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The simplest typed theory of sets is the multi-sorted first order system TST
with equality and membership as primitive predicates and with sorts (types)
indexed by the natural numbers. Atomic formulas are well-formed if they are
of one of the forms xn ∈ yn+1; xn = yn. The axioms of TST are extensionality
(objects of positive type are equal iff they have the same members) and compre-
hension (“{xn | φ}n+1 exists” for any formula φ in the language of TST ). (this
theory has often been incorrectly attributed to Russell, by this author among
others: see [17] for a discussion of the actual history of this system).

Quine’s New Foundations (NF ) ([14]) is obtained from TST by abandoning
the types but retaining the same axioms. Note that the comprehension axioms of
NF are not all the axioms “{x | φ} exists” for φ a formula in the language of NF :
this would be the inconsistent comprehension axiom of naive set theory. The
comprehension axioms of NF are those assertions “{x | φ} exists” where φ can
be obtained from a formula of TST by dropping distinctions of type between
variables (without creating any additional identifications between variables).
Formulas φ which are typable in TST in this sense are said to be stratified . The
extensionality axiom of NF is the same as the extensionality axiom of ZFC .

NF does not provide the evil set {x | x 6∈ x} because it is impossible to assign
types to the occurrences of x in x 6∈ x in a way consistent with the requirements
of TST . So far so good, but NF does allow the construction of {x | x = x} (the
universal set) and of other big sets (such as the Frege natural numbers) which
are not allowed in ZFC .

The consistency of NF remains an open question (which we will not ad-
dress at all here). Specker showed in 1953 ([16]) that NF disproves the Axiom
of Choice (this is a very forceful result because NF also proves at least the
stratified versions of all the standard equivalences between forms of AC .) This
immediately reduced the popularity of this approach to foundations. In 1969,
however, Jensen showed (in [13]) that if extensionality is weakened to apply
only to objects with elements (allowing many elementless urelements as well as
the empty set), the resulting system NFU is consistent relative to the usual
set theory, and is moreover consistent with Infinity, Choice, and further strong
axioms (see [10] for an investigation of various strong extensions of NFU ). Note
that NFU admits the full power of the scheme of stratified comprehension.
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It was shown by Maurice Boffa ([2]) that a model of NFU in which the
universe is no larger than the collection of all sets can be used to construct a
model of NF . In all known models of NFU , there are many more urelements
than sets; in fact, we have shown in [4] that NFU + AC proves that for any
concrete natural number n there are at least n cardinals between the cardinality
of the collection of all sets and the cardinality of the universe.

The question which this paper addresses was first raised to us by Thomas
Forster. Are the urelements all “the same” in some sense? Standard permuta-
tion techniques used in NF or NFU can be adapted to show that for any n-ary
stratified predicate φ involving no parameters other than urelements u1, . . . , un

the truth value of φ(u1, . . . , un), where the ui’s are distinct urelements, is the
same no matter how the urelements are chosen. For these permutation tech-
niques in a general context, see [6] and [1]; historical references for these methods
are [15] and [8]. The general idea is that if f is a set function which is a permu-
tation of the universe fixing all urelements (more general “setlike” permutations
of the universe which may not be sets can also be used, with care, as we note
below) we can replace the membership relation of our model of NFU with the
relation x ∈f y ≡def x ∈ f(y) and obtain a structure which will satisfy the same
stratified sentences (formulas without free variables) as the original structure
(and so will still be a model of NFU ). In spite of the fact that we will make
only one small application of the main theorem of permutation methods in this
paper, we give a complete if brief account, since two closely analogous proofs
will be used here and it is useful to be aware of the analogy. Let J be the
operation which sends any set function h to the function J(h) which fixes all
urelements and sends each set to its elementwise image h“x under x. Observe
that x ∈ y is equivalent to h(x) ∈ J(h)(y) for any function h. We define a hier-
archy of functions fn as follows: f0 is the identity and fn+1(x) = Jn(f)(fn(x)).
This definition is chosen so that x ∈f y is equivalent to fn(x) ∈ fn+1(y) for
each n by an obvious induction: x ∈f y ≡ x ∈ f(y) ≡ f0(x) ∈ f1(y) and
fn(x) ∈ fn+1(y) ≡ Jn(f)(fn(x)) ∈ Jn+1(f)(fn+1(y)) ≡ fn+1(x) ∈ fn+2(y).
Note that if f is a bijection, so is each fi. Now stratify the formula φ (assign a
type to each variable occurring in φ in such a way that the type restrictions of
TST are satisfied). Replace each variable x which is assigned type i with fi(x)
to obtain a formula φ′. Each equation x = y in φ is transformed to the form
fi(x) = fi(y), clearly still equivalent to x = y, and each membership statement
x ∈ y in φ assumes a form fi(x) ∈ fi+1(y) which is equivalent to x ∈f y. Thus
the transformed version of φ is equivalent to the formula φf in which ∈ is re-
placed by ∈f . We can eliminate all applications of fi to quantified variables in φ′

because (fi being a permutation of the universe) (∀x.ψ(x)) ≡ (∀x.ψ(fi(x))) and
(∃x.ψ(x)) ≡ (∃x.ψ(fi(x))). Thus φf is equivalent to the formula φ′′ with the
usual membership relation ∈ obtained by stratifying φ and replacing each free
variable x in φ assigned type i with fi(x). For stratified sentences φ (formulas
with no free variables), we obtain φ ≡ φf (the basic theorem of permutation
methods). Since stratified sentences include all the axioms of NFU , the struc-
ture with ∈f in place of ∈ is also a model of NFU . (Note that it is not strictly
necessary in this construction for f to be a set function; note that J makes sense
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for proper class maps as well, and all that is actually needed is that Jn(f) be
total for each n; this is what it means for a map to be “setlike”).

To establish the homogeneity of urelements, we employ a variation of the
general permutation method described above; the technique is due to Thomas
Forster (see [7]; our proof here uses different notation, avoiding a nonce redefi-
nition of J).

Theorem: For any permutation g of the universe which moves only atoms and
any stratified formula φ(u1, . . . , un) whose only free variables are the ui’s
(understood to represent urelements), φ(u1, . . . , un) ≡ φ(g(u1), . . . , g(un)).
That is, the urelements are homogeneous with respect to stratified prop-
erties.

Proof: Let g be a permutation of the universe which moves only atoms. Define
G0 as g and Gn+1(x) as Jn+1(g)(Gn(x)). It is important to note that
Gi(u) = g(u) for any urelement u. We then prove by induction that for
each n, Gn(x) ∈ Gn+1(y) ≡ x ∈ y: G0(x) ∈ G1(y) ≡ g(x) ∈ J(g)(g(y)) ≡
x ∈ y (this last clause needs to be checked remembering that g moves
only urelements and J(g) fixes urelements, so J(g)(g(y)) is either an ure-
lement g(y), if y is an urelement, or the set g“y, if y is a set) and Gn(x) ∈
Gn+1(y) ≡ Jn+1(g)(Gn(x)) ∈ Jn+2(g)(Gn+1(y)) ≡ Gn+1(x) ∈ Gn+2(y).
Let φ be a stratified formula whose only parameters are urelements. As-
sign relative types to each variable in φ and replace each variable x of
type i with Gi(x). The results we have shown above indicate that the
transformed formula has exactly the same truth value, since each x ∈ y
is transformed to Gi(x) ∈ Gi+1(y) and each x = y is transformed to
Gi(x) = Gi(y). Further, we can eliminate the Gi’s from all and only the
bound variables in the transformed φ, using the same considerations as
in the previous paragraph, so φ is equivalent to the formula obtained by
replacing each (urelement) parameter u of type i in φ with Gi(u) = g(u).
So any assertion φ(u1, . . . , un) with no parameters other than urelements
u1, . . . , un is equivalent to φ(g(u1), . . . , g(un)), which establishes the ho-
mogeneity of the urelements with respect to stratified predicates.

Forster asked whether this continues to be true when we do not require the
predicate φ(u1, . . . , un) to be stratified.

It is fairly easy, again using permutation methods, to create models of NFU
in which some urelement is uniquely specifiable by an unstratified formula. For
example, a permutation can be used to introduce a unique urelement u such
that there is a set x = {u, x}. To do this, start with one of the “usual models
of NFU ” described below (which are easily seen to contain no such sets) and
use the permutation f of sets which permutes the sets ∅ and {u, ∅} (for a fixed
urelement u) and fixes all other sets (and all the urelements). The structure
with ∈f in place of ∈ is still a model of NFU , in which it is fairly easy to show
that the empty set of the original model is a set x = {u, x} in the new model,
while it is also fairly easy to show that this is the only such set in the new
model. The strong homogeneity result for unstratified formulas is then falsified,
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since the particular urelement u has a unique unstratified property not shared
by any other urelement, (∃x.x = {u, x}).

We granted Forster this point, but we were certain that in the usual models
of NFU (which we will shortly describe) the urelements “must” be indistinguish-
able. Forster was equally certain that the urelements should be distinguishable
by suitable unstratified formulas. Surprisingly to us, we have been able to show
that Forster is correct: all the models constructed in the usual way have distin-
guishable urelements.

What we call the “usual” technique for constructing models of NFU was
first described by Maurice Boffa in [3] (though it is clearly very closely related
to Jensen’s construction in [13]; see also the more accessible [5]).

Construction: Construct a nonstandard model of “enough” of the usual set
theory (bounded Zermelo set theory is sufficient) in which there is an
external automorphism j and a rank Vα of the cumulative hierarchy which
is moved by j (we say that a rank Vα is moved by j rather than that an
ordinal α is moved by j so that we do not have to assume that every
ordinal determines a rank). We may assume without loss of generality
that j(α) < α (this method has usually been presented with j(α) > α,
but it is technically more convenient here to take j as acting downward).
The domain of the structure we consider is the extension of the set Vα

in the nonstandard model of set theory. The membership relation of this
structure is x ∈NFU y ≡def j(x) ∈ y ∧ y ∈ Vj(α)+1.

Theorem: The structure described in the immediately preceding Construction
is a model of NFU .

Proof: One can see [5] as well as the following. Note the analogy between this
proof and the proofs re permutation methods above.

Let φ(x) be a stratified formula (interpreted as a formula about NFU )
in which x is free. Make an assignment of relative types to the variables
appearing in φ. Let N be an integer greater than any type assigned to
a variable in φ. Translate φ from the language of NFU into a formula
φ1 in the language of the nonstandard model of the usual set theory with
the automorphism j. Now apply suitable powers of j to each side of each
atomic formula in φ1 in such a way as to cause each occurrence of a variable
y assigned type i to appear in the context jN−i(y); the relations between
exponents of j in atomic formulas x = y, j(x) ∈ y, and y ∈ Vj(α)+1 are
such that this is possible. Call the resulting formula φ2. Each bound
variable jk(y) with quantifier restricted to Vα can be replaced with y
while changing the set bounding the quantifier to Vjk(α). The resulting
formula φ3(ji(x)) (where N − i is the type assigned to x) contains j only
in parameters. Uniform application of j−i throughout gives an equivalent
formula φ4(x); since it contains j only in parameters it has an extension
in the nonstandard model. The elements of j({x ∈ Vα | φ4(x)}) in the
model of NFU (the additional j corrects for the modified definition of
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membership in NFU ) are the objects x such that φ1(x) in the model of
nonstandard set theory, and so the objects x such that φ(x) in the model
of NFU .

Definition: A model of NFU built as in the Construction is called a usual
model of NFU .

Observation: We use Vα as our universe; its power set Vα+1 is properly larger
than our universe, but we replace all references to Vα+1 with references to
its isomorphic copy Vj(α)+1 which is properly contained in our universe.
Each subset of the universe is coded by its image under j which will be
inside the universe, and each object which is not an image under j of
such a subset has its extension discarded (the elements of Vα − Vj(α)+1

become urelements). It should be clear that the urelements are almost
the entirety of the universe! Since the extensions of the urelements are
discarded, it is unclear how any information distinguishing them from one
another survives this construction. It turns out that all information about
the original nonstandard model of set theory is recoverable (in a first-
order definable way), including the extensions of the urelements (whence
of course the urelements are not homogeneous)!

We first exhibit an unstratified assertion which is satisfied in any model of
NFU obtained in this way, with two additional related assertions. This assertion
was first discussed by us in [11] with a different application in mind (there is
no need to consult that paper to understand anything here). Consider the
function in the nonstandard model of set theory which sends each singleton {x}
for x ∈ Vj(α) to its element x. In the model of NFU , the “singleton {x}” of
the original nonstandard model has j−1(x) as its sole member, rather than x,
and the function now maps each singleton {x} (without qualification) to j(x).
Further, this function is actually realized as a function in the internal sense of
the model of NFU (this is the case for any function in the original nonstandard
model whose domain and range are included in Vα); so we have a function in the
model of NFU (which we will call j ) with the following properties: its domain
is the set of all singletons, its range is a subcollection of the sets (because any
j(x) ∈ Vj(α) ⊆ Vj(α)+1), and it is an injection.

Of course, these properties in themselves are not very remarkable. The
strong property of j which we now claim and proceed to prove is this (in terms
of the model of NFU ): if y is a set, then

j({y}) = {j({z}) | z ∈ y}.

Suppose that y is a set: in terms of the underlying nonstandard model, this
means y ∈ Vj(α)+1. What we need to show is that for all w, w ∈ j({y}) ≡
(∃z.w = j({z})∧z ∈ y). Translate this into terms of the underlying nonstandard
model, recalling that j({x}) = j(x): we want to show (in the nonstandard
model) that j(w) ∈ j(y)∧j(y) ∈ Vj(α)+1 ≡ (∃z.w = j(z)∧j(z) ∈ y∧y ∈ Vj(α)+1).
The assumption that y is a set implies that y ∈ Vj(α)+1 and j(y) ∈ Vj(α)+1 is
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simply true. So this simplifies to j(w) ∈ j(y) ≡ (∃z.w = j(z) ∧ j(z) ∈ y).
Suppose that j(w) ∈ j(y). This is equivalent to w ∈ y, which entails that
there is a z such that w = j(z) (since all elements of y are in Vj(α)) and indeed
j(z) = w ∈ y. Conversely, if there is z such that w = j(z) and j(z) ∈ y, it follows
trivially that w ∈ y from which it follows that j(w) ∈ j(y). This completes the
proof of the claim.

The properties of j are summed up in the following

Axiom of Endomorphism: There is a function j , an injection from the set
of all singletons into the set of all sets, satisfying

j({y}) = {j({z}) | z ∈ y}

whenever y is a set.

This axiom will hold in any model of NFU constructed in the usual way.
We can use the function j to recover the membership relation of the original

nonstandard model of set theory.

Definition: The relation xE y is defined as holding exactly when x ∈ j({y}).
Note that E is a set relation (x and y have the same relative type). (Note
further that in the usual models of NFU this will reduce to j(x) ∈ j(y) ∧
j(y) ∈ Vj(α)+1; the second conjunct is true and j is an automorphism so
this is equivalent to x ∈ y in the sense of the original nonstandard model
of set theory).

In the usual models of NFU an additional important statement holds, though
this is somewhat counterintuitive.

Definition: A relation R is said to be well-founded iff any subset A of the field
of R (the union of the domain and range of R) has an element whose
R-preimage does not meet A.

Axiom of “Foundation”: E is a well-founded relation.

This clearly holds in the usual models because the membership relation in
the original nonstandard model of set theory is well-founded (at least so far as it
can see internally: externally the ordinals jn(α) (for example) are a descending
chain in the membership relation).

We briefly note that we use the usual Kuratowski ordered pair to define
relations in NFU in this paper; this is somewhat inconvenient because the pair
is two types higher than its projections, so relations and functions are three
types higher than members of their fields, rather than one, but it is convenient
to use the same pair in NFU as in the underlying set theory, and it is also
convenient not to assume Infinity (as one must to obtain a type-level pair).

Ordinals are traditionally defined in NFU as equivalence classes of well-
orderings under isomorphism. For any well-ordering W belonging to an ordinal
β, there is a well-ordering W ι = {〈{x}, {y}〉 | x W y}; the order type T (β) of

6



W ι does not depend on the choice of W in β. An analogous T operation may
be defined for any relation types under isomorphism. It may seem to the mind
trained in the usual set theory that the T operation is trivial, but this is demon-
strably not the case, though it is the case that all usual operations and relations
on ordinals commute with T (in particular, T is an order endomorphism). The
order type of the ordinals ≤ β in the natural order can be shown by transfinite
induction to be T 4(β) (transfinite induction only applies to stratified properties,
and in the assertion that the order type of the ordinals ≤ β is β the type of the
second β is four higher than the type of the first: the use of T 4 repairs this); this
means that the order type of all ordinals ≤ Ω, where Ω is the order type of all
the ordinals in the natural order, is T 4(Ω), and thus it is clear that T 4(Ω) < Ω
(resolving the Burali-Forti paradox). This is less weird in TST : the two Ω’s are
of different types, and we show that the length of the ordinals in a given type
must be shorter than the length of the ordinals four types up. (Since we have
the descending “sequence” Ω > T 4(Ω) > T 8(Ω) . . . in the ordinals, it is clear
that T is not a set function.)

It is also worth observing that in the usual models it is the case that if β is
the NFU order type of an order W , the NFU order type of j(W ) will be T (β)
(we cannot say T (β) = j(β) because j(β) will not be an ordinal in the sense of
NFU unless β = 0 (it will not contain all well-orderings of order type T (β) but
only those which are images under j)

The relation E is not only well-founded but extensional, since j is an injec-
tion. Induction on the structure of E shows that each object x (set or urelement)
is uniquely determined by the isomorphism type of the restriction of E to the
set of all iterated preimages of x under E (including x itself) (this is analogous
to the Mostowski Collapsing Lemma). Note that the associated isomorphism
type is the isomorphism type of a well-founded extensional relation with a top
element. A thorough discussion of the theory of such isomorphism types in NF
or NFU can be found in [9] or [12].

Definition: For any object x, the isomorphism class of the restriction of E to
the smallest set containing x and containing any y E z if it contains z is
termed the associated isomorphism type of x.

Lemma: The associated isomorphism class of j({x}) is the image under T of
the associated isomorphism class of x.

Proof: If one takes the graph of E restricted to iterated preimages of a par-
ticular object x and applies the operation t 7→ j({t}) to each node in this
graph, one obtains a graph whose isomorphism type is the image under
T of the original isomorphism type (j is an injective function, so this is
isomorphic to the graph obtained by simply replacing nodes with their
singletons) and which is further also the downward closed part of the
graph of E determined by j({x}). To see this it is sufficient to see that
xE y ≡ x ∈ j({y}) ≡ j({x}) ∈ j({j({y})}) ≡ j({x})E j({y}) and also that
any preimage under E of any j({y}) is an element of j({j({y})}) and so is
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an image under j, since j({y}) is a set and the image of the singleton of a
set under j is a set of images under j.

Each object in the domain of a well-founded relation can be assigned an
ordinal rank. We outline how this is done. Let R be a well-founded relation
(any subset A of the field of R (the union of its domain and range) has an element
x none of whose preimages under R are in A). Construct the set R of R-ranks as
follows: ∅ is an R-rank; if A ∈ R, then the set A+ of all elements of the field of R
all of whose R-preimages are in A belongs to R; the union of any subcollection
of R is an element of R. R can be formally defined as the intersection of all
sets with these closure conditions (containing ∅; containing A+ if they contain
A; closed under unions of subcollections). It is straightforward but tedious to
prove that R is well-ordered by inclusion. Define Rα as the element of R such
that the order type of the elements of R properly included in it is α (this is
defined only for an initial segment of the ordinals, and it is worth noting that
the type of α is higher than that of Rα: this indexing is not a set function). We
say that an object is of type α iff it belongs to Rα+1 − Rα: note for example
that R0 is empty, but R1 will contain all objects with empty R-preimage, and
these objects will have rank 0. Finally, it is straightforward to prove that the
field of R is itself a rank (obviously the last one). (It is further worth noting
that there is a theory of rank for isomorphism types of well-founded extensional
relations with top; the ranks of the associated isomorphism types of objects are
parallel to the ranks of the objects.)

Definition: The ranks under E are denoted by Eβ , following the notation
above. Note that Eβ is the set of objects with E-rank < β.

Definition: A rank Eβ is said to be complete if every subset of Eβ is the
preimage under E of some object.

Observation: It is straightforward to show that completeness of Eβ is equiva-
lent to the condition that any associated isomorphism class which would
give an object of rank ≤ β is actually realized by some object. Suppose
that some potential associated isomorphism class is not realized; there will
be a lowest rank γ at which this occurs. If rank β ≥ γ is complete, this
would imply that the supposedly missing isomorphism class was realized
by an object at rank β + 1 – and so of course also existed at rank γ + 1.

Lemma: The associated isomorphism type of an object of rank T (α) will always
be an image under T , if Eα is a complete rank.

Proof: Suppose that α is the lowest rank at which this fails to be true: so
there is some y of rank T (α) whose associated isomorphism type is not
an image under T , and this does not happen for any β < α. This means
that y cannot be an image under j. However, every element z of j({y})
is of some rank T (β) for β < α and so has an associated isomorphism
class which is an image under T , whose inverse image under T would be
associated with an object w of rank β < α, which will exist if α is a
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complete rank, and which will satisfy j(w) = z. Now the collection of
such objects w, a set of objects all of rank < α, cannot be the E-preimage
of any x (if it were, we would have y = {j(w) | w ∈ x} = j({x})). So the
rank α cannot be complete, nor can any higher rank.

Lemma: The universe V is an E-rank Eα for some index α. with T (α) < α.

Proof: The field of E is V and the field of any well-founded relation is the
highest rank for that relation as noted above. Note that j({V }) = {j({x}) |
x = x}. For every x, we have j({x}) ∈ j({V }) and thus j({x})E V , so
the rank of V is higher than that of any j({x}). For any β < α, there is
x of rank β, so there is j({x}) of rank T (β), so the rank of V is at least
T (α) + 1 (and in fact is exactly T (α) + 1, since certainly no E-member of
V is of rank T (α) or higher!). The rank of V , like the rank of any object,
is strictly less than α, so T (α) < α.

The highest rank Eα is an incomplete rank: for example, there can be no
object with the E-preimage Eα (this is obvious because E is well-founded). It is
not necessary that there be any other incomplete rank; in fact, the usual models
have an additional

Rank Property: Every E-rank is complete except the highest rank Eα.

This property holds in the usual models because there E coincides with the
membership relation on the underlying nonstandard rank Vα, which obviously
has this property.

We make some side remarks to put the theory NFU + Endomorphism +
Foundation + Rank Property into context: this theory can be interpreted in
NFU , using the isomorphism classes of well-founded extensional relations with
top, as discussed in [12]. In our paper [11] where the Axiom of Endomorphism
was first defined, we proved that the Axiom of Endomorphism is inconsistent
with NF .

We are now ready to prove the

Main Theorem: The urelements in a usual model of NFU are not homoge-
neous.

This result follows from the Main Lemma, whose proof appears below.

Main Lemma: If there is a relation j witnessing the truth of the Axioms of
Endomorphism and “Foundation” and the Rank Property (as there must
be in any usual model), then there can be only one such relation.

Proof of the Main Theorem: From the Main Lemma it follows that the map
j and the relation E are first order definable in a usual model of NFU with-
out mentioning parameters; but this means that the membership of the
original nonstandard model of set theory is first-order definable without
parameters, because it coincides with E. From this it follows that the
urelements are discernible in many ways in the usual models (they have

9



“extensions” under E which may or may not include (for example) the
empty set, they have rank in terms of the original membership relation,
etc.)

Proof of the Main Lemma: We construct a model of NFU by the usual
method. This model will satisfy the Axioms of Endomorphism and “Foun-
dation” and enjoy the Rank Property.

Suppose that there are two distinct functions j and j′ witnessing the truth
of the Axiom of Endomorphism, Axiom of “Foundation”, and the Rank
Property. With them are associated relations E and E′ defined as above.

Suppose that β is chosen as small as possible so that there is j∗ ∈ {j, j′}
(with associated relation E∗) such that the rank of x with respect to E∗

(all ranks in this paragraph are to be understood to be with respect to E∗)
is β and j({x}) 6= j′({x}). Suppose that x of the form j∗({y}) (and so is a
set). So j({x}) = {j({z}) | z ∈ x} 6= {j′({z}) | z ∈ x} = j′({x}) shows that
one of the elements z of x must also be a counterexample. If x = j∗({y}),
then the rank of z with respect to E∗ is less than the rank of y, which
would be T−1(β). The rank of z must be greater than or equal to β as well
(since it is a counterexample), so we have β < T−1(β), so T (β) < β. Now
we must have j({{x}}) = {j({x})} 6= {j′({x})} = j′({{x}}). So {x} is also
a counterexample. But the rank of {x} with respect to E∗ is T (β) + 1
(since the sole E∗-member of this set is j∗({x}), which has rank T (β)).
And we see that T (β) + 1 ≤ β, but T (β) + 1 = β is impossible because
the parity of the finite part of an ordinal is preserved by T . This is a
contradiction of the minimality of β. So we have succeeded in showing
that a minimal rank counterexample cannot be of the form j∗({y}). A
minimal rank counterexample (of rank β) must be of rank less or equal
to that of its singleton by the same argument given above, whose rank is
T (β)+1, so we must have β ≤ T (β). We claim that in fact any object x not
of the form j∗({y}) must have rank β > T (β). Suppose otherwise: since
x is of rank ≤ T (β), where E∗

β , β being the rank of an object, is not the
highest rank and so is complete, its associated isomorphism type must be
an image under T . Its inverse image under T , an isomorphism type which
would be associated with an object of rank T−1(β) ≤ β, cannot thus be
realized by any object. This implies that the rank E∗

T−1(β) is incomplete;
but this is impossible by the Rank Property, since T−1(β) ≤ β is not the
index of the highest rank.

The proof of the Main Lemma, and so of the Main Theorem, is complete.

A further corollary, perhaps more interesting than the main result (which
gets pride of place as the main result because it settles the problem we were
trying to solve) is that the construction of the usual models of NFU does not
in fact eliminate any information at all about the underlying Vα, despite the
apparent disposal of the extensions of the urelements. All this information
remains first-order definable in the model of NFU (though the full definition
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is quite complicated, since it needs to refer to the unique object witnessing the
Axiom of Endomorphism, the Axiom of “Foundation”, and the Rank Property).
This is rather surprising (in our opinion) but serves as a strong confirmation of
our general opinion that NFU as a theory is a restatement of the theory of a
model of enough of the usual set theory with an external automorphism (or at
least of the theory of an initial segment of such a model).

We have a question about the possibility of making the uniqueness result
sharper; can it be proved that there is no more than one j witnessing Endomor-
phism and Foundation (leaving out the Rank Property?). If one assumes that
T (β) ≤ β for all ordinals β, then the case requiring the Rank Property is neatly
eliminated, but this is a not entirely trivial assumption.
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