
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

Specification and Proof Techniques for Serializers

CARL E. HEWITT AND RUSSELL R. ATKINSON

Abstract-This paper presents a specification language, implementa-
tion mechanism, and proof techniques for problems involving the arbi-
tration of concurrent requests to shared protected resources whose
integrity must be preserved. This mechanism is the serializer, which
may be described as a kind of protection mechanism, in that it prevents
improper orders of access to a protected resource. Serializers are a
more structured form of the monitor mechanism of Brinch Hansen and
Hoare.

Serializers attempt to systematize and abstract desirable features of
synchronization control structure into a coherent language construct.
Serializers have better synchronization modularity than monitors in
several respects. Monitors synchronize requests by providing a pair
of operations for each request type (examples are STARTREAD/ENDREAD
and STARTWRITE/ENDWRITE for the readers-writers problems). Such a
pair of operations must be used in a certain order for the synchroniza-
tion to work properly, yet nothing in the monitor construct enforces
this use. Serializers incorporate this structural aspect of synchroniza-
tion in a unified mechanism to guarantee proper check-in and check-out
by encasing the resource inside the serializer. Thus a serializer for a
readers-writers problem provides only two entry points for external
users: READ(directions) and wRITE(directions) where the directions are
passed to the resource.
In scheduling access to a protected resource, it is often necessary

that a process wait for a certain condition before continuing execution.
Monitors require that a process waiting will remain dormant forever,
unless another process explicitly signals the dormant process that it
should continue. Serializers improve the modularity of synchroniza-
tion by providing that the condition for resuming execution must be
explicitly stated when a process waits, making it unnecessary for pro-
cesses to sigual other processes. That is, the serializer decides for each
process the conditions required for the further execution of the process.
The behavior of a serializer is defined axiomatically in terms of the

precedes relation among events using the actor message-passing model
of computation [11], [101, [161, [11. Different versions of the
"readers-writers" problems are used in this paper to mustrate how the
structure of a serializer corresponds in a natural way to the structure of
the specification of synchronization problems.
In this paper we present specification and proof techniques using

partial orders on computational events for dealing with problems
involving fairness, starvation, and guaranteed concurrency. Our tech-
niques represent a significant advance over previously developed tech-
niques using global states

Index Terms-Monitor, parallelism, program proving, readers-writers,
serializer, starvation, verification.

Manuscript received December 1, 1976; revised June 12, 1978. A
very preliminary version of this paper was presented at the ACM
SIGCOMM-SIGOPS Interface Workshop on Interprocess Communica-
tion in March 1975.
The authors are with the Artificial Intelligence Laboratory and the

Laboratory for Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139.

I. SCHEDULING ACCESS TO RESOURCES
W E SEE a need for the development of language con-

structs that are at least partially chosen for their prov-
ability. A language feature providing synchronization should
be designed to provide usable axioms about the possible orders
of events in a program. The language feature should guarantee
that conditions needed to prove properties of programs are
explicit in the axioms for the language feature.

Serializers have been designed to facilitate the proof that
schedulers implemented using them satisfy their specifications.
The specifications of a protected resource typically involve
stating both integrity and scheduling constraints. An integrity
specification typically takes the form of a consistency con-
straint. A typical example of an integrity specification might
be that the position and velocity of an airplane must be re-
corded for the same instant of time. A scheduling specification
typically takes the form of a constraint on the time order of
certain events. A typical example of a scheduling specification
is that if two requests to write in a data base are received in a
certain order then the first request received will be honored
before the other. We would like to be able to demonstrate
how implementing protected resources using serializers makes
it easier to prove that they satisfy their specifications. In par-
ticular, we would like to develop techniques for proving that
schedulers implemented using serializers guarantee a reply to
each request received. Guaranteeing that a reply will be sent
for every request received is a stronger and more useful prop-
erty than merely being free of deadly embrace, which is the
scheduling specification most extensively treated in the litera-
ture on synchronization.

II. SERIALI ZERS
A. Concept ofa Serializer

In this section we will describe an abstract mechanism called
a serializer for guaranteeing the integrity of a protected re-
source. The mechanism is an abstraction and encapsulation of
the method commonly used in operating systems. A detailed
analysis of the facilities needed will be used to motivate our
design decisions.
A serializer bears an analogy to the front desk of a hospital

in that only one person can check in or out at a time. The
front desk of a hospital serves to schedule the entrance and
exit of people in the hospital. Entering or leaving the hospital
is impossible without checking through the front desk. Vari-
ous waiting rooms are maintained for people who are waiting.

0098-5589/79/0100-0010$00.75 © 1979 IEEE

10

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

In addition records are maintained of where people are within
the hospital.

Serializers are modular in the sense that they can be con-
structed to encase the resource to be protected in such a way
that it can only be accessed by passing through the serializer.
A serializer should be constructed to surround the protected
resources in such a way that it is impossible to accidently avoid
passing through it when using the protected resources. We
shall avoid in this paper the issues involved with exactly how
one guarantees that a serializer has sole possession of a re-
source, or even if cooperating serializers might share access to
a resource. The reader may assume that every serializer we
deal with in this paper has sole access to the resources it
encases.
The diagram below shows a simple example of serializer

scheduling access to a protected resource p:

ENTRY

-I-
.........

I-GUARANTEE

I... . ..- JOINCROUD.

I..-I--+.. JOIN--------CI-
1.-I ESTABLISHED I...... V I

I...... .I
. .-- --- -l-----+..I +------------+l.l

.**v1-@-@@I............I
I. V ..I RESOURCE p I.I
I...................... I I.
I... +------------+- .

I..............I .
I... I LEAVE-CROWD1.I
I. I .I
l - - - - l - --+........EX TIl...............

I
+_________ I---------------------------__________+

V
Diagram of Berializer Enoaxing a Protetead omur

Each arrow in the above diagram is labeled with the kind of
computational event it represents. All of the events repre-
sented in the diagram are serialized in time. Each event repre-
sents an occurrence in which a process either (re)gains or
releases possession of the serializer. The fact that a process has
possession of the serializer is represented by executing in the
shaded region of the diagram. At most one process can have
possession at any one time.
A typical simple sequence of events occurring in the use of a

protected resource p begins with a SERIALIZER-REQUEST
event in which the serializer receives a message M which is
intended for the protected resource p. The request must even-
tually result in an ENTRY event which gains possession of the
serializer. A GUARANTEE event will cause a process to wait
until some condition is true before proceeding. Such a request
releases possession of the serializer. If execution of a process
continues after a GUARANTEE event then the next event will
be called an ESTABLISHED event because the condition is guar-
anteed to be established to be true at the time. Thus each
ESTABLISHED event regains possession of the serializer at a
point in time when the condition is guaranteed to be true.
When the proper condition for using a protected resource has
been established, then possession of the serializer can be re-
leased by a JOIN-CROWD event which records that there is

another process in a crowd which is an internal data structure
of the serializer that keeps track of which processes are using
the resource. Next the message M is delivered to the protected
resource p in a RESOURCE-REQUEST event. Eventually the
protected resource p may produce a reply R to the re-
quest which will be called a RESOURCE-REPLY event. The
RESOURCE-REPLY will eventually result in a LEAVE-CROWD
event which regains possession of the serializer and records
that the process is no longer in the crowd using p. After this
the process releases possession with an EXIT event, which
causes a SERIALIZER-REPLY event in which the message R is
sent as the reply to the original SERIALIZER-REQUEST event.

Serializers derive their name from the fact that all of the
events that gain and release possession of the serializer are
totally ordered (serial) in time. We assume that every serializer
is written such that an event gaining possession is always fol-
lowed by one releasing possession (usually this is trivial to
demonstrate). In the above diagram the interior of the serial-
izer has two "holes," in which a process temporarily releases
possession of the serializer. The purpose of a hole entered by
a GUARANTEE event is to release possession while a process is
waiting for some condition to be established so that it can pro-
ceed. This kind of hole is called a "waiting room." The pur-
pose of a hole entered by a JOIN-CROWD event is to allow
parallelism in the use of protected resources by releasing pos-
session of the serializer so that other processes can gain pos-
session. This kind of hole is called a "resource room." There
may be any number of holes of either variety.
The events of a serializer fall into two disjoint categories that

are totally ordered in time: those which GAIN-POSSESSION
and those which RELEASE-POSSESSION of the serializer. Each
event in the former category subsequently results in an event
of the latter category. Furthermore after a GAIN-POSSESSION
event has occurred, then another such event will not occur
before a RELEASE-POSSESSION event has occurred. To under-
stand the behavior of serializers, one must understand the
ways that possession of a serializer is gained and released.
There are four ways to gain possession of a serializer:
1) an ENTRY event, which gains possession as a result of a

SERIALIZER-REQUEST event;
2) an ESTABLISHED event, which regains possession as a

result of a GUARANTEE event with the condition established
to be true;
3) a LEAVE-CROWD event, which regains possession as a

result of a RESOURCE-REPLY event from a protected resource;
4) a TIME-OUT event, which regains possession as a result of

a process waiting for a condition for a longer period of time
than specified when it entered the waiting room.
There are three ways to release possession of a serializer:
1) a GUARANTEE event, which occurs in order to guarantee

that some condition is true before continuing execution;
2) a JOIN-CROWD event, which records that a process is

using a protected resource;
3) an EXIT event, which causes a reply to the original

SERIALIZER-REQUEST event.
There are two reasons that a process using a serializer might

have to wait. The first is that it might be necessary for a pro-
cess in a waiting room to wait for some condition to be estab-

I1I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

lished. The second reason for waiting is that a process must
wait for possession after a SERIALIZER-REQUEST or a
RESOURCE-REPLY event because some other process has
possession. Processes waiting for a condition to be established
are given absolute priority over other processses waiting for
possession.
-Each time possession of a serializer is released, processes

waiting for a condition to be established are given the oppor-
tunity to continue execution. This property of serializers sim-
plifies proofs that a scheduler guarantees replies to requests
received and increases the responsiveness of schedulers by
allowing processes waiting for a condition to proceed as soon
as possible. Roughly speaking, if there are any processes wait-
ing for a condition that are "ready to go" when possession of a
serializer is released then the next event to gain possession of
the serializer must be an ESTABLISHED event which gives one
of those processes possession.
When servicing processes waiting for possession after a

SERIALI ZER-REQUEST or RESOURCE-REPLY, several kinds of
waiting disciplines are possible to determine which process gets
possession of the serializer next. The only property that is
used in this paper is that every SERIALI ZER-REQUEST and
RESOURCE-REPLY event eventually causes a GAIN-POSSESSION
event. One of the easiest ways to implement this is to use a
single queue to implement a first-in first-out disciple on pro-
cesses waiting after a SERIALIZER-REQUEST or RESOURCE-
REPLY event. An acceptable alternative is to give priority to
processes waiting after RESOURCE-REPLY events since remov-
ing them from the crowd of the resource which is producing
the reply might allow other processes (which are waiting for
that crowd to empty) to proceed.

III. SERIALIZER CONSTRUCTS

In this section we present the language constructs used in the
serializer mechanism. We should note that while a "Lisp-like"
syntax is used, we regard the choice of syntax as minor.
R. Atkinson is currently developing an "Algol-like" syntax for
the serializer construct.

A. Creation

A serializer is constructed by an expression of the form

(create_serializer
(queues: queues_for the_serializer)
(priority queues: priority-queues for the serializer)
(crowds: crowds for the serializer)
(entry: entry-of_the serializer))

The queues are used to provide first-in first-out service to
process waiting for some condition in order to continue execu-
tion. The priority queues are used to provide priority service
to processes waiting for some condition so that the service is
first-in first-out within priority. In this paper we will use non-
negative integers as priorities. Conceptually a priority queue is
a vector of ordinary queues where the index of a queue in the
vector is its priority. The crowds are used to record which
protected resources are in use.

If a serializer constructed by an expression of the form given

above is sent a message M in a SERIALIZER-REQUEST event
then M will eventually be sent to entry-of the serializer in
an ENTRY event which gains possession of the serializer. At
most one process can be in possession of a serializer at one
time. The queues and crowds for the serializer relate to its
internal working and are explained in greater detail below.

B. Waiting
Queues and priority queues are provided to allow a process

to wait until some condition is met before proceeding further.
To meet this need serializers provide a guarantee command
which has the following syntax for waiting in queues:

(guarantee the condition
(wait_in: the_queue)
(time-out: time_expression

the time out handler)
(then: the-guarantee-body))

and the following syntax for priority queues:

(guarantee the condition
(wait_in: the_pnonty_queue (priority: the-priority))
(time_out: time_expression

the time out handler)
(then: the-guarantee_body))

Conceptually, a process executing a guarantee command
immediately releases possession of the serializer with a
GUARANTEE event. It does not regain possession and con-
tinue with execution of the-guaranteebody with an
ESTABLISHED event unless the following prerequisites hold:

1) the condition is true;
2) a JOIN-CROWD, EXIT, or GUARANTEE event has just

occurred releasing possession of the serializer.
If the process is waiting in a queue then the following addi-

tional prerequisite must be satisfied:
3) the process is at the front of the queue.
On the other hand if the process is waiting in a priority

queue then the following prerequisite must be satisfied:
3) the process is at the front of the nonempty queue with

highest priority (within the priority queue specified in the
wait_in clause of the guarantee command).
Note that all three of these prerequisites must be simulta-

neously satisfied before execution will continue with the_
guarantee_body.
The only other way that a process waiting for a condition

can continue execution is that the amount of time it has spent
waiting is greater than the amount of time which it specified in
the time_expression of the time_out clause of the guarantee
command. In this case execution of the process continues in
the time out handler.

If the guarantee condition for some process waiting at the
front of a queue holds or if a process has timed out, then one
such process is guaranteed to regain possession of the serializer
next before any further ENTRY or LEAVE-CROWD events occur.
The condition in the guarantee command may be any Bool-

ean expression without side effects. Conceptually the condi-
tion of each process at the front of each queue or priority
queue is evaluated whenever possession of the serializer is

12

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

yielded. In practice we believe that compilers can often pro-
duce equivalent code that is much more efficient that this.
We have found one particular form of expression to be quite

useful, which is a test for emptiness of queues, priority queues,
or crowds. This is written as:

(empty:ueue ... crowds...)

Each queue, priority queue, or crowd listed must be empty
for the expression to be true. The evaluation of an expression
of the above form has no side effects. It simply calculates the
Boolean value of the expression.

C. Relaying Messages
Within a serializer it is necessary to be able to temporarily

release possession of the serializer in order to relay a message
to a protected resource and then later regain possession with
the reply from the protected resource. It is possible for one
serializer to protect more than one resource. A command of
the following form accomplishes this by transmitting
a-message to a-protected resource:

(relay-to a-protected resource a_message
(thru: a_crowd)
(then-to: continuation_for_reply))

To execute a relay-to command: place an element in
a-crowd to record the presence of another process in
aprotected resource; release possession of the serializer; and
then relay a_message to a_protected resource. After the
reply to a-message has been received and possession of the
serializer has been regained by a LEAVE-CROWD event, then
the element which was placed in a-crowd is removed. The
reply received is sent to continuation_forreply. For brevity
we adopt the convention that an expression of the following
form:

(relay-to a-protected resource a_message
(thru: a_crowd))

is an abbreviation for

(relay-to a-protected resource a_message
(thru: a-crowd)
(then-to: identity-function))

During the time between the JOIN-CROWD and the LEAVE-
CROWD events of a given process, there is an element in
a-crowd for each process using the resource. Thus by inspect-
ing the various crowds of a serializer it is possible to determine
which resources currently have processes executing within
them.

D. Combined Guarantee and Relay
Expressions of the following form

(guarantee condition
(wait_in: waiting-room)
(then:

(relay to protected-resource message
(thru: crowd))))

occur sufficiently often in serializers that it is worthwhile to
have the following abbreviation:

(guarantee condition
(wait_in: waiting-room)
(relay-to: protected-resource message)
(thru: crowd))

IV. MUTUAL EXCLUSION
One of the most common uses of semaphores is to imple-

ment mutual exclusion of execution in protected resources.
It is relatively easy to implement mutual exclusion using a
semaphore. The idea is for each process to perform a P opera-
tion on the semaphore before using the resource and then to
perform a V operation when finished using the resource. The
program one_at_a_time given below can be used to construct
systems that insure that a resource does not receive any mes-
sages while still processing a previous message. Thus processes
are guaranteed to exclude each other from overlapping execu-
tion in the protected resource. This simple example is pre-
sented to illustrate more concretely the concept of encasing a
resource in a serializer.
The implementation below can be used to enforce mutual

exclusion in the use of a resource. The character = is used as a
prefix operator in front of an identifier which is to be bound
to the object which it matches. As in the lambda calculus
there are no side effects in performing this binding operation.

(one_at_a_time =resource) ;mutual exclusion of a resource is enforced by
(let {(mutex = (create_binary_semaphore))} ;constructing a new binary semaphore called mutex

(receive=a_message ;then returning an actor such that whenever it receives a message
(P mutex) ;performs a P operation on mutex
(let {(result = (send a_message to resource))} ;then sends the message to the resource

;such that after the result is received
(V mutex) ;a V operation is performed on the semaphore
result))) ;and the result is retumed

where identity-function is (Xx. x). Thus the value of an
abbreviated relay-to command is the value returned as a
reply from a_protected_resource as a result of sending it
a_message.

In order to guarantee that a resource p (assumed to be an
actor that receives and replies to messages) is never used by
more than one process at a time, construct an actor p' by
invoking (one_at_a_time p) and only give the actor p' to

13

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

potential users. The actor p' behaves just like p except that at
most one process can be using p at any one time. If the actor
p is never given to potential users, then the serializer created
by invoking one_at_a_time will provide the required schedul-
ing discipline.
Semaphores are a very primitive synchronization method

which can be used to implement the facilities needed by mod-
ular schedulers. Serializers abstract the control structure of
schedulers such as the simple one presented above. They can
be used to increase the modularity of implementations by
making the structure of the implementation more closely
match the structure of the task to be accomplished. In this
way the synthesis of schedulers from specifications is facili-
tated because serializers provide facilities for directly imple-
menting common aspects of specifications for schedulers.
Furthermore proofs that implementations satisfy their specifi-
cations are facilitated because the structure of the serializer
guarantees many properties of the implementation that would
otherwise have to be painfully extracted from a global analysis
of the implementation.

One extremely common specification is that a resource must
reply to each request it receives (a guarantee of service that
implies that the resource is starvation-free and thus free of
deadlock). For serializers this is expressed in terms of events
by simply requiring that for every SERIALIZER-REQUEST event
there is a corresponding SERIALIZER-REPLY event in the his-
tory. Similarly the resource can be required to reply to re-
quests by specifying that for every RESOURCE-REQUEST event
there is a corresponding RESOURCE-REPLY event in the history.
A one_at_a_time is guaranteed to reply to requests provided
that the resource it encases is guaranteed to reply to requests.

V. READERS-WRITERS IMPLEMENTATIONS
A. Readers-Writers Integrity Specification
A readers-writers serializer is intended to protect the integ-

rity of a resource by scheduling access to the resource in such
a way that it is impossible for two processes to overlap in their
use of the resource if one of them is a writer. An event in
which a message is received by the protected resource is called
a RESOURCE-REQUEST, of which there are two special cases:

(one-atLa time =resource)- ;to enforce mutual exclusion for a resource
(create_serializer ;create a serializer

(entry: ;such that when entry is gained to the serializer
(receive=a message ;with a message

(send a_-message to resource)))) ;send the message to the resource

The fundamental integrity constraint for mutual exclusion
of the use of a resource is that if two distinct requests
SERIALI ZER-REQUESTi and SERIALIZER-REQUESTj are made
to the serializer then either the i-use completely precedes the
j-use

RESOURCE-REQUESTi
I

RESOURCE-REPLYi -p RESOURCE-REQUESTj
I

RESOURCE-REPLYj

or the j-use completely precedes the i-use

RESOURCE-REQUESTj
I

RESOURCE-REQUESTi +- RESOURCE-REPLYj
I

RESOURCE-REPLYi

which says that one process must enter and leave the protected
resource before the other enters.
Actually the serializer version of one_at_a_time implements

a stronger specification: namely that if

SERIALI ZER-REQUESTi _ SERIALIZER-REQUESTJ

then

RESOURCE-REQUESTi
I

RESOURCE-REPLYi RESOURCES-REQUESTj

RESOURCE-READ and RESOURCE-WRITE. In response to these
requests the protected resource will produce responses which
will be called RESOURCE-REPLY events.
The integrity specification for a readers-writers serializer is

that "a write activity cannot be concurrent with another read
activity or with another write activity." This integrity
specification can be expressed in event terms as follows: if
SERIALIZER-WRITEj and SERIALIZER-REQUESTj are two re-
quests received by the serializer then either

RESOURCE-WRITEi - RESOURCE-REPLYi -

RESOURCE-REQUESTj RESOURCE-REPLYj

or

RESOURCE-REQUESTj RESOURCE-REPLYj
RESOURCE-WRITEI- RESOURCEREPLYi

B. Readers-Writers Scheduling Specifications
Variations of the readers-writers problem derive from the

desirability of imposing stronger scheduling specifications than
simply that the serializer must reply to requests that it receives.
Note that readers do not interfere with one another even if
they are executing in parallel in the protected resource. There-
fore allowing multiple readers into the resource concurrently
can increase throughput. Several variations of scheduling spec-
ifications that require more concurrency will be presented
below. In all of these implementations we will keep track of
whether there are readers in the resource or there is a writer
in the resource by keeping a separate crowd for the readers
and a separate crowd for the writer (which will never have
more than one member).

14

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

Below we will present several implementations of the
readers-writers problems in which readers is the crowd of
readers in the protected resource and writer is the crowd of
writers in the protected resource. The following invariants are
relevant to understanding each of the implementations to be
presented below:

The proof that the size of the writer crowd is never greater
than one follows immediately from the observation that the
only addition to the writer crowd is made after a guarantee is
satisfied that the writer crowd is empty, and the writer crowd
is initially empty. By examining the guarantees we see that no
additions can be made to the writer crowd if the readers crowd

the size of the writer crowd is never greater than one
the readers crowd and the writer crowd are never both nonempty at the same time

The proofs of the above invariants are relatively short and
simple. No complicated chains of reasoning are required. This
is an example of how the structure of a serializer enables
simpler proofs than less structured arbitration mechanisms
such as semaphores.

C First-Come First-Served
In the implementation below we provide that a resource

which is to be scheduled for reading and writing will receive
messages of the form (read (using: directions)) and (write
(using: directions)). The directions included in these messages
can be as complicated as desired up to and including a proce-
dure for carrying out the transaction on the protected resource.
It is the responsibility of the protected resource to ensure that
carrying out the directions in a read message does not change
the protected resource. Note that this degree of generality in
the directions can complicate verifying that the resource will
reply to each request which it is sent. Nevertheless, in the dis-
cussion below we will assume that the resource will always
reply to requests of the form (read (using: directions)) and
(write (using: directions)).
The implementation given below satisfies the specification

that the protected resource is served on a first-come first-served
basis. In addition, starvation is not possible and a certain
amount of concurrency is guaranteed. The simplicity of the
implementation is due to the ability of serializers to have
processes waiting in a single queue for different conditions.

is nonempty, and that no additions can be made to the readers
crowd if the writer crowd is nonempty. Given that both
crowds are initially empty then the readers crowd and the
writer crowd are never both nonempty at the same time. The
proofs of these invariants for the other implementations are
similar and will not be repeated. Thus the following invariants
hold after each event in which a process gains or releases pos-
session of the serializer:

(size writer) S 1
(empty: writer) V (empty: readers)

That is, the above implementation guarantees that writers will
exclude others from the resource since if there is an element in
the writer crowd then all the queues of the serializer are
blocked.

It is quite easy to see that starvation is impossible for a
first_come_first_served serializer provided that the resource
always replies to messages which it sent. The only way in
which starvation could occur would be for some process to
wait forever in the waiting.q. Thus to prove that starvation is
impossible it is sufficient to prove that the front element of
the waiting_q is always eventually dequeued since the queues
of a serializer are strictly first-in first-out. If the element at
the front of the waiting.q is a reader then it will eventually
proceed since the only condition which prevents this is for
there to be an element in the writer crowd. The writer crowd
must eventually become empty because the resource is as-

((first_come_first_served =the_resource)-
;a first come first served serializer of the resource which can be implemented by constructing

(create_serializer ;a serializer which has
(queues: waitingq) ;a queue called the waitingq
(crowds: readers writer) ;and two crowds called readers and writer
(entry: ;after entry

(message-cases ;there are two cases for the message
((read (using: =directions)) - ;receive a request to read the resource using directions

(guarantee (empty: writer) ;guarantee that there is no writer in the resource
(wait-in: waiting_q)
(relay_to: the_resource (read (using: directions)))
(thru: readers))) ;passing thru the readers crowd

((write (using: =directions)) ;receive a request to write in the resource using directions
(guarantee (empty: readers writer)
;guarantee that there are neither readers nor a writer in the resource

(wait-in: waiting q) ;wait in waiting.q
(relay_to: the_resource (write (using: directions)))
(thru: writer))))))) ;passing thru the writer crowd

15

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

sumed to always respond to write requests. After the writer
crowd becomes empty then the reader at the front of the
waiting_q must proceed because serializers give absolute pri-
ority in giving next possession of the serializer to processes
waiting in queues for some condition to be established. In a
similar way it is easy to prove that if the element at the front
of the waiting_q is a writer then it will eventually proceed.

D. Writers Prioity
T-he following implementation of a serializer for the readers-

writers problem gives priority to writers.

regain possession of a serializer. However, further research is
needed on the question whether the rule is entirely satisfactory
for all useful examples.

VI. BEHAVIORAL PROPERTIES OF SERIALIZERS
The properties of serializers are stated somewhat informally

in this paper since we believe that serializers aid intuitive rea-
soning about parallelism. A rigorous treatment is possible
[13], but is beyond the scope of this paper. Instead in the
sections below we systematically state the properties of serials
which are used in the proofs in this paper.

((writers-priority =the-resource) - ;to create a writers priority serializer for a resource
(create_serializer ;create a serializer

(queues: reader_q waiting_q) ;with two queues called reader_q and waiting_q
(crowds: writer readers) ;and two crowds called writer and readers
(entry: ;on entry to the serializer

(message-cases ;there are two cases for the message
((read (using: =directions)) - ;receive a request to read the resource using directions

(guarantee (or (empty: readers) (empty: waiting_q))
;guarantee that there are no readers in the resource or that the waiting.q is empty

(wait-in: reader_q)
(then:

(guarantee (empty: writer) ;guarantee that the writer crowd is empty
(wait_in: waiting q) ;wait in the waiting queue
(relay-to: the_resource (read (using: directions)))
;then relay the message to the resource
(thru: readers))))) ;passing thru the readers crowd

((write (using: =directions)) - ;receive a request to write in the resource using directions
(guarantee (empty: readers writer)
;guarantee that there are neither readers nor a writer in the resource

(wait-in: waitingq) ;wait in the waitingq
(relay-to: the_resource (write (using: directions)))
(thru: writer)))))))

*

If the readers and writer crowd are both empty then it is
possible for a reader process to be ready to proceed from the
guarantee command marked with a # at the same time that a
writer process is ready to proceed from the guarantee command
marked with a *. Nevertheless there is no danger of starvation
in this case because the writer process at the front of the
waiting_q and every process in the reader_q is guaranteed to
proceed before any other process can gain possession of the
serializer by the rule of absolute priority for processes waiting
for a condition. In view of this example, we propose the fol-
lowing rule for the construction of serializers:

If there is more than one process waiting for a condition
that is ready to regain possession of the serializer when
possession is released then it must not make any differ-
ence in the externally visible behavior of the system
which process is chosen to gain possession next.

That is, the choice of which process to allow to gain possession
must not cause any change in the ordering relationships on
RESOURCE-REQUEST or SERIAL-REPLY events. The above rule
allows maximum flexibility to the compiler in evaluating the
conditions that must be guaranteed for a waiting process to

Behavioral properties of serializers can be stated in terms of
events and relations between events. We shall use the notation

El - E2

to indicate that the event E1 necessarily precedes the event E2
in the history of the computation under discussion. The
precedes relationship is a strict partial order (i.e., it is never
the case that there is an event E such that E -* E). The events
of processes that do not interact are not ordered.
In the rest of the paper we will require that protected re-

sources be well-behaved in the sense that for each request sent
to a resource exactly one reply will be received.
Another requirement we will make is that every process that

comes into possession of a serializer will eventually release
possession. The intent is to exclude behaviors where the serial-
izer is locked up forever by a process which is performing an
infmite computation while in possession. We believe that this
condition will usually be trivial to satisfy in practice.
We have found that the usual code in a serializer to guarantee

that some conditions hold and then relay a message to a re-
source protected by the serializer. This code must be made as
efficient as possible in order to maximize the throughput of

16

HEWJTT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

the serializer. Otherwise the serializer can seriously degrade
the efficiency of a system by becoming a bottleneck.

A. Property ofMutual Exclusion
The most fundamental property of a serializer is that at most

one process has possession of it at any given instant.
We will use subscripts to indicate distinct invocations of a

serializer. The property of mutual exclusion of possession of
the serializer can be stated in terms of events as follows where
we assume that i*j:

Either the i-th possession precedes the j-th possession

GAIN-POSSESSIONi

I
RELEASE-POSSESSIONi - GAIN-POSSESSIONj

I
RELEASE-POSSESSIONj

or the j-th possession precedes the i-th.

GAIN-POSSESSIONj

GAIN-POSSESSIONi - RELEASE-POSSESSIONj

RELEASE-POSSESSIONi

where a GAIN-POSSESSIONi event is either an ENTRYi,
ESTABLISHEDi, or LEAVE-CROWDi event; and RELEASE-
POSSESSIONi is the next event after GAIN-POSSESSIONi which is
a GUARANTEE,, JOIN-CROWD1, or EXITi event.

B. Gaining Possession
We would like to guarantee that any process that sends a

request or reply to a serializer must eventually gain possession
of the serializer. One way to guarantee this is to prove that an
infinite sequence of ESTABLISHED events cannot occur with-
out intervening RELEASE-POSSESSION events. All of the serial-
izers shown in this paper can be easily shown to have this
property since there is no iteration or recursion used in the
serializers and all of the constructs used by processes in posses-

supposing that SERIALIZER-REQUESTi and SERIALIZER-
REQUESTj are two events such that the first arrives before the
second:

SERIALIZER-REQUESTi SERIALIZER-REQUESTj

Suppose that the process in which SERIALIZER-REQUESTi oc-
curs continues execution with ENTRYi and the process in
which SERIALIZER-REQUESTj occurs continues execution with
ENTRYj. We require that these two subsequent events be
ordered as follows:

ENTRYi - ENTRYj
2) First-Come First-Served for Reentry: Similarly it must

be possible for a serializer to observe the order of arrival of
replies to requests sent to protected resources. Thus if
RESOURCE-REPLYi precedes RESOURCE-REPLYj so that

RESOURCE-REPLYi - RESOURCE-REPLYj

then we require that

LEAVE-CROWD1i LEAVE-CROWDj
C. Properties ofGuaranteed Conditions

1) The Guaranteed Condition is True if Execution Con-
tinues: Let C be the condition guaranteed in an event of the
form

GUARANTEEC-WAIT-INq

which is caused by executing an expression of the form

(guarantee C
(wait-in: q)
(then: ...))

If a process continues execution after an event of the above
form, then the next event of the process is of the form
ESTABLISHEDC and C is true at the instant of this event.
2) Queues are First-In First-Out: Suppose that q is an ex-

plicit queue of the serializer S and that there are events such
that

GUARANTEEci-WAIT-IN1 GUARANTEEC2-WAIT-INq - ESTABLISHEDC2j

sion of the serializer are known to either terminate or release Then there is an event ESTABLISHEDCli such that
possession.

If the above restrictions are satisfied then any SERIALIZER-
REQUEST or RESOURCE-REPLY event must eventually result in
a GAIN-POSSESSION event. More precisely, if there is a
SERIALIZER-REQUEST in the history of a computation then it
is followed by an ENTRY event. Furthermore if there is a
RESOURCE-REPLY event in the history of a computation then
it is followed by a LEAVE-CROWD event.
1) First-Come First-Served for Entry: Since serializers are

designed to implement scheduling of access to protected re-
sources it must be possible for them to observe the order of
arrival of requests to the serializers in order to carry out certain
scheduling tasks. Thus we provide that requests for entry into
the serializer will be served in the order in which they arrive at
the serializer. In terms of events this can be formalized by

ESTABLISHEDCci -ESTABLISHEDC2

which says that ESTABLISHEDCli occurred before ESTAB-
LISHEDC2j since both guarantee events made use of the same
queue.
3) Priority for Processes Waiting for a Condition: A process

will be said to be "ready to go" at the instant of a RELEASE-
POSSESSION event if it is waiting because of a previous
GUARANTEEc-WAIT-INq event, but the corresponding ESTAB-
LISHED event has not yet occurred and the following proper-
ties hold:

1) the condition C is true.
2) the process is at the front of the queue. Therefore all

previous events that waited for some condition on q have
already continued with their condition ESTABLISHED.

17

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

This means that we have made the policy decision that for
the queues used in this paper a process at the head of a queue
will block the processes behind it in the queue even though the
condition for one of these processes to proceed is true. We
have made this policy decision in order to make the implemen-
tation of the serializers in this paper more efficient and to
avoid problems of fairness and starvation.

Tfhe above properties give the processes waiting in queues
and priority queues of a serializer priority over processes wait-
ing to gain possession.

VII. GUARANTEED CONCURRENCY
A. Requiring Concurrency in Implementations

In the readers-writers problems the resource scheduler must
maintain the following constraint: a write activity on a pro-
tected resource is never concurrent with any other activity on
the resource. However, a simple one-at-a-time approach can
easily guarantee this property. The more complex versions of
the problem attempt to provide readers with concurrent access
to the resource without starving the writers. When we say that
some amount of concurrency is guaranteed, we mean that the
specifications for the serializer require that certain readers be
given the opportunity to access the resource at the same time.
Note that a serializer cannot guarantee that the requests to a

protected resource are actually processed in parallel, since
either the structure of the resource or some externally defined
scheduling policy may prevent actual parallelism. We say that
readers Ri and Rj are concurrent readers if

JOIN-CROWDi - LEAVE-CROWDj
and

JOIN-CROWDj - LEAVE-CROWDi
The specifications for the first-come first-serve serializer

include a requirement for concurrency. We can informally
express this requirement by saying that whenever one reader's
entry into the serializer (an ENTRY event) immediately pre-
cedes another reader's entry, and the second reader enters the
serializer before the first reader enters the resource (a JOIN-
CROWD event), then these two readers must concurrently be
in the resource. We can also give a more formal specification
in terms of events:

If Ri and Rj are readers such that
ENTRYi - - ENTRYj D JOIN-CROWDi

and there is no requestor Xk (a reader or writer) such that
ENTRYi -p ENTRYk - ENTRYj

then Ri and Rj must be concurrent readers, i.e.,

JOIN-CROWDi LEAVE-CROWDj

and
JOIN-CROWDj - LEAVE-CROWDi

Note that the above requirement would be the same if we re-
quired that the requestor Xk be a writer, although the proof
would be slightly more difficult.

B. ProofofGuaranteed Concurrency
A proof that the first_come_first_served serializer shown

above satisfies the given concurrency requirement proceeds by
assuming the existence of two readers with the given relation-
ship, then showing that they must be concurrent readers.
Since we have

ENTRYi ENTRYj JOIN-CROWDi
we know that the reader Ri must be in the waitingq when
the reader Rj gains possession of the serializer. Rj must be
enqueued directly behind Ri, since by our assumptions there
are no intervening entries to put other requestors in the
waiting_q. Therefore when reader Ri does get into the re-
source through a JOIN-CROWD event (thereby releasing posses-
sion of the serializer), then the requestor at the front of the
waiting_q must be Rj and the condition of (empty: wrnters)
must be true. We then appeal to the priority which serializers
give to processes waiting for a condition over other processes
which are waiting to gain possession.

JOIN-CROWDj - LEAVE-CROWDi
Since we know by construction of the serializer that
JOIN-CROWDi - JOIN-CROWDj, and JOIN-CROWDj LEAVE-

CROWDj, we conclude that JOIN-CROWDi - LEAVE-CROWDj,
which completes the proof that Ri and Rj are concurrent
readers.

VIII. ABSENCE OF STARVATION
The following serializer forces readers into the resource con-

currently. However, we need to guard against starvation. Our
approach is to allow all waiting readers to enter the resource,
then to designate the writer which has been waiting as the new
privileged writer, and keep further readers from entering the
resource until the privileged writer has relayed its message to
the resource. After the privileged writer has been served, then
all readers which have been waiting for that writer to finish are
allowed to enter the resource, and a new privileged writer is
chosen. A reader may not deliver a message to the resource
while there is a privileged writer, or there is a writer in the re-
source. A writer may not enter the resource unless it is a privi-
leged writer, and there are neither readers nor a writer in the
resource.

((readers-priority =the_resource)-
;a serializer which enforces concurrency among readers of the resource is implemented by constructing
(create_serializer ;a serializer which has

(queues: waiting_q writers_q) ;two queues called waiting q and writers_q
(crowds: readers writer) ;two crowds called readers and writer
(entry: ;after entry

(message-cases ;there are two cases for the message

18

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

((read (using: =directions)) - ;receive a request to read the resource using directions
(guarantee (empty: writer) ;guarantee that there are no writers in the resource

(wait-in: waiting_q) ;wait in waiting_q
(relay-to: the_resource (read (using: directions)))
(thru: readers))) ;passing thru the readers crowd

((write (using: =directions)) - ;receive a request to write in the resource using directions
(guarantee (empty: waiting_q writer)
;guarantee that waiting_q, and writer crowd are all empty

(wait-in: writers_q) ;wait in writers_q
(then:

(guarantee (empty: readers writer)
;guarantee that there are neither readers nor a writer in the resource

(wait-in: waitingq) ;wait in waiting_q
(relay_to: the_resource (write (using: directions)))
(thru: writer))))))))) ;passing thru the writer crowd

The above implementation is a little more complicated than
the previous one. However, it is not difficult to show that
writers exclude others using the technique used for the pre-
vious implementation since the following invariants are
maintained:

(size writer) < 1
(empty: writer) V (empty: readers)

In order to show that neither readers nor writers can possibly
starve, consider the following "traffic diagram" for the queues
and crowds of the serializer:

Enter i ng readers Entering writers

V

wrltero..q

(emptu: wJaiting..q writs

V V

wait ing_q

(empty: writer) (emptij: readers writer)
l l

V V

readers writer

r)

Traffio Diagram for Queues and Crowds of re.esplry

The idea of the proof is to first show that the waitingq must
eventually empty, then to show that any writer in the
writers_q must eventually migrate to the waiting q. These
two conditions ensure that every read or write request to the
serializer is eventually satisfied.

A. Proof that the waiting_q Must Empty
If there is a writer in the waiting_q, then there is only one

such writer, and it must be at the front of the queue. A writer
can only enter the waitingq after it has been dequeued from
the writers_q, and the guarantee of every writer exiting the
writersq is that the waitingq is empty. Thus, not only is it
true that there may be only one writer in the waitingq, the
writer must also be at the front of the queue if it is there.
Processes may only enter the readers crowd or the writer

crowd by first exiting from the waiting_q. We have assumed
that the_resource has the property that every message sent to
the resource will eventually produce a single reply. Therefore,
if a writer is at the front of the waiting_q, it is guaranteed that
no messages will be sent to the_resource from the serializer
until both the readers crowd and the writer crowd are empty.
By a similar argument, if a reader is at the front of the

waiting_q, then there are only readers in the queue. Further-
more the writer crowd must eventually empty which implies
that the reader at the front of the waitingq must eventually
leave. For each reader which leaves the waiting_q with an
ESTABLISHED event there must be a subsequent JOIN-CROWD
event. For every such JOIN-CROWD event, the serializer is
released, and if the waiting_q has a reader at its front, that
reader must be dequeued, since the waiting_q is the only
explicit queue with its guaranteed condition true (the writer
crowd remains empty).
Thus we have shown that if there is a writer in the waiting_q

then it is at the front and that it must eventually leave. Once a
writer exits the waiting_q there may be no additional writers
added to that queue until it is empty. Furthermore, if there is
a reader at the front of the waiting_q then there are only
readers in the queue and they must all eventually leave. There-
fore, the waiting_q must empty.

B. Proof ThatNo Process in the writers_q Can Starve
The idea behind this proof is simple. Any writer in the

writers_q is waiting for both the writer crowd and the
waiting_q to empty. By our assumption about the resource
there must be a RESOURCE-REPLY message for any writer, so
the writer crowd must empty. We have just proved above that
the waitingq must empty. Therefore the process at the front
of the writers_q must eventually be dequeued, which is suffi-
cient to show that no process in the writers_q can starve.

C. Requiring Concurrency for Reader's Priority
The readers-priority serializer is intended to give more

throughput to readers at the expense of writers, while still
guaranteeing that each write request will receive a reply. Our
informal requirement is whenever one reader's entry into the
serializer follows another reader's entry (regardless of inter-

19

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-S, NO. 1, JANUARY 1979

vening serializer entries), and the second reader enters the
serializer before the first reader enters the resource, then the
two readers are concurrent within the resource. In terms of
events, this requirement can be expressed as:

If Ri and Rj are readers such that

ENTRYi - ENTRYj - JOIN-CROWDi
then Ri and Rj must be concurrent readers, i.e.

JOIN-CROWDi - LEAVE-CROWDj
and
JOIN-CROWDj - LEAVE-CROWDi

Note that the above requirement is stronger than the concur-
rency requirement given for first_come_first_served.
All readers that have entered the serializer and are not yet

in the resource are in the waiting_q, and the only writer that
can be in the waiting_q must be at the front of the queue. We
have previously shown that once one reader can leave the
waiting_q then all must leave the waiting_q and enter the

resource. We note that by the axiom of giving explicit queues
priority over implicit queues all readers in the waitingq must
enter the resource before any reply from the resource will
enter the serializer (through a LEAVECROWD event). This
completes the proof.

IX. USING PRIORITY QUEUES
Hoare has used priority queues in monitors to implement a

disk head scheduler which optimizes the head motion of a
physical disk. Below we present an implementation of a virtual
disk which makes the head motion more efficient for the
physical disk which is its protected resource. The operations
on the virtual disk are exactly the same as the ones defined on
the physical disk. The implementation given below uses an
algorithm similar to one used by Hoare. However, it will be
possible to prove that our implementation using serializers
always performs all disk operations which are requested. It is
not possible to prove this property for the implementation
using monitors because a process might request the disk and
then never release it.

((virtual-disk =physical-disk) ;a virtual disk behaves like a physical disk with optimized head motion
(create_serializer ;create a serializer with

(priority-queues: up-queue down-queue) ;two priority queues
(crowds: disk-users) ;one crowd
(entry: ;then after gaining possession

(let
{(current_direction initially "up")} ;the current direction of motion is initially up
;current_direction is a variable which is local to the serializer
(message-cases

((disk_request (operation: =op) (track: =track_number))
;receive a disk request with specified operation and track number
(rules current_direction ;the rules for the current direction are

("down" - ;if the current direction is down then
(guarantee ;guarantee that

(and (empty: disk-users) ;no one is using the physical disk
(or (empty: down-queue) ;and that either the down queue is empty

(current_direction = "up"))) ;or an upsweep is in progress
(wait-in: up-queue (priority: track_number)) ;wait in up-queue
(then: (current_direction - "up") ;then change the current direction to be up

(relay to physical-disk (disk-request (operation: op) (track: track_number))
;relay to the physical disk the message received

(thru: disk_users))))) ;passing thru the disk-users crowd
("up" - ;if the current direction is up then

(guarantee ;guarantee that
(and (empty: disk_users) ;no one is using the physical disk

(or (empty: up-queue) (current_direction = "down")))
;and that either the up queue is empty or a down sweep is in progress

(wait_in: downqueue (priority: ((number_of_tracks physical_disk) - track_number)))
;wait in down_queue
(then: (current-direction - "down") ;then change the current direction to be down

(relay to physical_disk (disk_request (operation: op) (track: track_number))
;and relay the message to the physical disk

(thru: disk_users))))))))))))

20

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

In proving that the virtual disk satisfies its specifications we
need to show that the requests are relayed though unchanged,
that the serializer only allows one process at a time access to
the physical disk, and that all requests given to the virtual disk
are eventually serviced.
The relaying of unchanged requests can be shown by a simple

examination of the code for the virtual disk. Only one process
may be using the physical disk at a time since both guarantees
require that the crowd for the physical disk be empty before
any requests are allowed to proceed.
Proving that all requests are eventually serviced is done by

showing that all requests in the queue for the current direction
(the up-queue when current_direction = "up," the down_
queue when current_direction = "down") are eventually ser-
viced, and that the opposite queue becomes the current queue.
Note that the current_direction is reversed if and only if the
current queue is empty and the opposite queue is not empty
and the physical disk is not busy. A new request is never
added to the current queue. We assume that the physical disk
always completes a request. Whenever the physical disk com-
pletes a request and the current queue is not empty the guar-
antee for the current queue must be true. Therefore all re-
quests in the current queue must eventually be serviced, and
the opposite queue must become the current queue (or be
empty).
Requests removed from a priority queue must be in order of

increasing priority number (nondecreasing track number for
up-queue, nonincreasing track number order for down
queue). This is sufficient to show that requests within the
current queue are always serviced with minimal difference in
track numbers. However, it does not guarantee minimal head
motion for all requests.
A somewhat more optimal version of virtual_disk which

more closely follows Hoare's original disk scheduler can be
achieved by allowing insertion of new requests into the current
queue as long as the priority is greater than the priority of the
current request. Additional code in the serializer is needed in
that a current track number must be maintained and used to
determine which queue should be used. Additional clauses in
the proof are also needed to show that all requests are serviced
(by showing that all requests in the current queue have priori-
ties greater than the priority of the requests being serviced).
However, we consider it encouraging that both the program
and the proof are only incrementally more difficult, and that
neither is different in kind.

X. COMPARISON WITH MONITORS
The serializer mechanism is a more structured version of the

"secretary" concept which was conceived in general terms by
Dijkstra and later developed into a specific programming lan-
guage construct called "monitors" by Brinch Hansen and
Hoare. The purpose of serializers is to schedule access to
shared resources in order to protect their integrity. A serializer
is an actor that will allow only one process to have possession
at a time whereas a monitor is a Simula-67 class that will allow

only one process to be executing inside it at a time. We claim
that serializers support modular programming better than
monitors because serializers can be sensibly nested inside one
another, whereas usually it is unprofitable to nest one monitor
inside another because the outer monitor will be tied up while
the inner one is in use. A further advantage for serializers is
that use of a protected resource appears identical to the use of
the unprotected resource in a program that uses the resource.
A general principle of efficient operation that is applicable to
both serializers and monitors is to try to keep the serializer
(monitor) unlocked as much of the time as possible to keep it
from being a bottleneck in the operation of a larger system.
We believe that serializers are easier to write and verify in a

modular fashion than monitors. Serializers encapsulate useful
properties of the use of shared resources that are more difficult
to verify with schedulers written using monitors. For example
it is easy to verify that processes which use the virtual disk re-
source implemented in this paper do not indefinitely tie up the
physical disk, whereas this property cannot be proved using
the diskhead monitor presented in Hoare's paper.
Using serializers the condition necessary for a process to

continue execution is explicitly stated in a guarantee com-
mand, whereas the "conditions" used in the WAIT command
in a monitor do not explicitly state what condition is necessary
in order to proceed. In our experience this feature of serial-
izers lessens the number of explicit queues and tends to sim-
plify program proofs.
Another difference is the use of crowds rather than counters

to keep track of processes that have been allowed to access the
encapsulated resource. While there is an additional cost asso-
ciated with such accounting, we believe that the benefits will
make the use of crowds a decided advantage. It is possible to
examine the crowds to determine which processes are currently
accessing which resources.

XI. FUTURE WORK

A. Efficiently Compiling Serializers
On the basis of the examples that we have analyzed we be-

lieve that serializers can be efficiently compiled to produce
code for synchronizers that approaches the efficiency of other
proposed synchronization primitives such as semaphores, mon-
itors, conditional critical regions, and path expressions. Our
analysis indicates that schedulers constructed using these other
synchronization primitives are in practice going to have to test
essentially the same conditions that are explicit in the guaran-
tee commands of serializers. The efficiency of serializers needs
to be tested by constructing a compiler.

B. Prohibiting Starvation
The simple specification that "starvation is prohibited" is

common to almost all synchronization specifications. Yet
serializers at present make no such guarantee. They do make
it easier to prove that an implementation using a serializer is
free of the danger of starvation by facilitating the proof that
the serializer always replies to requests which it receives. We

21

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

feel that research should continue to search for mechanisms
that provide effective guarantees of such properties, yet also
provide sufficient generality to cope with a wide range of
problems.

C Preempting Processes in Protected Resources
Serializers have potential for use in robust systems in that

more information is available for error recovery. The addi-
tional information is useful for implementing debugging fea-
tures, deadlock detection, and gracefully backing processes out
of protected resources.
One proposal [8a], [19a1 is to keep a log of the side effects

of a process executing in a protected resource. A runaway
process in a protected resource could be preempted without
destroying the integrity of the resource by undoing all side
effects recorded in the log. Keeping such a log would be a sig-
nificant source of overhead which would only be worthwhile if
it significantly increased the reliability or efficiency of systems.
For example it would enable us to generalize the relay-to
command by the addition of a time out clause as follows:

(relay to a_protected resource amessage
(thru: a_crowd)
(time_out: time-expression

the_time_out_Chandler))
where the time out_handler is invoked if time-expression
expires before a,_protected_resource has replied to a-message.

D. Generality ofSerializers
The generality of serializers (monitors, path expressions, etc.)

still needs to be tested on a large number of nontrivial appli-
cations. Showing that serializers are a secure, modular, effi-
cient mechanism for implementing all the versions of the
readers-writers problem and the disk head scheduling problem
is no guarantee that they can do as well for other scheduling
problems that arise in large real time systems.

XII. CONCLUSIONS
In this paper we have introduced a modular arbitration prim-

itive called a serializer which is a more structured version of
the monitor construct previously developed by Brinch Hansen
and Hoare. Serializers aid in the synthesis of modular syn-
chronizers because their structure corresponds in a natural
way to typical specifications for useful synchronizers. The
structure imposed by using serializers provides important guar-
antees that aid in proving that the implementation meets its
specifications.
The specifications for a serializer include integrity specifica-

tions relating the order of access to the type of access, and
scheduling specifications to ensure that differing types of
access occur in the proper order. Part of this ordering specifi-
cation included a specification requiring that certain requestors
must be given the opportunity to use the resource concur-
rently. In the readers-writers serializer, we gave the integrity
specifications that readers and writers were mutually exclusive
in accessing the resource, and that at most one writer could
access the resource at a time. Our different solutions to the

readers-writers problem resulted from different scheduling
specifications.
We have attempted to explicitly introduce facilities into

serializers that directly correspond to synchronization specifi-
cations. The constraint that the resource is not being used by
either readers or writers when a writer enters the resource is
explicit in the code of our implementations, as is the require-
ment that no writers are using the resource when a reader
enters. Serializers provide that the condition for a waiting
process to proceed is explicitly stated. In this way integrity
specifications can be directly expressed in the language. Sched-
uling specifications are more complicated. We have been able
to use a specification language based on partial orders among
events to good effect to express scheduling specifications.
Furthermore, the structure of the serializers has enabled us to
give simple intuitive proofs that various scheduling specifica-
tions are satisfied by implementations that use serializers.

ACKNOWLEDGMENT

This paper builds on the thesis work of 1. Greif who gives
behavioral specifications for all of the versions of the readers-
writers problems given in this paper. She presents scheduling
specifications for the readers-writers problem that are very
similar to the ones in this paper. A. Yonezawa [23] has devel-
oped improved notations for expressing specifications like the
ones in this paper. D. Reed is also investigating the use of time
outs for concurrent processes using shared resources in a dis-
tributed system.
Conservations with O.-J. Dahl, E. W. Dijkstra, T. Hoare, J. H.

Morris, and J. Reynolds have helped us to crystallize our ideas
on these issues. T. Hoare, M. Laventhal, D. Brock, and
W. Clinger made suggestions that have materially improved the
content of this paper. We would particularly like to thank one
dedicated referee who carefully read through the paper and
suggested numerous improvements in presentation.
The concept of a serializer which we have developed owes a

tremendous intellectual debt to the monitors developed by
Brinch Hansen and Hoare. We have attempted to build on
their work to develop better structured arbitration primitive
for actor message passing systems. The development of serial-
izers would not have been possible if monitors had not been
previously developed. Brinch Hansen has developed the pro-
gramming language Concurrent Pascal which includes monitors.
He has used the language in the design and implementation of
an extremely modular single-user operating system called Solo.
D. Bustard and T. Hoare at the Queen's University of Belfast
have participated in the development of the programming lan-
guage Parallel Programming Pascal which includes a mechanism
called an envelope, which is related to our serializer mechanism.
In December 1975 a very preliminary version of this paper

was extensively revised to reflect improvements in serializers
that were achieved in the PLASMA implementation meetings
that fall in which R. Atkinson, M. Freiling, C. Hewitt, K. Kahn,
H. Lieberman, M. McLennan, R. Pankiewicz, B. Smith, and
A. Yonezawa were active participants. These meetings resulted
in substantial improvements in our understanding of modular
arbitration mechanisms which were presented by the authors

22

HEWITT AND ATKINSON: SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS

at the January 1976 Principles of Programming Languages
Conference in a paper entitled "Synchronization in Actor
Systems."
We originally were inspired to investigate the message-passing

paradigm for programming languages by a lecture which A. Kay
delivered at the MIT Artificial Intelligence Laboratory in
November 1972 on a preliminary version of the SMALLTALK-72
language [22] which has subsequently evolved into SMALL-
TALK-76 [21] and [20]. The SMALLTALK work in turn builds
on Simula-67 [2]. This paper and companion papers [1],
[131 attempt to extend this programming language paradigm
into the realm of concurrent programming.
Recently [13a] the ideas in this paper have been carried an

important step forward with the development of "primitive
serializers" for implementing guardians in distributed systems.
Communicating Sequential Processes [19] have been devel-
oped which also attempt to generalize the communication
paradigm to concurrent programming. A serializer imposes a

total ordering in time for all messages that arrive. This enables
us to formally treat issues of starvation and fairness in a rela-
tively straightforward way in this paper. As far as we know,
methods for proving these properties have not yet been devel-
oped for Communicating Sequential Processes.

REFERENCES

[1] H. J. Baker, Jr. and C. Hewitt, "Incremental garbage collection
of processes," MIT Artificial Intelligence Memo 454, Dec. 1977.

[2] G. M. Birtwistle, 0. Dahl, B. Myhrhaug, and K. Nygaard,
SIMULA Begin. New York: Auerbach, 1973.

[31 P. Brinch Hansen, "The programming language Concurrent
Pascal," IEEE Trans. Software Eng., vol. SE-1, pp. 199-207,
June 1975.

[4] -, "The solo operating system," Software-Practice and Experi-
ence, pp. 141-205, Apr.-June 1976.

[5] -, Operating System Principles. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[61 D. W. Bustard, "Parallel Programming Pascal (PPP)," version 1,
Dept. Comput. Sci., Queen's Univ. Belfast, Nov. 1975.

[7] E. W. Dijkstra, "Co-operating sequential processes," in Program-
ming Languages, F. Genuys, Ed. New York: Academic, 1968.

[8] -, "Hierarchical ordering of sequential processes," Acta Infor-
matica, 1971.

[8a] K. P. Eswaren, J. N. Gray, R. A. Lorie, and 1. L. Traiger, "The
notions of consistency and predicate locks in a database sys-
tem," Commun. Ass. Comput. Mach., vol. 11, pp. 624-633,
Nov. 1976.

(9] N. Goodman, "Coordination of parallel processes in the actor
model of computation," MIT Lab. Comput. Sci. TR 173, June
1976.

[10] I. Greif, "Semantics of communicating parallel processes," MAC
Tech. Rep. TR-154, Sept. 1975.

[11] I. Greif and C. Hewitt, "Actor semantics of PLANNER-73," in
Proc. Ass. Comput. Mach. SIGPLAN-SIGACT Conf., Palo Alto,
CA, Jan. 1975.

[12] C. Hewitt and R. Atkinson, "Synchronization in actor systems,"
in Proc. Conf. PrinciplesofProgramming Languages, Los Angeles,
CA, Jan. 1977.

[131 C. Hewitt and G. Attardi, "An axiomatic denotation specification
of a concurrent programming language," MIT Working Paper,
May 1978.

[13a] C. Hewitt, G. Attardi, and H. Lieberman, "Specifying and prov-
ing properties of guardians for distributed systems," MIT Al
Working Paper, Oct. 1978.

[14] C. Hewitt and B. Smith, "Towards a programming apprentice,"
IEEE Trans. Software Eng., vol. SE-1, pp. 26-45, Mar. 1975.

[15] C. Hewitt and H. Baker, "Laws for communicating parallel pro-
cesses," MIT Artificial Intelligence working Paper 134, Dec.
1976; Invited paper presented at IFIP 1977.

[16] -, "Actors and continuous functionals," presented at IFIP
Working Conf. Formal Description of Programming Concepts,
Aug. 1-5, 1977, St. Andrews, New Brunswick, Canada; MIT
Artificial Intelligence Memo 436A, July 1977.

[17] C. A. R. Hoare, "Towards a theory of parallel programming," in
Operating Systems Techniques. New York: Academic, 1972,
pp. 61-71.

[18] -, "Monitors: An operating system structuring concept,"
Commun. Ass. Comput. Mach., Oct. 1975.

[19] -, "Language hierarchies and interfaces," in Lecture Notes in
Computer Science, no. 46. New York: Springer, 1976, pp.
242-265.

[19a] B. W. Lampson and H. E. Sturgis, "Crash recovery in a distrib-
uted data storage system," Commun. Ass. Comput. Mach., to
be published.

[20] D. H. H. Ingalls, "The Smalltalk-76 programming system design
and implementation," in Conf. Rec. 5th Annu. ACM Symp.
Principles ofProgramming Languages, Tuscon, AZ, Jan. 23-25,
1978, pp. 9-16.

[21] A. Kay, "Microelectronics and the personal computer," Scientific
American, Sept. 1977.

[22] J. F. Shoch, "An overview of the programming language Smailtalk-
72," presented at the Convention Informatique 1977, Paris,
France.

[23] A. Yonezawa, "Specification and verification techniques for
parallel programs based on message passing semantics," MIT
Ph.D. dissertation, Dec. 1977; MIT Lab. Comp. Sci. Tech. Rep.
191.

Carl E. Hewitt was born in Clinton, IA, on
December 12, 1944. He received the B.S. de-
gree on a McDermott Scholarship, and the
Ph.D. degree on a Fellowship, both in mathe-
matics, from the Massachusetts Institute of
Technology, Cambridge, in 1967 and 1971,
respectively.
His graduate work was concerned with arti-

ficial intelligence and theories of computation.
He is presently an Assistant Professor of Com-
puter Science, Massachusetts Institute of
Technology.

Russell R. Atkinson was born in New York City,
NY, on August 17, 1950. He received the S.M.
degree from the Massachusetts Institute of
Technology, Cambridge, MA, in 1976.

His graduate work has been concerned with
programming languages. He is currently a
Ph.D. candidate at the Massachusetts Institute
of Technology.

23

