coupling to the
gauge field is taken into account because S int.[A, φ] may depend not just linearly on A. Therefore
merely writing −Aµ jµfree with jµfree the conserved current associated with S rest

matter only is in general not
the right thing to do.
We conclude that generally the correct way to define gauge invariant interactions is by replacing
∂µ → Dµ. This is called minimal coupling. In section 5.2 we will show that gauge invariance of
the combined matter and gauge sector is necessary and sufficient to define a consistent theory with in
particular consistent interactions.

4.6 Feynman rules for QED

We are finally in a position to study the interactions of Quantum Electrodynamics (QED), whose
Lagrangian is given by

L = −
1
4

FµνFµν −
λ

2
(∂ · A)2 + ψ̄(iγ · ∂ −m0)ψ − eAµψ̄γµψ. (4.100)

This theory describes the coupling of the Maxwell U(1) gauge potential to electro-magnetically
charged spin 1

2 particles of free mass m0.
The Feynman rules for the U(1) gauge field are simple to state:

• The Feynman propagator for the gauge field in Feynman gauge (λ = 1) can easily be computed
as

〈0|T Aµ(x)Aν(y) |0〉 = −ηµνD(0)
F (x − y)

∣∣∣∣∣∣
m2

0=0
=

∫
d4 p
(2π)4

−i ηµν

p2 + iε
e−ip·(x−y) (4.101)

by plugging in the mode expansion for the quantised spin 1 field in the Heisenberg picture and
proceeding as in the scalar field case.

• For completeness we note that for arbitrary λ the propagator is

〈0|T Aµ(x)Aν(y) |0〉 =
∫

d4 p
(2π)4

−i
(
ηµν + pµpν

p2 ( 1
λ − 1)

)
p2 + iε

e−ip·(x−y). (4.102)
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This is proven most easily in path-integral quantisation as will be discussed in detail in the
course QFT II.

• Graphically we represent the propagator of a gauge field as follows:

yg�gx
≡ −ηµν D(0)

F (x − y).

• To determine the Feynman rules we must go through the LSZ analysis for gauge fields. By
arguments similar to the ones that lead to the appearance of the spinor polarisation in the spin
1/2 case one finds that external photon states |~p, λ〉 come with polarisation factors

εµ(~p, λ) for ingoing
ε∗µ(~p, λ) for outgoing

 |~p, λ〉 (4.103)

Here we allowed for complex polarisation vectors.4

This leads to the following Feynman rules of QED:
To compute the scattering amplitude iM f i defined in equ. (2.165) of a given process we draw all
relevant fully connected, amputated Feynman diagrams to the given order in the coupling constant e
and read off iM f i as follows:

• Each interaction vertex has the form

� µ

(with the arrows denoting fermion number flow) and carries a factor −ieγµ,

• each internal photon line µgGg ν carries a factor − iηµν

p2+iε ,

• each internal fermion line faf with the arrow denoting fermion (as opposed to anti-
fermion) number flow carries a factor i(γ·p+m0)

p2−m2
0+iε

,

• momentum conservation is imposed at each vertex,

• we integrate over each (undetermined) internal momentum with the usual measure
∫ d4 p

(2π)4 ,

• each ingoing photon of polarisation λ carries a factor εµ(~p, λ)Z
1
2
A ,

each outgoing photon of polarisation λ carries a factor εµ∗(~p, λ)Z
1
2
A ,

• each ingoing fermion of spin s carries a factor us(~p)Z
1
2
e ,

each ingoing anti-fermion of spin s carries a factor v̄−s(~p)Z
1
2
e ,

4For instance, sometimes it is useful to consider ε±µ (p) = ± 1√
2
(εµ(p, 1)± i εµ(p, 2)) to describe photon states of circular

polarisation, which coincide with helicity ±1 states).
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• each outgoing fermion of spin s carries a factor ūs(~p)Z
1
2
e ,

each outgoing anti-fermion of spin s carries a factor v−s(~p)Z
1
2
e .

• The overall sign of a given diagram is easiest determined directly in the interaction picture. If
2 diagrams are related by the exchange of n fermion lines, then the relative sign is (−1)n. If we
are only interested in |iM f i|

2 this is often enough to determine the cross-section.

We will now give some important examples of leading order QED processes:

Electron scattering

Electron-scattering corresponds to the process

e−e− → e−e−. (4.104)

To leading order in the coupling e this process receives contributions from the two following fully
connected, amputated diagrams:

�t

p, s

q, r

p′, s′

q′, r′

−ieγν

−ieγµ

�t′

p, s

q, r

p′, s′

q′, r′

Figure 4.1: Leading order Feynman diagrams for electron scattering.

According to the Feynman rules

iM f i = (ie)2
[
ūr′(q′)γµur(q)

−iηµν
t2 + iε

ūs′(p′)γνus(p)

− ūs′(p′)γµur(q)
−iηµν

t′2 + iε
ūr′(q′)γνus(p)

]
,

(4.105)

where
q − t − q′ = 0 ⇒ t = q − q′ and t + p − p′ = 0 ⇒ p′ = p + q − q′ (4.106)

in the first diagram and
t′ = q − p′ and q′ = q − p′ + p (4.107)

in the second diagram. Note the relative minus sign between both diagrams due to the crossing fermion
line!
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Electron-positron annihilation

Electron-positron annihilation is the process

e+e− → 2γ. (4.108)

The two leading-order diagrams are

�t

q, r

p, s

q′, λ′

p′, λ

−ieγν

−ieγµ

�t′

q, r

p, s

q′, λ′

p′, λ

Figure 4.2: Electron-positron annihilation leading-order diagrams.

Then the Feynman rules yield

iM f i =(ie)2
[
v̄−r(q)γν

i(γt −m0)

t2 −m2
0 + iε

γµus(p)ε∗ν (q
′, λ′)ε∗µ(p′, λ)

+ v̄−r(q)γν
i(γt′ + m0)

t′2 −m2
0 + iε

γµus(p)ε∗ν (p′, λ)ε∗µ(q
′, λ′)

]
,

(4.109)

where momentum conservation implies

t = p − p′, t′ = p − q′, q′ = p − p′ + q, p′ = p − q′ + q. (4.110)

e+e−- scattering (Bhabha scattering)

The process

e+e− → e+e− (4.111)

is described by the leading order diagram 4.3.

Compton scattering

Compton scattering corresponds to

e− + γ → e− + γ (4.112)

with leading order diagram 4.4.
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��
Figure 4.3: Bhabha scattering at leading order.

��
Figure 4.4: Compton scattering at leading order.

Non-linearities

As an interesting new quantum effect, loop diagrams induce an interaction between photons. For
example, at one loop two photons scatter due to a process of the form

�
Figure 4.5: Photon scattering is not allowed in classical Electrodynamics, but it is in QED.

Such effects are absent in the classical theory, where light waves do not interact with each other due to
the linear structure of the classical theory. It is a fascinating phenomenon that such QED effects break
the linearity of classical optics. In high intensity laser beams, where quantum effects are quantitatively
relevant, such non-linear optics phenomena can indeed be observed.

4.7 Recovering Coulomb’s potential

As we have seen QED interactions are mediated by the exchange of gauge bosons. It is an interesting
question to determine the physical potential V(~x) induced by the exchange of such gauge bosons.
This will teach us how the concept of classical forces emerges from the QFT framework of scattering.
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To derive V(~x) the key idea is to consider the non-relativistic limit of the electron scattering process

e− + e− → e− + e− (4.113)

with distinguishable out-states corresponding to the Feynman diagram 4.6.

�
k

p

k′

p′

Figure 4.6: Electron scattering with distinguishable out-states.

This is then compared to the non-relativistic scattering process |~p〉 → |~p′〉 of two momentum eigen-
states off a potential V(~x).

• In non-relativistic quantum mechanics, the scattering amplitudeA(|~p〉 → |~p′〉) for scattering of
an incoming momentum eigenstate |~p〉 to an outgoing momentum eigenstate |~p′〉 in the presence
of a scattering potential V is computed in the interaction picture as

A(|~p〉 → |~p′〉) − 1 = 〈~p′| e
−i

∞∫
−∞

dt′VI(t′)
|~p〉 − 1 � −i 〈~p′|

∞∫
−∞

dt′VI(t′) |~p〉+ . . . ,

where we take the potential to be constant in time. As derived in standard textbooks on Quantum
Mechanics this equals to first order

A(|~p〉 → |~p′〉) − 1 = (2π)δ(Ep − Ep′)(−i) 〈~p′|V |~p〉 . (4.114)

This result goes by the name Born approximation and reads more explicitly in position space

A(|~p〉 → |~p′〉) − 1 = (2π)δ(Ep − Ep′)(−i)
∫

d3r V(~r) e−i(~p−~p′)·~r. (4.115)

• This is to be compared with the non-relativistic limit of∫
d3k
(2π)3 ei~k·~r0 〈p′, k′| S |p, k〉

∣∣∣∣∣∣
conn.

, (4.116)
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where 〈p′, k′| S |p, k〉

∣∣∣∣∣∣
conn.

is the connected part of the S-matrix element of the scattering process

(4.113). Here the idea is to identify the electron with momentum p and p′ with the scattering
states in the Quantum Mechanics picture and to view the other electron as a fixed target at ~r0 off

which |~p〉 scatters. The localisation of the fixed target at ~r0 in space is achieved by integrating
over all Fourier modes, hence explaining the factor

∫
d3k
(2π)3 ei~k·~r0 . Without loss of generality we

will set ~r0 ≡ 0 in the sequel. Recalling the connection between the S-matrix element and the
scattering amplitude iM, for which our Feynman rules are formulated, we find

〈p′, k′| S |p, k〉

∣∣∣∣∣∣
conn.

= (2π)4δ(4)(p f − pi)(−ie)2

×

[
ūr′(p′)γµur(p)

−iηµν
(p − p′)2 + iε

ūs′(k′)γνus(k)
]
.

(4.117)

• In the the non-relativistic limit we have m0 � |~p| and m0 � |~k| and thus approximate p �

(m0, ~p) +O(~p2). Then

ur(~p) =

√σµpµ ξr√
σ̄µpµ ξr

→ 
√
σ0m0 ξr√
σ0m0 ξr

 = √m0

ξr

ξr

 (4.118)

and

ūr′(~p′)γµur(~p)→

 2m0 δrr′ if µ = 0,
0 otherwise.

(4.119)

Furthermore (p − p′)2 = −|~p − ~p′|2 +O(|~p|4) and therefore in the non-relativistic limit

〈p′, k′| S |p, k〉

∣∣∣∣∣∣
conn.
' −i

e2

|~p − ~p′|2 − iε
(2m)2δ(E f − Ei)(2π)4δ(3)(~p f − ~pi). (4.120)

The factor (2m)2 is due to the different normalisation of momentum eigenstates in QFT and in
QM and must therefore be neglected in comparing the respective expressions for the amplitude.

Putting all pieces together we can now identify∫
d3r V(~r) e−i(~p−~p′)·~r =

e2

|~p − ~p′|2 − iε
. (4.121)

Thus the Coulomb potential is

V(~r) =
∫

d3q
(2π)3

e2

~q2 − iε
ei

≡qr cos(θ)︷︸︸︷
~q ·~r =

e2

4π2

∞∫
0

dq
q2

q2 − iε
eiqr − e−iqr

iqr

=
e2

4π2ir

∞∫
−∞

dq
q

(q +
√

iε)(q −
√

iε)
eiqr.

(4.122)
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Note that
√

iε = eiπ/4 √ε lies in the upper complex half-plane. We interpret the integral as a complex
contour integral in the complex upper half-plane because we can close the contour in the upper half-
plane as the contribution above the real axis vanishes in the limit |q| → ∞. We then pick up the residue
at q =

√
+iε and afterwards take the limit ε → 0. This leads to

V(~r) =
e2

4π2ir
2πi

√
iε

2
√

iε
ei
√

iεr

∣∣∣∣∣∣
ε=0

=
e2

4πr
. (4.123)

Since V is positive the potential for scattering of two electrons is repulsive as expected. If we replace
one e− by e+ and consider instead the process

e− + e+ → e− + e+, (4.124)

this amounts to replacing

ūr′(p′)γµur(p) by v̄r′(p′)γµvr(p)→

 2m0δrr′ if µ = 0,
0 otherwise.

(4.125)

However, a careful analysis of the scattering amplitude in the interaction picture shows that one picks
up one relative minus sign in the amplitude. Indeed, establishing the absolute sign of the amplitude
will be the task of Assignment 11. Thus we confirm the expected result that the potential mediated
by exchange of a spin-1 particle yields an attractive potential for oppositely charged particles and a
repulsive potential for identically charged particles.

4.7.1 Massless and massive vector fields

It is instructive to compare the interaction of massless and massive vector fields:

• The Coulomb potential due to exchange of a massless spin-1 particle leads to a long-range
force as the potential dies off only like 1/r. If on the other hand the exchanged spin-1 particle
is massive, the interaction is short-ranged. To see this suppose the photon has mass µ. All that
changes is a mass term in the phton propagator. Thus

V(~r) =
∫

d3q
(2π)3

e2

~q2 + µ2 − iε
ei~q·~r =

e2

4πr
e−µr. (4.126)

Therefore massive vector bosons lead to short-range forces of range ∼ 1
µ .

While the vector boson of QED is massless5, the weak nuclear forces in the Standard Model
are mediated by massive vector bosons (the three massive vector bosons W+, W− and Z of
spontaneously broken S U(2) gauge symmetry of mass of order 100 GeV). So this effect is

5A Yukawa-type deviation of the electromagnetic potential would be directly measurable and constrains the mass of the
photon to be below 10−14 eV, see E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26, 721-724 (1971). In
addition, a variety of cosmological and astrophysical constraints imply that the photon mass is at best 10−18eV, as reviewed
e.g. in http://arxiv.org/pdf/0809.1003v5.pdf
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indeed highly relevant in particle physics and explains why in everyday physics at distances
bigger than (100 GeV)−1 only the electromagnetic force can be experienced.6

• The concept of forces mediated by exchange bosons is not restricted to spin-1 theories.

If we replace the vector boson of QED by a scalar boson φ of mass µ we arrive at Yukawa
theory defined by

L =
1
2
∂φ2 −

1
2
µ2φ2 + ψ̄(iγµ∂µ −m0)ψ − eφψ̄ψ︸︷︷︸

Yukawa int.

. (4.127)

The Feynman rules are very similar to those in QED except for two important changes: First, the
interaction vertex carries no γµ factor and second the scalar boson propagator must be modified
from

−iηµν
p2 − µ2 + iε

→
i

p2 − µ2 + iε
. (4.128)

This amounts to a crucial sign change in the non-relativistic limit because

−iη00

−|~p|2 − µ2 + iε
→

i
−|~p|2 − µ2 + iε

. (4.129)

Combining these two changes yields the universally attractive Yukawa potential

V(r) = −
e2

4πr
e−µr. (4.130)

• Perturbative gravity can be understood at the level of field theory as a theory of massless spin-2
particles, the gravitons, whose exchange likewise yields a universally attractive force. Since the
gravitational potential is of the form 1/r (at least for conventional Einstein gravity), gravitons
must be massless.7

To summarise the potential induced by the exchange of bosons of different spin acts on fermions ( f )
and anti-fermions ( f̄ ) as follows:

f f f f̄ f̄ f̄

Spin 0 (Yukawa theory) attractive attractive attractive
Spin 1 (Gauge theory) repulsive attractive repulsive
Spin 2 (Gravity) attractive attractive attractive

6The remaining Standard Model forces mediated by the eight massless gluons of S U(3) gauge theory is also short-
ranged, but this is because of confinement.

7Current constraints imply that the graviton mass must be smaller than 10−20eV , see
http://arxiv.org/pdf/0809.1003v5.pdf.
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Chapter 5

Quantum Electrodynamics

5.1 QED process at tree-level

As an example for a typical tree-level QED process we compute the differential cross-section dσ
dΩ for

the scattering e+e− → µ+µ−. We describe both the electron/positron and the muon/anti-muon by a
Dirac spinor field of respective free mass me and mµ which we couple to the U(1) gauge field.

�
p

k′p′ q

k

e+

e−

µ+

µ−

Figure 5.1: e+e− → µ+µ− reaction.

In this protypical example and in many similar processes one proceeds as follows:

5.1.1 Feynman rules for in/out-states of definite polarisation

Apply the rules from the previous chapter and obtain:

iM(p, s; p′,−s′ → k, r; k′,−r′) = (ie)2v̄s′(p′)γµus(p)
−iηµν

q2 + iε
ūr(k)γνvr′(k′), (5.1)

where q = p + p′ = k + k′. Thus

iM =
ie2

q2 v̄s′(p′)γµus(p)ūr(k)γµvr′(k′). (5.2)

127
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5.1.2 Sum over all spin and polarisation states

Often we do not keep track of the polarisation states of in and out states but are interested in the
unpolarised amplitude-square

1
2

∑
s

1
2

∑
s′

∑
r

∑
r′

∣∣∣iM(p, s; p′,−s′ → k, r; k′,−r′)
∣∣∣2, (5.3)

where 1
2
∑

s
1
2
∑

s′ averages over the initial state polarisation as is appropriate if the incoming beam is
not prepared in a polarisation eigenstate. The sum

∑
r
∑

r′ over the final state polarisations is required
in addition if the detector is blind to polarisation. With

(v̄s′γ
µus)

∗ = u†s γ
µ†γ0†︸ ︷︷ ︸
=γ0γµ

vs′ = ūsγ
µvs′ (5.4)

one finds

1
4

∑
Spins

|M|2 =
1
4

e2

q4

 ∑
s,s′,r,r′

(ūsγ
µvs′)(v̄s′γ

νus)(v̄r′γµur)(ūrγνvr′)

 . (5.5)

Now we want to make use of the completeness relations∑
s

us(~p)ūs(~p) = γ · p + me∑
s

vs(~p)v̄s(~p) = γ · p −mµ.
(5.6)

To do so it is first useful to make the spinor indices explicit1, e.g.

ūsγ
µvs′ =

∑
A,B

(ūs)Aγ
µA

Bv B
s′ , (5.7)

which shows that the expression can be reordered as

1
4

∑
Spins

|M|2 =
1
4

e2

q4

[ ∑
s,s′,r,r′

us(p)Dūs(p)Aγ
µA

Bvs′(p′)Bv̄s′(p′)Cγ
νC

D

× vr′(k′)H v̄r′(k′)Eγ
E

µ Fur(k)F ūr(k)Gγ
G

ν H

]
=

1
4

e2

q4

[
tr
(
(γ · p −me)γ

µ(γ · p + me)γ
ν
)

× tr
(
(γ · k′ + mµ)γµ(γ · k −mµ)γν

)]
.

(5.8)

In order to proceed further we need to evaluate the traces over the γ matrices.

1Recall that the indices µ, ν are completely unrelated to the spinor indices, c.f. section 3.2.
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5.1.3 Trace identities

The following identities are very important to proceed further. We will prove them in general fashion
on exercise sheet 10. The only thing to do is: insert a 1 cleverly, e.g. γ5γ5 and use the properties of
the Clifford algebra as well as the cyclicity of the trace.

• trγµ = 0, because:

trγµ = tr γ5γ5︸︷︷︸
≡1

γµ = −trγ5γµγ5 = −trγµγ5γ5 = −trγµ. (5.9)

• The trace of an odd number of γ-matrices vanishes, since

trγµ1 ...γµn = trγ5γ5γµ1 ...γµn = (−1)ntrγµ1 ...γµn . (5.10)

• trγµγν = 4ηµν, because

trγµγν = tr(2ηµν − γνγµ) = 2ηµνtr1 − tr(γνγµ)︸   ︷︷   ︸
=trγµγν

. (5.11)

• Similarly one finds
trγµγνγργσ = 4

[
ηµνηρσ − ηµρηνσ + ηµσηνρ

]
. (5.12)

• trγ5 = 0 since
trγ5 = trγ0γ0γ5 = −trγ0γ5γ0 = −trγ5. (5.13)

• Likewise one can prove

trγ5γµ = trγ5γµγν = trγ5γµγνγσ = 0. (5.14)

• trγ5γαγβγγγδ = −4iεαβγδ, because the result must be antisymmetric in all indices and in partic-
ular

trγ5γ0γ1γ2γ3 = −i tr γ5γ5 = −4i. (5.15)

• Further useful identities are

γµγνγµ = −2γν.

γµγνγργµ = 4ηνσ,

γµγνγργσγµ = −2γσγργν.

(5.16)

Applied to the present case these identities yield

tr
[
(γρpρ −me)γ

µ(γσp′σ + me)γ
ν
]

= 4pρp′σ
(
ηρµησν − ηρσηµν + ηρνηµσ

)
−m2

e4ηµν + tr(odd number of γ’ s) ×me × ...

= 4
[
pµp′ν + pνp′µ − (p · p′ + m2

e)η
µν

] (5.17)
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and similarly

tr
[
(γ · k′ + mµ)γµ(γ · k −mµ)γν

]
= 4

[
k′µkν + k′νkµ − (k · k

′ + m2
µ)ηµν

]
. (5.18)

Since the ratio of mµ and me is about 200 we can drop me. Then altogether after a few cancellations

1
4

∑
Spins

|M|2 = 8
e4

q4

[
(p · k)(p′ · k′) + (p′ · k)(p · k′) + (p · p′)m2

µ

]
. (5.19)

5.1.4 Centre-of-mass frame

Switch to the c.o.m. frame and rotate the coordinate frame such that p points in ẑ-direction and p′ in
−ẑ-direction (see Figure 5.2).

�
p

p′

k′

k

Figure 5.2: Centre-of-mass frame, p in ẑ-direction.

Introducing the angle θ between p′ and k and taking the relativistic limit, i.e. m2
e � |~p|

2, yields

p =

 E
Eẑ

 , p′ =

 E
−Eẑ

 , k =

E
~k

 , ~k · ẑ = |~k| cos θ. (5.20)

Therefore

q2 = (p + p′)2 = 2p · p′ = 4E2,

p · k = E2 − E|~k| cos θ = p′ · k′,

p · k′ = E2 + E|~k| cos θ = p′ · k.

(5.21)

Plugging this in and eliminating |~k|2 using |~k|2 = E2 −m2
µ yields

1
4

∑
Spins

|M|2 = e4

1 + m2
µ

E2

+ 1 − m2
µ

E2

 cos2 θ

 . (5.22)

5.1.5 Cross-section

To this end recall the general formula for a 2-2 scattering event. For this we had derived the expression

dσ =
(2π)4

4EpEp′ |vp − vp′ |
dΠ2δ

(4)(p + p′ − k − k′)|M f i|
2 (5.23)
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with

dΠ2 =
d3k
(2π)3

d3k′

(2π)3

1
2Ek2Ek′

. (5.24)

Note that no factor of 1
2 is required here since µ+ and µ− are distinguishable. In the c.o.m. frame we

generally have

dΠ2(2π)4δ(4)(p + p′ − k − k′) =
d|~k||~k|2dΩ

(2π)34EkEk′
δ(Ecom − Ek − Ek′) (5.25)

with Ek =
√
|~k|2 + m2

k and Ek′ =
√
|~k|2 + m2

k′ and

d|~k|δ(Ecom − Ek − Ek′) =

 |~k|Ek
+
|~k|
Ek′

−1

. (5.26)

Then, altogether

dσ
dΩ

=
1

4EpEp′ |vp − vp′ |

|~k|
16π2Ecom

|M f i|
2. (5.27)

Note that, if all 4 particles had equal masses and the outstates were indistinguishable, this would
correctly reduce to the famous expression encountered earlier

dσ
dΩ

=
1
2!

1
64π2

1
s
|M f i|

2 (5.28)

with s = E2
com. Applied to the present case (5.27) yields, with

Ep = Ep′ = E =
1
2

Ecom , |vp − vp′ | = 2, (5.29)

the differential cross-section

dσ
dΩ

=
1

32π2

1
E2

com

|~k|
Ecom

1
4

∑
Spins

|M f i|
2. (5.30)

Introducing the fine-structure constant

α :=
e2

4π
∼

1
137

(5.31)

leaves us with

dσ
dΩ

=
α2

4E2
com

√
1 −

m2
µ

E2

1 + m2
µ

E2

+ 1 − m2
µ

E2

 cos2 θ

 (5.32)

for the differential cross-section. Thus for the total cross-section

σ =
4πα2

3Ecom

√
1 +

mµ

E2

1 + 1
2

m2
µ

E2

 . (5.33)

The first term reflects the purely kinematic and thus universal energy dependence, while the second
term represents the correction due to specifics of the QED interaction and is thus characteristic of the
concrete dynamics involved in this process.
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5.2 The Ward-Takahashi identity

Consider a QED amplitude M(k) involving an external photon of momentum kµ with k2 = 0 and
polarisation ξµ(k). We thus can write the scattering amplitude as

M(k) = ξµ(k)Mµ(k). (5.34)

Then the Ward-Takahashi identity for QED is the statement that

kµMµ(k) = 0. (5.35)

To appreciate its significance recall from Gupta-Bleuler quantisation that the constraint

∂ · A+ |ψphys〉 = 0 (5.36)

implies ζµkµ = 0 for states |k, ζ〉 ∈ Hphys. This left 2 positive norm transverse polarisations ζT and 1
zero norm polarisation ζs = k. (5.35) proves that the unphysical zero-norm polarization state |k, ζs〉

decouples from the S -matrix as an external state, as claimed.
(5.35) follows from a more general from of the Ward identity. Consider a theory with arbitrary spin
fields φa(x) with a global continuous symmetry

φa(x)→ φa(x) + εδφa(x), ε ∈ R, (5.37)

and a conserved Noether current jµ(x) such that classically

∂µ jµ = 0 (5.38)

holds on-shell. Then in the quantum theory the general Ward-Takahashi-identity is a statement
about current conservation inside a general n-point function:

0 = ∂µ 〈Ω|T jµ(x)φa1(x1)...φan(xn) |Ω〉

+ i
n∑

j=1

〈Ω| φa1 ...φ̂a j(x j)δφa j(x j)δ
(4)(x − x j)...φan(xn) |Ω〉 ,

(5.39)

where φ̂a j(x j) is omitted. (5.39) can be proven as follows:

• For definiteness and simplicity consider a scalar theory. For the free theory, the classical equa-
tion of motion is

δS
δφ(x)

:=
∂L

∂φ(x)
− ∂µ

∂L
∂(∂µφ(x))

= −(∂2 + m2)φ(x) = 0. (5.40)

This equation is satisfied by the Heisenberg quantum fields as an operator equation.
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• With the help of this operator equation, one finds that

(∂2
x + m2)i 〈0|Tφ(x)φ(x1) |0〉 = δ(4)(x − x1) (5.41)

for a 2-point-function. The δ-distribution occurs due to the action of ∂x0 on Θ(x− x0) appearing
in the time-ordering prescription symbolized by T . More generally one finds

(∂2
x + m2)i 〈0|Tφ(x)φ(x1)...φ(xn) |0〉

=
n∑

j=1

〈0|Tφ(x1)...φ̂(x j)δ
(4)(x − x j)...φ(xn) |0〉 .

(5.42)

This can be written as the Schwinger-Dyson equation

〈0|T
δS

δφ(x)
φ(x1)...φ(xn) |0〉 = i

n∑
j=1

〈0|Tφ(x1)...φ̂(x j)δ
(4)(x − x j)...φ(xn) |0〉 . (5.43)

• By Noether’s theorem, if φ(x) → φ(x) + εδφ(x) is a global continuous symmetry, then the
Noether current enjoys

∂µ jµ = −
(
∂L

∂φ(x)
− ∂µ

∂L

∂(∂µφ(x))

)
δφ(x) ≡ −

δS
δφ(x)

δφ(x) (5.44)

off-shell. Plugging this into the Schwinger-Dyson equation yields:

∂µ 〈0|T jµ(x)φ(x1)...φ(xn) |0〉

+i
n∑

j=1

〈0|Tφ(x1)...φ̂(x j)δφ(x)δ(4)(x − x j)...φ(xn) |0〉 = 0.
(5.45)

• In interacting theories the reasoning goes through - all that changes is that the equations of
motion involve extra polynomial terms due to the interactions, which however do not alter
the conclusions. This yields the corresponding statements about the full correlation functions
〈Ω| ... |Ω〉.

The Schwinger-Dyson equation and the Ward-identity show that the classical equation of motion and
current conservation hold inside the correlation functions only up to so-called contact terms, which
are precisely the extra terms we pick up if the insertion point x of the operator δS

δφ(x) or ∂µ jµ(x) coin-
cides with the insertion point x j of one of the other fields inside the correlator.

Caveat:
It is important to be aware that the n-point correlator 〈Ω| ... |Ω〉 involves in general divergent loop-
diagrams to be discussed soon. The Ward identity only holds if the regularisation required to define
these divergent intergrals respects the classical symmetry. We will see that for QED such regulators
can be found. On the other hand, if no regulator exists that respects the Ward-identity for a classical
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symmetry, this symmetry is anomalous - it does not hold at the quantum level. Such anomalies will
be studied in great detail in QFT II.

It remains to deduce (5.35) from (5.39):

• Following LSZ, the scattering amplitudeM(k) involving an external photon |kµ, ξµ(k)〉 and n
further particles is given by

〈 f | i〉 = iZ−1/2
A ξµ(k)

∫
d4x e−ik·x∂2

x... 〈Ω|T Aµ(x) ...︸︷︷︸
(n other fields)

|Ω〉 (5.46)

In Feynman gauge the full interacting QED Lagrangian reads

L = −
1
2
∂µAν∂µAν − Aµ jµ + ψ̄(iγ · ∂ −m0)ψ, jµ = eψ̄γµψ. (5.47)

The classical equation of motion for Aµ is

∂2Aµ = jµ (5.48)

and therefore
∂2

x 〈Ω|T Aµ(x)... |Ω〉 = 〈Ω|T jµ(x)... |Ω〉+ contact terms, (5.49)

where the contact terms include (n−1) fields inside 〈Ω| ... |Ω〉. Being correlators only of (n−1)
fields, these contact terms cannot have precisely n poles in the momenta of the n fields and thus
do not contribute to 〈 f | i〉 according to the LSZ formalism.

• Now we are left with

〈 f | i〉 = i Z−1/2
A ξµ

∫
d4xe−ik·x 〈Ω|T jµ(x)... |Ω〉 . (5.50)

For ξµ = kµ we find

kµ
∫

d4x e−ik·x 〈Ω|T jµ(x)... |Ω〉 = i
∫

d4x (∂µe−ik·x 〈Ω|T jµ(x)... |Ω〉

= − i
∫

d4x e−ik·x∂µ 〈Ω|T jµ(x)... |Ω〉 ,
(5.51)

where we used that surface terms vanish (because, as in LSZ, we are really having suitable
wave-packets in mind). According to (5.39) this is

0 + contact terms. (5.52)

Also in this case the contact terms do not contribute to 〈 f | i〉 because we are essentially trad-
ing one Aµ(x) field against one matter field δϕ(x) inside the correlator so that the resulting pole
structure is not of the right form, in and (5.35) is proven. �
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5.2.1 Relation between current conservation and gauge invariance

The proof of kµMµ(k) = 0 only requires that Aµ(x) couples to a conserved current in the sense that

S = S 0
A[A] + S int[A, φ] + S rest

matter[φ] (5.53)

with

δS int[A, φ]
δAµ

= − jµ (5.54)

the Noether current associated with a global continuous symmetry of the full interacting action S .

• For a massless vector theory, which, as a free theory, must always be gauge invariant, (5.54)
is in fact equivalent to invariance of the theory under combined gauge transformations of the
vector and the matter sector.

To prove that (5.54) implies gauge invariance, our point of departure is the existence of a global
continuous symmetry φ(x) → φ(x) + εδφ(x) with ε ∈ R constant, which leaves the full ac-
tion S invariant. If we perform instead a local transformation φ(x) → φ(x) + ε(x)δφ(x) with
varying ε(x), then δS is in general no longer zero. Since it vanishes for constant ε, δS must
be proportional (to first order) to ∂µε(x). In fact, Lorentz invariance implies that there ex-
ists a 4-vector j̃µ(x) such that δS =

∫
j̃µ∂µε(x) = −

∫
(∂µ j̃µ)ε(x). This identifies j̃µ with

jµ, the conserved current (because for ε constant, the Noether current has the property that
−

∫
(∂µ jµ)ε =

∫
( δSδφ δφε) ≡ δS - see equ. (5.44)). Now, since by assumption δS int

δAµ
= − jµ we

have
∫
( δS int
δAµ

+ jµ)∂µε(x) = 0. Writing S = S 0
A[A] + S int[A, φ] + S rest

matter[φ], the fact that S 0
A[A]

is gauge invariant for a massless vector theory implies that this is just the variation of S with
respect to the combined gauge transformation

Aµ → Aµ + ∂µε(x), φ(x)→ φ(x) + ε(x)δφ(x). (5.55)

The theory is thus gauge invariant.

To prove the other direction, suppose (5.55) leaves the action S 0
A[A] + S int[A, φ] + S rest

matter[φ]

invariant (where again S 0
A[A] is separately gauge invariant). Then there exists some conserved

jµ(x) such that
∫
( δS int
δAµ

+ jµ)∂µε(x) = 0, and we conclude (5.54).

To conclude, massless vector theories are consistent if and only if the vector couples to a
conserved current. This is the necessary and consistent condition for gauge invariance and for
the Ward identities.

• If we couple a massive vector, whose action is never gauge invariant, to a conserved current as
in (5.54), then kµMµ = 0 still holds. The fact that in a massive vector theory the Ward identities
are still satisfied provided that theory couples as in (5.54) is crucial for its consistency: Recall
that in a massive vector theory (k2 > 0), the negative norm states are the states

|kµ, ξµ〉 with ξµ = kµ. (5.56)
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Restriction to ζµ with ζµkµ = 0 removes these. This is only justified in the interacting theory
as long as no dangerous states |kµ, ζµ = kµ〉 are produced, as is guaranteed thanks to kµMµ = 0
for couplings to conserved currents.

5.2.2 Photon polarisation sums in QED

To evaluate the consequences of the Ward identities we can take, without loss of generality, the photon
4-momentum to be

kµ = k


1
0
0
1

 (5.57)

and consider the corresponding basis of polarisation vectors

εµ(k, 0) =


1
0
0
0

 , εµ(k, 1) =


0
1
0
0

 , εµ(k, 2) =


0
0
1
0

 , εµ(k, 3) =


0
0
0
1

 . (5.58)

The Ward identity kµMµ(k) = 0 then implies M0(k) = M3(k). In physical applications we often
need to sum over the two transverse polarisation vectors λ = 1, 2 of an external photon involved in a
scattering process. By the Ward identity this becomes

2∑
λ=1

|εµ(k, λ)Mµ(k)|2 =
2∑

λ=1

εµ(k, λ)ε∗ν (k, λ)Mµ(k)(Mν(k))∗ = |M1(k)|2 + |M2(k)|2

= |M1(k)|2 + |M2(k)|2 + |M3(k)|2 − |M0(k)|2

= −ηµνM
µ(k)(Mν(k))∗. (5.59)

Thus in sums over polarisations of the above type we can replace
∑2
λ=1 εµ(k, λ)ε∗ν (k, λ) by −ηµν. This

will be used heavily in deriving the Klein-Nishina formula for Compton scattering in the tutorials.

5.2.3 Decoupling of potential ghosts

So far we have merely shown that the zero-norm states with polarization kµ decouple from the S-
matrix and are thus not produced in scattering experiments. But what about the status of timelike
polarisation states, which correspond to the even more dangerous negative norm ghosts? Even if we
declare Hphys not to contain them, we must prove that no such states are created as outgoing states
from physical in-states in scattering processes. Otherwise the interactions would render the theory
inconsistent.2

2Note that this is only a question for massless vector fields. For massive vector fields the negative norm states are just
the photons with polarization kµ (as k2 > 0) and these obviously decouple by the Ward identity.
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In fact, it is again the Ward identity that guarantees that no ghosts are created as external states in
interactions. The argument relies on the relation

2∑
λ=1

εµ(k, λ)ε∗ν (k, λ)Mµ(k)(Mν(k))∗ = −ηµνMµ(k)(Mν(k))∗ (5.60)

derived above and is sketched as follows: It suffices to show that the restriction of the S-matrix S to
the space of transverse polarisations is unitary. This means that we lose no information by considering
only transverse in and out-states and thus guarantees that no unphysical states can be produced out
of transverse incoming states. Let P denote the projector onto these states of transverse polarisations.
The relation (5.60) amounts to the statement

S †PS = S †S . (5.61)

Since S †S = 1, this implies that (PS P)†(PS P) = P. This is precisely the statement that the restric-
tion of S to the state of transverse polarisation is unitary.

5.3 Radiative corrections in QED - Overview

We now enter a quantitative discussion of radiative corrections in Quantum Field Theory as exempli-
fied by loop corrections to QED. As we will see it is sufficient to study the following types of loop
corrections modifying the QED building blocks.

Corrections to the fermion propagator

We recall that the Feynman propagator of the free fermion field is

S F(x − y) =
∫

d4 p
(2π)4 e−ip(x−y) γ · p + m0

p2 −m2
0 + iε︸          ︷︷          ︸

≡ i
γ·p−m0+iε

. (5.62)

Taking into account corrections due to QED interactions we have instead

〈Ω|Tψ(x)ψ̄(y) |Ω〉 = yfaf x +f|af+f|aff|af+ . . .

≡ yfpf x.
(5.63)

Let

Af���
1PIf B ≡ −iΣ(6 p)AB (5.64)

denote the amputated 1PI diagram. By Dyson resummation the full propagator then takes the form

yfpf x =

∫
d4 p
(2π)4 e−ip(x−y) i

γ · p −m0 −
∑
(6 p) + iε

, (5.65)

where
∑
(6 p) is called self-energy of the electron.
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Corrections to the photon propagator

The Fourier transform of the photon propagator, denoted bygpg, derives by Dyson resum-
mation from the 1-PI diagram

µg���
1PIg ν ≡ iΠµν(q2) = self-energy of the photon or vacuum polarisation. (5.66)

Corrections to the interaction vertex

Loop corrections modifiy the cubic interaction vertex. We will find it useful to define an effective
vertex by summing up all loop-corrections. Schematically,

�p p′

µ

+�
µ

+... =�p p′

µ

' −ieΓµ(p, p′).

We will compute these corrections to 1-loop order. The diagrams will exhibit

• ultraviolet (UV) divergences from integrating the momenta of particles in the loop up to infinity
and

• infra-red (IR) divergences if the diagram contains massless particles - i.e. photons - running in
the loop.

The general status of these singularities is as follows:

• IR divergences in loop-diagrams cancel against IR divergences from radiation of soft, i.e. low-
energy photons and thus pose no conceptual problem.

• UV divergences require regularisation of the integral and can be absorbed in a clever definition
of the parameters via renormalisation.

5.4 Self-energy of the electron at 1-loop

At 1-loop order the electron propagator takes the form

〈Ω|Tψ(x)ψ̄(y) |Ω〉 = yfaf x + yf|af x︸           ︷︷           ︸
=

∫ d4 p
(2π)4

eip·(x−y)×(I)

(5.67)

where the integrand (I) is given by the diagram

(I) ≡ pfk|af p. (5.68)
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The photon in the loop carries momentum p − k. By means of the Feynman rules,

(I) =
i(γ · p + m0)

p2 −m2
0 + iε

(−iΣ2(6 p))
i(γ · p + m0)

p2 −m2
0 + iε

. (5.69)

The amputated 1-loop contribution corresponds to omitting the two outer fermion propagators and
is thus given by

iΣ2(6 p) = (−ie)2
∫

d4k
(2π)4γ

µ i(6 k +mo)

k2 −m2
0 + iε

γν
−iηµν

(p − k)2 + iε
. (5.70)

It will turn out that the integral is divergent near k = 0 if p → 0. This is an IR divergence. A
careful analysis reveals that it will cancel in all amplitudes against similar such IR divergences from
other diagrams involving soft photons and thus poses no harm. For the present discussion we could
just ignore it, but for completeness we introduce a ficticious small photon mass µ to regulate the IR
divergence:

iΣ2(6 p) = (−ie)2
∫

d4k
(2π)4γ

µ i(6 k +mo)

k2 −m2
0 + iε

γµ
−i

(p − k)2 − µ2 + iε
. (5.71)

The evaluation of such typical momentum integrals proceeds in 3 steps:

5.4.1 Feynman parameters

The integrand contains a fraction of the form 1
AB with A = (p − k)2 − µ2 + iε and B = k2 −m2

0 + iε.
It turns out useful to write this as 1

(...)2 and to complete the square in k. To this end we exploit the
elementary identity

1
AB

=

1∫
0

dx
1

(xA + (1 − x)B)2 . (5.72)

x is called a Feynman parameter. Applying this identity yields in the present case

1
AB

=

1∫
0

dx
1

(x((p − k)2 − µ2 + iε) + (1 − x)(k2 −m2
0 + iε))2

=

1∫
0

dx
1

(k2 − 2xk · p + xp2 − xµ2 − (1 − x)m2
0 + iε + x2 p2 − x2 p2)2

=

1∫
0

dx
1

(l2 − ∆ + iε)2 ,

(5.73)

where l = k − xp and ∆ = −x(1 − x)p2 + xµ2 + (1 − x)m2
0. Then

− iΣ2(6 p) = −e2

1∫
0

dx
∫

d4l
(2π)4

γµ(6 k +m0)γµ

(l2 − ∆ + iε)2 . (5.74)
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The term in the numerator can be simplified with the help of the gamma-matrix identity

γµγνkνγµ = (2ηµν − γνγµ)kνγµ = kµγµ(2 − γνγν) (5.75)

and, in d-dimensions, γµγµ = d. Therefore altogether (keeping d arbitrary for later purposes)

γµ(6 k +m0)γµ = (2 − d)(6 l +x 6 p) + dm0. (5.76)

Now for symmetry reasons ∫
d4l

(2π)4

lµ

(l2 − ∆)2 = 0 (5.77)

and thus, if d ≡ 4,

−iΣ2(6 p) = −e2

1∫
0

dx
∫

d4l
(2π)4

−2x 6 p +4m0

(l2 − ∆ + iε)2 . (5.78)

Remark: For more general loop integrals one makes use of the identity

1
A1...An

=

1∫
0

dx1...dxnδ(
∑

i

xi − l)
(n − 1)!

(x1A1 + ... + xnAn)n , (5.79)

which can be proven by induction.

5.4.2 Wick rotation

As we have seen, we encounter loop-integrals of the typical form
∫

d4l
(2π)4

1
(l2−∆+iε)n . This integral

would be relatively easy to perform if it were defined in Euclidean space. The Wick rotation relates it
to such a Euclidean integral.
Indeed, as the iε factors remind us, the l0 integral is in fact a complex contour integral along the real
axis. The value of this integral is unchanged if we deform the contour without hitting any pole. There-
fore we can rotate the contour by 90◦ counter-clockwise to lie along the imaginary axis. Introducing
the Euclidean 4-momentum lE = (l0E ,~lE) as

l0 = il0E , ~l = ~lE (5.80)

such that l2 ≡ −l2E ≡ −
∑

i(liE)
2, we can write the integral as

∫
d4l

(2π)4

1
(l2 − ∆ + iε)m = i(−1)m

∫
d4lE

(2π)4

1
(l2E + ∆ − iε)m

. (5.81)

Since we won’t need the iε any longer we can omit it at this stage. We can now peform the integral as
a spherical integral in R4.
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5.4.3 Regularisation of the integral

The integral

I4 =

∫
d4lE

(2π)4

1
(l2E + ∆)2

=

∞∫
0

|lE |
3d|lE |

(2π)4

∫
dΩ4

1
(|lE |

2 + ∆)2 (5.82)

is divergent due to integration over the UV region |lE | → ∞. To isolate the divergence we regularise
the integral. The 3 most common methods for regularisation are

• Momentum cutoff: Isolate the UV divergence as a divergence in the upper momentum limit Λ
by writing

∞∫
0

. . . = lim
Λ→∞

Λ∫
o

. . . . (5.83)

Following this procedure we can evaluate the integral in an elementary fashion as

I4 =

∫
dΩ4 lim

Λ→∞

∞∫
0

d|lE |

(2π)4

|lE |
3

(|lE |
2 + ∆)2

=

∫
dΩ4 lim

Λ→∞

1
2

∞∫
0

d|lE |
2

(2π)4

|lE |
2

(|lE |
2 + ∆)2

=

∫
dΩ4 lim

Λ→∞

1
2

1
(2π)4

[
∆

∆ + |lE |
2 + log(|lE |

2 + ∆)
]Λ2

l2=0

=

∫
dΩ4 lim

Λ→∞

1
2

1
(2π)4

[
log

(
Λ2

∆

)
− 1

]
.

(5.84)

The loop leads to a log-divergence as Λ → ∞. The problem is that this regularisation procedure
is not consistent with the Ward identities, as we will see when computing the photon propagator,
and is therefore not a useful regularisation method in QED.

• Dimensional regularisation (dimReg) is probably the most common method. We first evaluate
the integral in d dimensions; writing d = 4 − ε then isolates the divergence as a pole in ε as
ε → 0.

Let us therefore consider

Id =
ddlE

(2π)d

1
(l2E + ∆)2

=

∫
dΩd

(2π)3

∞∫
0

d|lE |
|lE |

d−1

(|lE |
2 + ∆)2 . (5.85)

The volume of the unit sphere in d-dimensions is∫
dΩd =

2πd/2

Γ( d
2 )

(5.86)

where

Γ(z) =
∫ ∞

0
dy yz−1 e−y (5.87)
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is the Euler Γ-function. This is because

(
√
π)d =


∞∫
−∞

dxe−x2


d

=

∫
dd xe−

∑d
i=1 x2

i

=

∫
dΩd

∞∫
0

d|x||x|d−1e−|x|
2

=

∫
dΩd

1
2

∞∫
0

d(x2)(x2)d/2−1e−x2
. �

(5.88)

The Γ-function has the properties

– Γ(n) = (n − 1)! for n ∈N+ as can be shown by integration by parts.

– Γ(z) has analytic poles at z = 0,−1,−2,−3, ...; for a proof we refer to standard textbooks
on complex analysis.

Continuing with our integral we write

∞∫
0

d|lE |
|lE |

d−1

(|lE |
2 + ∆)2 =

1
2

∞∫
0

d|lE |
2 (|lE |

2)d/2−1

(|lE |
2 + ∆)2 (5.89)

and substitute
x =

∆
|lE |

2 + ∆
⇒ |lE |

2 =
∆
x
− ∆ (5.90)

with
dx = −d|lE |

2 ∆
(|lE |

2 + ∆)2 . (5.91)

Then the integral (5.89) becomes

=
1
2

(
1
∆

)2−d/2 1∫
0

dx x1−d/2(1 − x)d/2−1. (5.92)

As a last ingredient we need the Euler β-function

B(α, β) :=

1∫
0

dx xα−1(1 − x)β−1 =
Γ(α)Γ(β)
Γ(α+ β)

, (5.93)

where the last identity is non-trivial and proven again in textbooks on complex analysis.

We can rewrite (5.92) in terms of B(α, β) with α = 2 − d/2 and β = d/2. Together with
Γ(2) = 1 we arrive at

1
2

(
1
∆

)2−d/2 1∫
0

dx x1−d/2(1 − x)d/2−1 =
1
2

(
1
∆

)2−d/2

Γ(2 − d/2)Γ(d/2). (5.94)
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Therefore

Id =
ddlE

(2π)d

1
(l2E + ∆)2

=
1

(4π)d/2
Γ(2 − d/2)

(
1
∆

)2−d/2

. (5.95)

We now apply this to Id with d = 4 and note that we encounter a singularity from Γ(0). To
isolate the singularity we define

d = 4 − ε (5.96)

and would like to write I4 ∝ limε→0I4−ε . However I4 is dimensionless because

[lE ] = [mass], (5.97)

whereas I4−ε has dimension [mass]−ε . If we introduce a compensating mass scale M̃, we can
write

I4 = lim
ε→0

M̃εI4−ε = lim
ε→∞

M̃ε 1
4π2−ε/2

Γ(ε/2)
(

1
∆

)ε/2

= lim
ε→0

1
4π2 Γ(ε/2)

(
4πM̃2

∆

)ε/2

.

(5.98)

Finally we use

– Γ(ε/2) = 2
ε − γ+O(ε), where γ ≈ 0.5772 is the Euler-Mascheroni number and we refer

again to the complex analysis literature for a proof;

– xε/2 = 1 + ε
2 log(x) +O(ε2), which is just a Taylor expansion in ε since xε/2 = e

ε
2 log(x).

With this input

I4 = lim
ε→0

1
(4π)2

(
2
ε
− γ+ log

(
4πM̃2

∆

)
+O(ε)

)
(5.99)

and therefore

I4 = lim
ε→0

1
(4π)2

(
2
ε
+ log

(
M2

∆

)
+O(ε)

)
, (5.100)

where M2 = 4πe−γM̃2.

The final result for the electron self-energy at 1-loop is

−iΣ2(6 p) = (−i)
α

2π

1∫
0

dx ((2 − ε/2)m0 − (1 − ε/2)x 6 p)
(
2
ε
+ log

M2

∆

) ∣∣∣∣∣∣∣
ε→0

, (5.101)

where M is some as yet arbitrary mass-scale. We will understand its significance soon.

• Pauli-Villars (PV) regularisation: We subtract a diagram with a ficiticious massive particle in
the loop - here a photon - of mass Λ, i.e. we compute

pfk|af︸        ︷︷        ︸
involves i

(p−k)2−µ2+iε

− pfk|af︸        ︷︷        ︸
involves i

(p−k)2−Λ2+iε

. (5.102)
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Subtracting the second diagram subtracts the divergence because for infinite momenta the mass
of the particle in the loop becomes irrelevant and both diagrams asymptote to the same divergent
value. If Λ → ∞ the contribution of the subtracted vanishes and we recover the actual diagram.
The divergence reappears therefore as a divergence in Λ as Λ → ∞.

Subtracting both diagrams yields

−iΣ2(6 p) = lim
Λ→∞

(computation with µ − computation with Λ)

= ...

−iΣ2(6 p) = lim
Λ→∞

(−i)
α

2π

1∫
0

dx(2m0 − x 6 p) log
(

xΛ2

∆

)
,

(5.103)

where the omitted steps are elementary and similar to the integration performed in (5.84). We
can rewrite this by introducing again an arbitrary mass scale M as

−iΣ2(6 p) = lim
Λ→∞

(−i)
α

2π

1∫
0

dx(2m0 − x 6 p)
(
log

(
xΛ2

M2

)
+ log

(
M2

∆

)) ∣∣∣∣∣∣∣
Λ→∞

(5.104)

Comparing (5.101) and (5.104) we note that the momentum-dependent terms are in both regu-
larisation approaches the same, while the 1

ε -divergence in dimReg corresponds to a logarithmic
divergence in PV or in momentum cutoff regularisation.

5.5 Bare mass m0 versus physical mass m

Before dealing with the UV divergence of the electron-propagator, let us recall the non-perturbative
information encoded in the 2-point function. By the Källén-Lehmann spectral representation we have∫

d4x eip·x 〈Ω|Tψ(x)ψ̄(0) |Ω〉 =
i

6 p −m0 − Σ(6 p)
!
=

iZ2

6 p −m
+ terms analytic at m. (5.105)

The physical mass m is the location of the lowest-lying analytic pole and can thus be computed by
solving

6 p −m0 − Σ(6 p)
∣∣∣
6 p=m = 0, (5.106)

while the wavefunction renormalisation of the electron - called Z2 - is the residue of the propagator at
6 p= m. To find this residue we perform a Taylor expansion of

f (6 p) :=6 p −m01 − Σ(6 p) (5.107)

around 6 p 0 = m · 1. Then

f (6 p) = f (6 p 0) + (6 p − 6 p 0)
d f
d 6 p

∣∣∣∣∣∣∣
6 p0

+O
(
(6 p − 6 p 0)

2
)

= 0 + (6 p −m · 1)
(
1 −

dΣ(6 p)
d 6 p

) ∣∣∣∣∣∣∣
6 p=m·1

+O
(
(6 p −m)2

)
.

(5.108)
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Therefore

res
[

1
6 p −m0 − Σ(6 p)

] ∣∣∣∣∣∣∣
6 p=m

=

(
1 −

dΣ(6 p)
d 6 p

)−1
∣∣∣∣∣∣∣
6 p=m

=: Z2 (5.109)

and thus

Z−1
2 = 1 −

dΣ(6 p)
d 6 p

∣∣∣∣∣∣∣
6 p=m

. (5.110)

We can now compute m to order α, where

Σ(6 p) = Σ2(6 p) +O(α2). (5.111)

Then to order α
m −m0 − Σ2(6 p= m) = 0 (5.112)

and thus
δm := m −mo = Σ2(6 p= m) +O(α2). (5.113)

Note that if we trade m by m0 in Σ2(6 p= m), the error will be O(α2) and thus we can also write

δm := m −mo = Σ2(6 p= m0) +O(α
2). (5.114)

In dimReg we find

m −m0 =
α

2π
m0

1∫
0

dx
(
(2 − x) +

ε

2
(x − 1)

) 2
ε
+ log

 M2

(1 − x)2m2
0 + xµ2

 (5.115)

and in PV

m −m0 =
α

2π
m0

1∫
0

dx(2 − x)

log
(

xΛ2

M2

)
+ log

 M2

(1 − x)2m2
0 + xµ2

︸                                              ︷︷                                              ︸
≡log

(
xΛ2

(1−x)2m2
0+xµ2

)
. (5.116)

Note that m − m0 > 0: This is because what we are computing is literally the self-energy of the
electron, i.e. the mass shift due to the (positive!) energy stored in its own electric field. Recall from
classical electrodynamics that also classically this quantity is divergent due to the pointlike structure
of the electron. Not surprisingly, the divergence remains in QED.3

Likewise we can compute Z2 to order α by evaluating (5.110) at order α, the result being

Z2 = 1 +
α

2π

1∫
0

dx
[
−x log

(
xΛ2

(1 − x)2m2 + xµ2

)
+ 2(2 − x)

x(1 − x)m2

(1 − x)2m2 + xµ2

]
+O(α2). (5.117)

3 Indeed, the fundamental reason for this divergence is because in QFT the fundamental objects are still pointlike, i.e.
they have no substructure. In string theory, on the other hand, the fundamental objects do have an intrinsic substructure (as
1-dimensional strings instead of points) and correspondingly this theory is free of UV divergences.
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5.5.1 Mass renormalisation

We thus encounter an obvious problem: m −m0 is divergent due to the UV divergence of the propa-
gator. What saves the day are the following crucial observations:

• Only m, the physical mass, is a physical observable. Namely m is the rest mass of an electron
as measured in experiments.

• By contrast, m0, the so-called bare mass, is merely a parameter that appears in the Lagrangian
and per se cannot be measured directly. Rather the Lagrangian produces for us, via the Feynman
rules, measurable quantities, the scattering amplitudes, which depend on m0.

This suggests the following solution to the divergence of δm: The divergence can be absorbed in the
definition of m0 by interpreting the equation (5.113) for δm as an equation for m0 in terms of the
measured physical mass m and the cutoff Λ or ε. Concretely in PV regularisation (to be specific)

m0 = m

1 − α

2π

1∫
0

dx(2 − x) log

 xΛ2

(1 − x)2m2
0 + xµ2


+O(α2) = m0(Λ). (5.118)

This means that we take the parameter m0 in the Lagrangian to be divergent. We compute scattering
amplitudes etc. in terms of this divergent object m0(Λ) and at the end plug in the above equation
for m0(Λ) to express everything via m. If through this procedure all physical quantities in the end
are independent of Λ, the theory is said to be renormalisable. Indeed QED is renormalisable.We will
discuss how one can see this more systematically later.
Rather than being systematic here, let us exemplify this in the following trivial example: Compute
the mass m at 1-loop. Well, this means we take the equation for m in terms of m0 at 1-loop and plug
in (5.118). Obviously we find m = m. This demonstrates that absorbing the divergence in the bare
mass comes at a price: We lose predicitivity for the physical mass. In other words, we must now take
m directly from experiment. In a renormalisable theory we retain, however, predicitivity for all but a
finite number of quantities.

5.6 The photon propagator

The building block to compute radiative corrections to the photon propagator is the 1PI amputated
diagram

νg�
q ���

1PI�g
q

µ := iΠµν(q). (5.119)

On general grounds we can make the following statements:

• By Lorentz invariance its tensorial structure can only depend on ηµν and qµqν.

• The Ward identity further implies transversality,

qµΠµν(q) = 0, (5.120)
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because we can view Πµν as a 1 − 1 scattering amplitude.4 Thus

iΠµν(q) =
(
ηµν −

qµqν

q2

)
f (q2). (5.121)

Note in particular that the Ward identity implies that no terms of the form qµqν

m2
0

or the alike arise
as these would destroy transversality.

• Finally, iΠµν(q) cannot have an analyic pole at q2 = 0,5 because this would require a single-
particle massless intermediate state (whose propagator vanishes at zero momentum), but no
such intermediate states occur for the 1 PI diagram relevant for the photon propagator.

��
Figure 5.3: Possible diagrams: The first loop carries only massive particles. In the second diagram the photon in the loop is

massless, but it does not arise as a single-particle due to the accompanying electron line.

Therefore,
iΠµν(q) =

(
q2ηµν − qµqν

)
Π(q2), (5.122)

such that Π(q2) is regular at q2 = 0. It is useful to define the projection operator onto momenta
orthogonal to qµ,

Pµν(q) = ηµν −
qµqν

q2 (5.123)

with
qµPµν(q) = 0 and Pµν(q)Pνρ(q) = Pµρ(q). (5.124)

By Dyson resummation the Fourier transform of the full propagator takes the form

gpg =gg +g���
1PIg+g���

1PIg���
1PIg+ ...

=
−i

q2(1 −Π(q2))

(
ηµν −

qµqν
q2

)
+
−i
q2

qµqν
q2 ,

(5.125)

where the final result follows with the help of (5.124) as will be discussed in the tutorial. Note that
this holds in Feynman gauge ξ = 1. In general gauge we would get6

gpg =
−i

q2(1 −Π(q2))

(
ηµν −

qµqν

q2

)
+ ξ
−i
q2

qµqν

q2 . (5.126)

4In fact, this argument applies to the fully resummed propagator rather than to Πµν(q). However, given the relation
between both via Dyson resummation it is not hard to see that the Ward identity carries over to qµΠµν(q) = 0 because it
must hold order by order in the coupling constant.

5To avoid confusion, think of computing the diagram for finite cut-off Λ or ε > 0. The statement is that apart from the
UV divergence as the cutoff is removed, iΠµν(q) exhibits no analytic pole at q2 = 0.

6We will see this via an easy path-integral proof in the course QFT 2.
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This identifies the ξ-dependent term as pure gauge. We can omit it by going to Landau gauge ξ = 0,
in which

gpg
∣∣∣∣∣∣
Landau

=
−i

q2(1 −Π(q2))

(
ηµν −

qµqν
q2

)
. (5.127)

This result has two important consequences:

• Since Π(q2) is regular at q2 = 0 (again in the sense that for finite cutoff, there is no analytic
pole) the pole at q2 = 0 is unaffected by the radiative corrections. Thus the photon remains
massless as required by gauge invariance. This is a consequence of the Ward identity, which
had lead to this form of iΠµν(q).

• The photon field strength renormalisation is simply

Z3 =
1

1 −Π(0)
. (5.128)

To obtain the result at order α we procced in a similar manner as for Σ2(6 p). We denote by Π2(q2) the
1-loop contribution to Π(q2) (just like Σ2(6 p) denotes the 1-loop contribution to Σ(6 p)). To compute
Π2(q2) we must consider the diagram

νg�
q
cg�

q
µ (5.129)

and bring the result into the form (5.121) with Π2(q2) instead of Π(q2).
This computation is most conveniently carried out in dimensional regularization. We merely quote
the final result

Π2(q2) = −
2α
π

1∫
0

dx x(1 − x)
(
2
ε
+ log

M2

∆

) ∣∣∣∣∣∣∣
ε→0

, (5.130)

where ∆ = m2
0 − x(1 − x)q2.

To conclude this section we state without proof that if we were to compute the 1-loop corrected
propagator with a naive momentum cutoff

∫ ∞
0 dp →

∫ Λ
0 dp, then we would find a divergent term of

the form

iΠµν
2 (q) ∼ ηµνΛ2 + Pµν(...). (5.131)

This would violate qµΠµν(q) = 0 and thus the Ward identity. This shows, as claimed, that momen-
tum cutoff regularisation breaks gauge invariance and is thus not useful in QED. Note that from our
derivation of the Ward identities, it may not be completely obvious why cutoff regularization leads to
a breakdown of the Ward identities. Next term we will get to know a very simple derivation of the
Ward identities in the path integral quantization approach and interpret the breakdown of the Ward
identities as due to the fact that the cutoff-regularised measure of the path integral is not invariant
under the U(1) symmetry of the classical action.
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5.7 The running coupling

Radiative corrections to the photon propagator are responsible for an important phenomenon in QED,
the running of the electric coupling. To see this we consider a scattering process with an intermediate
photon of the form

�q q

Taking into account the appearance of e0 at each vertex, it is clear that the amplitude involves a factor
of

(−ie0)2

1 −Π(q2)

−i(ηµν − qµqν/q2)

q2 . (5.132)

We can absorb the correction term (1 −Π(q2))−1 into the coupling and define an effective coupling

e(q2) :=
e0√

1 −Π(q2)
. (5.133)

This obviously depends on q2, the energy transferred by the photon in the scattering process. When
measuring the physical charge of an electron, we therefore need to specify the energy scale at which
the measurement is performed. Let us define the physical coupling or renormalised charge as the
effective charge as measured at q2 = 0, i.e.

e := lim
q2→0

e(q2) =
e0√

1 −Π(0)
= e0

√
Z3. (5.134)

Note that Π(0) is a divergent constant. E.g. at 1-loop in perturbation theory it takes the form in
dimensional regularisation

Π(0) = Π2(0) +O(α2) = −
2α
π

1∫
0

dx x(1 − x)

2
ε
+ log

M2

m2
0

+O(α2). (5.135)

Note that at this order in α, m0 and m can be exchanged (because the difference is itself of O(α)).
We proceed as we did when defining the physical electron mass and absorb the divergence into the
definition of the bare coupling e0. This can be done because only e is a physical observable, whose
finite value we take from experiment. We define the bare coupling as

e0 = e
√

1 −Π(0) ≡ e0(Λ) or e0(ε), (5.136)

depending on the regularisation method we used (Pauli-Villars or dimensional regularisation). The
effective coupling at energy q2 is therefore

e2(q2) =
e2

0

1 −Π(q2)
=

e2
0

1 −Π2(q2)
+O(α2) =

e2(1 −Π2(0))
1 −Π2(q2)

+O(α2), (5.137)
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where 1 −Π2(0) = 1
1+Π2(0)

+O(α2). Thus

e2(q2) =
e2

1 − (Π2(q2) −Π2(0))
+O(α2), (5.138)

where e2 ≡ e2(q2 = 0) is the physical charge at q2 = 0. We conclude that the effective coupling at
q2 , 0 is

e2(q2) =
e2

1 − Π̂2(q2)
+O(α2), (5.139)

with Π̂2(q2) = Π2(q2) −Π2(0) finite and independent of Λ. Concretely,

Π̂2(q2) = −
2α
π

1∫
0

dx x(1 − x) log
(

m2

m2 − x(1 − x)q2

)
. (5.140)

The effective coupling of QED increases logarithmically with the energy scale at which the experiment
is performed. The physical interpretation of this is that the charge of an electron is screened by virtual
e+e− pairs so the effective charge decreases at long distance corresponding to small energy. Thus the
QED vacuum appears like a polarisable medium. This explains the name vacuum polarisation for
the radiatively corrected photon propagator.

A comment on the Landau pole

Note that from this analysis, the effective coupling increases indefinitely as we increase the energy.
This phenomenon is called the Landau pole of QED and casts doubt on the validity of the theory at
arbitrarily high energies. We will find in QFT II that suitable non-abelian gauge theories such as QCD
exhibit precisely the opposite phenomenon: they become asymptotically free and are thus perfectly
well-defined in the UV. One proposed solution to the Landau pole problem of QED is therefore that
the electromagnetic gauge group, which is part of the Standard Model, might in fact emerge as part of
a unified non-abelian gauge group, whose dynamics takes over at high energies.

5.8 The resummed QED vertex

We define the amputated resummed cubic QED vertex as

�p

qp′

µ ≡ −ieoΓµ(p′, p)

amputated

For later purposes we point out that in diagrams with external fermions this resummed vertex is
dressed with suitable factors of Z2. For instance the amplitude associated with the diagram



5.8. THE RESUMMED QED VERTEX 151

�p k

q

p′

q

k′

is of the form

iM ∼ ū(p′) (−ie0 Z2 Γµ(p′, p)) u(p)
−i(ηµν − qµqν/q2)

q2(1 −Π(q2)
ū(k′) (−ie0 Z2 Γν(k′, k)) u(k). (5.141)

Perturbatively the cubic vertex can be expanded as

�p

qp′
µ +�p

qp′

p
µ +O(α2)

By Lorentz invariance and the Ward identity, which implies that

qµū(p′)Γµ(p′, p)u(p) = 0, (5.142)

one can show that it must take the form

Γµ(p′, p) = γµF1(q2) + i
S µνqν
2m0

F2(q2), (5.143)

where F1(q2) and F2(q2) are called form factors and S µν = i
4 [γ

µ, γν]. The form factors can be
computed perturbatively via loop-integrals. We merely quote the following results:

• F1(q2) is given by:

F1(q2) = 1 + δF1(q2) +O(α2), (5.144)

where δF1(q2) is a UV divergent function, which, e.g. in PV regularization, is given by

δF1(q2) =
α

2π

1∫
0

dx dy dz δ(x + y + z − 1)×

×

[
log

zΛ2

∆
+

1
∆
(1 − x)(1 − y)q2 + (1 − 4z + z2)m2

0

]
,

(5.145)

with ∆ = −xyq2 + (1 − z)2m2
0 + µ2z. Here µ shows up to regulate the IR divergences that will

cancel eventually.
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• For F2(q2) = 0 + δF2(q2) +O(α2) one finds in PV regularisation

δF2(q2) =
α

2π

1∫
0

dx dy dz δ(x + y + z − 1)
2m2

0z(1 − z)

∆
, (5.146)

which is finite. This finiteness of F2(q2) persists to all orders in perturbation theory.

In the limit p′ → p, i.e. q → 0, we expect the loop corrections to vanish, i.e. as far as the vertex
corrections are concerned e.g.

�p k

k′
p′

→�p k

k′

p′

Indeed one can show that
lim
q→0

Z2Γµ(p + q, p) = γµ . (5.147)

Note the appearance of the factor Z2 due to the external fermion legs, as pointed out before. We can
prove (5.147) in two ways:

• By direct inspection in perturbation theory one finds

Z2Γµ(p + q, p) = (1 + δZ2 +O(α
2))

(
γµ

(
1 + δF1(q2 +O(α2)

)
+ i

S µνqν
2m0

F2(q2)

)
= (1 + δZ2 + δF1(q2) +O(α2))γµ +

i
2m0

S µνqνF2(q2),
(5.148)

where δF1(q2) and δZ2 are related as

δF1(0) = −δZ2. (5.149)

This implies (5.147) because F2(q2) is finite.

• In fact one can prove (5.147) non-perturbatively via the Ward identities. One defines a quantity
Z1 by

lim
q→0

Γµ(p + q, p) = Z−1
1 γµ. (5.150)

As we will prove on Assignment 12, the Ward identities imply that Z1 = Z2 and thus

lim
q→0

Z2Γµ(p + q, p) = γµ. (5.151)

In turn this proves that the relation (5.149) must hold order by order in perturbation theory.
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5.8.1 Physical charge revisited

Since the cubic vertex contains information about the coupling strength, one might wonder whether
the structure of radiative corrections included in Γµ(p′, p) is consistent with our previous definition
of the effective coupling given in section (5.7) based only on the photon propagator.
To investigate this consider a typical fully resummed diagram of the form

�q q
∼
−ie0Γµ(p′,p)Z2√

1−Π(q2)

1
q2
−ie0Γµ(k′,k)Z2√

1−Π(q2)

As q2 → 0 we find Γµ(p + q, p) → γµZ−1
1 (see eq. (5.150)) and thus as q2 → 0 the amplitude

reduces to (ignoring polarizations of external fields)

−ie0√
1 −Π(0)

Z2

Z1
γµ

1
q2γµ

−ie0√
1 −Π(0)

Z2

Z1
. (5.152)

Since Z2/Z1 = 1 by the Ward identites, the physical charge at q2 = 0 is e0
√

Z3 as we found before.

5.8.2 Anomalous magnetic moment

It is very instructive to study the the non-relativistic limit of the radiatively corrected vertex and
compare the interactions it induces with quantum mechanical scattering amplitudes in Born’s approx-
imation. This analysis is performed in detail e.g. in Peskin-Schröder, p.187/188. The computation
shows, amongst other things, that the coupling of an electron to an external ~B-field is described, in the
non-relatvistic limit, by a potential

V(~x) = −~µ · ~B(~x), ~µ = g
e

2m
~S , (5.153)

where ~µ represents the magnetic moment of the electron and ~S denotes the quantum mechanical spin
operator. The Landé factor comes out as

g = 2((F1(0) + Z2 − 1) + F2(0)) = 2 + 2F2(0)︸  ︷︷  ︸
=O(α)

. (5.154)

The value g = 2 follows already from relativistic Quantum Mechanics, in which the Dirac equation is
interpreted as an equation for the wavefunction of the electron. Crucially, F2(0) yields QED loop cor-
rections to g = 2. These can be computed order by order in perturbation theory and are in impressive
agreement with experiment.
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5.9 Renormalised perturbation theory of QED

For a systematic treatment of UV divergent diagrams, it suffices to consider all amputated, 1PI UV-
divergent diagrams. All divergent diagrams in a QFT are given either by these diagrams or possibly
by diagrams containing these as subdiagrams.
In QFT II we will find a simple way to classify the divergent 1PI amputated diagrams in a given QFT.
Applied to QED, this classification will prove that in QED the UV divergent 1PI amputated diagrams
are precisely the three types of diagrams which we have studied in the previous sections:

g����
1PI�g, faf���

1PIfaf,�p
p + q

q1PI (5.155)

Let us recap their properties.

• At 1-loop order we have found the following structure of UV divergences:

iΠµν(q2) = i
(
ηµν −

qµqν

q2

)
Π2(q2). (5.156)

Expanding Π2(q2) as a Taylor series in q2 yields

Π2(q2) = c(1)0 log
Λ
M

+ finite ×O(q2). (5.157)

That is, the UV divergence appears at order (q2)0 and is characterized by a constant coefficient
c(1)0 independent of q2.

The remaining two diagrams at 1-loop order have the following structure:

�

pp
−iΣ2(6 p) = a(1)o mo log Λ

M + a(1)1 6 p log Λ
M + finite terms

and

�p

q
p′ µ − iΓµ2(p′, p) = b(1)0 γµ log Λ

M + finite

Therefore the UV divergences are specified, at 1-loop order, by altogether 4 divergent constants.



5.9. RENORMALISED PERTURBATION THEORY OF QED 155

• In QFT II we will argue that this structure persists to all orders in perturbation theory, i.e.

−iΣ(6 p) = a0m0 log
Λ
M

+ a1 6 p log
Λ
M

+ finite ×O(6 p 2)

a0 = a(1)0︸︷︷︸
O(α)

+ a(2)0︸︷︷︸
O(α2)

+... a1 = a(1)1 + a(2)1 + . . .

Π(q2) = c0 log
Λ
M

+ finite ×O(q2) + ...

c0 = c(1)0 + c(2)0 + ...

iΓµ2(p′, p) =b0γ
µ log

Λ
M

+ finite ×O((p′ − p)2)

b0 = b(1)0 + b(2)0 + ...

(5.158)

Thus at each order in perturbation theory, we encounter 4 constants that multiply UV divergent terms
in the above 1PI diagrams. One can absorb these 4 divergent constants order by order in perturbation
theory by a procedure called renormalisation.
There are two different, but equivalent ways to perform this procedure, which we now discuss in the
context of QED.

5.9.1 Bare perturbation theory

So far we have worked in bare perturbation theory, which works as follows:

• We start with the bare Lagrangian
L = L0(e0, m0), (5.159)

where e0 and m0 are the so-called bare charge and mass.

• We compute the above three 1PI amputated UV divergent amplitudes to a given order in pertur-
bation theory as functions of e0 and m0 and a cutoff Λ or ε. We keep the cutoff Λ finite (or ε
non-zero) for the time being so that all computations are perfectly well-defined.

• From these amplitudes we deduce

m = m(m0, e0, Λ) as the physical electron mass,

e = e(m0, e0, Λ) as the physical coupling at q2 = 0
(5.160)

and also

Z2 = Z2(m0, e0, Λ), the wavefunction renormalisation of the electron

Z3 = Z3(m0, e0, Λ), the wavefunction renormalisation of Aµ.
(5.161)

• The renormalisation step amounts to interpreting (5.160) as an equation for the bare mass m0

and the bare coupling e0 in terms of the finite physical quantities m and e, i.e. we write

m0 = m0(e, m, Λ), e0 = e0(e, m, Λ). (5.162)
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Thus 2 linear combinations of the 4 UV divergent constants are now contained in m0 and e0.
We plug the expression for e0 and m0 back into L. The resulting renormalized Lagrangian is
now cuttoff dependent,

L = L(e0(m, e, Λ), m0(m, e, Λ)) (5.163)

and in particular divergent if we take Λ → ∞. This is not a problem because the Lagrangian
per se has no physical meaning - only physical observables computed from L must be finite to
make sense.

The remaining 2 linear combinations of divergent constants which are not contained in m0 and
e0 are contained in the expressions for Z2, Z3. Even though these do not appear in L in the
present formulation, they enter the computation of scattering amplitudes via the Feynman rules.

• We now compute a given observable from L in perturbation theory to given order as functions
of e0 and m0, Z2, Z3 and Λ. The UV divergent terms in Λ cancel in all final expressions and all
observables are finite expressions of m and e plus terms in Λ which vanish as we take Λ → 0.
For this to work it is crucial that we compute the observable to the same order in perturbation
theory to which we have computed (5.160) and (5.161). E.g. if we evaluate (5.160) and (5.161)
at 1-loop order, then we must compute all remaining scattering amplitudes to 1-loop order as
well.

• At the very end we take Λ → ∞ or ε → 0. All observables remain finite.

The cancellation of Λ works because in all amplitudes we have just the correct numbers of Z2, Z3 etc.
so that all divergences drop out. Rather than give a general proof we demonstrate this for one of the
diagrams contributing to Compton scattering, including radiative corrections:

�p p

Z1/2
3

Z1/2
2

Z1/2
3

Z1/2
2

Ignoring boring polarisation factors, we can organize the amplitude as follows:

(Z1/2
3 ie0ΓµZ2)

1
Z2

i
6 p −m0 − Σ(6 p)

(Z1/2
3 ie0ΓµZ2). (5.164)

We note the following crucial points:

• e0Z1/2
3 = e is finite.
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• Γµ(p + q, p)Z2 is also finite. To see this recall that divergence in Γµ(p + q, p) arises as the
q2-independent term as parametrized in (5.158) and is thus already contained in limq2→0Γµ(p+
q, p). Since Z2 is independent of q2 it thus surfices to consider limq2→0Γµ(p + q, p)Z2. But as
discussed around equ. (5.151) this is finite to all orders in perturbation theory by means of the
Ward identities.

Explicitly, this can be confirmed perturbatively from

Γµ(p + q, p) = γµF1(q2) + i
S µνqν
2m0

F2(q2). (5.165)

Concerning the second term, F2(q2) is finite as function of m0 and e0. To a given order in
perturbation theory we can replace e0 by e and m0 by m as the difference is relevant only at the
next order and thus the second term is finite, order by order in perturbation theory. Concerning
the first term,

F1(q2) = 1 + δF1(q2) +O(α2) (5.166)

with

δF1(q2) = δF1(0) + f (q2), (5.167)

where δF1(0) carries all UV divergences, while f (q2) is finite as a function of m0. Furthermore
we have

Z2 = 1 + δZ2 +O(α
2) (5.168)

and

Z2Γµ(p + q, p) = γµ(1 + δZ2 + δF1(0)︸           ︷︷           ︸
=0

+ f (q2) +O(α2) + ...finite). (5.169)

Therefore the divergence has cancelled out, because δF1(0) = −δZ2. This persists to all orders.

• What remains is the term

1
Z2

i
6 p −m0 − Σ(6 p)

=
1
Z2

(
iZ2

6 p −m
+ terms analytic at 6 p= m

)
. (5.170)

Crucially, the terms analytic at 6 p= m do not contain any divergence in the cutoff. This follows
from the Taylor expansion (5.108), according to which these terms are given by the second
derivative of Σ(6 p), together with the fact that in −iΣ(6 p) all terms quadratic in 6 p and higher are
UV finite. The Z2 factors in the first term cancel and the entire expression is finite.

Finally let us outline the generalization and consequences of this renormalisation procedure:

• Consider a general QFT. The theory is called renormalisable if only a finite number of re-
summed amputated 1PI diagrams is UV divergent.
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• Suppose the renormalisable QFT contains m different fields and suppose that the UV divergent
1PI diagrams give rise to n divergent constants order by order in perturbation theory. Then (n−
m) of these constants can be absorbed in the definition of (n −m) unphysical parameters, the
so-called bare couplings. This procedure requires specifying the outcome of (n −m) physical
observables as external input. The remaining m constants can be absorbed in the definition of
the kinetic terms of the m fields without reducing the predictability of the theory further.

• Thus in a renormalisable theory only a finite number (n −m) of physical observables must be
specified order by order in perturbation theory, and predictive power is retained for all remaining
observables, which can be computed and are finite as we remove the cutoff.

• However, the price to pay for the appearance of the UV divergences in the first place is that
the (n−m) observables cannot be computed by the theory even in principle!For instance, QED
cannot make any prediction whatsoever for the absolute value of the electron mass or the charge
at q2 = 0.7 As a result the renormalized QFT necessarily contains free parameters that must be
fitted to experiment. Another example for such an observable for which no prediction can be
made in a QFT with divergent partition function is the vacuum energy (cosmological constant).
From a modern and widely accepted point of view (introduced by K. Wilson), a non-UV finite,
but renormalisable QFT is an effective theory: The UV divergences hint at a breakdown of
the theory at high energies, where it does not describe the microscopic degrees of freedom
correctly. Renormalisation hides our ignorance about the true physics at high energies in
the (n −m) observables and we can fit the theory to experiment as one typically does with
a phenomenological model.

If we want to go beyond this and describe a truly fundamental (as opposed to effective) theory,
we need a theory that is UV finite even before renormalisation. As of this writing the only
known theory with this property which also includes gravity is string theory. It has indeed no
free parameters.

5.9.2 Renormalised Perturbation theory

An equivalent treatment is given by so-called renormalised perturbation theory. The aim is to
organise perturbation theory directly in the physical parameters m and e and without the need of
including Z2 and Z3 in the Feynman rules. This comes at the expense of certain divergent counterterms
in the renormalised Lagrangian. The systematics is as follows:

• Start again with the bare Lagrangian

L = −
1
4

F2 + ψ̄(i 6 ∂ −m0)ψ − e0ψ̄γ
µψAµ. (5.171)

7However, once we take e(q2 = 0) from experiment, QED does predict the logarithmic running of the effective charge
as a function of q2.
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• Recall that the 2-point functions are normalised such that

gpg =
−iZ3(ηµν + ...)

q2 + analytic terms,

fpf =
iZ2

6 p −m
+ analytic terms.

(5.172)

We can absorb Z2 and Z3 into the fields by renormalising the field strengths as

Aµ =: Z1/2
3 Aµr ,

ψ =: Z1/2
2 ψr

(5.173)

such that no factor Z2 and Z3 appears in the propagators of ψr and Aµr ,

〈Ω|T Aµr Aνr |Ω〉 ∼
−iηµν + . . .

q2 + ..., 〈Ω|Tψrψr |Ω〉 ∼
i

6 p −m
+ . . . (5.174)

We can write the same Lagrangian in terms of the renormalised fields as

L = −
1
4

Z3F2
r + Z2ψ̄r(i 6 ∂ −m0)ψr − Z2Z1/2

3 e0ψ̄rγ
µψrAµ. (5.175)

To compute an amplitude, we apply the Feynman rules but with m0 replaced by Z2m0 and e0

replaced by Z2Z1/2
3 e0, and no factors of Z1/2

2 or Z1/2
3 for external particles in the S-matrix. It is

important to appreciate that

Renormalising the field strengths does not change any physics if we modify the Feyn-
man rules accordingly.

• We can further rewrite this same Lagrangian as follows:

L =

(
−

1
4

F2
r + ψ̄r(i 6 ∂ −m)ψr − eψ̄rγ

µψrArµ

)
+

(
−

1
4
δ3F2

r + ψ̄r(iδ2 6 ∂ −δm)ψ − eδ1ψ̄rγ
µψrArµ

)
≡ L

(1)
r +L

(2)
r ,

(5.176)

where

δ3 = Z3 − 1, δ2 = Z2 − 1, δm = Z2m0 −m, δ1 =
e0

e
Z2Z1/2

3 − 1 =: Z1 − 1. (5.177)

This is only a rewriting of L in the form (5.175) by adding and subtracting L(1)
r . L(2)

r contains
the so-called counterterms. Note that we have defined Z1 by Z1e = e0Z2Z1/2

3 . At this stage m
and e are just arbitrary parameters to be fixed soon.

• The Feynman rules associated with the form (5.176) of the Lagrangian are now as follows:
Associated with L(1)

r are the usual Feynman rules, but with the correct couplings as appearing
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in L(1)
r :

νgag µ =
−iηµν

q2 + iε
(in Feynman gauge),

faf =
i

6 p −m + iε
in terms of m, not m0, (5.178)

� = −ieγµ, in terms of e, not e0.

The counterterms in L(2)
r give rise to additional diagrams (counterterm diagrams). Their

structure becomes evident if we view the terms in L(2)
r as extra couplings leading to amputated

diagrams. In deriving the Feynman rules note that a derivative ∂µ in position space will give
rise to a factor of −ipµ in the momentum space Feynman rules.

– Thus the counterterm

ψ̄r(iδ2 6 ∂ −δm)ψr (5.179)

gives rise to

fafxfaf ≡ i(6 p δ2 − δm). (5.180)

– The coupling of a photon to two fermions, i.e. −eδ1ψrγ
µψrArµ, gives rise to

− ieγµδ1. (5.181)

– The coupling of two photons

−
1
4
δ3FrµνF

µν
r = −

1
2
δ3Arµ(−η

µν∂2 + ∂µ∂ν)Arν (5.182)

gives rise to

− i(ηµνq2 − qµqν)δ3. (5.183)

We compute diagrams with the above rules and stress again that no factors of Z2 and Z3 appear
for external particles because these are already contained in the counterterms.

The above procedure is merely a reorganisation of perturbation theory. The result for an amplitude is
the same irrespective of whether the computation is performed

• either starting fromL as given in (5.171) with the original Feynman rules including all Z-factors
as before,

• or from L(1)
r +L

(2)
r in terms of Ar and ψr, including counterterm diagrams, and hence without

Z-factors for external particles.
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This reflects the ambiguity in setting up perturbation theory.
As an example, let us compute the relevant 1-loop 1PI diagrams using the renormalized Feynman
rules.

• The fully resummed propagator of the renormalised electron field takes the form

fpfr =
i

6 p −m − Σr(6 p)
. (5.184)

At 1-loop level, i.e. at order α in perturbation theory,

f���
1PIf|1−loop = −iΣr(6 p)|1−loop = −iΣ(1)

2 (6 p) + i(6 p δ2 − δm)|α. (5.185)

Here −iΣ(1)
2 (6 p) is computed from L(1)

r in terms of m and e, i.e. it has the form (5.101) with e0

and m0 replaced by e and m. The term i(6 p δ2 − δm) is due to the counterterm present in L(2)
r .

As we will see momentarily, δm and δ2 depend on α (as do the remaining counterterms δ1 and
δ3). At 1-loop level only terms up to and including order α are to be included.

• The photon propgator reads (in Landau gauge for simplicity)

νgpgr µ =
−i

(
ηµν +

qµqν
q2

)
q2(1 −Πr(q2))

. (5.186)

At 1-loop level, Πr(q2) is computed via

g���
1PIgr |1−loop = iΠµν

r (q)|1−loop = i(q2ηµν − qµqν)(Π(1)
2 (q2) − δ3|α) (5.187)

with Π(1)
2 (q2) computed from L(1)

r and δ3|α) the counterterm expanded up to order α.

• The full vertex is �p
p + q

q


r

= −ieΓµr (p + q, p). (5.188)

Again at 1-loop level it takes the form

−ieΓµr (p + q, p)|1−loop = −ieΓ(1)µ(p + q, p) − ieγµδ1|α. (5.189)

Finally the 4 counterterm couplings are fixed by the renormalisation conditions as follows:

• Two conditions arise becausefpfr and νgpgr µ must not involve Z-factors
at the physical mass poles. This is because we had defined ψr and Ar by this condition, i.e. we
had declared that in the renormalised Feynman rules no factors of Z2 and Z3 appear.

• Two more conditions arise by specifying the meaning of e and m. This is arbitrary in principle.
One possible choice (out of infinitely many) is that m represents the physical mass and e the
physical charge measured at q = 0.
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Combining all of these four conditions translates into the following equations:(
fpf

)
r

!
=

i
6 p −m

+ terms analytic at m. (5.190)

Therefore we find

Σr(6 p)

∣∣∣∣∣∣
6 pm

!
= 0 ↔ m is the physical mass (5.191)

and

1 −
d

d 6 p
Σr(6 p)

∣∣∣∣∣∣
6 p=m

= 1 ↔ residue is 1. (5.192)

Identifying e as the physical charge at q2 = 0 amounts to requiring that�p
p + q

q


r

= −ieΓµr (p + q, p)
!
−→
q→0
−ieγµ. (5.193)

Therefore

−ieΓµr (p, p) !
= −ieγµ . (5.194)

Note that (5.192) has already been used. The last condition is(
gpg

)
r

!
=
−iηµν

q2 + terms analytic at q = 0 (5.195)

and thus

1 −Πr(0)
!
= 1. (5.196)

The conditions (5.191), (5.192), (5.194) and (5.196) are the 4 renormalisation conditions. We can
solve these perturbatively, order by order in perturbation theory. At 1-loop order we find for

• condition (5.191)
Σ(1)

2 (m) − (m δ2 − δm)
!
= 0 (5.197)

and therefore

δm =m δ2 − Σ(1)
2

= m δ2 −
α

2π

1∫
0

dx
(
2 −

ε

2

)
m −

(
1 −

ε

2

)
x m

(
2
ε
+ log

M2

∆

)
,

(5.198)

• conditon (5.192)

δ2 =
d

d 6 p
Σ(1)

2 (6 p)

∣∣∣∣∣∣
m

, (5.199)

• condition (5.194)
δ1 = −δF(1)

1 (0), (5.200)
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• condition (5.196)

δ3 = Π(1)
2 (0) = −

2α
π

1∫
0

dx x(1 − x)
(
2
ε
+ log

M2

m2

)
. (5.201)

Thus indeed the counterms depend on α, as anticipated above.
To conclude the 1-loop renormalised Lagrangian takes the form

L =

(
−

1
4

F2 + ψ̄(i 6 ∂ −m)ψ − eψ̄γµψAµ

)
+

(
−

1
4
δ3F2 + ψ̄(iδ2 6 ∂ −δm)ψ − eδ1ψ̄γ

µψAµ

)
,

(5.202)

where we have dropped the subscript r for the renormalised fields. We summarize:

• e and m are finite quantities to be taken from experiment - the physical coupling and mass.

• δ1, δ2, δ3 and δm are cutoff-dependent functions, δi = δi(e, m, Λ) in PV (or δi = δi(ε, e, m) in
dimReg), which are divergent for Λ → ∞ (or ε → 0). Since we have renormalised to 1-loop
order, each δi so far is of O(α).

• When computing an amplitude, we take into account both the Feynman rules (5.178) and the
counterterms. Since we have computed the counterterms only to orderO(α) it is only consistent
to compute all other diagrams to that same order, where we must take into account that the δi

are of order O(α). Thus, as in the computation of the 1PI diagrams, a loop diagram is always
accompanied by a counterterm diagram, but to order α no counterterm diagrams appear inside
a loop (as this would be order α2).

• The Feynman rules (5.178) give rise to a divergent expression in terms of m, e, Λ. The counter
term coefficients δi(m, e, Λ) will precisely cancel these divergences. All physical amplitudes
are therefore independent of Λ in the end, so we can take Λ → ∞.

• If we wish to compute a quantity to order α2 we first need to compute the divergent 1PI terms
to order α2, and impose again the renormalisation conditions. In this computation we must take
into account, in addition to usual 2-loop diagrams from (5.178), also 1-loop diagrams on top of
O(α) counterterms, as well as diagrams involving only counterterms with coefficients expanded
to order α2. We will discuss this more systematically in a 2-loop example in QFT II.

• The perturbative cancellation of divergences works only because the counterterms are of the
same form as the terms in the bare Lagrangian, i.e. they do not introduce any qualitatively new
interactions. This is guaranteed because at each order in perturbation theory, no qualitatively
new UV divergent 1PI diagrams arise, but the same 1PI diagrams merely receive higher-loop
contributions. This leads to a readjustment of the counterterm coefficients order by order such
as to absorb the new divergences.
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The renormalisation scheme

• The renormalisation conditions (5.191) and (5.194) are arbitrary: We could define m and e to be
any function of the physical mass m or e, thereby changing the δi accordingly. This ambiguity
will cancel in all final amplitudes.

• Conditions (5.192) and (5.196) are fixed by the Feynman rules, which do not contain any Z-
factors. However, it is possible to change (5.192) and (5.196) if at the same time we modify
the Feynman rules accordingly. I.e. we can include arbitrary Z̃-factors for external states in the
Feynman rules, provided we change (5.192) and (5.196). This reflects our freedom in normal-
ising the fields in a manner consistent with the Feynman rules.

The concrete choice of renormalisation condition is called renormalisation scheme.

5.10 Infrared divergences

Loop diagrams with massless particles may exhibit infrared divergences from integration over loop
momenta k → 0.

• In QED at 1-loop order the IR divergent 1PI diagrams are

��
Indeed, we had introduced a small fictitious photon mass µ to regulate the IR divergences.

• These IR divergences cancel in all cross-sections against another source of IR divergences from
radiation of soft photons (Bremsstrahlung). Consider e.g.

�
k

�k
As k → 0 these processes are divergent. This is the case already in classical electrodynamics
and called infrared catastrophe of electrodynamics. The reason why this divergence is not
that catastrophic after all is that no detector can measure a photon below a certain threshold.
Thus we can include all possible Bremsstrahlung photons for k → 0 to a given process (because
as k → 0 the soft photons cannot be measured. It now so happens that the resulting infrared
divergences precisely cancel the IR divergences from the above loop diagrams oder by order in
α, in the cross-section σ. For details we refer to Peskin-Schröder 6.1, 6.4, 6.5.



Chapter 6

Classical non-abelian gauge theory

6.1 Geometric perspective on abelian gauge theory

We had approached U(1) gauge symmetry from the perspective of massless vector fields:

• A consistent Lorentz invariant quantum theory of free massless spin-1 field Aµ(x) must be a
gauge theory - see our discussion around equ. (4.67) based on Weinberg I, 8.1.

• At the level of interactions consistency requires that Aµ(x) couples to a conserved current jµ(x).
This is equivalent to the gauging of a global symmetry in the matter sector - see our discussion
around (5.54) .

An alternative perspective on U(1) gauge symmetry is as follows:

• Start from a matter theory with a global U(1) symmetry, e.g.

L = ψ̄(i 6 ∂ −m)ψ, (6.1)

which is invariant under ψ(x) 7→ e−ieαψ(x) for constant α ∈ R.

• In a local QFT it is natural to consider local symmetries, i.e. to promote this to a local transfor-
mation

ψ(x) 7→ e−ieα(x)ψ(x) =: U(x)ψ(x). (6.2)

The logic behind such a modification is that a symmetry transformation at spacetime point y far
away from x should not affect the field at x. Note that in QFT global symmetries, though, from
this perspective, unnatural, are of course fully consistent. By contrast, it is conjectured that in
presence of gravity all symmetries must be local and that no global symmetries exist. In any
case we are motivated to consider the consequences of the transformation (6.2).

• There is an immediate problem: The ordinary derivative ∂µψ(x), defined via

nµ∂µψ(x) := lim
ε→0

1
ε
[ψ(xµ + nµε) − ψ(x)] (6.3)

165
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is not a good object with respect to (6.2) because in (6.3) two objects with very different trans-
formation behaviour under (6.2) appear, i.e.

ψ(x) 7→ U(x)ψ(x), but ψ(x + nε) 7→ U(x + nε)ψ(x + nε). (6.4)

• To define a better notion of derivative we introduce the object C(x, y) - the so-called comparator
or Wilson line - such that under (6.2)

C(y, x)ψ(x) 7→ U(y)C(y, x)ψ(x). (6.5)

Then we can define the covariant derivative Dµψ via

nµDµψ(x) := lim
ε→0

1
ε
[ψ(x + nε) −C(x + nε, x)ψ(x)] . (6.6)

Its transformation under (6.2) is

Dµψ(x) 7→ U(x)Dµψ(x). (6.7)

• Let us now construct the Wilson line starting from the requirement (6.5), which implies that
under (6.2)

C(y, x) 7→ U(y)C(y, x)U−1(x). (6.8)

Furthermore we impose C(y, y) = 1 for obvious reasons. Note that for the U(1) symmetry
under consideration U(x) is a pure phase, and it thus suffices to take C(y, x) as a pure phase.
We will soon generalize this.

• Taylor expansion of C(y, x) yields

C(x + εn, x) = 1 − ieAµ(x)εnµ +O(ε2) (6.9)

for some vector field Aµ(x). Therefore

Dµψ = ∂µψ+ ieAµ(x)ψ(x). (6.10)

The transformation behaviour of the Wilson line is

C(x + εn, x) 7→ U(x + εn)C(x + εn, x)U−1(x) (6.11)

and to order ε therefore

1 − ieAµ(x)nµε 7→ (U(x) + εnµ∂µU(x)) (1 − ieAµ(x)nµε)U−1(x). (6.12)

Thus the vector field Aµ transforms as

Aµ(x) 7→ U(x)Aµ(x)U−1(x) +
i
e
∂µU(x)U−1(x). (6.13)

For U(x) = e−ieα(x) we recover Aµ(x) 7→ Aµ(x) + ∂µα(x) as expected.
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• The vector field Aµ(x) is therefore a direct consequence of the existence of a local symmetry. It
is called a connection. Aµ(x) is a local field and thus has dynamics in its own right.

• Consider [Dµ, Dν] interpreted as acting on ψ(x). Since

Dµψ(x) 7→ U(x)Dµψ(x) (6.14)

we have

[Dµ, Dν]ψ(x) 7→ U(x)[Dµ, Dν]ψ(x) = U(x)[Dµ, Dν]U−1(x)U(x)ψ(x) (6.15)

and thus
[Dµ, Dν] 7→ U(x)[Dµ, Dν]U−1(x). (6.16)

• The term

[Dµ, Dν]ψ(x) = [∂µ + ieAµ(x), ∂ν + ieAν(x)]ψ(x)

= ie
(
∂µAν(x) − ∂νAµ(x) + ie[Aµ(x), Aν(x)]

)
ψ(x)

(6.17)

leads to the definition of the field strength or curvature

Fµν :=
1
ie
[Dµ, Dν] = ∂µAν − ∂νAµ + ie[Aµ, Aν]. (6.18)

For our U(1) theory with U(x) = e−ieα(x),

Fµν = ∂µAν − ∂νAµ (6.19)

and Fµν is invariant under U(1). Therefore

L = −
1
4

FµνFµν + ψ̄(iγµDµ −m)ψ (6.20)

is invariant.

6.2 Non-abelian gauge symmetry

We now generalise all of this to a non-abelian symmetry group. Consider a Lie group H of dimension
dim(H). An element h ∈ H can be written as

H 3 h = exp

−ig
dim(H)∑

a=1

αa T a

 , (6.21)

where g ∈ R takes the role of e, αa ∈ R and T a form a basis of the Lie algebra Lie(H), i.e. the algebra
of infinitesimal group transformations. Viewed as an abstract Lie algebra, Lie(H) is determined by
the commutation relations

[T a, T b] = i f abcT c, (6.22)
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where a sum over c is understood. Without proof we state here that the structure constants f abc are
totally antisymmetric in the indices a, b, c and thus in particular invariant under cyclic permutations
of a, b, c.

For example:

• The Lie group H = U(1) has dim(H) = 1 and its generator is simply T a ≡ T ∈ R. Therefore
[T , T ] = 0 and H is an abelian Lie algebra.

• The Lie group H = S U(N), viewed as an abstract group, is defined as the group of volume-
element preserving linear transformations on CN which leave the sesqui-linear form

CN 3 u, v→ C : (u, v) 7→
N∑

i=1

ūivi (6.23)

invariant. We can identify H with the group of V ∈ CN,N such that

V† = V−1 and det V = 1 (6.24)

by assigning ∀h ∈ H a matrix V(h) as above. Lie(H) is then the algebra of T a ∈ CN,N such that

T a† = T a and trT a = 0. (6.25)

The dimension of Lie(H) is N2 − 1. For instance, the generators of H = S U(2) are typically
normalised to be

T a =
1
2
σa (6.26)

with a = 1, 2, 3 and σa the Pauli matrices. The structure constants of S U(2) are then

f abc = εabc. (6.27)

• Other Lie groups of relevance in physics include O(N), S O(N), S p(2N), E6, E7, E8. For exam-
ple, O(N) (S O(N)) is the group of (volume element preserving) linear transformations on RN

which leave the bilinear form uiδi jv j, i, j = 1, . . .N, invariant and can be identified with real
orthogonal N ×N-matrices (of determinant one). S p(2N) is the group of linear transformations
on R2N that leave the anti-symmetric symplectic form uiωi jv j, i, j = 1, . . . 2N invariant.

Consider now a matter Lagrangian with matter fields ψ(x) transforming in a unitary representation of
H such that L is invariant under global transformations

ψ(x) 7→ R(h) · ψ(x), R(h)† = R(h)−1 (6.28)

with h ∈ H. Two examples are the following:
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• Take H = S U(N) and ψ(x) a Dirac spinor field in the fundamental representation, i.e. we
consider a CN-valued spinor field such that, suppressing spinor indices,

∀x : ψ(x) ≡ ψi(x) =


ψ1(x)

...
ψN(x)

 , R(h) · ψ(x) ≡ Vi j(h)ψ j(x). (6.29)

The Lagrangian

L = ψ̄(i 6 ∂ −m)ψ =
N∑

i=1

ψ̄i(i 6 ∂ −m)ψi (6.30)

is invariant under a global S U(N) transformation (6.28) because

ψ̄(i 6 ∂ −m)ψ 7→ ψ̄R†(h)(i 6 ∂ −m)R(h)ψ = ψ̄R†(h)R(h)︸       ︷︷       ︸
=1

(i 6 ∂ −m)ψ. (6.31)

By the dimension of a representation we mean the dimension of the vector space in which the
matter field takes its value. The (complex) dimension of the fundamental representation of
S U(N) is thus N.

• Take H = S U(N), but ψ(x) now in the adjoint representation, i.e. we consider now a spinor
field valued in the Lie algebra Lie(H) viewed as a vector space. This means that, with spinor
indices suppressed,

∀x : ψ(x) ≡ ψi j(x) ∈
{
CN,N

∣∣∣ψ†(x) = ψ(x), trψ(x) = 0
}

(6.32)

and the transformation behavior is given by the adjoint action of the Lie group H on its Lie
algebra,

R(h) · ψ := V(h)ψV(h)−1 ≡ V(h)i jψ jk
(
V−1(k)

)
kl

,

R†(h) · ψ := V†(h)ψ
(
V−1(h)

)†
= V−1(h)ψV(h).

(6.33)

The real dimension of the adjoint representation coincides with dim(H).

Now consider

L = tr ψ̄(i 6 ∂ −m)ψ ≡ tr [ψi j(i 6 ∂ −m)ψ jl] ≡ ψi j(i 6 ∂ −m)ψ ji. (6.34)

This is invariant because

tr ψ̄(i 6 ∂ −m)ψ 7→ tr
(
(VψV−1)†γ0(i 6 ∂ −m)VψV−1

)
= tr

(
Vψ̄V†(i 6 ∂ −m)VψV−1

)
= tr

ψ̄ V†V︸︷︷︸
=1

(i 6 ∂ −m)ψV−1V︸︷︷︸
=1

 ,

(6.35)

where cyclicity of the trace was used to go from the second to the third line.
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We can now repeat all the steps involved in the gauging of U(1) in this more general setting. For
definiteness we work with a Dirac spinor field in the fundamental representation of S U(N). Consider
the gauge transformation

ψ(x) 7→ U(x)ψ(x) (6.36)

with

U(x) = exp

−ig
dim(H)∑

a=1

αa(x) T a

 ≡ V(h(x)). (6.37)

Now it turns out that the compensator must take values in the representation of H. It can therefore be
expanded as

C(x + εn, x) = 1 − ig
dim(H)∑

a=1

Aa
µ(x)T a ε nµ +O(ε2). (6.38)

This defines dimH vector fields Aa
µ(x). The object

Aµ(x) ≡
∑

a

Aa
µ(x) T a (6.39)

is then an N × N matrix-valued vector field. The covariant derivative takes the form

Dµψ(x) = ∂µ(x) + ig
∑

a

Aa
µ(x)T a ψ(x), (6.40)

where T aψ(x) ≡ T a
i jψ j(x). The gauge transformation on Aµ(x) is still

Aµ(x) 7→ U(x)Aµ(x)U−1(x) +
i
g
∂µU(x)U−1(x), (6.41)

but now U(x) Aµ(x)U−1(x) , Aµ(x). Expanding

U(x) = 1 − ig
∑

a

αa(x)T a +O(αa(x)2), (6.42)

one can read off that

Aµ(x) 7→ Aµ(x) + ∂µα
a(x)T a − ig

∑
a

αa(x) [T a, Aµ(x)], (6.43)

where [T a, Aµ(x)] = [T a, Ab
µ(x)T b] = Ab

µ(x) [T a, T b] = i f abc Ab
µ(x)T c. Therefore

Ac
µ(x) 7→ Ac

µ(x) + ∂µα
c(x) + g f abc αa(x) Ab

µ(x). (6.44)

The field strength Fµν =
1
ig [Dµ, Dν] ≡ Fµν(x)aT a is

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)],

Fa
µν(x) = ∂µAa

ν(x) − ∂νAa
µ(x) − g f abc[Ab

µ(x), Ac
ν(x)].

(6.45)
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It transforms under a gauge transformation as

Fµν(x) 7→ U(x)Fµν(x)U−1(x) (6.46)

so Fµν(x) is not invariant. Rather Fµν(x) transforms in the adjoint representation. Thus

tr (FµνFµν) 7→ tr
(
UFµν U−1U︸︷︷︸

=1

FµνU−1
)
= tr

(
FµνFµνU−1U) = tr(FµνFµν). (6.47)

Typically one normalises the generators T a such that

trT aT b =
1
2
δab. (6.48)

Then

L = −
1
2

tr(FµνFµν) + ψ̄(iγµDµ −m)ψ

≡ −
1
4

∑
a

Fa
µνF

µνa + ψ̄i(iγµ∂µ −m)ψi − gψ̄iγ
µAa

µT a
i jψ j

(6.49)

defines the so-called Yang-Mills Lagrangian. The crucial difference to U(1) gauge theory is that the
Yang-Mills gauge field exhibits cubic and quartic self-interactions which are contained in the term

−
1
4

∑
a

Fa
µνF

µνa. (6.50)

Diagrammatically, these interactions between the gauge bosons are of the form

� ,�
In QFT2 we will learn how to quantise such an intrinsically self-interacting theory.

6.3 The Standard Model

As a quick application let us briefly sketch that structure of the the Standard Model (SM) of Particle
Physics, which is formulated as a Yang-Mills theory specified by the following data:

• The gauge group is
G = S U(3) × S U(2) ×U(1)Y , (6.51)

where S U(3) represents QCD and its 8 gluons, S U(2) describes the weak interactions via W+,
W− and Z and U(1)Y denotes hypercharge. S U(2) and U(1)Y are broken spontaneously to
U(1)e.m, whose gauge field is the photon γ.

• The representations of fermionic matter are given as follows: The SM is a chiral theory, i.e.
left- and righthanded fermion fields ψL ≡ PLψ and ψR ≡ PRψ transform in different representa-
tions. The Standard Model comprises 3 families of
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S U(3) S U(2) U(1)Y

lefthanded QL � � ≡

u
d

 1
6

L · � ≡

νl
 - 1

2

righthanded uR/dR � · 2
3

/
− 1

3

νR/lR · · 0
/
− 1

• In addition there is 1 complex scalar field φ(x) in representation

S U(3) S U(2) U(1)Y

· , � , 1
2

The interactions are - apart from the Yang-Mills interactions that follow from the above representa-
tions - given by

• the Higgs potential
V(φ) = µ2φ†φ − λ(φ†φ)2, (6.52)

with 〈φ〉 , 0, which leads to spontaneous breaking of S U(2) ×U(1)Y → U(1)e.m.,

• and the gauge invariant Yukawa interactions, very roughly of the form φψ̄iψi, which yield
fermion masses if 〈φ〉 , 0.



Chapter 7

Path integral quantisation

7.1 Path integral in Quantum Mechanics

The path integral or functional integral formalism1 provides a formulation of Quantum Theory com-
pletely equivalent to the canonical quantization method exploited to define Quantum Field Theory in
the first part of our course. Before turning to the application of this quantization scheme to field the-
ories, we consider path integral methods in non-relativistic Quantum Mechanics. We will start with a
quantum mechanical system in the canonical formulation and derive from this the path integral.

7.1.1 Transition amplitudes

Consider therefore a 1-particle system with a classical Hamilton function H(p, q). We denote the
corresponding quantum mechanical Hamilton operator by Ĥ( p̂, q̂). The Heisenberg picture position
operator q̂H(t) has eigenvectors |q, t〉 with

q̂H(t) |q, t〉 = q |q, t〉 . (7.1)

In the Schrödinger picture we write
q̂S |q〉 = q |q〉 . (7.2)

The Heisenberg and Schrödinger picture eigenstates are related via

|q, t〉 = eiĤ( p̂,q̂)t |q〉 . (7.3)

In Quantum Mechanics we generally consider the transition amplitude

〈qF, tF| qI, tI〉 = 〈qF| e−iĤ(tF−tI) |qI〉 , (7.4)

for which we now derive a path integral representation as follows: The idea is to partition the transition
time T := tF − tI into N + 1 intervals of length

δt =
T

N + 1
(7.5)

1Richard Feynman, 1948.
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and to factorise

e−iĤT = e−iĤδt . . . e−iĤδt. (7.6)

Additionally we insert the unit-operator

1 =

∫
dqk |qk〉 〈qk| (7.7)

between the factors of e−iĤδt as follows:

〈qF, tF| qI, tI〉 = lim
N→∞

∫ N∏
k=1

dqk 〈qF| e−iĤδt |qN〉 〈qN | e−iĤδt |qN−1〉 ... 〈q1| e−iĤδt |qI〉 . (7.8)

Suppose first that H(p, q) = f (p) + V(q), e.g. with f (p) = p2

2m , and use the Baker-Campbell-
Hausdorff formula

eA+B = eAeBe−
1
2 [A,B]+.... (7.9)

Then we have

e−iĤδt = e−i f ( p̂)δte−iV(q̂)δte
1
2 [ f ( p̂),V(q̂)]δt2+O(δt3). (7.10)

The factor quadratic in δt is negligible in the limit of N → ∞, since then δt → 0. Therefore

〈qk+1| e−iĤδt |qk〉 =

∫
dpk 〈qk+1| e−i f ( p̂)δt |pk〉 〈pk| e−iV(q̂)δt |qk〉

=

∫
dpke−i f (pk)δte−iV(qk)δt 〈qk+1| pk〉 〈pk| qk〉.

(7.11)

Recalling from Quantum Mechanics that

〈qk+1| pk〉 =
1
√

2π
eipkqk+1 and 〈pk| qk〉 =

1
√

2π
e−ipkqk (7.12)

and taking the limit δt → 0 we obtain for 〈qk+1| e−iĤδt |qk〉 the expression∫
dpk

2π
e−i( f (pk)+V(qk))δtei(qk+1−qk)pk . (7.13)

In the limit of infinitesimal intervals we can write this more symmetrically as∫
dpk

2π
e−iH(pk ,q̄k)δtei(qk+1−qk)pk , (7.14)

with

q̄k =
1
2
(qk + qk+1). (7.15)

Thus, altogether the transition amplitude is

〈qF, tF| qI, tI〉 = lim
N→∞

∫
dp0

2π

N∏
k=1

dpkdqk

2π
ei

∑N
k=0[pk

qk+1−qk
δt −H(pk ,q̄k)]δt, (7.16)
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where q0 ≡ qI and qN+1 ≡ qF. Since

pk
qk+1 − qk

δt
→ pkq̇k for δt → 0 (7.17)

we end up with

〈qF, tF| qI, tI〉 =

q(tF)=qF∫
q(tI)=qI

Dq(t)Dp(t)e
i

tF∫
tI

dt[pq̇−H(p,q)]
. (7.18)

The measure
∫
Dq(t)Dp(t) is defined via the above discretisation with boundary conditions for q(t)

as given, whereas p(t) is free at the endpoints. We will say more about the mathematical aspects of
this interpretation at the end of this section.

In the above expression it is implicit that we use the prescription (7.14). Indeed the underlying equa-
tion

〈qk+1| Ĥ( p̂, q̂) |qk〉 =

∫
dpk

2π
ei(qk+1−qk)pk H

(
pk,

qk+1 + qk

2

)
(7.19)

is certainly correct in the limit δt → 0 if, as assumed, H(p, q) = f (p) + V(q). More generally, the
classical Hamiltonian function may contain cross-terms pnqm. If Ĥ( p̂, q̂) contains such mixed terms,
(7.19) will in general not hold. Note, however, that in the presence of terms pnqm in the classical
Hamilton function the quantum mechanical Hamiltonian is not uniquely determined in the first place
by the classical one due to ordering issues. Rather, fixing a specific ordering of the mixed terms of
Ĥ( p̂, q̂) is part of defining what we mean by the quantum theory - and the process of quantization is
not always unique. An operator Ĥ( p̂, q̂) which satisfies equation (7.19), i.e.

H(p, q) =
∫

dv eipv
〈
q −

v
2

∣∣∣∣∣∣Ĥ( p̂, q̂)

∣∣∣∣∣∣q + v
2

〉
(7.20)

is called Weyl-ordered. Thus the above derivation of the path integral is, by definition, correct for
quantum theories with Weyl-ordered Hamiltonian. As we have seen this trivially includes the case
H(p, q) = f (p) + V(q). On the other hand, if Ĥ( p̂, q̂) is not Weyl-ordered, then on the right hand
side of (7.18) extra terms appear. This is understood in the sequel - we take the right hand side of
(7.18) as an abbreviation for the inclusion of these terms if necessary.

A note on rigor
A much more detailed and very careful justification of the above procedure leading to equ. (7.18) can
be found e.g. in Chapter 1 of Brown, Quantum Field Theory.

We can write equation (7.18) as

〈qF, tF| qI, tI〉 =

q(tF)=qF∫
q(tI)=qI

Dq(t)Dp(t)e
i

tF∫
tI

dtL(p,q)
(7.21)
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with
∫ tF

tI
dtL(p, q) =: S [p, q] and L(p, q) ≡ pq̇ − H(p, q). Note that here L(p, q) is really a function

of q and p, both of which we integrate over separately.

For the special case

H(p, q) =
p2

2m
+ V(q) (7.22)

one can evaluate the
∫
Dp integral explicitly. This is done rigorously in the above discretisation,

where we need to evaluate ∫
dpk

2π
e

i
(
pk(qk+1−qk)−δt

p2
k

2m

)
. (7.23)

We almost recognize this as a Gaussian integral

∞∫
−∞

dx e−
1
2 ax2+bx =

√
2π
a

e
b2
2a Re(a) > 0 (7.24)

except that the prefactor of the quadratic terms does not yet have a positive part. However, as will be
discussed in more detail below, it is mathematically justified to perform an analytic continuation of the
integrand by rotating δt to the lower complex half-plane. This means that δt is replaced by δt(1 − iε)
with ε small and positive. We then evaluate the integral for δt(1 − iε) and take ε = 0 at the very end
of all computations. With this in mind, (7.23) becomes

ei m
2δt (q j+1−q j)2

√
−im
2πδt

≡ ei m
2δt (q j+1−q j)2

C. (7.25)

Then m
2 q̇2 − V(q) = L(q, q̇) remains and we obtain the Feynman-Kac-formula

〈qF, tF| qI, tI〉 = lim
N→∞

CN+1
N∏

k=1

∫
dqk e

i
tF∫
tI

dtL(q,q̇)
≡

q(tF)=qF∫
q(tI)=qI

Dq(t)e
i

tF∫
tI

dtL(q,q̇)
. (7.26)

We can interpret this as follows: Reinstating h̄, the transition amplitude

〈qF, tF| qI, tI〉 =
∫
Dq(t)e

i
h̄ S [q(t),q̇(t)]

∣∣∣∣∣∣q(F)=qF

q(tI)=qI

(7.27)

counts all possible continuous paths from qI to qF weighted by exp
[

i
h̄ S

]
. This explains the name path

integral. In the classical limit S [q, q̇] � h̄ and due to the strongly oscillating phase of the integrand,
the right-hand side is dominated by paths for which the action becomes stationary,

δS
δq

= 0. (7.28)

This way one recovers the classical dynamics as the saddle-point approximation to the full quantum
amplitude.
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On the well-definedness of the path integral in Quantum Mechanics:
The above definition of the path integral as the limit N → ∞ in (7.16) is informal in the mathematical
sense due to at least two possible loopholes, which we now close:

• For N finite, we may wonder if each of the integrals (7.14) underlying (7.16) is convergent.
For a typical Hamiltonian H(p, q) which is bounded from below, convergence of (7.14) follows
by analytic continuation to ’Euclidean time’. Indeed we may view the parameter δt in (7.14)
as along the (w.l.o.g. positive) real axis in the complex-plane. We can then rotate H(p, q)δt
to the negative imaginary time-axis by a Wick rotation. Note that the dependence on p and q
is unaffected. This Wick rotation is possible in Quantum Mechanics because for an analytic
function H(p, q)δt we do not encounter any poles in the complex time-plane along the way.
Wick rotation then effectively replaces

δt → −iδτ (7.29)

and (7.14) becomes ∫
dpk

2π
e−H(pk ,q̄k)δτei(qk+1−qk)pk . (7.30)

For instance for H = p2

2m +V(q), which is the form of H that will be of interest for the extension
to field theory, this integral is manifestly convergent as long as the potential V(q) is bounded
below.

• The limit N → ∞ and the ensuing interpretation of (7.16) as an integral over all continuous
paths from qI to qF an be made mathematically rigorous - at least for H = p2

2m + V(q) - by
directly passing to the Euclidean theory:

– First rotate δt → −iδτ already in the classical theory.

– Now compute the Euclidean transition amplitude 〈qF| e−Ĥτ |qI〉. At least for the physically
most interesting theory H = p2

2m + V(q) one can rigorously prove that a mathematically
well-defined measure exists on the space of continuous paths from qI to qF - the so-called
Wiener measure. The existence of this measure for H = p2

2m + V(q) depends on the
Gaussian suppression factor in the Euclidean theory and furthermore on the crucial factor

C =
√
−im
2πδt that appears in evaluating the momentum integral. 2

– In the end we rotate the Euclidean expression back to real time by making the replacement
τ→ it in all formulae.

To conclude, the path-integral in Quantum mechanics is mathematically well-defined - at least for
H = p2

2m + V(q), which is the form of the Hamiltonian that we will need for generalizations to field
theory. Note that despite the lack of rigour in the derivation of (7.16), for a number of interesting

2A careful treatment can be found e.g in Barry Simon, Functional integration and quantum physics, Chelsea Publishing
2005.
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theories such as the harmonic oscillator the path integral in this form can be solved and convergent
expressions can be obtained in a very explicit manner. This will be demonstrated in the tutorials.
Crucial in this context is again a suitable normalization of the position space path integral by carefully

taking into account the factor C =
√
−im
2πδt in the measure in (7.26).

7.1.2 Correlation functions

Consider now the matrix element

〈qF, tF| q̂H(t1) |qI, tI〉 (7.31)

of the Heisenberg operator qH(t1) for tF > t1 > tI. We can transform this to the Schrödinger picture as

q̂H(t1) = eiĤt1 q̂S e−iĤt1 (7.32)

and obtain

〈qF| e−iĤ(tF−t1)q̂S e−iĤ(t1−tI) |qI〉 . (7.33)

We proceed as before in the computation of the transition amplitude by factorising the time evolution
operator and inserting the identity multiple times. The operator q̂S now acts on |q〉K 〈q|K correspond-
ing to the time t1,

q̂S |q〉K 〈q|K
∣∣∣
t1
= q(t1) |q〉K 〈q|K

∣∣∣
t1

. (7.34)

The matrix elements thus becomes

〈qF, tF| q̂H(t1) |qI, tI〉 =

q(tF)=qF∫
q(tI)=qI

Dq(t)Dp(t) q(t1) eiS [q,p]. (7.35)

Likewise for tF > t1 > t2 > tI we find∫
DqDp q(t1)q(t2)eiS [q,p] = 〈qF, tF| q̂H(t1)q̂H(t2) |qI, tI〉 , (7.36)

while for tF > t2 > t1 > tI we would get∫
DqDp q(t1)q(t2)eiS [q,p] = 〈qF, tF| q̂H(t2)q̂H(t1) |qI, tI〉 . (7.37)

Thus time-ordering appears automatically:

〈qF, tF|Tq̂H(t1)q̂H(t2) |qI, tI〉 =

q(tF)=qF∫
q(tI)=qI

DqDp q(t1)q(t2)eiS [q,p]. (7.38)

We will need above expressions with initial and final states given by |Ω〉 - the vacuum of the interacting
theory. To compute this expression most simply we use the same trick employed in the context of
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the interaction picture derivation of correlation functions in QFT I. Consider an eigenbasis of the
Hamiltonian with

Ĥ |n〉 = En |n〉 and Ĥ |Ω〉 = EΩ |Ω〉 (7.39)

and suppose without loss of generality that EΩ = 0 (otherwise we shift Ĥ by a constant). Then
∀ |qI, tI〉 we can write

|qI, tI〉 = eiĤtI |qI〉 =
∑

n

eiĤtI |n〉 〈n| qI〉 = |Ω〉 〈Ω| qI〉+
∑
|n〉,|Ω〉

eiEntI |n〉 〈n| qI〉. (7.40)

Let us now replace tI → tI(1 − iε) and take tI → −∞, with ε small and positive. In this limit all terms
with |n〉 , |Ω〉 are exponentially suppressed. Thus

〈Ω|Ω〉 = (〈qF|Ω〉 〈Ω| qI〉)
−1 lim

T→∞(1−iε)
〈qF, T | qI,−T 〉, (7.41)

for all |qI〉 , |qF〉 with non-zero overlap with |Ω〉. Therefore

〈Ω|T
∏

i

q̂H(ti) |Ω〉 = lim
T→∞(1−iε)

∫
Dq(t)Dp(t)e

i
T∫
−T

dtL(p,q) ∏
i q(ti)

∫
Dq(t)Dp(t)e

i
T∫
−T

dtL(p,q)

. (7.42)

Note that

• the boundaries in
∫
Dq(t) are arbitrary as long as 〈Ω| qI〉 , 0 , 〈qF|Ω〉 and

• the denominator ensures that 〈Ω| 1 |Ω〉 = 1.

7.2 The path integral for scalar fields

We now apply the path integral approach to a field theory. Consider, to begin with, a classical real
scalar field theory with classical Hamiltonian

H =

∫
d3xH(φ(x), Π(x)), (7.43)

where
H(φ(x), Π(x)) =

1
2

Π2(x) +
1
2
(∇φ(x))2 + V(φ(x)). (7.44)

Note that all non-hatted quantities are classical fields. One defines the quantum fields φ̂H(t, ~x) in the
Heisenberg picture and its eigenstates via

φ̂H(t, ~x) |φ(~x), t〉 = φ(t, ~x) |φ(~x), t〉 . (7.45)

Our task is thus to compute the transition amplitudes between two such states

〈φF(~x), tF| φI(~x), tI〉 ≡ 〈φF(~x)| eiĤ(tF−tI) |φI(~x)〉 . (7.46)

One proceeds by a careful regularization procedure as follows:
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• Introduce an infrared (IR) cutoff by considering the theory in a finite volume V as well as an
ultraviolet (UV) cutoff by discretizing V . I.e. we consider the theory on a finite 3-dimensional
lattice L with lattice spacing a and parametrise the lattice sites by the discrete vectors

~x = a(n1, n2, n3), ni ∈ {−N, . . . , N}. (7.47)

The Hamiltonian of this discretized theory is

Ĥ =
∑
~x∈L

(1
2
π̂2(~x) +

1
2

∑
~j

 φ̂(~x + ~j) − φ̂(~x)
a

2

+ V(φ̂(~x))
)
, (7.48)

where the sum over ~j is a suitable sum over nearest neighbors such as to reproduce the spatial
derivative.

• The IR and UV regularized theory thus corresponds to a 3-dimensional Quantum Mechanical
system with a finite number of degrees of freedom. Thus we can use the path-integral formula
for the computation of the transition amplitude. By Wick rotation this is completely well-
defined - including the transition to continuous time (but with space discrete).

• In the end we remove the IR and the UV cutoff in space. It is this continuum limit which in-
troduces both IR and UV divergences. These must be taken care of by carefully implementing
renormalisation as we will see in more detail later. In a properly renormalized theory, all physi-
cal quantities computed via the path integral (in particular correlation functions) are finite even
after taking the continuum limit.

As an abbreviation of this procedure we can write the above transition amplitude as

〈φF(~x), tF| φI(~x), tI〉 ≡ 〈φF(~x)| eiĤ(tF−tI) |φI(~x)〉

=

φ(~x,tF)=φF(~x)∫
φ(~x,tI)=φI(~x)

Dφ(x)DΠ(x)e
i

tF∫
tI

d4 x[Π(x)φ̇(x)−H(φ(x),Π(x))]
.

(7.49)

This is a formal expression meant in the above sense. Inserting the specific Hamiltonian (7.43) in the
exponent shows that the Π integral is Gaussian, since φ̇ ≡ Π. The Gaussian integral can be performed
explicitly as in the finite-dimensional case. A rigorous derivation can be given by discretizing the path
integral and taking the continuum limit in the end. Altogether we have

〈φF(~x), tF| φI(~x), tI〉 =

φ(~x,tF)=φF(~x)∫
φ(~x,tI)=φI(~x)

Dφ(x) e
i

tF∫
tI

d4 xL(φ(x))
, (7.50)

where the extra factors picked up upon performing the Gaussian integral are, by definition, included
in the measure. Since we will normalize the relevant expressions in a suitable manner momentarily
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this has no importance.
Using again the trick from (7.41) yields, up to a factor of proportionality,

〈Ω|Ω〉 ∼ lim
T→∞(1−iε)

Dφ e
i

T∫
−T

d4 xL(φ(x))
(7.51)

with arbitrary boundary conditions with non-zero overlap with |Ω〉. This yields the path-integral
master formula for the computation of quantum correlation functions

G(x1, ..., xn) ≡ 〈Ω|T
∏

i

φ̂H(xi) |Ω〉

= lim
T→∞(1−iε)

∫
Dφ(x)φ(x1)...φ(xn)ei

∫ T
−T d4 xL(φ(x))∫

Dφ(x)ei
∫ T
−T d4 xL(φ(x))

,
(7.52)

where the denominator ensures again correct normalisation. Note in particular that all universal con-
stant prefactors from the Gaussian integral cancel as promised.

On Euclidean Field Theory
As pointed out, the appearance of possible divergences in the path integral is related to the ultimate
removal of the spatial cutoff in the defining expression for the path-integral. In a perturbatively renor-
malisable theory, the action can be renormalized order by order such that the perturbatively expanded
correlation functions are finite in the continuum limit, order by order. Furthermore, as we will see, to
set up perturbation theory it is sufficient to perform formal manipulations with the formal expression
of the path-integral without worrying about any convergence issues. More ambitiously, one might
hope to directly evaluate the path integral in an exact, non-perturbative manner. One way to do this
in practice is Lattice Field Theory, where one keeps, however, the spatial cutoff finite and computes
the integral numerically.
In this approach, but also in more general contexts, if one is interested in explicit evaluations of the
path integral it is, as in Quantum Mechanics, useful to exploit the better convergence properties of
the appearing integrals in the Euclidean theory. The idea is to compute the correlation functions as
functions on R4 (as opposed to R1,3) with coordinates

xE = (x1, x2, x3, x4 = ix0). (7.53)

The Wick rotation x4 = ix0 implies that we should replace

ei
∫

d4 xL(φ(x)) → e−
∫

d4 xE L(φ(xE)) = e−S E . (7.54)

It is the suppression of the path integral by e−S E which is responsible for its improved convergence
properties. The correlation functions in the Euclidean theory are called Schwinger functions, as op-
posed to the correlation functions in Minkowski space, called Wightman functions. This way, one can
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compute a correlation function of a theory in R1,3 by first computing its associated Schwinger func-
tion in the Euclidean theory and then Wick rotating back to R1,3 - provided one does not encounter
any poles in the complex xE-plane as one undoes the Wick rotation.
The Osterwalder-Schrader theorem gives conditions under which a mathematically precise defini-
tion of a Lorentzian QFT (in the sense that it satisfies the so-called Wightman axions) via analytic
continuation of the Euclidean path integral is possible. In particular, the Schwinger functions must
satisfy a property known as reflection positivity. Unfortunately, to date the only interacting field the-
ories for which the Osterwalder-Schrader conditions have been rigorously proven to be satisfied are
certain theories in 2 and 3 dimensions.3 These theories can be viewed as mathematically well-defined
quantum field theories. Establishing such a definition of Quantum Yang-Mills theory in R1,3 is a 1-
million-dollar problem.

On wave functionals
We can conclude that there are two equivalent ways to define a quantum field theory starting from a
classical theory:

• Canonical formalism:

First promote the classical field φ(x) to a quantum operator φ̂H(x). Then define the Hilbert
space of states and derive the correlators in the interaction picture as given by

〈Ω|T
∏

i

φ̂H(xi) |Ω〉 = lim
T→∞(1−iε)

〈0|T
∏

i φ̂I(xi)e−i
∫ T
−T dtHI(t) |0〉

〈0|Te−i
∫ T
−T dtHI(t) |0〉

. (7.55)

This is the Gell-Mann-Low formula, which we derived in section 2.5 in QFT I.

• Path integral formalism:

Alternatively we can begin not with the concept of a quantum operator, but with the concept
of a physical state as a wave functional of the classical fields. This is a generalization of the
well-familiar correspondence between states and wave functions (as functions on the space of
classical observables) in Quantum Mechanics. Consider for instance the Schrödinger represen-
tation in Quantum Mechanics, where the correspondence between a state localised at q0 and its
wavefunction is

|q0, t〉 ↔ ψ(q(t)) = δ(q(t) − q0(t)). (7.56)

Similarly, in Quantum Field Theory we define a state |φ0(~x, t)〉 via a functional Ψ(φ(~x, t)) (as
a map from the space of classical observables - the classical fields - to C) as

|φ0(~x, t)〉 ↔ Ψ[φ] = δ[φ(~x, t) − φ0(~x, t)]. (7.57)

3For an overview of some recent developments see e.g. the thesis by C. Anderson (www.
math.harvard.edu/theses/senior/anderson/anderson.pdf) and references therein.
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The next step is then to define the concept of a quantum operator φ̂H(x) by specifying its matrix
elements with a basis of states as

〈φ1(~x), t1| φ̂H(x) |φ2(~x), t2〉 =

φ(~x,t2)=φ2(~x)∫
φ(~x,t1)=φ1(~x)

Dφ(x)DΠ(x)ei
∫ t2

t1
d4 x[Πφ̇−H ] (7.58)

and more generally the correlators G(x1, ..., xn) via path integral of classical fields. In particular
the path integral is a convenient way to express the vacuum wave functional as the overlap

Ψ0[φ] = 〈φ(~x), t|Ω〉 = lim
tI→−∞(1−iε)

∫
Dφ(~x, t′)DΠ(~x, t′)ei

∫ t
tI

dt′d3 x[Πφ̇−H ], (7.59)

where φ(~x, t′)|t′=t = φ(~x, t), but φ(~x, tI) is arbitrary (with non-zero overlap with |Ω〉).4

7.3 Generating functional for correlation functions

A functional maps a function - e.g. the classical field φ(x) - to a C-number, e.g.

φ(x) 7→ S [φ(x)] =
∫

d4xL(φ(x)). (7.60)

Consider the functional

Z[J] :=
∫
DφeiS [φ]+i

∫
d4 xJ(x)φ(x) (7.61)

with some source-term J(x). Then we can rewrite this as

Z[J] =
∫
DφeiS [φ]

(
1 + i

∫
d4xφ(x)J(x) +

i2

2!

∫
d4x1d4x2 φ(x1)φ(x2)J(x1)J(x2) + ...

)
=

∫
DφeiS [φ] + i

∫
d4x J(x)

∫
Dφ φ(x)eiS [φ]

+
i2

2!

∫
d4x1d4x2 J(x1)J(x2)

∫
Dφ φ(x1)φ(x2)eiS [φ] + ...

(7.62)

and thus
Z[J]
Z[0]

=
∞∑

n=0

in

n!

∫
d4x1...

∫
d4xn J(x1)...J(xn)G(x1, ..., xn). (7.63)

To solve this formula for G(x1, ..., xn) we need the tools of functional calculus.

7.3.1 Functional calculus

We can think of φ(x) as an element of an ∞-dimensional vector space and consider the following
formal analogies:

4For a detailed treatment of wave functionals we refer e.g. to Chapter 10 of Hatfield, QFT of Point Particles and Strings.
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• Finite-dimensional vector calculus

A vector is given as u ≡ ui. We can map two real vectors to R via the inner product

uivi ≡ uT v ≡ u · v. (7.64)

Linear operators are defined via

vi = Ai ju j ≡ (A · v)i. (7.65)

The identity operator is
Ai j = δi j (7.66)

such that the inverse of a linear operator satisfies

Ai jA−1
jk = δik. (7.67)

• Infinite dimensional vector calculus (=functional calculus)

In this case the vector is the classical field φ(x), with the dependence on the continuous pa-
rameter x formally representing the previous index i. The inner product becomes∫

dx φ(x)χ(x) ≡ φ · χ. (7.68)

A linear operator now acts as

χ(x) =
∫

dyK(x, y)φ(y) ≡ (K · φ)(x), (7.69)

where K(x, y) is called the integral kernel. The identity operator is

K(x, y) = δ(x − y), (7.70)

such that the inverse operator obeys∫
dyK(x, y)K−1(y, z) = δ(x − z). (7.71)

To set up a differential calculus we first consider a function of a finite-dimensional vector and perform
a Taylor expansion

f (ui + hi) = f (ui) +
∂ f
∂ui

hi +O(h2). (7.72)

This defines the derivative ∂ f
∂ui

. Formally we can generalise this definition of a derivative to a functional
F[ϕ(x)] by expanding

F[ϕ(x) + h(x)] = F[ϕ(x)] +
∫

dx
δF
δϕ(x)

h(x) +O(h2). (7.73)
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The quantity δF
δϕ(x) is called functional derivative. It obeys the same rules as the finite-dimensional

derivatives. In particular it is useful to consider the analogies

∂

∂ui
u j = δi j ↔

δ

δϕ(x)
ϕ(y) = δ(x − y), (7.74)

∂

∂ui
(u jk j) = δi jk j = ki ↔

δ

δϕ(x)

∫
dyϕ(y)χ(y) ≡

δ

δϕ(x)
(ϕ · χ) = χ(x). (7.75)

Further useful rules are

δ

δϕ(x)

∫
dy(∂yϕ(y))χ(y) =

δ

δϕ(x)

[
−

∫
dyϕ(y) ∂yχ(y)

]
= −∂xχ(x)

δ

δϕ(x)
ei

∫
dyϕ(y)χ(y) = iχ(x)ei

∫
dyϕ(y)χ(y).

(7.76)

We will oftentimes leave the actual integrals implicit to save some writing. The last equation then
reads

δ

δϕ(x)
eiϕ·χ = iχ(x)eiϕ·χ. (7.77)

Going back to (7.63) it is straightforward to see that

G(x1, ..., xn) =
1

Z[0]

(
δ

iδJ(x1)

)
...

(
δ

iδJ(xn)

)
Z[J]

∣∣∣∣∣∣
J=0

(7.78)

Z[J] is called generating functional for the Green’s functions.

7.4 Free scalar field theory

We consider the free scalar field action

S 0[φ] =

∫
d4x

(
1
2
∂µφ∂

µφ −
1
2

m2
0φ

2
)

=

∫
d4x

(
−

1
2
φ(x)(∂2

x + m2
0)φ(x)

)
.

(7.79)

In the path integral formula of Z[J] the contour is taken along t(1 − iε) in order to project the initial
and final states to the vacuum state. For the free theory one can prove that alternatively one can shift
not the time variable into the complex plane, but make the replacement

H → H − iεφ2(x), i.e. m2
0 → m2

0 − iε. (7.80)

Since this prescription works for the free theory, it does so also for perturbative interactions as long
as the interaction does not deform the theory too far away from the free theory. Non-perturbatively,
however, the replacement (7.80) cannot in general be proven to serve our purpose of projecting the
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initial and final states to the vacuum and one must stick with the prescription t → t(1 − iε).
With (7.80) the partition function for the free theory takes the form

Z0[J] =
∫
Dφ e

i
2

∫
d4 x d4y φ(x)K(x,y)φ(y)+i

∫
d4 x φ(x)J(x)

=

∫
Dφ e

i
2φ·(Kφ)+iφ·J ,

(7.81)

where
K(x, y) = −δ(4)(x − y)(∂2

x + m2
0 − iε). (7.82)

We will need the inverse K−1 of the linear operator K defined via∫
d4y K(x, y)K−1(y, z) = δ(4)(x − z). (7.83)

Inserting K(x, y) yields
(∂2

x + m2
0 − iε)K−1(x, z) = −δ(4)(x − z). (7.84)

Since the Feynman propagator is a Green’s function for the Klein-Gordon equation, we can just quote
our result from QFT I,

K−1(x, z) = −iDF(x − z) with DF(x) =
∫

d4 p
(2π)4

i
p2 −m2

0 + iε
e−ip·x. (7.85)

Note that in this approach the iε-term arises automatically as a consequence of (7.80). Thus,

Z0[J] =
∫
Dφ e−

1
2φ·D

−1
F φ+iφ·J (7.86)

We can manipulate this further by completing the square as

i
2
φ · Kφ+ iφ · J =

i
2
(φ+ K−1J) · K(φ+ K−1J) −

i
2

J · K−1J (7.87)

and shift the measureDφ = Dφ′ with φ′ = φ+ K−1 · J to find

Z0[J] =
∫
Dφ′e

i
2φ
′·Kφ′e−

1
2 J·DF J

= Z0[0]e
1
2 (iJ)·DF(iJ)

≡ Z0[0]e
1
2

∫
d4 x d4y iJ(x)DF(x−y)iJ(y).

(7.88)

We notice that
Z0[0] =

∫
Dφ′e−

1
2φ
′·(−K)φ′ (7.89)

is a Gaussian integral. To compute it formally, we recall the finite dimensional formula (v ≡ vi, i =
1, . . . , n) ∫

dn v e−
1
2 vT Mv =

√
(2π)n

detM
, (7.90)
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for M symmetric and positive definite (or more generally for Re(µi) > 0, where µi are the eigenvalues
of M). Formally this generalizes to

Z0[0] =
const.√
det(−iK)

, (7.91)

where det(−iK) = det[δ(4)(x − y)(i∂2
x + im2 + ε)] is called a functional determinant. Note that

Z0[0] is a divergent quantity, but as will be discussed in the tutorials it can be defined rigorously by a
regularisation procedure, e.g. on a lattice with IR and UV cutoff. For finite cutoffs, Z0[0] is finite. All
physical quantities are computed in the regularized theory and the expression Z0[0] cancels in all such
expressions because the Green’s functions derive from Z[J]/Z[0]. In the end one takes the continuum
limit, and the formal divergence of det(−iK) poses no problems.

Our result (7.88) allows us to compute the n-point functions

G0(x1, ..., xn) =
δ

iδJ(x1)
...

δ

iδJ(xn)
e

1
2 iJ·DF iJ︸   ︷︷   ︸
≡

Z0 [J]
Z0 [0]

∣∣∣
J=0 (7.92)

of the free theory by differentiating the exponential with respect to J and setting J = 0. To compute
a 2n-point function one expands the exponential precisely to n-th order, while the 2n + 1-functions
vanish. In this spirit the 2-point function is computed as

G0(x1, x2) =
δ

iδJ(x1)

δ

iδJ(x2)

1
2

∫
d4x d4y iJ(x)DF(x − y)iJ(y) = DF(x1 − x2), (7.93)

confirming that the Green’s function of the D’Alembert operator gives the 2-point correlator in the
free theory. Feynman diagrams are a graphical way to organise the combinatorics of expanding the
exponential and taking the functional derivatives. For example the result for

G0(x1, x2, x3, x4) =
δ

iδJ(x1)

δ

iδJ(x2)

δ

iδJ(x3)

δ

iδJ(x4)

×
1
2!

1
2

∫
d4x d4y iJ(x)DF(x − y)iJ(y)

1
2

∫
d4u d4v iJ(u)DF(u − v)iJ(v)

(7.94)

can be expressed graphically as

�
x3

x1

x4

x2

+�
x3

x1

x4

x2

+�
x4

x1

x3

x2

where a line between xi and x j denotes as always a factor of DF(xi − x j). Note that interactions only
occur if there is a dot on crossing lines, i.e. there is no interaction in the third diagram. As one can
convince oneself, the combinatorial factors work out correctly.
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7.5 Perturbative expansion in interacting theory

We now consider an action with extra interaction terms,

S [φ] = S 0[φ] +

∫
d4xLint(φ). (7.95)

Then

Z[J] =
∫
Dφ eiS 0[φ]+i

∫
d4 xLint(φ)+iJ·φ

=

∫
Dφ ei

∫
d4 xLint(φ)eiS 0[φ]+iJ·φ

=

∫
Dφ ei

∫
d4 xLint(−i δδJ )eiS 0[φ]+iJ·φ

= ei
∫

d4 xLint(−i δδJ )
∫
Dφ eiS 0[φ]+iJ·φ.

(7.96)

In the third line we used (7.77), or more generally

F[φ]eiφ·J = F
[
δ

iδJ

]
eiφ·J (7.97)

for any functional F[φ]. Inserting our previous result (7.88) for
∫
Dφ eiS 0[φ]+iJ·φ gives the important

result

Z[J] = ei
∫

d4 xLint(−i δδJ )Z0[J] = Z0[0]ei
∫

d4 xLint(−i δδJ )e
1
2 (iJ)·DF(iJ). (7.98)

Equivalently one can write

Z[J] = Z0[0]e
1
2
δ
δφDF

δ
δφ ei

∫
d4 xLint(φ)+iJ·φ

∣∣∣
φ=0. (7.99)

To prove the equivalence of (7.98) and (7.99), we consider two functionals F and G and note that

F
[
δ

δφ

]
G[φ]eiJ·φ = F

[
δ

δφ

]
G

[
δ

iδJ

]
eiJ·φ. (7.100)

Since the derivatives commute this is

G
[
δ

iδJ

]
F

[
δ

δφ

]
eiJ·φ = G

[
δ

iδJ

]
F[iJ]eiJ·φ. (7.101)

In particular this implies that

G
[
δ

iδJ

]
F[iJ] = G

[
δ

iδJ

]
F[iJ]eiJ·φ|φ=0 = F

[
δ

δφ

]
G[φ]eiJ·φ|φ=0. (7.102)

The equivalence of (7.98) and (7.99) follows from this if we identify

F
[
δ

δφ

]
= e

1
2
δ
δφDF

δ
δφ ,

G[φ] = ei
∫

d4 xLint(φ).
(7.103)
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Perturbation theory can be set up from both expressions (7.98) or (7.99). Starting from (7.98) is close
in spirit to our discussion of the free theory as will be demonstrated in the tutorials. In the sequel we
take the approach via (7.99) and make the following definition:

〈F[φ]〉0 B e
1
2
δ
δφDF

δ
δφ F[φ]

∣∣∣∣∣∣
φ=0

. (7.104)

With this notation (7.99) becomes

Z[J]
Z[0]

=
〈ei

∫
d4 xLint+iJ·φ〉0

〈ei
∫

d4 xLint〉0

. (7.105)

G(x1, ..., xn) follows from (7.105) either by expanding eiJ·φ and using (7.63), or directly as

G(x1, ..., xn) =
δ

iδJ(x1)
...

δ

iδJ(xn)

Z[J]
Z[0]

∣∣∣∣∣∣
J=0

=

〈
δ

iδJ(x1)
... δ

iδJ(xn)
ei

∫
d4 xLint+iJ·φ

〉
0〈

ei
∫

d4 xLint
〉

0

∣∣∣∣∣∣∣∣∣∣
J=0

.
(7.106)

We can perform the functional derivative in the nominator and arrive at the final expression

G(x1, ..., xn) =

〈
φ(x1)...φ(xn)ei

∫
d4 xLint

〉
0〈

ei
∫

d4 xLint
〉

0

. (7.107)

To understand the meaning of this expression we must familiarize ourselves more with the operation
(7.104). First, let us compute

〈φ(x1)φ(x2)〉0 B e
1
2
δ
δφDF

δ
δφφ(x1)φ(x2)

∣∣∣
φ=0. (7.108)

Expanding the exponential and keeping precisely terms of quadratic order in δ
δφ yields

1
2

∫
d4x d4y

δ

δφ(x)
DF(x − y)

δ

δφ(y)
φ(x1)φ(x2)

∣∣∣
φ=0 = DF(x1 − x2) ≡ φ(x1)φ(x2) . (7.109)

Thus

〈φ(x1)φ(x2)〉0 = 〈0|T φ̂(x1)φ̂(x2) |0〉 , (7.110)

where |0〉 is the free vacuum. Generalising this reasoning gives a simple and very direct proof of
Wick’s theorem, which will be presented in the exercises. We will end up with the result known from
QFT I:

• 〈φ1...φ2n〉0 = φ1φ2 φ3φ4 ... φ2n−1φ2n + all other contractions.

• 〈φ1...φ2n+1〉0 = 0.
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With Wick’s theorem at hand we go back to G(x1, ...xn) and expand exp[i
∫

d4xLint] in (7.107) to
recover exactly the same Feynman rules as in operator language from the Gell-Mann-Low formula
in the interaction picture. We refer to QFT I for a precise statement of these rules in position and in
momentum space. The special case exp[i

∫
d4xLint] = 1 gives the free theory.

Note that φ(xi) in (7.107) or δ
iδJ(xi)

in (7.106) corresponds to an external point xi in the Feynman
diagram. Thus Z[0] contains no external points and therefore represents the partition function since

Z[0] = e
∑

i Vi . (7.111)

Here Vi is the value of a vacuum bubble labeled by i. Consequently Z[J]
Z[0] , i.e. the generating functional

of the Green’s functions, contains no vacuum bubbles.

On the counting of loops and factors of h̄

Consider a fully connected Feynman diagram in momentum space with

• E = number of external lines,

• I = number of internal lines,

• V = number of vertices and

• L = number of loops.

L is the number of unfixed momentum integrals. From the momentum space Feynman rules we recall
that

• each internal propagator gives one momentum integral,

• each vertex gives one δ(4)(Σi pi), but

• one linear combination of these delta-functions merely corresponds to overall momentum con-
servation.

This proves Euler’s formula
L = I − V + 1 . (7.112)

The perturbative expansion in loops corresponds to an expansion in h̄. To see this, we note that the
exponent in the path integral is - reinstating h̄ -

i
h̄

S =
i
h̄

∫
d4x φ

(
−

1
2
(∂2 + m2)φ

)
+

i
h̄

∫
d4xLint. (7.113)

Each internal line carries a propagator, i.e. a factor of(
∂2 + m2

h̄

)−1

∼ h̄, (7.114)
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and each vertex carries a factor of h̄−1. For a given scattering process with fixed number E of external
lines, expansion of a scattering amplitude in L therefore gives I −V = L− 1 extra powers of h̄ (which
come in addition to factors of h̄ from the external particles, whose power is fixed for given E). Taking
into account these extra factors, in most field theories the classical scattering amplitude, i.e. O(h̄0),
corresponds to the tree-level diagram, but exceptions to this rule of thumb exist.5

Note furthermore that for Lint =
λ
n!φ

n, a loop expansion with fixed E is an expansion in λ, because

E + 2I = nV (7.115)

since both ends of each internal line and one end of each external line end in an n-point vertex. With
L = I − V + 1 this gives

(n − 2)V = 2L + (E − 2). (7.116)

So for E fixed, an expansion in L corresponds to an expansion in V .

7.6 The Schwinger-Dyson equation

One advantage of the path-integral quantisation method over the canonical formalism is that consider-
ations of symmetry are more transparent. In particular it becomes very clear that classical symmetries
carry over to the quantum theory - but only provided the path integral measure is invariant.

To see this we consider a general theory with arbitrary fields collectively denoted by φ(x) defined by

Z[J] =
∫
Dφ ei(S [φ]+φ·J). (7.117)

Assume that a transformation

φ(x)→ φ′(x) = φ(x) + ε∆φ(x) +O(ε2) (7.118)

leaves the measureDφ invariant, i.e.
Dφ = Dφ′. (7.119)

Note that this is really an assumption which may fail in general. Then

Z[J] =
∫
Dφ ei(S [φ]+φ·J)

=

∫
Dφ′ ei(S [φ′]+φ′·J)

=

∫
Dφ ei(S [φ′]+φ′·J)

=

∫
Dφ ei(S [φ]+φ·J)

[
1 + i

(
δS
δφ

+ J
)
ε∆φ+O(ε2)

]
.

(7.120)

5The most famous one is in fact the formulation of General Relativity as the quantum field theory of a spin-2 particle,
where the classical potential is recovered from scattering amplitudes at 1-loop order in perturbation theory.
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In the second line we simply relabeled the integration variable and in the third we used invariance of
the measure. Thus

0 =

∫
Dφ ei(S [φ]+φ·J)

[
δS
δφ

∆φ+ J∆φ
]

≡

∫
Dφ ei(S [φ]+φ·J)

[∫
d4y

(
δS
δφ(y)

+ J(y)
)

∆φ(y)
]

.
(7.121)

For the special transformation ∆φ(y) = δ(4)(y − x), our assumption (7.119) does indeed hold, and
therefore ∫

Dφ

(
δS

δφ(x)
+ J(x)

)
ei(S [φ]+Jφ) = 0. (7.122)

Equ. (7.122) is the celebrated Schwinger-Dyson equation. It states that the classical equation of
motion (here in presence of a source J),

0 =
δS
δφ

+ J, (7.123)

holds as an operator equation in the quantum theory, i.e. it holds inside the path integral (with no
further field insertion at the same spacetime point).
If we act on (7.122) with

∏n
i=1

δ
iδJ(xi)

we arrive at

∫
Dφ

( δS
δφ(x)

+ J(x)
)
φ(x1)...φ(xn) +

n∑
i=1

φ(x1)...φ(xi−1)(−iδ(x − xi))φ(xi+1)...φ(xn)


× ei(S [φ]+Jφ) = 0. (7.124)

Taking J = 0 gives

〈Ω|T
δS

δφ(x)

n∏
i=1

φ(xi) |Ω〉 = i
n∑

i=1

〈Ω|Tφ(x1)φ(xi−1)δ(x − xi)φ(xi+1)...φ(xn) |Ω〉 . (7.125)

In this form the Schwinger-Dyson equation shows that the equations of motion hold inside a correla-
tion function up to contact terms on the right-hand side.

As a simple corollary we derive the Ward-Takahashi identities: To this end start from (7.121) again
and consider a transformation

φ→ φ+ ε∆φ (7.126)

with
∆φ(y) = δ(4)(y − x)δφ(x) (7.127)

for a continuous global classical symmetry δφ such that

δS
δφ(x)

δφ(x) = −∂µ jµ(x) (7.128)
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(with no integration over the x-variable on the left) holds off-shell. Here jµ(x) is the Noether current
associated with the global continuous symmetry. If this transformation leaves the measure invariant,
then (7.121) yields

0 =

∫
Dei(S [φ]+φJ) (−∂µ jµ(x) + J(x)δφ(x)) . (7.129)

Taking
∏n

i=1
δ

iδJ(xi)
at J = 0 gives the Ward-Takahashi identity:

∂µ 〈Ω|T jµ
n∏

i=1

φ(xi) |Ω〉 = −i
n∑

i=1

〈Ω|Tφ(x1)...φ(xi−1)δφ(x)δ(4)(x − xi)φ(xi+1)...φ(xn) |Ω〉 .

(7.130)
While we have seen this equation already in QFT1, the above path integral derivation indeed clarifies,
as promised, that the Ward identities only hold for symmetries that leave the measure invariant. If this
is not the case, the symmetry is said to be anomalous and current conservation (up to contact terms)
does not hold at the quantum level. We will learn more about anomalies later in this course.

To conclude this chapter we go back to the Schwinger-Dyson equation in its form (7.122) and use the
identity

F[φ]eiφ·J = F
[
δ

iδJ

]
eiφ·J (7.131)

for F[φ] = δS
δφ to rewrite (7.122) as δSδφ

∣∣∣∣∣∣
φ= δ

iδJ

+ J

 Z[J] = 0. (7.132)

The Schwinger-Dyson equation in this form is a fundamental identity for Z[J] that beautifully encodes
the structure of the correlation functions. To see this we introduce the abbreviations

φ(xi) ≡ φi, J(xi) ≡ Ji (7.133)

and
S [φ] = −

1
2
φiD −1

F i jφ j +
∑
m≥3

1
m!

Y(m)
in...im

φi1 ...φim (7.134)

as shorthand for
−

1
2

∫
d4xi d4x j φ(xi)δ

(4)(xi − x j)(∂
2
i + m2

0)φ(x j) (7.135)

and similarly for the interaction terms. To evaluate (7.132), i.e.

δS
δφi

∣∣∣∣∣∣
φi=

δ
iδJi

Z[J] = −Ji Z[J], (7.136)

we note that
δS
δφi

∣∣∣∣∣∣
φi=

δ
iδJi

= −D −1
F i j

δ

iδJ j
+

∑
m

1
(m − 1)!

Ym
ii1...im−1

δ

iδJi1
...

δ

iδJim−1

. (7.137)
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Now multiply both sides by (DF)ki using (DF)ki

(
D−1

F

)
i j
= δk j to find

−
δ

iδJk
Z[J] + (DF)ki

∑
m≥3

1
(m − 1)!

Y(m)
ii1...im−1

δ

iδJi1
...

δ

iδJim−1

Z[J] = −(DF)kiJiZ[J]. (7.138)

Thus the Schwinger-Dyson equation can be written as

δ

iδJk
Z[J] = (DF)ki

Ji +
∑

m

1
(m − 1)!

Ym
ii1...im−1

δ

iδJi1
...

δ

iδJim−1

 Z[J]. (7.139)

Let us interpret this graphically by making the replacements

Z[J] ↔ ���
Z

∏n
i=1

δ
iδJi

Z[J] =���
Z

∣∣∣∣∣∣
n

(n lines attached),

Ji ↔ xi, (DF)i j = if j, Yin...im = �
i1 i2

...

im
Thus the Schwinger-Dyson equation has the graphic representation

(7.140)

But this just states how the full 1-point function can be understood in terms of full higher n-point func-
tions and bare interactions as encoded in S [φ]: The lefthand side gives the amplitude for a particle
starting at xk to couple to the vacuum via a full quantum process, represented by ���

Z . According to
the righthand-side, it can either be absorbed by a classical source J at xi, where we must sum over all
possible insertion locations xi, or it can decay first into two or more particles by a tree-level process
before these in turn couple to the full quantum process. The numerical factors are the appropriate
symmetry factors.

In fact, this interpretation of the Schwinger-Dyson equation suggests a very elegant derivation of the
key concepts of Quantum Field Theory in a manner completely reverse to the approach we have taken
in this course: Start with the concept of a free particle as an object that propagates freely in spacetime,
and define the propagator DF i j as the quantum probability amplitude for a free particle to travel from
i to j. Next introduce the action S [φ] as in equ. (7.134) as nothing but a symbolic means to encode
all perturbative bare interactions Yi1...im , i.e. all the ways how an interacting particle can split up into
other particles along its way. Then the Schwinger-Dyson equation in its form (7.140) is an obvious
property of quantum probability amplitudes in the sense described in the previous paragraph. Taking
(7.140) as a starting point and going backwards leads to (7.132) as an equation for Z[J], which can be
solved by making the Fourier ansatz Z[J] =

∫
Dφ Z̃[φ] eiφ·J and solving the corresponding equation

for the Fourier transform Z̃[φ] with the result

Z[J] ∼
∫
Dφ ei(S [φ]+φ·J). (7.141)



7.7. CONNECTED DIAGRAMS 195

More details on this approach can be found in the QFT notes by Cvitanovic and the book by Banks.

7.7 Connected diagrams

As a consequence of the denominator in (7.107), a general Green’s function G(x1, . . . , xn) is computed
only from those Feynman diagrams which contain no vacuum bubbles, i.e. no diagrams not connected
to any of the external points. Nonetheless, G(x1, . . . , xn) does receive contributions from partially
connected Feynman diagrams. These are diagrams that factor into subdiagrams each of which is
connected only to some of the n external points x1, . . . , xn. As established by the LSZ formalism,
what enters the computation of scattering amplitudes are only the fully connected Green’s functions
G(c)(x1, ..., xn) corresponding to fully connected Feynman graphs, i.e. to those Feynman diagrams
which do not factor into subdiagrams.
Let us denote by the effective action iW[J] the generating functional for all fully connected Green’s
functions G(c)(x1, , xn),6

iW[J] B
∞∑

n=1

1
n!

∫
d4x1...

∫
d4xn (iJ(x1))...(iJ(xn))G(c)(x1, . . . , xn), (7.142)

to be contrasted with the generating functional for all Green’s functions G(x1, , xn),

Z[J]
Z[0]

=
∞∑

n=0

1
n!

∫
d4x1...

∫
d4xn (iJ(x1))(iJ(xn))G(x1, . . . , xn). (7.143)

One can convince oneself that

Z[J]
Z[0]

= 1 + iW[J] +
1
2
(iW[J])2 +

1
3!
(iW[J])3 + ... (7.144)

and thus
Z[J]
Z[0]

= eiW[J], i.e. iW[J] = ln
Z[J]
Z[0]

. (7.145)

To see (7.144) one observes that forming products of all fully connected Green’s functions indeed
gives all (potentially partially connected) ones. The factor 1/n! prevents overcounting and is neces-
sary to match the numerical factors in (7.143). For later purposes we define

τ(x1, ...xn) =
δ

iδJ(x1)
....

δ

iδJ(xn)
iW[J] (7.146)

and thus

τ(x1, ...xn)
∣∣∣
J=0 = G(c)(x1, ..., xn). (7.147)

6Note that the sum starts at n = 1 so that W[0] = 0.
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7.8 The 1PI effective action

An important subclass of fully connected Feynman diagrams are the 1-particle-irreducible (1PI) dia-
grams, which cannot be cut into two non-trivial diagrams by cutting a single internal line. We would
like to establish a generating functional for the 1PI connected diagrams, called 1PI effective action
Γ[ϕ]. Let us first define Γ[ϕ] and then discuss its relation to the 1PI diagrams.

• If φ(x) denotes the field in L(φ), define

ϕJ(x) B
δW[J]
δJ(x)

. (7.148)

By definition this is the 1-point function of φ(x) in the presence of the source J,

ϕJ(x) = 〈Ω| φ̂(x) |Ω〉J , (7.149)

as will be shown in the tutorials. The subscript in ϕJ(x) stresses the dependence on J. Then

ϕJ(x)
∣∣∣
J=0 = 〈Ω| φ̂(x) |Ω〉 . (7.150)

Without loss of generality we assume that ϕJ(x)|J=0 = 0: By Lorentz invariance 〈Ω| φ̂(x) |Ω〉 =
〈Ω| φ̂(0) |Ω〉 = c∀x, and if c , 0 we redefine φ(x)→ φ(x) − c to ensure ϕJ(x)|J=0 = 0.

• Assume that the relation between ϕJ and J is invertible such that for a given function ϕ(x) there
exists a unique Jϕ(x) with the property

〈Ω| φ̂(x) |Ω〉J = ϕ(x). (7.151)

Then we define the 1PI effective action Γ[ϕ] to be the Legendre transform of W[J], i.e.

Γ[ϕ] B W[Jϕ] − ϕ · Jϕ ≡ W[Jϕ] −
∫

d4x′ϕ(x′)Jϕ(x′). (7.152)

Γ[ϕ] is a functional of ϕ only, i.e.

δΓ[ϕ] =
δΓ
δϕ
· δϕ (7.153)

with
δΓ

δϕ(x)
=

δW
δϕ(x)

−
δϕ

δϕ(x)
· Jϕ − ϕ ·

δJϕ
δϕ(x)

=

∫
d4y

δW
δJ(y)︸︷︷︸
=ϕ

δJ(y)
δϕ(x)

− Jϕ(x) − ϕ ·
δJ

δϕ(x)
(7.154)

and thus
δΓ

δϕ(x)
= −Jϕ(x). (7.155)

A note on the assumption of invertibility
In the Euclidean theory (after Wick rotation) one can show that WE [J] is convex, which implies
that Jϕ is well-defined as a function of ϕ.7 Thus ΓE [ϕ] is well-defined as the Legendre trans-

7For a proof we refer e.g. to Brown, Chapter 6.5.
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formation of WE [J] in the Euclidean theory. All computations can be performed there and the
final results can be Wick rotated back in the end.

Our claim is now that Γ[ϕ] is the generating functional for the 1PI connected amputated Green’s
functions Γn(x1, . . . , xn),

iΓ[ϕ] =
∞∑

n=0

1
n!

∫
d4x1...d4xn ϕ(x1)ϕ(xn) Γn(x1, , xn). (7.156)

Put differently, if we define

Γ̃n(x1, ..., xn) B
δ

δϕ(x1)
...

δ

δϕ(xn)
iΓ[ϕ], (7.157)

then the 1PI connected amputated Green’s functions Γn(x1, , xn) are

Γn(x1, ..., xn) = Γ̃n(x1, ..., xn)
∣∣∣
ϕ=0. (7.158)

To prove this, we establish a relation between

τn(x1, ..., xn) =
δ

iδJ(x1)
...

δ

iδJ(xn)
iW[J] (7.159)

and Γ̃n(x1, ..., xn) that justifies this claim.

1) n=2:

We have

Γ̃2(x1, x2) =
δ

δϕ(x1)

δ

δϕ(x2)
iΓ[ϕ] =

δ

δϕ(x1)
(−iJ(x2)),

τ2(x1, x2) =
δ

iδJ(x1)

δ

iδJ(x2)
iW[J] =

δ

iδJ(x1)
ϕ(x2)

(7.160)

and thus using the chain rule∫
dx2 τ2(x1, x2)Γ̃2(x2, x3) =

∫
dx2

δϕ(x2)

iδJ(x1)

δ

δϕ(x2)
(−iJ(x3))

= −
δJ(x3)

iδJ(x1)
= −δ(x1 − x3).

(7.161)

Therefore
τ2(x1, x2) = −Γ̃−1

2 (x1, x2). (7.162)

Evaluated at J = 0 and thus also ϕ = 0 (since ϕ|J=0 = 0) this gives

G(c)
2 (x1, x2) = −Γ−1

2 (x1, x2). (7.163)

We will come back to the interpretation of this relation after the treating the case n = 3.
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2) n=3

To proceed further it is useful to systematise our computations as follows: First by means of the chain
rule,

δ

iδJ(x)
=

∫
d4y

δϕ(y)
iδJ(x)

δ

δϕ(y)
=

∫
d4y

δ2iW
iδJ(x)iδJ(y)

δ

δϕ(y)

=

∫
d4y τ2(x, y)

δ

δϕ(y)
.

(7.164)

Next, we introduce the graphical representation

Γ̃(x1, ..., xn) ≡ ���
Γ

∣∣∣∣∣∣
n
, τn(x1, ..., xn) ≡ ���

W

∣∣∣∣∣∣
n

(7.165)

with n legs (denoted as |n) respectively. For example our result τ2(x, y) = −Γ̃2(x, y)−1 is graphically
represented as

xf���
Wf y = −

(
xf���

Γ f y
)−1

(7.166)

and
δ

iδJ(x)
≡ xf���

W f y
δ

δϕ(y)︸          ︷︷          ︸
Integrate over y

. (7.167)

Finally, by definition δ
iδJ(x) adds a further line to τn(x1, ...xn) and δ

δϕ(x) adds another line to Γ̃n(x1, ..., xn).
Now we compute graphically

τ3(x, y, z) ≡
δ

iδJ(x)
yf���

Wf z

= xf���
Wf ω

δ

δϕ(ω)
yf���

Wf z

= xf���
Wf ω

δ

δϕ(ω)

(
− yf���

Γ f z
)−1

.

(7.168)

To compute δ
δφ(ω)

Γ̃2(x, z)−1 we generalize the identity(
d

dλ
M(λ)−1

)
AB

= −M−1
AC

(
d

dλ
M(λ)

)
CD

M−1
DB (7.169)

for matrices M(λ) to functional operators,

δ

δφ(ω)
Γ̃−1

2 (y, z) = −
∫

d4u d4v Γ̃−1
2 (y, u)︸    ︷︷    ︸
=−τ2

δ

δφ(ω)
Γ̃2(u, v)︸            ︷︷            ︸

=Γ̃3(ω,u,v)

Γ̃−1
2 (v, z)︸    ︷︷    ︸
=−τ2

= −

∫
d4u d4v τ2(y, u)Γ̃3(ω, u, v)τ2(v, z).

(7.170)

Thus
δ

δϕ(ω)
yf���

Wf z = yf���
Wf���

Γωf���
Wf z, (7.171)
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where the subscript indicates an extra leg. Putting everything together this just means

�
x z =

y

�
x z

y

Here full circles indicate ���
W , while empty circles indicate ���

Γ . Thus Γ3 gives indeed the amputated
1PI connected 3-point function, as external legs merely carry corrections due to the fully resummed
propagator

G2 =f���
Wf|J=0 =fpf (7.172)

This can be generalised (grapically) to higher n and the claim (7.156) is proven inductively for all
Γn(x1, . . . , xn) with n ≥ 3.

Let us come back to the interpretation of Γ2(x1, x2), which is a bit special in the following sense:
Namely, the difference between Γ2(x1, x2) and Γn(xi), n ≥ 3 is that Γn(xi), n ≥ 3 is the sum of the
tree-level vertex plus of the 1- and higher-loop 1PI amputed corrections, while Γ2(x1, x2) consists of
the 1- and higher loop 1PI amputated diagrams minus the tree-level propagator.

This can be seen by noting that relation (7.163), i.e. G(c)
2 · Γ2 = −1, reads diagrammatically

xf���
Wf y = − xf���

Wf���
Γ f���

Wf y. (7.173)

Up to an important overall minus sign this is of the same form as the identity for n = 3 and higher n.
Note that evaluating (7.173) at tree-level gives

xf y = − xf��
��
Γ2|treef y. (7.174)

We can then attach two external lines to Γ2(x1, x2) and consider the resulting object

x1f���
Γ f x2 = x1f��

��
Γ2|treef x2 + x1f��

��
Γ2|loopf x2

= − x1f x2 + x1f��
��
Γ2|loopf x2.

(7.175)

To identify Γ2|loop we go to Fourier space. Let us define Γ2(p2) as

Γ2(x1, x2) =

∫
d4 p
(2π)4 Γ2(p2)e−ip(x1−x2). (7.176)
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In momentum space, by factoring out the external lines from the diagrams, we see that

− x1f x2 ⇔ −
i

p2 −m2
0

p2 −m2
0

i
i

p2 −m2
0

x1f��
��
−iM2f x2 ⇔

i
p2 −m2

0

(
−iΓ2(p2)|loop

) i
p2 −m2

0

(7.177)

and thus

Γ2(p2) = −
p2 −m2

0

i
− iΓ2(p2)|loop. (7.178)

On the other hand, consider the Fourier transform of the fully resummed Feynman propagator G(c)
2 (x1, x2)

via

G(c)
2 (x1, x2) =fpf =

∫
d4 p
(2π)4 G(c)

2 (p2)e−ip(x1−x2), (7.179)

where G(c)
2 (p2) is given by Dyson resummation as

G(c)
2 (p2) =

i
p2 −m2

0 −M2(p2)
. (7.180)

Here −iM2(p2) is the value of all amputated 1PI diagrams (i.e. without external legs) evaluated at
1-loop and higher. Relation (7.163), i.e. G(c)

2 · Γ2 = −1, implies

Γ2(p2) = i(p2 −m2
0 −M2(p2)). (7.181)

In view of (7.178), we identify Γ2(p2)|loop = −iM2(p2). Together with (7.175) this justifies the above
claim that Γ2(x1, x2) consists of the 1- and higher loop 1PI amputated diagrams minus the tree-level
propagator.

7.9 Γ(ϕ) as a quantum effective action and background field method

Diagrams like the ones above illustrate the following interpretation of Γ(ϕ): To compute a connected
n-point function in the full quantum theory, we use the tree-level Feynman rules but replace each k-
vertex (with k ≥ 3) of the classical action S [φ] with the 1PI amputated k-vertex Γk as encoded in Γ[ϕ]
and replace the free propagator with G2, the fully resummed propagator. This justifies the name 1PI
effective action of Γ[ϕ]:

Replacing S [φ] by Γ[ϕ] and computing at tree-level gives the full quantum theory.

This interpretation of Γ[ϕ] can also be seen in many different ways, one of them being the following:
Define the object W̃[J, h̄] via 8

eiW̃[J,h̄] B

∫
Dϕ e

i
h̄ (Γ[ϕ)+J·ϕ) (7.182)

8By contrast, we had e
i
h̄ W[J] = 1

Z[0]

∫
Dφ e

i
h̄ (S [φ]+J·φ).
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and expand

W̃[J, h̄] =
∑

loops L

h̄L−1WL[J]. (7.183)

Now consider the formal limit h̄ → 0, in which the righthand side becomes just W0/h̄. By the
stationary phase argument, the right-hand side of (7.182) is given by the value of the integrand at the
saddle-point, i.e. by

e
i
h̄ (Γ[ϕ̃]+J·ϕ̃) (7.184)

with ϕ̃ such that
δ

δϕ
(Γ[ϕ] + J · ϕ])

∣∣∣
ϕ=ϕ̃

= 0 i.e.
δΓ
δϕ

∣∣∣∣∣∣
ϕ̃

= −J. (7.185)

We omit the tilde from now. Thus

W0[J] = Γ[ϕ] + J · ϕ with
δΓ
δϕ

= −J, (7.186)

where the righthand side is a functional of J only. But this is just the inverse Légendre transformation
that defined Γ[ϕ] = W[J] − J · ϕ with δΓ

δϕ = −J. Thus W0[J] = W[J]. Now, W[J] is the full quantum
object, and we thus find that

e
i
h̄ W[J] =

1
Z[0]

∫
Dφe

i
h̄ (S [φ]+J·φ) = e

i
h̄ (Γ[ϕ]+J·ϕ), (7.187)

where J and Γ[ϕ] are related via δΓ
δϕ = −J. We can interpret this result as follows:

• The integral 1
Z[0]

∫
Dφ is responsible for the quantum fluctuations.

• Replacing S [φ] by Γ[ϕ] (with ϕ such that δΓ
δϕ = −J) and working at tree-level (i.e. no

∫
Dφ)

anymore) gives the full result.

In particular Γ and S are the same functionals at tree-level,

Γ[ϕ] = S [ϕ] + h̄K[ϕ] for some K[ϕ]. (7.188)

The equation
δΓ
δϕ

= −J, i.e.
δΓ
δϕ

= 0 for J = 0 (7.189)

is the quantum effective equation of motion replacing the classical δS
δφ = 0 in the full quantum

theory.

Background field method

Consider again

e
i
h̄ W[J] =

∫
D̃φ e

i
h̄ (S [φ]+J·φ), (7.190)
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where
∫
D̃φ ≡ 1

Z[0]

∫
Dφ is the normalised measure such that∫

D̃φe
i
h̄ (S [φ]+J·φ)

∣∣∣
J=0 = 1. (7.191)

If we plug in the relation W[J] = Γ[ϕ] + J · ϕ and δΓ
δϕ = −J we arrive at

e
i
h̄ Γ[ϕ] =

∫
D̃φ e

i
h̄ (S [φ]− δΓ

δϕ (φ−ϕ)). (7.192)

Now define the field
f (x) B φ(x) − ϕ(x), i.e. φ(x) = ϕ(x) + f (x). (7.193)

Since ϕ(x) is the vacuum expectation value of the quantum operator φ̂(x), we view f (x) as the
quantum fluctuation around the background ϕ(x). The relation

e
i
h̄ Γ[ϕ] =

∫
D̃ f e

i
h̄ (S [ϕ+ f ]− δΓ

δϕ · f) (7.194)

shows that in order to determine Γ[ϕ] we must integrate out the quantum fluctuation f (x).
To evaluate this integral we expand

S [ϕ+ f ] = S [ϕ] +
δS
δϕ
· f +

1
2

f ·
δ2S
δϕ2 · f + higher terms (7.195)

and with Γ = S + h̄ · K and thus

−
δΓ
δϕ
· f = −

δS
δϕ
· f − h̄

δK
δϕ
· f (7.196)

we obtain

e
i
h̄ Γ[ϕ] =

∫
D̃ f e

i
h̄

(
S [ϕ]+ 1

2 f · δ
2S
δϕ2 · f−h̄ δK

δϕ · f+O( f 3)
)
. (7.197)

Thus altogether

Γ[ϕ] = S [ϕ] − i h̄ ln
(∫
D̃ f e

i
h̄

(
1
2 f · δ

2S
δϕ2 · f−h̄ δK

δϕ · f+O( f 3)
))
≡ S [ϕ] + h̄K[ϕ]. (7.198)

Since K[ϕ] appears on both sides, one has to solve this equation perturbatively. In particular the 1-loop
correction to Γ is due to the lowest fluctuation terms in the integrand of

∫
D̃ f . Since K[ϕ] is by itself

already 1-loop, the relevant piece is only the quadratic one and

K(1-loop) = −i ln
∫
D̃ f e

− 1
2 f ·

(
− i

h̄
δ2S
δϕ2

)
· f

. (7.199)

At 2-loop order we then use the 1-loop result for K[ϕ] together with higher-order terms. As an example
consider φ4-theory with classical action

S =

∫
d4x

[
−

1
2
φ(∂2 + m2)φ −

λ

4!
φ4

]
(7.200)
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and compute Γ[ϕ0] up to 1-loop order with ϕ0 =const. The computation will be done in the tutorials.
If we define the effective potential V(ϕ0) via

Γ[φ0] = −VolR1,3 · V(ϕ0), (7.201)

and expand
V(ϕ0) = V(0)(ϕ0) + V(1-loop)(ϕ0) + . . . , (7.202)

the result is
V(0) =

1
2

m2ϕ2
0 +

λ

4!
ϕ4

0 (7.203)

and V(1-loop)(ϕ0) is given by the Coleman-Weinberg-Potential

V(1-loop)(ϕ0) =
1
2

∫
d4k

(2π)4i
ln

m2 + λ
2ϕ

2
0 − k2 − iε

m2 − k2 − iε

 . (7.204)

The denominator is the contribution from the vacuum bubbles of the free theory, which must be
removed with our normalisation of the path-integral.

7.10 Euclidean QFT and statistical field theory

Let us briefly summarize our findings so far for the path integral in Minkowski space and collect the
corresponding expressions for the Euclidean theory. We then point out a beautiful formal analogy
between Euclidean Quantum Field Theory in 4 dimensions and Classical Statistical Field Theory in 3
dimensions.
In Lorentzian signature we have derived the following expressions (where we reinstate h̄): For the
scalar field with classical action

S [φ] =
∫

d4x
(
1
2
(∂µφ)

2 −
1
2

m2φ2 +Lint

)
(7.205)

the generating functional for the correlation functions is defined as

Z[J] =
∫
Dφ e

i
h̄ (S [φ]+φ·J) (7.206)

so that 〈
T

∏
i

φ(xi)

〉
=

1
Z[0]

∏
i

h̄δ
iδJ(xi)

Z[J]|J=0. (7.207)

Our conventions for the effective action are furthermore

e
i
h̄ W[J] =

Z[J]
Z[0]

, Γ[ϕ] = W[Jϕ] − ϕ · Jϕ. (7.208)

As discussed, we can pass from Lorentzian to Euclidean signature via a Wick rotation replacing
x0 → −ix4

E . In Euclidean space R4 with

(x1
E , x2

E , x3
E , x4

E) = (x2, x2, x3, ix0) (7.209)
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the analogous expressions are then

ZE [J] =
∫
Dφ e−

1
h̄ (S E [φ]−φ·J) (7.210)

with

S E [φ] B

∫
d4xE

(
1
2
(∂Eφ)

2 +
1
2

m2φ2 −Lint

)
(7.211)

and

φ · J =

∫
d4xEφ(xE)J(xE), (∂Eφ)

2 =
4∑

i=1

 ∂

∂xi
E

φ

2

. (7.212)

Furthermore 〈
T

∏
i

φ(xE i)

〉
=

1
ZE [0]

∏
i

h̄δ
δJ(xE i)

ZE [J] (7.213)

and

e−
1
h̄ WE [J] B

ZE [J]
ZE [0]

, ΓE [ϕ] B WE [Jϕ] + ϕ · Jϕ,
δΓE

δϕ
= J. (7.214)

An executive summary of what Quantum Field Theory is about can be given as follows (working
in Euclidean signature):

• We start with a classical field φ(x) and associate to it the classical action S E [φ]. The field φ(x)
arises as the continuum limit description of a system of N harmonic oscillators.

• In the classical limit, formally h̄→ 0, the field φ(x) takes a definite value given by the classical
equation of motion

δS E

δφ
= 0. (7.215)

• For h̄ finite, quantum fluctuations arise. These are encoded in ZE [J], where the path integral
takes into account all quantum fluctuations of the field.

• What we can compute in the quantum theory are quantum expectation values or correlation
functions. In particular the quantum expectation value of the field in the presence of a source J
is

ϕ(x)J := 〈φ(x)〉J = 〈Ω| φ̂(x) |Ω〉J =
1

Z[0]

∫
Dφ φ(x)e−

1
h̄ (S E [φ]−φ·J). (7.216)

• With our definition of WE [J] we can compute this as

ϕ(x)J = −
δWE

δJ(x)
. (7.217)

• In terms of the Légendre transform Γ[ϕ] we have

δΓE

δϕ
= J. (7.218)

ΓE gives a quantum effective action after integrating out the quantum fluctuations in the sense
that

e−
1
h̄ ΓE [ϕ] =

∫
D̃ f e

− 1
h̄

(
S E [ϕ+ f ]− δΓE

δϕ · f
)
. (7.219)
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Remarkably, this is formally exactly the same structure as in classical statistical mechanics or more
precisely in its continuum limit, classical statistical field theory, in 3 spatial dimensions:

• Start with a classical field describing some classical observable, e.g. with s(~x) defined as the
magnetisation density of a 3D ferromagnet with energy∫

d3xH(~x) =
∫

d3x
1
2
(∇s(~x))2 . (7.220)

We can think of this as the continuum limit of a system of spins sn with nearest neighbour
interactions.

• At temperature T = 0, the system is in its ground state given by minimizing the energy (in this
case given by s(~x) constant).

• For finite T there are thermal fluctuations of s(~x). These are encoded in the partition function

Z[H] =

∫
Ds(~x)e−β

∫
d3 x(H(s)−H(~x)s(~x)), (7.221)

where β = (kBT )−1 and H(~x) is an external source coupling to s(~x) (in the present case of a
ferromagnet this would be a magnetic field).

• The classical expectation value of s(~x) for an ensemble of systems is

〈s(~x)〉H =
1

Z[H]

∫
Ds(~x)s(~x)e−β

∫
d3 x(H−Hs). (7.222)

• Define the free energy - the analogue of WE [J] - as

F[H] = −
1
β

lnZ, (7.223)

i.e.

e−βF[H] =

∫
Ds(~x)e−β

∫
d3 x(H−Hs). (7.224)

Then

M(~x) := 〈s(~x)〉H = −
δF

δH(~x)
. (7.225)

• The Gibbs free energy is the Légendre transform of F[H],

G[M] = F[HM ] + M · HM, (7.226)

viewed as a functional of M. Then the average magnetisation is determined via the equation

δG
δM

= H. (7.227)
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Due to this formal analogy, many problems in statistical field theory are solved in exactly the same
manner as in Euclidean QFT. In particular the structure of perturbation theory and important concepts
concerning symmetry breaking and renormalisation agree.
This can be summarized as follows:

4D QFT 3D statistical theory
φ(xE) s(~x)

quantum fluctuation thermal fluctuation
h̄ kBT

e−
1
h̄ WE [J] e−βF[H]

ϕJ = −
δWE
δJ(~x) M = − δF

δH(~x)
δΓE
δϕ = J δG

δM = H

7.11 Grassman algebra calculus

We would now like to apply the path integral quantization method to systems with fermions. Consider
therefore a Dirac fermion field operator ψ̂A(t, ~x) with spin indices A = 1, 2, 3, 4 in the Heisenberg
picture and recall the anti-commutation relations

{ψ̂A(t, ~x), ψ̂†B(t,~y)} = δA
B δ

(3)(~x −~y) (7.228)

and
{ψ̂A(t, ~x), ψ̂B(t,~y)} = 0 = {ψ̂†A(t, ~x), ψ̂

†

B(t,~y)}. (7.229)

We seek a path integral representation for the transition function 〈ψ(~xF), t f |ψ(~xI), tI〉 where the state
|ψ(~x), t〉 is defined via

ψ̂A(t, ~x) |ψ(~x), t〉 = ψA(t, ~x) |ψ(~x), t〉 . (7.230)

Here the non-hatted expression ψA(t, ~x) represents a classical field. We face the immediate problem
that consistency with (7.229) requires that the classical field ψA(t, ~x) satisfy

ψA(t, ~x)ψB(t,~y) = −ψB(t,~y)ψA(t, ~x). (7.231)

Thus ψA(t, ~x) cannot take values in C - rather we need the notion of anti-commuting numbers.

Consider first the case of a finite number of degrees of freedom by putting the theory, as usual, on
a lattice of finite lattice spacing corresponding to a transition

ψA(t, ~x)→ ψA
i (t) (7.232)

and let us omit the spinor indices for the time being. Then we search for classical objects ψi(t) with
the property

ψi(t)ψ j(t) = −ψ j(t)ψi(t). (7.233)

These ψi take values in a so-called Grassmann-algebra A defined as follows:
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• Let θi, i = 1, . . . , n, be a basis of an n-dimensional complex vector space V , i.e. we have the
notion of scalar multiplication aθi = θia, a ∈ C and vector addition aθi + bθ j ∈ V .

• Define then a bilinear anti-commutative multiplication

θiθ j = −θ jθi (7.234)

as a map from

V × V 7→ Λ2V , (7.235)

where Λ2V is the antisymmetric tensor product of V .

• Iteratively we can build higher rank anti-symmetric product spaces ΛkV up to ΛnV .

Then the Grassmann (or exterior) algebra is defined as the space

A =
n⊕

k=0

ΛkV = C ⊕ V ⊕Λ2V ⊕ ... ⊕ΛnV . (7.236)

A typical element of A is of the form

a + aiθi +
1
2

ai jθiθ j + ... +
1
n!

ai1...inθi1 ...θin (7.237)

with completely antisymmetrc coefficients ai j = −a ji etc. By abuse of notation, the θi are called
Grassmann numbers - though calling them ’numbers’ makes things look more exotic than they
are as the θi should really be viewed simply as elements of the abstract Grassmann algebra A. In
particular they are nilpotent,

θ2
i = 0. (7.238)

An important example of a Grassmann algebra is the space Ω of differential forms defined on an
n-dimensional manifold endowed with the structure wedge (or exterior product).

A Grassmann algebra is a graded algebra:

An element of Λ2kV has grade (or degree) s = 0 (it is said to be even),
an element of Λ2k+1V has grade (or degree) s = 1 (it is said be odd).

Note that a general element of A can always be written as the sum of an even and an odd element.
Two elements A, B ∈A of definite degree sA and sB satisfy

A B = (−1)sA sB B A. (7.239)

Thus even elements are commuting and therefore sometimes called bosonic, whereas odd elements
are dubbed fermionic due to their anti-commuting nature.
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Differentiation and integration

To set up a notion of calculus on the space of functions

f : A → C, (7.240)

θ → f (θ) = a + aiθi + ... +
1
n!

ai1...inθi1in , (7.241)

one defines differentiation with respect to θi as follows:

• ∂
∂θi
θ j = δi j, ∂

∂θ j
a = 0 ∀a ∈ C;

• ∂
∂θi
(a1 f1(θ) + a2 f2(θ)) = a1

∂
∂θ1

f1(θ) + a2
∂
∂θ2

f2(θ) (linearity);

• If f1(θ) has definite grade s, then the graded Leibniz rule holds,

∂

∂θi

(
f1(θ) f2(θ)

)
=

(
∂

∂θi
f1(θ)

)
f2(θ) + (−1)s f1(θ)

∂

∂θi
f2(θ). (7.242)

For general f1(θ) we decompose f1(θ) into its even and odd part and then apply the graded
Leibniz rule by linearity.

For example
∂

∂θi
(θ jθk) = δi jθk − δikθ j. (7.243)

Next we define an integral I[ f (θ)] as a functional of f (θ). Our applications to the path integral will
make it evident that it is useful to define this functional such that it shares two key properties of the
bosonic integral (in one variable for simplicity)

I[ f (x)] =

∞∫
−∞

f (x)dx, (7.244)

namely

• I[a1 f1(x) + a2 f2(x)] = a1I[ f1(x)] + a2I[ f2(x)] and

• I[ f (x + a)] = I[ f (x)], i.e. translation invariance in the integration variable.

Consider first a Grassmann algebra with n = 1 such that

I[ f (θ] =
∫

dθ f (θ) =
∫

dθ(a + bθ). (7.245)

In this case translation invariance just means invariance under a shift of the integration variable θ →
θ+ c and implies, together with linearity,∫

dθ c = 0 ∀c ∈ C. (7.246)
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We normalise
∫

dθ θ = 1 such that∫
dθ[a + bθ] = b =

∂

∂θ
(a + bθ). (7.247)

For a Grassmann algebra based on Grassmann numbers θi, i = 1, . . . , n, generalized translation in-
variance implies ∫

dθi θ j = δi j =
∂

∂θi
θ j. (7.248)

Then the Grassmann measure is defined as dnθ B dθndθn−1...dθ1. Because of

dθidθ j = −dθ jdθi (7.249)

we have to be aware of the order in dnθ. Thus
∫

dnθ θ1θ2...θn = 1 and more generally∫
dnθ θi1 ...θin = εi1...in (7.250)

with εi1...in the totally anti-symmetric ε-tensor normalised as ε1...n = 1. In particular for f (θ) =

a + aiθi + ... + 1
n! ai1...inθi1...in we find∫

dnθ f (θ) =
1
n!

ai1...inεi1...in = a123...n. (7.251)

Only those terms contribute for which the Grassmann integral is ’saturated’ such that each dθi is paired
with precisely one θi.
Note that the above definitions ensure that upon integration by parts no boundary terms are picked up,∫

dnθ
∂

∂θi
f (θ) = 0. (7.252)

As an application we compute the Jacobian that arises for a linear change of Grassmann integration
variables. To begin with, if A is an (n × n)-matrix, then we can define θ′ = Aθ and find∫

dnθ f (θ′) =
∫

dnθ f (Aθ) =

∫
dnθ a12...nA1i1 ...Aninθi1 ...θin (7.253)

= a12...n A1i1 ...Aninεi1...in︸            ︷︷            ︸
=detA

= det A
∫

dnθ f (θ). (7.254)

In the first line we used (7.251). Thus∫
dnθ f (θ′) = det A

∫
dnθ f (θ) = det A

∫
dnθ′ f (θ′) (7.255)

and consequently dnθ = detA dnθ′, i.e.

θ′ = A θ ⇒ dnθ′ = (det A)−1 dnθ. (7.256)

Compare this with the bosonic case dn(A · x) = ||det A|| dnx.
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Application: Fermionic Gauss integral

Consider θi, i = 1, ..., n, with n = 2m and let us compute

I =
∫

dnθ e
1
2 θiAi jθ j , Ai j = −A ji. (7.257)

To saturate the Grassmann measure we pick up the term to m−th order in the expansion of the expo-
nential and find

I =
1

2mm!

∫
dnθ Ai1i2 ...Ain−1inθi1 ...θin−1θin

=
1

2mm!
εi1...in Ai1i2 ...Ain−1in B Pf(A),

(7.258)

where Pf(A) is the so-called Pfaffian. Note the difference in the definition of the Pfaffian and of the
determinant,

det A =
1
n!
εi1...inε j1... jn Ai1 j1 ...Ain jn . (7.259)

One can show with standard methods of linear algebra that (Pf(A))2 = det A and take the positive
sign,

Pf(A) =
√

det A. (7.260)

Complexification

So far the coefficients a ∈ C, but θi were treated as real, or equivalently as one anti-commuting degree
of freedom (which is the fermionic counterpart of 1 bosonic real number). One can also consider
complex θi and θ∗i , viewed as independent degrees of freedom. E.g. one can build such complex
Grassmann variables θi, i = 1, . . . , n, out of real Grassmann variables ω j, j = 1, ..., 2n via

θi = ω2i−1 + iω2i, θ∗i = ω2i−1 − iω2i. (7.261)

Alternatively, we simply declare θi and θ∗i to denote independent objects and define the complex
conjugate of a product via

(θi θ j)
∗ = θ∗j θ

∗
i . (7.262)

We furthermore define the measure

dnθ dnθ∗ B
n∏

i=1

dθi dθ∗i = dθ1dθ∗1...dθndθ∗n = dθndθ∗n...dθ1dθ∗1. (7.263)

The complex Gaussian integral then reads∫
dθ dθ∗ eθ

∗
i Bi jθ j =

1
n!

∫
dθndθ∗n...dθ1dθ∗1Bi1 j1 ...Bin jn θ

∗
i1θ j1 ...θ∗inθ jn

=
1
n!
εi1...in ε j1... jn Bi1 j1 . . . Bin jn = det B.

(7.264)

Let us compare our results for bosonic and fermionic Gaussian integrals:
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• Real case: ∫
dnx e−

1
2 xiAi j x j =

√
(2π)n

det A
(bosonic integration),∫

dnθ e
1
2 θiAi jθ j =

√
det A (fermionic integration).

(7.265)

• Complex case: ∫
dnz dnz∗ e−z∗i Bi jz j =

(2π)n

det B
(bosonic),∫

dnθ∗ dnθ e−θ
∗
i Bi jθ j = det B (fermionic).

(7.266)

Note the change in the order of dnθ∗ and dnθ in the last term in order to accomodate for the (−1)
sign in the exponent.

7.12 The fermionic path integral

We are now ready to come back to physics and to address the transition amplitude between two
fermionic states. We first consider the quantum mechanics of a single fermion by making the transition

ψ̂A(t, ~x)→ ψ̂i(t) (7.267)

ignoring the spinor components A and taking i = 1. We then seek the states |ψ, t〉 such that

ψ̂(t) |ψ, t〉 = ψ(t) |ψ, t〉 (7.268)

with ψ(t) a complex Grassmann number. Working at fixed time t and suppressing the t-dependence
we must find the Hilbert space acted upon by ψ̂ and ψ̂† with anti-commutation relations

{ψ̂, ψ̂} = 0 = {ψ̂†, ψ̂†}, {ψ̂, ψ̂†} = 1. (7.269)

In analogy with the analogous bosonic relations [a, a†] = 1, [a, a] = 0 = [a†, a†] this system is called
a fermionic harmonic oscillator. We assume (or alternatively show by exploiting boundedness of
the Hamiltonian) the existence of a ground state

|0〉 such that ψ̂ |0〉 = 0 (7.270)

and define the state |1〉 as ψ̂† |0〉 = |1〉. By means of the anti-commutation relations

ψ̂† |1〉 = ψ̂†ψ̂† |0〉 = 0,

ψ̂ |1〉 = ψ̂ψ̂† |0〉 = (1 − ψ̂†ψ̂) |0〉 = |0〉 .
(7.271)

We now claim that the sought-after eigenstate |ψ〉 with ψ̂ |ψ〉 = ψ |ψ〉 takes the form

|ψ〉 = |0〉 − ψ |1〉 . (7.272)
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To avoid confusion note that the unhatted ψ is a complex Grassmann number, while the hatted ψ̂, ψ̂†

are annihilation and creation operators.
Indeed,

ψ̂(|0〉 − ψ |1〉) = 0 − ψ̂ψ |1〉 . (7.273)

Since |1〉 = ψ† |0〉 is a Grassmann odd object, we have ψ |1〉 = − |1〉ψ. Equivalently, this follows from
the relation ψ̂†ψ = −ψψ̂†. Either way we find

ψ̂ |ψ〉 = ψψ̂ |1〉 = ψ |0〉 = ψ |0〉 − ψ2 |1〉 = ψ(|0〉 − ψ |1〉) = ψ |ψ〉 . (7.274)

We can rewrite the eigenstate as

e−ψψ̂
†

|0〉 = (1 − ψψ̂†) |0〉 = |0〉 − ψ |1〉 . (7.275)

Thus the eigenstate of the fermionic annihilation operator

ψ̂ |ψ〉 = ψ |ψ〉 (7.276)

is given by

|ψ〉 = |0〉 − ψ |1〉 = e−ψψ
†

|0〉 (7.277)

The state |ψ〉 is the fermionic analogue of a bosonic coherent state |µ〉 defined as the eigenstate of the
annihilator,

a |µ〉 = µ |µ〉 with |µ〉 = eµa† |0〉 . (7.278)

The complex conjugate state 〈ψ| defined via 〈ψ| ψ̂† = 〈ψ|ψ∗ is simply

〈ψ| = 〈0| − 〈1|ψ∗ = 〈0| e−ψ̂ψ
∗

. (7.279)

We will also need the inner product of two fermionic coherent states

〈ψ|ψ′〉 = 〈0| 0〉+ 〈1|ψ∗ψ′ |1〉 = 1 + ψ∗ψ′ (7.280)

and thus
〈ψ|ψ′〉 = eψ

∗ψ′. (7.281)

Finallly the completeness relation in terms of the coherent states is given by∫
dψ∗dψ |ψ〉 e−ψ

∗ψ 〈ψ| = 1 (7.282)

since the left-hand side is ∫
dψ∗dψ (|0〉 − ψ |1〉) (1 − ψ∗ψ)(〈0| − 〈1|ψ∗)

=

∫
dψ∗dψ (− |0〉ψ∗ψ 〈0|+ ψ |1〉 〈1|ψ∗)︸                              ︷︷                              ︸

−ψ∗ψ|0〉〈0|+ψψ∗ |1〉〈1|)

= |0〉 〈0|+ |1〉 〈1| = 1,

(7.283)
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where we used that only terms ∼ ψ∗ψ saturate the Grassmann measure.

Let us now compute the quantum mechanical transition amplitude

〈ψF , tF |ψI , tI〉 = 〈ψF | e−iĤ(t f−tI) |ψI〉 (7.284)

between two fermionic coherent states. We assume that the structure of the Hamiltonian is

Ĥ = ψ̂†Mψ̂ ≡ H(ψ̂†, ψ̂) (7.285)

for some bosonic, i.e. Grassmann even, M. In fact this will be sufficient to treat the field theoretic
Dirac fermion system we are interested in. As in the derivation of the bosonic path integral we partition
the time evolution operator according to

e−iĤ(tF−tI) = lim
N→∞

(
e−iHδt

)N
, δt =

tF − tI

N
(7.286)

and insert suitable factors of the identity, this time given by

1 j =

∫
dψ∗jdψ j |ψ j〉 e

−ψ∗jψ j 〈ψ j| . (7.287)

Thus

〈ψF , tF |ψI , tI〉 = lim
N→∞

∫ N∏
j=1

dψ∗jdψ j 〈ψN+1| e−iĤδt |ψN〉 e−ψ
∗
NψN 〈ψN | ... |ψ1〉 e−ψ

∗
1ψ1 〈ψ1| e−iĤδt |ψ0〉

(7.288)
with |ψ0〉 ≡ |ψI〉 and |ψN+1〉 ≡ |ψF〉. Now

〈ψ j+1| e−iĤδt |ψ j〉 = 〈ψ j+1| e−iψ̂†Mψ̂δt |ψ j〉

= 〈ψ j+1| (1 − iψ̂†Mψ̂δt) |ψ j〉

= 〈ψ j+1|ψ j〉 − i 〈ψ j+1| ψ̂
†Mψ̂δt |ψ j〉

= (1 − iψ∗j+1Mψ jδt) 〈ψ j+1|ψ j〉

= eψ
∗
j+1ψ je−iψ∗j+1 Mψ jδt

= eψ
∗
j+1ψ j+1eψ

∗
j+1(ψ j−ψ j+1)e−iψ∗j+1 Mψ jδt.

(7.289)

The factor eψ
∗
j+1ψ j+1 cancels with a corresponding factor e−ψ

∗
j+1ψ j+1 from the insertion of the identity,

except for one remaining factor eψ
∗
N+1ψN+1 . Thus

〈ψF , tF |ψI , tI〉 = lim
N→∞

∫ N∏
j=1

dψ∗j dψ j eψ
∗
N+1ψN+1 e

∑N
j=0(−ψ∗j+1(ψ j+1−ψ j)−iδtH(ψ∗j+1,ψ j)). (7.290)

As N → ∞ the exponential becomes

ei
∫

dt(ψ∗ i ∂
∂tψ−H) (7.291)
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and eψ
∗
N+1ψN+1 can be absorbed into the measure to arrive at the fermionic path integral for the Quantum

Mechanics of a single complex fermion,

〈ψF , tF |ψI , tI〉 =

∫
Dψ∗Dψ ei

∫ tF
tI

dt (ψ∗i ∂ψ∂t −H). (7.292)

To generalise this result to the Quantum Field Theory of a Dirac fermion we consider the classical
action

S =

∫
d4x ψ̄(x) (iγµ∂µ −m0)ψ(x) +Lint ≡

∫
d4xL (7.293)

with
L = ψ̄(x)iγ0∂0ψ(x) + ψ̄(x)

(
iγi∂i −m0

)
ψ(x) +Lint (7.294)

and ψ ≡ ψA, ψ̄ ≡ ψ†Aγ
0, (γ0)2 = 1. Note that the Hamiltonian is

H = −ψ̄(x)(iγi∂i −m0)ψ(x) −Lint. (7.295)

Thus we immediately generalise the above result to field theory as

〈ψF(~xF), tF |ψI(~xI), tI〉 =

∫
Dψ̄(t, ~x)Dψ(t, ~x)ei

∫ tF
tI

d4 xL(ψ,ψ̄). (7.296)

Note that we can integrate over ψ̄ as opposed to ψ∗ without cost. To project initial and final states to
the vacuum |Ω〉, the same trick of replacing

m0 → m0 − iε (7.297)

works with tI → −∞ and tF → ∞. With this understanding we define the generating functional for
fermionic correlation functions as

Z[η, η̄] = 〈Ω|Tei
∫

d4 x[L(ψ,ψ̄)+η̄(x)ψ(x)+ψ̄(x)η(x)] |Ω〉

=

∫
Dψ̄DψeiS [ψ,ψ̄]+iη̄·ψ+iψ̄·η,

(7.298)

where the external sources η, η̄ are Grassmann-valued classical fields. Then for instance

〈Ω|Tψ(x1)ψ̄(x2) |Ω〉 =
1

Z[0, 0]
δ

iδη̄(x1)

−δ

iδη(x2)
Z[η, η̄]|η=0=η̄, (7.299)

where special attention must be paid to the various minus signs.
The same methods as in the bosonic theory can be applied to deduce from this the fermionic Feynman
rules. For example, as will be derived in the tutorials, in the free theory completing the square yields

Z0[η, η̄] = Z0[0, 0]e−η̄S Fη (7.300)

where the fermionic Feynman propagator

S F(x − y) =
∫

d4 p
(2π)4

i(γ · p + m0 − iε)

p2 −m2
0 + iε

e−ip(x−y) (7.301)
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is a solution to

(iγ · ∂x −m0 + iε)(−iS F(x − y)) = δ(x − y), i.e. (iγ · ∂ −m0 + iε) = iS −1
F . (7.302)

Thus
〈0|Tψ(x)ψ̄(y) |0〉 = S F(x − y). (7.303)

Similarly one confirms the fermionic Feynman rules as stated in QFT I.
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Chapter 8

Renormalisation of Quantum Field
Theory

In QFT I we claimed without proof the following properties of Quantum Electrodynamics (QED):

• The structure of UV divergences is encoded in the following three types of diagrams:

f���
1PIf, g���

1PIg,

�
• The four constants multiplying the divergences in these diagrams can be absorbed order by

order in perturbation theory in the counterterms of the renormalized Lagrangian such that all
physical amplitudes are finite. For this recall chapter 5.9 of QFT I.

While we demonstrated the second point at 1-loop order in QED, a number of open questions remain:

1. Why are only the above diagrams relevant as far as the structure of UV divergences is concerned,
and how do these diagrams generalise to other QFTs?

2. How does one prove finiteness of the renormalised theory beyond 1-loop order in perturbation
theory?

3. What is the physics behind the renormalisation procedure?

8.1 Superficial divergence and power counting

In this section we address the question which diagrams are the relevant ones concerning the structure
of UV divergences in QFT. We will do so for definiteness in the context of a scalar theory in d

217
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dimensions with bare Lagrangian

L0 =
1
2
(∂µφ)

2 −
1
2

m2
0φ

2 −
λ
(n)
0

n!
φn. (8.1)

Consider a connected diagram with E external lines, L loops, V vertices and I internal propagators.
We had seen that for such diagrams

L = I − V + 1. (8.2)

Since each external line ends with 1 end at a vertex and each internal line with 2 ends, we have

nV = 2I + E. (8.3)

Now, naively the structure of momentum integrals in the UV for such a diagram is∫
ddk1...

∫
ddkL

k2
1...k2

I

(8.4)

since each loop gives a momentum integral
∫

ddk and each internal line contributes a propagator
scaling like (k2 − m2)−1. Let us define D to be the difference of the power of the momentum in
nominator and denominator. In the above theory

D = d L − 2 I. (8.5)

If we introduce a momentum cutoff in the UV by replacing∫ ∞

dk →
∫ Λ

dk, (8.6)

then according to this naive analysis the amplitudeM for the process associated with a diagram scales
as follows with Λ:

D > 0 : M ∼ ΛD (superfically divergent),

D < 0 : M ∼ Λ−|D| (superficially finite),

D = 0 : M ∼ log(Λ) (superficially log-divergent).

According to this reasoning, as Λ → ∞ only diagrams with D ≥ 0 are divergent. Therefore D is
called superficial degree of divergence. The term superficial indicates that D does not always reflect
the actual divergence or finiteness properties of a diagram, due to one of the three possible exceptions:

• If D ≥ 0, then a diagram may still be actually finite if a sufficient amount of symmetry constrains
the form of the amplitude or leads to cancellations among infinite terms. For example, super-
symmetry leads to such cancellations, and the theory with maximal supersymmetry, N = 4
Super-Yang-Mills theory in 4D, is even finite to all orders.

• If D < 0, a diagram may be actually divergent if the divergence is due to a simpler divergent
subdiagram.
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• Tree-level diagrams have D = 0, but are finite.

To illustrate this consider φ4 theory in d = 4.

1. The following diagram has D = 0 and is superficially and actually logarithmically divergent,
as we will see later.

�
2. The following diagram has D = −2 and is superficially and actually finite.

�
3. The following diagram still has D = −2, but is actually divergent. However, a closer look

reveals that the divergence is due to diagram 1, which appears as a divergent subdiagram with
D = 0.

�
Conclusions: Except for the issue of divergent sudiagrams, all divergences come at most from the
superficially divergent diagrams.

Given its importance, it is useful to derive an explicit expression for D. In the theory under consider-
ation (φn in d dimensions) we have

D = d L − 2 I = d(I − V + 1) − 2I (8.7)

with I = 1
2 (nV − E) and thus

D = d −
(
d − n

d − 2
2

)
V −

d − 2
2

E . (8.8)

Equation (8.8) can also be obtained by dimensional analysis: The action

S =

∫
dd x

−1
2
φ(∂2 + m2

0)φ −
λ
(n)
0

n!
φn

 . (8.9)
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has mass dimension zero (in natural units with h̄ = 1 = c) and therefore

[φ] =
d − 2

2
, [λ

(n)
0 ] = −n

d − 2
2

+ d. (8.10)

Consider a diagram with E external lines. To determine the mass dimension of the associated am-
plitude, we note that it would receive a tree-level contribution M(E) = −iλ(E) if there were a term
λ(E)φE in L. Thus

[M(E)] = [λ(E)] = d − E
d − 2

2
. (8.11)

Furthermore, ifM(E) has superficial degree D, then

M(E) ∼ (λ
(n)
o )V ΛD (8.12)

unless one of the 3 exceptions is at work, where V is the number of n-point vertices. Therefore

V [λ(n)0 ] + D = d − E
d − 2

2
(8.13)

and thus

D = d −
(
d − n

d − 2
2

)
V −

d − 2
2

E = d − [λ(n)0 ]V −
d − 2

2
E. (8.14)

The appearance of the mass dimension of the coupling constant is very important as we will see in a
second.

8.2 Renormalisability and BPHZ theorem

The UV properties of a theory depend crucially on the sign of the coefficient of V in the expression
(8.8) for D. To see this consider the following examples:

1. For φ4 theory in 4 dimensions (d = 4, n = 4) we find D = 4 − E, i.e. D depends only on E,
not on V or L. There exists only a finite number of superficially divergent amplitudes. Since the
action is invariant under φ → −φ, any diagram with an odd number of external lines vanishes,
and the only superficially divergent amplitudes are the following:

E = 0:

p
E = 2:

fpf
E = 4:

�
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Since D is independet of L, superficial divergences appear for these amplitudes at every order
in perturbation theory.

2. In φ3 theory in 4 dimensions (d = 4, n = 3), we have D = 4−V − E. Now only a finite number
of superficially divergent Feynman diagrams exist since V appears directly and with a negative
sign.

3. In φ5 theory in 4 dimensions (d = 4, n = 5), we have D = 4 + V − E. There exists an infinite
number of superficially divergent amplitudes since for every value of E diagrams with high
enough V diverge.

Definition: A theory is called

• (power-counting) renormalisable if the number of superficially divergent amplitudes is finite,
but superficial divergences appear at every order in perturbation theory.

• (power-counting) super-renormalisable if the number of superficially divergent Feynman
diagrams is finite.

• (power-counting) non-renormalisable if the number of superficially divergent amplitudes is
infinite.

From D = d − [λ(n)]V − d−2
2 E (and analogous formulae for other theories) we draw the following

important conclusion:
A theory is

• renormalisable if its coupling has vanishing mass dimension.

• super-renormalisable if its coupling has positive mass dimension.

• non-renormalisable if its coupling has negative mass dimension.

The significance of the concept of (power-counting) renormalisablity is summarised in the BPHZ
theorem1

• Ignore the issue of divergent subgraphs for a moment. Then if a theory is (power-counting)
renormalisable, at each order in perturbation theory only a finite number of divergent dia-
grams, parametrized by a finite number of divergent constants, appear. One can absorb these
divergences order by order in the counterterms of the renormalized Lagrangian such that all
physical amplitudes are finite.

• The counterterms create new Feynman diagrams relevant at the next order. These will cancel
the divergences of the divergent subdiagrams (if present) at the next order.

1Due to Bogoliubov, Parasiuk, Hepp, Zimmermann.
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• All of this leads to a perturbative adjustment of a finite number of counterterms in the renor-
malised Lagrangian, and thus predictivity is maintained.

The non-trivial aspect of this theorem concerns the complete cancellation of divergent subdiagrams by
lower-order counterterms. Rather than presenting a full proof, which can be found in Zimmermann’s
1970 article (see also Kugo’s book), we will demonstrate this in the next section in the context of
renormalisation at two-loop order. For simplicity we do this for φ4 theory.

8.3 Renormalisation of φ4 theory up to 2-loops

We follow mostly the procedure of Peskin-Schröder, Chapters 10.2 and 10.5. Our starting point is the
bare Lagrangian

L =
1
2
(∂µφ)

2 −
1
2

m2
0φ

2 −
λ0

4!
φ4 (8.15)

in 4 dimensions with [λ0] = 0. As noted already above the superficially divergent diagrams are given
by

• the vacuum energy with E = 0, D = 4, which is trivially absorbable into V0:

p
• the propagator with E = 2, D = 2:

fafpfaf
• the 4-point amplitude with E = 4, D = 0:

�
Now comes a simple, but important observation regarding dimensional analysis that we will make
frequent use of: In a theory with a dimensionless coupling constant the dimension of the amplitude
agrees with D, see eq. (8.12). We can therefore parametrise the second amplitude with D = 2 in
terms of the momentum cutoff Λ as

pfafpfaf p = aΛ2 + bpΛ + cp2 log(Λ) + finite terms. (8.16)

This is to be viewed as a Taylor expansion in p with dimensionless constants a, b, c. Note that due to
the symmetry p→ −p of L in momentum space b ≡ 0.
By the same logic, the 4-point amplitude with D = 0 can be parametrized (with d dimensionless) as
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�= d log(Λ) + finite terms

Definition: If the divergence is multiplied by a simple monomial in p as above, it is called local
divergence. In the presence of divergent subgraphs more complicated expressions of p will appear.
The BPHZ theorem states that it is possible to absorb the 3 divergent constants a, c, d into 3 countert-
erms in the renormalised Lagrangian, order by order in renormalized perturbation theory. As discussed
in the context of QED in QFT1 we define the renormalised field

φr = Z−
1
2φ (8.17)

with Z the wavefunction renormalisation and rewrite L as

L =
1
2
(∂µφr)

2 −
1
2

m2φ2
r −

λ

4!
φ4

r +
1
2
δZ(∂µφr)

2 −
1
2
δmφ

2
r −

δλ
4!
φ4

r (8.18)

where δZ = Z − 1, δm = m2
0Z −m2 and δλ = λ0Z2 − λ. We henceforth compute with the renormalised

Feynman rules
pF ∼ i

p2−m2+iε ,
pFx pF ∼ i(p2δZ − δm)

�∼ −iλ,�∼ −iδλ

and no factors of
√

Z for in- and out-going states in the computation of scattering amplitudes. To
define the meaning of m and λ we impose the following renormalisation conditions:

pFp pF !
= i

p2−m2 + terms regular at p2 = m2

�p2

p1

p3

p4
amp.

= −iλ at s = 4m2, t = u = 0

Here s, t, u are the Mandelstam variables, which read with the above convention for the arrow of the
momenta,

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2. (8.19)

Now

fpf =
i

p2 −m2 −M2(p2)
, (8.20)

where −iM2(p2) is the amplitude of the 1PI amputated diagrams. Thus the first renormalisation
condition implies:

M2(p2)
∣∣∣
p2=m2

!
= 0,

d
dp2 M2(p2)

∣∣∣
p2=m2

!
= 0. (8.21)

Note that the renormalisation conditions are arbitrary and define the renormalisation scheme.
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8.3.1 1-loop renormalisation

At 1-loop order

�
f���

1PIf = +fxf

and thus2

f���
1PIf = (−iλ)

1
2

∫
d4k
(2π)4

i
k2 −m2 + iε

+ i(p2δ
(1)
Z − δ

(1)
m ) ≡ −iM2(p2)

∣∣∣
1-loop. (8.22)

We compute the integral by dimensional regularisation. The result (see exercise sheet 5 for a deriva-
tion) is

∫
ddk
(2π)d

i
k2 −m2 =

1
(4π)d/2

Γ
(
1 − d

2

)
(m2)1−d/2

. (8.23)

For d = 4 − ε and with the help of

Γ
(
−1 +

ε

2

)
= −

2
ε

e−
1
2γ·ε

(
1 +

ε

2

)
+O(ε3) (8.24)

we get

�
= iλ2

(
1 + 2

ε

)
(m2)1−ε/2

(4π)2−ε/2 e−
1
2γε = i

2
λ

16π2 m2
(

2
ε + 1 − log(m2)

)
(e−γ4π)

1
2 ε ,

where we used

(m2)−ε/2 = e−
ε
2 m2

= 1 −
ε

2
log(m2) +O(ε3). (8.25)

Note that the expected quadratic divergence aΛ2 corresponds, in dimensional regularization, to the
divergent term

iλ
16π2 m2 1

ε
. (8.26)

More precisely, for the integral with a UV momentum cutoff, the divergence would be proportional to

Λ2 −m2log
(m2 + Λ2

m2

)
. (8.27)

As a rule of thumb, in a theory with dimensionless coupling constant, the order in Λ corresponding
to a 1

ε -pole in dimensional regularization agrees with the mass dimension of the prefactor: Here
[λm2] = 2 and thus the divergence is expected to scale as Λ2.

2The factor of 1
2 in front of the integral is a symmetry factor.
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Altogether

− iM2(p2) = −
iλ
2

1
4πd/2

Γ
(
1 − d

2

)
(m2)1−d/2

+ i
(
p2δ

(1)
Z − δ

(1)
m

)
(8.28)

and the renormalisation conditions imply

d
dp2 M2(p2)

∣∣∣∣∣∣
p2=m2

!
= 0 ⇒ δ

(1)
Z

!
= 0 (8.29)

and

M2(p2)

∣∣∣∣∣∣
p2=m2

!
= 0⇒ δ

(1)
m

!
= −

λ

2(4π)d/2

Γ
(
1 − d

2

)
(m2)1−d/2

∣∣∣∣∣∣
d→4

. (8.30)

Note that at 1-loop M2(p2) ≡ 0 ∀p2 and the first non-trivial corrections to the propagator appear at
the 2-loop level. This, however, is a specialty of φ4 theory in four dimensions.

The computation of the 4-point amplitude at 1-loop level involves the following diagrams,

�p2

p1

p3

p4

=�p2

p1

p3

p4

−iλ +�
p3
p4

p2

p1

+ + +�
p1
p2

p3

p4 �p2

p1 p3

p4

�p2
p1

p3

p4

(1) + O(λ3)

The first loop amplitude corresponds to the s-channel,

�p2

p1 p3

p4

= 1
2 (−iλ)2

∫
d4k
(2π)4

i
k2−m2

i
(k+p)2−m2 B (−iλ)2iV(p2)

where p = p1 + p2. Then

iM(p1 p2 → p3 p4) = −iλ+ (−iλ)2 [iV(s) + iV(t) + iV(u)] − iδ(1)λ +O(λ3). (8.31)

The renormalisation condition implies

iM|s=4m2,t=u=0 = −iλ ⇒ (−iλ)2
[
iV(4m2) + 2iV(0)

]
− iδ(1)λ

!
= 0. (8.32)

Therefore

δ
(1)
λ

!
= −λ2

(
V(4m2) + 2V(0)

)
≡ δ

(1)
λ (s) + δ

(1)
λ (u + t). (8.33)
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The computation of V(p2) proceeds again via dimensional regularisation and is performed on exercise
sheet 5, with the result

V(p2) = −
1
2

Γ(ε
(4π)2−ε/2

∫ 1

0
dx

1
[m2 − x(1 − x)p2]ε

= −
1

32π2

∫ 1

0
dx

[
2
ε
− γ+ log(4π) − log(m2 − x(1 − x)p2

]
.

(8.34)

Then

δ
(1)
λ =

λ2

32π2

∫ 1

0
dx

[
6
ε
− 3γ+ 3 log(4π) − log(m2(1 − 4x(1 − x))) − 2 log(m2)

]
. (8.35)

Computing iM(p1 p2 → p3 p4) up to O(λ2) gives:

iM(p1 p2 → p3 p4) = − iλ −
iλ2

32π2

1∫
0

dx
[

log
(

m2 − x(1 − x)s
m2 − x(1 − x)4m2

)

+ log
(
m2 − x(1 − x)t

m2

)
+ log

(
m2 − x(1 − x)u

m2

) ]
.

(8.36)

This is manifestly finite and depends on two measurable input parameters m and λ.

8.3.2 Renormalisation at 2-loop

We now move on to 2-loop order and demonstrate that all divergences can be absorbed in 2-loop coun-
terterms. In particular we need to show that divergences due to divergent subdiagrams are cancelled
by the 1-loop counterterms that we have already included.

To exemplify this aspect of the BPHZ theorem we consider

�
at 2-loop-level.

1. In diagrams of the type

�+�
(1)

the 1-loop counterterm to the propagator in the second diagram cancels the extra divergence in
the first diagram. In fact, as a speciality of φ4-theory, we have seen that, at 1-loop level,
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�
+

�

= 0

So the above diagrams give no contribution at order λ3.

2. There are 5 × 3 + 1 diagrams of the form

�+�
plus the corresponding t-channel diagrams

�
+...

plus the u-channel diagrams

�+...

as well as the 2-loop counterterm, which we split as

�(2) =�
s

(2) +�
t + u

(2)

We consider only the s-channel, since t-and u-channel work completely analogously. The im-
portant point to notice is that all momentum independent divergences can be absorbed into
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�
s

(2)

One must therefore show that the momentum dependent divergences cancel among the five s-
channel diagrams. Following Peskin-Schröder, they can be grouped into

group 1:

�p2

p1
p3

p4

+�p2

p1 p3

p4

(1), s +�p2

p1 p3

p4

(1), s

group 2:

and group 3:

Note that group 1 contains only the s-channel 1-loop counter terms, while in group 2 and 3 the
combined (t + u)-channel counter terms appear. The divergences of the diagrams of group 1
are very easy to deal with: In terms of our previous definition

�p2

p1 p3

p4

= (−iλ)2iV(p2)
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with p = p1 + p2 = p3 + p4 we have

�p2

p1
p3

p4

= (−iλ)3
(
iV(p2)

)2

and

�p2

p1 p3

p4

(1), s =�p2

p1 p3

p4

(1), s = (−iλ)iV(p2)λ2
(
iV(4m2)

)

For the counter term diagram we used our result that −iδ(1)λ (s) = λ2
(
iV(4m2)

)
. Adding both

contributions up and completing the square leads to

(−iλ)3
(
−

(
V(p2) − V(4m2)

)2
+

(
V(4m2)

)2
)

(8.37)

for group 1. From the explicit expression of V(p2) we deduce that

V(p2) − V(4m2) = finite, (8.38)

while
(
V(4m2)

)2
has merely a momentum-independent divergence, which can be absorbed by

the 2-loop counter term

�
s

(2)

Note that ∼
(

2
ε

)2
contains a divergence of the form 2

ε . More generally, higher loop-order diver-
gences give higher powers in 1/ε.

Now consider the diagram from group 2, given by
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= (−iλ)3
∫

d4k
(2π)4

i
k2 −m2

i
(k + p)2 −m2 iV

(
(p3 + k)2

)
(8.39)

with p = p1 + p2 = p3 + p4. This diagram exemplifies the appearance of a nested singu-
larity, which appears when 2 divergent subdiagrams share a common propagator. In this case,
so-called non-local divergences appear, for which the prefactor of the singularity is not a sim-
ple polynomial in p, but a more complicated function in p.

Integrals of this kind would keep us from the street for a while. We do not explicitly perform
the computation, which is straightforward, but a little lengthy, and merely quote the result from
Peskin-Schröder, Chapter 10: When the dust has settled, the amplitude can be written as the
sum of 2 terms:

• Term 1 has only a momentum independent singularity, which can be absorbed into the
2-loop counter-term.

• Term 2 is given by

−
iλ3

2(4π)4

2
ε

1∫
0

dy
[
1
ε
− γ+ log(4π) − log(m2 − y(1 − y)p2)

]
(8.40)

and exhibits 2 types of singularities:
The double pole 2

ε
1
ε indicates the higher-loop nature of the singularity, as before. It is due

to the region in momentum space where both loops diverge. By contrast, the term

2
ε

log(m2 − y(1 − y)p2) (8.41)

is the non-local singularity advertised above. The factor of 2/ε is due to the regime in
momentum space where only 1 of the subdiagrams diverges, and the log(p2) represents
the finite QFT process around this from the other subdiagram.

Explicit computation confirms that these singularities are cancelled by the counter-term
diagram

�(1), t + u

This completes the proof that at 2-loop order, all divergences, including those of divergent subdia-
grams, can be absorbed into the counter-terms. A formalization of this procedure leads to the BPHZ
theorem. More on the ideas behind its proof can be found e.g. in Kugo.
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8.4 Renormalisation of QED revisited

In QED with interaction ∼ ψ̄γµAµψ, the superfical degree of divergence of an amplitude with

Eγ = number of external photons

Ee = number of external electrons
(8.42)

is (see Exercise Sheet 5 for a derivation)

D = 4 − Eγ −
3
2

Ee. (8.43)

In particular, since [e] = 0 the theory is renormalisable. The following amplitudes have D ≥ 0:

1. The vacuum energy p with D = 4;

2. The photon propagatorgpgwith D = 2, the electron propagatorfafpfaf
with D = 1 and the D = 0 vertex

�
3. The 1-photon amplitude pg with D = 3;

4. The 3-photon amplitude with D = 1

�
5. The 4-photon amplitude with D = 0

�
Due to both discrete and continuous symmetries of the theory, only the diagrams from groups 1. and
2. are actually divergent.

• Amplitudes 3. and 4. vanish to all orders due to the discrete symmetry of charge conjugation:
LQED is invariant under

jµ → − jµ and Aµ → −Aµ (8.44)

with jµ ∼ ψ̄γµψ. Now, each external photon couples via its current jµ, e.g.
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Thus a diagram with only an odd number of external photons vanishes.

• Diagram 5. is non-zero, but actually finite as a consequence of gauge symmetry. This can be
shown by exploiting the Ward identities.
Note that diagram 5. is responsible for the non-linearity of QED due to the scattering of photons
with each other induced by loop effects.

Thus as claimed in QFT I, as far as the UV divergences are concerned it suffices to consider the
diagrams 2. (the contribution of 1. is easily absorbed into the vacuum energy term). But again
symmetry lowers the actual degree of divergence for the first two diagrams of 2. to logarithmic ones:

• By dimensional analysis, the fermion propagator, having D = 1, can be Taylor-expanded as
pFfpfaf = A0 + A1 6 p +A2 p2 + ... (8.45)

with
A0 = a0Λ, A1 = a1 log Λ, A2 and higher: finite as Λ → ∞ (8.46)

and a0, a1 dimensionless. But then the mass shift of the electron would be proportional to Λ.
Instead this shift must be proportional to the electron mass me itself. This is because if me ≡ 0,
then the theory possesses chiral or axial symmetry, because the Lagrangian can be written as

L = ψ̄Liγ · ∂ψL + ψ̄Riγ · ∂ψR − e jµAµ (8.47)

and is invariant under independent rotations of the left- and right-chiral spinors

ψL → eiαψL, ψR → eiβψR. (8.48)

This symmetry, however, forbids a mass term, which must be of the form meψ̄RψL. Thus A0

must contain an explicit power of me. By dimensional analysis there is no more room for a
factor of Λ, and A0 can at worst be of the form

A0 = ã0me log Λ, (8.49)

as is in fact confirmed by computation.

• The photon propagator is, by dimensional analysis, of the form

µ
qGgpg qG ν = B0 + Bµ1qµ + B2q2 + ... (8.50)

with
B0 = b0Λ2, Bµ1 = bµ1Λ, B2 = b2 log Λ (8.51)

and bi dimensionless. But by the Ward identities we know that

µgpg ν =
(
ηµνq2 − qµqν

)
Π(q2) (8.52)

and thus b0 = b1 = 0.
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Thus all diagrams of 2. are logarithmically divergent. Renormalisation proceeds as discussed, at
1-loop level, in QFT I.

8.5 The renormalisation scale

Renormalisation automatically introduces a mass scale µ - the renormalisation scale - in the quantum
theory via the renormalisation conditions. In our renormalisation of φ4 theory we have so far chosen
to identify µ with the mass m of φ because our renormalisation conditions have been

M2(p2)
∣∣∣
p2=m2 = 0 =

d
dp2 M2(p2)

∣∣∣
p2=m2 (8.53)

and

�= −iλ at scale s = 4m2, t = u = 0

More generally, the renormalisation scale µ can be an independent scale since the renormalisation
conditions are arbitrary. Since this observation is so crucial for all that follows we would like to
illustrate it very explicitly. To this end let us consider the massless theory

L =
1
2
(∂φ)2 −

λ0

4!
φ4

0 (8.54)

in d= 4. Note that this theory has no classical scale since m0 = 0. However, as we will now see, the
scale-invariance of the classical theory is broken in the quantum theory due to the appearance of the
renormalisation scale. For instance, we can impose the renormalisation conditions

1. M2(p2) = 0 at p2 = −µ2, i.e. for spacelike momenta,

2. d
dp2 M2(p2) = 0 at p2 = −µ2,

3. and for the vertex:

�p2

p1

p4

p3

= −iλ at (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 = −µ2

With φ = Z−1/2φ0 , conditions 1. and 2. imply∫
d4x eip·x 〈Ω|Tφ(x)φ(0) |Ω〉

∣∣∣
p2=−µ2 =

i
p2

∣∣∣
p2=−µ2 , (8.55)
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i.e. ∫
d4x eip·x 〈Ω|Tφ0(x)φ0(0) |Ω〉

∣∣∣
p2=−µ2 =

i Z
p2

∣∣∣
p2=−µ2 . (8.56)

In particular, the wavefunction renormalisation factor Z used in φ = Z−1/2φ0 is not the residue of the
propagator at the physical mass p2 = 0, but has the meaning as given in the previous equation.
Now, to fully appreciate the appearance of the renormalisation scale µ, consider the renormalised
connected 4-correlator

G(4)(x1, .., x4) = 〈Ω|Tφ(x1)...φ(x4) |Ω〉
∣∣∣
connected. (8.57)

Its Fourier transformation is

G(4)(p1, .., p4) =
[
−iλ+ (−iλ)2(iV(s) + iV(t) + iV(u)) − iδλ +O(λ3)

] 4∏
i=1

i
p2

i

. (8.58)

Note the product
∏4

i=1
i

p2
i

from the external legs because we are computing the 4-point correlator, not

the scattering amplitude iM(p1 p2 → p3 p4). Renormalisation condition 3. implies

δλ = (−iλ)2 · 3V(−µ2) =
3λ2

2(4π)d/2

1∫
0

dx
Γ
(
2 − d

2

)
(x(1 − x)µ2)2−d/2

=
3λ2

2(4π)2

[
2
ε
− log µ2 + finite terms

] (8.59)

in dimensional regularization, whereas in cutoff regularisation the term in brackets would be of the
form

log
Λ2

µ2 + finite. (8.60)

The crucial observation is that G(4)(p1, ..., p4) is finite, but

• explicitly depends on the renormalisation scale µ through the counterterm δλ and

• implicitly depends on µ, at 1-loop, via λ because λ is defined via renormalisation condition 3.
at the scale µ.

(At higher loop, there will also be an implicit µ-dependence via Z as we will see below.)

8.6 The Callan-Symanzyk (CS) equation

The CS equation quantifies the dependence of various quantities on the renormalisation scale µ. To
derive it we be begin with the bare correlator (for definiteness in massive φ4 theory)

G(0)
n (x1, ..., xn) = 〈Ω|T

∏
i

φ0(xi) |Ω〉
∣∣∣
conn. (8.61)
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computed from the bare Feynman rules in terms of the parameters λ0, m0 appearing in the bare La-
grangian L0 as well as the cutoff Λ (or ε). There is no explicit dependence of G(0)

n (x1, ..., xn) on the
renormalisation scale µ, i.e.

G(0)
n (x1, ..., xn) = G(0)

n (x; λ0, m0; Λ) (8.62)

and this quantity satisfies the equation

d
dµ

G(0)
n (x; λ0, m0)

∣∣∣
λ0, m0 fixed = 0. (8.63)

Here it is important that we do not vary with respect to λ0 and m0, but only state that no explicit
dependence on µ is given. The reason we stress this is that in bare perturbation theory, λ0 and m0 must
themselves depend on the cutoff Λ in such a way as to cancel the divergences, and this definition of the
bare parameters in turn involves a renormalisation scale (cf the discussion in section 5.9.1). However,
this dependence on µ is only implicit via λ0 and m0, and as long as we do not include variation with
respect to these bare parameters, equation (8.63) is correct.
Let us compare this with the renormalised correlator

Gn(x1, ..., xn) = 〈Ω|T
∏

i

φ(xi) |Ω〉
∣∣∣
conn. (8.64)

with

φ(xi) = Z−1/2φ0(xi) (8.65)

computed via the renormalised Feynman rules including counter-terms. As demonstrated above,
Gn(xi) depends on the renormalisation parameters λ, m and the renormalisation scale µ, but not on
the cutoff,

Gn(x1, ..., xn) = G(x; λ, m; µ). (8.66)

Now, going from the bare Lagrangian to the renormalised Lagrangian is only a reformulation of the
same theory. Thus the bare and the renormalized correlators must agree up to the rescaling of fields
φ = Z−1/2φ0, i.e.

Gn(x1, ..., xn) = Z−n/2G(0)
n (x1, , xn). (8.67)

To avoid confusion, we stress that if we compare scattering amplitudes iM, the amplitudes computed
in bare and renormalised perturbation theory agree completely since we compensate for the rescaling
of φ by omitting factors of Z1/2 for external states in LSZ. This is not so in the transition from Gn to
G(0)

n , and thus the extra factor Z−n/2 appears.

Together with (8.63) we conclude that

µ
d

dµ

(
Zn/2 Gn(x; λ, m; µ)

)∣∣∣
λ0,m0 fixed = 0, (8.68)
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where the extra factor of µ has been included for later convenience. This can be further evaluated with
the help of the chain rule. In terms of the quantities

βλ B µ
dλ
dµ

∣∣∣
λ0,m0

,

βm2 B µ
d

dµ
m2

∣∣∣
λ0,m0

,

γφ B
1
2
µ

Z
dZ
dµ

∣∣∣
λ0,m0

=
µ

2
d

dµ
log Z

∣∣∣
λ0,m0

(8.69)

we arrive at the celebrated Callan-Symanzik or renormalisation group equation(
µ
∂

∂µ
+ βλ

∂

∂λ
+ βm2

∂

∂m2 + n · γφ

)
Gn(x; λ, m; µ) = 0. (8.70)

The physical interpretation of the functions (8.69) will be discussed in length in a subsequent section.
Suffice it here to anticipate that, for instance,

βλ = µ
d

dµ
λ (8.71)

describes how the physical coupling λ changes as we change the energy scale at which we perform an
experiment3.
The significance of the CS equation is that it allows us to compute βλ, βm2 , γφ explicitly in perturbation
theory by first computing Gn(x; λ, m; µ) and plugging it into the CS equation. This allows for a
perturbative solution for βλ, βm2 , γφ, order by order in the coupling constant. Here it is important to
carefully compare only terms at the same perturbative order. Even before doing this, let us state two
general results:

• Since Gn(x; λ, m; µ) is independent of the cutoff, so must be βλ, βm2 , γφ.

• While the higher order terms in βλ, βm2 , γφ will depend on the renormalisation scheme, to
leading order in the coupling constant the answer turns out to be universal.

Before embarking on a more systematic analysis, consider massless φ4 theory in the renormalisation
scheme of section (8.5):

• The 2-point function satisfies [
µ
∂

∂µ
+ βλ

∂

∂λ
+ 2γφ

]
G2(p) = 0. (8.72)

At 1-loop order, which for the 2-point function is O(λ), we have seen that as a speciality of
φ4-theory

M2(p2) = 0, (8.73)

i.e.
∂

∂µ
G2

∣∣∣
1−loop = 0 =

∂

∂λ
G2

∣∣∣
1−loop. (8.74)

Thus γφ = O(λ2).
3Cf. renormalisation condition 3. in the previous section, which defines λ at scale µ.



8.7. COMPUTATION OF β-FUNCTIONS IN MASSLESS THEORIES 237

• The 4-point function is given by

G4(p1, , p4) =
[
−iλ+ (−iλ)2 (iV(s) + iV(t) + iV(u)) − iδλ +O(λ3)

]∏
i

i
p2

i

(8.75)

with

δλ =
3λ2

2(4π)2

[
2
ε
− log µ2 + finite

]
. (8.76)

Let us evaluate the CS equation[
µ
∂

∂µ
+ βλ

∂

∂λ
+ 4γφ

]
G4(pi) = 0 (8.77)

to order λ2, which corresponds to 1-loop for the 4-point function. First, to this order

µ
∂

∂µ
G(4) =

3iλ2

(4π)2

∏
i

i
p2

i

. (8.78)

Since γφ = O(λ2), we know that γφG4 = O(λ3). Finally

βλ
∂

∂λ
G(4) =

(
− i +O(λ)

)∏
i

i
p2

i

. (8.79)

Plugging everything into the CS equation and solving for βλ gives

βλ =
3λ2

16π2 +O(λ3). (8.80)

We observe that βλ at 1-loop order is given by the coefficient of the 1
ε -singularity of δλ in dimensional

regularization.

8.7 Computation of β-functions in massless theories

In this section we give general expressions for the beta-functions (8.69) in a massless scalar theory
with dimensionless coupling4. Since by dimensional analysis, e.g. for the propagator,

iM(p→ p) = a0Λ2 + p2 log Λ + finite, (8.81)

the momentum independent quadratic divergence can be absorbed into the counter-term δm. Thus in
the sequel we only keep the logarithmic divergences and the counter-term δZ .

• The 2-point function takes the form

G2(p) =ff + 1 − loop +fx (1)f + ...

=
i

p2 +
i

p2

(
p2

i
A log

Λ2

−p2 + finite
)

i
p2 +

i
p2

(
ip2δZ

) i
p2 + ...

(8.82)

with

δZ = A log
Λ2

µ2 + finite (8.83)

such that G2(p) is finite. We observe that
4The modification to a fermionic theory with dimensionless couplings is straightforward.
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– the only explicit µ dependence is due to δZ at 1-loop, and that

– δZ is O(λ).

As we will show below, β(λ) = O(λ2). Therefore at leading order the CS equation implies that

− µ
∂

∂µ
δZ + 2γφ = 0 (8.84)

and thus

γφ =
1
2
µ
∂

∂µ
δZ = −A. (8.85)

• More generally, the n-point function at 1-loop order is of the form

Gn = tree-level + 1-loop PI + vertex counter-term + external legs, (8.86)

where the external legs only contribute to G, not to the scattering amplitude. This can be
parametrized as

Gn =
∏

i

i
p2

i

−iλ − iB log
Λ2

−p2 − iδλ + (−iλ)
∑

i

Ai log
Λ2

−p2
i

− δZi

 , (8.87)

where
∑

i extends over all n external legs. To solve the CS equationµ ∂∂µ + βλ
∂

∂λ
+

n∑
i=1

γi

Gn = 0 (8.88)

we note that

– only δλ, δZi contribute to µ ∂
∂µGn and that

– all terms except −iλ are of order λ2. So to leading order

∂

∂λ
Gn = ((−i) +O(λ))

∏
i

i
p2

i

. (8.89)

To leading order in λ therefore

µ
∂

∂µ

δλ − λ∑
i

δZi

+ β(λ) + λ
∑

i

1
2
µ
∂

∂µ
δZi︸    ︷︷    ︸

=γi

= 0. (8.90)

Since

δλ = −B log
Λ2

µ2 + finite, δZi = Ai log
Λ2

µ2 + finite (8.91)

the β-function becomes

β(λ) = µ
∂

∂µ

−δλ + 1
2
λ
∑

i

δZi

 = −2B− λ
∑

i

Ai. (8.92)

To leading order the finite terms do not enter the expressions for β(λ) and γ(λ). Since the different
renormalisation schemes only differ by the finite terms, the 1-loop results are independent of the
scheme. At next-to-leading order, the β-functions are scheme-dependent.
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1-loop β-function of QED

As an application we compute the 1-loop β-function in QED. Recall our conventions for the counter-
terms appearing in the renormalisation of QED as discussed in QFT 1:

δ3 = Z3 − 1 ↔ photon renormalisation

δ2 = Z2 − 1 ↔ fermion renormalisation
(8.93)

and

�= ieδ1γ
µ

To leading order in the coupling e, the γ-functions therefore are

γ3 =
1
2
µ
∂

∂µ
δ3, γ2 =

1
2
µ
∂

∂µ
δ2 (8.94)

and from the Callan-Symanzyk equation of the 3-point function one concludes that to leading order
in e

βe = µ
∂

∂µ
(−eδ1 +

1
2

2eδ2 +
1
2

eδ3). (8.95)

As will be discussed in more detail in the tutorials, the explicit expressions for δ1, δ2, δ3 obtained in
QFT I ( with the renormalisation scale µ identified with the electron mass scale m) imply

γ2 = γ3 =
e2

12π2 +O(e3), β =
e3

12π2 +O(e4) (8.96)

in Feynman gauge.

8.8 The running coupling

Having computed the 1-loop β-functions, we are in a position to discuss the physics encoded in these.
Let us repeat our mantra that it is the renormalisation conditions which define the meaning of the
physical coupling λ at the renormalisation scale µ. E.g. in massless φ4 theory we defined the dimen-
sionless coupling λ by declaring that

iM(p1 p2 → p3 p4) = −iλ at s = t = u = −µ2. (8.97)

The so-defined coupling is therefore really a function of the renormalisation scale µ, λ = λ(µ), and
this λ(µ) is the effective coupling relevant for processes with typical momenta of order µ.
To appreciate this latter point, recall that iM(p1 p2 → p3 p4) in the above theory is

iM = −iλ − i
λ2

32π2

[
log
−s
µ2 + log

−t
µ2 + log

−u
µ2

]
+O(λ3) (8.98)

with λ = λ(µ) as in (8.97).
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• For momenta s, t, u ∼ −µ2, the loop-corrections are small, and the tree-level result −iλ(µ) is a
good approximation. In this sense, λ(µ) is a measure for the strength of the interaction. This is
what we call the effective coupling for processes at momentum scale µ.

• At scales |s|, |t|, |u| � µ2 (or� µ2), the 1-loop correction becomes big due to the appearance of
a so-called large log. We see that perturbation theory is an expansion not only in λ, but also in
log −p2

µ2 with p a typical momentum/energy scale of the process.

Thus, at scales s, t, u ∼ −µ2
1, with µ1 � µ or µ1 � µ, the coupling λ(µ) defined at scale µ

is not what we would call the relevant coupling - it does not reflect the actual strength of the
interaction because the tree-level and the 1-loop contribution differ so much.

• At scales s, t, u ∼ −µ2
1 with µ1 � µ (or µ1 � µ) a better expansion parameter for perturbation

theory is λ(µ1) defined via
λ(µ1) = −M

∣∣∣
s=t=u=−µ2

1
. (8.99)

We therefore conclude that indeed

λ(µ) gives the strength of the interaction at energy scale µ.

Now, the evolution of this coupling λ(µ) as we vary µ is precisely what is encoded in the β-function
through

µ
d

dµ
λ(µ) =

d
d log µ

λ(µ) = β(λ). (8.100)

The change in λ(µ) as we change µ is called renormalisation group (RG) flow for reasons that will
become clear in section (8.10). The above RG flow equation describes the running of the coupling in
the above sense.
Being a first-order differential equation, (8.100) uniquely specifies λ(µ) in terms of the value of λ at a
references scale µ∗. Suppose therefore that λ∗ = λ(µ)

∣∣∣
µ=µ∗

as determined by one measurement at µ∗.
Then (8.100) is solved by

λ(µ)∫
λ∗

dλ′

β(λ′)
=

µ∫
µ∗

d log µ′ = log
µ

µ∗
. (8.101)

As an example consider the 1-loop β-function in QED,

β(e) =
1

12π2 e3. (8.102)

The associated RG flow equation is easily integrated (see the tutorials) and gives for the fine-structure
α ≡ e2

4π

α(µ) =
α∗

1 − 2
3πα

∗ log µ
µ∗

with α∗ = α(µ)
∣∣∣
µ=µ∗

. (8.103)

Observe that according to this analysis, α(µ) increases as µ increases and even seems to diverge at
µ = µ∗ exp

(
3π
2α∗

)
.
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Alternative RG bevaviours

Depending on the sign of the β-function there are 3 qualitatively different types of behavior for the
RG flow of the coupling as well as hybrids thereof. Let us first turn to the extreme cases:

1. If β(λ) > 0, λ(µ) increases (decreases) as µ increases (decreases). If we start at a perturbative
value λ∗ at µ∗ and follow the RG flow for increasing µ, then at some scale λ(µ) ceases to be
perturbative and perturbation theory, in particular our perturbative evaluation of the β-function,
is no more reliable. If by a non-perturbative analysis beyond that point one finds that β(λ) > 0
∀λ, then λ(µ) increases indefinitely. This can happen either asymptotically, i.e. λ → ∞ as
µ → ∞, or even for finite value of µ, λ → ∞ as µ → µ∗. The latter instance is referred to
as a Landau pole. In presence of a Landau pole, the theory is not well-defined at all energy
scales.5 As we will understand in section 8.10 we should think of the theory as to be replaced
by a different theory at some high energy scale which resolves the Landau-pole.

On the other hand, the theory is perturbatively well-defined in the IR, where λ is small. For
instance, if β(λ) → 0 as λ → 0 as would be the case e.g. for β(λ) = cλx with c > 0, then
λ(µ) → 0 as µ → 0. The coupling thus approaches an IR fixed point, and the theory becomes
free in the IR. The fixed point λ = 0 is therefore called Gaussian fixed point.
Perturbatively β(λ) > 0 for φ4 theory in d = 4 and for U(1) gauge theory in d = 4, but the
non-perturbative status is less clear.6

2. If β(λ) < 0, λ(µ) decreases (increases) as µ increases (decreases). The theory is perturbative in
the UV, but ceases to be perturbative in the IR.
If β(λ) → 0 as λ → 0 as would be the case e.g. for β(λ) = cλx with c < 0, we have that
λ→ 0 as µ→ ∞ in a controlled way (i.e. λ flows to a Gaussian UV fixed-point) and the theory
becomes free in the UV. This is called asymptotic freedom.
In d = 4 the only known example for asymptotic freedom is Yang-Mills theory to be discussed
in detail later.

3. If β ≡ 0 ∀µ, λ(µ) is independent of µ. The theory is thus scale-independent or conformal.
Since the counter-terms do not induce any scale dependence, there cannot be any UV diver-
gences altogether - the theory is finite. For example N = 4 Super-Yang-Mills theory is finite
because all divergences cancel order by order in perturbation theory due to the large amount of
supersymmetry.

Apart from these three extreme cases, it can happen that β(λ) interpolates between 1., 2., 3., i.e.
changes sign and thus hits zero at some value.

5In the less severe case, where λ → ∞ as µ → ∞ one might consider it as a matter of taste whether or not one should
call the theory well-defined.

6A numerical analysis via lattice field theory seems to suggest that the Landau pole in both cases is physical and not just
an artifact of perturbation theory.
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• If β(λ) > 0 to lowest order in λ, but higher order terms, relevant for bigger λ and thus (since we
started with β(λ) > 0) for larger µ, have a negative sign, then β(λ) becomes 0 at λ = λ∗:

β
(λ

)

λ

λ
*

As µ→ ∞, λ→ λ∗ with β(λ∗) = 0. λ∗ is called non-trivial UV fixed point.

• Alternatively, β(λ) could start negative for small values of λ and hit 0 at λ∗:

β
(λ

)

λ

λ
*

Then λ → λ∗ as µ → 0 (non-trivial IR fixed point). Such behavior is known to occur e.g. in
φ4 theory in d < 4. As will be discussed in the tutorials,

β(λ) = (d − 4)λ+
3λ2

16π2 ⇒ β(λ∗) = 0 for λ∗ =
16π2

3
(4 − d), (8.104)
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where λ is here the suitably rescaled (dimensionless) quartic scalar coupling. Thus for d < 4
the theory approaches the celebrated Wilson-Fisher fixed point λ∗ > 0 in the IR.

Anomalous dimension and power-law behavior near fixed points

Near a non-trivial fixed point λ∗, the 2-point function of a scalar theory in d = 4 behaves as

G2(p) = C
(

1
p2

)1−γφ(λ∗)

. (8.105)

This can be proven by integrating the Callan-Symanzyk equation and using approximate scale - inde-
pendence near the fixed point. For a derivation we refer to the tutorials. The propagator (8.105) looks
like the propagator of the free theory,

G2(p)
∣∣∣
free ∼

1
p2 , (8.106)

except for the different power (1 − γ∗). Consequently γφ is called anomalous dimension of φ since
near λ∗ , the propagator G2(p) behaves like in a free theory with a field of mass dimension (1 −
γφ(λ∗)). More generally, such power-law behaviour of the propagator is a sign of scale-invariance (as
realised near λ = λ∗ where β = 0).

8.9 RG flow of dimensionful operators

Our analysis of the running of the dimensionless coupling λ can be generalised to dimensionful cou-
plings. To this end suppose that we add to a renormalisable action (containing only dimensionless
couplings) in d dimensions a term ∫

dd x Ci Odi , (8.107)

where Odi is some local operator7 of mass dimension di, and treat it as a perturbation. Then define γi

via the generalised Callan-Symanzyk equation:

0 =

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγφ + γi Ci

∂

∂Ci

]
Gn(x; λ, Ci; µ). (8.108)

Compared to β ∂
∂λ we have scaled out one power of Ci in γi Ci

∂
∂Ci

so that γi is dimensionless. Clearly
γi → 0 as λ→ 0 and Ci → 0.
Now, the coupling Ci has mass dimension

[Ci] = d − di, (8.109)

so we can define a dimensionless coupling gi via

Ci = gi µ
d−di . (8.110)

7By this we mean any product of the fundamental fields or their derivatives.
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Rewriting Gn(x; λ, Ci; µ) as G̃n(x; λ, gi; µ) introduces some extra explicit µ dependence, and the
Callan-Symanczyk equation becomes (after omitting the tilde)

0 =

[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγφ + (γi + di − d)gi︸            ︷︷            ︸

=:βi

∂

∂gi

]
Gn(x; λ, gi; µ), (8.111)

or, more symmetrically,

0 =

[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγφ + βi

∂

∂gi

]
Gn(x; λ, gi; µ). (8.112)

By definition, the dimensionless gi satisfies the RG flow equation

d
d logµ

gi = βi = (γi + di − d)gi. (8.113)

Suppose that λ � 1 and gi � 1. Then necessarily γi � 1 and

βi → (di − d + ...)gi (8.114)

so that (8.113) is solved to first approximation by

gi(µ) = gi(µ
∗)e(di−d)(ln µ

µ∗
) = gi(µ

∗)

(
µ

µ∗

)di−d

. (8.115)

Note that if di − d = 0, corresponding to a dimensionless coupling constant, this crude approximation
gives no information about the behavior of the coupling and one has to compute the perturbative con-
tributions to the beta-function even to determine the leading behaviour of the RG flow. We conclude:

• If [Ci] = d − di > 0, i.e. Ci is a super-renormalisable coupling, then

gi � gi(µ
∗) for µ � µ∗ (8.116)

in a perturbative theory.

• If [Ci] = d − di < 0, i.e. Ci is a non-renormalisable coupling, then

gi(µ) � gi(µ
∗) (8.117)

in a perturbative theory.

Non-renormalisable couplings become irrelevant in the IR: Even if they are present at higher
scales, they become small for smaller energy processes. On the other hand, super-renormalisable
couplings become relevant in the IR.

But it is important to keep in mind that if the coupling λ is big, then γi cannot be neglected in (8.113).
In principle, this can change the qualitative behaviour of the flow.
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For example, as already noted, in φ4 theory in d dimensions the rescaled dimensionless coupling
λ behaves as

β(λ) = (d − 4)λ+
λ2

16π2 . (8.118)

For d < 4 λ is super-renormalisable, but for big values of λ due to the second term β(λ) becomes
positive and changes even the sign of the β-function.

8.10 Wilsonian effective action & Renormalisation Semi-Group

Our philosophy behind renormalisation has so far been this:

• The cutoff Λ is merely a way to regulate divergent integrals without any physical meaning.

• Renormalisation is a trick to remove the cutoff-dependence in physical amplitudes. This proce-
dure allows us to take Λ → ∞ without encountering any divergences.

• This comes at the cost of losing predictability for a number of physical masses and coupling.

• In a renormalisable theory, only a finite number of such physical couplings must be taken as
input parameters from experiment, and we end up with a well-defined theory.

The so-called Wilsonian approach gives a rather different interpretation to renormalisation, inspired
by analogies with condensed matter and statistical physics:

• According to Wilson, we should think of a QFT as an effective description of physics which is
accurate only at energies below an intrinsic cutoff Λ0 (or at distances larger than some ∆xmin).
At energies beyond Λ0 the field theory picture does not correctly reflect the microscopic degrees
of freedom.

• For instance, consider as our field the magnetisation density s(~x) of a metal in 3D statistical
field theory. This s(~x) is the continuum limit of the spin degrees of freedom si at lattice site i of
the atomic lattice. There is an intrinsic cutoff given by the lattice spacing a:
At distances smaller than the lattice spacing a, no concept of continuous magnetisation exists
- the continuous field theory description is strictly speaking invalid. The appearance of diver-
gences in bare perturbation theory as we take a → 0 reflects this mismatch of the field theory
with the microscopic degrees of freedom.
Nonetheless, via renormalisation, one can take the continuum limit, but at the cost of having to
take the couplings as input parameters. These parametrise our ignorance of the true physics at
distances ∼ a from the perspective of the field theory.

• Applied to relativistic QFT, one would similarly argue that beyond some high energy scale Λ0,
QFT fails to capture the microscopic degrees of freedom. In particular, all matter gravitates,



246 CHAPTER 8. RENORMALISATION OF QUANTUM FIELD THEORY

and the effects of gravity become non-negligible at the (reduced) Planck scale

Mpl =
1

√
8πGN

= 2.43 × 1018GeV. (8.119)

The observed UV divergences in bare perturbation theory result from the breakdown of our
QFT beyond this scale. Still, in a renormalisable and asymptotically free (or at least UV safe)
theory one can take the cutoff Λ0 → ∞, but at the cost of parametrising our ignorance of the
true degrees of freedom in a finite number of parameters.

• In the modern Wilsonian interpretation of Quantum Field Theory, we should view the QFT
as an effective theory. E.g. in a non UV-finite QFT it is impossible to predict the vacuum
energy V0 - this is one of the input parameters. To explain the mystery of Dark Energy, we need
a more fundamental, UV finite theory. To date, the only known theory that is UV finite and
asymptotes to a weakly coupled effective Quantum Field Theory in the IR is String Theory. In
String Theory, the concept of pointlike particles is abandoned in the UV: All particles are in fact
excitations of a 1-dimensional string of length `s. At distances above `s we can approximate the
theory by a point particle theory, i.e. a QFT as we have studied it. Thus the string length is the
intrinsic cutoff of the low-energy effective QFT, and at distances smaller than `s the theory flows
to a rather different (in particular non-local) description without UV divergences and without
free dimensionless input parameters.

After this general outline we now demonstrate quantitatively how the high energy degrees of freedom
are indeed captured in the effective coupling constants at lower energies. This will give a physical
meaning to the running of the couplings. In view of the above motivation let us start with a bare
Lagrangian in d Euclidean dimensions, e.g.

L =
1
2
(∂φ)2 +

1
2

m2φ2 +
λ

4!
φ4 (8.120)

and impose a momentum cutoff Λ0: In path integral quantisation, this means we restrict the measure
- written in Fourier space - to the Fourier modes φ̃(k) with 0 ≤ |k| ≤ Λ0, i.e. define the theory via

Z =

∫
[Dφ]Λ0e−

∫
dd xE(L+J·φ), (8.121)

where [Dφ]Λ0 ≡
∏
|k|≤Λ0 dφ̃(k). Note the specific combinations of minus signs and absence of factors

of i in the Euclidean theory. This partition function enables us to compute amplitudes up to a typical
energy scale Λ0 of external particles. Suppose now that we are interested in processes at typical
energy scales below

Λ = bΛ0 0 < b < 1. (8.122)

As we saw in the previous picture, loop computations will give rise to large log-corrections if Λ � Λ0.
To avoid these, we can integrate out the degrees of freedom between Λ and Λ0 once and for all
and work with a path integral defined only in terms of the remaining degrees of freedom below Λ. To
compute this new effective path integral we first split each Fourier mode as

φ̃(k) = φ(k) + φ̂(k), (8.123)
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where

φ̂(k) =

 0 if 0 ≤ |k| ≤ bΛ0

φ̃(k) if bΛ0 ≤ |k| ≤ Λ0
(8.124)

and

φ(k) =

 φ̃(k) if 0 ≤ |k| ≤ bΛ0

0 if bΛ0 ≤ |k| ≤ Λ0.
(8.125)

Taking J = 0 for brevity, we get

Z =

∫
DφDφ̂ e−

∫
dd x[ 1

2 (∂φ+∂φ̂)
2+ 1

2 m2(φ+φ̂)2+ λ
4! (φ+φ̂)

4]

=

∫
Dφ e−

∫
dd x( 1

2∂φ
2+ 1

2 m2φ2+ λ
4!φ

4)

×

∫
Dφ̂ e−

∫
dd x[ 1

2∂φ̂
2+ 1

2 m2φ̂2+ λ
4! φ̂

4+ λ
6φφ̂

3+ λ
4φ

2φ̂2+ λ
6 φ̂φ

3],

(8.126)

where terms φφ̂ are omitted due to orthogonality of different momentum modes. The partition function
is of the form

Z =

∫
[Dφ]bΛ0e−S [φ]

∫
[Dφ̂]bΛ0≤|k|≤Λ0e−Ŝ [φ,φ̂]. (8.127)

The key idea is that this can be rewritten as

Z =

∫
[Dφ]bΛ0e−

∫
dd xLeff . (8.128)

To this end we view all terms in Ŝ [φ, φ̂] except the kinetic term as a perturbation, which is justified for

λ � 1 and m � Λ = bΛ0. (8.129)

Then perturbatively∫
Dφ̂ e−Ŝ [φ,φ̂] =

∫
Dφ̂e−

∫
dd x 1

2∂φ̂
2
[
1 −

∫
dd x

( 1
2

m2φ̂2 +
λ

4!
φ̂4 +

λ

6
φφ̂3 +

λ

4
φ2φ̂2 +

λ

6
φ̂φ3

)
+ . . .

]
≡ 〈[...]〉.

(8.130)

This is computed via Wick’s theorem in perturbation theory, where we contract only pairs of φ̂, and
in the resulting propagator only momenta bΛ0 ≤ |k| ≤ Λ appear. Let us sketch how this works:

1. Consider for example the term〈
−

∫
dd x

λ

4
φ2φ̂2

〉
=

∫
Dφ̂e−

∫
dd x 1

2∂φ̂
2
(
−

∫
dd x

λ

4
φ2(x)φ̂2(x)

)
= −

∫
dd x

1
2
φ2(x)

λ

2
φ̂(x)φ̂(x)︸     ︷︷     ︸

=
∫ dd p

(2π)d
e−ip(x−x) 1

p2

∣∣∣
bΛ0≤|p|≤λ0

=

∫
dd x

(
−

1
2
φ2(x)µ

)
(8.131)
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with

µ =
λ

2

∫
dd p
(2π)d

1
p2

∣∣∣∣∣∣
bΛ0≤|p|≤Λ0

=
λ

(4π)d/2Γ(d/2)
1 − bd−2

d − 2
Λd−2. (8.132)

Note that in the Euclidean theory no factor of i appears in the propagator. Graphically one
represents the φ̂-propagator with two extra lines:

�

φ̂(x)φ̂(y) ≡ x y

�
φ(x) φ(x)

φ2(x)φ̂2(y) ≡

Together with n-fold powers of that same term (which arise from expanding the exponential in
e−[S (φ,φ̂)]) this just gives a correction to the mass term present already in e−S [φ].

2. Next consider the square of this term:

��1
4

〈
λ
4φ

2φ̂2 λ
4φ

2φ̂2
〉
∼




2

+

The first diagram is just the square of the mass correction, as advocated. The second term is
schematically of the form∫

dd x ddy φ2(x)φ2(y) '
∫

dd x(φ4(x) + c φ2(x)(∂φ(x))2 + . . . (8.133)

The first summand provides a contribution to the φ4 coupling in S [φ], while the second gives a
new, derivative interaction not present in our original action.

3. Likewise, also higher order interaction terms in φ appear, e.g. the contraction

�1
4

〈
λ
6φ

3φ̂λ6φ
3φ̂

〉
∼

provides a φ6 interaction in S eff .
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This way, all possible interactions are created in S eff which are consistent with the symmetries of the
bare Lagrangian (here just φ→ −φ), and we find

Z =

∫
[Dφ]bΛ0e−S

bΛ0
eff (8.134)

with ∫
dd xLbΛ0

eff
=

∫
dd x

[
1
2
(1 + ∆Z) (∂φ)2 +

1
2
(m2 + ∆m2) φ2 +

1
4!
(λ+ ∆λ) φ4 (8.135)

+ ∆C (∂µφ)
4 + ∆D φ6 + ...

]
. (8.136)

The object S bΛ0
eff

is called Wilsonian effective action. The coefficients ∆Z, ∆m, ∆λ, ∆C, ∆D can be
systematically computed in perturbation theory. They receive contributions only from the momentum
regime bΛ0 ≤ |k| ≤ Λ0. When we compute correlators at scales below Λ = bΛ0 via the Wilsonian
effective action (8.134), only momenta |k| ≤ Λ = bΛ0 appear in the loops since all effects of the
modes with bΛ0 < |k| < Λ0 are already encoded in Leff.
The Wilsonian effective action is not to be confused with the quantum effective action Γ[ϕ]. As
discussed in section 7.9, the latter includes all quantum effects, i.e. computation with Γ[ϕ] at tree-
level (no loops!) gives the full quantum theory. By contrast, in the Wilsonian effective action S bΛ0

eff

only the quantum effects due to modes from bΛ0 < |k| < Λ0 are included, and in computations with
S bΛ0

eff
loops with momenta 0 ≤ |k| ≤ Λ = bΛ0 must still be performed.

For better comparison of LbΛ0
eff

with the original Lagrangian, which we denote now by LΛ0 , we bring
the kinetic term to standard form by rescaling

φ′ = φ(1 + ∆Z)1/2. (8.137)

Then the partition function Z is given by

Z =

∫
[Dφ′]Λe−S ′Λeff with Λ = bΛ0 (8.138)

and

S ′Λeff =

∫
dd x

[
1
2
(∂φ′)2 +

1
2

m′2φ′2 +
λ′

4!
φ′4 +C′(∂φ′)4 + D′φ′6 + ...

]
(8.139)

for

m′2 = (m2 + ∆m2)(1 + ∆Z)−1,

λ′ = (λ+ ∆λ)(1 + ∆Z)−2,

C′ = (C + ∆C)(1 + ∆Z)−2,

D′ = (D + ∆D)(1 + ∆Z)−3.

(8.140)

Note that in our case C = D = 0 in the original LΛ0 . Thus the effect of integrating out the degrees
of freedom with bΛ0 < |k| < Λ0 amounts to renormalising the couplings in the Lagrangian as above.
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The successive application of this operation gives rise to the renormalisation group. This is really
only a semi-group, since this procedure only allows us to lower the cutoff by integrating out degrees
of freedom, i.e. there does not exist an inverse element.

The running of the couplings in the Wilsonian picture is to be interpreted as the evolution of the
cutoff dependent couplings in the effective action as we change the cutoff. To make a connection to
our previous picture we must identify the cutoff Λ with the renormalisation scale µ.
I.e. the effective couplings λ(Λ) are defined by specifying observables computed from the effective
action with cutoff Λ. This replaces our previous renormalisation condition fixing λ(µ).
With this identification, the fundamental form of the running couplings agree to leading order in per-
turbation. This is all we can hope for, because, as always, beyond leading order the specific scale
dependence of the coupling depends on the specific renormalisation scheme. E.g. for φ4 theory in
d = 4 carrying out the Wilsonian renormalisation procedure as sketched above gives

∆Z
∣∣∣
1-loop = 0, ∆λ

∣∣∣
1-loop = −

3λ2

16π2 log
1
b

. (8.141)

With b = Λ/Λ0 < 1 this gives for small |1 − b|

λ(Λ) = λ(Λ0) +
3

16π2λ
2(Λ0) log

Λ
Λ0

, (8.142)

in agreement with our previous results for the β-function of φ4-theory. More generally, for a dimen-
sionful coupling

∫
dd x CdiOdi with

• Odi a local operator of mass dimension di and

• Cdi of mass dimension [Cdi ] = d − di

one finds in φ4-theory

Cdi(Λ) = Cdi(Λ0) + (number)λdi/2(Λ0)
(
Λd−di −Λd−di

0

)
+ higher order. (8.143)

In fact, this is just as expected by dimensional analysis. As in our previous approach it is useful to
define a dimensionless coupling, but now in terms of Λ,

gi(Λ) = Ci(Λ)Λdi−d, (8.144)

which enjoys the RG flow

gi(Λ) =

gi(Λ0) + (number)λdi/2(Λ0)

(Λ0

Λ

)di−d

− 1

+ ...

 (Λ0

Λ

)d−di

. (8.145)

Provided the theory is perturbative, the scaling due to(
Λ0

Λ

)d−di

=

(
Λ0

Λ

)[Ci]

(8.146)
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dominates and thus if Ci is non-renormalisable ([Ci] < 0), the initial value of gi(Λ0) is irrelevant at
scales Λ � Λ0 and

Ci(Λ) = O
(
λdi/2

)
Λ[Ci] � Λ[Ci] (8.147)

for λ � 1. This agrees with our conclusions from the Callan-Symanzik approach: Non-renormalisable
couplings become irrelevant in the IR: Even if they are present at higher scales, they become small
for smaller energy processes. On the other hand, super-renormalisable couplings become relevant
in the IR.

Conclusion

• In the modern Wilsonian interpretation, a QFT is defined via an intrinsic cutoff scale Λ0 beyond
which it does not capture the microscopic degrees of freedom any more. For particle physics
one would assume that at the very least

Λ0 ∼ Mpl ∼ 2.43 × 1018 GeV, (8.148)

which is the scale where quantum gravity effects become non-negligibly strong such that it is
no longer justified to ignore them.

• Let us define our theory at this intrinsic cutoff by a Lagrangian LΛ0 . We can think of the
couplings Ci(Λ0) as being computed by whatever more fundamental theory takes over at scales
above Λ0. In the spirit of an effective description, we view these Ci(Λ0) as parametrising the
physics beyond Λ0. At scales Λ0, all possible non-renormalisable couplings are important,
because the underlying microscopic degrees of freedom become important at Λ0 and it takes a
lot of parameters to describe these in QFT. I.e. all couplings consistent with the symmetries of
the theory will appear in LΛ0 .

• For processes at our scales Λ � Λ0 we compute with the effective action LΛ
eff

with couplings
Ci(Λ) arising by RG flow starting from Ci(Λ0). Crucially, as long as the theory is weakly
coupled up to Λ0, the non-renormalisable couplings at Λ � Λ0 are of order

Ci(Λ) ∼ λdi/2Λ[Ci] � Λ[Ci], (8.149)

whatever they are originally at Λ0. Since the microscopic degrees of freedom become important
only at high scales, it takes only a few parameters - the renormalisable and super-renormalisable
ones - to effectively approximate the physics at Λ � Λ0. This explains why we only observe
renormalisable couplings at scale Λ.

• Despite the physical meaning of Λ0 (the intrinsic cutoff) we can formally take Λ0 → ∞ pro-
vided all couplings remain finite, i.e. no Landau poles arise. This was our original motivation in
doing renormalisation, but from a Wilsonian perspective we now understand that our theory re-
mains an effective theory to the extent that all couplings are really input parameters and cannot
be computed from first principles without knowing the underlying theory.
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On the fine-tuning problem in scalar theories

For scalar theories, in particular φ4 in d = 4, there remains a problem because of the RG flow of the
scalar mass:

m2(Λ) = m2(Λ0) + (number)λ(Λ0)(Λ2 −Λ2
0) + ..., (8.150)

which is the special case of (8.145) for d − di = 2. At scales Λ � Λ0, the dominant term is given
by λΛ2

0, and thus m2(Λ) is of order λ(Λ0)Λ2
0. This is much bigger than we naturally expect in an

effective theory at scale Λ. To arrive at a value for m2(Λ) of order Λ2 instead, it would appear one
must carefully fine-tune the tree-level m2(Λ0) such as to almost precisely cancel the loop corrections
of order Λ2

0.
For example, in the Standard Model of Particle Physics, the Higgs particle is a scalar field with
mH ∼ 126 GeV. But if we take Λ0 ∼ 1019GeV, then

m2
H

Λ2
0

� 10−32. (8.151)

The necessary fine-tuning to achieve this is considered ’technically unnatural’ and gives rise to the
so-called hierarchy problem: What stabilises the mass of a scalar at hierachically smaller mass than
Mpl?
Basically there are 3 alternative types of solutions to the fine-tuning problem that are being discussed
in the modern literature:

1. If the inherent cutoff for the Standard Model were not MPl., but at, say, 1 TeV, the fine-tuning
would be dramatically reduced. This would imply that new physics takes over at Λ0 ∼ 1 TeV.
Candidates for such new dynamics are supersymmetry (SUSY) or large extra dimensions. This
reasoning motivates the search for such new physics at LHC.

2. Alternatively we could consider accepting the fine-tuning, which is not logically impossible -
for instance, but not necessarily, motivated by the so-called anthropic principle (which would
state that only values of mH ∼ 1 TeV could give rise to structure formation as we observe it and
thus, by definition, only a universe in which mH is so fine-tuned can be observed). Clearly this
is hard to make precise, but it is a logical possibility in principle.

3. Yet another approach would be to completely revise our notion of naturalness, even though it is
unclear at present what it should be replaced by.

It is important to appreciate that such a hierarchy problem does not arise for fermions and vectors
because their masses are stabilised by extra symmetry, namely gauge symmetry for vectors and chiral
symmetry for fermions. Small masses for these fields are technically natural in the sense that once
we choose them small at tree-level, they remain small including loop-corrections. This is guaranteed
whenever setting the mass to zero implies an enhancement of symmetry - such as in the present case
gauge symmetry for massless vector bosons and chiral symmetry for massless fermions.



Chapter 9

Quantisation of Yang-Mills-Theory

9.1 Recap of classical YM-Theory

Let us quickly recall the description of classical non-abelian gauge theory as introduced in QFT1.
Our starting point is a Lie group H with Lie algebra Lie(H) such that every element h ∈ H can be
expressed as

h = e−igα with α ∈ Lie(H), g ∈ R. (9.1)

In terms of a basis T a of the Lie algebra, i.e. in terms of a complete set of generators of the Lie group
H, α can be written as

α =
∑

a

αaT a ≡ αaT a. (9.2)

The T a satisfy the defining relations

[T a, T b] = i f ab
cT c = −[T b, T a] (9.3)

which fulfill the Jacobi identity

[[T a, T b], T c] + [[T c, T a], T b] + [[T b, T c], T a] = 0. (9.4)

A Lie algebra possesses a symmetric bilinear from, the so-called Killing form,

κab = T a ◦ T b = T b ◦ T a ∈ R (9.5)

which is invariant under the adjoint action of the Lie group H on its Lie algebra, i.e.

hT ah−1 ◦ hT bh−1 = T a ◦ T b ∀h. (9.6)

For an abstractly given Lie algebra, the Killing form is defined as

κab = tr[T a, [T b, ·]] ≡
∑

c

(T ∗c )[T
a, [T b, T c]], (9.7)

where (T ∗c ) is an element of a basis of the dual vector space such that (T ∗c )T
d = δd

c .
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Expanding T a ◦ T b = hT ah−1 ◦ hT bh−1 with h = e−igTc to order g gives

[T a, T c] ◦ T b = −T a ◦ [T c, T b]. (9.8)

If H is compact as a manifold, then the invariant from ◦ can be shown to be positive definite, and one
can normalise it as

T a ◦ T b =
1
2
δab. (9.9)

The Killing form κab = T a ◦ T b and its inverse can be used to raise and lower Lie-algebra indices.
Having said this, we will from now on put all Lie algebra indices upstairs with summation over
repeated indices understood. Then the structure constants f abc are totally antisymmetric (as will be
shown in the exercises) and invariant under cyclic permutations.
In the sequel we will typically think of T a as given in the defining matrix representation, i.e. as an
N × N matrix acting on CN for some N. E.g. for H =SU(k), N = k and the T a are represented as
hermitian traceless k × k matrices. In such a matrix representation we can identify

T a ◦ T b ≡ trT aT b. (9.10)

Consider now a Lie(H)-valued gauge potential, i.e. a connection

Aµ(x) ≡ Aa
µ(x)T a (9.11)

transforming under a gauge transformation

U(x) = e−igα(x) (9.12)

as

Aµ(x) 7→ UAµU−1 +
i
g
(∂µU)U−1. (9.13)

To linear order this is

Aµ(x) 7→ Aµ + Dµα(x) +O(α2), (9.14)

where the adjoint covariant derivative acts on Lie(H)-valued fields as

Dµα(x) B ∂µα(x) + ig[Aµ(x),α(x)]. (9.15)

In components this means that

Aa
µ(x) 7→ Aa

µ(x) + ∂µα
a(x) + g f abcαb(x)Ac

µ(x). (9.16)

The curvature associated with the connection Aµ(x) is

Fµν(x) =
1
ig
[Dµ, Dν] ≡ Fa

µνT
a, (9.17)
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where we think of 1
ig [Dµ, Dν] as acting on a Lie(H)-valued field. Plugging in the above definition of

the adjoint covariant derivative yields

Fµν(x) = ∂µAν − ∂νAµ + ig[Aµ, Aν] (9.18)

or in components
Fa
µν(x) = ∂µAa

ν − ∂νA
a
µ − g f abcAb

µAc
ν. (9.19)

The field strength transforms in the adjoint representation of H as

Fµν 7→ UFµνU−1 (9.20)

and satisfies the Bianchi identity

DµFαβ + DβFµα + DαFβµ = 0. (9.21)

The pure Yang-Mills Lagrangian

L = −
1
2

trFµνFµν = −
1
4

∑
a

Fa
µνF

µνa (9.22)

is gauge invariant. The equations of motion for Aµ read

DµFµν = 0 ≡ ∂µFµν + ig[Aµ, Fµν]. (9.23)

The commutator introduces cubic and quartic interactions which will be discussed in detail later on.

9.2 Gauge fixing the path integral

Gauge invariance complicates the quantisation of Yang-Mills theory:

• In canonical quantisation, we would start by defining the conjugate momenta to Aµ, but while

Πi =
∂L

∂Ȧi
∼ F0i (9.24)

one finds
Π0 =

∂L

∂Ȧ0
= 0. (9.25)

This is a result of the fact that A0 appears without a time derivative in L - it is a non-dynamical
field. Variation of the action with respect to A0 gives

DiF0i = 0, (9.26)

which is a non-dynamical constraint, and A0 is a Lagrange multiplier enforcing this constraint.
Thus canonical quantisation requires the technology1 of quantisation of constrained, or singu-
lar, systems. Quantisation of singular systems is a rich subject by itself. A variant of canonical

1For details of this technique see e.g. the book by Kugo.
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quantization with constraints for the simple case of U(1) theory is in fact the Gupta-Bleuler
quantisation method discussed in QFT1, but for non-abelian gauge theories things are more
complicated due to the more involved form of the constraints. We will not start with canoni-
cal quantization, but rather begin with path-integral quantization and return to the problem of
canonical quantization afterwards.

• Alternatively in path integral quantisation we would write the action as

S =

∫
d4x

(
−

1
2

Aaν(K · Aa)ν +O(A3)

)
, (9.27)

where (K · A)ν = −∂2Aν+ ∂ν∂
µAµ, find the propagator iDF = K−1 and perturbatively quantise

the interacting theory. However, the operator K is not invertible since it has a non-trivial kernel:

(K · ∂α)ν = 0 ∀α(x). (9.28)

In fact, this is a consequence of gauge invariance. Recall that an infinitesimal gauge transfor-
mation acts as

Aµ 7→ Aµ + ∂µα+ ig[Aµ,α]. (9.29)

Since the coupling g enters only the interactions, the transformation Aµ 7→ Aµ + ∂µα+ O(g)
must leave the kinetic term invariant, which is nothing other than the statement (9.28). Note
that this problem is therefore independent of whether we consider abelian or non-abelian gauge
theory.

We will now begin quantization of Yang-Mills theory in the path-integral approach. Apart from pro-
viding a general method to compute correlation functions of gauge invariant operators, this will result
in a formalism in which we can also perform canonical quantization of the theory as required for the
definition of the (physical) Hilbert space.
The key idea is to cure the above problem of non-invertibility of the kinetic term by removing the
redundancy in the space of gauge field configurations due to gauge invariance. Let

A B space of all gauge fields Aµ(x) (9.30)

and denote by

Ah
µ(x) B hAµh−1 +

i
g
(∂µh)h−1 (9.31)

a gauge transformation on Ah
µ with h ∈ H. Then fields related by a gauge transformation are physically

equivalent, Aµ(x) ∼ Ah
µ(x). This is because Aµ satisfies the equation of motion if and only if so does

Ah
µ.

Given Aµ(x), the gauge equivalent field configurations are said to lie in the same orbit under gauge
transformations h ∈ H, denoted

{Ah
µ(x) ∀h ∈ H}. (9.32)
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The physically inequivalent degrees of freedom are then counted by the quotient space

A/H B
{
Aµ ∼ Ah

µ : Aµ ∈ A, h ∈ H
}

, (9.33)

i.e. they are given by all Aµ-field configurations modulo gauge transformations. Our aim is now to
define the path integral not onA, but on the physical spaceA/H as∫

A/H

dµ[A]eiS [A]. (9.34)

To this end we must construct a suitable measure µ[A] onA/H such that∫
A

DA =

∫
H

dµ[h]
∫
A/H

dµ[A], (9.35)

with dµ[h] a measure on H. If we have found such a measure, we can factor out the integration over
the gauge orbit and only pick one representative per orbit as shown below.

To achieve (9.35) one introduces a gauge fixing condition

F(A) !
= 0 (9.36)

for some function F which maps the Lie(H)-valued connectionA to some other Lie(H)-valued field.
For example we could take F(A) B ∂µAµ or generalisations thereof to be discussed later. Ideally, we
would like that given A ∈ A

F(Ah) = 0 for some unique h ∈ H (9.37)

such as to fix one representative per gauge orbit.2 Then on the lefthand side of (9.35) we can insert 1

given by

1 =

∫
H

dµ[h]δ
[
F(Ah)

]
M(Ah) (9.38)

2Indeed we will assume this here. In actuality, this condition is not satisfied because of a residual gauge symmetry.
Consequently, there are several gauge equivalent field configurations that satisfy F(A) = 0. These are called Gribov
copies. One must restrict integration to a fundamental region where the gauge fixing is unique. This restriction indeed has
physical consequences, e.g. it modifies the form of the propagator in the deep infra-red.
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where the Jacobian factor

M(Ah) = det
∂F(Ah)

∂h
(9.39)

is needed in analogy with the formula

1 =

∫
R

dx δ[ f (x)]

∣∣∣∣∣∣∂ f (x)
∂x

∣∣∣∣∣∣ (9.40)

and will be evaluated momentarily. Then∫
A

DA =

∫
A

DA
∫
H

dµ[h]δ
[
F(Ah)

]
M(Ah)

=

∫
H

dµ[h]
∫
A

DA δ
[
F(Ah)

]
M(Ah).

(9.41)

For all that follows we make the non-trivial assumption that we can find aDA that satisfies

DA = DAh. (9.42)

If no such measure exists, the gauge symmetry is said to be anomalous and no consistent quantization
procedure can be found. We will discuss such anomalies later in this course. Given (9.42) we have∫

A

DA =

∫
H

dµ[h]
∫
A

DAh δ
[
F(Ah)

]
M(Ah). (9.43)

Relabelling Ah → A yields ∫
A

DA =

∫
H

dµ[h]
∫
A

DA δ [F(A)] M(A)

︸                       ︷︷                       ︸
≡

∫
A/H

dµ[A]

, (9.44)

which defines our desired measure onA/H. This procedure can be repeated with any gauge invariant
integrand. In particular, since S [A] = S [Ah] by classical gauge invariance, this results in∫

A

DA eiS [A] =

∫
H

dµ[h]
∫
A

DA δ [F(A)] M(A) eiS [A]. (9.45)

The factor
∫

H dµ[h] is just an overall factor Vol(H) that will cancel against the same factor in the
denominator in the expression of correlation functions and can thus be ignored. Thus we define the
partition function

Z =

∫
A

DA δ [F(A)] M(A)eiS [A] ≡

∫
A/H

dµ[A]eiS [A]. (9.46)

It remains to compute M(A): By assumption, there exists one h = h0 such that F[Ah0 ] = 0. Note that
the measure dµ[h] on H satisfies∫

H

dµ[h] f (h) =
∫
H

dµ[h] f (gh) ∀g ∈ H (9.47)
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for all functions f on H. Applying this to (9.38) with g = h0 gives

1 =

∫
H

dµ[h]δ
[
F(Ãh)

]
M(Ãh) with Ã = Ah0 . (9.48)

This receives contributions only near h = id. Thus we can express the integral as one over infinitesi-
mal group elements by expanding h = eiα with α ∈ Lie(H),

1 =

∫
H

dµ[h]δ
[
F(Ãh)

]
M(Ãh) =

∫
Lie(H)

dα δ [F(Ãα)] M(Ãα) (9.49)

for a suitably normalised measure dα. Here

M(Ãα) = det
∂F(Ãα)
∂α

(9.50)

with
∂F(Ãα)
∂α

=
∂F(Ãα)
∂Ãα

∂

∂α
Ãα. (9.51)

Given the form Ãαµ = Ãµ − Dµα of an infinitesimal gauge transformation, (9.51) results in

∂F(Ãα)
∂Ãαµ

(−Dµ). (9.52)

Finally we can replace Ãα → A as we did before because DA and S [A] are gauge invariant. Thus we
end up with

Z '
∫
A

DA δ [F(A)] det∆FP eiS [A] (9.53)

with the Faddeev-Popov matrix

∆FP = −
∂F(A)
∂Aµ

Dµ. (9.54)

With the help of this gauge fixed expression of the path integral one can now compute expectation
values of any gauge invariant operator O(A) as

〈Ω|TO(A) |Ω〉 = lim
T→∞(1−iε)

∫
A
DA δ[F(A)]det∆FP O(A) ei

∫ T
−T d4 xL∫

A
DA δ[F(A)] det∆FP ei

∫ T
−T d4 xL

. (9.55)

Note that gauge invariance of O(A) is crucial as otherwise the replacement Ah → A at intermediate
steps is wrong.

9.3 Faddeev-Popov ghosts

For all further computations a couple of further technical steps are required which help us rewrite∫
DA δ[F(A)] det∆FP eiS [A] : (9.56)
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1. First, we can rewrite the delta-functional implementing the gauge-fixing constraint as

δ[F(A)] =
∫
DBa(x)ei

∫
d4 x Ba(x) Fa(A), (9.57)

where F(A) is a Lie(H)-valued field, i.e. F(A) = Fa(A)T a and thus likewise B(x) = Ba(x)T a

is a Lie(H)-valued auxiliary field called Nakanishi-Lautrup field with suitably normalised
measureDB.

2. To rewrite det∆FP recall the general formula∫
dnθ∗ dθ eθ

∗
i Mi jθ j = detM (9.58)

for Mi j ∈ CN,N , θ∗i , θi complex Grassmann variables. The Faddeev-Popov matrix is an operator
acting on Lie(H)-valued fields. So we replace

θ∗i → c̄(x) = c̄a(x)T a, θi → c(x) = ca(x)T a, (9.59)

with c̄(x), c(x) Grassmann-valued, Lie(H)-valued fields, to write

det∆FP =

∫
Dc̄Dc ei

∫
d4 x c̄a(x)(∆FPc(x))a

(9.60)

with suitably normalised measuresDc̄,Dc.

Thus altogether∫
DA δ[F(A)] det∆FP eiS [A] =

∫
DA

∫
DB

∫
D c̄

∫
Dc eiS [A,B,c̄,c], (9.61)

where

S [A, B, c̄, c] =
∫

d4x
(
−

1
4

(
Fa
µν

)2
+ Ba(x)Fa(A) + c̄a(x)(∆FPc(x))a

)
. (9.62)

The Grassmann-valued fields ca(x) and c̄a(x) are called Faddeev-Popov ghosts and anti-ghosts re-
spectively. They transform as scalar fields under SO(1, 3), but have fermionic statistics due to their
Grassmannian nature. Thus they violate the spin-statistics theorem. The underlying reason is that they
violate unitarity since their Fock space does not have a positive definite norm, as will be discussed in
detail later. This explains the name ’ghost’, which generally describes a state with non-positive norm.
We shall think of the ghost fields as unphysical, ’negative’ degrees of freedom which, as we will also
see explicitly later, cancel unphysical polarisations of the Yang-Mills field.

Instead of requiring that F(A) = 0 we could equally well require that

F(A(x)) = f (x) (9.63)
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for some Lie(H)-valued field f (x). In fact, one can even average over all possible f (x) with an
arbitrary measure - because all results are independent of how precisely we fix the gauge. A convenient
way to do this is to replace

δ[F(A)] →
∫
D f δ[F(A) − f ] e−

i
2ξ

∫
d4 x f a(x) f a(x) (9.64)

for arbitrary ξ. Then (9.64) can alternatively be written as

e−
i

2ξ

∫
d4 x Fa(A(x)) Fa(A(x)) (9.65)

or, by introducing as before an auxiliary field B(x),∫
DB

∫
D f e−

i
2ξ

∫
d4 x f a(x) f a(x)+i

∫
d4 x Ba(x)(Fa(x)− f a(x))

=

∫
DB

∫
D f e−

i
2ξ

∫
d4 x ( f a(x)+ξBa(x))2+ i

2 ξ
∫

d4 x Ba(x)Ba(x)+i
∫

d4 x Ba(x) Fa(x)

'

∫
DB ei

∫
d4 x ( ξ2 Ba(x)Ba(x)+Ba(x)Fa(x)),

(9.66)

where in the last step we are omitting an overall numerical factor from the Gaussian integral that will
cancel in all correlation functions. Furthermore we abbreviate F(A(x))a ≡ Fa(x) (not to be confused
with the Yang-Mills field strength Fa

µν(x)). Thus there are two alternative final results for the gauge
fixed path integral:

• Using (9.65) we find

Z =

∫
DA

∫
Dc̄

∫
Dc ei

∫
d4 x(− 1

4 (F
a
µν)

2− 1
2ξ FaFa+c̄a(∆FPc)a]. (9.67)

• Using (9.66) yields

Z =

∫
DA

∫
DB

∫
Dc̄

∫
Dc eiS [A,B,c̄,c] (9.68)

with

S [A, B, c̄, c] =
∫

d4x
(
−

1
4
(Fa

µν)
2 + BaFa +

ξ

2
BaBa + c̄a(∆FPc)a

)
. (9.69)

Note that in (9.68) Ba(x) has no kinetic term (hence its name auxiliary field). Its equation of motion
is

Ba(x) = −
1
ξ

Fa(A(x)). (9.70)

Integrating out Ba(x), i.e. replacing Ba by its equation of motion and omitting
∫
DB, gives (9.67)

from (9.68).

In the sequel we will often work with the gauge-fixing condition

F(A) = ∂µAµ (9.71)
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and

∆FP = −
∂F
∂Aµ

Dµ = −∂
µDµ. (9.72)

Then e.g. (9.67) becomes

Z =

∫
DA

∫
Dc̄

∫
Dc eiS [A,c,c̄] (9.73)

with

S [A, c̄, c] =
∫

d4x
[
−

1
4
(Fa

µν)
2 −

1
2ξ

(∂µAaµ)2 + c̄a(−∂µDµc)a
]

. (9.74)

The value of the so-called gauge-fixing parameter ξ is arbitrary, and we will see that all physical
amplitudes are independent of this gauge choice.

9.4 Canonical quantisation and asymptotic Fock space

While the path-integral allows for the computation of 〈Ω|TO(A) |Ω〉 for any gauge-invariant operator
O(A) - we will provide the Feynman rules soon - canonical quantisation is required to establish the
Hilbert space of states. As stressed in section (9.2), naive canonical quantization of the gauge invariant
Yang-Mills Lagrangian

LYM = −
1
4
(Fa

µν)
2 (9.75)

faces the problem that Aa
0 has no canonically conjugate momentum. What saves the day is that the

Faddeev-Popov treatment of the path-integral has provided us with a gauge-fixed classical Lagrangian

L(A, B, c̄, c) = −
1
4
(Fa

µν)
2 − ∂µBaAa

µ +
ξ

2
BaBa + ∂µc̄aDµca. (9.76)

Indeed our approach will be to view (9.76) as the proper Lagrangian that should serve as our starting
point also for canonical quantization.
Starting from (9.76) gives the canonically conjugate fields

Πaµ
A =

∂L

∂Ȧa
µ

= (Fa)µ0, Πa
c =

L

∂ċa = − ˙̄ca, (9.77)

Πa
B =

∂L

∂Ḃa
= −Aa

0, Πa
c̄ =

∂L

∂ ˙̄ca = ċa − g f abcAb
0cc. (9.78)

At first sight it looks as if the original problem that Πa0
A ≡ 0 in the non-gauge-fixed LYM still persists,

after all Fa00 still vanishes and it is only for Aa
i that we find non-zero commutation relations[

Aa
j(t, ~x), Ȧb

k(t,~y)
]
= i δab δk j δ

(3)(~x −~y). (9.79)

These follow from[
Aa

j(t, ~x), Πb
k(t,~y)

]
=

[
Aa

j(t, ~x), ∂kAb
0(t,~y) − Ȧb

k(t,~y)
]
= i η jk δ

ab δ(3)(~x −~y) (9.80)

together with
[
Aa

j(t, ~x), Aa
k(t,~y)

]
= 0.
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On the other hand (9.78) implies that

[Ba(t, ~x),−Aa
0(t,~y)] = i δab δ(3)(~x −~y). (9.81)

Thus we can view this as the missing commutation relation for Aa
0 by effectively treating Ba as the

momentum canonically conjugate to Aa
0:[

Aa
0(t, ~x), Bb(t,~y)

]
= i δab δ(3)(~x −~y). (9.82)

By the Grassmanian nature of ghosts we furthermore impose the anti-commutation relations{
ca(t, ~x), Πb

c(t,~y)
}
=

{
c̄a(t, ~x), Πb

c̄(t,~y)
}
= iδabδ(3)(~x −~y). (9.83)

Note that with
ca† = ca, (c̄a)† = −c̄a (9.84)

we have L = L† as required for unitarity of the full S -matrix.
In trying to determine the physical Hilbert space we face the problem that the theory is intrinsically
interacting and thus the Heisenberg operators have no free-field mode expansion. The full spectrum
therefore contains complicated bound states of gauge bosons, and, if present, of charged matter states.
In fact, deriving the Hilbert space of Yang-Mills theory from first principles is one of the biggest open
questions of Quantum Field Theory.
However, if we content ourselves with computing matrix elements for scattering experiments, it suf-
fices to know the asymptotic in- and out-states. According to the general LSZ logic developed in
section 2.3, these correspond to the Fock space of excitations created from the vacuum by the asymp-
totic in- and out-fields. The asymptotic fields in turn are given by fully renormalized, but free fields
whose dynamics is determined by the free Lagrangian (i.e. setting g = 0)

L̃0 = −
1
4

(
∂µÃa

ν − ∂νÃ
a
µ

)2
− ∂µB̃aÃa

µ +
ξ̃

2
B̃aB̃a + ∂µ ˜̄ca∂µc̃a, (9.85)

where the tilde stresses the nature as asymptotic fields. In the so-called Feynman gauge corresponding
to ξ̃ = 1 all fields enjoy a free mode expansion (see the tutorials for a proof). In particular we can
expand the asymptotic gauge field as

Ãa
µ(x) =

∫
d3k
(2π)3

1
√

2Ek

3∑
λ=0

εa
µ(~k, λ)

[
aa
λ(
~k)e−ik·x + aa†

λ (~k)eik·x
]

, (9.86)

where the polarisation vectors satisfy

ε(~k, λ) · ε(~k, λ′) = ηλλ′ . (9.87)

Furthermore one can integrate out B̃a by replacing it by its equation of motion B̃a = −∂µÃa
µ (for

ξ̃ = 1) and combine (9.79) and (9.82) into the commutation relations[
Aa
µ(t, ~x), Ȧb

ν(t,~y)
]
= −i δab ηµν δ

(3)(~x −~y), (9.88)
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i.e. [
aa†
λ (~k), ab

λ′(
~k′)

]
= −δabηλλ′(2π)3δ(3)(~k −~k′). (9.89)

As in QED the resulting asymptotic Fock spaces contains negative norm states for time-like and and
zero-norm states for longitudinal polarisations. Furthermore

c̃a(x) =
∫

d3 p
(2π)3

1√
2Ep

(
ca(~p)e−ip·x + ca†(~p)eip·x

)
(9.90)

(with a similar expansion for c̄), and the anti-commutation relations for the asymptotic ghost modes
read {

ca(~p), c̄b†(~p′)
}

and
{
c̄a(~p), cb†(~p′)

}
∝ −δabδ(3)(~p − ~p′). (9.91)

This yields zero-norm excitations in the ghost sector (see again the tutorials for more details).
In view of the appearance of negative and zero-norm states in the asymptotic Fock space - not to
mention the problem that the ghost fields are non-physical degrees of freedom in the first place - the
question arises: What is the physical Hilbert space?

9.5 BRST symmetry and the physical Hilbert space

The problem of determining the physical Hilbert spaceHphys comes in two parts:

1. Give a criterion forHphys which guarantees a positive-definite norm onHphys.

2. Show that time-evolution does not lead out ofHphys, i.e. show that the S -matrix acts as a unitary
operator onHphys.

In principle we are free to choose any criterion forHphys as long as it leads to a positive-definite norm
- after all this is part of the definition of the theory. However, in almost all cases the S-matrix will not
respect this criterion. On the other hand, if the criterion for Hphys is related to a symmetry of the full
interacting theory, then invariance of the physical Hilbert space under time-evolution follows because
the S -matrix respects that symmetry by assumption.
As a preparation for our definition of Hphys we must therefore first determine the symmetries of the
the full interacting, gauge-fixed Lagrangian

L = −
1
4

F a
µν Fµνa +

ξ

2
BaBa + Ba∂µAa

µ + c̄a (−∂µDµc)a . (9.92)

The first term is gauge invariant, but the gauge fixing term Ba∂µAa
µ and the ghost Lagrangian ∼ ∂µc̄Dµc

break gauge invariance as a result of the partial derivatives. This is of course as it must be - after all
our desire to fix the gauge was what lead to the above Lagrangian.
However (9.92) possesses a residual global fermionic symmetry - the BRST symmetry3 - acting as
follows: First define a Grassmann odd operator S such that

S Aµ = −Dµc = −(∂µc + ig[Aµ, c]), S c =
i
2

g{c, c}, S c̄ = −B, S B = 0. (9.93)

3Due to Becchi, Rouet, Stora and Tyutin.
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Note that

• S Aµ is just an infinitesimal gauge transformation δA of Aµ, but with δAµ = −Dµα replaced by
−Dµc;

• the assertion that S is Grassmann odd means that, by definition, S obeys a graded Leibniz rule,
e.g.

S (cA) = (S c)A − c(S A), (9.94)

since the c is Grassmann odd.

The operator S has two decisive properties:

1. S is nilpotent,

S 2 = 0, (9.95)

i.e. S · S ·Φ = 0 with Φ any of the fields A, c, c̄, B.

2. The Lagrangian (9.92) can be written as

L = −
1
4

F a
µν Fµνa − Sψ(x) (9.96)

for ψ(x) = c̄a∂µAa
µ +

ξ
2 c̄aBa.

Note that properties (9.95) and (9.96) immediately imply that the action (9.92) is invariant under
application of S , i.e.

S · L = 0, (9.97)

because S ·
(
F a
µν Fµνa

)
= 0 since S acting on Aµ is just a gauge transformation with gauge parameter

c(x) and by (9.95) S 2 · ψ = 0.
The proof of (9.95) is worked out on the exercise sheets and requires the Jacobi identity. Property
(9.96) follows simply by noting that

S ·
(
c̄a∂µAa

µ

)
= (S c̄)a(∂µAµ)a − c̄a∂µ(S Aµ)a = −Ba(∂µAµ)a + c̄a∂µ(Dµc)a, (9.98)

S
ξ

2
c̄aBa =

ξ

2
((S c̄)aBa − c̄aS Ba) =

ξ

2
(−BaBa − c̄a · 0) . (9.99)

Finally, the BRST symmetry transformation is defined as

δεΦ = ε S ·Φ (9.100)

with Φ any of the fields A, c, c̄, B. Here ε is a global (i.e. not spacetime-dependent) Grassmann
variable. Clearly δ2

ε = 0 because S 2 = 0 and

δεL = 0. (9.101)
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By Noether’s theorem one can construct the associated classical Noether current JµBRST with

∂µJµBRST = 0 (9.102)

and its charge

QBRST =

∫
d4x J0

BRST with Q̇BRST = 0. (9.103)

The precise form of JµBRST and QBRST can easily be worked out, but is not essential for us here. If we
perform canonical quantisation as sketched in the previous section, the classical Noether charge QBRST

is promoted to a quantum BRST operator Q̂BRST which generates the BRST symmetry transformation
in the sense that [

εQ̂BRST, X̂
]
= iδε X̂. (9.104)

That a Noether charge generates the symmetry underlying its conservation in the quantum theory is
a general fact. (9.104) can also be checked explicitly via the canonical commutation relations once
Q̂BRS T is worked out.
As a result of the nilpotence of S , also Q̂BRST is nilpotent,

Q̂2
BRST = 0. (9.105)

In order to see (9.104) we first consider X̂ to be bosonic. Then[
εQ̂, X̂

]
= iδε X̂ = iεS X̂ (9.106)

implies [
Q̂, X̂

]
= iS X̂. (9.107)

If X̂ is fermionic, then instead

iεS X̂ =
[
εQ̂, X̂

]
= εQ̂X̂ − X̂εQ̂ = ε(Q̂X̂ + X̂Q̂), (9.108)

so {Q̂, X̂} = iS X̂. Let X̂ be bosonic. Then S X̂ = −i
[
Q̂, X̂

]
is fermionic and

0 = S 2X̂ =
{
Q̂, [Q̂, X̂]

}
= Q̂(Q̂X̂ − X̂Q̂) + (Q̂X̂ − X̂Q̂)Q̂ =

[
Q̂2, X̂

]
. (9.109)

A similar conclusion holds for X̂ fermionic, and thus

0 =
[
Q̂2, X̂

]
for all fields . (9.110)

So either Q̂2 ∼ 1 or Q̂2 = 0. But Q̂2 ∼ 1 is not possible because symmetry of the theory under BRST
transformations implies that also the vacuum must be invariant,

Q̂ |Ω〉 = 0, (9.111)

in contradiction with Q̂2 ∼ 1.

Conservation of the classical Noether charge, Q̇BRST = 0, translates into the relation[
Ĥ, Q̂BRST

]
= 0. (9.112)
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Finally we note that
Q̂†BRST = Q̂BRST, (9.113)

as follows from the explicit expression for QBRST together with

Â = Â†, ĉ = ĉ†, ˆ̄c = − ˆ̄c†, B̂ = B̂†, (9.114)

even though we will not derive this here.
Before discussing the relation of Q̂BRST with the physical Hilbert spaceHphys, we embark on a little
mathematical digression:
LetH be a vector space and Q̂ : H 7→ H a general nilpotent linear operator, i.e. Q̂2 = 0.

• An element |ψ〉 ∈ H with Q̂ |ψ〉 = 0, i.e. |ψ〉 ∈ ker(Q̂) is called Q̂-closed.

• An element |ψ〉 ∈ H such that ∃χ ∈ H with |ψ〉 = Q̂ |χ〉, i.e. |ψ〉 ∈ ImQ̂, is called Q̂-exact.

• Since Q̂2 = 0, we have that
Im(Q̂) ⊂ Ker(Q̂) (9.115)

because Q̂ |ψ〉 = Q̂2 |χ〉 = 0.

• IfH has an inner product and if Q̂ = Q̂† with respect to it, then

〈ψ|ψ〉 = 0 ∀ψ ∈ Im(Q̂) (9.116)

because
〈ψ|ψ〉 = 〈χ| Q̂†Q̂ |χ〉 = 〈χ| Q̂2 |χ〉 = 0. (9.117)

Furthermore
〈ψ| φ〉 = 0 ∀ |ψ〉 ∈ Im(Q̂), |φ〉 ∈ Ker(Q̂). (9.118)

Thus Q̂-exact states are null and orthogonal to Q̂-closed states.

• As a result, Q̂-closed states differing only by Q̂-exact elements have the same norm. To see this
let |ψ1〉, |ψ2〉 ∈ Ker(Q̂) such that

|ψ1〉 − |ψ2〉 = Q̂ |χ〉 . (9.119)

Then

〈ψ1|ψ1〉 = 〈ψ2 |ψ2〉+ 〈χ| Q̂†Q̂ |χ〉+ 〈ψ2| Q̂χ〉+ 〈χ| Q̂† |ψ2〉 = 〈ψ2 |ψ2〉 . (9.120)

• This motivates defining an equivalence relation on Ker(Q̂) by identifying elements in Ker(Q̂)

which differ only by elements in Im(Q̂), i.e.

∀ψ1,ψ2 ∈ Ker(Q̂) : |ψ1〉 ∼ |ψ2〉 i f |ψ1〉 − |ψ2〉 ∈ Im(Q̂). (9.121)

One furthermore defines the Q̂-cohomology as the quotient space

Cohom(Q̂) B
Ker(Q̂)

Im(Q̂)
≡
{closed |ψ〉}
{exact |ψ〉}

. (9.122)
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• As an example of this structure consider H = Ω•(M) B { space of differential forms on
manifold M} and Q̂ B d∧, i.e. the exterior derivative. A closed p-form ω satisfies dω = 0. An
exact p-form χ satisfies χ = dφ for some (p − 1)-form, and the p-th cohomology group is

Hp(M) B
{closed p-forms}
{exact p-forms}

. (9.123)

After this digression, we come back to our physical problem. In order to fully define quantum Yang-
Mills-theory, we must define what we mean by the physical state spaceHphy, and then prove that this
definition is stable under time-evolution and implies a positive-norm Hilbert space.
Our definition ofHphys is guided by the following two observations:

1. The space of states on which the time-evolution operator is independent of the specific choice
of gauge-fixing condition is given by Ker(Q̂BRST), i.e. by |ψ〉 such that Q̂BRST |ψ〉 = 0.We will
prove this below.

2. Within this space, the BRST-exact states |χ〉 ∈ Im(Q̂BRST), have zero overlap with all other
states - as follows from previous discussion, in particular (9.118).

Now, invariance of time-evolution under changes of gauge fixing condition is obviously required for
the theory to make sense, so we require for sure

Q̂BRST |ψphys〉
!
= 0 (9.124)

for physical states. Furthermore, states with zero overlap with all other states can never be measured
and are therefore unphysical. With this motivation we define

Hphys = Cohom(Q̂BRST) ≡
Ker(Q̂BRST)

Im(Q̂BRST)
. (9.125)

Before exploringHphys further, we prove 1. from above: The time-evolution operator is

Û = Tei
∫

Ĥdt = ei
∫
(Πφ̇−L)dt, (9.126)

where Πφ̇ stands symbolically for all fields and their conjugates and L can be written as

L = −
1
4

(
Fa
µν

)2
− S · ψ, (9.127)

with S generating the BRST transformations. Now, only ψ depends on the explicit choice of gauge
fixing condition F(A) = 0. So a general transition amplitude 〈α| Û |β〉 ' 〈α| (1 + i

∫
(Πφ̇ − L) |β〉

(infinitesimally) changes under a change of the gauge fixing condition F as

δF 〈α| Û |β〉 = 〈α| (iδFSψ) |β〉 = 〈α| iS δFψ |β〉 . (9.128)

Since by definition iS X̂ =
[
Q̂BRST, X̂

]
, this is

= 〈α| (Q̂δFψ − δFψQ̂) |β〉 . (9.129)
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For this to vanish for all δFψ, we need

Q̂BRST |β〉 = 0 = 〈α| Q̂BRST. (9.130)

It remains to evaluate the physical state condition explicitly and to check the existence of a positive-
definitene norm onHphys, as well as to check unitarity of the S -matrix.

Evaluating the physical state condition

We can only do this explicitly for the asymptotic in/out-states, for which we now how they are created
by the action of the free asymptotic in/out-fields Ã, B̃, c̃, ˜̄c. Since B̃ ∼ ∂Ã by its equation of motion
it suffices to consider 1-particle excitations of Ãµ, c̃, ˜̄c. Let us define the states

|Ãa
µ(~k)〉 B

3∑
λ=0

εa
µ(~k, λ)a†aλ (~k) |Ω〉 ,

|c̃a(~k)〉 B ca†(~k) |Ω〉

(9.131)

and similarly for |c̃a(~k)〉, with a†, c†, c̄† the creation operators for the asymptotic fields Ã, c̃, ˜̄c, as
introduced in section 9.4. Now, for these free asymptotic fields (for which essentially g ≡ 0), the
BRST transformations take the simple form

S Ãµ = − ∂µc̃,

S c̃ = 0,

S ˜̄c = − B̃ = −∂Ã,

S B̃ = 0,

(9.132)

in Feynman gauge ξ̃ = 1. Thus

Q̂BRST |Ãµa(~k)〉 = α kµ |c̃a(~k)〉 , (9.133)

Q̂BRST |c̃a(~k)〉 = 0, (9.134)

Q̂BRST | ˜̄ca(~k)〉 = β kµ |Ãa
µ(~k)〉 (9.135)

for some numerical factors α, β , 0. First, we note that nil potency Q̂2
BRST = 0 implies that

0 = Q̂2
BRST |c̄

a(k)〉 = αβ(kµkµ) |ca(~k)〉 (9.136)

and thus

k2 = 0. (9.137)

Properties of Cohom (Q̂BRST):

• First evaluate the condition Q̂BRST |ψ〉 = 0 if |ψ〉 ∈ Hphys: Applied to (9.135) this implies that a
physical state |ψ〉 (with non-vanishing kµ) cannot have any c̄-excitations. Furthermore, in view
of (9.133), a state |ξ〉 B ξµ |Aµ(~k)〉 with polarisation vector ξµ is physical only if

ξµkµ = 0. (9.138)
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• Next analyse our identification |ψ〉 ∼ 0 if |ψ〉 = Q̂BRST |χ〉: (9.133) implies |c̃a(~k)〉 is BRST
trivial, while (9.135) implies that ξµ |Aµ(k)〉 is BRST trivial for ξµ = kµ.

To summarise:
A physical state |ψ〉 ∈ Hphys = Cohom(Q̂BRST) is of the form

|ψ〉 = ξµ |Ãµ(~k)〉 (9.139)

with k2 = 0 for ξµkµ = 0. We furthermore identify states with polarisation vector ξµ ∼ ξµ + kµ, i.e.
longitudinal null states are trivial.

Unitarity of S -matrix:

Since L = L†, we know that the S -matrix is unitary on the entire Fock space with basis |γ〉 ∈ HFock,
i.e. ∑

|γ〉

〈α| S † |γ〉 〈γ| S |β〉 = 〈α| 1 |β〉 . (9.140)

However, we need unitarity to hold onHphys = Cohom(Q̂BRST), i.e.4∑
|χT 〉∈Hphys

〈φT | S † |χT 〉 〈χT | S |ψT 〉
!
= 〈φT | 1 |ψT 〉 (9.141)

for |φT 〉 , |ψT 〉 ∈ Hphys transversely polarised states. Since
[
Ĥ, Q̂BRST

]
= 0 we know that

Q̂BRSTS |ψT 〉 = S Q̂BRST |ψT 〉 = 0, (9.142)

so S does not lead out of Ker(Q̂). But S can and in fact does produce BRST exact states in Im(Q̂BRST)
- we will see this explicitly in examples. Still, these are null, i.e. have zero overlap with all other
states in Ker(Q̂). Therefore using (9.140)

〈φT | 1 |ψT 〉 =
∑
|γ〉

〈φT | S † |γ〉 〈γ| S |ψT 〉

=
∑

|χT 〉∈Hphys

〈φT | S † |χT 〉 〈χT | S |ψT 〉 .
(9.143)

In the last line we first decomposed HFock into Ker(Q̂BRST) and its orthogonal complement and sec-
ond used that only the projection of |γ〉 to the transversely polarized physical space Cohom(Q̂BRST) ⊂

Ker(Q̂BRST) has non-trivial overlap with S |ψT 〉 because the latter lies inside Ker(Q̂BRST), and states
within Im(Q̂BRS T ) are null and orthogonal on each other. Thus the S -matrix is unitary.

All of the above applies also to the special case of U(1) gauge theory. There, the c̄ − c system

4In the sequel S denotes the S-matrix, not the BRST transformation operator. We hope this causes no confusion.
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does not couple to Aµ since Dµc = ∂µc as the ghosts transform in the adjoint representation, which
for gauge group U(1) is trivial. Also, the constraint

QBRST |ψ〉 = 0 (9.144)

reduces to the Gupta-Bleuler condition
∂A+ |ψ〉 = 0. (9.145)

In YM theory, imposing (9.140) on the full Hilbert space is not adequate since unlike the full operator
Q̂BRST it does not commute with the interacting Hamiltonian Ĥ and is thus not stable under time-
evolution.
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