
ANSI
X3.9-1978

Revision of
ANSI X3.9-1966

American National Standard
Programming Language

FORTRAN

Secretariat
Computer and Business Equipment Manufacturers Association

Approved April 3, 1978
American National Standards Institute, Inc

CONTENTS
CONTENTS...i
1. INTRODUCTION ...1-1

1.1 Purpose..1-1
1.2 Processor ...1-1
1.3 Scope...1-1

1.3.1 Inclusions ...1-1
1.3.2 Exclusions ..1-1

1.4 Conformance...1-2
1.4.1 Subset Conformance ..1-3

1.5 Notation Used in This Standard..1-3
1.6 Subset Text..1-4

2. FORTRAN TERMS AND CONCEPTS...2-1
2.1 Sequence ...2-1
2.2 Syntactic Items..2-1
2.3 Statements, Comments, and Lines ..2-2

2.3.1 Classes of Statements...2-2
2.4 Program Units and Procedures..2-2

2.4.1 Procedures..2-2
2.4.2 Executable Program...2-3

2.5 Variable...2-3
2.6 Array ...2-3

2.6.1 Array Elements ..2-3
2.7 Substring ...2-3
2.8 Dummy Argument ..2-4
2.9 Scope of Symbolic Names and Statement Labels...2-4
2.10 List ..2-4
2.11 Definition Status ...2-4
2.12 Reference ..2-5
2.13 Storage ..2-6
2.14 Association..2-6

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE3-1
3.1 FORTRAN Character Set ...3-1

3.1.1 Letters...3-1
3.1.2 Digits..3-1
3.1.3 Alphanumeric Characters...3-1
3.1.4 Special Characters..3-1
3.1.5 Collating Sequence and Graphics ..3-2
3.1.6 Blank Character..3-3

3.2 Lines..3-2
3.2.1 Comment Line..3-2
3.2.2 Initial Line..3-3

iii

3.2.3 Continuation Line ..3-3
3.3 Statements ...3-3
3.4 Statement Labels...3-3
3.5 Order of Statements and Lines..3-4
3.6 Normal Execution Sequence and Transfer of Control..................................3-5

4. DATA TYPES AND CONSTANTS..4-1
4.1 Data Types ..4-1

4.1.1 Data Type of a Name ...4-1
4.1.2 Type Rules for Data and Procedure Identifiers..............................4-1
4.1.3 Data Type Properties..4-2

4.2 Constants...4-2
4.2.1 Data Type of a Constant...4-2
4.2.2 Blanks in Constants..4-2
4.2.3 Arithmetic Constants..4-2

4.2.3.1 Signs of Constants...4-3
4.3 Integer Type ..4-3

4.3.1 Integer Constant ...4-3
4.4 Real Type ..4-3

4.4.1 Basic Real Constant ...4-3
4.4.2 Real Exponent..4-3
4.4.3 Real Constant ...4-3

4.5 Double Precision Type..4-4
4.5.1 Double Precision Exponent..4-4
4.5.2 Double Precision Constant...4-4

4.6 Complex Type...4-4
4.6.1 Complex Constant..4-5

4.7 Logical Type ...4-5
4.7.1 Logical Constant ..4-5

4.8 Character Type..4-5
4.8.1 Character Constant...4-5

5. ARRAYS AND SUBSTRINGS ...5-1
5.1 Array Declarator ...5-1

5.1.1 Form of an Array Declarator..5-1
5.1.1.1 Form of a Dimension Declarator5-1
5.1.1.2 Value of Dimension Bounds...5-2

5.1.2 Kinds and Occurrences of Array Declarators5-2
5.1.2.1 Actual Array Declarator..5-2
5.1.2.2 Dummy Array Declarator ...5-3

5.2 Properties of an Array...5-3
5.2.1 Data Type of an Array and an Array Element5-3
5.2.2 Dimensions of an Array ...5-3
5.2.3 Size of an Array ...5-4
5.2.4 Array Element Ordering...5-4

iv

5.2.5 Array Storage Sequence..5-4
5.3 Array Element Name ..5-5
5.4 Subscript..5-5

Form of a Subscript..5-5
5.4.2 Subscript Expression..5-5
5.4.3 Subscript Value..5-6

5.5 Dummy and Actual Arrays ...5-8
5.5.1 Adjustable Arrays and Adjustable Dimensions5-8

5.6 Use of Array Names..5-9
5.7 Character Substring...5-9

5.7.1 Substring Name..5-10
5.7.2 Substring Expression..5-10

6. EXPRESSIONS ..6-1
6.1 Arithmetic Expressions...6-1

6.1.1 Arithmetic Operators..6-1
6.1.2 Form and Interpretation of Arithmetic Expressions6-1

6.1.2.1 Primaries ...6-3
6.1.2.2 Factor ..6-3
6.1.2.3 Term..6-3
6.1.2.4 Arithmetic Expression..6-4

6.1.3 Arithmetic Constant Expression ..6-4
6.1.3.1 Integer Constant Expression ...6-5

6.1.4 Type and Interpretation of Arithmetic Expressions.......................6-5
6.1.5 Integer Division..6-7

6.2 Character Expressions...6-8
6.2.1 Character Operator...6-8
6.2.2 Form and Interpretation of Character Expressions6-8

6.2.2.1 Character Primaries...6-8
6.2.2.2 Character Expression ..6-9

6.2.3 Character Constant Expression ..6-9
6.3 Relational Expressions..6-10

6.3.1 Relational Operators ..6-10
6.3.2 Arithmetic Relational Expression ..6-10
6.3.3 Interpretation of Arithmetic Relational Expressions6-10
6.3.4 Character Relational Expression..6-11
6.3.5 Interpretation of Character Relational Expressions6-11

6.4 Logical Expressions ..6-11
6.4.1 Logical Operators...6-12
6.4.2 Form and Interpretation of Logical Expressions............................6-12

6.4.2.1 Logical Primaries ..6-13
6.4.2.2 Logical Factor ...6-13
6.4.2.3 Logical Term...6-13
6.4.2.4 Logical Disjunct..6-13

v

6.4.2.5 Logical Expression..6-14
6.4.3 Value of Logical Factors, Terms, Disjuncts, and
Expressions. ...6-14
6.4.4 Logical Constant Expression ...6-15

6.5 Precedence of Operators ...6-15
6.5.1 Summary of Interpretation Rules...6-16

6.6 Evaluation of Expressions...6-16
6.6.1 Evaluation of Operands..6-17
6.6.2 Order of Evaluation of Functions...6-18
6.6.3 Integrity of Parentheses...6-18
6.6.4 Evaluation of Arithmetic Expressions ...6-18
6.6.5 Evaluation of Character Expressions ...6-20
6.6.6 Evaluation of Relational Expressions ...6-20
6.6.7 Evaluation of Logical Expressions ..6-20

6.7 Constant Expressions ..6-21
7. EXECUTABLE AND NONEXECUTABLE STATEMENT
CLASSIFICATION ...7-1

7.1 Executable Statements ..7-1
7.2 Nonexecutable Statements ..7-1

8. SPECIFICATION STATEMENTS..7-1
8.1 DIMENSION Statement ...8-1
8.2 EQUIVALENCE Statement ...8-2

8.2.1 Form of an EQUIVALENCE Statement..8-2
8.2.2 Equivalence Association..8-2
8.2.3 Equivalence of Character Entities..8-2
8.2.4 Array Names and Array Element Names.......................................8-3
8.2.5 Restrictions on EQUIVALENT Statements8-3

8.3 COMMON Statement ...8-3
8.3.1 Form of a COMMON Statement ...8-3
8.3.2 Common Block Storage Sequence...8-4
8.3.3 Size of a Common Block ...8-4
8.3.4 Common Association...8-5
8.3.5 Differences Between Named Common and Blank Common8-5
8.3.6 Restrictions on Common and Equivalence8-5

8.4 Type-Statements..8-5
8.4.1 INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and LOGICAL Type-Statements. ..8-6
8.4.2 CHARACTER Type-Statement...8-6

8.5 IMPLICIT Statement ..8-8
8.6 PARAMETER Statement ...8-9
8.7 EXTERNAL Statement...8-10
8.8 INTRINSIC Statement..8-10
8.9 SAVE Statement ...8-11

vi

9. DATA STATEMENT...9-1
9.1 Form of a DATA Statement..9-1
9.2 DATA Statement Restrictions ..9-1
9.3 Implied-DO in a DATA Statement ...9-2
9.4 Character Constant in a DATA Statement..9-3

10. ASSIGNMENT STATEMENTS..10-1
10.1 Arithmetic Assignment Statement ..10-1
10.2 Logical Assignment Statement ...10-2
10.3 Statement Label Assignment (ASSIGN) Statement10-2
10.4 Character Assignment Statement..10-3

11. CONTROL STATEMENTS...11-1
11.1 Unconditional GO TO Statement..11-1
11.2 Computed GO TO Statement..11-2
11.3 Assigned GO TO Statement..11-2
11.4 Arithmetic IF Statement..11-3
11.5 Logical IF Statement...11-3
11.6 Block IF Statement..11-4

11.6. 1 IF-Level..11-4
11.6.2 IF-Block ...11-4
11.6.3 Execution of a Block IF Statement ..11-4

11.7 ELSE IF Statement..11-5
11.7.1 ELSE IF-Block...11-5
11.7.2 Execution of an ELSE IF Statement ..11-5

11.8 ELSE Statement ..11-5
11.8.1 ELSE-Block ...11-5
11.8.2 Execution of an ELSE Statement...11-6

11.9 END IF Statement...11-6
11.10 DO Statement..11-6

11.10.1 Range of a DO-Loop..11-7
11.10.2 Active and Inactive DO-Loops ..11-7
11.10.3 Executing a DO Statement...11-7
11.10.4 Loop Control Processing..11-8
11.10.5 Execution of the Range..11-8
11.10.6 Terminal Statement Execution...11-8
11.10.7 Incrementation Processing ...11-9
11.10.8 Transfer into the Range of a DO-Loop11-9

11.11 CONTINUE Statement ...11-10
11.12 STOP Statement..11-10
11.13 PAUSE Statement...11-10
11.14 END Statement ...11-10

12. INPUT/OUTPUT STATEMENTS...12-1
12.1 Records..12-1

12.1.1 Formatted Record..12-2

vii

12.1.2 Unformatted Record...12-2
12.1.3 Endfile Record ...12-2

12.2 Files..12-2
12.2.1 File Existence...12-3
12.2.2 File Properties ..12-3
12.2.3 File Position ...12-3
12.2.4 File Access ...12-4

12.2.4.1 Sequential Access ...12-4
12.2.4.2 Direct Access ...12-4

12.2.5 Internal File..12-5
12.2.5.1 Internal File Properties..12-5
12.2.5.2 Internal File Restrictions...12-6

12.3 Units..12-6
12.3.1 Unit Existence..12-6
12.3.2 Connection of a Unit..12-7
12.3.3 Unit Specifier and Identifier ..12-7

12.4 Format Specifier and Identifier...12-8
12.5 Record Specifier..12-9
12.6 Error and End-of-File Conditions ...12-9
12.7 Input/Output Status, Error, and End-of-File Specifiers12-10

12.7.1 Error Specifier..12-10
12.7.2 End-of-File Specifier..12-11

12.8 READ, WRITE, and PRINT Statements ..12-11
12.8.1 Control Information List ..12-12
12.8.2 Input/Output List..12-13

12.8.2.1 Input List Items. ..12-13
12.8.2.2 Output List Items ..12-13
12.8.2.3 Implied-DO List..12-14

12.9 Execution of a Data Transfer Input/Output Statement................................12-14
12.9.1 Direction of Data Transfer ...12-15
12.9.2 Identifying a Unit...12-15
12.9.3 Establishing a Format...12-15
12.9.4 File Position Prior to Data Transfer ...12-15

12.9.4.1 Sequential Access ...12-16
12.9.4.2 Direct Access ..12-16

12.9.5 Data Transfer..12-16
12.9.5.1 Unformatted Data Transfer ...12-17
12.9.5.2 Formatted Data Transfer ...12-17

12.9.5.2.1 Using a Format Specification.........................12-17
12.9.5.2.2 List-Directed Formatting................................12-18
12.9.5.2.3 Printing of Formatted Records.......................12-18

12.9.6 File Position After Data Transfer...12-18
12.9.7 Input/Output Status Specifier Definition12-19

viii

12.10 Auxiliary Input/Output Statements ...12-19
12.10.1 OPEN Statement ..12-19

12.10.1.1 Open of a Connected Unit...12-21
12.10.2 CLOSE Statement..12-22

12.10.2.1 Implicit Close at Termination of Execution................12-23
12.10.3 INQUIRE Statement ..12-23

12.10.3.1 INQUIRE by File..12-23
12.10.3.2 INQUIRE by Unit ...12-24
12.10.3.3 Inquire Specifiers ..12-24

12.10.4 File Positioning Statements..12-28
12.10.4.1 BACKSPACE Statement ..12-28
12.10.4.2 ENDFILE Statement...12-29
12.10.4.3 REWIND Statement..12-29

12.11 Restrictions on Function References and List Items.................................12-29
12.12 Restrictions on Input/Output Statements ...12-29

13. FORMAT SPECIFICATION ...13-1
13.1 Format Specification Methods..13-1

13.1.1 FORMAT Statement..13-1
13.1.2 Character Format Specification ...13-1

13.2 Form of a Format Specification ..13-2
13.2.1 Edit Descriptors..13-2

13.3 Interaction Between Input/Output List and Format13-3
13.4 Positioning by Format Control..13-4
13.5 Editing...13-5

13.5.1 Apostrophe Editing ..13-5
13.5.2 H Editing..13-5
13.5.3 Positional Editing...13-5

13.5.3.1 T, TL, and TR Editing...13-6
13.5.3.2 X Editing...13-6

13.5.5 Colon Editing ...13-7
13.5.6 S, SP, and SS Editing...13-7
13.5.7 P Editing...13-7

13.5.7.1 Scale Factor...13-7
13.5.8 BN and BZ Editing ..13-8
13.5.9 Numeric Editing...13-8

13.5.9.1 Integer Editing...13-9
13.5.9.2 Real and Double Precision Editing13-10

13.5.9.2.1 F Editing...13-10
13.5.9.2.2 E and D Editing..13-10
13.5.9.2.3 G Editing..13-11
13.5.9.2.4 Complex Editing ..13-12

13.6 List-Directed Formatting...13-13
13.6.1 List-Directed Input...13-14

ix

13.6.2 List-Directed Output ..13-15
14. MAIN PROGRAM ...14-1

14.1 PROGRAM Statement...14-1
14.2 Main Program Restrictions ...14-1

15. FUNCTIONS AND SUBROUTINES..15-1
15.1 Categories of Functions and Subroutines..15-1

15.1.1 Procedures..15-1
15.1.2 External Functions ...15-1
15.1.3 Subroutines...15-1
15.1.4 Dummy Procedure ...15-1

15.2 Referencing a Function ...15-2
15.2.1 Form of a Function Reference ...15-2
15.2.2 Execution of a Function Reference..15-3

15.3 Intrinsic Functions...15-3
15.3.1 Specific Names and Generic Names..15-3
15.3.2 Referencing an Intrinsic Function..15-3
15.3.3 Intrinsic Function Restrictions...15-4

15.4 Statement Function ...15-4
15.4.1 Form of a Statement Function Statement.....................................15-4
15.4.2 Referencing a Statement Function ...15-6
15.4.3 Statement Function Restrictions ..15-6

15.5 External Functions ..15-7
15.5.1 Function Subprogram and FUNCTION Statement......................15-7
15.5.2 Referencing an External Function..15-8

15.5.2.1 Execution of an External Function Reference15-8
15.5.2.2 Actual Arguments for an External Function.................15-8

15.5.3 Function Subprogram Restrictions...15-9
15.6 Subroutines..15-10

15.6.1 Subroutine Subprogram and SUBROUTINE Statement15-10
15.6.2 Subroutine Reference...15-10

15.6.2.1 Form of a CALL Statement ..15-10
15.6.2.2 Execution of a CALL Statement...................................15-11
15.6.2.3 Actual Arguments for a Subroutine15-11

15.6.3 Subroutine Subprogram Restrictions ...15-12
15.7 ENTRY Statement ..15-12

15.7.1 Form of an ENTRY Statement...15-13
15.7.2 Referencing External Procedure by Entry Name.........................15-13
15.7.3 Entry Association...15-14
15.7.4 ENTRY Statement Restrictions ...15-14

15.8 RETURN Statement..15-15
15.8.1 Form of a RETURN Statement..15-15
15.8.2 Execution of a RETURN Statement ..15-15
15.8.3 Alternate Return...15-15

x

15.8.4 Definition Status ..15-16
15.9 Arguments and Common Blocks ..15-16

15.9.1 Dummy Arguments..15-17
15.9.2 Actual Arguments ..15-17
15.9.3 Association of Dummy and Actual Arguments15-17

15.9.3.1 Length of Character Dummy and Actual
Arguments..15-18
15.9.3.2 Variables as Dummy Arguments15-19
15.9.3.3 Arrays as Dummy Arguments.......................................15-19
15.9.3.4 Procedures as Dummy Arguments................................15-20
15.9.3.5 Asterisks as Dummy Arguments...................................15-20
15.9.3.6 Restrictions on Association of Entities15-21

15.10 Table of Intrinsic Functions ..15-23
15.10.1 Restrictions on Range of Arguments and Results......................15-28

16. BLOCK DATA SUBPROGRAM ..16-1
16.1 BLOCK DATA Statement..16-1
16.2 Block Data Subprogram Restrictions..16-1

17. ASSOCIATION AND DEFINITION...17-1
17.1 Storage and Association..17-1

17.1.1 Storage Sequence ...17-1
17.1.2 Association of Storage Sequences ...17-1
17.1.3 Association of Entities ...17-1

17.2 Events That Cause Entities to Become Defined ...17-3
17.3 Events That Cause Entities to Become Undefined17-4

18. SCOPES AND CLASSES OF SYMBOLIC NAMES ...18-1
18.1 Scope of Symbolic Names ..18-1

18.1.1 Global Entities..18-1
18.1.2 Local Entities ...18-2

18.1.2.1 Classes of Local Entities...18-2
18.2 Classes of Symbolic Names..18-2

18.2.1 Common Block ..18-2
18.2.2 External Function...18-3
18.2.3 Subroutine ..18-3
18.2.4 Main Program ..18-4
18.2.5 Block Data Subprogram...18-4
18.2.6 Array ..18-4
18.2.7 Variable..18-4
18.2.8 Constant ...18-5
18.2.9 Statement Function ..18-5
18.2.10 Intrinsic Function ...18-5
18.2.11 Dummy Procedure ...18-6

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY................................A-1
A1. Criteria..A-1

xi

A2. Conflicts with ANSI X3.9-1966 ..A-1
A3. Standard Items That Inhibit Portability..A-4
A4. Recommendation for Enhancing Portabilty...A-5

APPENDIX B: SECTION NOTES ...B-1
B1. Section 1 Notes...B-1
B2. Section 2 Notes...B-2
B3. Section 3 Notes...B-2
B4. Section 4 Notes...B-3
B5. Section 5 Notes...B-3
B6. Section 6 Notes...B-3
B7. Section 7 Notes...B-4
B8. Section 8 Notes...B-4
B9. Section 9 Notes...B-4
B10. Section 10 Notes...B-5
B11. Section 11 Notes...B-5
B12. Section 12 Notes...B-6
B13. Section 13 Notes...B-10
B14. Section 14 Notes...B-12
B15. Section 15 Notes...B-12
B16. Section 16 Notes...B-15
B17. Section 17 Notes...B-15
B18. Section 18 Notes...B-15

APPENDIX C: HOLLERITH..C-1
C1. Hollerith Data Type..C-1
C2. Hollerith Constant ..C-1
C3. Restrictions on Hollerith Constants..C-1
C4. Hollerith Constant in a DATA Statement ..C-2
C5. Hollerith Format Specification...C-2
C6. A Editing of Hollerith Data..C-2
C7. Hollerith Constant in a Subroutine Reference..C-3

APPENDIX D: SUBSET OVERVIEW...D-1
D1. Background ..D-1
D2. Criteria..D-2
D2.1 Full Language...D-2

D2.2 Subset Language ..D-2
D3. Summary of Subset Differences...D-2
D3.1 Section 1: Introduction...D-2
D3.2 Section 2: FORTRAN Terms and Concepts ..D-3
D3.3 Section 3: Characters, Lines, and Execution SequenceD-3
D3.4 Section 4: Data Types and Constants...D-3
D3.5 Section 5: Arrays and Substrings ...D-3
D3.6 Section 6: Expressions ...D-4
D3.7 Section 7: Executable and Nonexecutable Statement ClassificationD-4

xii

D3.8 Section 8: Specification Statements...D-4
D3.9 Section 9: DATA Statement...D-4
D3.10 Section 10: Assignment Statements...D-4
D3.11 Section 11: Control Statements..D-5
D3.12 Section 12: Input/Output Statements ...D-5
D3.13 Section 13: Format Specification...D-6
D3.14 Section 14: Main Program ...D-6
D3.15 Section 15: Functions and Subroutines..D-6
D3.16 Section 16: Block Data Subprogram..D-7
D3.17 Section 17: Association and Definition..D-7
D3.18 Section 18: Scope and Classes of Symbolic NamesD-7
D3.19 Section 1 to 18: Character Type...D-7

D3.19.1 Character Features in the Subset. ..D-7
D3.19.2 Character Features Not in the Subset.D-8

D4. Subset Conformance ..D-8
D4.1 Subset Processor Conformance..D-9
D4.2 Subset Program Performance...D-9

APPENDIX E: FORTRAN STATEMENTS...E-1

ANSI X3.9-1978

1-1

1. INTRODUCTION

1.1 Purpose

This standard specifies the form and establishes the interpretation of programs expressed
in the FORTRAN language. The purpose of this standard is to promote portability of
FORTRAN programs for use on a variety of data processing systems.

1.2 Processor

The combination of a data processing system and the mechanism by which programs are
transformed for use on that data processing system is called a processor in this standard.

1.3 Scope

1.3.1 Inclusions

This standard specifies:

(1) The form of a program written in the FORTRAN language

(2) Rules for interpreting the meaning of such a program and its data

(3) The form of writing input data to be processed by such a program operating
on data processing systems

(4) The form of the output data resulting from the use of such a program on data
processing systems

1.3.2 Exclusions

This standard does not specify:

(1) The mechanism by which programs are transformed for use on a data
processing system

(2) The method of transcription of programs or their input or output data to or
from a data processing medium

(3) The operations required for setup and control of the use of programs on data
processing systems

ANSI X3.9-1978

1-2

(4) The results when the rules of this standard fail to establish an interpretation

(5) The size or complexity of a program and its data that will exceed the
capacity of any specific data processing system or the capability of a
particular processor

(6) The range or precision of numeric quantities and the method of rounding of
numeric results

(7) The physical properties of input/output records, files, and units

(8) The physical properties and implementation of storage

1.4 Conformance

The requirements, prohibitions, and options specified in this standard generally refer to
permissible forms and relationships for standard-conforming programs rather than for
processors. The obvious exceptions are the optional output forms produced by a
processor, which are not under the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must be inferred from those
given for programs.

An executable program (2.4.2) conforms to this standard if it uses only those forms and
relationships described herein and if the executable program has an interpretation
according to this standard. A program unit (2.4) conforms to this standard if it can be
included in an executable program in a manner that allows the executable program to be
standard conforming.

A processor conforms to this standard if it executes standard-conforming programs in a
manner that fulfills the interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships provided that such additions do
not conflict with the standard forms and relationships. However, a standard-conforming
processor may allow additional intrinsic functions (15.10) even though this could cause a
conflict with the name of an external function in a standard-conforming program. If such
a conflict occurs, the processor is permitted to use the intrinsic function unless the name
appears in an EXTERNAL statement within the program unit. A standard-conforming
program must not use intrinsic functions that have been added by the processor. Note that
a standard-conforming program must not use any forms or relationships that are
prohibited by this standard, but a standard-conforming processor may allow such forms
and relationships if they do not change the proper interpretation of a standard-conforming
program.

ANSI X3.9-1978

1-3

Because a standard-conforming program may place demands on the processor that are not
within the scope of this standard or may include standard items that are not portable, such
as external procedures defined by means other than FORTRAN, conformance to this
standard does not ensure that a standard-conforming program will execute consistently on
all or any standard-conforming processors.

1.4.1 Subset Conformance

This standard describes two levels of the FORTRAN language, referred to as FORTRAN
and subset FORTRAN. FORTRAN is the full language. Subset FORTRAN is a subset of
the full language. An executable program conforms to the subset level of this standard if
it uses only those forms and relationships described herein for that level and if the
executable program has an interpretation according to this standard at that level and
would have the same interpretation in the full language. A program unit conforms to the
subset level of this standard if it can be included in an executable program in a manner
that allows the executable program to be standard conforming at that level.

A subset level processor conforms to the subset level of this standard if it executes subset
level standard-conforming programs in a manner that fulfills the interpretations
prescribed herein for subset FORTRAN. A subset level processor may include an
extension that has a form and would have an interpretation at the full level only if the
extension has the interpretation provided by the full level. A subset level processor may
also include extensions that do not have forms and interpretations in the full language.

1.5 Notation Used in This Standard

In this standard, "must" is. to be interpreted as a requirement; conversely, "must not" is to
be interpreted as a prohibition.

In describing the form of FORTRAN statements or constructs, the following
metalanguage conventions and symbols are used:

(1) Special characters from the FORTRAN character set, uppercase letters, and
uppercase words are to be written as shown, except where otherwise noted.

(2) Lowercase letters and lowercase words indicate general entities for which
specific entities must be substituted in actual statements. Once a given
lowercase letter or word is used in a syntactic specification to represent an
entity, all subsequent occurrences of that letter or word represent the same
entity until that letter or word is used in a subsequent syntactic specification
to represent a different entity.

ANSI X3.9-1978

1-4

(3) Brackets, [], are used to indicate optional items.

(4) An ellipsis, ... , indicates that the preceding optional items may appear one or
more times in succession.

(5) Blanks are used to improve readability, but unless otherwise noted have no
significance.

(6) Words or groups of words that have special significance are underlined
where their meaning is described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage. Given a description of the form of a statement
as:

CALL sub [([a [, a]...])]

the following forms are allowed:

CALL sub
CALL sub ()
CALL sub (a)
CALL sub (a , a)
CALL sub (a , a , a)

etc.

When an actual statement is written, specific entities are substituted for sub and each a;
for example:

CALL ABCD (X,1.0)

1.6 Subset Text

The section titles in the subset description are identical to the section titles in the full
language description.

There are some instances in which a general situation occurs in the full language but only
a restricted case applies to the subset. For example, in 3.6, the "nonexecutable
statements" that may appear between executable statements may only be FORMAT
statements in the subset. In most of these instances, the more general text of the full
language description has been retained in the subset description, even though it is to be
interpreted as covering only the restricted case.

ANSI X3.9-1978

1-5

To help find differences between the full and subset languages, vertical bars have been
added in the margins where the text of the full and subset languages differ. For example,
this sentence does not appear in the subset language text.

ANSI X3.9-1978

2-1

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some of which are clarified
further in later sections. Many terms and concepts of more specialized meaning are also
introduced in later sections. The underlined words are described here and used
throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence with the numbers 1, 2,
through n. The number of elements in the sequence is n. A sequence may be empty, in
which case it contains no elements.

The elements of a nonempty sequence are referred to as the first element, second element,
etc. The nth element, where n is the number of elements in the sequence, is called the last
element. An empty sequence has no first or last element.

2.2 Syntactic Items

Letters, digits, and special characters of the FORTRAN character set (3.1) are used to
form the syntactic items of the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement labels, keywords,
operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six letters or digits, the first of
which must be a letter. Classification of symbolic names and restrictions on their use are
described in Section 18.

A statement label takes the form of a sequence of one to five digits, one of which must
be nonzero, and is used to identify a statement (3.4).

A keyword takes the form of a specified sequence of letters. The keywords that are
significant in the FORTRAN language are described in Sections 7 through 16. In many
instances, a keyword or a portion of a keyword also meets the requirements for a
symbolic name. Whether a particular sequence of characters identifies a keyword or a
symbolic name is implied by context. There is no sequence of characters that is reserved
in all contexts in FORTRAN.

ANSI X3.9-1978

2-2

The set of special characters is described in 3.1.4. A special character may be an operator
or part of a constant or have some other special meaning. The interpretation is implied by
context.

2.3 Statements, Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as described in Sections 7
through 16. Except for assignment and statement function statements, each statement
begins with a keyword. In this standard, the keyword or keywords that begin the
statement are used to identify that statement. For example, a DATA statement begins
with the keyword DATA.

A statement is written in one or more lines, the first of which is called an initial line
(3.2.2); succeeding lines, if any, are called continuation lines (3.2.3).

There is also a line called a comment line (3.2.1), which is not part of any statement and
is intended to provide documentation.

2.3.1 Classes of Statements

Each statement is classified as executable or nonexecutable (Section 7). Executable
statements specify actions. Nonexecutable statements describe the characteristics,
arrangement, and initial values of data; contain editing information; specify statement
functions; classify program units; and specify entry points within subprograms.

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and optional comment lines. A
program unit is either a main program or a subprogram.

A main program is a program unit that does not have a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement; it may have a PROGRAM statement as
its first statement.

A subprogram is a program unit that has a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. A subprogram whose first statement is a
FUNCTION statement is called a function subprogram. A subprogram whose first
statement is a SUBROUTINE statement is called a subroutine subprogram. Function
subprograms and subroutine subprograms are called procedure subprograms. A
subprogram whose first statement is a BLOCK DATA statement is called a block data
subprogram.

ANSI X3.9-1978

2-3

2.4.1 Procedures

Subroutines (15.6), external functions (15.5), statement functions (15.4), and the intrinsic
functions (15.3) are called procedures. Subroutines and external functions are called
external procedures. Function subprograms and subroutine subprograms may specify one
or more external functions and subroutines, respectively (15.7). External procedures may
also be specified by means other than FORTRAN subprograms.

2.4.2 Executable Program

An executable program is a collection of program units that consists of exactly one main
program and any number, including none, of subprograms and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A variable name is a symbolic
name of a datum. Such a datum may be identified, defined (2.11), and referenced (2.12).
Note that the usage in this standard of the word "variable" is more restricted than its
normal usage, in that it does not include array elements.

The type of a variable is optionally specified by the appearance of the variable name in a
type-statement (8.4). If it is not so specified, the type of a variable is implied by the first
letter of the variable name to be integer or real (4.1.2), unless the initial letter type
implication is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable program, a variable is either
defined or undefined (2.11).

2.6 Array

An array is a nonempty sequence of data that has a name and a type. The name of an
array is a symbolic name.

2.6.1 Array Elements

Each of the elements of an array is called an array element. An array name qualified by a
subscript is an array element name and identifies a particular element of the array (5.3).
Such a datum may be identified, defined (2.11), and referenced (2.12). The number of
array elements in an array is specified by an array declarator (5.1).

An array element has a type. The type of all array elements within an array is the same,
and is optionally specified by the appearance of the array name in a type-statement (8.4).

ANSI X3.9-1978

2-4

If it is not so specified, the type of an array element is implied by the first letter of the
array name to be integer or real (4.1.2), unless the initial letter type implication is
changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable program, an array element is
either defined or undefined (2.11).

2.7 Substring

A character datum is a nonempty sequence of characters. A substring is a contiguous
portion of a character datum. The form of a substring name used to identify, define
(2.11), or reference (2.12) a substring is described in 5.7.1.

At any given time during the execution of an executable program, a substring is either
defined or undefined (2.11).

2.8 Dummy Argument

A dummy argument in a procedure is either a symbolic name or an asterisk. A symbolic
name dummy argument identifies a variable, array, or procedure that becomes associated
(2.14) with an actual argument of each reference (2.12) to the procedure (15.2, 15.4.2,
15.5.2, and 15.6.2). An asterisk dummy argument indicates that the corresponding actual
argument is an alternate return specifier (15.6.2.3, 15.8.3, and 15.9.3.5).

Each dummy argument name that is classified as a variable, array, or dummy procedure
may appear wherever an actual name of the same class (Section 18) and type may appear,
except where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement Labels

The scope of a symbolic name (18.1) is an executable program, a program unit, a
statement function statement, or an implied-DO list in a DATA statement.

The name of the main program and the names of block data subprograms, external
functions, subroutines, and common blocks have a scope of an executable program.

The names of variables, arrays, constants, statement functions, intrinsic functions, and
dummy procedures have a scope of a program unit.

The names of variables that appear as dummy arguments in a statement function
statement have a scope of that statement.

ANSI X3.9-1978

2-5

The names of variables that appear as the DO-variable of an implied-DO in a DATA
statement have a scope of the implied-DO list.

Statement labels have a scope of a program unit.

2.10 List

A list is a nonempty sequence (2.1) of syntactic entities separated by commas. The
entities in the list are called list items.

2.11 Definition Status

At any given time during the execution of an executable program, the definition status of
each variable, array element, or substring is either defined or undefined (Section 17).

A defined entity has a value. The value of a defined entity does not change until the entity
becomes undefined or is redefined with a different value.

If a variable, array element, or substring is undefined, it does not have a predictable
value.

A previously defined variable or array element may become undefined. Subsequent
definition of a defined variable or array element is permitted, except where it is explicitly
prohibited.

A character variable, character array element, or character substring is defined if every
substring of length one of the entity is defined. Note that if a string is defined, every
substring of the string is defined, and if any substring of the string is undefined, the string
is undefined. Defining any substring does not cause any other string or substring to
become undefined.

An entity is initially defined if it is assigned a value in a DATA statement (Section 9).
Initially defined entities are in the defined state at the beginning of execution of an
executable program. All variables and array elements not initially defined, or associated
(2.14) with an initially defined entity, are undefined at the beginning of execution of an
executable program.

An entity must be defined at the time a reference to it is executed.

2.12 Reference

ANSI X3.9-1978

2-6

A variable, array element, or substring reference is the appearance of a variable, array
element, or substring name, respectively, in a statement in a context requiring the value
of that entity to be used during the execution of the executable program. When a
reference to an entity is executed, its current value is available. In this standard, the act of
defining an entity is not considered a reference to that entity.

A procedure reference is the appearance of a procedure name in a statement in a context
that requires the actions specified by the procedure to be executed during the execution of
the executable program. When a procedure reference is executed, the procedure must be
available.

ANSI X3.9-1978

2-7

2.13 Storage

A storage sequence is a sequence of storage units. A storage unit is either a numeric
storage unit or a character storage unit.

An integer, real, or logical datum has one numeric storage unit in a storage sequence. A
double precision or complex datum has two numeric storage units in a storage sequence.
A character datum has one character storage unit in a storage sequence for each
character in the datum. This standard does not specify a relationship between a numeric
storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage sequence, those storage units
are consecutive.

The concept of a storage sequence is used to describe relationships that exist among
variables, array elements, arrays, substrings, and common blocks. This standard does not
specify a relationship between the storage sequence concept and the physical properties
or implementation of storage.

2.14 Association

Association of entities exists if the same datum may be identified by different symbolic
names in the same program unit, or by the same name or a different name in different
program units of the same executable program (17.1).

Entities may become associated by the following:

(1) Common association (8.3.4)

(2) Equivalence association (8.2.2)

(3) Argument association (15.9.3)

(4) Entry association (15.7.3)

ANSI X3.9-1978

3-1

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen special
characters.

3.1.1 Letters

A letter is one of the twenty-six characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3.1.2 Digits

A digit is one of the ten characters:

0 1 2 3 4 5 6 7 8 9

A string of digits is interpreted in the decimal base number system when a numeric
interpretation is appropriate.

3.1.3 Alphanumeric Characters

An alphanumeric character is a letter or a digit.

3.1.4 Special Characters

A special character is one of the thirteen characters:

Character Name of Character
Blank

= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis
, Comma
. Decimal Point
$ Currency Symbol

ANSI X3.9-1978

3-2

' Apostrophe
: Colon

3.1.5 Collating Sequence and Graphics

The order in which the letters are listed in 3.1.1 specifies the collating sequence for the
letters; A is less than Z. The order in which the digits are listed in 3.1.2 specifies the
collating sequence for the digits; 0 is less than 9. The digits and letters must not be
intermixed in the collating sequence; all of the digits must precede A or all of the digits
must follow Z. The character blank is less than the letter A and less than the digit 0. The
order in which the special characters are listed in 3.1.4 does not imply a collating
sequence.

Except for the currency symbol, the graphics used for the forty-nine characters must be as
given in 3.1.1, 3.1.2, and 3.1.4. However, the style of any graphic is not specified.

3.1.6 Blank Character

With the exception of the uses specified (3.2.2, 3.2.3, 3.3, 4.8, 4.8.1, 13.5.1, and 13.5.2),
a blank character within a program unit has no meaning and may be used to improve the
appearance of the program unit, subject to the restriction on the number of consecutive
continuation lines (3.3).

3.2 Lines

A line in a program unit is a sequence of 72 characters. All characters must be from the
FORTRAN character set, except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a line are called columns and are numbered consecutively 1, 2,
through 72. The number indicates the sequential position of a character in the line,
beginning at the left and proceeding to the right. Lines are ordered by the sequence in
which they are presented to the processor. Thus, a program unit consists of a totally
ordered set of characters.

3.2.1 Comment Line

A comment line is any line that contains a C or an asterisk in column 1, or contains only
blank characters in columns 1 through 72. A comment line that contains a C or an
asterisk in column 1 may contain any character capable of representation in the processor
in columns 2 through 72.

ANSI X3.9-1978

3-3

A comment line does not affect the executable program in any way and may be used to
provide documentation.

Comment lines may appear anywhere in the program unit. Comment lines may precede
the initial line of the first statement of any program unit. Comment lines may appear
between an initial line and its first continuation line or between two continuation lines.

3.2.2 Initial Line

An initial line is any line that is not a comment line and contains the character blank or
the digit 0 in column 6. Columns 1 through 5 may contain a statement label (3.4), or each
of the columns 1 through 5 must contain the character blank.

3.2.3 Continuation Line

A continuation line is any line that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in column 6 and contains only blank
characters in columns 1 through 5. A statement must not have more than nineteen
continuation lines.

3.3 Statements

The statements of the FORTRAN language are described in Sections 7 through 16 and
are used to form program units. Each statement is written in columns 7 through 72 of an
initial line and as many as nineteen continuation lines. An END statement is written only
in columns 7 through 72 of an initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note that a statement must contain no
more than 1320 characters. Except as part of a logical IF statement (11.5), no statement
may begin on a line that contains any part of the previous statement.

Blank characters preceding, within, or following a statement do not change the
interpretation of the statement, except when they appear within the datum strings of
character constants or the H or apostrophe edit descriptors in FORMAT statements.
However, blank characters do count as characters in the limit of total characters allowed
in any one statement.

3.4 Statement Labels

Statement labels provide a means of referring to individual statements. Any statement
may be labeled, but only labeled executable statements and FORMAT statements may be
referred to by the use of statement labels. The form of a statement label is a sequence of
one to five digits, one of which must be nonzero. The statement label may be placed

ANSI X3.9-1978

3-4

anywhere in columns 1 through 5 of the initial line of the statement. The same statement
label must not be given to more than one statement in a program unit. Blanks and leading
zeros are not significant in distinguishing between statement labels.

ANSI X3.9-1978

3-5

3.5 Order of Statements and Lines

A PROGRAM statement may appear only as the first statement of a main program. The
first statement of a subprogram must be either a FUNCTION, SUBROUTINE, or
BLOCK DATA statement.

Within a program unit that permits the statements:

(1) FORMAT statements may appear anywhere;

(2) all specification statements must precede all DATA statements, statement
function statements, and executable statements;

(3) all statement function statements must precede all executable statements;

(4) DATA statements may appear anywhere after the specification statements;
and

(5) ENTRY statements may appear anywhere except between a block IF
statement and its corresponding END IF statement, or between a DO
statement and the terminal statement of its DO-loop.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements. Any
specification statement that specifies the type of a symbolic name of a constant must
precede the PARAMETER statement that defines that particular symbolic name of a
constant; the PARAMETER statement must precede all other statements containing the
symbolic names of constants that are defined in the PARAMETER statement.

The last line of a program unit must be an END statement.

ANSI X3.9-1978

3-6

Figure 1
Required Order of Statements and Comment Lines

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

PARAMETER
IMPLICIT

Statements

Comment
Lines

FORMAT
and

Statements Other
Specification
Statements

ENTRY
Statements

DATA

Statement
Function

Statements
Statements Executable

Statements
END Statement

Figure 1 is a diagram of the required order of statements and comment lines for a
program unit. Vertical lines delineate varieties of statements that may be interspersed. For
example, FORMAT statements may be interspersed with statement function statements
and executable statements. Horizontal lines delineate varieties of statements that must not
be interspersed. For example, statement function statements must not be interspersed with
executable statements. Note that an END statement is also an executable statement and
must appear only as the last statement of a program unit.

3.6 Normal Execution Sequence and Transfer of Control

Normal execution sequence is the execution of executable statements in the order in
which they appear in a program unit. Execution of an executable program begins with the
execution of the first executable statement of the main program. When an external
procedure specified in a subprogram is referenced, execution begins with the first
executable statement that follows the FUNCTION, SUBROUTINE, or ENTRY statement
that specifies the referenced procedure as the name of a procedure.

A transfer of control is an alteration of the normal execution sequence. Statements that
may cause a transfer of control are:

(1) GO TO

(2) Arithmetic IF

ANSI X3.9-1978

3-7

(3) RETURN

(4) STOP

(5) An input/output statement containing an error specifier or end-of-file
specifier

(6) CALL with an alternate return specifier

(7) A logical IF statement containing any of the above forms

(8) Block IF and ELSE IF

(9) The last statement, if any, of an IF-block or ELSE IF-block

(10) DO

(11) The terminal statement of a DO-loop

(12) END

The effect of these statements on the execution sequence is described in Sections 11, 12,
and 15.

The normal execution sequence is not affected by the appearance of nonexecutable
statements or comment lines between executable statements. Execution of a function
reference or a CALL statement is not considered a transfer of control in the program unit
that contains the reference, except when control is returned to a statement identified by an
alternate return specifier in a CALL statement. Execution of a RETURN or END
statement in a referenced procedure, or execution of a transfer of control within a
referenced procedure, is not considered a transfer of control in the program unit that
contains the reference.

In the execution of an executable program, a procedure subprogram must not be
referenced a second time without the prior execution of a RETURN or END statement in
that procedure.

ANSI X3.9-1978

4-1

4. DATA TYPES AND CONSTANTS

4.1 Data Types

The six types of data are:

(1) Integer

(2) Real

(3) Double precision

(4) Complex

(5) Logical

(6) Character

Each type is different and may have a different internal representation. The type may
affect the interpretation of the operations involving the datum.

4.1.1 Data Type of a Name

The name employed to identify a datum or a function also identifies its data type. A
symbolic name representing a constant, variable, array, or function (except a generic
function) must have only one type for each program unit. Once a particular name is
identified with a particular type in a program unit, that type is implied for any usage of
the name in the program unit that requires a type.

4.1.2 Type Rules for Data and Procedure Identifiers

A symbolic name that identifies a constant, variable, array, external function, or
statement function may have its type specified in a type-statement (8.4) as integer, real,
double precision, complex, logical, or character. In the absence of an explicit declaration
in a type-statement, the type is implied by the first letter of the name. A first letter of I, J,
K, L, M, or N implies type integer and any other letter implies type real, unless an
IMPLICIT statement (8.5) is used to change the default implied type.

The data type of an array element name is the same as the type of its array name.

The data type of a function name specifies the type of the datum supplied by the function
reference in an expression.

ANSI X3.9-1978

4-2

A symbolic name that identifies a specific intrinsic function in a program unit has a type
as specified in 15.10. An explicit type-statement is not required; however, it is permitted.
A generic function name does not have a predetermined type; the result of a generic
function reference assumes a type that depends on the type of the argument, as specified
in 15.10. If a generic function name appears in a type-statement, such an appearance is
not sufficient by itself to remove the generic properties from that function.

In a program unit that contains an external function reference, the type of the function is
determined in the same manner as for variables and arrays.

The type of an external function is specified implicitly by its name, explicitly in a
FUNCTION statement, or explicitly in a type-statement. Note that an IMPLICIT
statement within a function subprogram may affect the type of the external function
specified in the subprogram.

A symbolic name that identifies a main program, subroutine, common block, or block
data subprogram has no data type.

4.1.3 Data Type Properties

The mathematical and representation properties for each of the data types are specified in
the following sections. For real, double precision, and integer data, the value zero is
considered neither positive nor negative. The value of a signed zero is the same as the
value of an unsigned zero.

4.2 Constants

A constant is an arithmetic constant, logical constant, or character constant. The value of
a constant does not change. Within an executable program, all constants that have the
same form have the same value.

4.2.1 Data Type of a Constant

The form of the string representing a constant specifies both its value and data type. A
PARAMETER statement (8.6) allows a constant to be given a symbolic name. The
symbolic name of a constant must not be used to form part of another constant.

4.2.2 Blanks in Constants

Blank characters occurring in a constant, except in a character constant, have no effect on
the value of the constant.

ANSI X3.9-1978

4-3

4.2.3 Arithmetic Constants

Integer, real, double precision, and complex constants are arithmetic constants.

4.2.3.1 Signs of Constants

An unsigned constant is a constant without a leading sign. A signed constant is a constant
with a leading plus or minus sign. An optionally signed constant is a constant that may be
either signed or unsigned. Integer, real, and double precision constants may be optionally
signed constants, except where specified otherwise.

4.3 Integer Type

An integer datum is always an exact representation of an integer value. It may assume a
positive, negative, or zero value. It may assume only an integral value. An integer datum
has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant

The form of an integer constant is an optional sign followed by a nonempty string of
digits. The digit string is interpreted as a decimal number.

4.4 Real Type

A real datum is a processor approximation to the value of a real number. It may assume a
positive, negative, or zero value. A real datum has one numeric storage unit in a storage
sequence.

4.4.1 Basic Real Constant

The form of a basic real constant is an optional sign, an integer part, a decimal point, and
a fractional part, in that order. Both the integer part and the fractional part are strings of
digits; either of these parts may be omitted but not both. A basic real constant may be
written with more digits than a processor will use to approximate the value of the
constant. A basic real constant is interpreted as a decimal number.

4.4.2 Real Exponent

The form of a real exponent is the letter E followed by an optionally signed integer
constant. A real exponent denotes a power of ten.

ANSI X3.9-1978

4-4

4.4.3 Real Constant

The forms of a real constant are:

(1) Basic real constant

(2) Basic real constant followed by a real exponent

(3) Integer constant followed by a real exponent

The value of a real constant that contains a real exponent is the product of the constant
that precedes the E and the power of ten indicated by the integer following the E. The
integer constant part of form (3) may be written with more digits than a processor will
use to approximate the value of the constant.

4.5 Double Precision Type

A double precision datum is a processor approximation to the value of a real number. The
precision, although not specified, must be greater than that of type real. A double
precision datum may assume a positive, negative, or zero value. A double precision
datum has two consecutive numeric storage units in a storage sequence.

4.5.1 Double Precision Exponent

The form of a double precision exponent is the letter D followed by an optionally signed
integer constant. A double precision exponent denotes a power of ten. Note that the form
and interpretation of a double precision exponent are identical to those of a real exponent,
except that the letter D is used instead of the letter E.

4.5.2 Double Precision Constant

The forms of a double precision constant are:

(1) Basic real constant followed by a double precision exponent

(2) Integer constant followed by a double precision exponent

The value of a double precision constant is the product of the constant that precedes the D
and the power of ten indicated by the integer following the D. The integer constant part
of form (2) may be written with more digits than a processor will use to approximate the
value of the constant.

ANSI X3.9-1978

4-5

4.6 Complex Type

A complex datum is a processor approximation to the value of a complex number. The
representation of a complex datum is in the form of an ordered pair of real data. The first
of the pair represents the real part of the complex datum and the second represents the
imaginary part. Each part has the same degree of approximation as for a real datum. A
complex datum has two consecutive numeric storage units in a storage sequence; the first
storage unit is the real part and the second storage unit is the imaginary part.

ANSI X3.9-1978

4-6

4.6.1 Complex Constant

The form of a complex constant is a left parenthesis followed by an ordered pair of real or
integer constants separated by a comma, and followed by a right parenthesis. The first
constant of the pair is the real part of the complex constant and the second is the
imaginary part.

4.7 Logical Type

A logical datum may assume only the values true or false. A logical datum has one
numeric storage unit in a storage sequence.

4.7.1 Logical Constant

The forms and values of a logical constant are:

Form Value
.TRUE. True
.FALSE. False

4.8 Character Type

A character datum is a string of characters. The string may consist of any characters
capable of representation in the processor. The blank character is valid and significant in
a character datum. The length of a character datum is the number of characters in the
string. A character datum has one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that is numbered consecutively 1, 2,
3, etc. The number indicates the sequential position of a character in the string, beginning
at the left and proceeding to the right.

4.8.1 Character Constant

The form of a character constant is an apostrophe followed by a nonempty string of
characters followed by an apostrophe. The string may consist of any characters capable of
representation in the processor. Note that the delimiting apostrophes are not part of the
datum represented by the constant. An apostrophe within the datum string is represented
by two consecutive apostrophes with no intervening blanks. In a character constant,
blanks embedded between the delimiting apostrophes are significant.

ANSI X3.9-1978

4-7

The length of a character constant is the number of characters between the delimiting
apostrophes, except that each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The length of a character constant
must be greater than zero.

ANSI X3.9-1978

5-1

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element is one member of the
sequence of data. An array name is the symbolic name of an array. An array element
name is an array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the entire sequence of elements of
the array in certain forms where such use is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a subscript identifies the first
element of the array (8.2.4).

An array element name identifies one element of the sequence. The subscript value
(Table 1) specifies the element of the array being identified. A different array element
may be identified by changing the subscript value of the array element name.

An array name is local to a program unit (18.1.2).

A substring is a contiguous portion of a character datum.

5.1 Array Declarator

An array declarator specifies a symbolic name that identifies an array within a program
unit and specifies certain properties of the array. Only one array declarator for an array
name is permitted in a program unit.

5.1.1 Form of an Array Declarator

The form of an array declarator is:

 a (d [, d]...)

where:
a is the symbolic name of the array

d is a dimension declarator

The number of dimensions of the array is the number of dimension declarators in the
array declarator. The minimum number of dimensions is one and the maximum is seven.

5.1.1.1 Form of a Dimension Declarator

The form of a dimension declarator is:

ANSI X3.9-1978

5-2

[d 1:] d 2

where:
d1 is the lower dimension bound

d2 is the upper dimension bound

The lower and upper dimension bounds are arithmetic expressions, called dimension
bound expressions, in which all constants, symbolic names of constants, and variables are
of type integer. The upper dimension bound of the last dimension may be an asterisk in
assumed-size array declarators (5.1.2). A dimension bound expression must not contain a
function or array element reference. Integer variables may appear in dimension bound
expressions only in adjustable array declarators (5.1.2).

If the symbolic name of a constant or variable that appears in a dimension bound
expression is not of default implied integer type (4.1.2), it must be specified as integer by
an IMPLICIT statement or a type-statement prior to its appearance in a dimension bound
expression.

5.1.1.2 Value of Dimension Bounds

The value of either dimension bound may be positive, negative, or zero; however, the
value of the upper dimension bound must be greater than or equal to the value of the
lower dimension bound. If only the upper dimension bound is specified, the value of the
lower dimension bound is one. An upper dimension bound of an asterisk is always
greater than or equal to the lower dimension bound.

5.1.2 Kinds and Occurrences of Array Declarators

Each array declarator is either a constant array declarator, an adjustable array declarator,
or an assumed-size array declarator. A constant array declarator is an array declarator in
which each of the dimension bound expressions is an integer constant expression
(6.1.3.1). An adjustable array declarator is an array declarator that contains one or more
variables. An assumed-size array declarator is a constant array declarator or an
adjustable array declarator, except that the upper dimension bound of the last dimension
is an asterisk.

Each array declarator is either an actual array declarator or a dummy array declarator.

5.1.2.1 Actual Array Declarator

ANSI X3.9-1978

5-3

An actual array declarator is an array declarator in which the array name is not a dummy
argument. Each actual array declarator must be a constant array declarator. An actual
array declarator is permitted in a DIMENSION statement, type-statement, or COMMON
statement (Section 8).

ANSI X3.9-1978

5-4

5.1.2.2 Dummy Array Declarator

A dummy array declarator is an array declarator in which the array name is a dummy
argument. A dummy array declarator may be either a constant array declarator, an
adjustable array declarator, or an assumed-size array declarator. A dummy array
declarator is permitted in a DIMENSION statement or a type-statement but not in a
COMMON statement. A dummy array declarator may appear only in a function or
subroutine subprogram.

5.2 Properties of an Array

The following properties of an array are specified by the array declarator: the number of
dimensions of the array, the size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified by the array declarator for the
array in that program unit.

5.2.1 Data Type of an Array and an Array Element

An array name has a data type (4.1.1). An array element name has the same data type as
the array name.

5.2.2 Dimensions of an Array

The number of dimensions of an array is equal to the number of dimension declarators in
the array declarator.

The size of a dimension is the value:

 d 2 - d 1 + 1

where:
d1 is the value of the lower dimension bound

d2 is the value of the upper dimension bound

Note that if the value of the lower dimension bound is one, the size of the dimension is
d2.

The size of a dimension whose upper bound is an asterisk is not specified.

ANSI X3.9-1978

5-5

The number and size of dimensions in one array declarator may be different from the
number and size of dimensions in another array declarator that is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array

The size of an array is equal to the number of elements in the array. The size of an array
is equal to the product of the sizes of the dimensions specified by the array declarator for
that array name. The size of an assumed-size dummy array (5.5) is determined as follows:

(1) If the actual argument corresponding to the dummy array is a noncharacter
array name, the size of the dummy array is the size of the actual argument
array.

(2) If the actual argument corresponding to the dummy array name is a
noncharacter array element name with a subscript value of r in an array of
size x, the size of the dummy array is x + 1 - r .

(3) If the actual argument is a character array name, character array element
name, or character array element substring name and begins at character
storage unit t of an array with c character storage units, then the size of the
dummy array is INT((c + 1 - t)/ ln), where ln is the length of an
element of the dummy array.

If an assumed-size dummy array has n dimensions, the product of the sizes of the first n -
1 dimensions must be less than or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering

The elements of an array are ordered in a sequence (2.1). An array element name contains
a subscript (5.4.1) whose subscript value (5.4.3) determines which element of the array is
identified by the array element name. The first element of the array has a subscript value
of one; the second element has a subscript value of two; the last element has a subscript
value equal to the size of the array.

Whenever an array name unqualified by a subscript is used to designate the whole array
(5.6), the appearance of the array name implies that the number of values to be processed
is equal to the number of elements in the array and that the elements of the array are to be
taken in sequential order.

5.2.5 Array Storage Sequence

ANSI X3.9-1978

5-6

An array has a storage sequence consisting of the storage sequences of the array elements
in the order determined by the array element ordering. The number of storage units in an
array is x*z, where x is the number of the elements in the array and z is the number of
storage units for each array element.

5.3 Array Element Name

The form of an array element name is:

 a (s [, s]...)

where:
a is the array name

(s, [,s]...) is a subscript (5.4.1)

s is a subscript expression (5.4.2)

The number of subscript expressions must be equal to the number of dimensions in the
array declarator for the array name.

5.4 Subscript

 Form of a Subscript

The form of a subscript is:

(s [, s]...)

where s is a subscript expression.

Note that the term "subscript" includes the parentheses that delimit the list of subscript
expressions.

5.4.2 Subscript Expression

A subscript expression is an integer expression. A subscript expression may contain
array element references and function references. Note that a restriction in the evaluation
of expressions (6.6) prohibits certain side effects. In particular, evaluation of a function
must not alter the value of any other subscript expression within the same subscript.

ANSI X3.9-1978

5-7

Within a program unit, the value of each subscript expression must be greater than or
equal to the corresponding lower dimension bound in the array declarator for the array.
The value of each subscript expression must not exceed the corresponding upper
dimension bound declared for the array in the program unit. If the upper dimension
bound is an asterisk, the value of the corresponding subscript expression must be such
that the subscript value does not exceed the size of the dummy array.

5.4.3 Subscript Value

The subscript value of a subscript is specified in Table 1. The subscript value determines
which array element is identified by the array element name. Within a program unit, the
subscript value depends on the values of the subscript expressions in the subscript and on
the dimensions of the array specified in the array declarator for the array in the program
unit. If the subscript value is r, the rth element of the array is identified.

ANSI X3.9-1978

5-8

Table 1
Subscript Value

n Dimension
Declarator

Subscript Subscript
Value

1 (j1:k1) (s1) 1+(s1-j1)
2 (j1:k1,j2:k2) (s1,s2) 1+(s1-j1)

+(s2-j2)*d1
3 (j1:k1,j2:k2,j3:k3) (s1,s2,s3) 1+(s1-j1)

+(s2-j2)*d1
+(s3-j3)*d2*d1

n (j1:k1,...,jn:kn) (s1,...,sn) 1+(s1-j1)
+(s2-j2)*d1
+(s3-j3)*d2*d1
+ ...
+(sn-jn)*dn-1
dn-2...*d1

Notes for Table 1:

(1) n is the number of dimensions, 1 < n < 7.

(2) ji is the value of the lower bound of the ith dimension.

(3) ki is the value of the upper bound of the ith dimension.

(4) If only the upper bound is specified, then ji = 1.

(5) si is the integer value of the ith subscript expression.

(6) di = ki-ji+1 is the size of the ith dimension. If the value of the lower bound is
1, then di = ki.

Note that a subscript of the form (j1,...jn) has a subscript value of one and identifies the
first element of the array. A subscript of the form (k1,...,kn) identifies the last element of
the array; its subscript value is equal to the number of elements in the array.

The subscript value and the subscript expression value are not necessarily the same, even
for a one-dimensional array. In the example:

 DIMENSION A(-1:8),B(10,10)

ANSI X3.9-1978

5-9

 A(2) = B(1,2)

A(2) identifies the fourth element of A, the subscript is (2) with a subscript value of four,
and the subscript expression is 2 with a value of two. B(1,2) identifies the eleventh
element of B, the subscript is (1,2) with a subscript value of eleven, and the subscript
expressions are 1 and 2 with values of one and two.

5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is a dummy array declarator.
An assumed-size dummy array is a dummy array for which the array declarator is an
assumed-size array declarator. A dummy array is permitted only in a function or
subroutine subprogram (Section 15).

An actual array is an array for which the array declarator is an actual array declarator.
Each array in the main program is an actual array and must have a constant array
declarator. A dummy array may be used as an actual argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions

An adjustable array is an array for which the array declarator is an adjustable array
declarator. In an adjustable array declarator, those dimension declarators that contain a
variable name are called adjustable dimensions.

An adjustable array declarator must be a dummy array declarator. At least one dummy
argument list of the subprogram must contain the name of the adjustable array. A variable
name that appears in a dimension bound expression of an array must also appear as a
name either in every dummy argument list that contains the array name or in a common
block in that subprogram.

At the time of execution of a reference to a function or subroutine containing an
adjustable array in its dummy argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound expression for the array and each
variable in common appearing in a dimension bound expression for the array must be
defined with an integer value. The values of those dummy arguments or variables in
common, together with any constants and symbolic names of constants appearing in the
dimension bound expression, determine the size of the corresponding adjustable
dimension for the execution of the subprogram. The sizes of the adjustable dimensions
and of any constant dimensions appearing in an adjustable array declarator determine the
number of elements in the array and the array element ordering. The execution of
different references to a subprogram or different executions of the same reference
determine possibly different properties (size of dimensions, dimension bounds, number of

ANSI X3.9-1978

5-10

elements, and array element ordering) for each adjustable array in the subprogram. These
properties depend on the values of any actual arguments and variables in common that
are referenced in the adjustable dimension expressions in the subprogram.

During the execution of an external procedure in a subprogram containing an adjustable
array, the array properties of dimension size, lower and upper dimension bounds, and
array size (number of elements in the array) do not change. However, the variables
involved in an adjustable dimension may be redefined or become undefined during
execution of the external procedure with no effect on the above-mentioned properties.

5.6 Use of Array Names

In a program unit, each appearance of an array name must be in an array element name
except in the following cases:

In a list of dummy arguments

In a COMMON statement

In a type-statement

In an array declarator. Note that although the form of an array declarator may be
identical to that of an array element name, an array declarator is not an array
element name.

(1) In an EQUIVALENCE statement

(2) In a DATA statement

(3) In the list of actual arguments in a reference to an external procedure

(4) In the list of an input/output statement if the array is not an assumed-size
dummy array

(5) As a unit identifier for an internal file in an input/output statement if the
array is not an assumed-size dummy array

(6) As the format identifier in an input/output statement if the array is not an
assumed-size dummy array

(7) In a SAVE statement

ANSI X3.9-1978

5-11

5.7 Character Substring

A character substring is a contiguous portion of a character datum and is of type
character. A character substring is identified by a substring name and may be assigned
values and referenced.

ANSI X3.9-1978

5-12

5.7.1 Substring Name

The forms of a substring name are:

 v ([e 1] : [e 2])

 a (s [, s]...)([e 1] : [e 2])

where:
v is a character variable name

a (s [,s]...) is a character array element name

e1 and e2 are each an integer expression and are called substring expressions

The value e1 specifies the leftmost character position of the substring, and the value e2
specifies the rightmost character position. For example, A(2:4) specifies characters in
positions two through four of the character variable A, and B(4,3)(1:6) specifies
characters in positions one through six of the character array element B(4,3).

The values of e1 and e2 must be such that:

1 ≤ e 1 ≤ e 2 ≤ len

where len is the length of the character variable or array element (8.4.2). If e1 is omitted,
a value of one is implied for e1. If e2 is omitted, a value of len is implied for e2. Both e1
and e2 may be omitted; for example, the form v(:) is equivalent to v, and the form
a(s [,s]...)(:) is equivalent to a(s [,s]...). The length of a character substring is e2 - e1 + 1.

5.7.2 Substring Expression

A substring expression may be any integer expression. A substring expression may
contain array element references and function references. Note that a restriction in the
evaluation of expressions (6.6) prohibits certain side effects. In particular, evaluation of a
function must not alter the value of any other expression within the same substring name.

ANSI X3.9-1978

6-1

6. EXPRESSIONS

This section describes the formation, interpretation, and evaluation rules for arithmetic,
character, relational, and logical expressions. An expression is formed from operands,
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is used to express a numeric computation. Evaluation of an
arithmetic expression produces a numeric value.

The simplest form of an arithmetic expression is an unsigned arithmetic constant,
symbolic name of an arithmetic constant, arithmetic variable reference, arithmetic array
element reference, or arithmetic function reference. More complicated arithmetic
expressions may be formed by using one or more arithmetic operands together with
arithmetic operators and parentheses. Arithmetic operands must identify values of type
integer, real, double precision, or complex.

6.1.1 Arithmetic Operators

The five arithmetic operators are:

Operator Representing
** Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators **, /, and * operates on a pair of operands and is written between
the two operands. Each of the operators + and - either:

(1) operates on a pair of operands and is written between the two operands, or

(2) operates on a single operand and is written preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions

The interpretation of the expression formed with each of the arithmetic operators in each
form of use is as follows:

ANSI X3.9-1978

6-2

Use of Operator Interpretation
x1 ** x2 Exponentiate x1 to the power x2
x1 / x2 Divide x1 by x2
x1 * x2 Multiply x1 and x2
x1 - x2 Subtract x2 from x1

- x2 Negate x2
x1 + x2 Add x1 and x2

+ x2 Same as x2

where:

x1 denotes the operand to the left of the operator

x2 denotes the operand to the right of the operator

The interpretation of a division may depend on the data types of the operands (6.1.5).

A set of formation rules is used to establish the interpretation of an arithmetic expression
that contains two or more operators. There is a precedence among the arithmetic
operators, which determines the order in which the operands are to be combined unless
the order is changed by the use of parentheses. The precedence of the arithmetic
operators is as follows:

Operator Precedence
** Highest

* and / Intermediate
+ and - Lowest

For example, in the expression

- A ** 2

the exponentiation operator (**) has precedence over the negation operator (-); therefore,
the operands of the exponentiation operator are combined to form an expression that is
used as the operand of the negation operator. The interpretation of the above expression
is the same as the interpretation of the expression

- (A ** 2)

The arithmetic operands are:

(1) Primary

ANSI X3.9-1978

6-3

(2) Factor

(3) Term

(4) Arithmetic expression

The formation rules to be applied in establishing the interpretation of arithmetic
expressions are in 6.1.2.1 through 6.1.2.4.

6.1.2.1 Primaries

The primaries are:

(1) Unsigned arithmetic constant (4.2.3)

(2) Symbolic name of an arithmetic constant (8.6)

(3) Arithmetic variable reference (2.5)

(4) Arithmetic array element reference (5.3)

(5) Arithmetic function reference (15.2)

(6) Arithmetic expression enclosed in parentheses (6.1.2.4)

6.1.2.2 Factor

The forms of a factor are:

(1) Primary

(2) Primary ** factor

Thus, a factor is formed from a sequence of one or more primaries separated by the
exponentiation operator. Form (2) indicates that in interpreting a factor containing two or
more exponentiation operators, the primaries are combined from right to left. For
example, the factor

2**3**2

has the same interpretation as the factor

ANSI X3.9-1978

6-4

2**(3**2)

6.1.2.3 Term

The forms of a term are:

(1) Factor

(2) Term / factor

(3) Term * factor

Thus, a term is formed from a sequence of one or more factors separated by either the
multiplication operator or the division operator. Forms (2) and (3) indicate that in
interpreting a term containing two or more multiplication or division operators, the
factors are combined from left to right.

6.1.2.4 Arithmetic Expression

The forms of an arithmetic expression are:

(1) Term

(2) + term

(3) - term

(4) Arithmetic expression + term

(5) Arithmetic expression - term

Thus, an arithmetic expression is formed from a sequence of one or more terms separated
by either the addition operator or the subtraction operator. The first term in an arithmetic
expression may be preceded by the identity or the negation operator. Forms (4) and (5)
indicate that in interpreting an arithmetic expression containing two or more addition or
subtraction operators, the terms are combined from left to right.

Note that these formation rules do not permit expressions containing two consecutive
arithmetic operators, such as A**-B or A+-B. However, expressions such as A**(-B)
and A+(-B) are permitted.

6.1.3 Arithmetic Constant Expression

ANSI X3.9-1978

6-5

An arithmetic constant expression is an arithmetic expression in which each primary is
an arithmetic constant, the symbolic name of an arithmetic constant, or an arithmetic
constant expression enclosed in parentheses. The exponentiation operator is not permitted
unless the exponent is of type integer. Note that variable, array element, and function
references are not allowed.

ANSI X3.9-1978

6-6

6.1.3.1 Integer Constant Expression

An integer constant expression is an arithmetic constant expression in which each
constant or symbolic name of a constant is of type integer. Note that variable, array
element, and function references are not allowed.

The following are examples of integer constant expressions:

3
-3
-3+4

6.1.4 Type and Interpretation of Arithmetic Expressions

The data type of a constant is determined by the form of the constant (4.2.1). The data
type of an arithmetic variable reference, symbolic name of an arithmetic constant,
arithmetic array element reference, or arithmetic function reference is determined by the
name of the datum or function (4.1.2). The data type of an arithmetic expression
containing one or more arithmetic operators is determined from the data types of the
operands.

Integer expressions, real expressions, double precision expressions, a n d complex
expressions are arithmetic expressions whose values are of type integer, real, double
precision, and complex, respectively.

When the operator + or - operates on a single operand, the data type of the resulting
expression is the same as the data type of the operand.

When an arithmetic operator operates on a pair of operands, the data type of the resulting
expression is given in Tables 2 and 3. In these tables, each letter I, R, D, or C represents
an operand or result of type integer, real, double precision, or complex, respectively.

The type of the result is indicated by the I, R, D, or C that precedes the equals, and the
interpretation is indicated by the expression to the right of the equals. REAL, DBLE, and
CMPLX are the type-conversion functions described in 15.10.

ANSI X3.9-1978

6-7

Table 2
Type and Interpretation of Result for x1 + x2

 x2 I2 R2
x1
I1 I = I1 + I2 R = REAL(I1) + R2

R1 R = R1 + REAL(I2) R = R1 + R2

D1 D = D1 + DBLE(I2) D = D1 + DBLE(R2)

C1 C=C1+CMPLX(REAL(I2),0.) C = C1 + CMPLX(R2,0.)

x2 D2 C2
x1
I1 D = DBLE(I2) + D2 C = CMPLX(REAL(I2),0.) +C2

R1 D = DBLE(R1) + D2 C = CMPLX(R1,0.) + C2

D1 D = D1 + D2 Prohibited

C1 Prohibited C = C1 + C2

Tables giving the type and interpretation of expressions involving -, *, and / may be
obtained by replacing all occurrences of + in Table 2 by -, *, or /, respectively.

Table 3
Type and Interpretation of Result for x1**x2

x2 I2 R2
x1
I1 I = I1 ** I2 R = REAL(I1)**R2

R1 R = R1 ** I2 R = R1 ** R2

D1 D = D1 ** I2 D = D1 ** DBLE(R2)

C1 C = C1 ** C2 C = C1 ** CMPLX(R2,0.)

ANSI X3.9-1978

6-8

x2 D2 C2
x1
I1 D = DBLE(I2) ** D2 C=CMPLX(REAL(I2),0.)**C2

R1 D = DBLE(R1) ** D2 C = CMPLX(R1,0.) ** C2

D1 D = D1 ** D2 Prohibited

C1 Prohibited C = C1 ** C2

Four entries in Table 3 specify an interpretation to be a complex value raised to a
complex power. In these cases, the value of the expression is the "principal value"
determined by x1**x2 = EXP(x2*LOG(x1)), where EXP and LOG are functions
described in 15.10.

Except for a value raised to an integer power, Tables 2 and 3 specify that if two operands
are of different type, the operand that differs in type from the result of the operation is
converted to the type of the result and then the operator operates on a pair of operands of
the same type. When a primary of type real, double precision, or complex is raised to an
integer power, the integer operand need not be converted. If the value of I2 is negative,
the interpretation of I1**I2 is the same as the interpretation of 1/(I1**ABS(I2)),
which is subject to the rules for integer division (6.1.5). For example, 2**(-3) has the
value of 1/(2**3), which is zero.

The type and interpretation of an expression that consists of an operator operating on
either a single operand or a pair of operands are independent of the context in which the
expression appears. In particular, the type and interpretation of such an expression are
independent of the type of any other operand of any larger expression in which it appears.
For example, if X is of type real, J is of type integer, and INT is the real-to-integer
conversion function, the expression INT(X+J) is an integer expression and X+J is a
real expression.

6.1.5 Integer Division

One operand of type integer may be divided by another operand of type integer. Although
the mathematical quotient of two integers is not necessarily an integer, Table 2 specifies
that an expression involving the division operator with two operands of type integer is
interpreted as an expression of type integer. The result of such a division is called an
integer quotient and is obtained as follows: If the magnitude of the mathematical quotient
is less than one, the integer quotient is zero. Otherwise, the integer quotient is the integer
whose magnitude is the largest integer that does not exceed the magnitude of the

ANSI X3.9-1978

6-9

mathematical quotient and whose sign is the same as the sign of the mathematical
quotient. For example, the value of the expression (-8)/3 is (-2).

6.2 Character Expressions

A character expression is used to express a character string. Evaluation of a character
expression produces a result of type character.

The simplest form of a character expression is a character constant, symbolic name of a
character constant, character variable reference, character array element reference,
character substring reference, or character function reference. More complicated
character expressions may be formed by using one or more character operands together
with character operators and parentheses.

6.2.1 Character Operator

The character operator is:

Operator Representing
// Concatenation

The interpretation of the expression formed with the character operator is:

Use of Operator Interpretation
x1 // x2 Concatenate x1 with x2

where:
x1 denotes the operand to the left of the operator

x2 denotes the operand to the right of the operator

The result of a concatenation operation is a character string whose value is the value of x1
concatenated on the right with the value of x2 and whose length is the sum of the lengths
of x1 and x2. For example, the value of 'AB' // 'CDE' is the string ABCDE.

6.2.2 Form and Interpretation of Character Expressions

A character expression and the operands of a character expression must identify values of
type character. Except in a character assignment statement (10.4), a character expression
must not involve concatenation of an operand whose length specification is an asterisk in
parentheses (8.4.2) unless the operand is the symbolic name of a constant.

ANSI X3.9-1978

6-10

6.2.2.1 Character Primaries

The character primaries are:

(1) Character constant (4.8.1)

(2) Symbolic name of a character constant (8.6)

(3) Character variable reference (2.5)

(4) Character array element reference (5.3)

(5) Character substring reference (5.7)

(6) Character function reference (15.2)

(7) Character expression enclosed in parentheses (6.2.2.2)

6.2.2.2 Character Expression

The forms of a character expression are:

(1) Character primary

(2) Character expression // character primary

Thus, a character expression is a sequence of one or more character primaries separated
by the concatenation operator. Form (2) indicates that in a character expression
containing two or more concatenation operators, the primaries are combined from left to
right to establish the interpretation of the expression. For example, the formation rules
specify that the interpretation of the character expression

'AB' // 'CD' // 'EF'

is the same as the interpretation of the character expression

('AB' // 'CD') // 'EF'

The value of the character expression in this example is the same as that of the constant
'ABCDEF'. Note that parentheses have no effect on the value of a character expression.

6.2.3 Character Constant Expression

ANSI X3.9-1978

6-11

A character constant expression is a character expression in which each primary is a
character constant, the symbolic name of a character constant, or a character constant
expression enclosed in parentheses. Note that variable, array element, substring, and
function references are not allowed.

ANSI X3.9-1978

6-12

6.3 Relational Expressions

A relational expression is used to compare the values of two arithmetic expressions or
two character expressions. A relational expression may not be used to compare the value
of an arithmetic expression with the value of a character expression.

Relational expressions may appear only within logical expressions. Evaluation of a
relational expression produces a result of type logical, with a value of true or false.

6.3.1 Relational Operators

The relational operators are:

Operator Representing
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

6.3.2 Arithmetic Relational Expression

The form of an arithmetic relational expression is:

 e 1 relop e 2

where:
e1 and e2 are each an integer, real, double, precision, or complex expression

relop is a relational operator

A complex operand is permitted only when the relational operator is .EQ. or .NE.

6.3.3 Interpretation of Arithmetic Relational Expressions

An arithmetic relational expression is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. An arithmetic
relational expression is interpreted as having the logical value false if the values of the
operands do not satisfy the relation specified by the operator.

ANSI X3.9-1978

6-13

If the two arithmetic expressions are of different types, the value of the relational
expression

 e 1 relop e 2

is the value of the expression

((e 1) - (e 2)) relop 0

where 0 (zero) is of the same type as the expression ((e1) (e2)), and relop is the same
relational operator in both expressions. Note that the comparison of a double precision
value and a complex value is not permitted.

6.3.4 Character Relational Expression

The form of a character relational expression is:

 e 1 relop e 2

where: e1 and e2 are character expressions

relop is a relational operator

6.3.5 Interpretation of Character Relational Expressions

A character relational expression is interpreted as the logical value true if the values of
the operands satisfy the relation specified by the operator. A character relational
expression is interpreted as the logical value false if the values of the operands do not
satisfy the relation specified by the operator.

The character expression e1 is considered to be less than e2 if the value of e1 precedes the
value of e2 in the collating sequence; e1 is greater than e2 if the value of e1 follows the
value of e2 in the collating sequence (3.1.5). Note that the collating sequence depends
partially on the processor; however, the result of the use of the operators .EQ. and .NE.
does not depend on the collating sequence. If the operands are of unequal length, the
shorter operand is considered as if it were extended on the right with blanks to the length
of the longer operand.

6.4 Logical Expressions

A logical expression is used to express a logical computation. Evaluation of a logical
expression produces a result of type logical, with a value of true or false.

ANSI X3.9-1978

6-14

The simplest form of a logical expression is a logical constant, symbolic name of a
logical constant, logical variable reference, logical array element reference, logical
function reference, or relational expression. More complicated logical expressions may
be formed by using one or more logical operands together with logical operators and
parentheses.

6.4.1 Logical Operators

The logical operators are:

Operator Representing
.NOT. Logical Negation
.AND. Logical Conjunction
.OR. Logical Inclusive Disjunction
.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

6.4.2 Form and Interpretation of Logical Expressions

A set of formation rules is used to establish the interpretation of a logical expression that
contains two or more logical operators. There is a precedence among the logical
operators, which determines the order in which the operands are to be combined unless
the order is changed by the use of parentheses. The precedence of the logical operators is
as follows:

Operator Precedence
.NOT. Highest
.AND.
.OR.

.EQV. or .NEQV. Lowest

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR. operator; therefore, the
interpretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

The logical operands are:

(1) Logical primary

ANSI X3.9-1978

6-15

(2) Logical factor

(3) Logical term

(4) Logical disjunct

(5) Logical expression

The formation rules to be applied in establishing the interpretation of a logical expression
are in 6.4.2.1 through 6.4.2.5.

6.4.2.1 Logical Primaries

The logical primaries are:

(1) Logical constant (4.7.1)

(2) Symbolic name of a logical constant (8.6)

(3) Logical variable reference (2.5)

(4) Logical array element reference (5.3)

(5) Logical function reference (15.2)

(6) Relational expression (6.3)

(7) Logical expression enclosed in parentheses (6.4.2.5)

6.4.2.2 Logical Factor

The forms of a logical factor are:

(1) Logical primary

(2) .NOT. logical primary

6.4.2.3 Logical Term

The forms of a logical term are:

(1) Logical factor

ANSI X3.9-1978

6-16

(2) Logical term .AND. logical factor

Thus, a logical term is a sequence of logical factors separated by the .AND. operator.
Form (2) indicates that in interpreting a logical term containing two or more .AND.
operators, the logical factors are combined from left to right.

6.4.2.4 Logical Disjunct

The forms of a logical disjunct are:

(1) Logical term

(2) Logical disjunct .OR. logical term

Thus, a logical disjunct is a sequence of logical terms separated by the .OR. operator.
Form (2) indicates that in interpreting a logical disjunct containing two or more .OR.
operators, the logical terms are combined from left to right.

6.4.2.5 Logical Expression

The forms of a logical expression are:

(1) Logical disjunct

(2) Logical expression .EQV. logical disjunct

(3) Logical expression .NEQV. logical disjunct

Thus, a logical expression is a sequence of logical disjuncts separated by either the .EQV.
operator or the .NEQV. operator. Forms (2) and (3) indicate that in interpreting a logical
expression containing two or more .EQV. or .NEQV. operators, the logical disjuncts are
combined from left to right.

6.4.3 Value of Logical Factors, Terms, Disjuncts, and Expressions.

The value of a logical factor involving .NOT. is shown below:

x2 .NOT. x2
true false
false true

ANSI X3.9-1978

6-17

The value of a logical term involving .AND. is shown below:

x1 x2 x1 .AND. x2
true true true
true false false
false true false
false false false

The value of a logical disjunct involving .OR. is shown below:

ANSI X3.9-1978

6-18

x1 x2 x1 .OR. x2
true true true
true false true
false true true
false false false

The value of a logical expression involving .EQV. is shown below:

x1 x2 x1 .EQV. x2
true true true
true false false
false true false
false false true

The value of a logical expression involving .NEQV. is shown below:

x1 x2 x1 .NEQV. x2
true true false
true false true
false true true
false false false

6.4.4 Logical Constant Expression

A logical constant expression is a logical expression in which each primary is a logical
constant, the symbolic name of a logical constant, a relational expression in which each
primary is a constant expression, or a logical constant expression enclosed in parentheses.
Note that variable, array element, and function references are not allowed.

6.5 Precedence of Operators

In 6.1.2 and 6.4.2 precedences have been established among the arithmetic operators and
the logical operators, respectively. There is only one character operator. No precedence
has been established among the relational operators. The precedences among the various
operators are:

Operator Precedence
Arithmetic Highest
Character
Relational

Logical Lowest

ANSI X3.9-1978

6-19

An expression may contain more than one kind of operator. For example, the logical
expression

L .OR. A + B .GE. C

where A, B, and C are of type real, and L is of type logical, contains an arithmetic
operator, a relational operator, and a logical operator. This expression would be
interpreted the same as the expression

L .OR. ((A + B) .GE. C)

6.5.1 Summary of Interpretation Rules

The order in which primaries are combined using operators is determined by the
following:

(1) Use of parentheses

(2) Precedence of the operators

(3) Right-to-left interpretation of exponentiations in a factor

(4) Left-to-right interpretation of multiplications and divisions in a term

(5) Left-to-right interpretation of additions and subtractions in an arithmetic
expression

(6) Left-to-right interpretation of concatenations in a character expression

(7) Left-to-right interpretation of conjunctions in a logical term

(8) Left-to-right interpretation of disjunctions in a logical disjunct

(9) Left-to-right interpretation of logical equivalences in a logical expression

6.6 Evaluation of Expressions

This section applies to arithmetic, character, relational, and logical expressions.

Any variable, array element, function, or character substring referenced as an operand in
an expression must be defined at the time the reference is executed. An integer operand
must be defined with an integer value rather than a statement label value. Note that if a

ANSI X3.9-1978

6-20

character string or substring is referenced, all of the referenced characters must be
defined at the time the reference is executed.

Any arithmetic operation whose result is not mathematically defined is prohibited in the
execution of an executable program. Examples are dividing by zero and raising a zero-
valued primary to a zero-valued or negative-valued power. Raising a negative-valued
primary to a real or double precision power is also prohibited.

The execution of a function reference in a statement may not alter the value of any other
entity within the statement in which the function reference appears. The execution of a
function reference in a statement may not alter the value of any entity in common (8.3)
that affects the value of any other function reference in that statement. However,
execution of a function reference in the expression e of a logical IF statement (11.5) is
permitted to affect entities in the statement st that is executed when the value of the
expression e is true. If a function reference causes definition of an actual argument of the
function, that argument or any associated entities must not appear elsewhere in the same
statement. For example, the statements

A(I) = F(I)

Y = G(X) + X

are prohibited if the reference to F defines I or the reference to G defines X.

The data type of an expression in which a function reference appears does not affect the
evaluation of the actual arguments of the function. The data type of an expression in
which a function reference appears is not affected by the evaluation of the actual
arguments of the function, except that the result of a generic function reference assumes a
data type that depends on the data type of its arguments as specified in 15.10.

Any execution of an array element reference requires the evaluation of its subscript. The
data type of an expression in which a subscript appears does not affect, nor is it affected
by, the evaluation of the subscript.

Any execution of a substring reference requires the evaluation of its substring
expressions. The data type of an expression in which a substring name appears does not
affect, nor is it affected by, the evaluation of the substring expressions.

6.6.1 Evaluation of Operands

It is not necessary for a processor to evaluate all of the operands of an expression if the
value of the expression can be determined otherwise. This principle is most often

ANSI X3.9-1978

6-21

applicable to logical expressions, but it applies to all expressions. For example, in
evaluating the logical expression

X .GT. Y .OR. L(Z)

where X, Y, and Z are real, and L is a logical function, the function reference L(Z) need
not be evaluated if X is greater than Y. If a statement contains a function reference in a
part of an expression that need not be evaluated, all entities that would have become
defined in the execution of that reference become undefined at the completion of
evaluation of the expression containing the function reference. In the example above,
evaluation of the expression causes Z to become undefined if L defines its argument.

6.6.2 Order of Evaluation of Functions

If a statement contains more than one function reference, a processor may evaluate the
functions in any order, except for a logical IF statement and a function argument list
containing function references. For example, the statement

Y = F(G(X))

where F and G are functions, requires G to be evaluated before F is evaluated.

In a statement that contains more than one function reference, the value provided by each
function reference must be independent of the order chosen by the processor for
evaluation of the function references.

6.6.3 Integrity of Parentheses

The sections that follow state certain conditions under which a processor may evaluate an
expression different from the one obtained by applying the interpretation rules given in
6.1 through 6.5. However, any expression contained in parentheses must be treated as an
entity. For example, in evaluating the expression A*(B*C), the product of B and C must
be evaluated and then multiplied by A; the processor must not evaluate the
mathematically equivalent expression (A*B)*C.

6.6.4 Evaluation of Arithmetic Expressions

The rules given in 6.1.2 specify the interpretation of an arithmetic expression. Once the
interpretation has been established in accordance with those rules, the processor may
evaluate any mathematically equivalent expression, provided that the integrity of
parentheses is not violated.

ANSI X3.9-1978

6-22

Two arithmetic expressions are mathematically equivalent if, for all possible values of
their primaries, their mathematical values are equal. However, mathematically equivalent
arithmetic expressions may produce different computational results.

The mathematical definition of integer division is given in 6.1.5. The difference between
the value of the expression 5/2 and 5./2. is a mathematical difference, not a computational
difference.

The following are examples of expressions, along with allowable alternative forms that
may be used by the processor in the evaluation of those expressions. A, B, and C
represent arbitrary real, double precision, or complex operands; I and J represent arbitrary
integer operands; and X, Y, and Z represent arbitrary arithmetic operands. (Note that
Table 2 prohibits combinations of double precision and complex data types.)

Expression Allowable Alternative Form
X + Y Y + X
X * Y Y * X
-X + Y Y - X
X + Y + Z X + (Y + Z)
X - Y + Z X - (Y - Z)
X * B/Z X * (B/Z)
X*Y - X*Z X * (Y-Z)
A/B/C A / (B*C)
A/5.0 0.2 * A

The following are examples of expressions along with forbidden forms that must not be
used by the processor in the evaluation of those expressions.

Expression Nonallowable Alternative
Form

I/2 0.5 * I
X * I/J X * (I/J)
I/J/A I/(J*A)
(X*Y) - (X*Z) X * (Y-Z)
X * (Y-Z) X*Y - X*Z

In addition to the parentheses required to establish the desired interpretation, parentheses
may be included to restrict the alternative forms that may be used by the processor in the
actual evaluation of the expression. This is useful for controlling the magnitude and
accuracy of intermediate values developed during the evaluation of an expression. For
example, in the expression

A+(B-C)

ANSI X3.9-1978

6-23

the term (B-C) must be evaluated and then added to A. Note that the inclusion of
parentheses may change the mathematical value of an expression. For example, the two
expressions:

A*I/J

A*(I/J)

may have different mathematical values if I and J are factors of integer data type.

Each operand of an arithmetic operator has a data type that may depend on the order of
evaluation used by the processor. For example, in the evaluation of the expression

D+R+I

where D, R, and I represent terms of double precision, real, and integer data type,
respectively, the data type of the operand that is added to I may be either double precision
or real, depending on which pair of operands (D and R, R and I, or D and I) is added first.

6.6.5 Evaluation of Character Expressions

The rules given in 6.2.2 specify the interpretation of a character expression as a string of
characters. A processor needs to evaluate only as much of the character expression as is
required by the context in which the expression appears. For example, the statements

 CHARACTER*2 C1,C2,C3,CF
 C1 = C2 // CF(C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to
determine the value of C1.

6.6.6 Evaluation of Relational Expressions

The rules given in 6.3.3 and 6.3.5 specify the interpretation of relational expressions.
Once the interpretation of an expression has been established in accordance with those
rules, the processor may evaluate any other expression that is relationally equivalent. For
example, the processor may choose to evaluate the relational expression

I .GT. J

where I and J are integer variables, as

ANSI X3.9-1978

6-24

J - I .LT. 0

Two relational expressions are relationally equivalent if their logical values are equal for
all possible values of their primaries.

6.6.7 Evaluation of Logical Expressions

The rules given in 6.4.2 specify the interpretation of a logical expression. Once the
interpretation of an expression has been established in accordance with those rules, the
processor may evaluate any other expression that is logically equivalent, provided that
the integrity of parentheses is not violated. For example, the processor may choose to
evaluate the logical expression

L1 .AND. L2 .AND. L3

where L1, L2, and L3 are logical variables, as

L1 .AND. (L2 .AND. L3)

Two logical expressions are logically equivalent if their values are equal for all possible
values of their primaries.

6.7 Constant Expressions

A constant expression is an arithmetic constant expression (6.1.3), a character constant
expression (6.2.3), or a logical constant expression (6.4.4).

ANSI X3.9-1978

7-1

7. EXECUTABLE AND NONEXECUTABLE STATEMENT
CLASSIFICATION

Each statement is classified as executable or nonexecutable. Executable statements
specify actions and form an execution sequence in an executable program. Nonexecutable
statements specify characteristics, arrangement, and initial values of data; contain editing
information; specify statement functions; classify program units; and specify entry points
within subprograms. Nonexecutable statements are not part of the execution sequence.
Nonexecutable statements may be labeled, but such statement labels must not be used to
control the execution sequence.

7.1 Executable Statements

The following statements are classified as executable:

(1) Arithmetic, logical, statement label (ASSIGN), and character assignment
statements

(2) Unconditional GO TO, assigned GO TO, and computed GO TO statements

(3) Arithmetic IF and logical IF statements

(4) Block IF, ELSE IF, ELSE, and END IF statements

(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ, WRITE, and PRINT statements

(9) REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE
statements

(10) CALL and RETURN statements

(11) END statement

7.2 Nonexecutable Statements

ANSI X3.9-1978

7-2

The following statements are classified as nonexecutable:

(1) PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA
statements

(2) DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER,
EXTERNAL, INTRINSIC, and SAVE statements

(3) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-statements

(4) DATA statement

(5) FORMAT statement

(6) Statement function statement

ANSI X3.9-1978

8-1

8. SPECIFICATION STATEMENTS

There are nine kinds of specification statements:

(1) DIMENSION

(2) EQUIVALENCE

(3) COMMON

(4) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-statements

(5) IMPLICIT

(6) PARAMETER

(7) EXTERNAL

(8) INTRINSIC

(9) SAVE

All specification statements are nonexecutable.

8.1 DIMENSION Statement

A DIMENSION statement is used to specify the symbolic names and dimension
specifications of arrays.

The form of a DIMENSION statement is:

DIMENSION a (d) [, a (d)]...

where each a(d) is an array declarator (5.1).

Each symbolic name a appearing in a DIMENSION statement declares a to be an array in
that program unit. Note that array declarators may also appear in COMMON statements
and type-statements. Only one appearance of a symbolic name as an array name in an
array declarator in a program unit is permitted.

ANSI X3.9-1978

8-2

8.2 EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify the sharing of storage units by two or
more entities in a program unit. This causes association of the entities that share the
storage units.

If the equivalenced entities are of different data types, the EQUIVALENCE statement
does not cause type conversion or imply mathematical equivalence. If a variable and an
array are equivalenced, the variable does not have array properties and the array does not
have the properties of a variable.

8.2.1 Form of an EQUIVALENCE Statement

The form of an EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)]...

where each nlist is a list (2.10) of variable names, array element names, array names, and
character substring names. Each list must contain at least two names. Names of dummy
arguments of an external procedure in a subprogram must not appear in the list. If a
variable name is also a function name (15.5.1), that name must not appear in the list.

Each subscript expression or substring expression in a list nlist must be an integer
constant expression.

8.2.2 Equivalence Association

An EQUIVALENCE statement specifies that the storage sequences of the entities whose
names appear in a list nlist have the same first storage unit. This causes the association of
the entities in the list nlist and may cause association of other entities (17.1).

8.2.3 Equivalence of Character Entities

An entity of type character may be equivalenced only with other entities of type
character. The lengths of the equivalenced entities are not required to be the same.

An EQUIVALENCE statement specifies that the storage sequences of the character
entities whose names appear in a list nlist have the same first character storage unit. This
causes the association of the entities in the list nlist and may cause association of other
entities (17.1). Any adjacent characters in the associated entities may also have the same
character storage unit and thus may also be associated. In the example:

ANSI X3.9-1978

8-3

 CHARACTER A*4, B*4, C(2)*3
 EQUIVALENCE (A,C(1)), (B,C(2))

the association of A, B, and C can be graphically illustrated as:

| 01 | 02 | 03 | 04 | 05 | 06 | 07 |
|---------A---------|
 |---------B---------|
|-----C(1)-----|-----C(2)-----|

8.2.4 Array Names and Array Element Names

If an array element name appears in an EQUIVALENCE statement, the number of
subscript expressions must be the same as the number of dimensions specified in the
array declarator for the array name.

The use of an array name unqualified by a subscript in an EQUIVALENCE statement has
the same effect as using an array element name that identifies the first element of the
array.

8.2.5 Restrictions on EQUIVALENT Statements

An EQUIVALENCE statement must not specify that the same storage unit is to occur
more than once in a storage sequence. For example,

 DIMENSION A(2)
 EQUIVALENCE (A(1),B), (A(2),B)

is prohibited, because it would specify the same storage unit for A(1) and A(2). An
EQUIVALENCE statement must not specify that consecutive storage units are to be
nonconsecutive. For example, the following is prohibited:

 REAL A(2)
 DOUBLE PRECISION D(2)
 EQUIVALENCE (A(1),D(1)), (A(2),D(2))

8.3 COMMON Statement

The COMMON statement provides a means of associating entities in different program
units. This allows different program units to define and reference the same data without
using arguments, and to share storage units.

ANSI X3.9-1978

8-4

8.3.1 Form of a COMMON Statement

The form of a COMMON statement is:

COMMON [/ cb /] nlist [[,]/ cb / nlist]...

where:
cb is a common block name (18.2.1)

nlist is a list (2.10) of variable names, array names, and array declarators. Only
one appearance of a symbolic name as a variable name, array name, or array
declarator is permitted in all such lists within a program unit. Names of dummy
arguments of an external procedure in a subprogram must not appear in the list. If
a variable name is also a function name (15.5.1), that name must not appear in the
list.

Each omitted cb specifies the blank common block. If the first cb is omitted, the first two
slashes are optional.

In each COMMON statement, the entities whose names appear in an nlist following a
block name cb are declared to be in common block cb. If the first cb is omitted, all
entities whose names appear in the first nlist are specified to be in blank common.
Alternatively, the appearance of two slashes with no block name between them declares
the entities whose names appear in the list nlist that follows to be in blank common.

Any common block name cb or an omitted cb for blank common may occur more than
once in one or more COMMON statements in a program unit. The list nlist following
each successive appearance of the same common block name is treated as a continuation
of the list for that common block name.

If a character variable or character array is in a common block, all of the entities in that
common block must be of type character.

8.3.2 Common Block Storage Sequence

For each common block, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the storage sequences of all
entities in the lists nlist for the common block. The order of the storage
sequence is the same as the order of the appearance of the lists nlist in the
program unit.

ANSI X3.9-1978

8-5

(2) The storage sequence formed in (1) is extended to include all storage units of
any storage sequence associated with it by equivalence association. The
sequence may be extended only by adding storage units beyond the last
storage unit. Entities associated with an entity in a common block are
considered to be in that common block.

8.3.3 Size of a Common Block

The size of a common block is the size of its common block storage sequence including
any extensions of the sequence resulting from equivalence association.

Within an executable program, all named common blocks that have the same name must
be the same size. Blank common blocks within an executable program are not required to
be the same size.

8.3.4 Common Association

Within an executable program, the common block storage sequences of all common
blocks with the same name have the same first storage unit. Within an executable
program, the common block storage sequences of all blank common blocks have the
same first storage unit. This results in the association (17.1) of entities in different
program units.

8.3.5 Differences Between Named Common and Blank Common

A blank common block has the same properties as a named common block, except for the
following:

(1) Execution of a RETURN or END statement sometimes causes entities in
named common blocks to become undefined but never causes entities in
blank common to become undefined (15.8.4).

(2) Named common blocks of the same name must be of the same size in all
program units of an executable program in which they appear, but blank
common blocks may be of different sizes.

(3) Entities in named common blocks may be initially defined by means of a
DATA statement in a block data subprogram, but entities in blank common
must not be initially defined (Section 9).

8.3.6 Restrictions on Common and Equivalence

ANSI X3.9-1978

8-6

An EQUIVALENCE statement must not cause the storage sequences of two different
common blocks in the same program unit to be associated. Equivalence association must
not cause a common block storage sequence to be extended by adding storage units
preceding the first storage unit of the first entity specified in a COMMON statement for
the common block. For example, the following is not permitted:

 COMMON /X/A
 REAL B(2)
 EQUIVALENCE (A,B(2))

8.4 Type-Statements

A type-statement is used to override or confirm implicit typing and may specify
dimension information.

The appearance of the symbolic name of a constant, variable, array, external function, or
statement function in a type-statement specifies the data type for that name for all
appearances in the program unit. Within a program unit, a name must not have its type
explicitly specified more than once.

A type-statement that confirms the type of an intrinsic function whose name appears in
the Specific Name column of Table 5 is not required, but is permitted. If a generic
function name appears in a type-statement, such an appearance is not sufficient by itself
to remove the generic properties from that function.

The name of a main program, subroutine, or block data subprogram must not appear in a
type-statement.

8.4.1 INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL Type-
Statements.

An INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL type-
statement is of the form:

 typ v [, v]...

where:
typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL

v is a variable name, array name, array declarator, symbolic name of a constant,
function name, or dummy procedure name (18.2.11)

ANSI X3.9-1978

8-7

8.4.2 CHARACTER Type-Statement

The form of a CHARACTER type-statement is:

CHARACTER [* len [,]] nam [, nam]...

where:
nam is of one of the forms:

 v [* len]

 a [(d)] [* len]

v is a variable name, symbolic name of a constant, function name, or dummy
procedure name

a is an array name

a(d) is an array declarator

len is the length (number of characters) of a character variable, character array
element, character constant that has a symbolic name, or character function, and is
called the length specification. len is one of the following:

(1) An unsigned, nonzero, integer constant

(2) An integer constant expression (6.1.3.1) enclosed in parentheses and
with a positive value

(3) An asterisk in parentheses, (*)

A length len immediately following the word CHARACTER is the length specification
for each entity in the statement not having its own length specification. A length
specification immediately following an entity is the length specification for only that
entity. Note that for an array the length specified is for each array element. If a length is
not specified for an entity, its length is one.

An entity declared in a CHARACTER statement must have a length specification that is
an integer constant expression, unless that entity is an external function, a dummy
argument of an external procedure, or a character constant that has a symbolic name.

If a dummy argument has a len of (*) declared, the dummy argument assumes the length
of the associated actual argument for each reference of the subroutine or function. If the

ANSI X3.9-1978

8-8

associated actual argument is an array name, the length assumed by the dummy argument
is the length of an array element in the associated actual argument array.

If an external function has a len of (*) declared in a function subprogram, the function
name must appear as the name of a function in a FUNCTION or ENTRY statement in the
same subprogram. When a reference to such a function is executed, the function assumes
the length specified in the referencing program unit.

The length specified for a character function in the program unit that references the
function must be an integer constant expression and must agree with the length specified
in the subprogram that specifies the function. Note that there always is agreement of
length if a len of (*) is specified in the subprogram that specifies the function.

If a character constant that has a symbolic name has a len of (*) declared, the constant
assumes the length of its corresponding constant expression in a PARAMETER
statement.

The length specified for a character statement function or statement function dummy
argument of type character must be an integer constant expression.

8.5 IMPLICIT Statement

An IMPLICIT statement is used to change or confirm the default implied integer and real
typing.

The form of an IMPLICIT statement is:

IMPLICIT typ (a [, a]...) [, typ (a [, a]...)]...

where:
typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
or CHARACTER [*len]

a is either a single letter or a range of single letters in alphabetical order. A range
is denoted by the first and last letter of the range separated by a minus. Writing a
range of letters a1 - a2 has the same effect as writing a list of the single letters a1
through a2.

len is the length of the character entities and is one of the following:

(1) An unsigned, nonzero, integer constant

ANSI X3.9-1978

8-9

(2) An integer constant expression (6.1.3.1) enclosed in parentheses and
with a positive value

If len is not specified, the length is one.

An IMPLICIT statement specifies a type for all variables, arrays, symbolic names of
constants, external functions, and statement functions that begin with any letter that
appears in the specification, either as a single letter or included in a range of letters.
IMPLICIT statements do not change the type of any intrinsic functions. An IMPLICIT
statement applies only to the program unit that contains it.

Type specification by an IMPLICIT statement may be overridden or confirmed for any
particular variable, array, symbolic name of a constant, external function, or statement
function name by the appearance of that name in a type-statement. An explicit type
specification in a FUNCTION statement overrides an IMPLICIT statement for the name
of that function subprogram. Note that the length is also overridden when a particular
name appears in a CHARACTER or CHARACTER FUNCTION statement.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements. A program
unit may contain more than one IMPLICIT statement.

The same letter must not appear as a single letter, or be included in a range of letters,
more than once in all of the IMPLICIT statements in a program unit.

8.6 PARAMETER Statement

The PARAMETER statement is used to give a constant a symbolic name.

The form of a PARAMETER statement is:

PARAMETER (p = e [, p = e]...)

where:
p is a symbolic name

e is a constant expression (6.7)

If the symbolic name p is of type integer, real, double precision, or complex, the
corresponding expression e must be an arithmetic constant expression (6.1.3). If the
symbolic name p is of type character or logical, the corresponding expression e must be a

ANSI X3.9-1978

8-10

character constant expression (6.2.3) or a logical constant expression (6.4.4),
respectively.

Each p is the symbolic name of a constant that becomes defined with the value
determined from the expression e that appears on the right of the equals, in accordance
with the rules for assignment statements (10.1, 10.2, and 10.4).

Any symbolic name of a constant that appears in an expression e must have been defined
previously in the same or a different PARAMETER statement in the same program unit.

A symbolic name of a constant must not become defined more than once in a program
unit.

If a symbolic name of a constant is not of default implied type, its type must be specified
by a type-statement or IMPLICIT statement prior to its first appearance in a
PARAMETER statement. If the length specified for the symbolic name of a constant of
type character is not the default length of one, its length must be specified in a type-
statement or IMPLICIT statement prior to the first appearance of the symbolic name of
the constant. Its length must not be changed by subsequent statements including
IMPLICIT statements.

Once such a symbolic name is defined, that name may appear in that program unit in any
subsequent statement as a primary in an expression or in a DATA statement (9.1). A
symbolic name of a constant must not be part of a format specification. A symbolic name
of a constant must not be used to form part of another constant, for example, any part of a
complex constant.

A symbolic name in a PARAMETER statement may identify only the corresponding
constant in that program unit.

8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify a symbolic name as representing an
external procedure or dummy procedure, and to permit such a name to be used as an
actual argument.

The form of an EXTERNAL statement is:

EXTERNAL proc [, proc]...

where each proc is the name of an external procedure, dummy procedure, or block data
subprogram. Appearance of a name in an EXTERNAL statement declares that name to be

ANSI X3.9-1978

8-11

an external procedure name or dummy procedure name, or block data subprogram name.
If an external procedure name or a dummy procedure name is used as an actual argument
in a program unit, it must appear in an EXTERNAL statement in that program unit. Note
that a statement function name must not appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL statement in a program unit, that
name becomes the name of some external procedure and an intrinsic function of the same
name is not available for reference in the program unit.

Only one appearance of a symbolic name in all of the EXTERNAL statements of a
program unit is permitted.

8.8 INTRINSIC Statement

An INTRINSIC statement is used to identify a symbolic name as representing an intrinsic
function (15.3). It also permits a name that represents a specific intrinsic function to be
used as an actual argument.

The form of an INTRINSIC statement is:

INTRINSIC fun [, fun]...

where each fun is an intrinsic function name.

Appearance of a name in an INTRINSIC statement declares that name to be an intrinsic
function name. If a specific name of an intrinsic function is used as an actual argument in
a program unit, it must appear in an INTRINSIC statement in that program unit. The
names of intrinsic functions for type conversion (INT, IFIX, IDINT, FLOAT, SNGL,
REAL, DBLE, CMPLX, ICHAR, CHAR), lexical relationship (LGE, LGT, LLE, LLT),
and for choosing the largest or smallest value (MAX, MAX0, AMAX1, DMAX1,
AMAX0, MAX1, MIN, MIN0, AMIN1, DMIN1, AMIN0, MIN1) must not be used as
actual arguments.

The appearance of a generic function name in an INTRINSIC statement does not cause
that name to lose its generic property.

Only one appearance of a symbolic name in all of the INTRINSIC statements of a
program unit is permitted. Note that a symbolic name must not appear in both an
EXTERNAL and an INTRINSIC statement in a program unit.

8.9 SAVE Statement

ANSI X3.9-1978

8-12

A SAVE statement is used to retain the definition status of an entity after the execution of
a RETURN or END statement in a subprogram. Within a function or subroutine
subprogram, an entity specified by a SAVE statement does not become undefined as a
result of the execution of a RETURN or END statement in the subprogram. However,
such an entity in a common block may become undefined or redefined in another
program unit.

The form of a SAVE statement is:

SAVE [a [, a]...]

where each a is a named common block name preceded and followed by a slash, a
variable name, or an array name. Redundant appearances of an item are not permitted.

Dummy argument names, procedure names, and names of entities in a common block
must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained the names of all
allowable items in the program unit.

The appearance of a common block name preceded and followed by a slash in a SAVE
statement has the effect of specifying all of the entities in that common block.

If a particular common block name is specified by a SAVE statement in a subprogram of
an executable program, it must be specified by a SAVE statement in every subprogram in
which that common block appears.

A SAVE statement is optional in a main program and has no effect.

If a named common block is specified in a SAVE statement in a subprogram, the current
values of the entities in the common block storage sequence (8.3.3) at the time a
RETURN or END statement is executed are made available to the next program unit that
specifies that common block name in the execution sequence of an executable program.

If a named common block is specified in the main program unit, the current values of the
common block storage sequence are made available to each subprogram that specifies
that named common block; a SAVE statement in the subprogram has no effect.

The definition status of each entity in the named common block storage sequence
depends on the association that has been established for the common block storage
sequence (17.2 and 17.3).

ANSI X3.9-1978

8-13

If a local entity that is specified by a SAVE statement and is not in a common block is in
a defined state at the time a RETURN or END statement is executed in a subprogram,
that entity is defined with the same value at the next reference of that subprogram.

The execution of a RETURN statement or an END statement within a subprogram causes
all entities within the subprogram to become undefined except for the following:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been redefined nor become
undefined

(4) Entities in a named common block that appears in the subprogram and
appears in at least one other program unit that is referencing, either directly
or indirectly, that subprogram

ANSI X3.9-1978

9-1

9. DATA STATEMENT

A DATA statement is used to provide initial values for variables, arrays, array elements,
and substrings. A DATA statement is nonexecutable and may appear in a program unit
anywhere after the specification statements, if any.

All initially defined entities are defined when an executable program begins execution.
All entities not initially defined, or associated with an initially defined entity, are
undefined at the beginning of execution of an executable program.

9.1 Form of a DATA Statement

The form of a DATA statement is:

DATA nlist / clist / [[,] nlist / clist /]...

where:
nlist is a list (2.10) of variable names, array names, array element names,
substring names, and implied-DO lists

clist is a list of the form:

a [,a]...

where a is one of the forms:

c
r*c

c is a constant or the symbolic name of a constant

r is a nonzero, unsigned, integer constant or the symbolic name of such a constant.
The r*c form is equivalent to r successive appearances of the constant c.

9.2 DATA Statement Restrictions

Names of dummy arguments, functions, and entities in blank common (including entities
associated with an entity in blank common) must not appear in the list nlist. Names of
entities in a named common block may appear in the list nlist only within a block data
subprogram.

ANSI X3.9-1978

9-2

There must be the same number of items specified by each list nlist and its corresponding
list clist. There is a one-to-one correspondence between the items specified by nlist and
the constants specified by clist such that the first item of nlist corresponds to the first
constant of clist, etc. By this correspondence, the initial value is established and the entity
is initially defined. If an array name without a subscript is in the list, there must be one
constant for each element of that array. The ordering of array elements is determined by
the array element subscript value (5.2.4).

The type of the nlist entity and the type of the corresponding clist constant must agree
when either is of type character or logical. When the nlist entity is of type integer, real,
double precision, or complex, the corresponding clist constant must also be of type
integer, real, double precision, or complex; if necessary, the clist constant is converted to
the type of the nlist entity according to the rules for arithmetic conversion (Table 4). Note
that if an nlist entity is of type double precision and the clist constant is of type real, the
processor may supply more precision derived from the constant than can be contained in
a real datum.

Any variable, array element, or substring may be initially defined except for:

(1) an entity that is a dummy argument,

(2) an entity in blank common, which includes an entity associated with an
entity in blank common, or

(3) a variable in a function subprogram whose name is also the name of the
function subprogram or an entry in the function subprogram.

A variable, array element, or substring must not be initially defined more than once in an
executable program. If two entities are associated, only one may be initially defined in a
DATA statement in the same executable program.

Each subscript expression in the list nlist must be an integer constant expression except
for implied-DO-variables as noted in 9.3. Each substring expression in the list nlist must
be an integer constant expression.

9.3 Implied-DO in a DATA Statement

The form of an implied-DO list in a DATA statement is:

(dlist , i = m 1, m 2 [, m 3])

where:

ANSI X3.9-1978

9-3

dlist is a list of array element names and implied-DO lists

i is the name of an integer variable, called the implied-DO-variable

m1, m2, m3 are each an integer constant expression, except that the expression
may contain implied-DO-variables of other implied-DO lists that have this
implied-DO list within their ranges

The range of an implied-DO list is the list dlist. An iteration count and the values of the
implied-DO-variable are established from m1, m2, and m3 exactly as for a DO-loop
(11.10), except that the iteration count must be positive. When an implied-DO list
appears in a DATA statement, the list items in dlist are specified once for each iteration
of the implied-DO list with the appropriate substitution of values for any occurrence of
the implied-DO-variable i. The appearance of an implied-DO-variable name in a DATA
statement does not affect the definition status of a variable of the same name in the same
program unit.

Each subscript expression in the list dlist must be an integer constant expression, except
that the expression may contain implied-DO-variables of implied-DO lists that have the
subscript expression within their ranges.

The following is an example of a DATA statement that contains implied-DO lists:

DATA ((X(J,I), I=1,J), J=1,5) / 15*0. /

9.4 Character Constant in a DATA Statement

An entity in the list nlist that corresponds to a character constant must be of type
character.

If the length of the character entity in the list nlist is greater than the length of its
corresponding character constant, the additional rightmost characters in the entity are
initially defined with blank characters.

If the length of the character entity in the list nlist is less than the length of its
corresponding character constant, the additional rightmost characters in the constant are
ignored.

Note that initial definition of a character entity causes definition of all of the characters in
the entity, and that each character constant initially defines exactly one variable, array
element, or substring.

ANSI X3.9-1978

10-1

10. ASSIGNMENT STATEMENTS

Completion of execution of an assignment statement causes definition of an entity.

There are four kinds of assignment statements:

(1) Arithmetic

(2) Logical

(3) Statement label (ASSIGN)

(4) Character

10.1 Arithmetic Assignment Statement

The form of an arithmetic assignment statement is:

 v = e

where:
v is the name of a variable or array element of type integer, real, double precision,
or complex

e is an arithmetic expression

Execution of an arithmetic assignment statement causes the evaluation of the expression e
by the rules in Section 6, conversion of e to the type of v , and definition and assignment
of v with the resulting value, as established by the rules in Table 4.

Table 4
Arithmetic Conversion and Assignment of e to v

Type of v Value Assigned
Integer INT(e)
Real REAL(e)
Double Precision DBLE(e)
Complex CMPLX(e)

The functions in the "Value Assigned" column of Table 4 are generic functions described
in Table 5 (15.10).

ANSI X3.9-1978

10-2

10.2 Logical Assignment Statement

The form of a logical assignment statement is:

 v = e

where:
v is the name of a logical variable or logical array element

e is a logical expression

Execution of a logical assignment statement causes the evaluation of the logical
expression e and the assignment and definition of v with the value of e. Note that e must
have a value of either true or false.

10.3 Statement Label Assignment (ASSIGN) Statement

The form of a statement label assignment statement is:

ASSIGN s TO i

where:
s is a statement label

i is an integer variable name

Execution of an ASSIGN statement causes the statement label s to be assigned to the
integer variable i. The statement label must be the label of a statement that appears in the
same program unit as the ASSIGN statement. The statement label must be the label of an
executable statement or a FORMAT statement.

Execution of a statement label assignment statement is the only way that a variable may
be defined with a statement label value.

A variable must be defined with a statement label value when referenced in an assigned
GO TO statement (11.3) or as a format identifier (12.4) in an input/output statement.
While defined with a statement label value, the variable must not be referenced in any
other way.

An integer variable defined with a statement label value may be redefined with the same
or a different statement label value or an integer value.

ANSI X3.9-1978

10-3

10.4 Character Assignment Statement

The form of a character assignment statement is:

 v = e

where:
v is the name of a character variable, character array element, or character
substring

e is a character expression

Execution of a character assignment statement causes the evaluation of the expression e
and the assignment and definition of v with the value of e. None of the character
positions being defined in v may be referenced in e. v and e may have different lengths. If
the length of v is greater than the length of e, the effect is as though e were extended to
the right with blank characters until it is the same length as v and then assigned. If the
length of v is less than the length of e, the effect is as though e were truncated from the
right until it is the same length as v and then assigned.

Only as much of the value of e must be defined as is needed to define v. In the example:

 CHARACTER A*2,B*4
 A=B

the assignment A=B requires that the substring B(1:2) be defined. It does not require that
the substring B(3:4) be defined.

If v is a substring, e is assigned only to the substring. The definition status of substrings
not specified by v is unchanged.

ANSI X3.9-1978

11-1

11. CONTROL STATEMENTS

Control statements may be used to control the execution sequence.

There are sixteen control statements:

(1) Unconditional GO TO

(2) Computed GO TO

(3) Assigned GO TO

(4) Arithmetic IF

(5) Logical IF

(6) Block IF

(7) ELSE IF

(8) ELSE

(9) END IF

(10) DO

(11) CONTINUE

(12) STOP

(13) PAUSE

(14) END

(15) CALL

(16) RETURN

The CALL and RETURN statements are described in Section 15.

11.1 Unconditional GO TO Statement

ANSI X3.9-1978

11-2

The form of an unconditional GO TO statement is:

GO TO s

where s is the statement label of an executable statement that appears in the same
program unit as the unconditional GO TO statement.

Execution of an unconditional GO TO statement causes a transfer of control so that the
statement identified by the statement label is executed next.

11.2 Computed GO TO Statement

The form of a computed GO TO statement is:

GO TO (s [, s]...) [,] i

where:
i is an integer expression

s is the statement label of an executable statement that appears in the same
program unit as the computed GO TO statement. The same statement label may
appear more than once in the same computed GO TO statement.

Execution of a computed GO TO statement causes evaluation of the expression i. The
evaluation of i is followed by a transfer of control so that the statement identified by the
ith statement label in the list of statement labels is executed next, provided that 1 ≤ i ≤ n,
where n is the number of statement labels in the list of statement labels. If i < 1 or i > n,
the execution sequence continues as though a CONTINUE statement were executed.

11.3 Assigned GO TO Statement

The form of an assigned GO TO statement is:

GO TO i [[,] (s [, s]...)]

where:
i is an integer variable name

s is the statement label of an executable statement that appears in the same
program unit as the assigned GO TO statement. The same statement label may
appear more than once in the same assigned GO TO statement.

ANSI X3.9-1978

11-3

At the time of execution of an assigned GO TO statement, the variable i must be defined
with the value of a statement label of an executable statement that appears in the same
program unit. Note that the variable may be defined with a statement label value only by
an ASSIGN statement (10.3) in the same program unit as the assigned GO TO statement.
The execution of the assigned GO TO statement causes a transfer of control so that the
statement identified by that statement label is executed next.

If the parenthesized list is present, the statement label assigned to i must be one of the
statement labels in the list.

11.4 Arithmetic IF Statement

The form of an arithmetic IF statement is:

IF (e) s 1, s 2, s 3

where:
e is an integer, real, or double precision expression

s1, s2, and s3 are each the statement label of an executable statement that appears
in the same program unit as the arithmetic IF statement. The same statement label
may appear more than once in the same arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the expression e followed by
a transfer of control. The statement identified by s1, s2, or s3 is executed next as the value
of e is less than zero, equal to zero, or greater than zero, respectively.

11.5 Logical IF Statement

The form of a logical IF statement is:

IF (e) st

where:
e is a logical expression

st is any executable statement except a DO, block IF, ELSE IF, ELSE, END IF,
END, or another logical IF statement

Execution of a logical IF statement causes evaluation of the expression e. If the value of e
is true, statement st is executed. If the value of e is false, statement st is not executed and
the execution sequence continues as though a CONTINUE statement were executed.

ANSI X3.9-1978

11-4

Note that the execution of a function reference in the expression e of a logical IF
statement is permitted to affect entities in the statement st.

ANSI X3.9-1978

11-5

11.6 Block IF Statement

The block IF statement is used with the END IF statement and, optionally, the ELSE IF
and ELSE statements to control the execution sequence.

The form of a block IF statement is:

IF (e) THEN

where e is a logical expression.

11.6.1 IF-Level

The IF-level of a statement s is

 n 1 - n 2

where n1 is the number of block IF statements from the beginning of the program unit up
to and including s, and n2 is the number of END IF statements in the program unit up to
but not including s.

The IF-level of every statement must be zero or positive. The IF-level of each block IF,
ELSE IF, ELSE, and END IF statement must be positive. The IF-level of the END
statement of each program unit must be zero.

11.6.2 IF-Block

An IF-block consists of all of the executable statements that appear following the block
IF statement up to, but not including, the next ELSE IF, ELSE, or END IF statement that
has the same IF-level as the block IF statement. An IF-block may be empty.

11.6.3 Execution of a Block IF Statement

Execution of a block IF statement causes evaluation of the expression e. If the value of e
is true, normal execution sequence continues with the first statement of the IF-block. If
the value of e is true and the IF-block is empty, control is transferred to the next END IF
statement that has the same IF-level as the block IF statement. If the value of e is false,
control is transferred to the next ELSE IF, ELSE, or END IF statement that has the same
IF-level as the block IF statement.

Transfer of control into an IF-block from outside the IF-block is prohibited.

ANSI X3.9-1978

11-6

If the execution of the last statement in the IF-block does not result in a transfer of
control, control is transferred to the next END IF statement that has the same IF-level as
the block IF statement that precedes the IF-block.

11.7 ELSE IF Statement

The form of an ELSE IF statement is:

ELSE IF (e) THEN

where e is a logical expression.

11.7.1 ELSE IF-Block

An ELSE IF-block consists of all of the executable statements that appear following the
ELSE IF statement up to, but not including, the next ELSE IF, ELSE, or END IF
statement that has the same IF-level as the ELSE IF statement. An ELSE IF-block may be
empty.

11.7.2 Execution of an ELSE IF Statement

Execution of an ELSE IF statement causes evaluation of the expression e. If the value of
e is true, normal execution sequence continues with the first statement of the ELSE IF-
block. If the value of e is true and the ELSE IF-block is empty, control is transferred to
the next END IF statement that has the same IF-level as the ELSE IF statement. If the
value of e is false, control is transferred to the next ELSE IF, ELSE, or END IF statement
that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF-block from outside the ELSE IF-block is prohibited.
The statement label, if any, of the ELSE IF statement must not be referenced by any
statement.

If execution of the last statement in the ELSE IF-block does not result in a transfer of
control, control is transferred to the next END IF statement that has the same IF-level as
the ELSE IF statement that precedes the ELSE IF-block.

11.8 ELSE Statement

The form of an ELSE statement is:

ELSE

ANSI X3.9-1978

11-7

11.8.1 ELSE-Block

An ELSE-block consists of all of the executable statements that appear following the
ELSE statement up to, but not including, the next END IF statement that has the same IF-
level as the ELSE statement. An ELSE-block may be empty.

An END IF statement of the same IF-level as the ELSE statement must appear before the
appearance of an ELSE IF or ELSE statement of the same IF-level.

11.8.2 Execution of an ELSE Statement

Execution of an ELSE statement has no effect.

Transfer of control into an ELSE-block from outside the ELSE-block is prohibited. The
statement label, if any, of an ELSE statement must not be referenced by any statement.

11.9 END IF Statement

The form of an END IF statement is:

END IF

Execution of an END IF statement has no effect.

For each block IF statement there must be a corresponding END IF statement in the same
program unit. A corresponding END IF statement is the next END IF statement that has
the same IF-level as the block IF statement.

11.10 DO Statement

A DO statement is used to specify a loop, called a DO loop.

The form of a DO statement is:

DO s [,] i = e 1, e 2 [, e 3]

where:
s is the statement label of an executable statement. The statement identified by s,
called the terminal statement of the DO-loop, must follow the DO statement in the
sequence of statements within the same program unit as the DO statement.

ANSI X3.9-1978

11-8

i is the name of an integer, real, or double precision variable, called the DO
variable

e1, e2, and e3 are each an integer, real, or double precision expression

The terminal statement of a DO-loop must not be an unconditional GO TO, assigned GO
TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO
statement. If the terminal statement of a DO-loop is a logical IF statement, it may contain
any executable statement except a DO, block IF, ELSE IF, ELSE, END IF, END, or
another logical IF statement.

11.10.1 Range of a DO-Loop

The range of a DO-loop consists of all of the executable statements that appear following
the DO statement that specifies the DO-loop, up to and including the terminal statement
of the DO-loop.

If a DO statement appears within the range of a DO-loop, the range of the DO-loop
specified by that DO statement must be contained entirely within the range of the outer
DO-loop. More than one DO-loop may have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF-block, or ELSE-block, the range
of that DO-loop must be contained entirely within that IF-block, ELSE IF-block, or
ELSE-block, respectively.

If a block IF statement appears within the range of a DO-loop, the corresponding END IF
statement must also appear within the range of that DO-loop.

11.10.2 Active and Inactive DO-Loops

A DO-loop is either active or inactive. Initially inactive, a DO-loop becomes active only
when its DO statement is executed.

Once active, the DO-loop becomes inactive only when:

(1) its iteration count is tested (11.10.4) and determined to be zero,

(2) a RETURN statement is executed within its range,

(3) control is transferred to a statement that is in the same program unit and is
outside the range of the DO-loop, or

ANSI X3.9-1978

11-9

(4) any STOP statement in the executable program is executed, or execution is
terminated for any other reason (12.6).

Execution of a function reference or CALL statement that appears in the range of a DO-
loop does not cause the DO-loop to become inactive, except when control is returned by
means of an alternate return specifier in a CALL statement to a statement that is not in
the range of the DO-loop.

When a DO-loop becomes inactive, the DO-variable of the DO-loop retains its last
defined value.

11.10.3 Executing a DO Statement

The effect of executing a DO statement is to perform the following steps in sequence:

(1) T h e initial parameter m1, t h e terminal parameter m2, a n d t h e
incrementation parameter m3 are established by evaluating e1, e2, and e3,
respectively, including, if necessary, conversion to the type of the DO-
variable according to the rules for arithmetic conversion (Table 4). If e3 does
not appear, m3 has a value of one. m3 must not have a value of zero.

(2) The DO-variable becomes defined with the value of the initial parameter m1.

(3) The iteration count is established and is the value of the expression

MAX(INT((m 2 - m 1 + m 3)/ m 3), 0)

Note that the iteration count is zero whenever:

m1 > m2 and m3 > 0, or

m1 < m2 and m3 < 0.

At the completion of execution of the DO statement, loop control processing begins.

11.10.4 Loop Control Processing

Loop control processing determines if further execution of the range of the DO-loop is
required. The iteration count is tested. If it is not zero, execution of the first statement in
the range of the DO-loop begins. If the iteration count is zero, the DO-loop becomes
inactive. If, as a result, all of the DO-loops sharing the terminal statement of this DO-loop
are inactive, normal execution continues with execution of the next executable statement
following the terminal statement. However, if some of the DO-loops sharing the terminal

ANSI X3.9-1978

11-10

statement are active, execution continues with incrementation processing, as described in
11.10.7.

11.10.5 Execution of the Range

Statements in the range of a DO-loop are executed until the terminal statement is reached.
Except by the incrementation described in 11.10.7, the DO-variable of the DO-loop may
neither be redefined nor become undefined during execution of the range of the DO-loop.

11.10.6 Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution sequence
or as a result of transfer of control, subject to the restrictions in 11.10.8. Unless execution
of the terminal statement results in a transfer of control, execution then continues with
incrementation processing, as described in 11.10.7.

ANSI X3.9-1978

11-11

11.10.7 Incrementation Processing

Incrementation processing has the effect of the following steps performed in sequence:

(1) The DO-variable, the iteration count, and the incrementation parameter of
the active DO-loop whose DO statement was most recently executed, are
selected for processing.

(2) The value of the DO-variable is incremented by the value of the
incrementation parameter m3.

(3) The iteration count is decremented by one.

(4) Execution continues with loop control processing (11.10.4) of the same DO-
loop whose iteration count was decremented.

For example:

 N=0
 DO 100 I=1,10
 J=I
 DO 100 K=1,5
 L=K
 100 N=N+1
 101 CONTINUE

After execution of these statements and at the execution of the CONTINUE statement,
I=11, J=10, K=6, L=5, and N=50.

Also consider the following example:

 N=0
 DO 200=I=1,10
 J=I
 D0 200 K=5,1
 L=K
 200 N=N+1
 201 CONTINUE

After execution of these statements and at the execution of the CONTINUE statement,
I=11, J=10, K=5, and N=0. L is not defined by these statements.

11.10.8 Transfer into the Range of a DO-Loop

ANSI X3.9-1978

11-12

Transfer of control into the range of a DO-loop from outside the range is not permitted.

11.11 CONTINUE Statement

The form of a CONTINUE statement is:

CONTINUE

Execution of a CONTINUE statement has no effect.

If the CONTINUE statement is the terminal statement of a DO-loop, the next statement
executed depends on the result of the DO-loop incrementation processing (11.10.7).

11.12 STOP Statement

The form of a STOP statement is:

STOP [n]

where n is a string of not more than five digits, or is a character constant.

Execution of a STOP statement causes termination of execution of the executable
program. At the time of termination, the digit string or character constant is accessible.

11.13 PAUSE Statement

The form of a PAUSE statement is:

PAUSE [n]

where n is a string of not more than five digits, or is a character constant.

Execution of a PAUSE statement causes a cessation of execution of the executable
program. Execution must be resumable. At the time of cessation of execution, the digit
string or character constant is accessible. Resumption of execution is not under control of
the program. If execution is resumed, the execution sequence continues as though a
CONTINUE statement were executed.

11.14 END Statement

ANSI X3.9-1978

11-13

The END statement indicates the end of the sequence of statements and comment lines of
a program unit (3.5). If executed in a function or subroutine subprogram, it has the effect
of a RETURN statement (15.8). If executed in a main program, it terminates the
execution of the executable program.

The form of an END statement is:

END

An END statement is written only in columns 7 through 72 of an initial line. An END
statement must not be continued. No other statement in a program unit may have an
initial line that appears to be an END statement.

The last line of every program unit must be an END statement.

ANSI X3.9-1978

12-1

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal
storage or from an internal file to internal storage. This process is called reading. Output
statements provide the means of transferring data from internal storage to external media
or from internal storage to an internal file. This process is called writing. Some
input/output statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements
to manipulate the external medium, or to inquire about or describe the properties of the
connection to the external medium.

There are nine input/output statements:

(1) READ

(2) WRITE

(3) PRINT

(4) OPEN

(5) CLOSE

(6) INQUIRE

(7) BACKSPACE

(8) ENDFILE

(9) REWIND

The READ, WRITE, and PRINT statements are data transfer input/output statements
(12.8). The OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE, and REWIND
statements are auxiliary input/output statements (12.10). The BACKSPACE, ENDFILE,
and REWIND statements are file positioning input/output statements (12.10.4).

12.1 Records

A record is a sequence (2.1) of values or a sequence of characters. For example, a
punched card is usually considered to be a record. However, a record does not necessarily
correspond to a physical entity. There are three kinds of records:

ANSI X3.9-1978

12-2

(1) Formatted

(2) Unformatted

(3) Endfile

12.1.1 Formatted Record

A formatted record consists of a sequence of characters that are capable of representation
in the processor. The length of a formatted record is measured in characters and depends
primarily on the number of characters put into the record when it is written. However, it
may depend on the processor and the external medium. The length may be zero.
Formatted records may be read or written only by formatted input/output statements
(12.8.1).

Formatted records may be prepared by some means other than FORTRAN; for example,
by some manual input device.

12.1.2 Unformatted Record

An unformatted record consists of a sequence of values in a processor-dependent form
and may contain both character and noncharacter data or may contain no data. The length
of an unformatted record is measured in processor-dependent units and depends on the
output list (12.8.2) used when it is written, as well as on the processor and the external
medium. The length may be zero.

Unformatted records may be read or written only by unformatted input/output statements
(12.8.1).

12.1.3 Endfile Record

An endfile record is written by an ENDFILE statement. An endfile record may occur
only as the last record of a file. An endfile record does not have a length property.

12.2 Files

A file is a sequence (2.1) of records.

There are two kinds of files:

(1) External

ANSI X3.9-1978

12-3

(2) Internal

ANSI X3.9-1978

12-4

12.2.1 File Existence

At any given time, there is a processor-determined set of files that are said to exist for an
executable program. A file may be known to the processor, yet not exist for an executable
program at a particular time. For example, security reasons may prevent a file from
existing for an executable program. A file may exist and contain no records; an example
is a newly created file not yet written.

To create a file means to cause a file to exist that did not previously exist. To delete a file
means to terminate the existence of the file.

All input/output statements may refer to files that exist. The INQUIRE, OPEN, CLOSE,
WRITE, PRINT, and ENDFILE statements may also refer to files that do not exist.

12.2.2 File Properties

At any given time, there is a processor-determined set of allowed access methods, a
processor-determined set of allowed forms, and a processor-determined set of allowed
record lengths for a file.

A file may have a name; a file that has a name is called a named file. The name of a
named file is a character string. The set of allowable names is processor dependent and
may be empty.

12.2.3 File Position

A file that is connected to a unit (12.3) has a position property. Execution of certain
input/output statements affects the position of a file. Certain circumstances can cause the
position of a file to become indeterminate.

The initial point of a file is the position just before the first record The terminal point is
the position just after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is
no current record.

Let n be the number of records in the file. If 1 < i ≤ n and a file is positioned within the
ith record or between the (i-1)th record and the ith record, the (i-1)th record is the
preceding record. If n ≥ 1 and the file is positioned at its terminal point, the preceding
record is the nth and last record. If n=0 or if a file is positioned at its initial point or
within the first record, there is no preceding record.

ANSI X3.9-1978

12-5

If 1 ≤ i < n and a file is positioned within the ith record or between the ith and (i+1)th
record, the (i+1)th record is the next record. If n ≥ 1 and the file is positioned at its initial
point, the first record is the next record. If n = 0 or if a file is positioned at its terminal
point or within the nth and last record, there is no next record.

12.2.4 File Access

There are two methods of accessing the records of an external file: sequential and direct.
Some files may have more than one allowed access method; other files may be restricted
to one access method. For example, a processor may allow only sequential access to a file
on magnetic tape. Thus, the set of allowed access methods depends on the file and the
processor.

The method of accessing the file is determined when the file is connected to a unit
(12.3.2).

An internal file must be accessed sequentially.

12.2.4.1 Sequential Access

When connected for sequential access, a file has the following properties:

(1) The order of the records is the order in which they were written if the direct
access method is not a member of the set of allowed access methods for the
file. If the direct access method is also a member of the set of allowed access
methods for the file, the order of the records is the same as that specified for
direct access (12.2.4.2). The first record accessed by sequential access is the
record whose record number is 1 for direct access. The second record
accessed by sequential access is the record whose record number is 2 for
direct access, etc. A record that has not been written since the file was
created must not be read.

(2) The records of the file are either all formatted or all unformatted, except that
the last record of the file may be an endfile record.

(3) The records of the file must not be read or written by direct access
input/output statements (12.8.1).

12.2.4.2 Direct Access

When connected for direct access, a file has the following properties:

ANSI X3.9-1978

12-6

(1) The order of the records is the order of their record numbers. The records
may be read or written in any order.

(2) The records of the file are either all formatted or all unformatted. If the
sequential access method is also a member of the set of allowed access
methods for the file, its endfile record, if any, is not considered to be part of
the file while it is connected for direct access. If the sequential access
method is not a member of the set of allowed access methods for the file, the
file must not contain an endfile record.

(3) Reading and writing records is accomplished only by direct access
input/output statements (12.8.1).

(4) All records of the file have the same length.

(5) Each record of the file is uniquely identified by a positive integer called the
record number . The record number of a record is specified when the record
is written. Once established, the record number of a record can never be
changed.

Note that a record may not be deleted; however, a record may be rewritten.

(6) Records need not be read or written in the order of their record numbers.
Any record may be written into the file while it is connected (12.3.2) to a
unit. For example, it is permissible to write record 3, even though records 1
and 2 have not been written. Any record may be read from the file while it is
connected to a unit, provided that the record was written since the file was
created.

(7) The records of the file must not be read or written using list-directed
formatting.

12.2.5 Internal File

Internal files provide a means of transferring and converting data from internal storage to
internal storage.

12.2.5.1 Internal File Properties

An internal file has the following properties:

ANSI X3.9-1978

12-7

(1) The file is a character variable, character array element, character array, or
character substring.

(2) A record of an internal file is a character variable, character array element, or
character substring.

(3) If the file is a character variable, character array element, or character
substring, it consists of a single record whose length is the same as the length
of the variable, array element, or substring, respectively. If the file is a
character array, it is treated as a sequence of character array elements. Each
array element is a record of the file. The ordering of the records of the file is
the same as the ordering of the array elements in the array (5.2.4). Every
record of the file has the same length, which is the length of an array element
in the array.

(4) The variable, array element, or substring that is the record of the internal file
becomes defined by writing the record. If the number of characters written in
a record is less than the length of the record, the remaining portion of the
record is filled with blanks.

(5) A record may be read only if the variable, array element, or substring that is
the record is defined.

(6) A variable, array element, or substring that is a record of an internal file may
become defined (or undefined) by means other than an output statement. For
example, the variable, array element, or substring may become defined by a
character assignment statement.

(7) An internal file is always positioned at the beginning of the first record prior
to data transfer.

12.2.5.2 Internal File Restrictions

An internal file has the following restrictions:

(1) Reading and writing records is accomplished only by sequential access
formatted input/output statements (12.8.1) that do not specify list-directed
formatting.

(2) An auxiliary input/output statement must not specify an internal file.

12.3 Units

ANSI X3.9-1978

12-8

A unit is a means of referring to a file.

12.3.1 Unit Existence

At any given time, there is a processor-determined set of units that are said to exist for an
executable program.

All input/output statements may refer to units that exist. The INQUIRE and CLOSE
statements may also refer to units that do not exist.

ANSI X3.9-1978

12-9

12.3.2 Connection of a Unit

A unit has a property of being connected or not connected. If connected, it refers to a file.
A unit may become connected by preconnection or by the execution of an OPEN
statement. The property of connection is symmetric: if a unit is connected to a file, the
file is connected to the unit.

Preconnection means that the unit is connected to a file at the beginning of execution of
the executable program and therefore may be referenced by input/output statements
without the prior execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and INQUIRE must reference a unit
that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, and a file must not
be connected to more than one unit at the same time. However, means are provided to
change the status of a unit and to connect a unit to a different file.

After a unit has been disconnected by the execution of a CLOSE statement, it may be
connected again within the same executable program to the same file or a different file.
After a file has been disconnected by the execution of a CLOSE statement, it may be
connected again within the same executable program to the same unit or a different unit.
Note, however, that the only means to refer to a file that has been disconnected is by its
name in an OPEN or INQUIRE statement. Therefore, there may be no means of
reconnecting an unnamed file once it is disconnected.

12.3.3 Unit Specifier and Identifier

The form of a unit specifier is:

[UNIT =] u

where u is an external unit identifier or an internal file identifier.

An external unit identifier is used to refer to an external file. An internal file identifier is
used to refer to an internal file.

An external unit identifier is one of the following:

(1) An integer expression i whose value must be zero or positive

ANSI X3.9-1978

12-10

(2) An asterisk, identifying a particular processor-determined external unit that
is preconnected for formatted sequential access (12.9.2)

The external unit identified by the value of i is the same external unit in all program units
of the executable program. In the example:

 SUBROUTINE A
 READ (6) X

 SUBROUTINE B
 N=6
 REWIND N

the value 6 used in both program units identifies the same external unit.

An external unit identifier in an auxiliary input/output statement (12.10) must not be an
asterisk.

An internal file identifier is the name of a character variable, character array, character
array element, or character substring.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in a list of specifiers.

12.4 Format Specifier and Identifier

The form of a format specifier is:

[FMT =] f

where f is a format identifier.

A format identifier identifies a format. A format identifier must be one of the following:

(1) The statement label of a FORMAT statement that appears in the same
program unit as the format identifier.

(2) An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format
identifier (10.3).

(3) A character array name (13.1.2).

ANSI X3.9-1978

12-11

(4) Any character expression except a character expression involving
concatenation of an operand whose length specification is an asterisk in
parentheses unless the operand is the symbolic name of a constant. Note that
a character constant is permitted.

(5) An asterisk, specifying list-directed formatting.

If the optional characters FMT= are omitted from the format specifier, the format
specifier must be the second item in the control information list and the first item must be
the unit specifier without the optional characters UNIT=.

12.5 Record Specifier

The form of a record specifier is:

REC = r

where r is an integer expression whose value is positive. It specifies the number of the
record that is to be read or written in a file connected for direct access.

12.6 Error and End-of-File Conditions

The set of input/output error conditions is processor dependent.

An end-of-file condition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of a file connected for
sequential access. In this case, the file is positioned after the endfile record.

(2) An attempt is made to read a record beyond the end of an internal file.

If an error condition occurs during execution of an input/output statement, execution of
the input/output statement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of a READ
statement, execution of the READ statement terminates and the entities specified by the
input list and implied-DO-variables in the input list become undefined. Note that
variables and array elements appearing only in subscripts, substring expressions, and
implied-DO parameters in an input list do not become undefined when the entities
specified by the list become undefined.

ANSI X3.9-1978

12-12

If an error condition occurs during execution of an output statement, execution of the
output statement terminates and implied-DO-variables in the output list become
undefined.

If an error condition occurs during execution of an input/output statement that contains
neither an input/output status specifier (12.7) nor an error specifier (12.7.1), or if an end-
of-file condition occurs during execution of a READ statement that contains neither an
input/output status specifier nor an end-of-file specifier (12.7.2), execution of the
executable program is terminated.

12.7 Input/Output Status, Error, and End-of-File Specifiers

The form of an input/output status specifier is:

IOSTAT = ios

where ios is an integer variable or integer array element.

Execution of an input/output statement containing this specifier causes ios to become
defined:

(1) with a zero value if neither an error condition nor an end-of-file condition is
encountered by the processor,

(2) with a processor-dependent positive integer value if an error condition is
encountered, or

(3) with a processor-dependent negative integer value if an end-of-file condition
is encountered and no error condition is encountered.

12.7.1 Error Specifier

The form of an error specifier is:

ERR = s

where s is the statement label of an executable statement that appears in the same
program unit as the error specifier.

If an input/output statement contains an error specifier and the processor encounters an
error condition during execution of the statement:

(1) execution of the input/output statement terminates,

ANSI X3.9-1978

12-13

(2) the position of the file specified in the input/output statement becomes
indeterminate,

(3) if the input/output statement contains an input/output status specifier (12.7),
the variable or array element ios becomes defined with a processor-
dependent positive integer value, and

(4) execution continues with the statement labeled s.

ANSI X3.9-1978

12-14

12.7.2 End-of-File Specifier

The form of an end-of-file specifier is:

END = s

where s is the statement label of an executable statement that appears in the same
program unit as the end-of-file specifier.

If a READ statement contains an end-of-file specifier and the processor encounters an
end-of-file condition and no error condition during execution of the statement:

(1) execution of the READ statement terminates,

(2) if the READ statement contains an input/output status specifier (12.7), the
variable or array element ios becomes defined with a processor-dependent
negative integer value, and

(3) execution continues with the statement labeled s.

12.8 READ, WRITE, and PRINT Statements

The READ statement is the data transfer input statement. The WRITE and PRINT
statements are the data transfer output statements. The forms of the data transfer
input/output statements are:

READ (cilist) [iolist]

READ f [, iolist]

WRITE (cilist) [iolist]

PRINT f [, iolist]

where:
cilist is a control information list (12.8.1) that includes:

(1) A reference to the source or destination of the data to be transferred

(2) Optional specification of editing processes

ANSI X3.9-1978

12-15

(3) Optional specifiers that determine the execution sequence on the
occurrence of certain events

(4) Optional specification to identify a record

(5) Optional specification to provide the return of the input/output status

f is a format identifier (12.4)

iolist is an input/output list (12.8.2) specifying the data to be transferred

12.8.1 Control Information List

A control information list, clist, is a list (2.10) whose list items may be any of the
following:

[UNIT =] u
[FMT =] f
REC = rn
IOSTAT = ios
ERR = s
END = s

A control information list must contain exactly one unit specifier (12.3.3), at most one
format specifier (12.4), at most one record specifier (12.5), at most one input/output
status specifier (12.7), at most one error specifier (12.7.1), and at most one end-of-file
specifier (12.7.2).

If the control information list contains a format specifier, the statement is a formatted
input/output statement; otherwise, it is an unformatted input/output statement.

If the control information list contains a record specifier, the statement is a direct access
input/output statement; otherwise, it is a sequential access input/output statement.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in the control information list.

If the optional characters FMT= are omitted from the format specifier, the format
specifier must be the second item in the control information list and the first item must be
the unit specifier without the optional characters UNIT=.

A control information list must not contain both a record specifier and an end-of-file
specifier.

ANSI X3.9-1978

12-16

If the format identifier is an asterisk, the statement is a list-directed input/output
statement and a record specifier must not be present.

In a WRITE statement, the control information list must not contain an end-of-file
specifier.

If the unit specifier specifies an internal file, the control information list must contain a
format identifier other than an asterisk and must not contain a record specifier.

12.8.2 Input/Output List

An input/output list, iolist, specifies the entities whose values are transferred by a data
transfer input/output statement.

An input/output list is a list (2.10) of input/output list items and implied-DO lists
(12.8.2.3). An input/output list item is either an input list item or an output list item.

If an array name appears as an input/output list item, it is treated as if all of the elements
of the array were specified in the order given by array element ordering (5.2.4). The name
of an assumed-size dummy array must not appear as an input/output list item.

12.8.2.1 Input List Items.

An input list item must be one of the following:

(1) A variable name

(2) An array element name

(3) A character substring name

(4) An array name

Only input list items may appear as input/output list items in an input statement.

12.8.2.2 Output List Items

An output list item must be one of the following:

(1) A variable name

(2) An array element name

ANSI X3.9-1978

12-17

(3) A character substring name

(4) An array name

(5) Any other expression except a character expression involving concatenation
of an operand whose length specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

Note that a constant, an expression involving operators or function references, or an
expression enclosed in parentheses may appear as an output list item but must not appear
as an input list item.

12.8.2.3 Implied-DO List

An implied-DO list is of the form:

(dlist , i = e 1, e 2 [, e 3])

where:
i are as specified for the DO statement (11.10)

dlist is an input/output list

The range of an implied-DO list is the list dlist. Note that dlist may contain implied-DO
lists. The iteration count and the values of the DO-variable i are established from e1, e2,
and e3 exactly as for a DO-loop. In an input statement, the DO-variable i, or an
associated entity, must not appear as an input list item in dlist. When an implied-DO list
appears in an input/output list, the list items in dlist are specified once for each iteration
of the implied-DO list with appropriate substitution of values for any occurrence of the
DO-variable i.

12.9 Execution of a Data Transfer Input/Output Statement

The effect of executing a data transfer input/output statement must be as if the following
operations were performed in the order specified:

(1) Determine the direction of data transfer

(2) Identify the unit

(3) Establish the format if any is specified

ANSI X3.9-1978

12-18

(4) Position the file prior to data transfer

(5) Transfer data between the file and the entities specified by the input/output
list (if any)

(6) Position the file after data transfer

(7) Cause the specified integer variable or array element in the input/output
status specifier (if any) to become defined

ANSI X3.9-1978

12-19

12.9.1 Direction of Data Transfer

Execution of a READ statement causes values to be transferred from a file to the entities
specified by the input list, if one is specified.

Execution of a WRITE or PRINT statement causes values to be transferred to a file from
the entities specified by the output list and format specification (if any). Execution of a
WRITE or PRINT statement for a file that does not exist creates the file, unless an error
condition occurs.

12.9.2 Identifying a Unit

A data transfer input/output statement that contains a control information list (12.8.1)
includes a unit specifier that identifies an external unit or an internal file. A READ
statement that does not contain a control information list specifies a particular processor-
determined unit, which is the same as the unit identified by an asterisk in a READ
statement that contains a control information list. A PRINT statement specifies some
other processor-determined unit, which is the same as the unit identified by an asterisk in
a WRITE statement. Thus, each data transfer input/output statement identifies an external
unit or an internal file.

The unit identified by a data transfer input/output statement must be connected to a file
when execution of the statement begins.

12.9.3 Establishing a Format

If the control information list contains a format identifier other than an asterisk, the
format specification identified by the format identifier is established. If the format
identifier is an asterisk, list-directed formatting is established.

On output, if an internal file has been specified, a format specification (13.1) that is in the
file or is associated (17.1) with the file must not be specified.

12.9.4 File Position Prior to Data Transfer

The positioning of the file prior to data transfer depends on the method of access:
sequential or direct.

If the file contains an endfile record, the file must not be positioned after the endfile
record prior to data transfer.

ANSI X3.9-1978

12-20

12.9.4.1 Sequential Access

On input, the file is positioned at the beginning of the next record. This record becomes
the current record. On output, a new record is created and becomes the last record of the
file.

An internal file is always positioned at the beginning of the first record of the file. This
record becomes the current record.

12.9.4.2 Direct Access

For direct access, the file is positioned at the beginning of the record specified by the
record specifier (12.5). This record becomes the current record.

12.9.5 Data Transfer

Data are transferred between records and entities specified by the input/output list. The
list items are processed in the order of the input/output list.

All values needed to determine which entities are specified by an input/output list item
are determined at the beginning of the processing of that item. All values are transmitted
to or from the entities specified by a list item prior to the processing of any succeeding
list item. In the example,

READ (3) N, A(N)

two values are read; one is assigned to N, and the second is assigned to A(N) for the new
value of N.

An input list item, or an entity associated with it (17.1.3), must not contain any portion of
the established format specification.

If an internal file has been specified, an input/output list item must not be in the file or
associated with the file.

A DO-variable becomes defined at the beginning of processing of the items that
constitute the range of an implied-DO list.

On output, every entity whose value is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not
previously been written causes all entities specified by the input list to become undefined.

ANSI X3.9-1978

12-21

12.9.5.1 Unformatted Data Transfer

During unformatted data transfer, data are transferred without editing between the current
record and the entities specified by the input/output list. Exactly one record is read or
written.

On input, the file must be positioned so that the record read is an unformatted record or
an endfile record.

On input, the number of values required by the input list must be less than or equal to the
number of values in the record.

On input, the type of each value in the record must agree with the type of the
corresponding entity in the input list, except that one complex value may correspond to
two real list entities or two real values may correspond to one complex list entity. If an
entity in the input list is of type character, the length of the character entity must agree
with the length of the character value.

On output to a file connected for direct access, the output list must not specify more
values than can fit into a record.

On output, if the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is prohibited.
The unit specified must be an external unit.

12.9.5.2 Formatted Data Transfer

During formatted data transfer, data are transferred with editing between the entities
specified by the input/output list and the file. The current record and possibly additional
records are read or written.

On input, the file must be positioned so that the record read is a formatted record or an
endfile record.

If the file is connected for unformatted input/output, formatted data transfer is prohibited.

12.9.5.2.1 Using a Format Specification

If a format specification has been established, format control (13.3) is initiated and
editing is performed as described in 13.3 through 13.5.

ANSI X3.9-1978

12-22

On input, the input list and format specification must not require more characters from a
record than the record contains.

If the file is connected for direct access, the record number is increased by one as each
succeeding record is read or written.

On output, if the file is connected for direct access or is an internal file and the characters
specified by the output list and format do not fill a record, blank characters are added to
fill the record.

On output, if the file is connected for direct access or is an internal file, the output list and
format specification must not specify more characters for a record than can fit into the
record.

12.9.5.2.2 List-Directed Formatting

If list-directed formatting has been established, editing is performed as described in 13.6.

12.9.5.2.3 Printing of Formatted Records

The transfer of information in a formatted record to certain devices determined by the
processor is called printing. If a formatted record is printed, the first character of the
record is not printed. The remaining characters of the record, if any, are printed in one
line beginning at the left margin.

The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing Before Printing
Blank One Line

0 Two Lines
1 To First Line of Next Page
+ No Advance

If there are no characters in the record (13.5.4), the vertical spacing is one line and no
characters other than blank are printed in that line.

A PRINT statement does not imply that printing will occur, and a WRITE statement does
not imply that printing will not occur.

12.9.6 File Position After Data Transfer

ANSI X3.9-1978

12-23

If an end-of-file condition exists as a result of reading an endfile record, the file is
positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is positioned after the last
record read or written and that record becomes the preceding record. A record written on
a file connected for sequential access becomes the last record of the file.

If the file is positioned after the endfile record, execution of a data transfer input/output
statement is prohibited. However, a BACKSPACE or REWIND statement may be used
to reposition the file.

If an error condition exists, the position of the file is indeterminate.

12.9.7 Input/Output Status Specifier Definition

If the data transfer input/output statement contains an input/output status specifier, the
integer variable or array element ios becomes defined. If no error condition or end-of-file
condition exists, the value of ios is zero. If an error condition exists, the value of ios is
positive. If an end-of-file condition exists and no error condition exists, the value of ios
is negative.

12.10 Auxiliary Input/Output Statements

12.10.1 OPEN Statement

An OPEN statement may be used to connect (12.3.2) an existing file to a unit, create a
file (12.2.1) that is preconnected, create a file and connect it to a unit, or change certain
specifiers of a connection between a file and a unit.

The form of an OPEN statement is:

OPEN (olist)

where olist is a list (2.10) of specifiers:

[UNIT =] u
IOSTAT = ios
ERR = s
FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rl

ANSI X3.9-1978

12-24

BLANK = blnk

olist must contain exactly one external unit specifier (12.3.3) and may contain at most
one of each of the other specifiers.

The other specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier (12.7). Execution of an OPEN statement containing this
specifier causes ios to become defined with a zero value if no error condition exists or
with a processor-dependent positive integer value if an error condition exists.

ERR = s

is an error specifier (12.7.1).

FILE = fin

fin is a character expression whose value when any trailing blanks are removed is the
name of the file to be connected to the specified unit. The file name must be a name that
is allowed by the processor. If this specifier is omitted and the unit is not connected to a
file, it becomes connected to a processor-determined file. (See also 12.10.1.1.)

STATUS = sta

sta is a character expression whose value when any trailing blanks are removed is OLD,
NEW, SCRATCH, or UNKNOWN. If OLD or NEW is specified, a FILE= specifier must
be given. If OLD is specified, the file must exist. If NEW is specified, the file must not
exist. Successful execution of an OPEN statement with NEW specified creates the file
and changes the status to OLD (12.10.1.1). If SCRATCH is specified with an unnamed
file, the file is connected to the specified unit for use by the executable program but is
deleted (12.2.1) at the execution of a CLOSE statement referring to the same unit or at
the termination of the executable program. SCRATCH must not be specified with a
named file. If UNKNOWN is specified, the status is processor dependent. If this specifier
is omitted, a value of UNKNOWN is assumed.

ACCESS = acc

acc is a character expression whose value when any trailing blanks are removed is
SEQUENTIAL or DIRECT. It specifies the access method for the connection of the file
as being sequential or direct (12.2.4). If this specifier is omitted, the assumed value is
SEQUENTIAL. For an existing file, the specified access method must be included in the

ANSI X3.9-1978

12-25

set of allowed access methods for the file (12.2.4). For a new file, the processor creates
the file with a set of allowed access methods that includes the specified method.

FORM = fm

fm is a character expression whose value when any trailing blanks are removed is
FORMATTED or UNFORMATTED. It specifies that the file is being connected for
formatted or unformatted input/output, respectively. If this specifier is omitted, a value of
UNFORMATTED is assumed if the file is being connected for direct access, and a value
of FORMATTED is assumed if the file is being connected for sequential access. For an
existing file, the specified form must be included in the set of allowed forms for the file
(12.2.2). For a new file, the processor creates the file with a set of allowed forms that
includes the specified form.

RECL = rl

rl is an integer expression whose value must be positive. It specifies the length of each
record in a file being connected for direct access. If the file is being connected for
formatted input/output, the length is the number of characters. If the file is being
connected for unformatted input/output, the length is measured in processor-dependent
units. For an existing file, the value of rl must be included in the set of allowed record
lengths for the file (12.2.2). For a new file, the processor creates the file with a set of
allowed record lengths that includes the specified value. This specifier must be given
when a file is being connected for direct access; otherwise, it must be omitted.

BLANK = blnk

blnk is a character expression whose value when any trailing blanks are removed is
NULL or ZERO. If NULL is specified, all blank characters in numeric formatted input
fields on the specified unit are ignored except that a field of all blanks has a value of zero.
If ZERO is specified, all blanks other than leading blanks are treated as zeros. If this
specifier is omitted, a value of NULL is assumed. This specifier is permitted only for a
file being connected for formatted input/output.

The unit specifier is required to appear; all other specifiers are optional, except that the
record length rl must be specified if a file is being connected for direct access. Note that
some of the specifications have an assumed value if they are omitted.

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in any program unit of an
executable program and, once connected, may be referenced in any program unit of the
executable program.

ANSI X3.9-1978

12-26

12.10.1.1 Open of a Connected Unit

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is
permitted. If the FILE= specifier is not included in the OPEN statement, the file to be
connected to the unit is the same as the file to which the unit is connected.

If the file to be connected to the unit does not exist, but is the same as the file to which
the unit is preconnected, the properties specified by the OPEN statement become a part of
the connection.

If the file to be connected to the unit is not the same as the file to which the unit is
connected, the effect is as if a CLOSE statement (12.10.2) without a STATUS= specifier
had been executed for the unit immediately prior to the execution of the OPEN statement.

If the file to be connected to the unit is the same as the file to which the unit is connected,
only the BLANK= specifier may have a value different from the one currently in effect.
Execution of the OPEN statement causes the new value of the BLANK= specifier to be in
effect. The position of the file is unaffected.

If a file is connected to a unit, execution of an OPEN statement on that file and a different
unit is not permitted.

12.10.2 CLOSE Statement

A CLOSE statement is used to terminate the connection of a particular file to a unit.

The form of a CLOSE statement is:

CLOSE (cllist)

where cllist is a list (2.10) of specifiers:

[UNIT =] u
IOSTAT = ios
ERR = s
STATUS = sta

cllist must contain exactly one external unit specifier (12.3.3) and may contain at most
one of each of the other specifiers.

The other specifiers are described as follows:

ANSI X3.9-1978

12-27

IOSTAT = ios

is an input/output status specifier (12.7). Execution of a CLOSE statement containing this
specifier causes ios to become defined with a zero value if no error condition exists or
with a processor-dependent positive integer value if an error condition exists.

ERR = s

is an error specifier (12.7.1).

STATUS = sta

sta is a character expression whose value when any trailing blanks are removed is KEEP
or DELETE. sta determines the disposition of the file that is connected to the specified
unit. KEEP must not be specified for a file whose status prior to execution of the CLOSE
statement is SCRATCH. If KEEP is specified for a file that exists, the file continues to
exist after the execution of the CLOSE statement. If KEEP is specified for a file that does
not exist, the file will not exist after the execution of the CLOSE statement. If DELETE
is specified, the file will not exist after execution of the CLOSE statement. If this
specifier is omitted, the assumed value is KEEP, unless the file status prior to execution
of the CLOSE statement is SCRATCH, in which case the assumed value is DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of
an executable program and need not occur in the same program unit as the execution of
an OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit that does not exist or has no file
connected to it is permitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program, either to the same file or to a
different file. After a file has been disconnected by execution of a CLOSE statement, it
may be connected again within the same executable program, either to the same unit or to
a different unit, provided that the file still exists.

12.10.2.1 Implicit Close at Termination of Execution

At termination of execution of an executable program for reasons other than an error
condition, all units that are connected are closed. Each unit is closed with status KEEP
unless the file status prior to termination of execution was SCRATCH, in which case the
unit is closed with status DELETE. Note that the effect is as though a CLOSE statement
without a STATUS= specifier were executed on each connected unit.

ANSI X3.9-1978

12-28

12.10.3 INQUIRE Statement

An INQUIRE statement may be used to inquire about properties of a particular named
file or of the connection to a particular unit. There are two forms of the INQUIRE
statement: inquire by file and inquire by unit. All value assignments are done according
to the rules for assignment statements.

The INQUIRE statement may be executed before, while, or after a file is connected to a
unit. All values assigned by the INQUIRE statement are those that are current at the time
the statement is executed.

12.10.3.1 INQUIRE by File

The form of an INQUIRE by file statement is:

INQUIRE (iflist)

where iflist is a list (2.10) of specifiers that must contain exactly one file specifier and
may contain other inquiry specifiers. The iflist may contain at most one of each of the
inquiry specifiers described in 12.10.3.3.

The form of a file specifier is:

FILE = fin

where fin is a character expression whose value when any trailing blanks are removed
specifies the name of the file being inquired about. The named file need not exist or be
connected to a unit. The value of fin must be of a form acceptable to the processor as a
file name.

12.10.3.2 INQUIRE by Unit

The form of an INQUIRE by unit statement is:

INQUIRE (iulist)

where iulist is a list (2.10) of specifiers that must contain exactly one external unit
specifier (12.3.3) and may contain other inquiry specifiers. The iulist may contain at most
one of each of the inquiry specifiers described in 12.10.3.3. The unit specified need not
exist or be connected to a file. If it is connected to a file, the inquiry is being made about
the connection and about the file connected.

12.10.3.3 Inquire Specifiers

ANSI X3.9-1978

12-29

The following inquiry specifiers may be used in either form of the INQUIRE statement:

IOSTAT = ios
ERR = s
EXIST = ex
OPENED = od
NUMBER = num
NAMED = nmd
NAME = fn
ACCESS = acc
SEQUENTIAL = seq
DIRECT = dir
FORM = fm
FORMATTED = fmt
UNFORMATTED = unf
RECL = rcl
NEXTREC = nr
BLANK = blnk

The specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier (12.7). Execution of an INQUIRE statement containing
this specifier causes ios to become defined with a zero value if no error condition exists
or with a processor-dependent positive integer value if an error condition exists.

ERR = s

is an error specifier (12.7.1).

EXIST = ex

ex is a logical variable or logical array element. Execution of an INQUIRE by file
statement causes ex to be assigned the value true if there exists a file with the specified
name; otherwise, ex is assigned the value false. Execution of an INQUIRE by unit
statement causes ex to be assigned the value true if the specified unit exists; otherwise, ex
is assigned the value false.

OPENED = od

od is a logical variable or logical array element. Execution of an INQUIRE by file
statement causes od to be assigned the value true if the file specified is connected to a

ANSI X3.9-1978

12-30

unit; otherwise, od is assigned the value false. Execution of an INQUIRE by unit
statement causes od to be assigned the value true if the specified unit is connected to a
file; otherwise, od is assigned the value false.

NUMBER = num

num is an integer variable or integer array element that is assigned the value of the
external unit identifier of the unit that is currently connected to the file. If there is no unit
connected to the file, num becomes undefined.

NAMED = nmd

nmd is a logical variable or logical array element that is assigned the value true if the file
has a name; otherwise, it is assigned the value false.

NAME = fn

fn is a character variable or character array element that is assigned the value of the name
of the file, if the file has a name; otherwise, it becomes undefined. Note that if this
specifier appears in an INQUIRE by file statement, its value is not necessarily the same
as the name given in the FILE= specifier. For example, the processor may return a file
name qualified by a user identification. However, the value returned must be suitable for
use as the value of a FILE= specifier in an OPEN statement.

ACCESS = acc

acc is a character variable or character array element that is assigned the value
SEQUENTIAL if the file is connected for sequential access, and DIRECT if the file is
connected for direct access. If there is no connection, acc becomes undefined.

SEQUENTIAL = seq

seq is a character variable or character array element that is assigned the value YES if
SEQUENTIAL is included in the set of allowed access methods for the file, NO if
SEQUENTIAL is not included in the set of allowed access methods for the file, and
UNKNOWN if the processor is unable to determine whether or not SEQUENTIAL is
included in the set of allowed access methods for the file.

DIRECT = dir

dir is a character variable or character array element that is assigned the value YES if
DIRECT is included in the set of allowed access methods for the file, NO if DIRECT is
not included in the set of allowed access methods for the file, and UNKNOWN if the

ANSI X3.9-1978

12-31

processor is unable to determine whether or not DIRECT is included in the set of allowed
access methods for the file.

FORM = fm

fm is a character variable or character array element that is assigned the value
FORMATTED if the file is connected for formatted input/output, and is assigned the
value UNFORMATTED if the file is connected for unformatted input/output. If there is
no connection, fm becomes undefined.

FORMATTED = fmt

fmt is a character variable or character array element that is assigned the value YES if
FORMATTED is included in the set of allowed forms for the file, NO if FORMATTED
is not included in the set of allowed forms for the file, and UNKNOWN if the processor
is unable to determine whether or not FORMATTED is included in the set of allowed
forms for the file.

UNFORMATTED = unf

unf is a character variable or character array element that is assigned the value YES if
UNFORMATTED is included in the set of allowed forms for the file, NO if
UNFORMATTED is not included in the set of allowed forms for the file, and
UNKNOWN if the processor is unable to determine whether or not UNFORMATTED is
included in the set of allowed forms for the file.

RECL = rcl

rcl is an integer variable or integer array element that is assigned the value of the record
length of the file connected for direct access. If the file is connected for formatted
input/output, the length is the number of characters. If the file is connected for
unformatted input/output, the length is measured in processor-dependent units. If there is
no connection or if the connection is not for direct access, rcl becomes undefined.

NEXTREC = nr

nr is an integer variable or integer array element that is assigned the value n+1, where n
is the record number of the last record read or written on the file connected for direct
access. If the file is connected but no records have been read or written since the
connection, nr is assigned the value 1. If the file is not connected for direct access or if
the position of the file is indeterminate because of a previous error condition, nr becomes
undefined.

ANSI X3.9-1978

12-32

BLANK = blnk

blnk is a character variable or character array element assigned the value NULL if null
blank control is in effect for the file connected for formatted input/output, and is assigned
the value ZERO if zero blank control is in effect for the file connected for formatted
input/output. If there is no connection, or if the connection is not for formatted
input/output, blnk becomes undefined.

A variable or array element that may become defined or undefined as a result of its use as
a specifier in an INQUIRE statement, or any associated entity, must not be referenced by
any other specifier in the same INQUIRE statement.

Execution of an INQUIRE by file statement causes the specifier variables or array
elements nmd, fn, seq, dir, fmt, and "unf" to be assigned values only if the value of fin is
acceptable to the processor as a file name and if there exists a file by that name;
otherwise, they become undefined. Note that num becomes defined it and only if od
becomes defined with the value true. Note also that the specifier variables or array
elements acc, fm, rcl, nr, and blnk may become defined only if od becomes defined with
the value true.

Execution of an INQUIRE by unit statement causes the specifier variables or array
elements num, nmd, fn, acc, seq, dir, fm, fmt, unf, rcl , nr, and blnk to be assigned values
only if the specified unit exists and if a file is connected to the unit; otherwise, they
become undefined.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables and array elements except ios become undefined.

Note that the specifier variables or array elements ex and od always become defined
unless an error condition occurs.

ANSI X3.9-1978

12-33

12.10.4 File Positioning Statements

The forms of the file positioning statements are:

BACKSPACE u
BACKSPACE (alist)

ENDFILE u
ENDFILE (alist)

REWIND u
REWIND (alist)

where:
u is an external unit identifier (12.3.3)

alist is a list (2.20) of specifiers:

[UNIT =] u
IOSTAT = ios
ERR = s

alist must contain exactly one external unit specifier (12.3.3) and may contain at most one
of each of the other specifiers.

The external unit specified by a BACKSPACE, ENDFILE, or REWIND statement must
be connected for sequential access.

Execution of a file positioning statement containing an input/output status specifier
causes ios to become defined with a zero value if no error condition exists or with a
processor-dependent positive integer value if an error condition exists.

12.10.4.1 BACKSPACE Statement

Execution of a BACKSPACE statement causes the file connected to the specified unit to
be positioned before the preceding record. If there is no preceding record, the position of
the file is not changed. Note that if the preceding record is an endfile record, the file
becomes positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records written using list-directed formatting is prohibited.

ANSI X3.9-1978

12-34

12.10.4.2 ENDFILE Statement

Execution of an ENDFILE statement writes an endfile record as the next record of the
file. The file is then positioned after the endfile record. If the file may also be connected
for direct access, only those records before the endfile record are considered to have been
written. Thus, only those records may be read during subsequent direct access
connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must
be used to reposition the file prior to execution of any data transfer input/output
statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates
the file.

12.10.4.3 REWIND Statement

Execution of a REWIND statement causes the specified file to be positioned at its initial
point. Note that if the file is already positioned at its initial point, execution of this
statement has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is
permitted but has no effect.

12.11 Restrictions on Function References and List Items

A function must not be referenced within an expression appearing anywhere in an
input/output statement if such a reference causes an input/output statement to be
executed. Note that a restriction in the evaluation of expressions (6.6) prohibits certain
side effects.

12.12 Restrictions on Input/Output Statements

If a unit, or a file connected to a unit, does not have all of the properties required for the
execution of certain input/output statements, those statements must not refer to the unit.

ANSI X3.9-1978

13-1

13. FORMAT SPECIFICATION

A format used in conjunction with formatted input/output statements provides
information that directs the editing between the internal representation and the character
strings of a record or a sequence of records in the file.

A format specification provides explicit editing information. An asterisk (*) as a format
identifier in an input/output statement indicates list-directed formatting (13.6).

13.1 Format Specification Methods

Format specifications may be given:

(1) In FORMAT statements

(2) As values of character arrays, character variables, or other character
expressions

13.1.1 FORMAT Statement

The form of a FORMAT statement is:

FORMAT fs

where fs is a format specification, as described in 13.2. The statement must be labeled.

13.1.2 Character Format Specification

If the format identifier (12.4) in a formatted input/output statement is a character array
name, character variable name, or other character expression, the leftmost character
positions of the specified entity must be in a defined state with character data that
constitute a format specification when the statement is executed.

A character format specification must be of the form described in 13.2. Note that the
form begins with a left parenthesis and ends with a right parenthesis. Character data may
follow the right parenthesis that ends the format specification, with no effect on the
format specification. Blank characters may precede the format specification.

If the format identifier is a character array name, the length of the format specification
may exceed the length of the first element of the array; a character array format
specification is considered to be a concatenation of all the array elements of the array in
the order given by array element ordering (5.2.4). However, if a character array element

ANSI X3.9-1978

13-2

name is specified as a format identifier, the length of the format specification must not
exceed the length of the array element.

13.2 Form of a Format Specification

The form of a format specification is:

([flist])

where flist is a list (2.10). The forms of the flist items are:

[r] ed

 ned

[r] fs

where:
ed is a repeatable edit descriptor (13.2.1)

ned is a nonrepeatable edit descriptor (13.2.1)

fs is a format specification with a non-empty list flist

r is a nonzero, unsigned, integer constant called a repeat specification

The comma used to separate list items in the list flist may be omitted as follows:

(1) Between a P edit descriptor and an immediately following F, E, D, or G edit
descriptor (13.5.9)

(2) Before or after a slash edit descriptor (13.5.4)

(3) Before or after a colon edit descriptor (13.5.5)

13.2.1 Edit Descriptors

An edit descriptor is either a repeatable edit descriptor or a nonrepeatable edit descriptor.

The forms of a repeatable edit descriptor are:

I w
I w . m

ANSI X3.9-1978

13-3

F w . d
E w . d
E w . d E e
D w . d
G w . d
G w . d E e
L w
A
A w

where:
I, F, E, D, G, L, and A indicate the manner of editing

w and e are nonzero, unsigned, integer constants

d and m are unsigned integer constants

The forms of a nonrepeatable edit descriptor are:

' h 1 h 2 ... h n'
 n H h 1 h 2 ... h n
T c
TL c
TR c
 n X
/
:
S
SP
SS
 k P
BN
BZ

where:
apostrophe, H, T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and BZ indicate the
manner of editing

h is one of the characters capable of representation by the processor

n and c are nonzero, unsigned, integer constants

k is an optionally signed integer constant

ANSI X3.9-1978

13-4

13.3 Interaction Between Input/Output List and Format

The beginning of formatted data transfer using a format specification (12.9.5.2.1) initiates
format control. Each action of format control depends on information jointly provided
by:

(1) the next edit descriptor contained in the format specification, and

(2) the next item in the input/output list, if one exists.

If an input/output list specifies at least one list item, at least one repeatable edit descriptor
must exist in the format specification. Note that an empty format specification of the
form () may be used only if no list items are specified; in this case, one input record is
skipped or one output record containing no characters is written. Except for an edit
descriptor preceded by a repeat specification, r ed, and a format specification preceded by
a repeat specification, r(flist), a format specification is interpreted from left to right. A
format specification or edit descriptor preceded by a repeat specification r is processed as
a list of r format specifications or edit descriptors identical to the format specification or
edit descriptor without the repeat specification. Note that an omitted repeat specification
is treated the same as a repeat specification whose value is one.

To each repeatable edit descriptor interpreted in a format specification, there corresponds
one item specified by the input/output list (12.8.2), except that a list item of type complex
requires the interpretation of two F, E, D, or G edit descriptors. To each P, X, T, TL, TR,
S, SP, SS, H, BN, BZ, slash, colon, or apostrophe edit descriptor, there is no
corresponding item specified by the input/output list, and format control communicates
information directly with the record.

Whenever format control encounters a repeatable edit descriptor in a format specification,
it determines whether there is a corresponding item specified by the input/output list. If
there is such an item, it transmits appropriately edited information between the item and
the record, and then format control proceeds. If there is no corresponding item, format
control terminates.

If format control encounters a colon edit descriptor in a format specification and another
list item is not specified, format control terminates.

If format control encounters the rightmost parenthesis of a complete format specification
and another list item is not specified, format control terminates.

However, if another list item is specified, the file is positioned at the beginning of the
next record and format control then reverts to the beginning of the format specification
terminated by the last preceding right parenthesis. If there is no such preceding right

ANSI X3.9-1978

13-5

parenthesis, format control reverts to the first left parenthesis of the format specification.
If such reversion occurs, the reused portion of the format specification must contain at
least one repeatable edit descriptor. If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat specification is reused. Reversion of format
control, of itself, has no effect on the scale factor (13.5.7), the S, SP, or SS edit descriptor
sign control (13.5.6), or the BN or BZ edit descriptor blank control (13.5.8).

13.4 Positioning by Format Control

After each I, F, E, D, G, L, A, H, or apostrophe edit descriptor is processed, the file is
positioned after the last character read or written in the current record.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as
described in 13.5.3 and 13.5.4.

If format control reverts as described in 13.3, the file is positioned in a manner identical
to the way it is positioned when a slash edit descriptor is processed (13.5.4).

During a read operation, any unprocessed characters of the record are skipped whenever
the next record is read.

13.5 Editing

Edit descriptors are used to specify the form of a record and to direct the editing between
the characters in a record and internal representations of data.

A field is a part of a record that is read on input or written on output when format control
processes one I, F, E, D, G, L, A, H, or apostrophe edit descriptor. The field width is the
size in characters of the field.

The internal representation of a datum corresponds to the internal representation of a
constant of the corresponding type (Section 4).

13.5.1 Apostrophe Editing

The apostrophe edit descriptor has the form of a character constant. It causes characters
to be written from the enclosed characters (including blanks) of the edit descriptor itself.
An apostrophe edit descriptor must not be used on input.

The width of the field is the number of characters contained in, but not including, the
delimiting apostrophes. Within the field, two consecutive apostrophes with no
intervening blanks are counted as a single apostrophe.

ANSI X3.9-1978

13-6

13.5.2 H Editing

The nH edit descriptor causes character information to be written from the n characters
(including blanks) following the H of the nH edit descriptor in the format specification
itself. An H edit descriptor must not be used on input.

Note that if an H edit descriptor occurs within a character constant and includes an
apostrophe, the apostrophe must be represented by two consecutive apostrophes, which
are counted as one character in specifying n.

13.5.3 Positional Editing

The T, TL, TR, and X edit descriptors specify the position at which the next character
will be transmitted to or from the record.

The position specified by a T edit descriptor may be in either direction from the current
position. On input, this allows portions of a record to be processed more than once,
possibly with different editing.

The position specified by an X edit descriptor is forward from the current position. On
input, a position beyond the last character of the record may be specified if no characters
are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be
transmitted and therefore does not by itself affect the length of the record. If characters
are transmitted to positions at or after the position specified by a T, TL, TR, or X edit
descriptor, positions skipped and not previously filled are filled with blanks. The result is
as if the entire record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit
descriptor never directly causes a character already placed in the record to be replaced.
Such edit descriptors may result in positioning so that subsequent editing causes a
replacement.

13.5.3.1 T, TL, and TR Editing

The Tc edit descriptor indicates that the transmission of the next character to or from a
record is to occur at the cth character position.

The TLc edit descriptor indicates that the transmission of the next character to or from
the record is to occur at the character position c characters backward from the current
position. However, if the current position is less than or equal to position c , the TLc edit

ANSI X3.9-1978

13-7

descriptor indicates that the transmission of the next character to or from the record is to
occur at position one of the current record.

The TRc edit descriptor indicates that the transmission of the next character to or from
the record is to occur at the character position c characters forward from the current
position.

13.5.3.2 X Editing

The nX edit descriptor indicates that the transmission of the next character to or from a
record is to occur at the position n characters forward from the current position.

13.5.4 Slash Editing

The slash edit descriptor indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the remaining portion of the current
record is skipped and the file is positioned at the beginning of the next record. This
record becomes the current record. On output to a file connected for sequential access, a
new record is created and becomes the last and current record of the file.

Note that a record that contains no characters may be written on output. If the file is an
internal file or a file connected for direct access, the record is filled with blank characters.
Note also that an entire record may be skipped on input.

For a file connected for direct access, the record number is increased by one and the file
is positioned at the beginning of the record that has that record number. This record
becomes the current record.

13.5.5 Colon Editing

The colon edit descriptor terminates format control if there are no more items in the
input/output list (13.3). The colon edit descriptor has no effect if there are more items in
the input/output list.

13.5.6 S, SP, and SS Editing

The S, SP, and SS edit descriptors may be used to control optional plus characters in
numeric output fields. At the beginning of execution of each formatted output statement,
the processor has the option of producing a plus in numeric output fields. If an SP edit
descriptor is encountered in a format specification, the processor must produce a plus in
any subsequent position that normally contains an optional plus. If an SS edit descriptor
is encountered, the processor must not produce a plus in any subsequent position that

ANSI X3.9-1978

13-8

normally contains an optional plus. If an S edit descriptor is encountered, the option of
producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only I, F, E, D, and G editing during the
execution of an output statement. The S, SP, and SS edit descriptors have no effect during
the execution of an input statement.

13.5.7 P Editing

A scale factor is specified by a P edit descriptor, which is of the form:

 k P

where k is an optionally signed integer constant, called the scale factor.

13.5.7.1 Scale Factor

The value of the scale factor is zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F, E, D, and G edit descriptors until
another scale factor is encountered, and then that scale factor is established. Note that
reversion of format control (13.3) does not affect the established scale factor.

The scale factor k affects the appropriate editing in the following manner:

(1) On input, with F, E, D, and G editing (provided that no exponent exists in
the field) and F output editing, the scale factor effect is that the externally
represented number equals the internally represented number multiplied by
10**k.

(2) On input, with F, E, D, and G editing, the scale factor has no effect if there is
an exponent in the field.

(3) On output, with E and D editing, the basic real constant (4.4.1) part of the
quantity to be produced is multiplied by 10**k and the exponent is reduced
by k.

(4) On output, with G editing, the effect of the scale factor is suspended unless
the magnitude of the datum to be edited is outside the range that permits the
use of F editing. If the use of E editing is required, the scale factor has the
same effect as with E output editing.

13.5.8 BN and BZ Editing

ANSI X3.9-1978

13-9

The BN and BZ edit descriptors may be used to specify the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of execution of each
formatted input statement, such blank characters are interpreted as zeros or are ignored,
depending on the value of the BLANK= specifier (12.10.1) currently in effect for the
unit. If a BN edit descriptor is encountered in a format specification, all such blank
characters in succeeding numeric input fields are ignored. The effect of ignoring blanks is
to treat the input field as if blanks had been removed, the remaining portion of the field
right-justified, and the blanks replaced as leading blanks. However, a field of all blanks
has the value zero. If a BZ edit descriptor is encountered in a format specification, all
such blank characters in succeeding numeric input fields are treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G editing during execution of
an input statement. They have no effect during execution of an output statement.

13.5.9 Numeric Editing

The I, F, E, D, and G edit descriptors are used to specify input/output of integer, real,
double precision, and complex data. The following general rules apply:

(1) On input, leading blanks are not significant. The interpretation of blanks,
other than leading blanks, is determined by a combination of any BLANK=
specifier and any BN or BZ blank control that is currently in effect for the
unit (13.5.8). Plus signs may be omitted. A field of all blanks is considered
to be zero.

(2) On input, with F, E, D, and G editing, a decimal point appearing in the input
field overrides the portion of an edit descriptor that specifies the decimal
point location. The input field may have more digits than the processor uses
to approximate the value of the datum.

(3) On output, the representation of a positive or zero internal value in the field
may be prefixed with a plus, as controlled by the S, SP, and SS edit
descriptors (13.5.6) or the processor. The representation of a negative
internal value in the field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in a formatted output
record.

(4) On output, the representation is right-justified in the field. If the number of
characters produced by the editing is smaller than the field width, leading
blanks will be inserted in the field.

(5) On output, if the number of characters produced exceeds the field width or if
an exponent exceeds its specified length using the Ew.dEe or Gw.dEe edit

ANSI X3.9-1978

13-10

descriptor, the processor will fill the entire field of width w with asterisks.
However, the processor must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note that when an SP edit
descriptor is in effect, a plus is not optional (13.5.6).

13.5.9.1 Integer Editing

The Iw and Iw.m edit descriptors indicate that the field to be edited occupies w positions.
The specified input/output list item must be of type integer. On input, the specified list
item will become defined with an integer datum. On output, the specified list item must
be defined with an integer datum.

On input, an Iw.m edit descriptor is treated identically to an Iw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer
constant, except for the interpretation of blanks (13.5.9, item (1)).

The output field for the Iw edit descriptor consists of zero or more leading blanks
followed by a minus if the value of the internal datum is negative, or an optional plus
otherwise, followed by the magnitude of the internal value in the form of an unsigned
integer constant without leading zeros. Note that an integer constant always consists of at
least one digit.

The output field for the Iw.m edit descriptor is the same as for the Iw edit descriptor,
except that the unsigned integer constant consists of at least m digits and, if necessary,
has leading zeros. The value of m must not exceed the value of w. If m is zero and the
value of the internal datum is zero, the output field consists of only blank characters,
regardless of the sign control in effect.

13.5.9.2 Real and Double Precision Editing

The F, E, D, and G edit descriptors specify the editing of real, double precision, and
complex data. An input/output list item corresponding to an F, E, D, or G edit descriptor
must be real, double precision, or complex. An input list item will become defined with a
datum whose type is the same as that of the list item. An output list item must be defined
with a datum whose type is the same as that of the list item.

13.5.9.2.1 F Editing

The Fw.d edit descriptor indicates that the field occupies w positions, the fractional part
of which consists of d digits.

ANSI X3.9-1978

13-11

The input field consists of an optional sign, followed by a string of digits optionally
containing a decimal point. If the decimal point is omitted, the rightmost d digits of the
string, with leading zeros assumed if necessary, are interpreted as the fractional part of
the value represented. The string of digits may contain more digits than a processor uses
to approximate the value of the constant. The basic form may be followed by an exponent
of one of the following forms:

(1) Signed integer constant

(2) E followed by zero or more blanks, followed by an optionally signed integer
constant

(3) D followed by zero or more blanks, followed by an optionally signed integer
constant

An exponent containing a D is processed identically to an exponent containing an E.

The output field consists of blanks, if necessary, followed by a minus if the internal value
is negative, or an optional plus otherwise, followed by a string of digits that contains a
decimal point and represents the magnitude of the internal value, as modified by the
established scale factor and rounded to d fractional digits. Leading zeros are not
permitted except for an optional zero immediately to the left of the decimal point if the
magnitude of the value in the output field is less than one. The optional zero must appear
if there would otherwise be no digits in the output field.

13.5.9.2.2 E and D Editing

The Ew.d, Dw.d, and Ew.dEe edit descriptors indicate that the external field occupies w
positions, the fractional part of which consists of d digits, unless a scale factor greater
than one is in effect, and the exponent part consists of e digits. The e has no effect on
input.

The form of the input field is the same as for F editing (13.5.9.2.1).

The form of the output field for a scale factor of zero is:

[±] [0] . x1x2...xd exp

where:
± signifies a plus or a minus (13.5.9)

ANSI X3.9-1978

13-12

x1, x2, xd are the Ld most significant digits of the value of the datum after
rounding

exp is a decimal exponent, one of the following forms:

Edit Descriptor Absolute Value
of Exponent

Form of
Exponent

Ew.d | exp | ≤ 99 E±z1z2 or ±0z1z2

99 < | exp | ≤ 999 ±z1z2z3
Ew.dEe | exp | ≤ (10**e)-1 E±z1z2...ze
Dw.d | exp | ≤ 99 D±z1z2 or E±z1z2

or ±0z1z2

99 < | exp | ≤ 999 ±z1z2z3

where z is a digit. The sign in the exponent is required. A plus sign must be used if the
exponent value is zero. The forms Ew.d and Dw.d must not be used if |exp| > 999.

The scale factor k controls the decimal normalization (13.5.7). If -d < k ≤ 0, the output
field contains exactly |k| leading zeros and d - |k| significant digits after the decimal point.
If 0 < k < d + 2, the output field contains exactly k significant digits to the left of the
decimal point and d - k + 1 significant digits to the right of the decimal point. Other
values of k are not permitted.

13.5.9.2.3 G Editing

The Gw.d and Gw.dEe edit descriptors indicate that the external field occupies w
positions, the fractional part of which consists of d digits, unless a scale factor greater
than one is in effect, and the exponent part consists of e digits.

G input editing is the same as for F editing (13.5.9.2.1).

The method of representation in the output field depends on the magnitude of the datum
being edited. Let N be the magnitude of the internal datum. If N < 0.1 or N ≥ 10**d,
Gw.d output editing is the same as kPEw.d output editing and Gw.dEe output editing is
the same as kPEw.dEe output editing, where k is the scale factor currently in effect. If N
is greater than or equal to 0.1 and is less than 10**d, the scale factor has no effect, and
the value of N determines the editing as follows:

Magnitude of Datum Equivalent Conversion

0.1 = N ≤ 1 F(w-n).d, n('b')

ANSI X3.9-1978

13-13

1 ≤ N < 10 F(w-n).(d-1), n('b')
. .
. .
. .

10**(d-2) ≤ N < 10**(d-1) F(w-n).1, n('b')

10**(d-1) ≤ N < 10**d F(w-n).0, n('b')

where:
b is a blank

n is 4 for Gw.d and e ± 2 for Gw.dEe

Note that the scale factor has no effect unless the magnitude of the datum to be edited is
outside of the range that permits effective use of F editing.

13.5.9.2.4 Complex Editing

A complex datum consists of a pair of separate real data; therefore, the editing is
specified by two successively interpreted F, E, D, or G edit descriptors. The first of the
edit descriptors specifies the real part; the second specifies the imaginary part. The two
edit descriptors may be different. Note that nonrepeatable edit descriptors may appear
between the two successive F, E, D, or G edit descriptors.

13.5.10 L Editing

The Lw edit descriptor indicates that the field occupies w positions. The specified
input/output list item must be of type logical. On input, the list item will become defined
with a logical datum. On output, the specified list item must be defined with a logical
datum. The input field consists of optional blanks, optionally followed by a decimal
point, followed by a T for true or F for false. The T or F may be followed by additional
characters in the field. Note that the logical constants .TRUE. and .FALSE. are
acceptable input forms.

The output field consists of w - 1 blanks followed by a T or F, as the value of the internal
datum is true or false, respectively.

13.5.11 A Editing

The A[w] edit descriptor is used with an input/output list item of type character. On
input, the input list item will become defined with character data. On output, the output
list item must be defined with character data.

ANSI X3.9-1978

13-14

If a field width w is specified with the A edit descriptor, the field consists of w
characters. If a field width w is not specified with the A edit descriptor, the number of
characters in the field is the length of the character input/output list item.

Let len be the length of the input/output list item. If the specified field width w for A
input is greater than or equal to len, the rightmost len characters will be taken from the
input field. If the specified field width is less than len, the w characters will appear left-
justified with len - w trailing blanks in the internal representation.

If the specified field width w for A output is greater than len, the output field will consist
of w-len blanks followed by the len characters from the internal representation. If the
specified field width w is less than or equal to len the output field will consist of the
leftmost w characters from the internal representation.

13.6 List-Directed Formatting

The characters in one or more list-directed records constitute a sequence of values and
value separators. The end of a record has the same effect as a blank character, unless it is
within a character constant. Any sequence of two or more consecutive blanks is treated as
a single blank, unless it is within a character constant.

Each value is either a constant, a null value, or of one of the forms:

 r * c

 r *

where r is an unsigned, nonzero, integer constant. The r*c form is equivalent to r
successive appearances of the constant c, and the r* form is equivalent to r successive
appearances of the null values. Neither of these forms may contain embedded blanks,
except where permitted within the constant c.

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous blanks and
optionally followed by one or more contiguous blanks

(2) A slash optionally preceded by one or more contiguous blanks and
optionally followed by one or more contiguous blanks

(3) One or more contiguous blanks between two constants or following the last
constant

ANSI X3.9-1978

13-15

13.6.1 List-Directed Input

Input forms acceptable to format specifications for a given type are acceptable for list-
directed formatting, except as noted below. The form of the input value must be
acceptable for the type of the input list item. Blanks are never used as zeros, and
embedded blanks are not permitted in constants, except within character constants and
complex constants as specified below. Note that the end of a record has the effect of a
blank, except when it appears within a character constant.

When the corresponding input list item is of type real or double precision, the input form
is that of a numeric input field. A numeric input field is a field suitable for F editing
(13.5.9.2) that is assumed to have no fractional digits unless a decimal point appears
within the field.

When the corresponding list item is of type complex, the input form consists of a left
parenthesis followed by an ordered pair of numeric input fields separated by a comma,
and followed by a right parenthesis. The first numeric input field is the real part of the
complex constant and the second is the imaginary part. Each of the numeric input fields
may be preceded or followed by blanks. The end of a record may occur between the real
part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form must not include either
slashes or commas among the optional characters permitted for L editing (13.5.10).

When the corresponding list item is of type character, the input form consists of a
nonempty string of characters enclosed in apostrophes. Each apostrophe within a
character constant must be represented by two consecutive apostrophes without an
intervening blank or end of record. Character constants may be continued from the end of
one record to the beginning of the next record. The end of the record does not cause a
blank or any other character to become part of the constant. The constant may be
continued on as many records as needed. The characters blank, comma, and slash may
appear in character constants.

Let len be the length of the list item, and let w be the length of the character constant. If
len is less than or equal to w, the leftmost len characters of the constant are transmitted
to the list item. If len is greater than w, the constant is transmitted to the leftmost w
characters of the list item and the remaining len-w characters of the list item are filled
with blanks. Note that the effect is as though the constant were assigned to the list item in
a character assignment statement (10.4).

A null value is specified by having no characters between successive value separators, no
characters preceding the first value separator in the first record read by each execution of
a list-directed input statement, or the r* form. A null value has no effect on the definition

ANSI X3.9-1978

13-16

status of the corresponding input list item. If the input list item is defined, it retains its
previous value; if it is undefined, it remains undefined. A null value may not be used as
either the real or imaginary part of a complex constant, but a single null value may
represent an entire complex constant. Note that the end of a record following any other
separator, with or without separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed input
statement causes termination of execution of that input statement after the assignment of
the previous value. If there are additional items in the input list, the effect is as if null
values had been supplied for them.

Note that all blanks in a list-directed input record are considered to be part of some value
separator except for the following:

(1) Blanks embedded in a character constant

(2) Embedded blanks surrounding the real or imaginary part of a complex
constant

(3) Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

13.6.2 List-Directed Output

The form of the values produced is the same as that required for input, except as noted
otherwise. With the exception of character constants, the values are separated by one of
the following:

(1) One or more blanks

(2) A comma optionally preceded by one or more blanks and optionally
followed by one or more blanks

The processor may begin new records as necessary, but, except for complex constants
and character constants, the end of a record must not occur within a constant and blanks
must not appear within a constant.

Logical output constants are T for the value true and F for the value false.

Integer output constants are produced with the effect of an Iw edit descriptor, for some
reasonable value of w.

ANSI X3.9-1978

13-17

Real and double precision constants are produced with the effect of either an F edit
descriptor or an E edit descriptor, depending on the magnitude x of the value and a range
10**d1 ≤ x < 10**d2, where d1 and d2 are processor-dependent integer values. If the
magnitude x is within this range, the constant is produced using OPFw.d; otherwise,
1PEw.dEe is used. Reasonable processor-dependent values of w, d, and e are used for
each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary
part only if the entire constant is as long as, or longer than, an entire record. The only
embedded blanks permitted within a complex constant are between the comma and the
end of a record and one blank at the beginning of the next record.

Character constants produced are not delimited by apostrophes, are not preceded or
followed by a value separator, have each internal apostrophe represented externally by
one apostrophe, and have a blank character inserted by the processor for carriage control
at the beginning of any record that begins with the continuation of a character constant
from the preceding record.

If two or more successive values in an output record produced have identical values, the
processor has the option of producing a repeated constant of the form r*c instead of the
sequence of identical values.

Slashes, as value separators, and null values are not produced by list-directed formatting.

Each output record begins with a blank character to provide carriage control when the
record is printed.

ANSI X3.9-1978

14-1

14. MAIN PROGRAM

A main program is a program unit that does not have a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement. It may have a PROGRAM statement as
its first statement.

There must be exactly one main program in an executable program. Execution of an
executable program begins with the execution of the first executable statement of the
main program.

14.1 PROGRAM Statement

The form of a PROGRAM statement is:

PROGRAM pgm

where pgm is the symbolic name of the main program in which the PROGRAM
statement appears.

A PROGRAM statement is not required to appear in an executable program. If it does
appear, it must be the first statement of the main program.

The symbolic name pgm is global (18.1.1) to the executable program and must not be the
same as the name of an external procedure, block data subprogram, or common block in
the same executable program. The name pgm must not be the same as any local name in
the main program.

14.2 Main Program Restrictions

The PROGRAM statement may appear only as the first statement of a main program. A
main program may contain any other statement except a BLOCK DATA, FUNCTION,
SUBROUTINE, ENTRY, or RETURN statement. The appearance of a SAVE statement
in a main program has no effect.

A main program may not be referenced from a subprogram or from itself.

ANSI X3.9-1978

15-1

15. FUNCTIONS AND SUBROUTINES

15.1 Categories of Functions and Subroutines

15.1.1 Procedures

Functions and subroutines are procedures. There are four categories of procedures:

(1) Intrinsic functions

(2) Statement functions

(3) External functions

(4) Subroutines

Intrinsic functions, statement functions, and external functions are referred to collectively
as functions.

External functions and subroutines are referred to collectively as external procedures.

15.1.2 External Functions

There are two categories of external functions:

(1) External functions specified in function subprograms

(2) External functions specified by means other than FORTRAN subprograms

15.1.3 Subroutines

There are two categories of subroutines:

(1) Subroutines specified in subroutine subprograms

(2) Subroutines specified by means other than FORTRAN subprograms

15.1.4 Dummy Procedure

A dummy procedure is a dummy argument that is identified as a procedure (18.2.11).

ANSI X3.9-1978

15-2

15.2 Referencing a Function

A function is referenced in an expression and supplies a value to the expression. The
value supplied is the value of the function.

An intrinsic function may be referenced in the main program or in any procedure
subprogram of an executable program.

A statement function may be referenced only in the program unit in which the statement
function statement appears.

An external function specified by a function subprogram may be referenced within any
other procedure subprogram or the main program of the executable program. A
subprogram must not reference itself, either directly or indirectly.

An external function specified by means other than a subprogram may be referenced
within any procedure subprogram or the main program of the executable program.

If a character function is referenced in a program unit, the function length specified in the
program unit must be an integer constant expression.

15.2.1 Form of a Function Reference

A function reference is used to reference an intrinsic function, statement function, or
external function.

The form of a function reference is:

 fun ([a [, a]...])

where:
fun is the symbolic name of a function or a dummy procedure

a is an actual argument

The type of the result of a statement function or external function reference is the same as
the type of the function name. The type is specified in the same manner as for variables
and arrays (4.1.2). The type of the result of an intrinsic function is specified in Table 5
(15.10).

ANSI X3.9-1978

15-3

15.2.2 Execution of a Function Reference

A function reference may appear only as a primary in an arithmetic, logical, or character
expression. Execution of a function reference in an expression causes the evaluation of
the function identified by fun.

Return of control from a referenced function completes execution of the function
reference. The value of the function is available to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied by the processor and have a special meaning. The specific
names that identify the intrinsic functions, their generic names, function definitions, type
of arguments, and type of results appear in Table 5.

An IMPLICIT statement does not change the type of an intrinsic function.

15.3.1 Specific Names and Generic Names

Generic names simplify the referencing of intrinsic functions, because the same function
name may be used with more than one type of argument. Only a specific intrinsic
function name may be used as an actual argument when the argument is an intrinsic
function.

If a generic name is used to reference an intrinsic function, the type of the result (except
for intrinsic functions performing type conversion, nearest integer, and absolute value
with a complex argument) is the same as the type of the argument.

For those intrinsic functions that have more than one argument, all arguments must be of
the same type.

If the specific name or generic name of an intrinsic function appears in the dummy
argument list of a function or subroutine in a subprogram, that symbolic name does not
identify an intrinsic function in the program unit. The data type identified with the
symbolic name is specified in the same manner as for variables and arrays (4.1.2).

A name in an INTRINSIC statement must be the specific name or generic name of an
intrinsic function.

15.3.2 Referencing an Intrinsic Function

ANSI X3.9-1978

15-4

An intrinsic function is referenced by using its reference as a primary in an expression.
For each intrinsic function described in Table 5, execution of an intrinsic function
reference causes the actions specified in Table 5, and the result depends on the values of
the actual arguments. The resulting value is available to the expression that contains the
function reference.

The actual arguments that constitute the argument list must agree in order, number, and
type with the specification in Table 5 and may be any expression of the specified type.
An actual argument in an intrinsic function reference may be any expression except a
character expression involving concatenation of an operand whose length specification is
an asterisk in parentheses unless the operand is the symbolic name of a constant.

A specific name of an intrinsic function that appears in an INTRINSIC statement may be
used as an actual argument in an external procedure reference; however, the names of
intrinsic functions for type conversion, lexical relationship, and for choosing the largest
or smallest value must not be used as actual arguments. Note that such an appearance
does not cause the intrinsic function to be classified as an external function (18.2.10).

15.3.3 Intrinsic Function Restrictions

Arguments for which the result is not mathematically defined or exceeds the numeric
range of the processor cause the result of the function to become undefined.

Restrictions on the range of arguments and results for intrinsic functions are described in
15.10.1.

15.4 Statement Function

A statement function is a procedure specified by a single statement that is similar in form
to an arithmetic, logical, or character assignment statement. A statement function
statement must appear only after the specification statements and before the first
executable statement of the program unit in which it is referenced (3.5).

A statement function statement is classified as a nonexecutable statement; it is not a part
of the normal execution sequence.

15.4.1 Form of a Statement Function Statement

The form of a statement function statement is:

 fun ([d [, d]...]) = e

ANSI X3.9-1978

15-5

where:
fun is the symbolic name of the statement function

d is a statement function dummy argument

e is an expression

The relationship between fun and e must conform to the assignment rules in 10.1, 10.2,
and 10.4. Note that the type of the expression may be different from the type of the
statement function name.

Each d is a variable name called a statement function dummy argument. The statement
function dummy argument list serves only to indicate order, number, and type of
arguments for the statement function. The variable names that appear as dummy
arguments of a statement function have a scope of that statement (18.1). A given
symbolic name may appear only once in any statement function dummy argument list.
The symbolic name of a statement function dummy argument may be used to identify
other dummy arguments of the same type in different statement function statements. The
name may also be used to identify a variable of the same type appearing elsewhere in the
program unit, including its appearance as a dummy argument in a FUNCTION,
SUBROUTINE, or ENTRY statement. The name must not be used to identify any other
entity in the program unit except a common block.

Each primary of the expression e must be one of the following:

(1) A constant

(2) The symbolic name of a constant

(3) A variable reference

(4) An array element reference

(5) An intrinsic function reference

(6) A reference to a statement function for which the statement function
statement appears in preceding lines of the program unit

(7) An external function reference

(8) A dummy procedure reference

ANSI X3.9-1978

15-6

(9) An expression enclosed in parentheses that meets all of the requirements
specified for the expression e

Each variable reference may be either a reference to a dummy argument of the statement
function or a reference to a variable that appears within the same program unit as the
statement function statement.

If a statement function dummy argument name is the same as the name of another entity,
the appearance of that name in the expression of a statement function statement is a
reference to the statement function dummy argument. A dummy argument that appears in
a FUNCTION or SUBROUTINE statement may be referenced in the expression of a
statement function statement within the subprogram. A dummy argument that appears in
an ENTRY statement that precedes a statement function statement may be referenced in
the expression of the statement function statement within the subprogram.

15.4.2 Referencing a Statement Function

A statement function is referenced by using its function reference as a primary in an
expression.

Execution of a statement function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy arguments,

(3) evaluation of the expression e, and

(4) conversion, if necessary, of an arithmetic expression value to the type of the
statement function according to the assignment rules in 10.1 or a change, if
necessary, in the length of a character expression value according to the rules
in 10.4.

The resulting value is available to the expression that contains the function reference.

The actual arguments, which constitute the argument list, must agree in order, number,
and type with the corresponding dummy arguments. An actual argument in a statement
function reference may be any expression except a character expression involving
concatenation of an operand whose length specification is an asterisk in parentheses
unless the operand is the symbolic name of a constant.

When a statement function reference is executed, its actual arguments must be defined.

ANSI X3.9-1978

15-7

15.4.3 Statement Function Restrictions

A statement function may be referenced only in the program unit that contains the
statement function statement.

A statement function statement must not contain a reference to another statement function
that appears following the reference in the sequence of lines in the program unit. The
symbolic name used to identify a statement function must not appear as a symbolic name
in any specification statement except in a type-statement (to specify the type of the
function) or as the name of a common block in the same program unit.

An external function reference in the expression of a statement function statement must
not cause a dummy argument of the statement function to become undefined or redefined.

The symbolic name of a statement function is a local name (18.1.2) and must not be the
same as the name of any other entity in the program unit except the name of a common
block.

The symbolic name of a statement function may not be an actual argument. It must not
appear in an EXTERNAL statement.

A statement function statement in a function subprogram must not contain a function
reference to the name of the function subprogram or an entry name in the function
subprogram.

The length specification of a character statement function or statement function dummy
argument of type character must be an integer constant expression.

15.5 External Functions

An external function is specified externally to the program unit that references it. An
external function is a procedure and may be specified in a function subprogram or by
some other means.

15.5.1 Function Subprogram and FUNCTION Statement

A function subprogram specifies one or more external functions (15.7). A function
subprogram is a program unit that has a FUNCTION statement as its first statement. The
form of a function subprogram is as described in 2.4 and 3.5, except as noted in 15.5.3
and 15.7.4.

The form of a FUNCTION statement is:

ANSI X3.9-1978

15-8

[typ] FUNCTION fun ([d [, d]...])

where:
typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
or CHARACTER [*len]

where len is the length specification of the result of the character function.
len may have any of the forms allowed in a CHARACTER statement
(8.4.2) except that an integer constant expression must not include the
symbolic name of a constant . I f a length is not specif ied in a
CHARACTER FUNCTION statement, the character function has a
length of one.

fun is the symbolic name of the function subprogram in which the FUNCTION
statement appears. fun is an external function name.

d is a variable name, array name, or dummy procedure name. d is a dummy
argument.

The symbolic name of a function subprogram or an associated entry name of the same
type must appear as a variable name in the function subprogram. During every execution
of the external function, this variable must become defined and, once defined, may be
referenced or become redefined. The value of this variable when a RETURN or END
statement is executed in the subprogram is the value of the function. If this variable is a
character variable with a length specification that is an asterisk in parentheses, it must not
appear as an operand for concatenation except in a character assignment statement (10.4).

An external function in a function subprogram may define one or more of its dummy
arguments to return values in addition to the value of the function.

15.5.2 Referencing an External Function

An external function is referenced by using its reference as a primary in an expression.

15.5.2.1 Execution of an External Function Reference

Execution of an external function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy arguments,
and

ANSI X3.9-1978

15-9

(3) the actions specified by the referenced function.

The type of the function name in the function reference must be the same as the type of
the function name in the referenced function. The length of the character function in a
character function reference must be the same as the length of the character function in
the referenced function.

When an external function reference is executed, the function must be one of the external
functions in the executable program.

15.5.2.2 Actual Arguments for an External Function

The actual arguments in an external function reference must agree in order, number, and
type with the corresponding dummy arguments in the referenced function. The use of a
subroutine name as an actual argument is an exception to the rule requiring agreement of
type because subroutine names do not have a type.

An actual argument in an external function reference must be one of the following:

(1) An expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the
operand is the symbolic name of a constant

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

(5) A dummy procedure name

Note that an actual argument in a function reference may be a dummy argument that
appears in a dummy argument list within the subprogram containing the reference.

15.5.3 Function Subprogram Restrictions

A FUNCTION statement must appear only as the first statement of a function
subprogram. A function subprogram may contain any other statement except a BLOCK
DATA, SUBROUTINE, or PROGRAM statement.

ANSI X3.9-1978

15-10

The symbolic name of an external function is a global name (18.1.1) and must not be the
same as any other global name or any local name, except a variable name, in the function
subprogram.

Within a function subprogram, the symbolic name of a function specified by a
FUNCTION or ENTRY statement must not appear in any other nonexecutable statement,
except a type-statement. In an executable statement, such a name may appear only as a
variable.

If the type of a function is specified in a FUNCTION statement, the function name must
not appear in a type-statement. Note that a name must not have its type explicitly
specified more than once in a program unit.

If the name of a function subprogram is of type character, each entry name in the function
subprogram must be of type character. If the name of the function subprogram or any
entry in the subprogram has a length of (*) declared, all such entities must have a length
of (*) declared; otherwise, all such entities must have a length specification of the same
integer value.

In a function subprogram, the symbolic name of a dummy argument is local to the
program unit and must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a common block name.

A character dummy argument whose length specification is an asterisk in parentheses
must not appear as an operand for concatenation, except in a character assignment
statement (10.4).

A function specified in a subprogram may be referenced within any other procedure
subprogram or the main program of the executable program. A function subprogram must
not reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit that references it. A subroutine is
a procedure and may be specified in a subroutine subprogram or by some other means.

15.6.1 Subroutine Subprogram and SUBROUTINE Statement

A subroutine subprogram specifies one or more subroutines (15.7). A subroutine
subprogram is a program unit that has a SUBROUTINE statement as its first statement.
The form of a subroutine subprogram is as described in 2.4 and 3.5, except as noted in
15.6.3 and 15.7.4.

ANSI X3.9-1978

15-11

The form of a SUBROUTINE statement is:

SUBROUTINE sub [([d [, d]...])]

where:
sub is the symbolic name of the subroutine subprogram in which the
SUBROUTINE statement appears. sub is a subroutine name.

d is a variable name, array name, or dummy procedure name, or is an asterisk
(15.9.3.5). d is a dummy argument.

Note that if there are no dummy arguments, either of the forms sub or sub() may be used
in the SUBROUTINE statement. A subroutine that is specified by either form may be
referenced by a CALL statement of the form CALL sub or CALL sub().

One or more dummy arguments of a subroutine in a subprogram may become defined or
redefined to return results.

15.6.2 Subroutine Reference

A subroutine is referenced by a CALL statement.

15.6.2.1 Form of a CALL Statement

The form of a CALL statement is:

CALL sub [([a [, a]...])]

where:
sub is the symbolic name of a subroutine or dummy procedure

a is an actual argument

15.6.2.2 Execution of a CALL Statement

Execution of a CALL statement results in

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy arguments,
and

ANSI X3.9-1978

15-12

(3) the actions specified by the referenced subroutine.

Return of control from the referenced subroutine completes execution of the CALL
statement.

A subroutine specified in a subprogram may be referenced within any other procedure
subprogram or the main program of the executable program. A subprogram must not
reference itself, either directly or indirectly.

When a CALL statement is executed, the referenced subroutine must be one of the
subroutines specified in subroutine subprograms or by other means in the executable
program.

15.6.2.3 Actual Arguments for a Subroutine

The actual arguments in a subroutine reference must agree in order, number, and type
with the corresponding dummy arguments in the dummy argument list of the referenced
subroutine. The use of a subroutine name or an alternate return specifier as an actual
argument is an exception to the rule requiring agreement of type.

An actual argument in a subroutine reference must be one of the following:

(1) An expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the
operand is the symbolic name of a constant

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

(5) A dummy procedure name

(6) An alternate return specifier, of the form *s, where s is the statement label
of an executable statement that appears in the same program unit as the
CALL statement (15.8.3)

Note that an actual argument in a subroutine reference may be a dummy argument name
that appears in a dummy argument list within the subprogram containing the reference.
An asterisk dummy argument must not be used as an actual argument in a subprogram
reference.

ANSI X3.9-1978

15-13

15.6.3 Subroutine Subprogram Restrictions

A SUBROUTINE statement must appear only as the first statement of a subroutine
subprogram. A subroutine subprogram may contain any other statement except a BLOCK
DATA, FUNCTION, or PROGRAM statement.

The symbolic name of a subroutine is a global name (18.1.1) and must not be the same as
any other global name or any local name in the program unit.

In a subroutine subprogram, the symbolic name of a dummy argument is local to the
program unit and must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a common block name.

A character dummy argument whose length specification is an asterisk in parentheses
must not appear as an operand for concatenation, except in a character assignment
statement (10.4).

15.7 ENTRY Statement

An ENTRY statement permits a procedure reference to begin with a particular executable
statement within the function or subroutine subprogram in which the ENTRY statement
appears. It may appear anywhere within a function subprogram after the FUNCTION
statement or within a subroutine subprogram after the SUBROUTINE statement, except
that an ENTRY statement must not appear between a block IF statement and its
corresponding END IF statement, or between a DO statement and the terminal statement
of its DO-loop.

Optionally, a subprogram may have one or more ENTRY statements.

An ENTRY statement is classified as a nonexecutable statement.

15.7.1 Form of an ENTRY Statement

The form of an ENTRY statement is:

ENTRY en [([d [, d]...])]

where:
en is the symbolic name of an entry in a function or subroutine subprogram and is
cal led an entry name. If the ENTRY statement appears in a subroutine
subprogram, en is a subroutine name. If the ENTRY statement appears in a
function subprogram, en is an external function name.

ANSI X3.9-1978

15-14

d is a variable name, array name, or dummy procedure name, or is an asterisk. d is
a dummy argument. An asterisk is permitted in an ENTRY statement only in a
subroutine subprogram.

Note that if there are no dummy arguments, either of the forms en or en() may be used in
the ENTRY statement. A function that is specified by either form must be referenced by
the form en() (15.2.1). A subroutine that is specified by either form may be referenced by
a CALL statement of the form CALL en or CALL en().

The entry name en in a function subprogram may appear in a type-statement.

15.7.2 Referencing External Procedure by Entry Name

An entry name in an ENTRY statement in a function subprogram identifies an external
function within the executable program and may be referenced as an external function
(15.5.2). An entry name in an ENTRY statement in a subroutine subprogram identifies a
subroutine within the executable program and may be referenced as a subroutine (15.6.2).

When an entry name en is used to reference a procedure, execution of the procedure
begins with the first executable statement that follows the ENTRY statement whose entry
name is en.

An entry name is available for reference in any program unit of an executable program,
except in the program unit that contains the entry name in an ENTRY statement.

The order, number, type, and names of the dummy arguments in an ENTRY statement
may be different from the order, number, type, and names of the dummy arguments in the
FUNCTION statement or SUBROUTINE statement and other ENTRY statements in the
same subprogram. However, each reference to a function or subroutine must use an
actual argument list that agrees in order, number, and type with the dummy argument list
in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement. The use of a
subroutine name or an alternate return specifier as an actual argument is an exception to
the rule requiring agreement of type.

15.7.3 Entry Association

Within a function subprogram, all variables whose names are also the names of entries
are associated with each other and with the variable, if any, whose name is also the name
of the function subprogram (17.1.3). Therefore, any such variable that becomes defined
causes all associated variables of the same type to become defined and all associated
variables of different type to become undefined. Such variables are not required to be of
the same type unless the type is character, but the variable whose name is used to

ANSI X3.9-1978

15-15

reference the function must be in a defined state when a RETURN or END statement is
executed in the subprogram. An associated variable of a different type must not become
defined during the execution of the function reference.

15.7.4 ENTRY Statement Restrictions

Within a subprogram, an entry name must not appear both as an entry name in an
ENTRY statement and as a dummy argument in a FUNCTION, SUBROUTINE, or
ENTRY statement and must not appear in an EXTERNAL statement.

In a function subprogram, a variable name that is the same as an entry name must not
appear in any statement that precedes the appearance of the entry name in an ENTRY
statement, except in a type-statement.

If an entry name in a function subprogram is of type character, each entry name and the
name of the function subprogram must be of type character. If the name of the function
subprogram or any entry in the subprogram has a length of (*) declared, all such entities
must have a length of (*) declared; otherwise, all such entities must have a length
specification of the same integer value.

In a subprogram, a name that appears as a dummy argument in an ENTRY statement
must not appear in an executable statement preceding that ENTRY statement unless it
also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the
executable statement.

In a subprogram, a name that appears as a dummy argument in an ENTRY statement
must not appear in the expression of a statement function statement unless the name is
also a dummy argument of the statement function, appears in a FUNCTION or
SUBROUTINE statement, or appears in an ENTRY statement that precedes the statement
function statement.

If a dummy argument appears in an executable statement, the execution of the executable
statement is permitted during the execution of a reference to the function or subroutine
only if the dummy argument appears in the dummy argument list of the procedure name
referenced. Note that the association of dummy arguments with actual arguments is not
retained between references to a function or subroutine.

15.8 RETURN Statement

A RETURN statement causes return of control to the referencing program unit and may
appear only in a function subprogram or subroutine subprogram.

ANSI X3.9-1978

15-16

15.8.1 Form of a RETURN Statement

The form of a RETURN statement in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine subprogram is:

RETURN [e]

where e is an integer expression.

15.8.2 Execution of a RETURN Statement

Execution of a RETURN statement terminates the reference of a function or subroutine
subprogram. Such subprograms may contain more than one RETURN statement;
however, a subprogram need not contain a RETURN statement. Execution of an END
statement in a function or subroutine subprogram has the same effect as executing a
RETURN statement in the subprogram.

In the execution of an executable program, a function or subroutine subprogram must not
be referenced a second time without the prior execution of a RETURN or END statement
in that procedure.

Execution of a RETURN statement in a function subprogram causes return of control to
the currently referencing program unit. The value of the function (15.5) must be defined
and is available to the referencing program unit.

Execution of a RETURN statement in a subroutine subprogram causes return of control
to the currently referencing program unit. Return of control to the referencing program
unit completes execution of the CALL statement.

Execution of a RETURN statement terminates the association between the dummy
arguments of the external procedure in the subprogram and the current actual arguments.

15.8.3 Alternate Return

If e is not specified in a RETURN statement, or if the value of e is less than one or
greater than the number of asterisks in the SUBROUTINE or subroutine ENTRY
statement that specifies the currently referenced name, control returns to the CALL
statement that initiated the subprogram reference and this completes the execution of the
CALL statement.

ANSI X3.9-1978

15-17

If 1 ≤ e ≤ n, where n is the number of asterisks in the SUBROUTINE or subroutine
ENTRY statement that specifies the currently referenced name, the value of e identifies
the eth asterisk in the dummy argument list. Control is returned to the statement
identified by the alternate return specifier in the CALL statement that is associated with
the eth asterisk in the dummy argument list of the currently referenced name. This
completes the execution of the CALL statement.

15.8.4 Definition Status

Execution of a RETURN statement (or END statement) within a subprogram causes all
entities within the subprogram to become undefined, except for the following:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been redefined or become
undefined

(4) Entities in a named common block that appears in the subprogram and
appears in at least one other program unit that is referencing, either directly
or indirectly, the subprogram

Note that if a named common block appears in the main program, the entities in the
named common block do not become undefined at the execution of any RETURN
statement in the executable program.

15.9 Arguments and Common Blocks

Arguments and common blocks provide means of communication between the
referencing program unit and the referenced procedure.

Data may be communicated to a statement function or intrinsic function by an argument
list. Data may be communicated to and from an external procedure by an argument list or
common blocks. Procedure names may be communicated to an external procedure only
by an argument list.

A dummy argument appears in the argument list of a procedure. An actual argument
appears in the argument list of a procedure reference.

The number of actual arguments must be the same as the number of dummy arguments in
the procedure referenced.

ANSI X3.9-1978

15-18

15.9.1 Dummy Arguments

Statement functions, function subprograms, and subroutine subprograms use dummy
arguments to indicate the types of actual arguments and whether each argument is a
single value, array of values, procedure, or statement label. Note that a statement function
dummy argument may be only a variable.

Each dummy argument is classified as a variable, array, dummy procedure, or asterisk.
Dummy argument names may appear wherever an actual name of the same class (Section
18) and type may appear, except where they are explicitly prohibited.

Dummy argument names of type integer may appear in adjustable dimensions in dummy
array declarators (5.5.1). Dummy argument names must not appear in EQUIVALENCE,
DATA, PARAMETER, SAVE, INTRINSIC, or COMMON statements, except as
common block names. A dummy argument name must not be the same as the procedure
name appearing in a FUNCTION, SUBROUTINE, ENTRY, or statement function
statement in the same program unit.

15.9.2 Actual Arguments

Actual arguments specify the entities that are to be associated with the dummy arguments
for a particular reference of a subroutine or function. An actual argument must not be the
name of a statement function in the program unit containing the reference. Actual
arguments may be constants, symbolic names of constants, function references,
expressions involving operators, and expressions enclosed in parentheses if and only if
the associated dummy argument is a variable that is not defined during execution of the
referenced external procedure.

The type of each actual argument must agree with the type of its associated dummy
argument, except when the actual argument is a subroutine name (15.9.3.4) or an
alternate return specifier (15.6.2.3).

15.9.3 Association of Dummy and Actual Arguments

At the execution of a function or subroutine reference, an association is established
between the corresponding dummy and actual arguments. The first dummy argument
becomes associated with the first actual argument, the second dummy argument becomes
associated with the second actual argument, etc.

All appearances within a function or subroutine subprogram of a dummy argument whose
name appears in the dummy argument list of the procedure name referenced become

ANSI X3.9-1978

15-19

associated with the actual argument when a reference to the function or subroutine is
executed.

A valid association occurs only if the type of the actual argument is the same as the type
of the corresponding dummy argument. A subroutine name has no type and must be
associated with a dummy procedure name. An alternate return specifier has no type and
must be associated with an asterisk.

If an actual argument is an expression, it is evaluated just before the association of
arguments takes place.

If an actual argument is an array element name, its subscript is evaluated just before the
association of arguments takes place. Note that the subscript value remains constant as
long as that association of arguments persists, even if the subscript contains variables that
are redefined during the association.

If an actual argument is a character substring name, its substring expressions are
evaluated just before the association of arguments takes place. Note that the value of each
of the substring expressions remains constant as long as that association of arguments
persists, even if the substring expression contains variables that are redefined during the
association.

If an actual argument is an external procedure name, the procedure must be available at
the time a reference to it is executed.

If an actual argument becomes associated with a dummy argument that appears in an
adjustable dimension (5.5.1), the actual argument must be defined with an integer value
at the time the procedure is referenced.

A dummy argument is undefined if it is not currently associated with an actual argument.
An adjustable array is undefined if the dummy argument array is not currently associated
with an actual argument array or if any variable appearing in the adjustable array
declarator is not currently associated with an actual argument and is not in a common
block.

Argument association may be carried through more than one level of procedure
reference. A valid association exists at the last level only if a valid association exists at all
intermediate levels. Argument association within a program unit terminates at the
execution of a RETURN or END statement in the program unit. Note that there is no
retention of argument association between one reference of a subprogram and the next
reference of the subprogram.

15.9.3.1 Length of Character Dummy and Actual Arguments

ANSI X3.9-1978

15-20

If a dummy argument is of type character, the associated actual argument must be of type
character and the length of the dummy argument must be less than or equal to the length
of the actual argument. If the length len of a dummy argument of type character is less
than the length of an associated actual argument, the leftmost len characters of the actual
argument are associated with the dummy argument.

If a dummy argument of type character is an array name, the restriction on length is for
the entire array and not for each array element. The length of an array element in the
dummy argument array may be different from the length of an array element in an
associated actual argument array, array element, or array element substring, but the
dummy argument array must not extend beyond the end of the associated actual argument
array.

If an actual argument is a character substring, the length of the actual argument is the
length of the substring. If an actual argument is the concatenation of two or more
operands, its length is the sum of the lengths of the operands.

15.9.3.2 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an actual argument that is a
variable, array element, substring, or expression.

If the actual argument is a variable name, array element name, or substring name, the
associated dummy argument may be defined or redefined within the subprogram. If the
actual argument is a constant, a symbolic name of a constant, a function reference, an
expression involving operators, or an expression enclosed in parentheses, the associated
dummy argument must not be redefined within the subprogram.

15.9.3.3 Arrays as Dummy Arguments

Within a program unit, the array declarator given for an array provides all array
declarator information needed for the array in an execution of the program unit. The
number and size of dimensions in an actual argument array declarator may be different
from the number and size of the dimensions in an associated dummy argument array
declarator.

A dummy argument that is an array may be associated with an actual argument that is an
array, array element, or array element substring.

If the actual argument is a noncharacter array name, the size of the dummy argument
array must not exceed the size of the actual argument array, and each actual argument
array element becomes associated with the dummy argument array element that has the

ANSI X3.9-1978

15-21

same subscript value as the actual argument array element. Note that association by array
elements exists for character arrays if there is agreement in length between the actual
argument and the dummy argument array elements; if the lengths do not agree, the
dummy and actual argument array elements do not consist of the same characters, but an
association still exists.

If the actual argument is a noncharacter array element name, the size of the dummy
argument array must not exceed the size of the actual argument array plus one minus the
subscript value of the array element. When an actual argument is a noncharacter array
element name with a subscript value of as, the dummy argument array element with a
subscript value of ds becomes associated with the actual argument array element that has
a subscript value of as + ds - 1 (Table 1, 5.4.3).

If the actual argument is a character array name, character array element name, or
character array element substring name and begins at character storage unit acu of an
array, character storage unit dcu of an associated dummy argument array becomes
associated with character storage unit acu + dcu - 1 of the actual argument array.

15.9.3.4 Procedures as Dummy Arguments

A dummy argument that is a dummy procedure may be associated only with an actual
argument that is an intrinsic function, external function, subroutine, or another dummy
procedure.

If a dummy argument is used as if it were an external function, the associated actual
argument must be an intrinsic function, external function, or dummy procedure. A
dummy argument that becomes associated with an intrinsic function never has any
automatic typing property, even if the dummy argument name appears in Table 5 (15.10).
Therefore, the type of the dummy argument must agree with the type of the result of all
specific actual arguments that become associated with the dummy argument. If a dummy
argument name is used as if it were an external function and that name also appears in
Table 5, the intrinsic function corresponding to the dummy argument name is not
available for referencing within the subprogram.

A dummy argument that is used as a procedure name in a function reference and is
associated with an intrinsic function must have arguments that agree in order, number,
and type with those specified in Table 5 for the intrinsic function.

If a dummy argument appears in a type-statement and an EXTERNAL statement, the
actual argument must be the name of an intrinsic function, external function, or dummy
procedure.

ANSI X3.9-1978

15-22

If the dummy argument is referenced as a subroutine, the actual argument must be the
name of a subroutine or dummy procedure and must not appear in a type-statement or be
referenced as a function.

Note that it may not be possible to determine in a given program unit whether a dummy
procedure is associated with a function or a subroutine. If a procedure name appears only
in a dummy argument list, an EXTERNAL statement, and an actual argument list, it is
not possible to determine whether the symbolic name becomes associated with a function
or subroutine by examination of the subprogram alone.

15.9.3.5 Asterisks as Dummy Arguments

A dummy argument that is an asterisk may appear only in the dummy argument list of a
SUBROUTINE statement or an ENTRY statement in a subroutine subprogram.

A dummy argument that is an asterisk may be associated only with an actual argument
that is an alternate return specifier in the CALL statement that identifies the current
referencing name. If a dummy argument is an asterisk, the corresponding actual argument
must be an alternate return specifier.

15.9.3.6 Restrictions on Association of Entities

If a subprogram reference causes a dummy argument in the referenced subprogram to
become associated with another dummy argument in the referenced subprogram, neither
dummy argument may become defined during execution of that subprogram. For
example, if a subroutine is headed by

SUBROUTINE XYZ (A,B)

and is referenced by

CALL XYZ (C,C)

the dummy arguments A and B each become associated with the same actual argument C
and therefore with each other. Neither A nor B may become defined during this execution
of subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become associated with an entity
in a common block in the referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the entity in the common block
may become defined within the subprogram or within a subprogram referenced by the
referenced subprogram. For example, if a subroutine contains the statements:

ANSI X3.9-1978

15-23

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains the statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with the actual argument B, which is
associated with C, which is in a common block. Neither A nor C may become defined
during execution of the subroutine XYZ or by any procedures referenced by XYZ.

15.9.4 Common Blocks

A common block provides a means of communication between external procedures or
between a main program and an external procedure. The variables and arrays in a
common block may be defined and referenced in all subprograms that contain a
declaration of that common block. Because association is by storage rather than by name,
the names of the variables and arrays may be different in the different subprograms. A
reference to a datum in a common block is proper if the datum is in a defined state of the
same type as the type of the name used to reference the datum. However, an integer
variable that has been assigned a statement label must not be referenced in any program
unit other than the one in which it was assigned (10.3).

No difference in data type is permitted between the defined state and the type of the
reference, except that either part of a complex datum may be referenced also as a real
datum.

In a subprogram that has declared a named common block, the entities in the block
remain defined after the execution of a RETURN or END statement if a common block
of the same name has been declared in any program unit that is currently referencing the
subprogram, either directly or indirectly. Otherwise, such entities become undefined at
the execution of a RETURN or END statement, except for those that are specified by
SAVE statements and those that were initially defined by DATA statements and have
neither been redefined nor become undefined.

Execution of a RETURN or END statement does not cause entities in blank common or
in any named common block that appears in the main program to become undefined.

Common blocks may be used also to reduce the total number of storage units required for
an executable program by causing two or more subprograms to share some of the same
storage units. This sharing of storage is permitted if the rules for defining and referencing
data are not violated.

ANSI X3.9-1978

15-24

15.10 Table of Intrinsic Functions

Table 5
Intrinsic Functions

Type of
Intrinsic
Function

Definition Number
of Arguments

Generic
Name

Specific
Name

Argument Function

Type
Conversion

Conversion
to Integer
int(a)
See Note 1

1 INT -
INT
IFIX
IDINT
-

Integer
Real
Real
Double
Complex

Integer
Integer
Integer
Integer
Integer

Conversion
to Real
See Note 2

1 REAL REAL
FLOAT
-
SNGL
-

Integer
Integer
Real
Double
Complex

Real
Real
Real
Real
Real

Conversion
to Double
See Note 3

1 DBLE -
-
-
-

Integer
Real
Double
Complex

Double
Double
Double
Double

Conversion
to Complex
See Note 4

1 or 2 CMPLX -
-
-
-

Integer
Real
Double
Complex

Complex
Complex
Complex
Complex

Conversion
to Integer
See Note 5

1 ICHAR Character Integer

Conversion
to
Character
See Note 5

1 CHAR Integer Character

Truncation int(a)
See Note 1

1 AINT AINT
DINT

Real
Double

Real
Double

Nearest
Whole
Number

int(a+.5)
 if a ≥ 0
int(a-.5)
 if a < 0

1 ANINT ANINT
DNINT

Real
Double

Real
Double

Nearest
Integer

int(a+.5)
 if a ≥ 0
int(a-.5)
 if a < 0

1 NINT NINT
IDNINT

Real
Double

Real
Double

Absolute
Value

| a |

See Note 6
(ar2+ai2)1/2

1 ABS IABS
ABS
DABS
CABS

Integer
Real
Double
Complex

Integer
Real
Double
Complex

ANSI X3.9-1978

15-25

Table 5 (continued)
Intrinsic Functions

Type of
Intrinsic
Function

Definition Number
of Arguments

Generic
Name

Specific
Name

Argument Function

Remaindering a1-int(a1/a2)
*a2
See Note 1

2 MOD MOD
AMOD
DMOD

Integer
Real
Double

Integer
Real
Double

Transfer of
Sign

| a1 |
 if a2 ≥ 0
- | a1 |
 if a2 < 0

2 SIGN ISIGN
SIGN
DSIGN

Integer
Real
Double

Integer
Real
Double

Positive
Difference

a1-a2
 if a1 > a2
0
 if a1 ≤ a2

2 DIM IDIM
DIM
DDIM

Integer
Real
Double

Integer
Real
Double

Double
Precision
Product

a1*a2 2 CMPLX DPROD Real Double

Choosing
Largest
Value

max(a1,a2,
 ...)

≥ 2 MAX MAX0
AMAX1
DMAX1

Integer
Real
Double

Integer
Real
Double

AMAX0
MAX1

Integer
Real

Real
Integer

Choosing
Smallest
Value

min(a1,a2,
 ...)

≥ 2 MIN MIN0
AMIN1
DMIN1

Integer
Real
Double

Integer
Real
Double

AMIN0
MIN1

Integer
Real

Real
Integer

Length Lengh of
Character
Array

1 LEN Character Integer

Index of a
Substring

Location of
Substring
a2 in String
a1
See Note
10

2 INDEX Character Integer

Imaginary
Part
of Complex
Argument

ai
See Note 6

1 AIMAG Complex Real

Conjugate of
a Complex
Argument

(ar,-ai)
See Note 6

1 CONJG Complex Complex

Square Root (a)1/2 1 SQRT SQRT
DSQRT
CSQRT

Real
Double
Complex

Real
Double
Complex

ANSI X3.9-1978

15-26

Table 5(continued)
Intrinsic Functions

Type of
Intrinsic
Function

Definition Number
of Arguments

Generic
Name

Specific
Name

Argument Function

Exponential e**a 1 EXP EXP
DEXP
CEXP

Real
Double
Complex

Real
Double
Complex

Natural
Logarithm

log(a) 1 LOG ALOG
DLOG
CLOG

Real
Double
Complex

Real
Double
Complex

Common
Logarithm

log 10 (a) 1 LOG10 ALOG10
DLOG10

Real
Double

Real
Double

Sine sin(a) 1 SIN SIN
DSIN
CSIN

Real
Double
Complex

Real
Double
Complex

Cosine cos(a) 1 COS COS
DCOS
CCOS

Real
Double
Complex

Real
Double
Complex

Tangent tan(a) 1 TAN TAN
DTAN

Real
Double

Real
Double

Arcsine arcsin(a) 1 ASIN ASIN
DASIN

Real
Double

Real
Double

Arccosine arccos(a) 1 ACOS ACOS
DACOS

Real
Double

Real
Double

Arctangent arctan(a) 1 ATAN ATAN
DATAN

Real
Double

Real
Double

arctan(a1/
 a2)

2 ATAN2 ATAN2
DATAN2

Real
Double

Real
Double

Hyperbolic
Sine

sinh(a) 1 SINH SINH
DSINH

Real
Double

Real
Double

Hyperbolic
Cosine

cosh(a) 1 COSH COSH
DCOSH

Real
Double

Real
Double

Hyperbolic
Tangent

tanh(a) 1 TANH TANH
DTANH

Real
Double

Real
Double

Lexically
Greater Than
or Equal

a1 ≥ a2
See Note
12

2 LGE Character Logical

Lexically
Greater Than

a1 > a2
See Note
12

2 LGT Character Logical

Lexically Less
Than or Equal

a1 ≤ a2 2 LLE Character Logical

Lexically Less
Than

a1 < a2 2 LLT Character Logical

ANSI X3.9-1978

15-27

Notes for Table 5:

(1) For a of type integer, int(a)=a. For a of type real or double precision, there are two
cases: if |a| < 1, int(a)=0; if |a| ≥ 1, int(a) is the integer whose magnitude is the largest
integer that does not exceed the magnitude of a and whose sign is the same as the sign of
a. For example,

int(-3.7) = -3

For a of type complex, int(a) is the value obtained by applying the above rule to the real
part of a.

For a of type real, IFIX(a) is the same as INT(a).

(2) For a of type real, REAL(a) is a. For a of type integer or double precision, REAL(a) is
as much precision of the significant part of a as a real datum can contain. For a of type
complex, REAL(a) is the real part of a.

For a of type integer, FLOAT(a) is the same as REAL(a).

(3) For a of type double precision, DBLE(a) is a. For a of type integer or real, DBLE(a) is
as much precision of the significant part of a as a double precision datum can contain. For
a of type complex, DBLE(a) is as much precision of the significant part of the real part of
a as a double precision datum can contain.

(4) CMPLX may have one or two arguments. If there is one argument, it may be of type
integer, real, double precision, or complex. If there are two arguments, they must both be
of the same type and may be of type integer, real, or double precision.

For a of type complex, CMPLX(a) is a. For a of type integer, real, or double precision,
CMPLX(a) is the complex value whose real part is REAL(a) and whose imaginary part is
zero.

CMPLX(a1,a2) is the complex value whose real part is REAL(a1) and whose imaginary
part is REAL(a2).

(5) ICHAR provides a means of converting from a character to an integer, based on the
position of the character in the processor collating sequence. The first character in the
collating sequence corresponds to position 0 and the last to position n - 1, where n is the
number of characters in the collating sequence.

ANSI X3.9-1978

15-28

The value of ICHAR(a) is an integer in the range: 0 ≤ ICHAR(a) ≤ n-1 , where a is an
argument of type character of length one. The value of a must be a character capable of
representation in the processor. The position of that character in the collating sequence is
the value of ICHAR.

For any characters c1 and c2 capable of representation in the processor, (c1 .LE. c2) is
true if and only if (ICHAR(c1) .LE. ICHAR(c2)) is true, and (c1 .EQ. c2) is true if and
only if (ICHAR(c1) .EQ. ICHAR(c2)) is true.

CHAR(i) returns the character in the ith position of the processor collating sequence. The
value is of type character of length one. i must be an integer expression whose value must
be in the range 0 ≤ i ≤ n-1.

ICHAR(CHAR(i)) = i for 0 ≤ i ≤ n-1.

CHAR(ICHAR(c)) = c for any character c capable of representation in the processor.

(6) A complex value is expressed as an ordered pair of reals, (ar,ai), where ar is the real
part and ai is the imaginary part.

(7) All angles are expressed in radians.

(8) The result of a function of type complex is the principal value.

(9) All arguments in an intrinsic function reference must be of the same type.

(10) INDEX(a1,a2) returns an integer value indicating the starting position within the
character string a1 of a substring identical to string a2. If a2 occurs more than once in a1,
the starting position of the first occurrence is returned.

If a2 does not occur in a1, the value zero is returned. Note that zero is returned if LEN(a1)
< LEN(a2).

(11) The value of the argument of the LEN function need not be defined at the time the
function reference is executed.

(12) LGE(a1,a2) returns the value true if a1=a2 or i f a1 follows a2 in the collating
sequence described in American National Standard Code for Information Interchange,
ANSI X3.4-1977 (ASCII), and otherwise returns the value false.

LGT(a1,a2) returns the value true if a1 follows a2 in the collating sequence described in
ANSI X3.4-1977 (ASCII), and otherwise returns the value false.

ANSI X3.9-1978

15-29

LLE(a1,a2) returns the value true if a1=a2 or if a1 precedes a2 in the collating sequence
described in ANSI X3.4-1977 (ASCII), and otherwise returns the value false.

LLT(a1,a2) returns the value true if a1 precedes a2 in the collating sequence described in
ANSI X3.4-1977 (ASCII), and otherwise returns the value false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the shorter operand
is considered as if it were extended on the right with blanks to the length of the longer
operand.

If either of the character entities being compared contains a character that is not in the
ASCII character set, the result is processor-dependent.

15.10.1 Restrictions on Range of Arguments and Results

Restrictions on the range of arguments and results for intrinsic functions when referenced
by their specific names are as follows:

(1) Remaindering: The result for MOD, AMOD, and DMOD is undefined when the value
of the second argument is zero.

(2) Transfer of Sign: If the value of the first argument of ISIGN, SIGN, or DSIGN is
zero, the result is zero, which is neither positive or negative (4.1.3).

(3) Square Root: The value of the argument of SQRT and DSQRT must be greater than
or equal to zero. The result of CSQRT is the principal value with the real part greater than
or equal to zero. When the real part of the result is zero, the imaginary part is greater than
or equal to zero.

(4) Logarithms: The value of the argument of ALOG, DLOG, ALOG10, and DLOG10
must be greater than zero. The value of the argument of CLOG must not be (0.,0.). The
range of the imaginary part of the result of CLOG is: -π < imaginary part ≤ π. The
imaginary part of the result is π only when the real part of the argument is less than zero
and the imaginary part of the argument is zero.

(5) Sine, Cosine, and Tangent: The absolute value of the argument of SIN, DSIN, COS,
DCOS, TAN, and DTAN is not restricted to be less than 2π.

(6) Arcsine: The absolute value of the argument of ASIN and DASIN must be less than
or equal to one. The range of the result is: -π/2 ≤ result ≤ π/2.

ANSI X3.9-1978

15-30

(7) Arccosine: The absolute value of the argument of ACOS and DACOS must be less
than or equal to one. The range of the result is: 0 ≤ result ≤ π.

(8) Arctangent: The range of the result for ATAN and DATAN is: -π/2 ≤ result ≤ π/2. If
the value of the first argument of ATAN2 or DATAN2 is positive, the result is positive.
If the value of the first argument is zero, the result is zero if the second argument is
positive and π if the second argument is negative. If the value of the first argument is
negative, the result is negative. If the value of the second argument is zero, the absolute
value of the result is π/2. The arguments must not both have the value zero. The range of
the result for ATAN2 and DATAN2 is: -π < result ≤ π.

The above restrictions on arguments and results also apply to the intrinsic functions when
referenced by their generic names.

ANSI X3.9-1978

16-1

16. BLOCK DATA SUBPROGRAM

Block data subprograms are used to provide initial values for variables and array
elements in named common blocks.

A block data subprogram is a program unit that has a BLOCK DATA statement as its
first statement. A block data subprogram is nonexecutable. There may be more than one
block data subprogram in an executable program.

16.1 BLOCK DATA Statement

The form of a BLOCK DATA statement is:

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in which the BLOCK
DATA statement appears.

The optional name sub is a global name (18.1.1) and must not be the same as the name of
an external procedure, main program, common block, or other block data subprogram in
the same executable program. The name sub must not be the same as any local name in
the subprogram.

16.2 Block Data Subprogram Restrictions

The BLOCK DATA statement must appear only as the first statement of a block data
subprogram. The only other statements that may appear in a block data subprogram are
IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE,
DATA, END, and type-statements. Note that comment lines are permitted.

If an entity in a named common block is initially defined, all entities having storage units
in the common block storage sequence must be specified even if they are not all initially
defined. More than one named common block may have entities initially defined in a
single block data subprogram.

Only an entity in a named common block may be initially defined in a block data
subprogram. Note that entities associated with an entity in a common block are
considered to be in that common block.

The same named common block may not be specified in more than one block data
subprogram in the same executable program.

ANSI X3.9-1978

16-2

There must not be more than one unnamed block data subprogram in an executable
program.

ANSI X3.9-1978

17-1

17. ASSOCIATION AND DEFINITION

17.1 Storage and Association

Storage sequences are used to describe relationships that exist among variables, array
elements, substrings, common blocks, and arguments.

17.1.1 Storage Sequence

A storage sequence is a sequence (2.1) of storage units. The size of a storage sequence is
the number of storage units in the storage sequence. A storage unit is a character storage
unit or a numeric storage unit.

A variable or array element of type integer, real, or logical has a storage sequence of one
numeric storage unit.

A variable or array element of type double precision or complex has a storage sequence
of two numeric storage units. In a complex storage sequence, the real part has the first
storage unit and the imaginary part has the second storage unit.

A variable, array element, or substring of type character has a storage sequence of
character storage units. The number of character storage units in the storage sequence is
the length of the character entity. The order of the sequence corresponds to the ordering
of character positions (4.8).

Each array and common block has a storage sequence (5.2.5 and 8.3.2).

17.1.2 Association of Storage Sequences

Two storage sequences s1 and s2 are associated if the ith storage unit of s1 is the same as
the jth storage unit of s2. This causes the (i+k)th storage unit of s1 to be the same as the
(j+k)th storage unit of s2, for each integer k such that 1 ≤ i+k ≤ size of s1 and 1 <+ j+k ≤
size of s2.

17.1.3 Association of Entities

Two variables, array elements, or substrings are associated if their storage sequences are
associated. Two entities are totally associated if they have the same storage sequence.
Two entities are partially associated if they are associated but not totally associated.

ANSI X3.9-1978

17-2

The definition status and value of an entity affects the definition status and value of any
associated entity. An EQUIVALENCE statement, a COMMON statement, an ENTRY
statement (15.7.3), or a procedure reference (argument association) may cause
association of storage sequences.

An EQUIVALENCE statement causes association of entities only within one program
unit, unless one of the equivalenced entities is also in a common block (8.3).

Arguments and COMMON statements cause entities in one program unit to become
associated with entities in another program unit (8.3 and 15.9). Note that association
between actual and dummy arguments does not imply association of storage sequences
except when the actual argument is the name of a variable, array element, array, or
substring.

In a function subprogram, an ENTRY statement causes the entry name to become
associated with the name of the function subprogram which appears in the FUNCTION
statement.

Partial association may exist only between two character entities or between a double
precision or complex entity and an entity of type integer, real, logical, double precision,
or complex.

Except for character entities, partial association may occur only through the use of
COMMON, EQUIVALENCE, or ENTRY statements. Partial association must not occur
through argument association, except for arguments of type character.

In the example:

 REAL A(4),B
 COMPLEX C(2)
 DOUBLE PRECISION D
 EQUIVALENCE (C(2),A(2),B), (A,D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the
second storage unit of D are specified as the same. The storage sequences may be
illustrated as:

storage unit | 1 | 2 | 3 | 4 | 5 |
 |---C(1)----|----C(2)---|

 | A(1)| A(2)| A(3)| A(4)|
 |--B--|

 |-----D-----|

ANSI X3.9-1978

17-3

A(2) and B are totally associated. The following are partially associated: A(1) and C(1),
A(2) and C(2), A(3) and C(2), B and C(2), A(1) and D, A(2) and D, B and D, C(1) and D,
and C(2) and D. Note that although C(1) and C(2) are each associated with D, C(1) and
C(2) are not associated with each other.

Partial association of character entities occurs when some, but not all, of the storage units
of the entities are the same. In the example:

 CHARACTER A*4,B*4,C*3
 EQUIVALENCE (A(2:3),B,C)

A, B, and C are partially associated.

17.2 Events That Cause Entities to Become Defined

Variables, array elements, and substrings become defined as follows:

(1) Execution of an arithmetic, logical, or character assignment statement causes
the entity that precedes the equals to become defined.

(2) As execution of an input statement proceeds, each entity that is assigned a
value of its corresponding type from the input medium becomes defined at
the time of such assignment.

(3) Execution of a DO statement causes the DO-variable to become defined.

(4) Beginning of execution of action specified by an implied-DO list in an
input/output statement causes the implied-DO-variable to become defined.

(5) A DATA statement causes entities to become initially defined at the
beginning of execution of an executable program.

(6) Execution of an ASSIGN statement causes the variable in the statement to
become defined with a statement label value.

(7) When an entity of a given type becomes defined, all totally associated
entities of the same type become defined except that entities totally
associated with the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram causes a dummy argument to become defined if
the corresponding actual argument is defined with a value that is not a

ANSI X3.9-1978

17-4

statement label value. Note that there must be agreement between the actual
argument and the dummy argument (15.9.3).

(9) Execution of an input/output statement containing an input/output status
specifier causes the specified integer variable or array element to become
defined.

(10) Execution of an INQUIRE statement causes any entity that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

(11) When a complex entity becomes defined, all partially associated real entities
become defined.

(12) When both parts of a complex entity become defined as a result of partially
associated real or complex entities becoming defined, the complex entity
becomes defined.

(13) When all characters of a character entity become defined, the character
entity becomes defined.

17.3 Events That Cause Entities to Become Undefined

Variables, array elements, and substrings become undefined as follows:

(1) All entities are undefined at the beginning of execution of an executable
program except those entities initially defined by DATA statements.

(2) When an entity of a given type becomes defined, all totally associated
entities of different type become undefined.

(3) Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Entities that are associated with the variable
become undefined.

(4) When an entity of type other than character becomes defined, all partially
associated entities become undefined. However, when an entity of type real
is partially associated with an entity of type complex, the complex entity
does not become undefined when the real entity becomes defined and the
real entity does not become undefined when the complex entity becomes
defined. When an entity of type complex is partially associated with another

ANSI X3.9-1978

17-5

entity of type complex, definition of one entity does not cause the other to
become undefined.

(5) When the evaluation of a function causes an argument of the function or an
entity in common to become defined and if a reference to the function
appears in an expression in which the value of the function is not needed to
determine the value of the expression, then the argument or the entity in
common becomes undefined when the expression is evaluated (6.6.1).

(6) The execution of a RETURN statement or an END statement within a
subprogram causes all entities within the subprogram to become undefined
except for the following:

(a) Entities in blank common

(b) Initially defined entities that have neither been redefined nor become
undefined

(c) Entities specified by SAVE statements

(d) Entities in a named common block that appears in the subprogram
and appears in at least one other program unit that is either directly or
indirectly referencing the subprogram

(7) When an error condition or end-of-file condition occurs during execution of
an input statement, all of the entities specified by the input list of the
statement become undefined.

(8) Execution of a direct access input statement that specifies a record that has
not been previously written causes all of the entities specified by the input
list of the statement to become undefined.

(9) Execution of an INQUIRE statement may cause entities to become
undefined (12.10.3).

(10) When any character of a character entity becomes undefined, the character
entity becomes undefined.

(11) When an entity becomes undefined as a result of conditions described in (5)
through (10), all totally associated entities become undefined and all
partially associated entities of type other than character become undefined.

ANSI X3.9-1978

18-1

18. SCOPES AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric characters, the first of which must
be a letter. Some sequences of characters, such as format edit descriptors and keywords
that uniquely identify certain statements, for example, GO TO, READ, FORMAT, etc.,
are not symbolic names in such occurrences nor do they form the first characters of
symbolic names in such occurrences.

18.1 Scope of Symbolic Names

The scope of a symbolic name is an executable program, a program unit, a statement
function statement, or an implied-DO list in a DATA statement.

The name of the main program and the names of block data subprograms, external
functions, subroutines, and common blocks have a scope of an executable program.

The names of variables, arrays, constants, statement functions, intrinsic functions, and
dummy procedures have a scope of a program unit.

The names of variables that appear as dummy arguments in a statement function
statement have a scope of that statement.

The names of variables that appear as the DO-variable of an implied-DO in a DATA
statement have a scope of the implied-DO list.

18.1.1 Global Entities

The main program, common blocks, subprograms, and external procedures are global
entities of an executable program. A symbolic name that identifies a global entity must
not be used to identify any other global entity in the same executable program.

18.1.1.1 Classes of Global Entities.

A symbolic name in one of the following classes is a global entity in an executable
program:

(1) Common block

(2) External function

(3) Subroutine

ANSI X3.9-1978

18-2

(4) Main program

(5) Block data subprogram

18.1.2 Local Entities

The symbolic name of a local entity identifies that entity in a single program unit. Within
a program unit, a symbolic name that is in one class of entities local to the program unit
must not also be in another class of entities local to the program unit. However, a
symbolic name that identifies a local entity may, in a different program unit, identify an
entity of any class that is either local to that program unit or global to the executable
program. A symbolic name that identifies a global entity in a program unit must not be
used to identify a local entity in that program unit, except for a common block name and
an external function name (18.2.1 and 18.2.2).

18.1.2.1 Classes of Local Entities

A symbolic name in one of the following classes is a local entity in a program unit.

(1) Array

(2) Variable

(3) Constant

(4) Statement function

(5) Intrinsic function

(6) Dummy procedure

A symbolic name that is a dummy argument of a procedure is classified as a variable,
array, or dummy procedure. The specification and usage must not violate the respective
class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than one class except as noted in
the following paragraphs of this section. There are no restrictions on the appearances of
the same symbolic name in different program units of an executable program other than
those noted in this section.

ANSI X3.9-1978

18-3

18.2.1 Common Block

A symbolic name is the name of a common block if and only if it appears as a block
name in a COMMON statement (8.3).

A common block name is global to the executable program.

A common block name in a program unit may also be the name of any local entity other
than a constant, intrinsic function, or a local variable that is also an external function in a
function subprogram. If a name is used for both a common block and a local entity, the
appearance of that name in any context other than as a common block name in a
COMMON or SAVE statement identifies only the local entity. Note that an intrinsic
function name may be a common block name in a program unit that does not reference
the intrinsic function.

18.2.2 External Function

A symbolic name is the name of an external function if it meets either of the following
conditions:

(1) The name appears immediately following the word FUNCTION in a
FUNCTION statement or the word ENTRY in an ENTRY statement within
a function subprogram.

(2) It is not an array name, character variable name, statement function name,
intrinsic function name, dummy argument, or subroutine name, and every
appearance is immediately followed by a left parenthesis except in a type-
statement, in an EXTERNAL statement, or as an actual argument.

In a function subprogram, the name of a function that appears immediately after the word
FUNCTION in a FUNCTION statement or immediately after the word ENTRY in an
ENTRY statement may also be the name of a variable in that subprogram (15.5.1). At
least one such function name must be the name of a variable in a function subprogram.

An external function name is global to the executable program.

18.2.3 Subroutine

A symbolic name is the name of a subroutine if it meets either of the following
conditions:

ANSI X3.9-1978

18-4

(1) The name appears immediately following the word SUBROUTINE in a
SUBROUTINE statement or the word ENTRY in an ENTRY statement
within a subroutine subprogram.

(2) The name appears immediately following the word CALL in a CALL
statement and is not a dummy argument.

A subroutine name is global to the executable program.

ANSI X3.9-1978

18-5

18.2.4 Main Program

A symbolic name is the name of a main program if and only if it appears in a PROGRAM
statement in the main program.

A main program name is global to the executable program.

18.2.5 Block Data Subprogram

A symbolic name is the name of a block data subprogram if and only if it appears in a
BLOCK DATA statement.

A block data subprogram name is global to the executable program.

18.2.6 Array

A symbolic name is the name of an array if it appears as the array name in an array
declarator (5.1) in a DIMENSION, COMMON, or type-statement.

An array name is local to a program unit.

An array name may be the same as a common block name.

18.2.7 Variable

A symbolic name is the name of a variable if it meets all of the following conditions:

(1) It does not appear in a PARAMETER, INTRINSIC, or EXTERNAL
statement.

(2) It is not the name of an array, subroutine, main program, or block data
subprogram.

(3) It appears other than as the name of a common block, the name of an
external function in a FUNCTION statement, or an entry name in an
ENTRY statement in an external function.

(4) It is never immediately followed by a left parenthesis unless it is
immediately preceded by the word FUNCTION in a FUNCTION statement,
is immediately preceded by the word ENTRY in an ENTRY statement, or is
at the beginning of a character substring name (5.7.1).

ANSI X3.9-1978

18-6

A variable name in the dummy argument list of a statement function statement is local to
the statement function statement in which it occurs. Note that the use of a name that
appears in Table 5 as a dummy argument of a statement function removes it from the
class of intrinsic functions. A variable name that appears as an implied-DO-variable in a
DATA statement is local to the implied-DO list. All other variable names are local to a
program unit.

A statement function dummy argument name may also be the name of a variable or
common block in the program unit. The appearance of the name in any context other than
as a dummy argument of the statement function identifies the local variable or common
block. The statement function dummy argument name and local variable name have the
same type and, if of type character, both have the same constant length.

The name of an implied-DO-variable in a DATA statement may also be the name of a
variable or common block in the program unit. The appearance of the name in any
context other than as an implied-DO-variable in the DATA statement identifies the local
variable or common block. The implied- DO-variable and the local variable have the
same type.

18.2.8 Constant

A symbolic name is the name of a constant if it appears as a symbolic name in a
PARAMETER statement.

The symbolic name of a constant is local to a program unit.

18.2.9 Statement Function

A symbolic name is the name of a statement function if a statement function statement
(15.4) is present for that symbolic name and it is not an array name.

A statement function name is local to a program unit. A statement function name may be
the same as a common block name.

18.2.10 Intrinsic Function

A symbolic name is the name of an intrinsic function if it meets all of the following
conditions:

(1) The name appears in the Specific Name column or the Generic Name
column of Table 5.

ANSI X3.9-1978

18-7

(2) It is not an array name, statement function name, subroutine name, or
dummy argument name.

(3) Every appearance of the symbolic name, except in an INTRINSIC statement,
a type-statement, or as an actual argument, is immediately followed by an
actual argument list enclosed in parentheses.

An intrinsic function name is local to a program unit.

18.2.11 Dummy Procedure

A symbolic name is the name of a dummy procedure if the name appears in the dummy
argument list of a FUNCTION, SUBROUTINE, or ENTRY statement and meets one or
more of the following conditions:

(1) It appears in an EXTERNAL statement.

(2) It appears immediately following the word CALL in a CALL statement.

(3) It is not an array name or character variable name, and every appearance is
immediately followed by a left parenthesis except in a type-statement, in an
EXTERNAL statement, in a CALL statement, as a dummy argument, as an
actual argument, or as a common block name in a COMMON or SAVE
statement.

A dummy procedure name is local to a program unit.

ANSI X3.9-1978

A-1

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY

A1. Criteria

The principal criteria used in developing this FORTRAN standard were:

(1) Interchangeability of FORTRAN programs between processors

(2) Compatibility with ANSI X3.9-1966, allied standards, and existing practices

(3) Consistency and simplicity to user

(4) Suitability for efficient processor operation for a wide range of computing
equipment of

(5) varying structure and power

(6) Allowance for future growth in the language

(7) Achievement of capabilities not currently available, but needed for processes
appropriately expressed in FORTRAN

(8) Acceptability by a significant portion of users

(9) Improved ability to use FORTRAN programs and data in conjunction with
other languages and environments

A2. Conflicts with ANSI X3.9-1966

An extremely important consideration in the preparation of this standard was the
minimization of conflicts with the previous standard, ANSI X3.9-1966. This standard
includes changes that create conflicts with ANSI X3.9-1966 only when such changes
were necessary to correct an error in the previous standard or to add to the power of the
FORTRAN language in a significant manner. The following is a list of known conflicts:

(1) A line that contains only blank characters in columns 1 through 72 is a
comment line. ANSI X3.9-1966 allowed such a line to be the initial line of a
statement.

ANSI X3.9-1978

A-2

(2) Columns 1 through 5 of a continuation line must contain blanks. A published
interpretation of ANSI X3.9-1966 specified that columns 1-5 of a
continuation line may contain any character from the FORTRAN character
set except that column 1 must not contain a C.

(3) Hollerith constants and Hollerith data are not permitted in this standard.
ANSI X3.9-1966 permitted the use of Hollerith constants in DATA and
CALL statements, the use of noncharacter list items in formatted
input/output statements with A edit descriptors, and the referencing of
noncharacter arrays as formats. Note that the H edit (field) descriptor is
permitted; it is not a Hollerith constant.

(4) The value of each comma-separated subscript expression in a subscript must
not exceed its corresponding upper bound declared for the array name in the
program unit. In the example:

 DIMENSION A(10,5)

The reference to A(11,1) is not permitted for the array A(10,5). ANSI X3.9-
1966 permitted a subscript expression to exceed its corresponding upper
bound if the maximum subscript value for the array was not exceeded.

(5) Only an array that is declared as a one-dimensional array in the program unit
may have a one-dimensional subscript in an EQUIVALENCE statement. In
the example:

 DIMENSION B(2,3,4), C(4,8)
 EQUIVALENCE (B(23), C(1,1))

is not permitted. ANSI X3.9-1966 permitted arrays that were declared as
two- or three-dimensional arrays to appear in an EQUIVALENCE statement
with a one-dimensional subscript.

(6) A name must not have its type explicitly specified more than once in a
program unit. ANSI X3.9-1966 did not explicitly have such a prohibition.

(7) This standard does not permit a transfer of control into the range of a DO-
loop from outside the range. The range of a DO-loop may be entered only by
the execution of a DO statement. ANSI X3.9-1966 permitted transfer of
control into the range of a DO-loop under certain conditions. This involved
the concept referred to as "extended range of a DO."

ANSI X3.9-1978

A-3

(8) A labeled END statement could conflict with the initial line of a statement in
an ANSI X3.9-1966 standard-conforming program.

(9) A record must not be written after an endfile record in a sequential file.
ANSI X3.9-1966 did not prohibit this, but provided no interpretation for the
reading of an endfile record.

(10) A sequential file may not contain both formatted and unformatted records. A
published interpretation of ANSI X3.9-1966 specified that this was
permitted.

(11) Negative values for input/output unit identifiers are prohibited in this
standard. ANSI X3.9-1966 did not explicitly prohibit them for variable unit
identifiers.

(12) A simple I/O list enclosed in parentheses is prohibited from appearing in an
I/O list.

This requires that parentheses enclosing more than one I/O list item must
mark an implied DO-loop. The restriction was imposed to eliminate potential
syntactic ambiguities introduced by complex constants in list-directed output
lists. As all the parentheses referred to are redundant, a program can be made
conforming with this standard by deleting redundant parentheses enclosing
more than one list item in an I/O list.

(13) The definition of an entity associated with an entity in an input list occurs at
the same time as the definition of the list entity. ANSI X3.9-1966 delayed
the definition of such an associated entity until the end of execution of the
input statement.

(14) Reading into an H edit (field) descriptor in a FORMAT statement is
prohibited in this standard.

(15) The range of a scale factor for E, D, and G output fields is restricted to
reasonable values. ANSI X3.9-1966 had no such restriction, but did not
provide a clear interpretation of the meaning of the unreasonable values.

(16) A processor must not produce a numeric output field containing a negative
zero. ANSI X3.9-1966 required this if the internal value of a real or double
precision datum was negative.

(17) On output, the I edit descriptor must not produce unnecessary leading zeros.

ANSI X3.9-1978

A-4

(18) On output, the F edit descriptor must not produce unnecessary leading zeros,
other than the optional leading zero for a value less than one.

(19) Following the E or D in an E or D output field, a + or - is required
immediately prior to the exponent field. This improves compatibility with
American National Standard for the Representation of Numeric Values in
Character Strings for Information Interchange, ANSI X3.42-1975. ANSI
X3.9-1966 permitted a blank as a replacement for + in the exponent sign.

(20) An intrinsic function name that is used as an actual argument must appear in
an INTRINSIC statement rather than an EXTERNAL statement. Note that
the intrinsic function class includes the basic external function class of ANSI
X3.9-1966.

(21) The appearance of an intrinsic function name in a type-statement that
conflicts with the type specified in Table 5 is not sufficient to remove the
name from the intrinsic function class. In ANSI X3.9-1966, this condition
was sufficient to remove the name from the intrinsic function class.

(22) More intrinsic function names have been added and could conflict with the
names of subprograms. These names are ACOS, ANINT, ASIN, CHAR,
COSH, DACOS, DASIN, DCOSH, DDIM, DINT, DNINT, DPROD,
DSINH, DTAN, DTANH, ICHAR, IDNINT, INDEX, LEN, LGE, LGT,
LLE, LLT, LOG, LOG10, MAX, MIN, NINT, SINH, and TAN.

(23) The units of the arguments and results of the intrinsic functions (and basic
external functions) were not specified in ANSI X3.9-1966 and are specified
in this standard. The range of the arguments and results has also been
specified. These specifications may be different from those used on some
processors conforming to ANSI X3.9-1966.

(24) An executable program must not contain more than one unnamed block data
subprogram. ANSI X3.9-1966 did not have this prohibition and could be
interpreted to permit more than one.

A3. Standard Items That Inhibit Portability

Although the primary purpose of this standard is to promote portability of FORTRAN
programs, there are some items in it that tend to inhibit portability.

(1) Procedures written in languages other than FORTRAN may not be portable.

ANSI X3.9-1978

A-5

(2) Because the collating sequence has not been completely specified, character
relational expressions do not necessarily have the same value on all
processors. However, the intrinsic functions LGE, LGT, LLE, and LLT can
be used to provide a more portable comparison of character entities.

(3) Character data, H edit descriptors, apostrophe edit descriptors, and comment
lines may include characters that are acceptable to one processor but
unacceptable to another processor.

(4) No explicit requirements are specified for file names. A file name that is
acceptable to one processor may be unacceptable to another processor.

(5) Input/output unit numbers and unit capabilities may vary among processors.

A4. Recommendation for Enhancing Portabilty

To enhance the development of portable FORTRAN programs, a producer should
provide some means of identifying nonstandard syntax supported by his processor.
Alternatives for doing this include appropriate documentation, features of the processor,
and other means.

ANSI X3.9-1978

B-1

APPENDIX B: SECTION NOTES

B1. Section 1 Notes

What this standard calls a "processor" is any mechanism that can carry out the actions of
a program. Commonly, this may be any of these:

(1) The combined actions of a computer (hardware), its operating system, a
compiler, and a loader

(2) An interpreter

(3) The mind of a human, perhaps with the help of paper and pencil

When you read this standard, it is important to keep its point of view in mind. The
standard is written from the point of view of a programmer using the language, and not
from the point of view of the implementation of a processor. This point of view affects
the way you should interpret the standard. For example, in 3.3 the assertion is made:

"... a statement must contain no more than 1320 characters."

This means that if a programmer writes a longer statement, his program is not standard
conforming. Therefore, it will get different treatment on different processors. Some
processors will accept the program, and some will not. Some may even seemingly accept
the program but process it incorrectly. The assertion means that all standard-conforming
processors must accept statements up to 1320 characters long. That is the only inference
about a standard-conforming processor that can be made from the assertion.

The assertion does not mean that a standard-conforming processor is prohibited from
accepting longer statements. Accepting longer statements would be an extension.

The assertion does not mean that a standard-conforming processor must diagnose
statements longer than 1320 characters, although it may do so.

In general, a standard-conforming processor is one that accepts all standard-conforming
programs and processes them according to the rules of this standard. Thus, the
specification of a standard-conforming processor must be inferred from this document.

In some places, explicit prohibitions or restrictions are stated, such as the above
statement-length restriction. Such assertions restrict what programmers can write in
standard-conforming programs and have no more weight in the standard than an omitted

ANSI X3.9-1978

B-2

feature. For example, there is no mention anywhere in the standard of double precision
integers. Because it is omitted, programmers must not use this feature in standard-
conforming programs. A standard-conforming processor may or may not provide it or
diagnose its use. Thus, an explicit prohibition (such as statements longer than 1320
characters) and an omission (such as double precision integers) are equivalent in this
standard.

B2. Section 2 Notes

Some of the terminology used in this document is different from that used to describe
other programming languages. The following indicates terms from other languages that
are approximately equivalent to some FORTRAN terms.

FORTRAN Other Languages
Variable Simple Variable
Array Element Subscripted Variable
Subscript Expression Subscript
Subscript (none)
Dummy Argument Formal Argument, Formal Parameter
Actual Argument Actual Parameter

In particular, the FORTRAN terms "subscript" and "subscript expression" should be
studied carefully by readers who are unfamiliar with this standard (5.4).

The term "symbolic name" is frequently shortened to "name" throughout the standard.

B3. Section 3 Notes

A partial collating sequence is specified. If possible, a processor should use the American
National Standard Code for Information Interchange, ANSI X3.4-1977 (ASCII),
sequence for the complete FORTRAN character set.

When a continuation line follows a comment line, the continuation line is part of the
current statement; it is not a continuation of the comment line. A comment line is not part
of a statement.

The standard does not restrict the number of consecutive comment lines. The limit of 19
continuation lines permitted for a statement should not be construed as being a limitation
on the number of consecutive comment lines.

ANSI X3.9-1978

B-3

There are 99999 unique statement labels and a processor must accept 99999 as a
statement label. However, a processor may have an implementation limit on the total
number of unique statement labels in one program unit (3.4).

Blanks and leading zeros are not significant in distinguishing between statement labels.
For example, 123, 1 23, and 0123 are all forms of the same statement label.

B4. Section 4 Notes

A processor must not consider a negative zero to be different from a positive zero.

ANSI X3.9-1966 used the term "constant" to mean an unsigned constant. This standard
uses the term "constant" to have its more normal meaning of an optionally signed
constant when describing arithmetic constants. The term "unsigned constant" is used
wherever a leading sign is not permitted on an arithmetic constant.

A character constant is a representation of a character value. The delimiting apostrophes
are part of the representation but not part of the value; double apostrophes are used to
represent a single embedded apostrophe. For example:

Character
Constant

Character
Value

'CAT' CAT
'ISN''T' ISN'T

'''ISN''''T''' 'ISN''T'

Note that the value of the character constant '''ISN''''T''' is a representation of another
character constant.

Some programs that used an extension to ANSI X3.9-1966 that permitted a Hollerith
constant delimited by apostrophes instead of the nH form do not conform to this standard.

B5. Section 5 Notes

For the array declarator A(2,3), the use of the array name A in the proper context, such as
in an input/output list, specifies the following order for the array elements: A(1,1),
A(2,1), A(1,2), A(2,2), A(1,3), A(2,3).

B6. Section 6 Notes

ANSI X3.9-1978

B-4

If V is a variable name, the interpretation and value of V, +V, and (V) are the same.
However, the three forms may not always be used interchangeably. For example, the
forms +V and (V) may not be used as list items of a READ statement or as actual
arguments of a procedure reference if the procedure defines the corresponding dummy
argument.

B7. Section 7 Notes

Although DIMENSION statements, type-statements, and statement function statements
are classified as nonexecutable statements, they may contain references that are executed.
Expressions containing variables in DIMENSION statements and type-statements may be
evaluated whenever a reference to the program unit is executed. The expression in a
statement function statement is evaluated whenever a function reference to the statement
function is executed.

B8. Section 8 Notes

If a processor allows a one-dimensional subscript for a multidimensional array in an
EQUIVALENCE statement, the interpretation should be as though the subscript
expression were the leftmost one and the missing subscript expressions each have their
respective lower dimension bound value.

ANSI X3.9-1966 permitted two- and three-dimensional arrays to have a one-dimensional
subscript in an EQUIVALENCE statement. The following table can be used to convert a
one-dimensional subscript to the corresponding multidimensional subscript:

n Dimension Subscript
Value

Subscript

1 (d1) s (s)
2 (d1,d2) s (1+MOD(s-1,d1),

1+(s-1)/d1
3 (d1,d2,d3) s (1+MOD(s-1,d1),

 1+MOD((s-1)/d1,d2),
 1+(s-1)/(d1*d2))

Each expression in the last column of the table is evaluated according to the rules for
integer expressions.

A processor that allows additional intrinsic functions should allow their names to appear
in an INTRINSIC statement.

ANSI X3.9-1978

B-5

As an extension to ANSI X3.9-1966, many processors permitted the retention of certain
values at the completion of execution of a subprogram, such as local variables and arrays,
initially defined data that had been changed, and named common blocks not specified in
the main program, whereas other processors prohibited the retention of such values. In
ANSI X3.9-1966 such entities were undefined at the completion of execution of the
subprogram, and therefore a standard-conforming program could not retain these values.
The SAVE statement provides a facility for data retention.

B9. Section 9 Notes

An entity is "initially defined" only by a DATA statement. An assignment statement may
define or redefine an entity but it does not "initially define" the entity.

Initially defined entities in a subprogram may become undefined at the execution of a
RETURN or END statement if they are assigned any value, including their initial value,
during the execution of the executable program (see 8.9 and 15.8.4).

B10. Section 10 Notes

All four types of implied arithmetic conversion are permitted in an arithmetic assignment
statement.

B11. Section 11 Notes

A logical IF statement must not contain another logical IF statement or a block IF
statement; however, it may contain an arithmetic IF statement. The following is allowed:

IF (logical expr.) IF (arithmetic expr.) s 1, s 2, s 3

A processor is not required to evaluate the iteration count in a DO-loop if the same effect
is achieved without evaluation. However, the processor must allow redefinition of
variables and array elements that appear after the equals in a DO statement during the
execution of the DO-loop without affecting the number of times the DO-loop is executed
and without affecting the value by which the DO-variable is incremented.

If J1 > J2, ANSI X3.9-1966 does not allow execution of the following DO statement:

DO 100 J=J1,J2

ANSI X3.9-1978

B-6

Some processors that allowed such a case executed the range of the DO-loop once,
whereas other processors did not execute the range of the DO-loop. This standard allows
such a case and requires that the processor execute the range of the DO-loop zero times.
The following change to the DO statement will require that the processor execute the
range at least once:

DO 100 J=J1,MAX(J1,J2)

References to function procedures and subroutine procedures may appear within the
range of a DO-loop or within an IF-block, ELSE IF-block, or ELSE-block. Execution of
a function reference or a CALL statement is not considered a transfer of control in the
program unit that contains the reference, except when control is returned to a statement
identified by an alternate return specifier in a CALL statement. Execution of a RETURN
or END statement in a referenced procedure, or execution of a transfer of control within a
referenced procedure, is not considered a transfer of control in the program unit that
contains the reference.

The CONTINUE statement is an executable statement that has no effect of itself. It can
serve as an executable statement on which to place a statement label when no effect of
execution is desired. For example, it can serve as the statement referred to by a GO TO
statement or as the terminal statement of a DO-loop. Although the CONTINUE statement
has no effect of itself, it causes execution to continue with incrementation processing
when it is the terminal statement of a DO-loop.

The standard does not define the term "accessible" in the STOP or PAUSE statement in
order to allow a wide latitude in adapting to a processor environment. Some processors
may use the n the PAUSE or STOP statement for documentation only. Other processors
may display the n to the user or to the operator. In order not to confine its use, the
meaning of "accessible" is purposely left vague.

B12. Section 12 Notes

What is called a "record" in FORTRAN is commonly called a "logical record." There is
no concept in FORTRAN of a "physical record."

An endfile record does not necessarily have any physical embodiment. The processor
may use a record count or other means to register the position of the file at the time an
ENDFILE statement is executed, so that it can take appropriate action when that position
is again reached during a read operation. The endfile record, however it is implemented,
is considered to exist for the BACKSPACE statement.

ANSI X3.9-1978

B-7

An internal file permits data to be transferred with conversion between internal storage
areas using the READ and WRITE statements. This facility was implemented as an
extension to ANSI X3.9-1966 on many processors as ENCODE and DECODE
statements. Specifying the READ and WRITE statements to perform this process avoids
such confusion as: "Is ENCODE like READ or is it like WRITE?"

This standard accommodates, but it does not require, file cataloging. To do this, several
concepts are introduced.

In ANSI X3.9-1966 many properties were given to a unit that in this standard are given to
the connection of a file to a unit. Also, additional properties are introduced.

Before any input/output can be performed on a file, it must be connected to a unit. The
unit then serves as a designator for that file as long as it is connected. To be connected
does not imply that "buffers" have or have not been allocated, that "file-control tables"
have or have not been filled out, or that any other method of implementation has been
used. Connection means that (barring some other fault) a READ or WRITE statement can
be executed on the unit, hence on the file. Without a connection, a READ or WRITE
statement cannot be executed.

Totally independent of the connection state is the property of existence, this being a file
property. The processor "knows" of a set of files that exist at a given time for a given
executable program. This set would include tapes ready to read, files in a catalog, a
keyboard, a printer, etc. The set may exclude files inaccessible to the executable program
because of security, because they are already in use by another executable program, etc.
This standard does not specify which files exist, hence wide latitude is available to a
processor to implement security, locks, privilege techniques, etc. Existence is a
convenient concept to designate all of the files that an executable program can potentially
process.

All four combinations of connection and existence may occur:

Connect Exist Examples
Yes Yes A card reader loaded and

ready to be read
Yes No A printer before the first

line is written
No Yes A file named 'JOE' in

the catalog
No No A reel of tape destroyed

in the fire last week

Means are provided to create, delete, connect, and disconnect files.

ANSI X3.9-1978

B-8

A file may have a name. The form of a file name is not specified. If a system does not
have some form of cataloging or tape labeling for at least some of its files, all file names
will disappear at the termination of execution. This is a valid implementation. Nowhere
does this standard require names to survive for any period of time longer than the
execution time span of an executable program. Therefore, this standard does not impose
cataloging as a prerequisite. The naming feature is intended to allow use of a cataloging
system where one exists.

A file may become connected to a unit in either of two ways: preconnection or execution
of an OPEN statement. Preconnection is performed prior to the beginning of execution of
an executable program by means external to FORTRAN. For example, it may be done by
job control action or by processor established defaults. Execution of an OPEN statement
is not required to access preconnected files.

The OPEN statement provides a means to access existing files that are not preconnected.
An OPEN statement may be used in either of two ways: with a file name (open by name)
and without a file name (open by unit). A unit is given in either case. Open by name
connects the specified file to the specified unit. Open by unit connects a processor-
determined default file to the specified unit. (The default file may or may not have a
name.)

Therefore, there are three ways a file may become connected and hence processed:
preconnection, open by name, and open by unit. Once a file is connected, there is no
means in standard FORTRAN to determine how it became connected.

In subset FORTRAN, sequential access may be performed only on preconnected files,
and direct access only on files that are opened by unit.

An OPEN statement may also be used to create a new file. In fact, any of the foregoing
three connection methods may be performed on a file that does not exist. When a unit is
preconnected, writing the first record creates the file. With the other two methods,
execution of the OPEN statement creates the file.

When a unit becomes connected to a file, either by execution of an OPEN statement or by
preconnection, the following connection properties may be established:

(1) An access method, which is sequential or direct, is established for the
connection.

(2) A form, which is formatted or unformatted, is established for a connection to
a file that exists or is created by the connection. For a connection that results
from execution of an OPEN statement, a default form (which depends on the

ANSI X3.9-1978

B-9

access method, as described in 12.10.1) is established if no form is specified.
For a preconnected file that exists, a form is established by preconnection.
For a preconnected file that does not exist, a form may be established, or the
establishment of a form may be delayed until the file is created (for example,
by execution of a formatted or unformatted WRITE statement).

(3) A record length may be established. If the access method is direct, the
connection establishes a record length, which specifies the length of each
record of the file. A connection for sequential access does not have this
property.

(4) A blank significance property, which is ZERO or NULL, is established for a
connection for which the form is formatted. This property has no effect on
output. For a connection that results from execution of an OPEN statement,
the blank significance property is NULL by default if no blank significance
property is specified. For a preconnected file, the property is established by
preconnection.

The blank significance property of the connection is effective at the
beginning of each formatted input statement. During execution of the
statement, any BN or BZ edit descriptors encountered may temporarily
change the effect of embedded and trailing blanks.

A processor has wide latitude in adapting these concepts and actions to its own cataloging
and job control conventions. Some processors may require job control action to specify
the set of files that exist or that will be created by an executable program. Some
processors may require no job control action prior to execution. This standard enables
processors to perform a dynamic open, close, and file creation, but it does not require
such capabilities of the processor.

The meaning of "open" in contexts other than FORTRAN may include such things as
mounting a tape, console messages, spooling, label checking, security checking, etc.
These actions may occur upon job control action external to FORTRAN, upon execution
of an OPEN statement, or upon execution of the first read or write of the file. The OPEN
statement describes properties of the connection to the file and may or may not cause
physical activities to take place. It is a place for an implementation to define properties of
a file beyond those required in standard FORTRAN.

Similarly, the actions of dismounting a tape, protection, etc. of a "close" may be implicit
at the end of a run. The CLOSE statement may or may not cause such actions to occur.
This is another place to extend file properties beyond those of standard FORTRAN. Note,
however, that the execution of a CLOSE statement on unit 10 followed by an OPEN
statement on the same unit to the same file or to a different file is a permissible sequence

ANSI X3.9-1978

B-10

of events. The processor may not deny this sequence solely because the implementation
chooses to do the physical act of closing the file at the termination of execution of the
program.

This standard does not address problems of security, protection, locking, and many other
concepts that may be part of the concept of "right of access." Such concepts are
considered to be in the province of an operating system. The OPEN and INQUIRE
statements can be extended naturally to consider these things.

Possible access methods for a file are: sequential and direct. The processor may
implement two different types of files, each with its own access method. It may also
implement one type of file with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-length
records. The key is a positive integer.

Keyword forms of specifiers are used because there are many specifiers and a positional
notation is difficult to remember. The keyword form sets a style for processor extensions.
The UNIT= and FMT= keywords are offered for completeness, but their use is optional.
Thus, compatibility with ANSI X3.9-1966 is achieved.

Format specifications may be included in READ and WRITE statements, as in:

READ (UNIT=10, FMT='(I3,A4,F10.2)') K,ALPH,X

ANSI X3.9-1966 allowed a standard-conforming program to write an endfile record but
did not allow the reading of an endfile record. In this standard, the END= specifier allows
end-of-file detection and continuation of execution of the program.

List-directed input/output allows data editing according to the type of the list item instead
of by a format specifier. It also allows data to be free-field, that is, separated by commas
or blanks.

List-directed input/output is record oriented to or from a formatted sequential file. Each
read or write begins with a new record. The form of list-directed data on a sequential
output file is not necessarily suitable for list-directed input. However, there are no
mandatory errors specified for reading list-directed data previously written. The results
may not be guaranteed because of the syntax using apostrophes for character data or the
r*c form of a repeated constant. All other applications should work, and attempting to
read previously written list-directed output is not prohibited in a standard-conforming
program.

ANSI X3.9-1978

B-11

If no list items are specified in a list-directed input/output statement, one input record is
skipped or one empty output record is written.

An example of a restriction on input/output statements (12.12) is that an input statement
may not specify that data are to be read from a printer.

B13. Section 13 Notes

The term "edit descriptor" in this standard was "field descriptor" in ANSI X3.9-1966.

If a character constant is used as a format identifier in an input/output statement, care
must be taken that the value of the character constant is a valid format specification. In
particular, if the format specification contains an apostrophe edit descriptor, two
apostrophes must be written to delimit the apostrophe edit descriptor and four
apostrophes must be written for each apostrophe that occurs within the apostrophe edit
descriptor. For example, the text:

2 ISN'T 3

may be written by various combinations of output statements and format specifications:

 WRITE(6,100) 2,3
 100 FORMAT(1X,I1,1X,'ISN''T',1X,I1)

 WRITE(6,'(1X,I1,1X,''ISN''''T'',1X,I1)') 2,3

 WRITE(6,200) 2,3
 200 FORMAT(1X,I1,1X,5HISN'T,1X,I1)

 WRITE(6,'(1X,I1,1X,5HISN''T,1X,I1)') 2,3

 WRITE(6,'(A)') ' 2 ISN''T 3'

 WRITE(6,'(1X,I1,A,I1)') 2, ' ISN''T ', 3

Note that two consecutive apostrophes in an H edit descriptor within a character constant
are counted as only one Hollerith character.

The T edit descriptor includes the carriage control character in lines that are to be printed.
T1 specifies the carriage control character, and T2 specifies the first character that is
printed.

ANSI X3.9-1978

B-12

The length of a record is not always specified exactly and may be processor dependent.

The number of records read by a formatted input statement can be determined from the
following rule: A record is read at the beginning of the format scan (even if the input list
is empty), at each slash edit descriptor encountered in the format, and when a format
rescan occurs at the end of the format.

The number of records written by a formatted output statement can be determined from
the following rule: A record is written when a slash edit descriptor is encountered in the
format, when a format rescan occurs at the end of the format, and at completion of
execution of the output statement (even if the output list is empty). Thus, the occurrence
of n successive slashes between two other edit descriptors causes n - 1 blank lines if the
records are printed. The occurrence of n slashes at the beginning or end of a complete
format specification causes n blank lines if the records are printed. However, a complete
format specification containing n slashes (n ≥ 0) and no other edit descriptors causes n +
1 blank lines if the records are printed. For example, the statements

 PRINT 3
 3 FORMAT(/)

will write two records that cause two blank lines if the records are printed.

The following examples illustrate list-directed input. A blank character is represented by
b.

Example 1:

Program:

 J=3
 READ *,I
 READ *,J

Sequential input file:

record 1: b1b,4bbbbb
record 2: ,2bbbbbbbb

Result: I=1,

Explanation: The second READ statement reads the second record. The initial comma in
the record designates a null value; therefore, J is not redefined.

ANSI X3.9-1978

B-13

Example 2:

Program:

 CHARACTER A*8, B*1
 READ *, A, B

Sequential input file:

record 1: 'bbbbbbbb'
record 2: 'QXY'b'Z'

Result: A='bbbbbbbb', B='Q'

Explanation: The end of a record cannot occur between two apostrophes representing an
embedded apostrophe in a character constant; therefore, A is set to the character constant
'bbbbbbbb'. The end of a record acts as a blank, which in this case is a value separator
because it occurs between two constants.

B14. Section 14 Notes

The name of a main program has no explicit use within the FORTRAN language. It is
available for documentation and for possible use within a computer environment.

B15. Section 15 Notes

A FUNCTION statement specifies the name of an external function, and each ENTRY
statement in a function subprogram specifies an additional external function name. A
SUBROUTINE statement specifies the name of a subroutine, and each ENTRY statement
in a subroutine subprogram specifies an additional subroutine name.

The intrinsic function names IFIX, IDINT, FLOAT, and SNGL have been retained to
support programs that conform to ANSI X3.9-1966. However, future use of these
intrinsic function names is not recommended.

For the specific functions that define the maximum and minimum values with a function
type different from the argument type (AMAX0, MAX1, AMIN0, and MIN1), it is
recommended that an expression containing the generic name preceded by a type
conversion function be used, for example, REAL(MAX(a1, a2,...)) for AMAX0(a1, a2,...),
so that these specific function names may be deleted in a future revision of this standard.

ANSI X3.9-1978

B-14

This standard provides that a standard-conforming processor may supply intrinsic
functions in addition to those defined in Table 5 (15.10). Because of this, care must be
taken when a program is used on more than one processor because a function name not in
Table 5 may be classified as an external function name on one processor and as an
intrinsic function name on another processor in the absence of a declaration for that name
in an EXTERNAL or INTRINSIC statement.

To guard against this possibility, it is suggested that any external functions referenced in
a program should appear in an EXTERNAL statement in every program unit in which a
reference to that function appears. If a program unit references a processor-supplied
intrinsic function that does not appear in Table 5, the name of the function should appear
in an INTRINSIC statement in the program unit.

The distinction between external functions (user defined) and intrinsic functions
(processor defined) may be clarified by the following table:

ANSI X3.9-1978

B-15

Different Processor Definitions
(Table 5 Extended)

Processor 1 Processor 2 Processor 3
Different User
Specifications

Intrinsic
Integer
FROG

Intrinsic
Complex
FROG

(none)

Y = FROG(A) Intrinsic
Integer
FROG

Intrinsic
Complex
FROG

External
Real
FROG

INTRINSIC FROG
Y = FROG(A)

Intrinsic
Integer
FROG

Intrinsic
Complex
FROG

Undefined

INTEGER FROG
Y = FROG(A)

Intrinsic
Integer
FROG

Undefined
External
Integer
FROG

INTRINSIC FROG
INTEGER FROG
Y = FROG(A)

Intrinsic
Integer
FROG

Undefined Undefined

EXTERNAL FROG
Y = FROG(A)

External
Real
FROG

External
Real
FROG

External
Real
FROG

EXTERNAL FROG
INTEGER FROG
Y = FROG(A)

External
Integer
FROG

External
Integer
FROG

External
Integer
FROG

If a generic name is the same as the specific name of an intrinsic function for a specified
type of argument, a reference to the function with an argument of that type may be
considered to be either a specific or generic function reference.

The use of the concatenation operator with operands of nonconstant length has been
restricted to the assignment statement so that a processor need not implement dynamic
storage allocation.

When a character array is an actual argument, the array is considered to be one string of
characters and there need not be correspondence between the actual array elements and
the dummy array elements. Only subset FORTRAN requires such correspondence.

The intrinsic functions ICHAR and CHAR provide a means of converting between a
character and an integer, based on the position of the character in the processor collating
sequence. The first character in the collating sequence corresponds to position 0 and the
last to position n - 1, where n is the number of characters in the collating sequence.

ANSI X3.9-1978

B-16

Many processors provide a collating sequence that is the same as the ordering of the
internal representation of the character (where the internal representation may be
regarded as either a representation of a character or of some integer). For example, for a
seven-bit character, the internal representation of the first character is '0000000' binary (0
decimal) and the last character is '1111111' binary (127 decimal). For such a processor,
ICHAR returns the value of an internal character representation, considered as an integer.
CHAR takes an appropriate small integer and returns the character having the same
internal representation.

B16. Section 16 Notes

The name of a block data subprogram has no explicit use within the FORTRAN
language. It is available for documentation and for possible use within a computer
environment.

B17. Section 17 Notes

The size of an array is the number of elements (5.2.3), but the storage sequence of the
array also has a size, which may be different from the number of elements (17.1.1).

The definition of character entities occurs on a character-by-character basis. The use of
substrings or partially associated entities permits individual characters or groups of
characters within an entity to become defined or undefined.

B18. Section 18 Notes

There is no explicit means for declaring an entity to be a variable. An entity becomes a
variable if it is used in a manner that does not cause it to be exclusively something else.
Note that the name of a variable may also be the name of a common block, except when
the name of the variable is also the name of a function.

ANSI X3.9-1978

C-1

APPENDIX C: HOLLERITH

The character data type was added to provide a character data processing capability that
is superior to the Hollerith data capability that existed in ANSI X3.9-1966.

The Hollerith data type has been deleted. For processors that extend the standard by
allowing Hollerith data, the following rules for programs are recommended:

C1. Hollerith Data Type

Hollerith is a data type; however, a symbolic name must not be of type Hollerith.
Hollerith data, other than constants, are identified under the guise of a name of type
integer, real, or logical. They must not be identified under the guise of type character. No
recommendation is made regarding Hollerith under the guise of double precision or
complex.

A Hollerith datum is a string of characters. The string may consist of any characters
capable of representation in the processor. The blank character is significant in a
Hollerith datum. Hollerith data may have an internal representation that is different from
that of other data types.

An entity of type integer, real, or logical may be defined with a Hollerith value by means
of a DATA statement (C4) or READ statement (C6). When an entity is defined with a
Hollerith value, its totally associated entities are also defined with that Hollerith value.
When an entity of type integer, real, or logical is defined with a Hollerith value, the entity
and its associates become undefined for use as an integer, real, or logical datum.

C2. Hollerith Constant

The form of a Hollerith constant is a nonzero, unsigned, integer constant n followed by
the letter H, followed by a string of exactly n contiguous characters. The string may
consist of any characters capable of representation in the processor. The string of n
characters is the Hollerith datum.

In a Hollerith constant, blanks are significant only in the n characters following the letter
H.

C3. Restrictions on Hollerith Constants

ANSI X3.9-1978

C-2

A Hollerith constant may appear only in a DATA statement and in the argument list of a
CALL statement.

C4. Hollerith Constant in a DATA Statement

An integer, real, or logical entity may be initially defined with a Hollerith datum by a
DATA statement.

A Hollerith constant may appear in the list clist, and the corresponding entity in the list
nlist may be of type integer, real, or logical.

For an entity of type integer, real, or logical, the number of characters n in the
corresponding Hollerith constant must be less than or equal to g, where g is the maximum
number of characters that can be stored in a single numeric storage unit at one time. If n
is less than g, the entity is initially defined with the n Hollerith characters extended on the
right with g-n blank characters.

Note that each Hollerith constant initially defines exactly one variable or array element.
Also note that g is processor dependent.

C5. Hollerith Format Specification

A format specification may be an array name of type integer, real, or logical.

The leftmost characters of the specified entity must contain Hollerith data that constitute
a format specification when the statement is executed.

The format specification must be of the form described in 13.2. It must begin with a left
parenthesis and must end with a right parenthesis. Data may follow the right parenthesis
that ends the format specification and have no effect. Blank characters may precede the
format specification.

A Hollerith format specification must not contain an apostrophe edit descriptor or an H
edit descriptor.

C6. A Editing of Hollerith Data

The Aw edit descriptor may be used with Hollerith data when the input/output list item is
of type integer, real, or logical. On input, the input list item will become defined with
Hollerith data. On output, the list item must be defined with Hollerith data.

ANSI X3.9-1978

C-3

Editing is as described for Aw editing of character data except that len is the maximum
number of characters that can be stored in a single numeric storage unit.

ANSI X3.9-1978

C-4

C7. Hollerith Constant in a Subroutine Reference

An actual argument in a subroutine reference may be a Hollerith constant. The
corresponding dummy argument must be of type integer, real, or logical. Note that this is
an exception to the rule that requires that the type of the actual and dummy argument
must agree.

ANSI X3.9-1978

D-1

APPENDIX D: SUBSET OVERVIEW

This Appendix provides an overview of the two levels of FORTRAN specified in this
standard, including the general criteria used for including or excluding a feature at a
given level, and a section-by-section summary of the principal differences between the
full language and the subset.

D1. Background

The full FORTRAN language described in this document is a superset of the FORTRAN
language described in ANSI X3.9-1966, with the exceptions previously noted. In
formulating a subset philosophy, the following existing FORTRAN standards were
considered:

(1) American National Standard FORTRAN, ANSI X3.9-1966

(2) American National Standard Basic FORTRAN, ANSI X3.10-1966

(3) International Standard Programming Language FORTRAN, ISO R1539

The ISO R1539 document describes three levels: basic, intermediate, and full. The ISO
R1539 basic level corresponds closely with ANSI X3.10-1966; the ISO R1539 full level
corresponds closely with ANSI X3.9-1966; and the ISO R1539 intermediate level is in
between.

It was thought that the ISO R1539 basic level and the ANSI X3.10-1966 had not been
sufficiently used, even on small computer systems, to warrant a subset corresponding to
that level.

The ISO R1539 intermediate level has been sufficiently used to warrant a subset of
similar capability.

However, it was also thought that some of the capabilities in the full language described
here, but not part of any current standard or recommendation, are so important for the
general use of the language that they should be present in the subset, at least to some
degree.

Furthermore, it was thought that the specification of ANSI X3.10-1966 in such a manner
that it is not a subset of ANSI X3.9-1966 was inconsistent with the primary goal of
promoting program interchange. Consequently, careful attention has been given to
ensuring that a program that conforms to the subset of this standard will also conform to
the full language.

ANSI X3.9-1978

D-2

D2. Criteria

The criteria in D2.1 and D2.2 were adopted for the two levels of FORTRAN within this
standard.

D2.1 Full Language

The most notable new elements of the full language that have been included at both
levels are: character data type, mixed-type arithmetic, INTRINSIC statement, SAVE
statement, and direct access I/O statements.

D2.2 Subset Language

(1) The subset must be a proper subset of the full language.

(2) The subset must be based on ISO R1539 intermediate level FORTRAN.

(3) The subset must include, at a fundamental level, those features of the full
language that significantly increase the scope of the language.

(4) The elements of the subset must make a minimum demand on storage
requirements, particularly during execution.

(5) The subset must require a minimum of effort for the development and
maintenance of a viable FORTRAN processor.

D3. Summary of Subset Differences

This section summarizes the differences between the full language and the subset in this
standard. It is organized primarily on the basis of the standard itself. The differences are
discussed under the section where each language element is primarily presented. Of
course, a difference in one section may cause changes in other sections. Such changes are
not noted here.

An exception to the above practice is the subsetting of the character data type. The
description of character data type and its usage is so distributed throughout the standard
that a more meaningful summary is produced by collecting the relevant items into a
single
presentation.

ANSI X3.9-1978

D-3

D3.1 Section 1: Introduction

The subset is the same as the full language (see also D4).

D3.2 Section 2: FORTRAN Terms and Concepts

The subset is the same as the full language.

D3.3 Section 3: Characters, Lines, and Execution Sequence

The subset is the same as the full language except that:

(1) The character set does not include the currency symbol ($) or the colon (:).

(2) Statements may have up to nine continuation lines.

(3) DATA statements must follow all specification statements and precede all
statement function statements and executable statements.

(4) A comment line must not precede a continuation line.

D3.4 Section 4: Data Types and Constants

The subset is the same as the full language except that double precision and complex data
types are not included. Note that each entity of type character must have a constant
length.

D3.5 Section 5: Arrays and Substrings

The subset is the same as the full language except that:

(1) An array declarator must not have an explicit lower bound.

(2) A dimension declarator must be either an integer constant or an integer
variable. (This excludes integer expressions, but allows a variable in
common.)

(3) An array may have up to three dimensions.

ANSI X3.9-1978

D-4

(4) A subscript expression may be an expression containing only integer
variables and constants. (This excludes function and array element
references.)

ANSI X3.9-1978

D-5

D3.6 Section 6: Expressions

The subset is the same as the full language except that a constant expression is allowed
only where a general expression is allowed, the logical operators .EQV. and .NEQV. are
not included, and there are restrictions on character expressions as described in D3.19.

D3.7 Section 7: Executable and Nonexecutable Statement Classification

The classification of a statement in the subset is the same as in the full language.
However, the subset does not include PRINT, CLOSE, INQUIRE, ENTRY, BLOCK
DATA, PARAMETER, DOUBLE PRECISION, and COMPLEX statements.

D3.8 Section 8: Specification Statements

The subset is the same as the full language except that:

(1) The PARAMETER statement is not included.

(2) Only the names of common blocks (enclosed in slashes) may appear in the
list of a SAVE statement. The form of the SAVE statement without a list is
not included.

D3.9 Section 9: DATA Statement

The subset is the same as the full language except that:

(1) Only names of variables, arrays, and array elements are allowed in the list
nlist. Implied-DO lists are not included.

(2) Values in the list clist must agree in type with the corresponding item in the
list nlist. type conversion is not included.

Note that DATA statements must follow all specification statements and precede all
statement function statements and executable statements.

D3.10 Section 10: Assignment Statements

The subset is the same as the full language except for restrictions on character type
presented in D3.19.

ANSI X3.9-1978

D-6

D3.11 Section 11: Control Statements

The subset is the same as the full language except that:

(1) A DO-variable must be an integer variable and DO parameters must be
integer constants or integer variables.

(2) In a computed GO TO statement, the index expression must be an integer
variable.

D3.12 Section 12: Input/Output Statements

The subset is the same as the full language except that:

(1) The CLOSE statement is not included.

(2) The INQUIRE statement is not included.

(3) List-directed READ and WRITE statements are not included.

(4) An internal file identifier must be a character variable or character array
element.

(5) Formatted direct access files and statements are not included.

(6) External unit identifiers must be an integer constant or integer variable.

(7) A format identifier must be the label of a FORMAT statement, an integer
variable that has been assigned the label of a FORMAT statement, or a
character constant.

(8) The UNIT= and FMT= forms of unit and format specifiers are not included.

(9) The ERR= specifier is not included.

(10) The forms READ f [,iolist] and PRINT f [,iolist] are not included.

(11) In input/output lists, the implied-DO parameters must be integer constants
and variables. Implied-DO-variables must be of type integer.

ANSI X3.9-1978

D-7

(12) Variable names, array element names, and array names may appear as
input/output list items; constants, character substring references, and general
expressions are not included.

(13) A limited form of OPEN statement is included with the following olist
specifiers required, and no others are allowed:

(a) An integer constant unit identifier

(b) The keyword specifier ACCESS= 'DIRECT'

(c) The record length specifier RECL= rl, where rl is an integer constant

The OPEN statement is included in the subset only to the extent needed to
connect a unit to a direct access unformatted file. Once a unit has been
connected to a direct access file, it may not be reconnected to any other file.

(14) Named files are not included.

D3.13 Section 13: Format Specification

The subset is the same as the full language except that:

(1) The following edit descriptors are not included:

Iw.m Tc S
Dw.d TLc SP
Gw.d TRc SS
Gw.dE

(3) At most three levels of parentheses are permitted.

(4) The format scan terminator (colon) is not included.

D3.14 Section 14: Main Program

The subset is the same as the full language.

D3.15 Section 15: Functions and Subroutines

The subset is the same as the full language except that the following are not included:

ANSI X3.9-1978

D-8

(1) The ENTRY statement

(2) Alternate return specifier

(3) Generic function references

(4) Intrinsic functions involving arguments or results of type double precision or
complex

Other exclusions are presented in D3.19, most notably an asterisk character length
specifier, character functions, the intrinsic functions LEN, CHAR, and INDEX, and
partial association.

D3.16 Section 16: Block Data Subprogram

Block data subprograms are not included in the subset.

D3.17 Section 17: Association and Definition

The subset is the same as the full language except that the concept of partial association
does not apply to the subset.

D3.18 Section 18: Scope and Classes of Symbolic Names

The subset is the same as the full language.

D3.19 Section 1 to 18: Character Type

The primary intent of the subset character facility is to provide a minimal character
capability that is functionally comparable to what is possible with most extensions of
Hollerith data.

D3.19.1 Character Features in the Subset.

The subset includes the following character data type features:

(1) Character constants, variables, and arrays, but not character functions

(2) CHARACTER and IMPLICIT statements for declaring character entities
and their lengths; a length specification must be an integer constant (not an
asterisk)

ANSI X3.9-1978

D-9

(3) Character assignment statements in which the right-hand side is a variable,
array element, or constant

(4) Character relational expressions in which the operands are variables, array
elements, or constants

(5) Initialization of character variables, arrays, and array elements in a DATA
statement

(6) Character variables, arrays, and array elements in output lists

(7) Character variables, arrays, array elements, and constants as arguments in
subprogram references

(8) Character constants (but not variables or array elements) as a format
specification

(9) Total, but not partial, association of character entities (that is, association of
character entities only of the same length by means of COMMON and
EQUIVALENCE statements or by argument association)

(10) Input/output of character data, both formatted (using character edit
descriptors) and unformatted

D3.19.2 Character Features Not in the Subset.

The subset does not include the following character data type features:

(1) Substring reference and definition

(2) Concatenation operator

(3) Use of character variables or array elements as format specifications

(4) Partial association of character entities

(5) Character functions

(6) The intrinsic functions LEN, CHAR, and INDEX

(7) Character length specification consisting of an asterisk or any expression
other than a constant

ANSI X3.9-1978

D-10

D4. Subset Conformance

Conformance at the subset level of this standard involves requirements that relate to the
full language for both processors and programs.

ANSI X3.9-1978

D-11

D4.1 Subset Processor Conformance

A standard-conforming subset processor may include an extension to the subset language
that has an interpretation in the full language only if the processor provides the
interpretation described for the full language. That is, a standard-conforming subset
processor may not provide an extension that conflicts with the full language. Extensions
that do not have forms and interpretations in the full language are not precluded by this
requirement.

As an example, a standard-conforming subset processor may provide a double precision
data type provided that the requirements for double precision are fulfilled.

D4.2 Subset Program Performance

A program that conforms to the subset level of this standard must have the same
interpretation at both the subset level and the full language level. The principal
implication of this requirement concerns the use of function names that are identified as
specific or generic intrinsic function names at the full language level but which are not
available at the subset level. Examples of such names are DSIN, MIN, and CABS.

A subset-conforming program may not use such names as intrinsic functions because
these names are not defined as intrinsic functions in the subset language. Moreover, a
subset-conforming program may not use such names as external function names unless
such names are identified as external function names by appearing in an EXTERNAL
statement. If such names are not explicitly declared as external, the names would be
classified as external by a subset processor and as intrinsic by a full language processor.
Note that the burden of avoiding this situation rests on the program.

A subset-conforming processor is not required to recognize that a full language intrinsic
name is being used without being declared as external. In effect, the full set of names
described in Table 5 may be considered as reserved intrinsic function names in the subset
even though only a subset of those names is available for use.

ANSI X3.9-1978

E-1

APPENDIX E: FORTRAN STATEMENTS

Form Descriptive Heading
ASSIGN s TO i Statement Label Assignment

Statement

BACKSPACE u File Positioning Statements
BACKSPACE (alist)

BLOCK DATA [sub] BLOCK DATA Statement

CALL sub [([a [,a]...])] Subroutine Reference:
CALL Statement

CHARACTER [*len[,]] nam [,nam]... Character Type-Statement

CLOSE (cllist) CLOSE Statement

COMMON [/[cb]/]nlist[[,]/[cb]/nlist]... COMMON Statement

COMPLEX v [,v]... Complex Type-Statement

CONTINUE CONTINUE Statement

DATA nlist/clist/ [[,]nlist/clist/]... DATA Statement

DIMENSION a(d) [,a(d)]... DIMENSION Statement

DO s [,] i = e1, e2 [,e3] DO Statement

DOUBLE PRECISION v [,v]... Double Precision Type-Statement

ELSE ELSE Statement

ELSE IF (e) THEN ELSE IF Statement

END END Statement

END IF END IF Statement

ENDFILE u File Positioning Statements
ENDFILE (alist)

ENTRY en [([d [,d]...])] ENTRY Statement

ANSI X3.9-1978

E-2

Form Descriptive Heading
EQUIVALENCE (nlist) [,(nlist)]... EQUIVALENCE Statement

EXTERNAL proc, [,proc]... EXTERNAL Statement

FORMAT fs FORMAT Statement

fun ([d [,d]...]) = e Statement Function Statement

[typ] FUNCTION fun ([d [,d]...]) Function Statement

GO TO i [[,](s [,s],,,)] Assign GO TO Statement

GO TO s Unconditional GO TO Statement

GO TO (s, [,s]...)[,] i Computed GO TO Statement

IF (e) st Logical IF Statement

IF (e) s1, s2, s3 Arithmetic IF Statement

IF (e) THEN Block IF Statement

IMPLICIT typ (a [,s]...) [,typ (a [a]...)]... IMPLICIT Statement

INQUIRE (iflist) INQUIRE by File Statement

INQUIRE (iulist) INQUIRE by Unit Statement

INTEGER v [,v]... Integer Type-Statement

INTRINSIC fun [,fun]... INTRINSIC Statement

LOGICAL v [,v]... Logical Type-Statement

OPEN (olist) OPEN Statement

PARAMETER (p=e [,p=e]...) PARAMETER Statement

PAUSE [n] PAUSE Statement

PRINT f [,olist] Data Transfer Output Statement

PROGRAM pgm PROGRAM Statement

ANSI X3.9-1978

E-3

Form Descriptive Heading
READ (cilist) [iolist] Data Transfer Input Statement

READ f [,iolist] Data Transfer Input Statement

REAL v [,v]... Real Type-Statement

RETURN [c] RETURN Statement

REWIND u File Positioning Statements
REWIND (alist)

SAVE [a [,a]...] SAVE Statement

STOP [n] STOP Statement

SUBROUTINE sub [([d [,d]...])] Subroutine Subprogram and
SUBROUTINE Statement

v = e Arithmetic Assignment Statement

v = e Logical Assignment Statement

v = e Character Assignment Statement

WRITE (cilist) [iolist] Data Transfer Output Statement

