Minisatellites and microsatellites – similar names but different biology

Yuri E Dubrova

Department of Genetics University of Leicester

Tandem repeat DNA loci GAACA_n Consist of repeats _GAACA_GAACA_GAACA_GAACA_GAACA.... > Highly variable up to 100+ alleles per locus High mutation rate up to 0.15 per locus Because of this they are widely used in: - forensics (paternity testing, identity identification)

- population genetics
- gene mapping
- mutagenesis (germline & somatic mutation induction)
- cancer studies (stability of cancer cells)

Tandem repeat DNA loci

➢ Microsatellite loci 26,529 items PubMed ➢ Minisatellite loci **3,120 items** PubMed **Expanded Simple Tandem Repeat loci** (ESTR) **PubMed** 63 items

Tandem repeat DNA loci

Repeat unit	10 – 60 bp	4 – 10 bp	2 – 6 bp
Size of array	0.5 – 15 kb	0.1 - 20 kb	10 – 1000 bp
	10 – 1,500 rpts	10 – 2,000 rpts	5 – 200 rpts
Complexity		mostly	mostly
of array	heterogeneous	homogeneous	homogeneous

Schematic examples of mutations at tandem repeat DNA loci

Gain of 2 repeats

Germline mutations at human minisatellite loci

Spontaneous germline mutation rates at tandem repeat DNA loci and protein-coding genes

	Mutation rate per gamete		
Probe (Locus)	Paternal	Maternal	Total
> Human minisatellite loci	Ì		
✓ CEB1 (<i>D2S90</i>)	0.161	0.003	0.082
✓ B6.7 (20q13)	0.076	0.012	0.044
✓ MS1 (<i>D1S7</i>)	0.055	0.049	0.052
✓ CEB25 (<i>D10S180</i>)	0.035	0.019	0.027
✓ CEB36 (<i>D10S473</i>)	0.018	0.018	0.018
✓ MS31 (<i>D7S21</i>)	0.012	0.003	0.008
✓ MS32 (<i>D1S8</i>)	0.009	0.006	0.007
Mouse ESTR loci			
✓ Ms6-hm	0.10-0.18	0.06-0.09	0.09-0.13
✓ <i>Hm-2</i>	0.02-0.07	0.04-0.14	0.04-0.11
Human microsatellite lo	ci mean	~ 0.002 (0.00	001 - 0.01)
Protein-coding genes	10-6 –	$10^{-5} (< 1 \text{ pe})$	r 100,000)

Mechanisms of mutation

Microsatellites

Predictions

- Mutate in dividing cells only
- No germline specificity, *i.e.* mutations frequently occur in somatic tissues
- Germline mutation rate in males > females
- Age-related accumulation of mutations
- Simple mutation spectrum

Cell divisions during spermatogenesis & oogenesis in humans

Spermatogenesis Oogenesis Primordal male germ cell Primordal female germ cell 5 months in utero 22 mitotic divisions 15 years 30 mitotic divisions Birth Sexual S Puberty O First polar body maturity 2 meiotic divisions One stem-cell G Fertilization division every 16 days D Second polar body Zygote 4 mitotic divisions 22 mitotic divisions for all ages M M No male germ-cell divisions M 2 meiotic divisions No replications Age, years Spermatids 15 35 Spermatozoa 20 150 30 380 **Microsatellite mutation rates** 40 **610** Male/Female ratio 5 : 1 **50** 840

ersity of

Leicester

From: Crow, 2000, Nature Rev Genet, 1, 40-7; Ellegren, 2000, TIG 16, 551-8

Spectrum of spontaneous microsatellite mutation in humans (362 loci, 53 pedigrees, 630 subjects, 97 mutational events)

Minisatellites

Very unstable in the germline but ~ dead in somatic tissues

Very complex mutations in the male germline and very simple in somatic tissues

Germline vs. somatic mutation at minisatellite loci

Human minisatellite B6.7

CAG₁₁₈ human microsatellite transgene in mice

From: Tamaki *et al.*, 1999, *Hum Mol Genet* **8**, 879-88 Kovtun & McMurray, 2001, *Nat Genet* **27**, 407-11

Spectrum of minisatellite mutants in sperm

University of Leicester

Minisatellite mutation is somehow related to what is going on at meiotic crossover hot-spots

From: Jeffreys et al., 1999, Electrophoresis 20, 1665-75

Expanded Simple Tandem Repeat loci or ESTR

ESTR's

- Repeat size: 4-10 bp, *i.e.* between micro- (1-4bp) & mini-
- > Array size: 10-2000 rpts, *i.e.* more mini-like
- > Unstable in somatic tissues, *i.e.* micro-like

Similar spectra of spontaneous ESTR mutation in mouse tissues

If ESTR loci 'behave' like true microsatellites then:

> Age-related increases in replication-proficient tissues

> No age-related changes in non-dividing tissues

Stage-specific pattern of spontaneous ESTR mutation in the male germline

Age-related changes in ESTR mutation frequency in mice

A single Sertoli cell with its associated germ cells

Separation of mouse germ cells by flow cytometry

ESTR mutation frequencies in mouse germ cells

We observe changes in mutation frequencies, p

p = f(u, N, s)

u – mutation rate per DNA replication/cell division

N – number of cell divisions known for the male germ cells

s – selection against mutants, s = 0

Mutation induction at mouse ESTR loci

Mutation induction at mouse ESTR loci

Non-targeted mutation induction at mouse ESTR loci

- Expected genome damage from mouse ESTR data
- Spontaneous mutation rate (*Ms6-hm* + *Hm-2*) 0.055 per locus
- Induced paternal mutation rate (1 Gy)
- Radiation-induced increase in mutation rate
- Mean size for *Ms6-hm & Hm-2* (CBA/H mice) 5 x 10³ bp
- Genome size
- > Damage to the whole genome

 $0.17x(3x10^9)/(5x10^3)=100,000$

0.225 per locus

0.170 per locus

3 x 10⁹ bp

Radiation-Induced Damage in Eukaryotic Cells

- > Base damage
- Single-strand breaks
- > DNA-protein links
- Double-strand breaks
- Bulky lesions
- > Total

From: Dubrova *et al.*, 1998, *PNAS* **95**, 6251-6255 Frankenberg-Schwager, 1990, *Radiat Environ Biophys* **29**, 273-292 2000 per 1Gy 1000 per 1Gy 150 per 1Gy 40 per 1Gy 40 per 1Gy 3300 per 1Gy<<100,000

ESTR mutation induction and cell division

ESTR mutation induction in male mice exposed to 1 Gy X-rays

Problems

> We observe changes in mutation <u>frequency</u>

The magnitude of changes in <u>mutation rate</u> per cell division which corresponds to the observed increase

