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How do we do what we do? How do we play tennis, have conversations,
go shopping? At a finer grain, how do we recognize familiar objects such as
bouncing balls, words, smiles, faces, jokes? Carry out actions such as returning
a serve, pronouncing a word, selecting a book off the shelf? Cognitive scien-
tists are interested in explaining how these kinds of extraordinarily sophisti-
cated behaviors come about. They aim to describe cognition: the underlying
mechanisms, states, and processes.

For decades, cognitive science has been dominated by one broad approach.
That approach takes cognition to be the operation of a special mental com-
puter, located in the brain. Sensory organs deliver up to the mental computer
representations of the state of its environment. The system computes a speci-
fication of an appropriate action. The body carries this action out.

According to this approach, when I return a serve in tennis, what happens
is roughly as follows. Light from the approaching ball strikes my retina and
my brain’s visual mechanisms quickly compute what is being seen (a ball) and
its direction and rate of approach. This information is fed to a planning sys-
tem which holds representations of my current goals (win the game, return
the serve, etc) and other background knowledge (court conditions, weak-
nesses of the other player, etc.). The planning system then infers what I must
do: hit the ball deep into my opponent’s backhand. This command is issued to
the motor system. My arms and legs move as required.

In its most familiar and successful applications, the computational approach
makes a series of further assumptions. Representations are static structures of
discrete symbols. Cognitive operations are transformations from one static
symbol structure to the next. These transformations are discrete, effectively
instantaneous, and sequential. The mental computer is broken down into a
number of modules responsible for different symbol-processing tasks. A
module takes symbolic representations as inputs and computes symbolic rep-
resentations as outputs. At the periphery of the system are input and output
transducers: systems which transform sensory stimulation into input repre-
sentations, and output representations into physical movements. The whole
system, and each of its modules, operates cyclically: input, internal symbol
manipulation, output.




The computational approach provides a very powerful framework for
developing theories and models of cognitive processes. The classic work of
pioneers such as Newell, Simon, and Minsky was carried out within it. Liter-
ally thousands of models conforming to the above picture have been pro-
duced. Any given model may diverge from it in one respect or another, but
all retain most of its deepest assumptions. The computational approach is
nothing less than a research paradigm in Kuhn's classic sense. It defines a
range of questions and the form of answers to those questions (i.e., computa-
tional models). It provides an array of exemplars—classic pieces of research
which define how cognition is to be thought about and what counts as a
successful model. Philosophical tomes have been devoted to its articulation
and defense. Unfortunately, it has a major problem: Natural cognitive sys-
tems, such as people, aren’'t computers.

This need not be very surprising. The history of science is full of epi-
sodes in which good theories were developed within bad frameworks. The
Ptolemaic earth-centered conception of the solar system spawned a succes-
sion of increasingly sophisticated theories of planetary motion, theories with
remarkably good descriptive and predictive capabilities. Yet we now know
that the whole framework was structurally misconceived, and that any theory
developed within it would always contain anomalies and reach explanatory
impasses. Mainstream cognitive science is in a similar situation. Many impres-
sive models of cognitive processes have been developed within the computa-
tional framework, yet none of these models are wholly successful even in
their own terms, and they completely sidestep numerous critical issues. Just as
in the long run astronomy could only make progress by displacing the earth
from the center of the universe, so cognitive science has to displace the inner
computer from the center of cognitive performance.

The heart of the problem is time. Cognitive processes and their context unfold
continuously and simultaneously in real time. Computational models specify a
discrete sequence of static internal states in arbitrary “step” time (t. by, etc).
Imposing the latter onto the former is like wearing shoes on your hands. You
can do it, but gloves fit a whole lot better.

This deep problem manifests itself in a host of difficulties confronting par-
ticular computational models throughout cognitive science. To give just one
example, consider how you might come to a difficult decision. You have a
range of options, and consider first one, then another. There is hesitation,
vacillation, anxiety. Eventually you come to prefer one choice, but the attrac-
tion of the others remains. Now, how are decision-making processes concep-
tualized in the computational worldview? The system begins with symbolic
representations of a range of choices and their possible outcomes, with asso-
ciated likelihoods and values. In a sequence of symbol manipulations, the
system calculates the overall expected value for each choice, and determines
the choice with the highest expected value. The system adopts that choice.
End of decision. There are many variations on this basic “expected utility”
structure. Different models propose different rules for calculating the choice
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the system adopts. But none of these models accounts perfectly for all the
data on the choices that humans actually make. Like Ptolemaic theories of the
planets, they become increasingly complex in attempting to account for resid-
ual anomalies, but for every anomaly dealt with another crops up elsewhere.
Further, they say nothing at all about the temporal course of deliberation:
how long it takes to reach a decision, how the decision one reaches depends
on deliberation time, how a choice can appear more attractive at one time,
less attractive at another, etc. They are intrinsically incapable of such predic-
tions, because they leave time out of the picture, replacing it only with ersatz
“time”: a bare, abstract sequence of symbolic states.

What is the alternative to the computational approach? In recent years,
many people have touted connectionism—the modeling of cognitive processes
using networks of neural units—as a candidate. But such proposals often
underestimate the depth and pervasiveness of computationalist assumptions.
Much standard connectionist work (e.g., modeling with layered backprop
networks) is just a variation on computationalism, substituting activation pat-
terns for symbols. This kind of connectionism took some steps in the right
direction, but mostly failed to take the needed leap out of the computational
mindset and info time (see section 1.3, Relation to Connectionism, for elabora-
tion).

The alternative must be an approach to the study of cognition which begins
from the assumption that cognitive processes happen in time. Real time. Con-
veniently, there already is a mathematical framework for describing how pro-
cesses in natural systems unfold in real time. It is dynamics. It just happens
to be the single most widely used, most powerful, most successful, most
thoroughly developed and understood descriptive framework in all of natural
science. It is used to explain and predict phenomena as diverse as subatomic
motions and solar systems, neurons and 747s, fluid flow and ecosystems.
Why not use it to describe cognitive processes as well?

The alternative, then, is the dynamical approach. Its core is the application
of the mathematical tools of dynamics to the study of cognition. Dynamics
provides for the dynamical approach what computer science provides for the
computational approach: a vast resource of powerful concepts and modeling
tools. But the dynamical approach is more than just powerful tools; like the
computational approach, it is a worldview. The cognitive system is not a
computer, it is a dynamical system. It is not the brain, inner and encapsu-
lated; rather, it is the whole system comprised of nervous system, body, and
environment. The cognitive system is not a discrete sequential manipula-
tor of static representational structures; rather, it is a structure of mutually
and simultaneously influencing change. Its processes do not take place in the
arbitrary, discrete time of computer steps; rather, they unfold in the real time
of ongoing change in the environment, the body, and the nervous system.
The cognitive system does not interact with other aspects of the world by
passing messages or commands; rather, it continuously coevolves with them.
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The dynamical approach is not a new idea: dynamical theories have been a
continuous undercurrent in cognitive science since the field began (see section
1.4). It is not just a vision of the way things might be done; it's the way a
great deal of groundbreaking research has already been carried out, and the
amount of dynamical research undertaken grows every month. Much of the :
more recent work carried out under the connectionist banner is thoroughly i
dynamical; the same is true of such diverse areas as neural modeling, cogni-
tive neuroscience, situated robotics, motor control, and ecological psychol-
ogy. Dynamical models are increasingly prominent in cognitive psychology.
developmental psychology, and even some areas of linguistics. In short,
the dynamical approach is not just some new kid on the block; rather, to
see that there is a dynamical approach is to see a new way of conceptually
reorganizing cognitive science as it is currently practiced.

This introductory chapter provides a general overview of the dynamical
approach: its essential commitments, its strengths, its relationship to other
approaches, its history. It attempts to present the dynamical approach as a
unified, coherent, plausible research paradigm. It should be noted, however,
that dynamicists are a highly diverse group, and no single characterization
would describe all dynamicists perfectly. Consequently, our strategy in this
chapter is to characterize a kind of standard dynamicist position, one which
can serve as a useful point of reference in understanding dynamical research.

The chapter is generally pitched in a quite abstract terms. Space limitations
prevent us from going into particular examples in much detail. We urge
readers who are hungry for concrete illustrations to turn to any of the 15
chapters of this book which present examples of actual dynamical research in
cognitive science. It is essential for the reader to understand that detailed
demonstrations of all major points made in this overview are contained in chapters of
the book.

Before proceeding we wish to stress that our primary concern is only to
understand natural cognitive systems—evolved biological systems such as
humans and other animals. While the book is generally critical of the main-
stream computational approach to the study of cognitive systems, it has no
objections at all to investigations into the nature of computation itself, and
into the potential abilities of computational systems such as take place in
many branches of artificial intelligence (Al). While we think it unlikely that
it will be possible to reproduce the kind of intelligent capacities that are
exhibited by natural cognitive systems without also reproducing their basic
noncomputational architecture, we take no stand on whether it is possible to
program computers to exhibit these, or other, intelligent capacities.

1.1 WHAT IS THE DYNAMICAL APPROACH?
The heart of the dynamical approach can be succinctly expressed in the

form of a very broad empirical hypothesis about the nature of cognition.
For decades, the philosophy of cognitive science has been dominated by the
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computational hypothesis, that cognitive systems are a special kind of com-
puter. This hypothesis has been articulated in a number of ways, but perhaps
the most famous statement is Newell and Simon's Physical Symbol System
Hypothesis, the claim that physical symbol systems (computers) are necessary
and sufficient for intelligent behavior (Newell and Simon, 1976). According to
this hypothesis, natural cognitive systems are intelligent by virtue of being
physical symbol systems of the right kind. At this same level of generality,
dynamicists can be seen as embracing the Dynamical Hypothesis: Natural cog-
nitive systems are dynamical systems, and are best understood from the
perspective of dynamics. Like its computational counterpart, the Dynamical
Hypothesis forms a general framework within which detailed theories of
particular aspects of cognition can be constructed. It can be empirically vindi-
cated or refuted, but not by direct tests. We will only know if the Dynamical
Hypothesis is true if, in the long run, the best theories of cognitive processes
are expressed in dynamical terms.

The following sections explore the various components of the Dynamical
Hypothesis in more detail.

Natural Cognitive Systems Are Dynamical Systems

What Are Dynamical Systems? The notion of dynamical systems occurs
in a wide range of mathematical and scientific contexts, and as a result the
term has come to be used in many different ways. In this section our aim is
simply to characterize dynamical systems in the way that is most useful for
understanding the dynamical approach to cognition.

Roughly speaking, we take dynamical systems to be systems with numeri-
cal states that evolve over time according to some rule. Clarity is critical at
this stage, however, so this characterization needs elaboration and refinement.

To begin with, a system is a set of changing aspects of the world. The over-
all state of the system at a given time is just the way these aspects happen
to be at that time. The behavior of the system is the change over time in its
overall state. The totality of overall states the system might be in makes
up its state set, commonly referred to as its state space. Thus the behavior of
the system can be thought of as a sequence of points in its state space.

Not just any set of aspects of the world constitutes a system. A system is
distinguished by the fact that its aspects somehow belong together. This
really has two sides. First, the aspects must interact with each other; the way
any one of them changes must depend on the way the others are. Second, if
there is some further aspect of the world that interacts in this sense with
anything in the set, then clearly it too is really part of the same system. In
short, for a set of aspects to qualify as a system, they must be interactive
and self contained: change in any aspect must depend on, and only on, other
aspects in the set. ‘

For example, the solar system differs from, say, the set containing just the
color of my car and the position of my pencil, in that the position of any one
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planet makes a difference to where the other planets will be. Moreover, to a
first approximation at least, the future positions of the planets are affected
only by the positions, masses, etc, of the sun and other planets; there is
nothing else we need take into account. By contrast, the position of my pencil
is affected by a variety of other factors; in fact, it is unlikely that there is any
identifiable system to which the position of my pencil (in all the vicissitudes
of its everyday use) belongs.

Dynamical systems are special kinds of systems. To see what kind, we first
need another notion, that of state-determined systems (Ashby, 1952). A system
is state-determined only when its current state always determines a unique
future behavior. Three features of such systems are worth noting. First, in
such systems, the future behavior cannot depend in any way on whatever
states the system might have been in before the current state. In other words,
past history is irrelevant (or at least, past history only makes a difference
insofar as it has left an effect on the current state). Second, the fact that the
current state determines future behavior implies the existence of some rule of
evolution describing the behavior of the system as a function of its current
state. For systems we wish to understand, we always hope that this rule can
be specified in some reasonably succinct and useful fashion. One source of
constant inspiration, of course, has been Newton’s formulation of the laws
governing the solar system. Third, the fact that future behaviors are uniquely
determined means that state space sequences can never fork. Thus, if we
observe some system that proceeds in different ways at different times from
the same state, we know we do not have a state-determined system.

The core notion of a state-determined system, then, is that of a self-
contained, interactive set of aspects of the world such that the future states of
the system are always uniquely determined, according to some rule, by the
current state. Before proceeding, we should note an important extension of
this idea, for cases in which changing factors external to the system do in
fact affect how the system behaves. Suppose we have a set S of aspects
{s,,...,5m} whose change depends on some further aspect s, of the world,
but change in s, does not in turn depend on the state of S, but on other
things entirely. Then, strictly speaking, neither S nor S + s, form systems, since
neither set is self contained. Yet we can freat S as a state-determined system
by thinking of the influence of s, as built into its rule of evolution. Then the
current state of the system in conjunction with the rule can be thought of as
uniquely determining future behaviors, while the rule changes as a function
of time. For example, suppose scientists discovered that the force of gravity
has actually been fluctuating over time, though not in a way that depends on
the positions and motions of the sun and planets. Then the solar system
still forms a state-determined system, but one in which the rules of planetary
motion must build in a gravitational constant that is changing over time.
Technically, factors that affect, but are not in turn affected by, the evolution
of a system are known as parameters. If a parameter changes over time, its
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changing effect can be taken into account in the rule of evolution, but then
the rule itself is a function of time and the system is known as nonhomogeneous.

Now, according to some (e.g., Giunti, chapter 18), dynamical systems are
really just state-determined systems. This identification is certainly valuable for
some purposes. In fact, it is really this very inclusive category of systems (or
at least, its abstract mathematical counterpart) that is studied by that branch
of mathematics known as dynamical systems theory. Nevertheless, if our aim is
to characterize the dynamical approach to cognition—and in particular, to
contrast it with the computational approach—it turns out that a narrower
definition is more useful. This narrower definition focuses on specifically
numerical systems.,

The word “dynamical” is derived from the Greek dynamikos, meaning
“forceful” or “powerful.” A system that is dynamical in this sense is one in
which changes are a function of the forces operating within it. Whenever
forces apply, we have accelerations or decelerations; i.e., there is change in
the rate at which the states are changing at any given moment. The standard
mathematical tools for describing rates of change are differential equations.
These can be thought of as specifying the way a system is changing at any
moment as a function of its state at that moment.! For example, the differ-
ential equation
. k
i=——x

m
describes the way (in ideal circumstances) a heavy object on the end of a
spring will bounce back and forth by telling us the instantaneous accelera-
tion (¥) of the object as a function of its position (x); k and m are constants
(parameters) for the spring tension and mass, respectively.

State-determined systems governed by differential equations are paradigm
examples of dynamical systems in the current sense, but the latter category
also includes other systems which are similar in important ways.

Whenever a system can be described by differential equations, it has n
aspects or features (position, mass, etc.) evolving simultaneously and con-
tinuously in real time. Each of these features at a given point in time can be
measured as corresponding to some real number. Consequently we can think
of the overall state of the system as corresponding to an ordered set of n real
numbers, and the state space of the system as isomorphic to a space of real
numbers whose n dimensions are magnitudes corresponding (via measure-
ment) to the changing aspects of the system. Sometimes this numerical space
is also known as the system’s state space, but for clarity we will refer to it as
the system’s phase space® (figure 1.1). The evolution of the system over time
corresponds to a sequence of points, or trajectory, in its phase space. These
sequences can often be described mathematically as functions of an indepen-
dent variable, time. These functions are solutions to the differential equations
which describe the behavior of the system.
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Figure 1.1 Mass-springs and computers are two different kinds of concrete state-determined
system. (Our figure depicts an abacus; strictly speaking, the abacus would have to be auto-
mated to count as a computer.) Such systems are always in a particular state at a given point in
time. This state is only one of many states that it could be in. The total set of possible states is
commonly known as the system’s stafe space. Corresponding to the state space is a set of
abstract elements that is also commonly known as the system’s state space, but which for
clarity we refer to as its phase space. Possible states of the system are mapped onto elements of
the phase space by some form of classification. In the computational case, tokens of symbols in
the concrete system are classified into types, allowing the total state of the system to be
dassified as instantiating a particular configuration of symbol types. In the dynamical case,
aspects of the system are measured (i.e, some yardstick is used to assign a number to each
aspect), thereby allowing an ordered set of numbers to be assigned to the total state. Se-
quences of elements in the phase space can be specified by means of rules such as algorithms
(in the computational case) and differential equations (in the dynamical case). A phase space
and a rule are key elements of abstract state-determined systems. A concrete system realizes an
abstract system when its states can be systematically classified such that the sequences of
actual states it passes through mirror the phase space sequences determined by the rule.
Typically, when cognitive scientists provide a model of some aspect of cognition, they provide
an abstract state-determined system, such that the cognitive system is supposed to realize that
abstract system or one relevantly like it.
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Now, phase-space trajectories can be specified in a variety of ways. Differ-
ential equations constitute one particularly compact way of describing the
shape of all possible trajectories in a given system. This kind of specification
- is useful for some purposes but not for others. A common alternative is to
specify trajectories by means of a discrete mapping of any given point in
the phase space onto another point. For example, perhaps the most-studied
family of dynamical systems is the one whose rule is the “logistic equation”
or “quadratic map” (Devaney, 1986):

E, ) = ux(1 — 1)

For any particular value of the parameter g, this equation determines a partic-
ular mapping of every point x in the phase space onto another point F,(x). A
mapping like this can be regarded as giving us the state of a system at a
subsequent point in time (t + 1) if we know the state of the system at any
given time (f). When the rule is written so as to bring this out, it is known as
a difference equation, taking the general form

at + 1) = Flx(#))

If we take any given point in the phase space and apply (“iterate”) the map-
ping many times, we obtain a phase-space trajectory.

Mathematicians and scientists often describe dynamical systems by means
of discrete mappings rather than differential equations. In many cases these
mappings are closely related to particular differential equations describing
essentially the same behavior. This is not always the case, however. Conse-
quently, a more liberal definition of dynamical system is: any state-determined
system with a numerical phase space and a rule of evolution (including differ-
ential equations and discrete maps) specifying trajectories in this space.

These systems, while only a subset of state-determined systems in general,
are the locus of dynamical research in cognitive science. They find their most
relevant contrast with computational systems. These systems have states that
are configurations of symbols,* and their rules of evolution specify transfor-
mations of one configuration of symbols into another. Whereas the phase
space of a dynamical system is a numerical space, the phase space of a compu-
tational system is a space of configurations of symbol types, and trajectories
are sequences of such configurations.

Why is it that dynamical systems (in our sense) are the ones chosen
for study by dynamicists in cognitive science? Here we briefly return to the
traditional idea that dynamics is a matter of forces, and therefore essentially
involves rates of change. In order to talk about rates of change, we must be
able to talk about amounts of change in amounts of time. Consequently, the
phase space must be such as to allow us to say how far the state is changing,
and the time in which states change must involve real durations, as opposed to
a mere linear ordering of temporal points.

Now, these notions make real sense in the context of dynamical systems as
defined here. Numerical phase spaces can have a metric that determines dis-
tances between points. Further, if the phase space is rich enough (e.g., dense)
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then between any two points in the phase space we can find other points, and
so we can talk of the state of the system at any time between any two other
times. Thus the notion of time in which the system operates is also one
to which a substantial notion of “length” can be applied; in other words, it
comes to possess some of the same key mathematical properties as real time.
Note that neither of these properties is true of computational systems such as
Turing machines; there, there is no natural notion of distance between any
two total states of the system, and “time” (t;, t,, etc)) is nothing more than
order. Consequently it is impossible to talk of how fast the state of the
system is changing, and as a matter of fact, nobody ever tries; the issue is in
a deep way irrelevant. v

The importance of being able to talk about rates of change is that all actual
processes in the real world (including cognitive processes) do in fact unfold at
certain rates in real time. Further, for many such systems (including cognitive
systems) timing is essential: they wouldn’t be able to function properly unless
they got the fine details of the timing right. Therefore, in order to provide
adequate scientific descriptions of the behavior of such systems, we need to
understand them as systems in which the notion of rates of change makes
sense (see Cognition and Time, below). Dynamicists in cognitive science pro-
pose dynamical models in the current sense because they are such systems. It
may well be that there are other, less well-known mathematical frameworks
within which one could model change in real time without using specifically
numerical systems. As things stand, however, dynamical systems in cognitive
science are in fact state-determined numerical systems.

A wide variety of fascinating questions can be raised about the relations
between dynamical and computational systems. For example, what is the
relationship between an ordinary digital computer and the underlying electri-
cal dynamical system that in some sense makes it up? Or, what is the relation
between a dynamical system and a computational simulation or emulation of

it? Even more abstractly, how “powerful” is the class of dynamical systems, in |

comparison with computational systems? However, we must be very careful
not to allow the fact that there are many such relationships, some of them
quite intimate, to blind us to an important philosophical, and ultimately prac-
tical, truth: dynamical and computational systems are fundamentally different
kinds of systems, and hence the dynamical and computational approaches to
cognition are fundamentally different in their deepest foundations.

Natural Cognitive Systems as Dynamical Systems Describing natural
phenomena as the behavior of some dynamical system lies at the very heart
of modern science. Ever since Newton, scientists have been discovering more
and more aspects of the natural world that constitute dynamical systems
of one kind or another. Dynamicists in cognitive science are claiming that
yet another naturally occurring phenomenon, cognition, is the behavior of an
appropriate kind of dynamical system. They are thus making exactly the same
kind of claim for cognitive systems as scientists have been making for so
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many other aspects of the natural world. In the Dynamical Hypothesis, this
is expressed as the idea that natural cognitive systems are dynamical systems.

Demonstrating that some aspect of the world constitutes a dynamical sys-
tem requires picking out a relevant set of quantities, and ways of measuring
them, such that the resulting phase-space trajectories conform to some speci-
fiable rule. These trajectories must correspond to the behaviors of theoretical
interest. So, if we are interested in cognitive systems, then the behaviors of
interest are their cognitive performances (perceiving, remembering, conversing,
etc), and it is these behaviors, at their characteristic time scales, that must
unfold in a way described by the rule of evolution. Consequently, the claim
that cognitive systems are dynamical systems is certainly not trivial. Not
everything is a dynamical system, and taking some novel phenomenon and
showing that it is the behavior of a dynamical system is always a significant
scientific achievement. If the Dynamical Hypothesis is in fact true, we will
only know this as a result of much patient scientific work.?

Natural cognitive systems are enormously subtle and complex entities in
constant interaction with their environments. It is the central conjecture of
the Dynamical Hypothesis that these systems constitute single, unified dy-
namical systems. This conjecture provides a general theoretical orientation for
dynamicists in cognitive science, but it has not been (and in fact may never
be) demonstrated in detail, for nobody has specified the relevant magnitudes,
phase space, and rules of evolution for the entire system. Like scientists con-
fronting the physical universe as a whole, dynamicists in cognitive science
strive to isolate particular aspects of the complex, interactive totality that are
relatively self-contained and can be described mathematically. Thus, in prac-
tice, the Dynamical Hypothesis reduces to a series of more specific assertions,
to the effect that particular aspects of cognition are the behavior of distinct,
more localized systems. For example, Turvey and Carello (see chapter 13)
focus on our ability to perceive the shape of an object such as a hammer
simply by wielding it. They show how to think of the wielding itself as a
dynamical system, and of perception of shape as attunement to key parame-
ters of this system. The Dynamical Hypothesis, that entire cognitive systems
constitute dynamical systems, is thus comparable to the Laplacean hypothesis
that the entire physical world is a single dynamical system.

Many cognitive processes are thought to be distinguished from other
kinds of processes in the natural world by the fact that they appear to depend
crucially on knowledge which must somehow be stored and utilized. At the
heart of the computational approach is the idea that this knowledge must
be represented, and that cognitive processes must therefore be operations on
these representations. Further, the most powerful known medium of represen-
tation is symbolic, and hence cognitive processes must manipulate symbols,
i.e., must be computational in nature.

In view of this rather compelling line of thought, it is natural to ask: How
can dynamicists, whose models do not centrally invoke the notion of repre-
sentation, hope to provide theories of paradigmatically cognitive processes? If
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cognition depends on knowledge, how can there be a dynamical approach to
cognition? The answer is that, while dynamical models are not based on trans-
formations of representational structures, they allow plenty of room for repre-

" sentation. A wide variety of aspects of dynamical models can be regarded as

having a representational status: these include states, attractors, trajectories,
bifurcations, and parameter settings. So dynamical systems can store knowl-
edge and have this stored knowledge influence their behavior. The crucial
difference between computational models and dynamical models is that in the
former, the rules that govern how the system behaves are defined over the
entities that have representational status, whereas in dynamical models, the
rules are defined over numerical states.® That is, dynamical systems can be
representational without having their rules of evolution defined over repre-
sentations. For example, in simple connectionist associative memories such as
that described in Hopfield (1982), representations of stored items are point
attractors in the phase space of the system. Recalling or recognizing an item
is a matter of settling into its attractor, a process that is governed by purely
numerical dynamical rules.

The Nature of Cognitive Systems The claim that cognitive systems are
computers, and the competing claim that natural cognitive systems are dy-
namical systems, each forms the technical core of a highly distinctive vision
of the nature of cognitive systems. :

For the computationalist, the cognitive system is the brain, which is a kind
of control unit located inside a body which in turn is located in an external
environment. The cognitive system interacts with the outside world via its
more direct interaction with the body. Interaction with the environment is
handled by sensory and motor fransducers, whose function is to translate
between the physical events in the body and the environment, on the one
hand, and the symbolic states, which are the medium of cognitive processing.
Thus the sense organs convert physical stimulation into elementary symbolic
representations of events in the body and in the environment, and the motor
system converts symbolic representations of actions into movements of the
muscles. Cognitive episodes take place in a cyclic and sequential fashion; first
there is sensory input to the cognitive system, then the cognitive system
algorithmically manipulates symbols, coming up with an output which then
causes movement of the body; the whole cycle then begins again. Internally,
the cognitive system has a modular, hierarchical construction; at the highest
level, there are modules corresponding to vision, language, planning, etc., and
each of these modules breaks down into simpler modules for more elemen-
tary tasks. Each module replicates in basic structure the cognitive system as a
whole; thus, the modules take symbolic representations as inputs, algorithmi-
cally manipulate those representations, and deliver a symbolic specification
as output. Note that because the cognitive system traffics only in symbolic
representations, the body and the physical environment can be dropped from
consideration; it is possible to study the cognitive system as an autonomous,
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bodiless, and worldless system whose function is to transform input represen-
tations into output representations.
Now, the dynamical vision differs from this picture at almost every point.
As we have seen, dynamical systems are complexes of parts or aspects which
~are all evolving in a continuous, simultaneous, and mutually -determining
fashion. If cognitive systems are dynamical systems, then they must likewise
be complexes of interacting change. Since the nervous system, body, and
environment are all continuously evolving and simultaneously influencing
one another, the cognitive system cannot be simply the encapsulated brain;
rather, it is a single unified system embracing all three. The cognitive system
does not interact with the body and the external world by means of periodic
symbolic inputs and outputs; rather, inner and outer processes are coupled,
so that both sets of processes are continually influencing -each other. Cog-
nitive processing is not cyclic and sequential, for all aspects of the cognitive
system are undergoing change all the time. There is a sense in which the sys-
tem is modular, since for theoretical purposes the total system can be broken
down into smaller dynamical subsystems responsible for distinct cognitive
phenomena. Standardly these smaller systems are coupled, and hence co-
evolving, with others, but significant insight can be obtained by “freezing”
this interaction and studying their independent dynamics. Of course, cogni-
tive performances do exhibit many kinds of sequential character. Speaking a
sentence, for example, is behavior that has a highly distinctive sequential
structure. However, in the dynamical conception, any such sequential charac-
ter is something that emerges over time as the overall trajectory of change in
an entire system (or relevant subsystem) whose rules of evolution specify not
sequential change but rather simultaneous, mutual coevolution.

Natural Cognitive Systems Are Best Understood Using Dynamics

In science, as in home repair, the most rapid progress is made when you have
the right tools for the job. Science is in the business of describing and explain-
ing the natural world, and has a very wide range of conceptual and method-
ological tools at its disposal. Computer science provides one very powerful
collection of tools, and these are optimally suited for understanding complex
systems of a particular kind, namely computational systems. If cognitive systems
are computational systems, then they will be best understood by bringing
these tools to bear. If the Dynamical Hypothesis is right, however, then the
most suitable conceptual tools will be those of dynamics. So, whereas in the
previous sections we described what it is for natural cognitive systems to be
dynamical systems, in the following discussion we describe what is involved
in applying dynamics in understanding such systems.

What Is Dynamics? Dynamics is a very broad field overlapping both pure
and applied mathematics. For current purposes, it can be broken down into
two broad subdivisions. Dynamical modeling is describing natural phenomena
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as the behavior of a dynamical system in the sense outlined in the previous
discussion. It involves finding a way of isolating the relevant system, a way
of measuring the states of the system, and a mathematical rule, such that
the phenomena of interest unfold in exactly the way described by the rule.
Obviously, effective dynamical modeling involves considerable exploration
of both the real system being studied, and the mathematical properties of the
governing equations.

Dynamical systems theory is the general study of dynamical systems. As
a branch of pure mathematics, it is not directly concerned with the empiri-
cal description of natural phenomena, but rather with abstract mathematical
structures. Dynamical systems theory is particularly concerned with complex
systems for which the solutions of the defining equations (i.e., functions that
specify trajectories as a function of time) are difficult or impossible to write
down. 1t offers a wide variety of powerful concepts and tools for describing
the general properties of such systems. Perhaps the most distinctive feature of
dynamical systems theory is that it provides a geometric form of understand-
ing: behaviors are thought of in terms of locations, paths, and landscapes in
the phase space of the system.”

Some natural phenomena can be described as the evolution of a dynamical
system governed by particularly straightforward equations. For such systems,
the traditional techniques of dynamical modeling are sufficient for most ex-
planatory purposes. Other phenomena, however, can only be described as
the behavior of systems governed by nonlinear equations for which solutions
may be unavailable. Dynamical systems theory is essential for the study of
such systems. With the rapid development in the twentieth century of the
mathematics of dynamical systems theory, an enormous range of natural
systems have been opened up to scientific description. There is no sharp
division between dynamical modeling and dynamical systems theory, and
gaining a full understanding of most natural systems requires relying on both
bodies of knowledge.

Understanding Cognitive Phenomena Dynamically Dynamics is a large
and diverse set of concepts and methods, and consequently there are many
different ways that cognitive phenomena can be understood dynamically. Yet
they all occupy a broadly dynamical perspective, with certain key elements.

At the heart of the dynamical perspective is time. Dynamicists always focus
on the details of how behavior unfolds in real time; their aim is to describe
and explain the temporal course of this behavior. The beginning point and
the endpoint of cognitive processing are usually of only secondary interest, if
indeed they matter at all. This is in stark contrast with the computationalist
orientation, in which the primary focus is on input-output relations, i.e., on
what output the system delivers for any given input.

A second key element of the dynamical perspective is an emphasis on total
state. Dynamicists assume that all aspects of a system are changing simultane-
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ously, and so think about the behavior of the system as a matter of how the
total state of a system is changing from one time to the next. Computa-
tionalists, by contrast, tend to suppose that most aspects of a system (e.g., the
symbols stored in memory) do not change from one moment to the next.
Change is assumed to be a local affair, a matter of replacement of one symbol
by another. :

Because dynamicists focus on how a system changes from one total state
to another, it is natural for them to think of that change as a matter of
movements in the space of all possible total states of the system; and since the
phase spaces of their systems are numerical, natural notions of distance apply.
Thus, dynamicists conceptualize cognitive processes in geometric terms. The
distinctive character of some cognitive process as it unfolds over time is a
matter of how the total states the system passes through are spatially located
with respect to one another and the dynamical landscape of the system.

Quantitative Modeling Precise, quantitative modeling of some aspect of
cognitive performance is always the ultimate goal of dynamical theorizing in
cognitive science. Such research always requires two basic components: data
and model. The data take the form of a time series: a series of measurements
of the phenomenon to be understood, taken as that phenomenon unfolds
over time. The model is a set of equations and associated phase space. The
modeling process is a matter of distilling out the phenomenon to be under-
stood, obtaining the time-series data, developing a model, and interpreting
that model as capturing the data (i.e., setting up correspondences between the
numerical sequences contained in the model and those in the data). When
carried out successfully, the modeling process yields not only precise descrip-
tions of the existing data but also predictions which can be used in evaluating
the model.

For an excellent example of quantitative dynamical modeling, recall the
process of reaching a decision described briefly in the introductory para-
graphs. We saw that traditional computational (expected-utility theory) ap-
proaches to decision-making have had some measure of success in account-
ing for what decisions are actually reached, but say nothing at all about
any of the temporal aspects of the deliberation process. For Busemeyer and
Townsend (Busemeyer and Townsend, 1993; see also chapter 4), by contrast,
describing these temporal aspects is a central goal. Their model of decision-
making is a dynamical system with variables corresponding to quantities such
as values of consequences and choice preferences. The model describes the
multiple simultaneous changes that go on in an individual decision-maker in
the process of coming to a decision. It tumns out that this model not only
recapitulates the known data on oufcomes as well as or better than traditional
computational models; it also explains a range of temporal phenomena such
as the dependence of preference on deliberation time, and makes precise
predictions which can be experimentally tested. ’
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Qualitative Modeling Human cognitive performance is extraordinarily di-
verse, subtle, complex, and interactive. Every human behaves in a somewhat
different way, and is embedded in a rich, constantly changing environment.
For these kinds of reasons (among others), science has been slow in coming to
be able to apply to cognition the kinds of explanatory techniques that have
worked so successfully elsewhere. Even now, only a relatively small number
of cognitive phenomena have been demonstrated to be amenable to precise,
quantitative dynamical modeling. Fortunately, however, there are other ways
in which dynamics can be used to shed light on cognitive phenomena. Both
the data time series and the mathematical model that dynamical modeling
requires can be very difficult to obtain. Even without an elaborate data time
series, one can study a mathematical model which exhibits behavior that is at
least gualitatively similar to the phenomena being studied. Alternatively, in
the absence of a precise mathematical model, the language of dynamics can
be used to develop qualitative dynamical descriptions of phenomena that
may have been recorded in a precise data time series (see Dynamical Descrip-
tion, below).

Cognitive scientists can often develop a sophisticated understanding of an
area of cognitive functioning independently of having any elaborate data
time series in hand. The problem is then to understand what kind of system
might be capable of exhibiting that kind of cognitive performance. It can be
addressed by specifying a mathematical dynamical model and comparing its
behavior with the known empirical facts. If the dynamical model and the
observed phenomena agree sufficiently in broad qualitative outline, then in-
sight into the nature of the system has been gained.

Elman’s investigations into language processing are a good example of
qualitative dynamical modeling (Elman, 1991; see also chapter 8). In broad
outline, at least, the distinctive complexity of sentences of natural language is
well understood, and psycholinguistics has uncovered a wide range of infor-
mation on human abilities to process sentences. For example, it is a widely
known fact that most people have trouble processing sentences that have
three or more subsidiary clauses embedded centrally within them. In an
attempt to understand the internal mechanisms responsible for language
use, Elman investigates the properties of a particular class of connectionist
dynamical systems. When analyzed using dynamical concepts, these models
turn out to be in broad agreement with a variety of general constraints in the
data, such as the center-embedding limitation. This kind of agreement demon-
strates that it is possible to think of aspects of our linguistic subsystems in
dynamical terms, and to find there a basis for some of the regularities. This
model does not make precise temporal predictions about the changing values
of observable variables, but it does make testable gualitative predictions about
human performance. '

Often, the system one wants to understand can be observed to exhibit any
of a variety of highly distinctive dynamical properties: asymptotic approach
to a fixed point, the presence or disappearance of maxima or minima, cata-
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strophic jumps caused by small changes in control variables, oscillations,
chaotic behavior, hysteresis, resistance to perturbation, and so on. Such prop-
erties can be observed even without knowing the specific equations which in
fact govern the evolution of the system. They are, however, a particularly
rich source of constraints for the process of qualitative dynamical modeling,
for they narrow down considerably the classes of equations that can exhibit
qualitatively similar behavior.

Dynamical Description In another kind of situation, we may or may not
have good time-series data available for modeling, but the complexity of the
phenomena is such that laying down the equations of a formal model ade-
quate to the data is currently not feasible. However, even here dynamics may .
hold the key to advances in understanding, because it provides a general
conceptual apparatus for understanding the way systems—including, in par-
ticular, nonlinear systems—change over time. In this kind of scenario it is
dynamical systems theory which turns out to be particularly useful.

For example, Thelen (see chapter 3) is concerned with understanding the
development, over periods of months and even years, of basic motor skills
such as reaching out for an object. At this stage, no satisfactory mathematical
model of this developmental process is available. Indeed, it is still a major
problem to write down equations describing just the basic movements them-
selves! Nevertheless, adopting a dynamical perspective can make possible
descriptions which cumulatively amount to a whole new way of under-
standing how motor skills can emerge and change, and how the long-term
developmental process is interdependent with the actual exercise of the
developing skills themselves. From this perspective, particular actions are
conceptualized as attractors in a space of possible bodily movements, and
development of bodily skills is the emergence, and change in nature, of these
attractors over time under the influence of factors such as bodily growth and
the practice of the action itself. Adopting this general perspective entails
significant changes in research methods. For example, Thelen pays close
attention to the exact shape of individual gestures at particular intervals in
the developmental process, and focuses on the specific changes that occur in
each individual subject rather than the gross changes that are inferred by
averaging over many subjects. It is only in the fine details of an individual
subject’s movements and their change over time that the real shape of the
dynamics of development is revealed.

1.2 WHY DYNAMICS?

Why should we believe the Dynamical Hypothesis? Ultimately, as mentioned
above, the proof of the pudding will be in the eating. The Dynamical Hy-
pothesis is correct only if sustained empirical investigation shows that the
most powerful models of cognitive processes take dynamical form. Although
there are already dynamical models—including many described in this book
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— which are currently the best available in their particular area, the jury is still
out on the general issue. Even if the day of final reckoning is a long way off,
however, we can still ask whether the dynamical approach is likely to be the
“more correct, and if so, why.

The dynamical approach certainly begins with a huge head start. Dynamics
provides a vast resource of extremely powerful concepts and tools. Their
usefulness in offering the best scientific explanations of phenomena through-
out the natural world has been proved again and again. It would hardly be
a surprise if dynamics turned out to be the framework within which the
most powerful descriptions of cognitive processes were also forthcoming.
The conceptual resources of the computational approach, on the other hand,
are known to describe only one category of things in the physical universe:
manmade digital computers. Even this success is hardly remarkable: digital
computers were designed and constructed by us in accordance with the com-
putational blueprint. It is a bold and highly controversial speculation that
these same resources might also be applicable to natural cognitive systems,
which are evolved biological systems in constant causal interaction with a
messy environment.

This argument for the dynamical approach is certainly attractive, but it is
not grounded in any way in the specific nature of cognitive systems. What
we really want to know is: What general things do we already know about the
nature of cognitive systems that suggest that dynamics will be the framework
within which the most powerful models are developed?

We know, at least, these very basic facts: that cognitive processes always
unfold in real time; that their behaviors are pervaded by both continuities
and discretenesses; that they are composed of multiple subsystems which are
simultaneously active and interacting; that their distinctive kinds of structure
and complexity are not present from the very first moment, but emerge over
time; that cognitive processes operate over many time scales, and events at
different time scales interact; and that they are embedded in a real body and
environment. The dynamical approach provides a natural framework for the
description and explanation of phenomena with these broad properties. The
computational approach, by contrast, either ignores them entirely or handles
them only in clumsy, ad hoc ways.?

Cogpnition and Time

The argument presented here is simple. Cognitive processes always unfold in
real time. Now, computational models specify only a postulated sequence of
states that a system passes through. Dynamical models, by contrast, specify
in detail not only what states the system passes through, but also how those
states unfold in real time. This enables dynamical models to explain a wider
range of data for any cogpnitive functions, and to explain cognitive functions
whose dependence on real time is essential (e.g., temporal pattern processing).
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When we say that cognitive processes unfold in real time, we are really
saying two distinct things. First, real time is a continuous quantity best mea-
sured by real numbers, and for every point in time there is a state of the
cognitive system. For an example of a process unfolding in real time, con-
sider the movement of your arm as it swings beside you. At every one of
an ‘infinite number of instants in time from the beginning to the end of the
motion, there is a position which your arm occupies. No matter how finely
time is sampled, it makes sense to ask what position your arm occupies at
every sampled point. The same is true of cognitive processes. As you recog-
nize a face, or reason through a problem, or throw a ball, various aspects of
your total cognitive system are undergoing change in real time, and no
matter how finely time is sampled, there is a state of the cognitive system
at each point. This is really just an obvious and elementary consequence
of the fact that cognitive processes are ultimately physical processes taking
place in real biological hardware.

The second thing we mean by saying that cognitive processes unfold in
real time is that—as a consequence of the first point—timing always matters.
A host of questions about the way the processes happen in time make per-
fect sense: questions about rates, durations, periods, synchrony, and so forth.
Because cognitive processes happen in time, they cannot take too little time
or too much time. The system must spend an appropriate amount of time in
the vicinity of any given state. The timing of any particular operation must
respect the rate at which other cognitive, bodily, and environmental processes
are taking place. There are numerous subtleties involved in correct timing,
and they are all real issues when we consider real cognitive processing.

Since cognitive processes unfold in real time, any framework for the de-
scription of cognitive processes that hopes to be fully adequate to the nature
of the phenomena must be able to describe not merely what processes occur
but how those processes unfold in time. Now, dynamical models based on
differential equations are the preeminent mathematical framework science
uses to describe how things happen in time. Such models specify how change
in state variables at any instant depends on the current values of those vari-
ables themselves and on other parameters. Solutions to the governing equa-
tions tell you the state that the system will be in at any point in time, as long
as the starting state and the amount of elapsed time are known. The use of
differential equations presupposes that the variables change smoothly and
continuously, and that time itself is a real-valued quantity. It is, in short, of
the essence of dynamical models of this kind to describe how processes unfold,
moment by moment, in real time.

Computational models, by contrast, specify only a bare sequence of states
that the cognitive system goes through, and tell us nothing about the timing
of those states over and above their mere order. Consider, for example, that
paradigm of computational systems, the Turing machine.” Every Turing ma-
chine passes through a series of discrete symbolic states, one after another.
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We talk about the state of the machine at time 1, time 2, and so forth. How-
ever, these “times” are not points in real time; they are merely indices which
help us keep track of the order that states fall into as the machine carries
out its sequence of computational steps. We use the integers to index states
because they have a very familiar order and there are always as many of
them as we need. However, we mustn’t be misled into supposing that we
are talking about amounts of time or durations here. Any other ordered set
(e.g., people who ran the Boston Marathon, in the order they finished) would,
in theory, do just as well for indexing the states of a Turing machine, though
in practice they would be very difficult to use. To see that the integer “times”
in the Turing machine are not real times, consider the following questions:
What state was the machine in at time 1.57 How long was the machine in
state 17 How long did it take for the machine to change from state 1 to state
27 None of these questions are appropriate, though they would be if we were
talking about real amounts of time.

Now, let us suppose we have a particular Turing machine which adds
numbers, and we propose this machine as a model of the cognitive processes
going on in real people when they add numbers in their heads. The model
specifies a sequence of symbol manipulations, passing from one discrete state
to another; we suppose that a person passes through essentially the same
sequence of discrete states. Note, however, that the Turing machine model is
inherently incapable of telling us anything at all about the timing of these
states and the transitions from one state to another. The model just tells us
“first this state, then that state ...”; it makes no stand on how long the person
will be in the first state, how fast the transition to the second state is, and so
forth; it cannot even tell us what state the person will be in halfway between
the time it enters the first state and the time it enters the second state, for
questions such as these make no sense in the model.

Of course, even as far as computational models go, Turing machines do
not make good models of cognitive processes. But the same basic points
hold true for all standard computational models. LISP programs, production
systems, generative grammars, and so forth, are all intrinsically incapable of
describing the fine temporal structure of the way cognitive processes unfold,
because all they specify—indeed, all they can specify—is which states the
system will go through, and in what order. To see this, just try picking up
any mainstream computational model of a cognitive process—of parsing, or
planning, for example—and try to find any place where the model makes any
commitment at all about such elementary temporal issues as how much time
each symbolic manipulation takes. One quickly discovers that computational
models simply aren’t in that business; they’re not dealing with time. “Time”
in a computational model is not real time, it is mere order.

Computationalists do sometimes attempt to extract from their models im-
plications for the timing of the target cognitive processes. The standard and
most appropriate way to do this is to assume that each computational step
takes a certain chunk of real time (say, 10 ms).!° By adding assumptions of
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this kind we can begin to make some temporal predictions, such as that a
particular computational process will take a certain amount of time, and that a
particular step will take place some number of milliseconds after some other
event. Yet the additional temporal assumptions are completely ad hoc; the
theorist is free to choose the step time, for example, in any way that renders
the model more consistent with the psychological data.!! In the long run,
it is futile to attempt to weld temporal considerations onto an essentially
atemporal kind of model. If one professes to be concerned with temporal
issues, one may as well adopt a modeling framework which builds temporal
issues in from the very beginning—i.e., take up the dynamical approach.
One refuge for the computationalist from these arguments is to insist that
certain physical systems are such that they can be described at an abstract
level where temporal issues can be safely ignored, and that the most tractable
descriptions of these systems must in fact take place at that level. This claim
is clearly true of ordinary desktop digital computers; we standardly describe
their behavior in algorithmic terms in which the precise details of timing are
completely irrelevant, and these algorithmic descriptions are the most tracta-
ble given our high-level theoretical purposes. The computationalist conjecture
is that cognitive systems will be like computers in this regard; high-level
cognitive processes can, and indeed can only be tractably described in com-
putational terms which ignore fine-grained temporal issues. Note, however,
that this response concedes that computational models are inherently in-
capable of being fully adequate to the nature of the cognitive processes
themselves, since these processes always do unfold in real time. Further, this
response concedes that if there were a tractable dynamical model of some
cognitive process, it would be inherently superior, since it describes aspects
of the processes which are out of reach of the computational model. Finally,
computationalists have not as yet done enough to convince us that the only
tractable models of these high-level processes will be computational ones.
Dynamicists, at least, are still working on the assumption that it will someday
be possible to produce fully adequate models of cognitive processes.
Computationalists sometimes point out that dynamical models of cogni-
tive processes are themselves typically “run” or simulated on digital com-
puters. Does this not establish that computational models are not inherently
limited in the way these arguments seem to suggest? Our answer, of course,
is no, and the reason is simple: a computational simulation of a dynamical
model of some cognitive process is not itself a model of that cognitive
process in anything like the manner of standard computational models in
cognitive science. Thus, the cognitive system is not being hypothesized to
pass through a sequence of symbol structures of the kind that evolve in the
computational simulation, any more than a weather pattern is thought to
pass through a sequence of discrete symbolic states just because we can simu-
late a dynamical model of the weather. Rather, all the computational simula-
tion delivers is a sequence of symbolic descriptions of points in the dynamical
model (and thereby, indirectly, of states of the cognitive system). What we
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have in such situations is a dynamical model plus an atemporal computational
approximation to it.!2

Continuity in State

Natural cognitive systems sometimes change state in continuous ways; some-
times, on the other hand, they change state in ways that can appear discrete.
Dynamics provides a framework within which continuity and discreteness can
be accounted for, even within the same model. The computational approach,
by contrast, can only model a system as changing state from one discrete
state to another. Consequently, the dynamical approach is inherently more
flexible—and hence more powerful—than the computational approach.

This argument must be carefully distinguished from the previous one.
There, the focus was continuity in fime; the claim was that models must be
able to specify the state of the system at every point in time. Here, the focus
is continuity in state; the claim is that models must be capable of describing
change from one state to another arbitrarily close to it, as well as sudden
change from one state to another discretely distinct from it.

Standard computational systems only change from one discrete state to
another.® Think again of a Turing machine. Its possible (total) states are con-
figurations of symbols on the tape, the condition of the head, and the posi-
tion of the head. Every state transition is a matter of adding or deleting a
symbol, changing the head condition, and changing its position. The possi-
bilities, however, are all discrete; the system always jumps directly from one
state to another without passing through any in-between. There simply are no
states in between; they are just not defined for the system. The situation is
like scoring points in basketball: the ball either goes through the hoop or it
doesn't. In basketball, you can’t have fractions of points.

When a computational system is used as a model for a natural cognitive
process, the natural cognitive system is hypothesized to go through the same
state transitions as the model. So a computational model can only attribute
discrete states, and discrete state transitions, to the cognitive system.

Now, quite often, state transitions in natural cognitive systems can be
thought of as discrete. For example, in trying to understand how people carry
out long division in their heads, the internal processes can be thought of
as passing through a number of discrete states corresponding to stages in
carrying out the division. However, there are innumerable kinds of tasks that
cognitive systems face which appear to demand a continuum of states in any
system that can carry them out. For example, most real problems of sensori-
motor coordination deal with a world in which objects and events can come
in virtually any shape, size, position, orientation, and motion. A system which
can flexibly deal with such a world must be able to occupy states that are
equally rich and subtly distinct. Similarly, everyday words as simple as fruck
seem to know no limit in the fineness of contextual shading they can take on.
Any system that can understand Billy drove the truck must be able to accom-
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modate this spectrum of senses. Only a system that can occupy a continuum
of states with respect to word meanings stands a real chance of success.

Many dynamical systems, in the core sense that we have adopted in this
chapter, change in continuous phase spaces, and so the dynamical approach is
inherently well-suited to describing how cognitive systems might change
in continuous ways (see, e.g., Port, Cummins, and McAuley, this volume,
chapter 12). However,—and this is the key point—it can also describe dis-
crete transitions in a number of ways. The dynamical approach is therefore
more flexible—and hence, again, more powerful—than the computational
approach, which can only attribute discrete states to a system.

The dynamical approach can accommodate discrete state transitions in two
ways. First, the concepts and tools of dynamics can be used to describe the
behavior of systems with only discrete states. A dynamical model of an
ecosystem, for example, assumes that its populations always come in discrete

‘amounts; you can have 10 or 11 rabbits, but not 10.5 rabbits. However,

perhaps the most interesting respect in which dynamics can handle discrete-
ness is in being able to describe how a continuous system can undergo changes
that look discrete from a distance. This is more interesting because cognitive
systems appear to be thoroughly pervaded by both continuity and discrete-
ness; the ideal model would be one which could account for both together.
One kind of discrete change in a continuous system is a catastrophe: a sudden,
dramatic change in the state of a system when a small change in the parame-
ters of the equations defining the system lead to a qualitative change—a
bifurcation—in the “dynamics” or structure of forces operating in that sys-
tem (Zeeman, 1977; see also Petitot, chapter 9).'* Thus, high-level, appar-
ently discrete changes of state can be accounted for within a dynamical
framework in which continuity and discreteness coexist; indeed, the former is
the precondition and explanation for the emergence of the latter.

Multiple Simultaneous Interactions

Consider again the process of returning a serve in tennis. The ball is ap-
proaching; you are perceiving its approach, are aware of the other player’s
movements, are considering the best strategy for the return, and are shifting
into position to play the stroke. All this is happening at the same time. As you
move into place, your perspective on the approaching ball is changing, and
hence so is activity on your retina and in your visual system. It is your
evolving sense of how to play the point that is affecting your movement. The
path of the approaching ball affects which strategy would be best and hence
how you move. Everything is simultaneously affecting everything else.

Consider natural cognitive systems from another direction entirely. Neurons
are complex systems with hundreds, perhaps thousands of synaptic connec-
tions. There is some kind of activity in every one of these, all the time. From
all this activity, the cell body manages to put together a firing rate. Each cell
forms part of a network of neurons, all of which are active (to a greater
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or lesser degree) all the time, and the activity in each is directly affecting
hundreds, perhaps thousands of others, and indirectly affecting countless
more. The networks form into maps, the maps into systems, and systems into

-the central nervous system (CNS), but at every level we have the same

principle, that there is constant activity in all components at once, and com-
ponents are simultaneously affecting one another. No part of the nervous
system is ever completely inactive. As neurophysiologist Karl Lashley (1960)
put it, “Every bit of evidence available indicates a dynamic, constantly active
system, or, rather, a composite of many interacting systems ...” (p. 526).

Clearly, any fully adequate approach to the study of cognitive systems
must be one that can handle multiple, simultaneous interactive activity. Yet
doing this is the essence of dynamics. Dynamical systems are just the simulta-
neous, mutually influencing activity of multiple parts or aspects. The dynam-
ical approach is therefore inherently well-suited to describe cognitive systems.

A classic example of a dynamical model in this sense is McClelland and
Rumelhart's “interactive activation network” (McClelland and Rumelhart,
1981). This model was designed to account for how a letter embedded in the
context of a five-letter word of English could be recognized faster than the
same letter embedded within a nonword string of letters and even better than
the single letter presented by itself. This “word superiority effect” suggested
that somehow the whole word was being recognized at the same time as the
individual letters that make up the word. Thus, it implied a mechanism where
recognition of the word and the letters takes place simultaneously and in such
a way that each process influences the other. McClelland and Rumelhart pro-
posed separate cliques of nodes in their network that mutually influence one
another by means of coupled difference equations. The output activation of
some nodes served as an excitatory or inhibitory input to certain other nodes.
This model turned out to capture the word superiority effect and a number of
other related effects as well.

Almost all computational approaches attempt to superimpose on this mul-
tiple, simultaneous, interactive behavior a sequential, step-by-step structure.
They thereby appear to assume that nothing of interest is going on in any
component other than the one responsible for carrying out the next stage in
the algorithm. It is true; as computationalists will point out, that a compu-
tational model can—in principle—run in parallel, though it is devilishly diffi-
cult to write such a code. The “blackboard model” of the Hearsay-II speech
recognition system (Erman, Hayes-Roth, Lesser, et al. 1980) represents one
attempt at approaching parallelism by working within the constraints of
serial computationalism. The “blackboard,” however, was just a huge, static
data structure on which various independent analysis modules might asyn-
chronously post messages, thereby making partial analyses of each module
available for other modules to interpret. This is a step in the right direc-
tion, but it is a far cry from simultaneous interactive activation. Each module
in Hearsay-II can do no more than say “Here is what I have found so far, as
stated in terms of my own vocabulary,” rather than “Here is exactly how
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your activity should change on the basis of what has happened in my part of
the system,”—the kind of interaction that components governed by coupled
equations have with one another. Other methods of parallelism more so-
phisticated than this may certainly be postulated in principle, but apparently
await further technological developments.

Multiple Time Scales

Cognitive processes always take place at many time scales. Changes. in the
state of neurons can take just a few milliseconds, visual or auditory recogni-
tion half a second or less, coordinated movement a few seconds, conversa-
tion and story understanding minutes or even hours, and the emergence of
sophisticated capacities can take months and years. Further, these time scales
are interrelated; processes at one time scale affect processes at another. For
example, Esther Thelen (see chapter 3) has shown how actually engaging in
coordinated movement promotes the development of coordination, and yet
development itself shapes the movements that are possible; it is in this inter-
active process, moreover, that we find the emergence of concepts such as
space and force. At finer scales, what we see (at the hundreds-of-milliseconds
time scale) affects how we move (at the seconds scale) and vice versa.

The dynamical approach provides ways of handling this variety and inter-
dependence of time scales. For example, the equations governing a dynamical
system typically include two kinds of variables: state variables and parame-
ters. The way the system changes state depends on both, but only the state
variables take on new values; the parameters are standardly fixed. However, it
is possible to think of the parameters as not fixed but rather changing as well,
though over a considerably longer time scale than the state variables. Thus
we can have a single system with both a “fast” dynamics of state variables on
a short time scale and a “slow” dynamics of parameters on a long time scale,
such that the slow dynamics helps shape the fast dynamics. It is even possible
to link the equations such that the fast dynamics shapes the slow dynamics; in
such a case, we have true interdependence of time scales.

Note that it is other features of the dynamical approach, such as continuity
in space and time, and multiple simultaneous interactive aspects, which make
possible its account of the interdependence of time scales. The computational
approach, by contrast, has no natural methods of handling this pervasive
structural feature of natural cognitive systems.

Self-Organization and the Emergence of Structure
Cognitive systems are highly structured, in both their behavior and their in-
ternal spatial and temporal organization. One kind of challenge for cognitive

science is to describe that structure. Another kind of challenge is to explain
how it got to be there. Since the computational framework takes inspiration
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~ from the organization of formal systems like logic and mathematics, the tra-
ditional framework characteristically tackles only the problem of describing
the structure that exists. Models in this framework typically postulate some
initial set of a priori structures from which more complex structures may
be derived by application of rules, The question of emergence—of where the
initial elements or structures come from—always remains a problem, usually
ignored.

A major advantage of the dynamical approach is that dynamical systems
are known to be able to create structure both in space and in time. By struc-
ture, we mean something nonrandom in form that endures or recurs in time.
Thus an archetypal physical object, such as a chair, is invariant in form over
time, while a transient event, like a wave breaking on a beach, may recur with
temporal regularity. The words in human languages tend to be constructed
out of units of speech sound that are reused in different sequences (e.g., gnaf,
tan, ant, etc.), much like the printed letters with which we write words down.
But where do any such structures come from if they are not either assumed or
somehow fashioned from preexisting primitive parts? This is the question of
“morphogenesis,” the creation of forms. It has counterparts in many branches

of science, including cosmology. Why are matter and energy not uniformly »

distributed in the universe? Study of the physics of relatively homogeneous
physical systems, like the ocean, the atmosphere, or a tank of fluid, can begin
to provide answers. Some form of energy input is required plus some appro-
priate dynamical laws. Under these circumstances most systems will tend to
generate regular structure of some sort under a broad range of conditions.

The atmosphere exhibits not only its all-too-familiar chaotic properties, but
it can also display many kinds of highly regular spatiotemporal structures that
can be modeled by the use of differential equations. For example, over the
Great Plains in the summer, one sometimes observes long “streets” of parallel
clouds with smooth edges like the waves of sand found in shallow water
along a beach or in the corduroy ridges on a well-traveled dirt road. How are
these parallel ridges created? Not with any form of rake or plow. These pat-
terns all depend on some degree of homogeneity of medium and a consis-
tently applied influx of energy. In other conditions (involving higher energy
levels), a fluid medium may, in small regions, structure itself into a highly
regular tornado or whirlpool. Although these “objects” are very simple struc-
tures, it is still astonishing that any medium so unstructured and so linear in
its behavior could somehow constrain itself over vast distances in such a way
that regular structures in space and time are produced. The ability of one
part of a system to “enslave” other parts, i.e., restrict the degrees of freedom
of other, distant parts, is now understood, at least for fairly simple systems
(Haken, 1988, 1991; Kelso, Ding, and Schéner, 1992; Thom, 1975).

The demonstration that structure can come into existence without either a
specific plan or an independent builder raises the possibility that many struc-
tures in physical bodies as well as in cognition might occur without any ex-
ternally imposed shaping forces. Perhaps cognitive structures, like embryo-

Timothy van Gelder and Robert F. Port

4




27

logical structures, the weather and many other examples, simply organize
themselves (Kugler and Turvey, 1987; Thelen and Smith, 1994). Dynamical
models are now known to account for many spatial and temporal structures
in a very direct way (Madore and Freeman, 1987, Murray, 1989). They en-
able us to understand how such apparently unlikely structures could come to
exist and retain their morphology for some extended period of time. We
assume that cognition is a particular structure in space and time—one that
supports intelligent interaction with the world. So our job is to discover how
such a structure could turn out to be a stable state of the brain in the context
of the body and environment. The answer to this question depends both on
structure that comes from the genes and on structure that is imposed by
the world. No theoretical distinction need be drawn between learning and
evolution—they are both, by hypothesis, examples of adaptation toward
stable, cogpnitively effective states of a brain (or an artificial system). The pri-
mary difference is that they operate on different time scales.

In both computer science and in cognitive science, the role of adaptation as
a source of appropriate structure is under serious development (Forrest, 1991;
Holland, 1975; Kauffman, 1993). Most of these methods depend on differen-
tial or difference equations for optimization. Thus, a final reason to adopt the
dynamical perspective is the possibility of eventually accounting for how the
structures that support intelligent behavior could have come about. Detailed
models for specific instances of structure creation present many questions
and will continue to be developed. But the possibility of such accounts de-
veloping from dynamical models can no longer be denied.

Embeddedness

If we follow common usage and use the term cognitive system to refer primar-
ily to the internal mechanisms that underwrite sophisticated performance,
then cognitive systems are essentially embedded, both in a nervous system
and, in a different sense, in a body and environment. Any adequate account
of cognitive functioning must be able to describe and explain this embedded-
ness. Now, the behavior of the nervous system, of bodies (limbs, muscles,
bone, blood), and of the immediate physical environment, are all best de-
scribed in dynamical terms. An advantage of the dynamical conception of
cognition is that, by describing cognitive processing in fundamentally similar
terms, it minimizes difficulties in accounting for embeddedness.

The embeddedness of cognitive systems has two rather different aspects.
The first is the relation of the cognitive system to its neural substrate. The
cognitive system somehow is the CNS, but what are the architectural and
processing principles, and level relationships, that allow us to understand
how the one can be the other? The other aspect is the relation of the cogni-
tive system to its essential surrounds—the rest of the body, and the physi-
cal environment. How do internal cognitive mechanisms “interact” with the
body and the environment?
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" A computational perspective gives a very different kind of understanding
of the behavior of a complex system than a dynamical perspective, Given
that the behavior of the nervous system, the body, and the environment are

realizes the other. However, this provides little reason to believe that a simi-
lar cross-level, cross-kind explanation will be feasible in the case of natural
cognitive systems, since computers were constructed precisely so that the
low-level dynamics would be severely, artificially constrained in exactly the
right way. Finding the components of a computational cognitive architecture
in the actual dynamical neural hardware of real brains is a challenge of an
altogether different order. It is a challenge that computationalists have not
even begun to meet.

The embeddedness of the cognitive system within a body and an environ-
ment is equally a problem for the computational approach. Again, the prob-
lem arises because we are trying to describe the relationship between systems
described in fundamentally different terms. The crux of the problem here is
time. Most of what organisms deal with happens essentially in time. Most of
the critical features of the environment which must be perceived—including
events of “high-level” cognitive significance, such as linguistic communica-
tion—unfold over time, and so produce changes in the body over time. In
action, the movement of the body, and its effects on the environment, happen
in time. This poses a real problem for models of cognitive processes which
are, in a deep way, atemporal. For the most part, computational approaches
have dealt with this problem by simply avoiding it. They have assumed that
cognition constitutes an autonomous domain that can be studied entirely
independently of embeddedness. The problem of how an atemporal cognitive
system interacts with a temporal world is shunted off to supposedly non-
cognitive transduction systems (i.e,, somebody else’s problem). When compu-
tationalists do face up to problems of embeddedness, the interaction of the
cognitive system with the body and world is usually handled in ad hoc,
biologically implausible ways, Thus inputs are immediately “detemporalized”
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by transformation into static structures, as when speech signals are tran-
scribed into a spatial buffer. Outputs are handled by periodic intervention in
the environment, with the hope that these interventions will keep nudging
things in the right direction. Both methods require the addition to the model
of some independent timing device or clock, yet natural cognitive systems
don’t have clocks in anything like the required sense (Glass and Mackey,
1988; Winfree, 1980). The diurnal clocks observed in many animals, includ-
ing humans, do not help address the problem of rapid regular sampling that
would appear to be required to recognize speech (or a bird song or any other
distinctive pattern that is complex in time) using a buffered representation in
which time is translated into a labeled spatial axis.

The dynamical approach to cognition handles the embeddedness problem
by refusing to create it. The same basic mathematical and conceptual tools are
used to describe cognitive processes on the one hand and the nervous sys-
tem and the body and environment on the other. Though accounting for the
embeddedness of cognitive systems is still by no means trivial, at least the
dynamical approach to cognition does not face the problem of attempting
to overcome the differences between two very different general frameworks.
Thus the dynamics of central cognitive processes are nothing more than
aggregate dynamics of low-level neural processes, redescribed in higher-
level, lower-dimensional terms (see Relation to Neural Processes, below).
Dynamical systems theory provides a framework for understanding these
level relationships and the emergence of macroscopic order and complexity
from microscopic behavior. Similarly, a dynamical account of cognitive pro-
cesses is directly compatible with dynamical descriptions of the body and
the environment, since the dynamical account never steps outside time in the
first place. It describes cognitive processes as essentially unfolding over time,
and can therefore describe them as occurring in the very same time frame
as the movement of the body itself and physical events that occur in the
environment.

That cognitive processes must, for this general reason, ultimately be under-
stood dynamically can be appreciated by observing what happens when re-
searchers attempt to build serious models at the interface between internal
cognitive mechanisms and the body and environment. Thus Port et al. (see
chapter 12) aim to describe how it is possible to handle auditory patterns,
with all their complexities of sequence, rhythm, and rate, without biologically
implausible artificialities such as static input buffers or a rapid time-sampling
system. They find that the inner, cognitive processes themselves must unfold
over time with the auditory sequence, and that their qualitative properties
(like invariance of perception despite change in rate of presentation) are best
described in dynamical terms. In other words, attempting to describe how a
cognitive system might perceive its essentially temporal environment drives
dynamical conceptualizations inward, into the. cognitive system itself. Simi-
larly, researchers interested in the production of speech (see Saltzman, chapter
6; Browman and Goldstein, chapter 7) find that to understand the control of
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repeats itself, and dynamics is driven further inward. The natural outcome of
this progression is a picture of cognitive processing in its entirety, from
peripheral input systems to peripheral output systems and everything in be-
tween, as all unfolding dynamically in real time: mind as motion.

1.3 RELATION TO OTHER APPROACHES

A careful study of the relation of the dynamical conception of cognition
to the various other research enterprises in cognitive science would require
a book of its own. Here we just make some brief comments on the relation
of the dynamical approach to what are currently the two most prominent
alternative approaches, mainstream computationalism and connectionism. In
addition, we discuss how the dynamical approach relates to the modeling
of neural processes and to chaos theory.

Relation to the Computational Approach

Much has already been said about the relation between the computational
and dynamical approaches. In this section we add some clarifying remarks on
the nature of the empirical competition between the two approaches.

Earlier we characterized cognition in the broadest possible terms as all the
processes that are causally implicated in our sophisticated behaviors, Now, it
has always been the computationalist position that some of these processes
are computational in nature and many others are not. For these other pro-
cesses, traditional dynamical modes of explanation would presumably be
quite appropriate. For example, our engaging in an ordinary conversation
depends not only on thought processes which enable us to decide what to
say next but also on correct movements of lips, tongue, and jaw. Only the
former processes would be a matter of internal symbol manipulation; the
muscular movements would be dynamical processes best described by differ-
ential equations of some sort. In other words, computationalists have always
been ready to accept a form of peaceful coeristence with alternative forms
of explanation targeted at a different selection of the processes underlying
sophisticated performance. As we mentioned in section 1.2, the computa-
tionalist position is that the processes that must be computational in nature
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are distinguished by theit dependence on “knowledge”; this knowledge must
be represented somehow, and the best candidate is symbolically; hence the
processes must be computational (symbol manipulation). In fact, from this
perspective these knowledge-dependent, symbolic processes are the only gen-
uinely cognitive ones; all other processes are peripheral, or implementational,
or otherwise ancillary to real cognition. ‘

Now, it has never been entirely clear exactly where the boundary between
the two domains actually lies. The conflict between the computational and
dynamical approaches can thus be seen as a kind of boundary dispute. The
most extreme form of the computationalist hypothesis places the boundary
in such a way as to include all processes underlying our sophisticated behav-
iors in the computational domain. Probably nobody has ever maintained such
a position, but during the heyday of Al and computational cognitive science
in the 1960s and 1970s many more processes were thought to have computa-
tional explanations than anyone now supposes. Similarly, the dynamical hy-
pothesis draws the boundary to include all processes within the dynamical
domain. According to this ambitious doctrine the domain of the computa-
tional approach is empty, and dynamical accounts will eliminate their com-
putational competitors across all aspects of cognition. It remains to be seen
to what extent this is true, but dynamicists in cognitive science are busily at-
tempting to extend the boundary as far as possible, tackling phenomena that
were previously assumed to lie squarely within the computational purview.

There is another sense in which computationalists have always been pre-
pared to concede that cognitive systems are dynamical systems. They have
accepted that all cognitive processes, including those centrally located in the
computational domain, are implemented as dynamical processes at a lower
level. The situation is exactly analogous to that of a digital desktop computer.
The best high-level descriptions of these physical systems are cast in terms of
the algorithmic manipulation of symbols. Now, each such manipulation is
simply a dynamical process at the level of the electrical circuitry, and there
is a sense in which the whole computer is a massively complex dynamical
system that is amenable (in principle at least) to a dynamical description.
However, any such description would be hopelessly intractable, and would
fail to shed any light on the operation of the system as computing. Likewise,
human thought processes are based ultimately on the firing of neurons and
myriad other low-level processes that are best modeled in dynamical terms;
nevertheless, the computationalist claims that only high-level computational
models will provide tractable, revealing descriptions at the level at which
these processes can be seen as cognitive performances.

It may even turn out to be the case that there is a high-level computational
account of some cognitive phenomenon, and a lower-level dynamical account
that is also theoretically tractable and illuminating. If they are both targeted
on essentially the same phenomenon, and there is some precise, systematic
mapping between their states and processes, then the computational account
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would not be eliminated but simply implemented. A relationship of this kind
has been recently been advocated for certain psycholinguistic phenomena by
Smolensky, Legendre, and Miyata (1992). An alternative possibility is that a
high-level, computational description of some phenomenon tums out to be
an approximation, framed in discrete, sequential, symbol-manipulating termis,
of a process whose most powerful and accurate description is in dynamical
terms. In such a case only certain of the states and processes in the computa-
tional model would stand in a kind of rough correspondence with features of
the dynamical model. '

Relation to Connectionism

For the purposes of this discussion, we take connectionism to be that rather
broad and diverse research program which investigates cognitive processes
using artificial neural network models. Defined this way, connectionism is
perfectly compatible with the dynamical approach. Indeed, neural networks,
which are themselves typically continuous nonlinear dynamical systems, con-
stitute an excellent medium for dynamical modeling.

Thus the two approaches overlap, but only partially. On the one hand,
despite the fact that all connectionist networks are dynamical system:s, many
connectionists have not been utilizing dynamical concepts and tools to any
significant degree. At one extreme, connectionists have used their networks
to directly implement computational architectures (e.g.. Touretzky, 1990).
More commonly, they have molded their networks to conform to a broadly
computational outlook. In standard feedforward backpropagation networks,
for example, processing is seen as the sequential transformation, from one
layer to the next, of static representations. Such networks are little more
than sophisticated devices for mapping static inputs into static outputs. No
dynamics or temporal considerations are deployed in understanding the be-
havior of the network or the nature of the cognitive task itself. For example,
in the famous NETtalk network (Rosenberg and Sejnowski, 1987) the text
to be “pronounced” is sequentially fed in via a spatial input buffer and the
output is a phonemic specification; all the network does is sequentially trans-
form static input representations into static output representations. To the
extent that the difficult temporal problems of speech production are solved at
all, these solutions are entirely external to the network. Research of this kind
is really more computational than dynamical in basic orientation.

On the other hand, many dynamicists are not connectionists. This is obvi-
ous enough on the surface; their intellectual background, focus, and methods
are very different (see, e.g, Turvey and Carello, chapter 13; Reidbord and
Redington, chapter 17). But what, more precisely, is it that distinguishes the
two kinds of dynamicist? If we compare the various contributions to this
book, some features of a distinctively connectionist approach emerge. Most
obviously, connectionists deploy network dynamical models; they can thus
immediately be contrasted with dynamicists whose main contribution is dy-
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namical description (se¢ discussion in section 1.1). Even among those that
offer formal dynamical models, there are contrasts between connectionists
and others, though the distinction is more one of degree and emphasis.

One kind of contrast is in the nature of the formal model deployed. Con-

" nectionists standardly operate with relatively high-dimensional systems that

can be broken down into component systems, each of which is just a para-
metric variation on a common theme (i.e., the artificial neural units). Thus,
for example, the connectionist systems used by Randy Beer in his studies of
simple autonomous agents are defined by the following general differential
equation: '

N
= —yi+ Y. wio(y; — 6) + L i=12,... N
A

In this equation each y; designates the activation level of i-th of the N individ-
ual neural units, and wj; the weight which connects the i-th unit to the j-th
unit.!® This equation is thus really a schema, and if we were to write all the
equations out fully, we would have one each for y,, ,, etc. All these equa-
tions take the same form, which is to say that each of the component sub-
systems (the}neural units) are just variations on a common type.

Now, the models deployed by nonconnectionist dynamicists typically can-
not be broken down in this way; they are not made up of individual sub-
systems that have essentially the same dynamical form. For example, the
model system deployed by Turvey and Carello (chapter 13) to describe co-
ordination patterns among human oscillating limbs

¢ = Aw — asin(g) — 2ysin(2¢) + \/éét

has only one state variable (¢, the phase difference between the limbs). (See
Norton [chapter 2] for plenty of other examples of dynamical systems—
including multivariable systems—that cannot be broken down in his way.)

Another kind of contrast is the connectionist tendency to focus on learning
and adaptation rather than on mathematical proofs to demonstrate critical
properties. Much effort in connectionist modeling is devoted to finding ways
to modify parameter settings (e.g., the connection weights) for networks of
various architectures so as to exhibit a certain desired behavior, using tech-
niques like backpropagation and genetic algorithms. Nonconnectionists, by
contrast, rely on equations using many fewer parameters, with their para-
meter settings often determined by hand, and typically concentrate propor-
tionately more attention on the fine detail of the dynamics of the resulting
system.

In section 1.1 we claimed that connectionism should not be thought of as
constituting an alternative to the computational research paradigm in cogni-
tive science. The reason is that there is a much deeper fault line running
between the computational approach and the dynamical approach. In our
opinion, connectionists have often been attempting, unwittingly and unsuc-
cessfully, to straddle this line: to use dynamical machinery to implement ideas
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about the nature of cognitive processes which owe more to computational-
ism. From the perspective of a genuinely dynamical conception of cognition,
classic PDP-style connectionism (as contained in, for example, the well-known
volumes Rumelhart and McClelland, 1986, and McClelland and Rumelhart,
1986) is little more than an ill-fated attempt to find a halfway house between
the two worldviews. This diagnosis is borne out by recent developments.
Since its heyday in the mid- to late-1980s, this style of connectionist work
has been gradually disappearing, either collapsing back in the computational
direction (hybrid networks, and straightforward implementations of compu-
tational mechanisms), or becoming increasingly dynamic (e.g.. the shift to
recurrent networks analyzed with dynamical systems techniques). Connec-
tionist researchers who take the latter path are, of course, welcome partici-
pants in the dynamical approach.

Relation to Neural Processes

All cognitive scientists agree that cognition depends critically on neural pro-
cesses; indeed, it is customary to simply identify internal cognitive processing
with the activity of the CNS. Neuroscientists are making rapid progress
investigating these neural processes. Moreover, the predominant mathemati-
cal framework among neuroscientists for the detailed description of neural
processes is dynamics, at levels ranging from subcellular chemical transactions
to the activity of single neurons and the behavior of whole neural assemblies.
The CNS can therefore be considered a single dynamical system with a vast
number of state variables. This makes it tempting to suggest that dynamical
theories of cognition must be high-level accounts of the very same phenomena
that neuroscientists study in fine detail.

This would only be partially true, however. Not all dynamicists in cogni-
tive science are aiming to describe internal neural processes, even at a high
level. A central element of the dynamical perspective (see The Nature of
Cognitive Systems, above) is that cognitive processes span the nervous
system, the body, and the environment; hence cognition cannot be thought
of as wholly contained within the nervous system. Thus, in modeling cogni-
tion, dynamicists select aspects from a spectrum ranging from purely environ-
mental processes (e.g., Bingham, chapter 14) at one extreme to purely intra-
cranial processes (e.g., Petitot, chapter 9) at the other; in between are bodily
movements (e.g., Saltzman, chapter 6) and processes which straddle the divi-
sion between the intracranial and the body or environment (e.g., Turvey and
Carello, chapter 13). To select some local aspect of the total cognitive system
on which to focus is not to deny the importance or interest of other aspects;
choices about which aspect to study are made on the basis of factors such as
background, available tools, and hunches about where the most real progress
is likely to be made. :

Clearly, the idea that the dynamical approach to cognition is just the high-
level study of the same processes studied by the neuroscientists is applicable
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only to those dynamicists whose focus is on processes that are completely or
largely within the CNS. Other dynamicists are equally studying cognition, but
by focusing on other aspects of the large system in which cognitive perfor-
mance is realized.

What is involved in studying processes af a higher level? This simple phrase
covers a number of different shifts in focus. Most obviously, dynamical cog-
nitive scientists are attempting to describe systems and behaviors that are
aggregates of vast numbers of systems and behaviors as described at the neural
level. Whereas the neuroscientist may be attempting to describe the dynamics
of a single neuron, the dynamicist is interested in the dynamics of whole
subsystems of the nervous system, comprised of millions, perhaps billions of
neurons. Second, the dynamicist obviously does not study this aggregate
system by means of a mathematical model with billions of dimensions.
Rather, the aim is to provide a low-dimensional model that provides a scien-
tifically tractable description of the same qualitative dynamics as is exhibited
by the high-dimensional system. Thus, studying systems at a higher level
corresponds to studying them in terms of lower-dimensional mathematical
models. Third, dynamical cognitive scientists often attempt to describe the
neural processes at a larger time scale (see Multiple Time Scales, above). The
cognitive time scale is typically assumed to lie between roughly a fifth of a
second (the duration of an eyeblink) on up to hours and years. It happens
to be approximately the range of time scales over which people have aware-
ness of some of their own states and about which they can talk in natural lan-
guages. Neuroscientists, by contrast, typically study processes that occur on a
scale of fractions of a second.

Relation to Chaos Theory

Chaos theory is a branch of dynamical systems theory concerned with sys-
tems that exhibit chaotic behavior, which for current purposes can be loosely
identified with sensitivity to initial conditions (see Norton, chapter 2, for fur-
ther discussion). Sometimes, especially in popular discussions, the term chaos
theory is even used to refer to dynamical systems theory in general, though
this blurs important distinctions. Chaos theory has been one of the most
rapidly developing branches of nonlinear dynamical systems theory, and
developments in both pure mathematics and computer simulation have
revealed the chaotic nature of a wide variety of physical systems. Chaos
theory has even come to provide inspiration and metaphors for many outside
the mathematical sciences. It is therefore natural to ask what connection there
might be between chaos theory and the dynamical approach to cognition.
The answer is simply that there is no essential connection between the
two. Rather, chaos theory is just one more conceptual resource offered by
dynamical systems theory, a resource that might be usefully applied in the
study of cognition, but only if warranted by the data. None of the contribu-
tors to this volume have deployed chaos theory in any substantial sense. In
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this early stage in the development of the dynamical approach, researchers
are still exploring how to apply simpler, more manageable models and
concepts. The very features that make a system chaotic constitute obvioys
difficulties for anyone wanting to use that system as a model of cognitive
processes.

On the other hand, there are reasons to believe that chaos theory will play
some role in a fully developed dynamical account of cognition. Generically,
the kinds of systems that dynamicists tend to deploy in modeling cogni-
tive processes (typically continuous and nonlinear) are the home of chaotic
processes. Not surprisingly, certain classes of neural networks have been
mathematically demonstrated to exhibit chaotic behavior. Of more interest,
perhaps, chaos has been empirically observed in brain processes (Basar,
1990; Basar and Bullock, 1989). In one well-known research program, chaotic
behavior has been an integral part of a model of the neural processes under-
lying olfaction (Skarda and Freeman, 1987) (though here the role of chaos
was to provide a kind of optimal background or “ready” state rather than the
processes of scent recognition themselves). There have been fascinating initial
explorations of the idea that highly distinctive kinds of complexity in cogni-
tive performance, such as the productivity of linguistic capacities, might be
grounded in chaotic or near-chaos behavior (see, e.g., Pollack, chapter 10).
Accounting for such indications of chaos as already exist, and the further
uncovering of any role that chaotic notions might play in the heart of cog-
nitive processes, are clearly significant open challenges for the dynamical
approach.

1.4 A HISTORICAL SKETCH

The origins of the contemporary dynamical approach to cognition can be
traced at least as far back as the 1940s and 1950s, and in particular to that
extraordinary flux of ideas loosely gathered around what came to be known
as cybernetics (Wiener, 1948). At that time the new disciplines of computation
theory and information theory were being combined with elements of elec-
trical engineering, control theory, logic, neural network theory, and neuro-
physiology to open up whole new ways of thinking about systems that
can behave in adaptive, purposeful, or other mindlike ways (McCulloch, 1965;
Shannon and Weaver, 1949; von Neumann, 1958). There was a pervasive
sense at the time that somewhere in this tangled maze of ideas was the path
to a rigorous new scientific understanding of both biological and mental
phenomena. The problem for those wanting to understand cognition was to
identify this path, and follow it beyond toy examples to a deep understand-
ing of natural cognitive systems. What were the really crucial theoretical
resources, and how might they be forged into a paradigm for the study
of cognition? :

Dynamics was an important resource in this period. It was the basis of
control theory and the study of feedback mechanisms, and was critical to the
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theory of analog computation. It figured centrally in neuroscience and in the
study of neural networks. The idea that dynamics might form the general
framework for a unified science of cognition was the basis of one of the most
important books of the period, Ashby’s Design for a Brain (Ashby, 1952).
Interestingly, it was so obvious to Ashby that cognitive systems should be
studied from a dynamical perspective that he hardly even bothered to explic-
itly assert it. Unfortunately, the book was mainly foundational and program-
matic; it was short on explicit demonstrations of the utility of this framework
in psychological modeling or Al

During this period two other important strands from the web of cybernetic
ideas were under intensive development. One was the theory of neural net-
works and its use in constructing “brain models” (abstract models of how
neural mechanisms might exhibit cognitive functions) (Rosenblatt, 1962). The
other was the theory of symbolic computation as manifested in the creation
and dominance of LISP as a programming language for Al and for models of
psychological processes. Potted histories of the subsequent relationship be-
tween these two approaches have become part of the folklore of cognitive
science, and the details have been traced in other places (e.g., Dreyfus, 1992).
For current purposes, it suffices to say that, although they were initially seen
as natural partners, and although research of both types was sometimes even
conducted by the same researchers, beginning in the late 1950s, neural net-
work research and computationalism separated into distinct and competing
research paradigms. The computational approach scored some early successes
and managed to grab the spotlight, appropriating to itself the vivid phrase
“artificial intelligence” and the lion’s share of research funding. In this way
computer science came to provide the theoretical core of mainstream cogni-
tive science for a generation. Neural network research, nevertheless, did con-
tinue throughout this period, and much of it was strongly dynamical in flavor.
Of particular note here is the work of Stephen Grossberg and colleagues, in
which dynamical ideas were being applied in a neural network context to a
wide range of aspects of cognitive functioning (see Grossberg, chapter 15).

By the early 1980s mainstream computational Al and cognitive science
had begun to lose steam, and a new generation of cognitive scientists began
casting around for other frameworks within which to tackle some of the
issues that caused problems for the computational approach. As is well
known, this is when neural network research burgeoned in popularity and
came to be known as connectionism (Hinton and Anderson, 1981; Rumelhart
and McClelland, 1986; McClelland and Rumelhart, 1986; Quinlan, 1991).
Since connectionist networks are dynamical systems, it was inevitable that
dynamical tools would become important for understanding their behavior
and thereby the nature of cognitive functions. The recent rapid emergence of
the dynamical approach is thus due, in large measure, to this reemergence of
connectionism and its development in a dynamical direction.

Apart from cybernetics and neural network research, at least three other
research programs deserve mention as antecedents to the contemporary
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dynamical approach. One is derived from the physical sciences via biology,
another from pure mathematics, and the third from experimental psychology.
The first began with the question: Can the basic principles of description and
explanation applied with such success in the physical sciences to simple
closed systems be somehow extended or developed to yield an understand-
ing of complex, open systems? In particular, can general mathematical laws
be deployed in understanding the kinds of behaviors exhibited by biological
systems? One natural target was the biological phenomenon of coordi-
nated movement, since it involves regular, mathematically describable motion’
Yet the study of coordinated movement cannot avoid eventually invoking
notions such as intention, information, and perception, and so must overlap
with psychology. At this nexus arose a distinctive program of research into
human motor and perceptual skills which relied on resources proposed by
physicists and mathematicians such as Pattee, Prigogine, Rosen, and Haken,
and was inspired by Bernstein’s insights into motor control (Bernstein, 1967).
This program is exemplified in the work of Turvey, Kugler, and Kelso (Kelso
and Kay, 1987; Kugler and Turvey, 1987).

Dynamics is, in the first instance, a branch of mathematics. Applications of
dynamics in various areas of science have often flowed directly from devel-
opments in pure mathematics. A particularly dramatic example of this phe-
nomenon has been applications derived from the development, principally by
René Thom, of catastrophe theory. This theory is an extension of dynamics, in
combination with topology, to describe situations in which there arise dis-
continuities, i.e., sudden, dramatic changes in the state of a system.!$ Dis-
continuities are common in the physical, biological, cognitive, and social
domains, and are the basis for the formation of temporal structures, and so the
development of catastrophe theory led directly to new attempts to describe
and explain phenomena that had been beyond the scope of existing mathe-
matical methods. Of particular relevance here is application of catastrophe
theory to the investigation of language and cognition. Initial proposals by
Thom and Zeeman (Thom, 1975; Thom, 1983; Zeeman, 1977) have been
taken up and developed by Wildgen (1982) and Petitot (1985a,b) among
others. This work has involved some radical and ambitious rethinking of
problems of perception and the nature of language.

A third major source of inspiration for dynamical modeling came from
Gibson’s work in the psychology of perception (Gibson, 1979). Gibson
asserted that it was a mistake to devote too much attention to models of
internal mechanisms when the structure of stimulus information remained so
poorly understood. Since both the world and our bodies move about, it
seemed likely to Gibson that the structuring of stimulus energy (such as light)
by dynamical environmental events would play a crucial role in the achieve-
ment of successful real-time interaction with the environment. The resulting
focus on discovery of the sources of high-level information in the stimulus
turns out to dovetail nicely with continuous-time theories of dynamic percep-
tion and dynamic action. The inheritors of Gibson's baton have had many
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successes at specifying the dynamic information that underlies perceptual and
motor achievement (e.g., see Turvey and Carello, chapter, 13; Bingham, chap-
ter 14). The work of the ecological psychologists has been a key influence in

_encouraging researchers to adopt a dynamical perspective in various other

areas of cognitive science.

These five lines of research have recently been joined by other dynamics-
based investigations into a wide variety of aspects of cognition. What explains
this recent surge in activity? Partly, of course, it is the spreading influence of
the research programs just described. But another important factor has been
the rapid development in mathematics of nonlinear dynamical systems theory
in the 1970s and 1980s, providing contemporary scientists with a much more
extensive and powerful repertoire of conceptual and analytical tools than
were available to Ashby or McCulloch, for example. At a more prosaic level,
the continuing exponential growth in computing resources available to scien-
tists has provided cognitive scientists with the computational muscle required
to explore complex dynamical systems. In recent years a number of new soft-
ware packages have made dynamical modeling feasible even for researchers
whose primary training is not in mathematics or computer science.

Finally, of course, there is the nature of cognition itself. If the dynamical
conception of cognition is largely correct, then a partial explanation of why
researchers are, increasingly, applying dynamical tools may lie simply in
the fact that cognitive systems are the kind of systems that call out for a
dynamical treatment.
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NOTES

1. Technically, a differential equation is any equation involving a function and one or more of
its derivatives. For more details on differential equations, and the mass-spring equation in
particular, see Norton, chapter 2.

2. The notion of phase, like that of dynamical system itself, differs from one context to
another. In some contexts, a phase space is taken to be one in which one of the dimensions is
a time derivative such as velocity. In other contexts, phase is taken to refer to position in a
periodic pattem, as when we talk of the phase of an oscillating signal. Our notion of phase here
is a generalization of this latter sense. Since the rule governing a state-determined system
determines a unique sequence of points for any given point, every point in the space can be
understood as occupying a position (or “phase”) in the total pattem (or “dynamic”) fixed by
the rule. Our use thus accords with the common description of diagrams that sketch the overall
behavior of a dynamical system as phase portraits (see, e.g., Abraham and Shaw, 1982).
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3. For an example of the use of forms of the logistic equation, as a difference equation, in
cognitive modeling, see van Geert, chapter 11.

4. In fact, the total state of a computational system is more than just a configuration of
symbols. A Turing machine, for example, has at any time a configuration of symbols on its
tape, but it is also in a certain head state, and the head occupies a certain position; these must
also be counted as components of the total state of the system.

5. In particular, one could not demonstrate that cognitive systems are dynamical systems
merely by showing that any given natural cognitive system is governed by some dynamical
rule or other. Certainly, all people and animals obey the laws of classical mechanics; drop any
one from a high place, and it will accelerate at a rate determined by the force of gravitational
attraction. However, this does not show that cognitive systems are dynamical systems; it
merely illustrates the fact that heavy objects belong to dynamical systems.

6. A more radical possibility is that dynamical systems can behave in a way that depends
on knowledge without actually representing that knowledge by means of any particular, identi-
fiable aspect of the system.

7. For a more detailed introduction to dynamics, see Norton, chapter 2.

8. Of course, a range of general and quite powerful arguments have been put forward as
demonstrating that cognitive systems must be computational in nature (see, e.g., Fodor, 1975,
Newell and Simon, 1976¢; Pylyshyn, 1984). Dynamicists remain unconvinced by these argu-
ments, but we do not have space here to cover the arguments and the dynamicists’ responses
to them.

9. Turing machines are a particularly simple kind of computer, consisting of one long tape
marked with squares that can contain symbols, and a “head” (a central processing unit) which
moves from square to square making changes to the symbols. They are very often used in
discussions of foundational issues in cognitive science because they are widely known and,
despite their simplicity, can (in principle) perform computations just as complex as any other
computational system. For a very accessible introduction to Turing machines, see Haugeland
(1985).

10. One inappropriate way to extract temporal considerations from a computational model is
to rely on the timing of operations that follow from the model’s being implemented in real
physical hardware. This is inappropriate because the particular details of a model's hardware
implementation are irrelevant to the nature of the model, and the choice of a particular imple-
mentation is theoretically completely arbitrary.

11. Tronically, these kinds of assumptions have often been the basis for attacks on the plausibil-
ity of computational models. If you assume that each computational step must take some
certain minimum amount of time, it is not difficult to convince yourself that the typical compu-
tational model has no hope of completing its operations within a psychologically realistic
amount of time.

12. Precisely because discrete models are only an approximation of an underlying continuous
one, there are hard limits on how well the continuous function can be modeled. Thus, it is well
known to communications engineers that one must have at least two discrete samples for each
event of interest in the signal (often called Nyquist's theorem). The cognitive corollary of this
is that to model dynamical cognitive events that last on the order of a half-second and longer,
one must discretely compute the trajectory at least four times a second. Anything less may
result in artifactual characterization of the events. Since the time scale of cognitive events is
relatively slow compared to modem computers, this limit on discrete modeling of cognition
would not itself serve as a limiting constraint on real-time modeling of human cognitive
processes. '
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13. This is true for computational systems when they are considered at the level at which
we understand them as computational. The same object (e.g,, a desktop computer) can be seen
as undergoing continuous state changes when understood at some different level, e.g, the
level of electric circuits.

14. Note that when continuous systems bifurcate there can be genuinely discrete changes
in the attractor landscape of the system.

15. For a more detailed explanation of this equation, see Beer, chapter 5.

16. Note that this informal notion of discontinuity should not be confused with the precise
mathematical notion. It is a central feature of catastrophe theory that systems that are continu-
ous in the strict mathematical sense can exhibit discontinuities— dramatic, sharp changes—in
the more informal sense.
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