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ABSTRACT Vitamin D deficiency is now recognized as an epidemic in the United States. The major source of
vitamin D for both children and adults is from sensible sun exposure. In the absence of sun exposure 1000 IU of
cholecalciferol is required daily for both children and adults. Vitamin D deficiency causes poor mineralization of the
collagen matrix in young children’s bones leading to growth retardation and bone deformities known as rickets. In
adults, vitamin D deficiency induces secondary hyperparathyroidism, which causes a loss of matrix and minerals,
thus increasing the risk of osteoporosis and fractures. In addition, the poor mineralization of newly laid down bone
matrix in adult bone results in the painful bone disease of osteomalacia. Vitamin D deficiency causes muscle
weakness, increasing the risk of falling and fractures. Vitamin D deficiency also has other serious consequences
on overall health and well-being. There is mounting scientific evidence that implicates vitamin D deficiency with an
increased risk of type I diabetes, multiple sclerosis, rheumatoid arthritis, hypertension, cardiovascular heart
disease, and many common deadly cancers. Vigilance of one’s vitamin D status by the yearly measurement of
25-hydroxyvitamin D should be part of an annual physical examination. J. Nutr. 135: 2739S–2748S, 2005.
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Vitamin D, known as the “sunshine vitamin,” has been
taken for granted and, until recently, little attention has been
focused on its important role for adult bone health and for the
prevention of many chronic diseases. It has been assumed that
vitamin D deficiency is no longer a health issue in the United
States and Europe. However, it is now recognized that every-
one is at risk for vitamin D deficiency.

Origin of vitamin D

Although it is not known when vitamin D was first made
on Earth, it has been demonstrated that a phytoplankton
species Emiliani huxleii, which has existed unchanged in the
Atlantic Ocean for more than 750 million years, has the
ability, when exposed to sunlight, to make vitamin D (1,2). As

life forms evolved in the oceans, they took advantage of its
high calcium content and used it as a mediator for a variety of
metabolic functions, as well as for controlling neuromuscular
activity. As vertebrates evolved, they found the ocean envi-
ronment to be plentiful in calcium and therefore could take
out of their environment the calcium required for a healthy
mineralized skeleton (2). However, when vertebrates ventured
onto the land masses, they needed to make vitamin D to
enhance the efficiency of calcium absorption (1–3).

Sun-mediated production and regulation of cholecalciferol
synthesis

During exposure to sunlight, ultraviolet B (UVB)6 photons
(290–315 nm) penetrate into the viable epidermis and dermis
where they are absorbed by 7-dehydrocholesterol that is
present in the plasma membrane of these cells (2). The ab-
sorption of UVB radiation causes 7-dehydrocholesterol to
open its B ring, forming precholecalciferol (Fig. 1). Prechole-
calciferol is inherently unstable and rapidly undergoes rear-
rangement of its double bonds to form cholecalciferol. As
cholecalciferol is being formed, it is ejected out of the plasma
membrane into the extracellular space, where it enters into
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the dermal capillary bed, drawn in by the vitamin D binding
protein (DBP).

It was suggested that skin pigmentation evolved to prevent
excess production of vitamin D in the skin (4). However, there
has never been a reported case of vitamin D intoxication due
to excessive exposure to sunlight for white lifeguards and sun
worshippers or for tanners who frequent a tanning salon. The
reason for this is that when precholecalciferol and cholecal-
ciferol are exposed to sunlight, they undergo transformation of
their double bonds to form a wide variety of photoisomers that
have little biologic activity on calcium metabolism (2,5)
(Fig. 2).

Melanin is an effective sunscreen and decreases vitamin D
production in the skin (6). Above 37° latitude, during the fall
and winter months, the zenith angle of the sun is very oblique,
and therefore the solar UVB photons are efficiently absorbed
resulting in little if any cholecalciferol made in the skin (2,7,8)
(Fig. 3).

Vitamin D metabolism and mechanisms of action

There are 2 major forms of vitamin D. Cholecalciferol
(vitamin D-3) is produced in the skin after sun exposure. It is
produced commercially by extracting 7-dehydrocholesterol
from wool fat, followed by UVB irradiation and purification.
Ergocalciferol (vitamin D-2) has a different side chain than
cholecalciferol (i.e., a C24 methyl group and a double bond
between C22 and C23) and is commercially made by irradiating
and then purifying the ergosterol extracted from yeast. Both
vitamin D-2 and cholecalciferol are used to fortify milk, bread,
and multivitamins in the United States. In Europe cholecal-

ciferol is almost exclusively used for multivitamins and food
fortification.

Once vitamin D (either D-2 or D-3) is made in the skin or
ingested in the diet, it undergoes 2 obligate hydroxylations,
the first in the liver to 25-hydroxyvitamin D [25(OH)D]
(9,10) (Fig. 2). 25(OH)D enters the circulation bound to its
DBP and travels to the kidney where megalin translocates the
DBP-25(OH)D complex into the renal tubule where in the
mitochondria the 25-hydroxyvitamin D-1 �-hydroxylase
(CYP27B) introduces a hydroxyl function on C-1 to form
1�,25-dihydroxyvitamin D [1,25(OH)2D] (9–11) (Fig. 2).

1,25(OH)2D interacts with its nuclear vitamin D receptor

FIGURE 1 Photolysis of 7-dehydrocholesterol [procholecalciferol
(pro-D-3)] into precholecalciferol (pre-D-3) and its thermal isomerization
of cholecalciferol in hexane and in lizard skin. In hexane pro-D-3 is
photolyzed to s-cis,s-cis-pre-D-3. Once formed, this energetically un-
stable conformation undergoes a conformational change to the s-
trans,s-cis-pre-D-3. Only the s-cis,s-cis-pre-D-3 can undergo thermal
isomerization to cholecalciferol. The s-cis,s-cis conformer of pre-D-3 is
stabilized in the phospholipid bilayer by hydrophilic interactions be-
tween the 3�-hydroxyl group and the polar head of the lipids, as well as
by the van der Waals interactions between the steroid ring and side-
chain structure and the hydrophobic tail of the lipids. These interactions
significantly decrease the conversion of the s-cis,s-cis conformer to the
s-trans,s-cis conformer, thereby facilitating the thermal isomerization of
s-cis,s-cis-pre-D-3 to cholecalciferol. Reproduced with permission
(107).

FIGURE 2 Schematic representation for cutaneous production of
vitamin D and its metabolism and regulation for calcium homeostasis
and cellular growth. During exposure to sunlight, 7-dehydrocholesterol
(7-DHC) in the skin absorbs solar UVB radiation and is converted to
precholecalciferol (pre-D-3). Once formed, D-3 undergoes thermally
induced transformation to cholecalciferol. Further exposure to sunlight
converts precholecalciferol and cholecalciferol to biologically inert pho-
toproducts. Vitamin D coming from the diet or from the skin enters the
circulation and is metabolized in the liver by the vitamin D-25-hydrox-
ylase (25-OHase) to 25-hydroxyvitamin D-3 [25(OH)D-3]. 25(OH)D-3
re-enters the circulation and is converted in the kidney by the 25-
hydroxyvitamin D-3–1�-hydroxylase (1-OHase) to 1,25-dihydroxyvita-
min D-3 [1,25(OH)2D-3]. A variety of factors, including serum phospho-
rus (Pi) and parathyroid hormone (PTH) regulated the renal production
of 1,25(OH)2D. 1,25(OH)2D regulates calcium metabolism through its
interaction with its major target tissues, the bone and the intestine.
1,25(OH)2D-3 also induces its own destruction by enhancing the ex-
pression of the 25-hydroxyvitamin D-24-hydroxylase (24-OHase).
25(OH)D is metabolized in other tissues for the purpose of regulation of
cellular growth. (Copyright Michael F. Holick, 2003, used with permis-
sion.)
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(VDR), which in turn bonds with the retinoic acid-X-recep-
tor. This complex is recognized by specific gene sequences
known as the vitamin D responsive elements (VDRE) to
unlock genetic information that is responsible for its biologic
actions.

In the intestine 1,25(OH)2D induces the expression of an
epithelial calcium channel, calcium-binding protein (calbin-
din), and a variety of other proteins to help the transport
of calcium from the diet into the circulation (11,12).
1,25(OH)2D also interacts with its VDR in the osteoblast and
stimulates the expression of receptor activator of NF�� ligand
(RANKL) similar to parathyroid hormone (PTH) (10,13).
Thus 1,25(OH)2D maintains calcium homeostasis by increas-
ing the efficiency of intestinal calcium absorption and mobi-
lizing calcium stores from the skeleton.

PTH, hypocalcemia, and hypophosphatemia are the major
stimulators for the renal production of 1,25(OH)2D
(10,11,14). During pregnancy, lactation, and the growth spurt,
sex steroids, prolactin, growth hormone, and insulin-like
growth factor 1 (IGF-1) play a role in enhancing the renal
production of 1,25(OH)2D to satisfy increased calcium needs
(10,11).

Besides the small intestine and the osteoblast, the VDR has
been identified in almost every tissue and cell in the body,
including brain, heart, skin, pancreas, breast, colon, and im-
mune cells (10,11,15). 1,25(OH)2D helps regulate cell growth
and maturation, stimulates insulin secretion, inhibits renin
production, and modulates the functions of activated T and B
lymphocytes and macrophages (10,11,16,17).

Consequence of vitamin D deficiency for bone health

In the late 1600s, as people migrated into industrialized
cities in northern Europe, their children became afflicted with

a crippling bone disease commonly known as rickets (Fig. 4).
Rickets not only caused growth retardation but, due to the
poorly mineralized skeleton, the long bones in the legs became
deformed. In addition, vitamin D deficiency caused disruption
in chondrocyte maturation at the ephyseal plates, leading to
widening of the ends of the long bones and costochondral
junctions. The disease was devastating because the growth
retardation and bony deformities were not only disabling, but
also childbearing women often had difficulty with birthing
because of a flat and deformed pelvis (10).

Sniadecki, in 1822, suggested that the reason that children
living in the industrialized cities of northern Europe developed
rickets was because they were not exposed to sunlight (18).
However, by the turn of the twentieth century, �80% of
children living in industrialized cities in North America and
Europe suffered from this bone-deforming disease.

It had been common practice on the coastlines of the
United Kingdom and the Scandinavian countries to encourage
children to take a daily dose of cod liver oil to prevent the
disease (1–3). In 1919 Huldschinsky reported that children
with rickets who were exposed to ultraviolet radiation from a
mercury arc lamp for 1 h twice a week for 8 wk had marked
radiological improvement of the disease (19,20) (Fig. 5). In
1921 Hess and Unger (21) demonstrated that sunlight could
cure rickets when they exposed rachitic children to sunlight
on the roof of a New York City hospital and demonstrated
radiologically that the rickets had resolved. This led Hess and
Weinstock to investigate independently the use of ultraviolet
irradiation of food as a way of imparting antirachitic activity
(22). Steenbock (23) appreciated its utility and introduced the
concept of irradiating milk as a means of preventing rickets in
children. This led to the fortification of milk with vitamin D,
which helped eradicate rickets in the United States and in
countries that used this fortification practice.

FIGURE 3 Influence of season, time of
day in July, and latitude on the synthesis
of precholecalciferol in northern (A and
C: Boston -E-, Edmonton -�-, Bergen
-Œ-) and southern hemispheres (B: Bue-
nos Aires -E-, Johannesburg -�-, Cape
Town -Œ-, Ushuala –ƒ- and D: Buenos
Aires -F-, Johannesburg -�-, Cape
Town -‚-, Ushuala -�-). The hour indi-
cated in C and D is the end of the 1-h
exposure time in July. Adapted from and
reproduced with permission (Lu Z, Chen
T, Kline L et al. Photosynthesis of pre-
cholecalciferol in cities around the
world. In: M. Holick and A. Kligman, ed-
itors. Biologic effects of light. Proceed-
ings. Berlin: Walter De Gruyter; 1992. p.
48–51).
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A deficiency in vitamin D results in a decrease in the
efficiency of intestinal absorption of dietary calcium and phos-
phorus (10,11,24). This causes a transient lowering of the
ionized calcium, which is immediately corrected by the in-
creased production and secretion of PTH. PTH sustains the
blood-ionized calcium by interacting with its membrane re-
ceptor on mature osteoblasts, which induces the expression of
RANKL (10,13). This plasma membrane receptor protein is
recognized by RANK, which is present on the plasma mem-
brane of preosteoclasts. The intimate interaction between
RANKL and RANK results in increased production and mat-
uration of osteoclasts (10,11,13). PTH also decreases the gene
expression of osteoprotegerin (a RANKL-like receptor that
acts as a decoy) in osteoblasts, which further enhances osteo-
clastogenesis (25). The osteoclasts release hydrochloric acid
and collagenases to destroy bone, resulting in the mobilization
of the calcium stores out of the skeleton. Thus vitamin D
deficiency induced secondary hyperparathyroidism results in
the wasting of the skeleton, which can precipitate and exac-
erbate osteoporosis.

Vitamin D deficiency and attendant secondary hyperpara-
thyroidism also causes a loss of phosphorus into the urine and
a lowering of serum phosphorus levels. This results in an
inadequate calcium � phosphorus product, causing poor or
defective mineralization of the bone matrix laid down by
osteoblasts (26,27). In children, the poorly mineralized skele-
ton under the weight of the body and the gravity results in the
classic bony rachitic deformities in the lower limbs (bowed legs
or knocked knees) (Fig. 4). Adults have enough mineral in

their skeleton to prevent skeletal deformities. However, in a
vitamin D deficient state, the newly laid-down osteoid cannot
be properly mineralized, leading to osteomalacia. Unlike os-
teoporosis, which is a silent disease until fracture occurs,
osteomalacia is associated with either global or isolated throb-
bing bone pain that is often misdiagnosed as fibromyalgia,
myositis, or chronic fatigue syndrome (28–30). The likely
cause is that the unmineralized osteoid becomes hydrated and
provides little support for the sensory fibers in the periosteal
covering (31). This is translated to the patient as throbbing,
aching bone pain. This can be easily elicited by pressing the
forefinger or the thumb on the sternum, the anterior tibia, or
the midshaft of the radius or the ulna, and eliciting bone
discomfort. It should be noted that you cannot distinguish
osteoporosis/osteopenia from osteomalacia either by X-ray
analysis or by bone densitometry; they look the same.

Factors that affect vitamin D status

Aging (32), increased skin pigmentation (33), and obesity
(34) are associated with vitamin D deficiency. 7-dehydrocho-
lesterol levels in the skin decline with age (35). A 70-y-old
person has �25% of the capacity to produce cholecalciferol
compared with a healthy young adult (36). Sunscreens are
effective at preventing sunburning and skin damage, because
they efficiently absorb solar UVB radiation. When used prop-
erly, a sunscreen with a sun protection factor (SPF) of 8
reduces the capacity of the skin to produce cholecalciferol by
95% (37). Adults who always wear a sunscreen before going
outside are at higher risk for vitamin D deficiency (38). Mel-
anin is an extremely effective UVB sunscreen. Thus, African
Americans who are heavily pigmented require at least 5 to 10
times longer exposure than whites to produce adequate chole-
calciferol in their skin (6) (Fig. 6).

Vitamin D, being fat soluble, is stored in the body fat.
Cholecalciferol that is produced in the skin or ingested from
the diet is partially sequestered in the body fat. This store of
cholecalciferol is used during the winter when the sun is
incapable of producing cholecalciferol. However, in obese
children and adults, the cholecalciferol is sequestered deep in
the body fat, making it more difficult for it to be bioavailable.
Thus, obese individuals are only able to increase their blood
levels of vitamin D �50% compared with normal weighted
individuals (34) (Fig. 7).

FIGURE 4 Child with rickets.

FIGURE 5 Florid rickets of severe degree. Radiograms taken
before (left panel) and after treatment with 1 h UVR 2 times/wk for 8 wk.
Note mineralization of the carpal bones and epiphyseal plates (right
panel) [in the public domain, ref. (106)].
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Recommended adequate intake and sources of vitamin D
from diet, sunlight, and UV light sources

Very little vitamin D is naturally present in our food. Oily
fish, including salmon, mackerel, and herring; cod liver oil;
and sun-dried mushrooms typically provide 400–500 IU of
vitamin D per serving. The major foods that are fortified with
vitamin D in the United States include milk, orange juice,
cereals, and some breads. Some yogurts and cheeses now are
being fortified with vitamin D, whereas other dairy products
are not (10,26). In Europe, most countries forbid the fortifi-
cation of milk with vitamin D. These countries permit mar-
garine and some cereals to be vitamin D fortified (39).

Our skin is the major source of vitamin D; 90–95% of most
people’s vitamin D requirement comes from casual sun expo-
sure. An adult Caucasian exposed to sunlight or a (tanning
bed) lamp (�32 mJ/cm2) that emits UVB radiation produces
�1 ng of cholecalciferol/cm2 of skin. Exposure of the skin to
one minimal erythemal dose (MED) (a slight pinkness to the
skin), raises the blood level of cholecalciferol to a level
comparable to a person taking �10,000 –20,000 IU of vi-
tamin D-2 (26) (Fig. 8). Although aging decreases the
amount of 7-dehydrocholesterol on the skin, elders exposed
to sunlight are capable of making enough cholecalciferol to
satisfy their needs (40).

There are a variety of multivitamin supplements that con-
tain 400 IU of either vitamin D-2 or cholecalciferol. Vitamin
D-2 and cholecalciferol supplements are also available in ei-
ther 400 or 1000 IU capsules or tablets. The recommended
adequate intake (AI) of vitamin D for children and adults up
to 50 y is 200 IU, whereas the recommended AI for adults
51–70 y and 71� y is 400 IU and 600 IU, respectively (40,41).

Determination of vitamin D status

The measurement of the major circulating form of vitamin
D, 25(OH)D, is the gold standard for determining the vitamin
D status of a patient. The normal range, which is typically
25–37.5 nmol/L (10–15 ng/mL) to 137.5–162.5 nmol/L
(55–65 ng/mL) by most commercial assays, is not truly reflec-

tive of whether a patient is vitamin D deficient or intoxicated.
Most studies suggest that the PTH levels plateau and are at
their ideal physiologic concentration when the serum
25(OH)D is above 80 nmol/L (32 ng/mL) (42–44). Vitamin D
intoxication that includes hypercalcemia, typically, is not ob-
served until the 25(OH)D reach levels of at least 375 nmol/L
(150 ng/mL) (45). The measurement of 1,25(OH)2D provides
no insight about the vitamin D status of a patient. It is often
normal or on occasion elevated in vitamin D deficient pa-
tients. The reasons are that 1,25(OH)2D levels are 1000 times
lower than 25(OH)D levels and the secondary hyperparathy-
roidism increases the renal production of 1,25(OH)2D (26).

Treatment for vitamin D deficiency

It has been estimated that the body uses daily on average
3,000–5,000 IU of cholecalciferol (46). Recent studies suggest
that in the absence of sun exposure, 1000 IU of cholecalciferol
is needed to maintain a healthy 25(OH)D of at least 78
nmol/L (30 ng/mL) (46,47) (Fig. 9). Vitamin D-2 is more
rapidly catabolized than cholecalciferol, thus vitamin D-2 is

FIGURE 6 Change in serum concentrations of vitamin D-3 in 2
lightly pigmented white (skin type II) (A) and 3 heavily pigmented African
American subjects (skin type V) (B) after total-body exposure to 54
mJ/cm2 of UVB radiation. (C) Serial change in circulating concentra-
tions of cholecalciferol after re-exposure of one black subject in panel
B to a 320 mJ/cm2 dose of UVB radiation. Reproduced with permission
(6).

FIGURE 7 (A) Mean (�SEM) serum cholecalciferol, concentra-
tions in obese (BMI � 30) and normal weighted adults before (f) and
24 h after (�) whole-body irradiation (27 mJ/cm2) with UVB radiation.
The response of the obese subjects was attenuated when compared
with that of the control group. There was a significant time-by-group
interaction, P � 0.003. *Significantly different from before values (P
� 0.05). (B) Mean (�SEM) serum vitamin D-2 concentrations in the
control (F) and obese (E) groups before and after 25 h after oral intake
of vitamin D-2 (50,000 IU, 1.25 mg). *Significant time and group effects
by ANOVA (P � 0.05) but no significant time-by-group interaction. The
difference in peak concentrations between obese and nonobese con-
trol subjects was not significant. Reproduced with permission (34).
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only about 20–40% as effective as cholecalciferol in main-
taining serum concentrations of 25(OH)D (48,49).

Patients with intestinal fat malabsorption syndromes, such
as Crohn’s disease, Whipple’s disease, cystic fibrosis, and
Sprue, are often vitamin D deficient (10,11,26,50). This is
because they are unable to efficiently absorb the fat-soluble
vitamin into the chylomicrons, resulting in malabsorption
(52). Because the metabolic pathways in the liver and the
kidneys are not compromised, the best method to correct
vitamin D deficiency in these patients is to encourage either
sensible exposure to sunlight or a lighting system that emits
UVB radiation, such as a tanning bed (52). Several commer-
cial UVB lamps that are marketed as sun tanning lamps are
also effective in producing cholecalciferol in the skin (53,54).
A patient with Crohn’s disease with only 2 feet of small
intestine was able to raise her blood level of 25(OH)D 700%
and to 100 nmol/L (40 ng/mL) after exposure to a tanning bed
that emitted UVB radiation 3 times a week for 3 mo (55).

For most patients with vitamin D deficiency, filling the
empty vitamin D tank as quickly as possible is the goal. The
only pharmaceutical preparation of vitamin D in the United
States is vitamin D-2. Although it is only 20–40% as effective
as cholecalciferol in raising blood levels of 25(OH)D, it does
work if given in high enough doses. Typically, patients receiv-
ing 50,000 IU of vitamin D-2 once a week for 8 wk will correct
vitamin D deficiency (56) (Fig. 10). This can be followed by
giving 50,000 U of vitamin D once every other week to
maintain vitamin D sufficiency.

Role of vitamin D in cancer prevention

In 1941, Apperley (57) reported a curious observation, i.e.,
that people who lived in northern latitudes in the United
States, including Massachusetts, Vermont, and New Hamp-
shire, were more likely to die of cancer than adults living in
Texas, South Carolina, and other southern states. He noted
that although people living in southern states were more likely
to develop nonlife-threatening skin cancer, he suggested that
this provided an immunity for the more serious cancers of
breast, colon, and prostate that were lethal. Little attention
was paid to this startling observation until the late 1980s,

when Garland et al. (58) reported that colon cancer mortality
was much higher in the northeastern United States compared
with people living in southern states. It is now well docu-
mented that the risk of developing and dying of colon, pros-
tate, breast, ovarian, esophageal, non-Hodgkin’s lymphoma,
and a variety of other lethal cancers is related to living at
higher latitudes and being more at risk of vitamin D deficiency
(58–62).

Initially the explanation for why increased sun exposure
decreased the risk of dying of common cancers was due to the
increased production of vitamin D in the skin, which led to
the increased production of 1,25(OH)2D in the kidneys (58).
Because it was known that the VDR existed in most tissues in
the body and that 1,25(OH)2D was a potent inhibitor of both
normal and cancer cell growth (2,10,63,64), it was assumed
that the increased renal production of 1,25(OH)2D could in
some way downregulate cancer cell growth and therefore mit-
igate the cancer’s activity and decrease mortality. However, it
was also known that the production of 1,25(OH)2D in the
kidneys was tightly controlled and that increased intake of
vitamin D or exposure to sunlight did not result in an increase
in the renal production of 1,25(OH)2D (10,11). Increased
ingestion of vitamin D or increased production of cholecalcif-
erol in the skin results in an increase in circulating concen-
trations of 25(OH)D. However, this still did not explain the
anti-cancer effect of the sunlight-vitamin D connection.

The skin not only makes cholecalciferol, but it also has the
enzymatic machinery to convert 25(OH)D to 1,25(OH)2D
similar to activated macrophages (65,66). In 1998 Schwartz et
al. (67) reported normal and malignant prostate cancer cells
also had the enzymatic machinery to make 1,25(OH)2D. This
observation helped to crystallize the important role of vitamin
D in cancer prevention. Increased exposure to sunlight or
vitamin D intake leads to increased production of 25(OH)D.

FIGURE 8 Serum vitamin D concentrations after a whole-body
exposure to 1 MED (of simulated sunlight in a tanning bed and after a
single oral dose of either 10,000 or 25,000 IU vitamin D-2. Reproduced
with permission (26).

FIGURE 9 Mean (�SEM) weekly 25-hydroxyvitamin D [25(OH)D]
concentration in healthy adults ingesting orange juice fortified with
vitamin D (1000 IU, 8 oz–1 � d–1, F) or unfortified orange juice (f). *P
� 0.01. Reproduced with permission (47).
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Higher concentrations of 25(OH)D are used by the prostate
cells to make 1,25(OH)2D, which helps keep prostate cell
proliferation in check and therefore decreases the risk of
prostate cells becoming malignant (10,63,64) (Fig. 11).

Since this observation, it has been observed that breast,
colon, lung, brain, and a wide variety of other cells in the
body have the enzymatic machinery to make 1,25(OH)2D
(10,26,68–72). Thus it has been suggested that raising blood
levels of 25(OH)D provides most of the tissues in the body
with enough substrate to make 1,25(OH)2D locally to serve as
a sentinel to help control cellular growth and maturation and
to decrease the risk of malignancy (10).

This hypothesis has been further supported by the observa-
tion that both prospective and retrospective studies revealed
that, if the 25(OH)D level is at least 20 ng/mL, then there is
a �30–50% decreased risk of developing and dying of colon,
prostate, and breast cancers (10,58,59,62,64).

Vitamin D and autoimmune disease prevention

Activated T and B lymphocytes, monocytes, and macro-
phages have a VDR (16,72–74). 1,25(OH)2D interacts with
its VDR in immune cells and has a variety of effects on
regulating lymphocyte function, cytokine production, macro-
phage activity, and monocyte maturation (10,16,17,72–74).
Thus, 1,25(OH)2D is a potent immunomodulator.

Insights into the important role of vitamin D in the pre-
vention of autoimmune diseases have come from a variety of
animal studies. Nonobese diabetic mice that typically develop
type 1 diabetes by 200 d of age reduced their risk of developing

this disease by 80% when they received a physiologic dose of
1,25(OH)2D-3 daily (75). Mice that were pretreated with
1,25(OH)2D-3 before they were injected with myelin to in-
duce a multiple-sclerosis-like disease were immune from it
(76). Similar observations were made in a mouse model that
develops Crohn’s disease (77).

These animal model studies have given important insights
into the role of 1,25(OH)2D in reducing the risk of developing
common autoimmune diseases. It is now recognized that living
at a latitude above 37° increases risk of developing multiple
sclerosis throughout life by �100% (78). Furthermore, taking
a multivitamin that contains 400 IU of vitamin D reduces risk
of developing multiple sclerosis by �40% (79). Women taking
400 IU of vitamin D in a multivitamin decreased their risk of
rheumatoid arthritis by �40% (80). Most compelling is the
observation that children in Finland who received 2000 IU of
vitamin D a day from 1 y of age on and who were followed for
the next 25 y had an 80% decreased risk of developing type 1
diabetes, whereas children who were vitamin D deficient had
a 4-fold increased risk of developing this disease later in life
(81).

Vitamin D and the prevention of hypertension and
cardiovascular heart disease

In 1979 Rostand (82) reported that people living at higher
latitudes throughout the world were at higher risk of having
hypertension. He had suggested that this may in some way be
related to their being more prone to developing vitamin D
deficiency. To determine the possible link between sun expo-
sure and the protective effect in preventing hypertension,
Krause et al. (83) exposed a group of hypertensive adults to a
tanning bed that emitted light and UVB and UVA radiation
similar to summer sunlight. A similar group of hypertensive
adults was exposed to a similar tanning bed that emitted light
and UVA radiation similar to winter sunlight, i.e., no UVB
radiation. All subjects were exposed 3 times a week for 3 mo.
After 3 mo, it was observed that hypertensive patients who
were exposed to the tanning bed that emitted UVB radiation
had a 180% increase in their circulating concentrations of

FIGURE 10 (A) Serum levels of 25(OH)D (-�-) and PTH (-o-) before
and after therapy with 50,000 IU of vitamin D-2 and calcium supple-
mentation once a week for 8 wk. (B) Serum levels of PTH levels in
patients who had serum 25(OH)D levels of between 25 and 75 nmol/L
(10 and 25 ng/mL) and who were stratified in increments of 12.5 nmol/L
(5 ng/mL) before and after receiving 50,000 IU of vitamin D-2 and
calcium supplementation for 8 wk. Reproduced with permission (56).

FIGURE 11 1,25(OH)2D-3 regulates prostate cell growth by inter-
acting with its nuclear VDR to alter the expression of genes that
regulate cell-cycle arrest, apoptosis, and differentiation. 25(OH)D is
metabolized in the prostate cell to 1,25(OH)2D, which regulates cell
growth.

VITAMIN D, SUNLIGHT, AND HEALTH 2745S

 by guest on N
ovem

ber 17, 2017
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


25(OH)D. There was no change in the blood levels of
25(OH)D in the comparable patients who were exposed to the
tanning bed that did not emit UVB radiation. The patients
who had increased 25(OH)D levels also had a decrease of 6
mm Hg in their systolic and diastolic blood pressures, bringing
them into the normal range, whereas the group that was
exposed to the tanning bed that did not emit UVB radiation
and did not change their 25(OH)D levels had no effect on
their blood pressure.

It has also been observed that patients with cardiovascular
heart disease are more likely to develop heart failure if they are
vitamin D deficient (84). Furthermore, patients with periph-
eral vascular disease and the common complaint of lower leg
discomfort (claudication) were often found to be vitamin D
deficient. The muscle weakness and pain was not due to the
peripheral vascular disease but because of the vitamin D defi-
ciency (85).

Although the exact mechanism involved in how vitamin D
sufficiency protects against cardiovascular heart disease is not
fully understood, it is known that 1,25(OH)2D is one of the
most potent hormones for downregulating the blood pressure
hormone renin in the kidneys (86). Furthermore, there is an
inflammatory component to atherosclerosis, and vascular
smooth muscle cells have a VDR and relax in the presence of
1,25(OH)2D (87,88). Thus, there may be a multitude of mech-
anisms by which vitamin D is cardioprotective. The observa-
tion by Teng et al. (89) that renal failure patients who re-
ceived the 1�,25(OH)2D-3 analog, paracalcitol, were less
likely to die of cardiovascular complications helps to support
the importance of vitamin D for cardiac health.

Conclusions

It had been estimated that the body requires daily 3000–
5000 IU of vitamin D (46). The most likely reason for this is
that essentially every tissue and cell in the body has a VDR
and therefore has a requirement for vitamin D. Vitamin D is
critically important for the maintenance of calcium metabo-
lism and good skeletal health throughout life. It is now rec-
ognized that maintenance of a serum 25(OH)D level of 80
nmol/L (32 ng/mL) or greater improves muscle strength
(90,91) and bone mineral density in adults (52,92). The
recent revelations that vitamin D regulates the immune sys-
tem, controls cancer cell growth and regulates the blood
pressure hormone renin provides an explanation for why vi-
tamin D sufficiency has been observed to be so beneficial in
the prevention of many chronic illnesses that plague both
children and adults (Fig. 12).

Vitamin D deficiency is an unrecognized epidemic in both
children and adults throughout the world (93–98), even in
some of the sunniest climates, including Saudi Arabia and
India (99,100). A recent survey of the vitamin D intake in the
United States revealed that neither children nor adults are
receiving the recommended AIs for vitamin D (101). The
public health consequences of vitamin D deficiency are incal-
culable. This is especially true for people more prone to vita-
min D deficiency, including people of darker skin color. It is
well documented that African Americans are more prone to
developing colon, prostate, breast, and a wide variety of other
cancers, and that these cancers are much more aggressive
compared with the white population. In addition, they are
more likely to develop type 1 diabetes and hypertension, and
are at high risk for vitamin D deficiency (102,103). Thus,
vitamin D status has such important health implications that
a measurement of 25(OH)D should be part of a routine phys-
ical examination for children and adults of all ages.

Sensible sun exposure in the spring, the summer, and the
fall (not during the winter unless one is located below 35°
north), and education of the public about the beneficial effects
of some limited sun exposure to satisfy their body’s vitamin D
requirements should be implemented. It is well documented
that excessive exposure to sunlight and sunburning experi-
ences while as a child or young adult increases the risk of
nonmelanoma skin cancer that is often easily curable (104).
There are several studies that suggest that increased exposure
to limited amounts of sunlight decreases risk of developing and
dying of the most deadly form of skin cancer, melanoma
(104,105).

In the absence of any sun exposure, 1000 IU of cholecal-
ciferol a day is necessary to maintain a healthy blood level of
25(OH)D of between 80 and 100 nmol/L. Dietary sources and
vitamin D supplements can satisfy this requirement. Increasing
intake of vitamin D fortified foods such as milk and orange
juice, and increasing fatty fish consumption will help satisfy
the body’s requirement for vitamin D in the absence of expo-
sure to sunlight. Multivitamins typically contain 400 IU of
vitamin D, and there are several manufacturers that provide a
vitamin D-2 or cholecalciferol supplement as either 400 or
1000 IU. Thus, diet plus additional vitamin D supplementa-
tion can result in attaining the recommended 1000 IU of
cholecalciferol.

It has been estimated that exposure to sunlight for usually
no more than 5–15 min/d (between 10 AM and 3 PM) on
arms and legs or hands, face and arms, during the spring, the
summer, and the fall, provides the body with its required 1000
IU of cholecalciferol. After the limited exposure, this should
be followed by the application of a broad spectrum sunscreen
with an SPF of at least 15 to prevent damaging effects due to
excessive exposure to sunlight and to prevent sun burning.
Thus, increasing vitamin D intake from vitamin D fortified
foods, and vitamin D supplements, in combination with sen-
sible sun exposure, should maximize a person’s vitamin D
status to promote good health (8).
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