
Amdahl Multiple-Domain
Architecture

Robert W. Doran

University of Auckland*

roducts from IBM have, for more
than 20 years, taken the major P share of the general-purpose

mainframe computer market. This con-
tinual dominance by one supplier has
meant that the interfaces between its sys-
tem components have become de facto
standards. Any manufacturer wishing to
supply hardware or software products to
the major portion of this market must
recognize these standard interfaces.

The term “plug compatible” has come
to apply to products designed in accord-
ance with such de facto standard inter-
faces. In this article, 1 use the term
“standard” to refer to the de facto stan-
dard interfaces followed by the plug com-
patibles. (Hellerman discussed the origin
of these standards.’)

Amdahl Corporation produces stan-
dard hardware and software products.
Since its founding in 1970, Amdahl’s main
product has been a high-end processor sys-
tem. Given that this system runs with star.-
dard software, it follows that it must
support the current standard architecture.
Indeed, the first Amdahl computers were
hard-wired implementations of the IBM
System/370 architecture. However, in
later products, the Amdahl architecture
has included many extensions to the stan-
dard architecture of the time. Here 1 will
describe these extensions, why they were
made, and how they developed.

Amdahl’s architecture
for its mainframe
computers helps

maintain
compatibility with

a changing standard.
Its multiple-domain

facility allows
multiple operating

systems to share one
mainframe system.

Goals of architecture
extensions

. -. -. - - - - -. -
and to the PCM’s competitors. **

Compatibility. The concept of compati-
bility might look straightforward, but it
turns out to be surprisingly complex. The
architecture with which the PCMs must be
compatible, although a de facto standard,
is continually being extended, and the
PCMs have no prior knowledge of changes
to come. When a change is made to the
standard, the PCMs must also implement
a change. However, any change always
takes time before it is widely used-the
delay in acceptance depends on the mag-
nitude of the change and the extent of the
difficulties its adoption causes to cus-
tomers’ operations. This natural delay
means that the PCMs d o not have to fol-
low each change instantly, but can spread
their response over time.

Compatibility for a PCM thus means
not only compatibility with the current
standard, but also the ability to follow

A plug compatible manufacturer, or
PCM, can justify extensions to its archi-
tecture On two The first’ and
most important, is to make it easier for the
PCM’s products to remain compatible
with the standard despite the continual
extensions and changes made to it. The

*Doran prepared this article while on leave, working
at Amdahl Corp. in Sunnyvale, California.

*?he standard mainframe business is awash in acro-
nyms such as PCM; these are too prevalent to avoid,
bur I define them on first use and include them in the
glossary if used frequently. Note that I d o not use the
term PCM here to include IBM itself, although it, too,
is significantly constrained by the standards that it has
created.

20 oOl8-9t62/88/looO-oOZO$Ol.oO @ 1988 IEEE COMPUTER

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

zarina
Highlight

changes to the standard in a timely man-
ner. The latter mainly requires careful
management of the design and manufac-
turing processes for fast turnaround of
changes, and flexibility in the design archi-
tecture to accommodate extensions. How-
ever, i t also has implications for the
architecture that lead to the surprising con-
clusion that, to be compatible in the
future, the architecture should differ from
today’s standard.

One reason for this apparent paradox is
the desirability of anticipating change.
Although we cannot know the details of
future extensions, the really important
changes will be made by the dominant sup-
plier to solve problems experienced by its
“leading edge” customers. We PCMs can
observe thoseproblems, judge the kinds of
changes needed, and set up our computers
to have similar features.

Such anticipation, although not neces-
sary to ensure future compatibility, can
greatly reduce the difficulty and cost of
later modifications. Our solutions to the
eventual changes will surely differ from
these interim measures, but, meanwhile,
we will have gained experience with the
design and application problems involved.
Our product will have appropriate data
paths and so be easier to modify. Our
product might even adequately adhere to
the new or revised standard without major
changes to its hardware.

Even without anticipation of changes to
the standard, we would want to have
extensions. Compatibil i ty requires
presenting the same image to software.
Not having to modify standard software
to have it run on your hardware grants a
highly desirable “seal of compatibility” to
a PCM’s products. This goal applies to the
operating systems that control the com-
puter (system control programs, or SCPs,
in standard terminology). However, some
sections of a computer family design are
model-dependent and so need specialized
software for control, such as for thedetails
of machine checks or reconfiguration. I t
follows that we want to have some way of
running both standard SCPs and PCM
model-specific software on the same com-
puter, with such PCM software being
invisible to the other software.

Once we PCMs accept the desirability of
such software, we can further develop the
idea. Rather than regarding our software
as equal to other software, we would nat-
urally consider i t the ultimate controller of
the system because i t deals directly with
PCM hardware.

We must define mechanisms that allow
the PCM software to coexist with the stan-
dard SCP, yet maintain the ability to assert
control when necessary. The events that
trigger control by the PCM software, such
as on machine checks or when initially
starting the computer, must be selected
and the details of control switching spelled
out. Obviously, we must extend the archi-
tecture of the PCM computer considera-
bly to encompass this.

For the PCM, anything that can aid in
attaining compatibility quickly is valuable.
As mentioned above, design flexibility is
essential; for example, having spare
microcontrol storage. However, flexibil-
ity often conflicts with other goals, such as
high processor speed and low cost. Given
that we need PCM software anyway, there
arises the possibility of our using it in
attaining compatibility with the unknown
future. I t would effectively act as an exten-
sion to microcontrol store. This requires
that we give more thought to circum-
stances in which control has to be trans-
ferred to the PCM code, as well as to the
efficiency of the mechanisms involved.

These considerations will further increase
the richness of the PC h.1 architecture
extensions, which are jtistifiable 011 the
grounds of compatibilit) alone.

Added value. A PChl supplier must
select with care extension: made for added
value so as to satisfy a number of seem-
ingly conflicting criteri;:. Because cus-
tomers live in the standari I world, i t is best
if any extensions appear to \upplement or
exrend what the dominan supplier offers.
Innovations that obviousiy differ and that
appear to make clistome’s dependent on
the alternative supplier, although possible,
are difficult to introduce because the
justifiably conservative rnajority of cus-
tomers will resist them.

Innovations should alscb be unobtrusive.
For example, i t is importa i t that the PCM-
specific controlling softbare look built-in
to the hardware of thc ma &ne, that it not
complicate operation, an(that it definitely
not appear to thc custonie - LIS another SCP
to be mastered.

I t is thus advisable that extensions align
with what the dominan supplier does.

Glossary
Note that terms used to describe the
Amdahl architecture are italicized.

channel: processor for performing
1/0 in 370 architecture

CMS: Conversational Monitor
System-IBM time-sharing
system, part of VM

macrocode
controlsfare: mode of operation for

CP: control program-kernel of VM
CPU: central processing unit-

CR: control register
domain: set of resources controlled

fast assist: mode of operation for

GPR: general-purpose register
guest: a virtual computer or a pro-

gram running under a host
host: SCP that provides a virtual-

machine environment
macrocode: hardware-specific code

used to implement an architecture

processor

by an SCP

instruction emulation

MDF: Multiple Domain Facility-
arc hi tec t ure to support mu1 t i ple
SCPs in production operation

MVS: Multiple Virtual Spaces-the
main IBM SCP

native: operation of a proqram not as
a guest

PCM: plug-compatible
manuf ac t urer-manu f icturer of
products to de facto standard
interfaces

PSW: program status wor j
SCP: system control program-an

SIGP: signal processor-interCPU

system register: control register for

System/370: the architecture imple-

user state: mode of operation for a

VM: virtual machine-an IBM SCP
XA: Extended Arc hi tect u .e -

extension to System/370

operating system

signaling instruction

control state

mented in IBM mainfr2,me computers

guest SCP

October 1988 21

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

One possibility that looks safe is to solve
problems (such as addressing limitations)
that clearly must be dealt with and to make
the solutions available to the PCM cus-
tomers. Unfortunately, this approach
encounters a major difficulty: when the
dominant supplier solves the same prob-
lems, the PCM extensions will likely
become redundant because PCM cus-
tomers will tend to prefer the new standard
approaches, other considerations being
equal.

From the above arguments we can con-
clude that the PCM must be different yet
appear to be the same. Although actually
a reasonable goal for design features (such
as making the PCM product faster), it is
indeed quite a restriction for architecture.
If that were not enough, even more con-
straints arise just from business consider-
ations. In particular, the PCM wants to
obtain extensions-especially those not
required for compatibility-at low cost.
Rather than using the hardware involved
to provide an advantage that is merely
projected, the PCM could use it for more
obvious benefits, such as making the
machine faster, or leave it out altogether,
thus making the machine less costly.

Given all the restrictions under which
PCMs operate, we might question whether
any added-value extensions are reasona-
ble. However, consider t he main
direction-taken by Amdahl-of allowing
multiple SCPs to run on a single computer.
IBM itself supported such a facility, but
Amdahl could take an improved, fun-
damentally different approach unlikely to
be followed by IBM in the short term. Cus-
tomers could always replace the Amdahl
feature, albeit at the cost of purchasing
multiple computers or by reverting to the
more cumbersome IBM solution, so the
approach did not commit customers to the
PCM permanently. It would not require
changes to SCPs and so had no impact on
compatibility. Moreover, it would appear
as a built-in hardware feature, easy to
operate. It thus neatly satisfied all of our
external criteria and constraints.

Because, for compatibility reasons,
Amdahl needed to provide support for
controlling software outside the realm
of the standard SCP, we could argue that
the hardware cost to support multiple
SCPs added little to the total cost. So, we
could convince ourselves that support of
multiple SCPs also satisfied our internal
constraints. From this conviction, Amdahl
developed an architecture based on the
concept of simultaneously executing

Because macrocode
is under our control,

the architecture that it
sees does not have to
be the same as the

standard.

multiple SCPs, with extensive attention
to details that assist in maintaining
compatibility.

Support of multiple
operating systems

Rationale. Given that one SCP involves
quite enough complexity all by itself, it
might surprise those unfamiliar with the
large mainframe world that there is
interest in running more than one operat-
ing system on a single computer. In fact,
a mainframe computer center that sup-
ports a large number of users gains many
advantages. Some of the benefits the cus-
tomer might obtain include:

Customers can test and install new
versions of SCPs during normal working
hours without disrupting production
operation.

Customers can run different SCPs,
specialized for different applications, on
a single computer.

Customers can run multiple copies of
the same SCP, each tuned for a different
class of application.

Rather than modifying old programs
to allow them to run under new versions of
SCPs, customers can operate both the old
and new versions of the SCPs. If neces-
sa ry , they can m a k e conversions
gradually.

A separate SCP might provide suffi-
cient security in some applications that the
customer can avoid purchasing a special
machine or restricting certain periods of
operation.

Given that software failures occur
more frequently than do hardware
failures, a backup SCP can provide
improved availability.

Disparate workloads, resulting from

mergers, acquisitions, or rationalization,
can be consolidated on the same system.

Customers can obtain considerable
savings by only having to license one copy
of an SCP and the software that runs
under it.

Some benefits from multiple SCP oper-
ation accrue more directly to the vendor of
large systems:

One large system can replace multiple
small systems, thus creating new sales
opportunities.

It is easier to introduce an entirely new
SCP, because the customer's operation is
not immediately dependent on the new
SCP.

Vendors can use special SCPs for
diagnosis and measurement, running them
in parallel to the Sc'Ps being monitored.

The VM SCP. Of' all the above advan-
tages, the most exigent from the cus-
tomer's point of view would be that of
testing new releases of SCPs. This need led
IBM itself to support multiple SCP oper-
ation. This interesting story has been
described at length so 1 will
only recapitulate the main points here.

One of the three main SCPs supported
by IBM for large mainframes is VM/370.
This was developed, and flourished,
because it provided the Conversation
Monitor System, or CMS, time-sharing
subsystem.* VM itself was designed with
the idee fixe that time-sharing is best
implemented by providing each user with
the illusion of complete control of the
computer system. Under this approach,
the user is provided with a virtual machine
environment indistinguishable from the
original computer system.

Naturally, SCPs can run (as guests) in
a virtual machine under VM (the host), so
the ability to run multiple SCPs is immedi-
ately available. A guest operates using vir-
tual resources as opposed to the real
resources controlled by the host-there
may be many more virtual resources, such
as processors and main storage, than real
resources.

This approach has the disadvantage that
the performance of an SCP running as a
guest is severely degraded when compared
to performance running on the real
machine (native operation). For VM to
maintain control of the system, the guest
SCP has to operate in nonprivileged mode
with all supervisor-state instructions
trapped by VM, checked, and simulated.
Additionally, because the guest SCP
believes that it controls the whole com-

22 COMPUTER

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

puter, any resource mappings that i t sets
up (such as page tables) have to be inter-
cepted and modified by VM. (Goldberg
discussed the general topic of virtualiza-
tion of resources.5)

As mentioned above, the ability to run
test SCPs was so important to some users
that they did use V M to run other SCPs,
accepting the loss of performance
involved. IBM noticed this class of trou-
bled users and responded by enhancing the
machines running VM to make them per-
form better, using various architecture
extensions called assists.’ Eventually,
with the features called Virtual Machine
Assist plus Preferred Machine Assist (on
the System/370) and Interpretive Execu-
tion Facility plus SIE Assist‘(on the Sys-
tem/370-XA, the successor architecture to
the System/370), i t became possible to run
one selected SCP (the “preferred” guest)
under VM with performance very close to
native operation. This made i t possible to
use guest SCPs for production operation.

These enhancements were most advan-
tageous to IBM when migrating customers
from the 24-bit-addressing MVS to the
31-bi t -addressing MVS/XA. IBM
provided customers with the VM/XA
Migration Aid, which comprised a “cut-
down” version of VM that could run both
old and new systems simultaneously

The multiple domain facility. The
Amdahl architecture was specified in 1977,
long before the above events, which took
place in the early 1980s. We at Amdahl had
also noticed the customers’ needs, but we
didn’t find the VM approach attractive
because it would involve producing a full
S C P and certainly would run counter to
the criterion of being unobtrusive.
Amdahl software engineers explored a
different possible approach, which even-
tually led to a product called VM/PE (for
Per formance Enhancement) . This
involced running the MVS operating sys-
tem as if i t were in control of the whole
computer by placing i t in the low portion
of the real address space and not telling it
of the existence of the high address space
where VM was placed. I t required the
addition of software to MVS so that con-
trol could be given to VM on the occur-
rence of interruptions.

The security of the approach depended
on the reliability of MVS code. Although
this was fine in practice, we did not want
a situation where each SCP could interfere
with another, nor one that needed modifi-
cations to a standard SCP. Amdahl’s

.”.---.”---,

f VM

i

Figure 1. Contrasted models of operation, showing (a) IBM with M a$ preterred
guest under VM and (b) Amdahl multiple domain operation. Bold oullined 5)\terns
can be used for production operation.

VM/PE is acknowledged and described in
Bean and Gum’s patent‘ for IBM’s Pre-
ferred Machine Assist, which continued
the same approach under VM, but fixed
some of its problems.

I t was also natural for Amdahl to extend
the VM/PE approach but, rather than
concentrating on improving MVS under
VM, i t made more sense for us to regard
the two as equals and to put the code that
controls the allocation of the hardware
outside of both. This led to our approach,
contrasted to the IBM approach in Figure
1. Our approach added another level of
control to the system, containing a con-
troller that came to be termed macrocode
(Amdahl uses macrocode to refer to both
the class of code and the control entity
itselo. Macrocode, supported by neces-
sary architecture changes, has the follow-
ing goals:

Be ultimately in control of the com-

Share the hardware among multiple

Appear to users to be built-in, part of

Assist with providing a compatible

Provide secure boundaries between

Note that, although macrocode has
some of the functions of an SCP like VM,
its rationale and goals are quitedifferent.

puter hardware.

SCPs with minimal overhead.

the hardware.

image to standard SCPs.

independent SCPs.

Consequently, quite dil fci ent architec-
tural solutions are called f) r . Ikcause mac-
rocode is under O U I control , the
architecture that i t sees dc e5 not have to be
the same as the standaitl--\vhich is an
astounding degree of f r :cdom to give a
PCM. Customer progra n \ ncver see the
architecture, so there is I o cxfernal com-
patibility reason for i t to l)i‘ the same from
model to model, or for it I ot to evolve over
time. The architecture ca I he very 5pecific
to the hardware and deflncd at a lebel of
detail that would be entii-vly inappropriate
for general programming. T h i (intermedi-
ate status accounts for tlre coining of the
marketing term macrocode to describe
coding at this level.

Outline of architecture
This description applii s generally to the

architecture developed far the Amdahl580
and 5890 series compute’s, despite differ-
ences in the details of clit‘lerent models.
Initially, only the System /3’0 architecture
was supported, but la er the Anidahl
architecture was extended to allow simul-
taneous execution of c . 1 ’ ~ using Sys-
tem/370 or System/370- X.4. Most of the
Amdahl architectural ex:ensions apply to
processors, called CPUs [ti fhe mainframe
world.

The description below should be under-

October 1988 23

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

standable to the general reader, but com-
plete apprec ia t ion requires some
knowledge of the IBM System/370 archi-
tecture.

Amdahl tries to support the model of
operation displayed in Figure lb , where
there is one controller called macrocode
and multiple SCPs that operate indepen-
dently, with the goal of minimal overhead
so that several of the SCPs can be used for
production operation. We take this to
imply that, if there are no more virtual
CPUs than real CPUs, and macrocode is
not invoked for compatibility reasons,
then there should be essentially no diminu-
tion of performance compared to native
operation of the SCP.

Resource sharing and mapping. The
total system is shared among the multiple
SCPs and macrocode. Let's first see how
the system components operate on behalf
of macrocode and each SCP, how the
SCPs are protected from each other, and
how the SCPs are provided with the illu-
sion of total control.

We need to distinguish between the
operation of the hardware for SCPs and
for macrocode. We introduce a new state
o f operation for CPUs, called control
state, for macrocode, which we contrast
with operation for SCPs, called user state.
In both states, the system operates as a var-
iant of the general System/370 architec-
ture. The term domain refers to the set of
resources used by an SCP in the user state,
and the term system refers to the entire
hardware resource as seen by macrocode.

Each CPU includes a new set of
registers, used by macrocode to control
domain operation, called system registers
(see Table 1).

Main storage divides into sections allo-
cated to the control of one domain or to
macrocode. Macrocode uses the actual
system main-storage addresses and can
address any part of main storage. How-
ever, it normally operates out of low stor-
age and, for reliability reasons, is restricted
in its use of system main-storage addresses
by the system addressing limit. System
main-storage addresses are always 3 1 bits
in length.

For domains, the system supports both
24-bit and 31-bit addressing. The block of
main storage currently being used is
delimited by a base-bound mapping
defined by the domain main-storage base
and limit. All domain main-storage refer-
ences are checked against the limit and
converted by addition of the base to sys-

Table 1. Control fields held in system
registers.

Control Fields

System addressing limit
Domain main-storage base
Domain main-storage limit
Domain channel-map pointer
Domain number
Domain CPU address
Domain prefix
System timer
TOD clock offset
State-switching interruption mask
System interruption mask
CR load mask
PSW status-change mask
Feature control word
Fast-assist base
Domain CPU status
Domain compare address

tem addresses (see Figure 2). Although
simple, this method is entirely appropriate
where memory is shared among SCPs;
they do not come and go like processes and
are seldom reconfigured. Note that this
domain main-storage mapping is in addi-
tion to, or on top of , the virtual-storage
mapping of the System/370.

In the System/370 architecture, special
processors called channels perform I/O.
1/0 channels are each dedicated to a
domain or to macrocode. A domain chan-
nel map (see Figure 3) held in main storage,
pointed to by a system register, maps
domain channel addresses to system chan-
nel addresses in a general manner (later
modified to apply to the subchannel
addresses of the XA architecture). Domain
numbers distinguish the domains. When
an 1/0 operation is initiated, the state of
the CPU indicates which domain (or mac-
rocode) is active so that it is possible to
ensure that only a CPU operating on
behalf of that domain is interrupted on
completion of the operation. The channel
processor, operating independently of the
CPU, receives details of the memory map-
ping from system registers when the 1/0
operation is initiated. Thus, initiation or
completion of an 1 / 0 operation requires
no additional software intervention.

CPUs are not dedicated to SCPs, but
can be time-multiplexed between the

domains and macrocode. The System/370
architecture specifies a system comprising
a number of CPUs, each identified by a
CPU address. A domain CPU address
held in a system register allows any real
CPU to act as any domain CPU. The inter-
processor signalling instruction SIGP (for
signal processor) uses the domain CPU
address to locate the correct processor to
signal. The old System/370 architecture
also used the domain CPU address in I/O,
where an 1/0 interruption had to be ser-
viced by the CPU of origin.

The mappings defined above allow mul-
tiple domains to operate with little over-
head. As described, once SCPs are set up,
running them under macrocode involves
no significant overhead. Translation steps
involved with 1 / 0 and inter-CPU signal-
ing occur too infrequently to measurably
affect performance. In modern fast com-
puter designs, the extra level of main-
storage mapping is invoked only for the
few references for which translation is not
bypassed by a translation lookaside
buffer. So, the main-storage mapping also
has no dele'erious effect.

Multiplexing of CPUs. The situation is
more complicated than just described.
Macrocode has to multiplex the real CPUs
among all the domains when there are not
enough real CPUs to dedicate one to
executing each domain CPU. Further-
more, we use macrocode to aid compati-
bility and, in fact, to provide part of the
virtual machine illusion in circumstances
that occur so infrequently as to not war-
rant implementation in hardware.

Consequently, transitions between mac-
rocode and SCP are much more frequent
than transitions b e h e e n SCPs. Above, 1
gave the impression that CPUs would be
time-multiplexed between macrocode and
SCPs. This holds true for resources not
used by macrocode, such as floating-point
registers, but other resources needed by
both macrocode and SCP are replicated.
There are both system and user general-
purpose registers, or GPRs, as well as both
system and user prefix registers. (The
original System/360 was essentially
uniprocessing and used the bottom 4 kilo-
bytes of real storage as an extension of the
CPU registers. The prefix register was
introduced to the System/370 to relocate
that area to permit more than one CPU.)
The System/370 control registers (or CRs),
which contain fields affecting system oper-
ation, occupy an intermediate status. Most
are not needed in control state, since mac-

24 COMPUTER

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

rocode does not use virtual addressing and
thus does not need the associated controls,
but needed fields are duplicated in system
registers.

Now, let’s look at the extensions to
allow macrocode to multiplex the CPUs
between SCPs and itself. We expect that
control does not pass from SCP to SCP,
but always through macrocode. Let me
outline the sequence taken when control
passes from macrocode to SCP and back.

Macrocode loads the system registers
that define the domain in which the SCP
operates. The state of execution of the
CPU is set properly, meaning that the
domain GPRs are loaded to reflect the cur-
rent state of execution of the domain on
this CPU. Macrocode then executes a spe-
cial instruction to give control to the SCP.

For time slicing, macrocode uses a spe-
cial system timer to regain control. The
system timer is a direct analog of the Sys-
tem/370 CPU timer. When it counts down
to zero, it causes an interruption that gives
control to macrocode. Control can also be
returned to macrocode in other circum-
stances that indicate that the SCP has
ended its time slice early.

One detail of interest when discussing
CPU multiplexing is the System/370 time-
of-day clock. The TOD clock is a binary
counter, incremented at least once a
microsecond, that wraps around in 143
years. Different SCPs might operate their
clocks in different epochs, giving different
meanings to time zero. Macrocode does
not use the TOD clock to cause interrup-
tions, so there is no need for two TOD
clocks in each CPU. However, it is impor-
tant in a multiprocessor system that TOD
clocks on separate CPUs not lose synchro-
nization. So, we would not want the TOD
clock to change when a domain is dis-
patched because that might cause errors to
accumulate in the TOD value. Conse-
quently, the Amdahl architecture provides
a TOD offset that is subtracted from the
system TOD clock to give the TOD for a
particular domain.

Interruptions. The above outline
immediately raises many questions about
the interruption process. The interruption
mechanisms needed for multiplexing make
up a small part of what we need to prepare
for compatibility. Moreover, they are
imbedded in the more general architecture,
which is best considered separately.
Amdahl includes most of the features
described immediately below to allow a
fast response to changes in the standard

I 1
system area

I t-I Main storage

domain 11
Domain main
storage address 1 Domain address base

Main storage

System address limit

System main
storage address

Main storage
addresses

System
registers

System
main storage

_-

Figure 2. Main storage organization.

0
1
2
3
4

Domain channel 5
6
7

System
channels

I I
Main storage

System register

Figure 3. Domain channel maps.

architecture; they do not operate under
normal circumstances.

In the System/370, the current instruc-
tion address is stored with other control
fields and bits in a special program status
word, or PSW, register. An interruption
involves saving the old PSW in main stor-
age and loading a new one. We are
interested here in state-switching interrup-
tions that transfer control from a domain
SCP to macrocode. We can make an inter-
ruption state-switching by preceding it
with a switch from user state to control
state. That changes operation from

domain to system addressing, so that the
PSW swap takes place in system main stor-
age. When the interrulition entry com-
pletes, macrocode specific t o the
interruption class executes.

In preparing for corn[atibility, we must
ensure that macrocode can gain control
upon the occurrence of any situation on
which one could define an architectural
extension. The System/ 370 interruptions
fall into this category. 1 hey can be speci-
fied as state-switching b y bits in the state-
switching interruption nask. Some spe-
cific interruptions, such as restart, always

October 1988 25

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

cause a switch in state. The state-switching
interruption mask also includes bits that
override or replace System/370 bits used
to mask interruptions (see Table 2). Some
interruptions that occur not on behalf of
the SCP but for macrocode can also cause
a state switch, such as an 1 / 0 interruption
for 1/0 initiated by macrocode.

Other interruptions do not belong nat-
urally to any of the System/370 classes
because they are used only to switch state.
These are assigned to a new system inter-
ruption class, controlled by the system
interruption mask. This includes the sys-
tem timer interruption mentioned above
and some monitoring interruptions.

Some events that occur in the domain
need to be monitored by macrocode. We
always face the possibility of extended
interpretations of the meaning of Sys-
tem/370 control registers, in which case
macrocode needs to know when the
registers are set by an SCP. By providing
a CR load mask, we enable the CRs to be
individually singled out for monitoring.

Alteration to mask bits in the PSW is an
important change. The event of an SCP
entering the wait state corresponds to the
turning on of the wait bit in the PSW.
Another potentially interesting event
occurs when the SCP enables for some
class of interruptions by changing a PSW
mask bit; macrocode can only emulate an
interruption in an SCP’s domain when the
domain CPU is enabled to accept that
interruption. These changes of status are
monitored by bits in the PSW status
change mask. When the monitored bits
change as specified by the mask, an
immediate system interruption results. A
system interruption code placed in storage
summarizes the cause of a system interrup-
tion (see Table 3).

Fast-assist mode. We can detect the
most important type of extension, the
introduction of new instructions, by the
occurrence of a program interruption for
an invalid operation code. At one time, we
thought that we could use state-switching
interruptions to gain control to emulate
new instructions. However, the interrup-
tion process turned out to be difficult to
implement so that it would be fast enough
for this purpose. Instead, we decided to
introduce a substate of control state,
which became known as the fast-assist
mode, that had a predetermined, quickly
invoked state of execution. We designed
the fast-assist mode to make it possible to
invoke emulative code for new instructions
with minimal overhead. It is closely

Table 2. Bits of state-switching
interruption mask.

Bits

Machine check mask
Check stop control
Recovery report mask
Degradation report mask
External damage report mask
Warning mask
External interruption switch
I/O interruption switch
SVC interruption switch
Page translation exception switch
Program interruption switch
Interval timer mask
PER override

Table 3. Bits of system interruption
code.

I Bits
_ _ _ _ _ _ _ _ _ ~

System timer
PSW status change
CR load
Single-step completion
CPU address compare
External address compare
Interruption from fast-assist mode

associated with the design architecture of
the particular CPU.

Any operation code not defined will,
when executed, cause an entry into fast-
assist mode. Some defined instructions can
be selected by various control fields, such
as the feature control word, to also be
assisted. Other instructions can be
executed by hardware in frequent cases,
but infrequent cases cause assist entry. For
example, with the SIGP instruction,
orders such as restart are never executed
directly in user state.

Fast-assist entry switches to control
state with a predetermined real-system
addressing mode. The domain address of
the instruction immediately following is
placed in a system GPR, so that macro-
code knows what to emulate. Addition-
ally, the effective addresses appropriate to
the instruction type-already evaluated-
are placed into the system GPRs. The

entry resembles a jump more than an inter-
ruption. The state of execution of the SCP,
including its PSW, is retained in the CPU
so that a special jump instruction can
quickly return control to the SCP.

For any domain, we can specify the
instruction operation codes that not only
will cause entry to fast-assist mode, but
will do so through a vectored branch to
arrive at code specific to each instruction.
Additionally, for each operation code, we
can specify the application of certain tests
to the instruction, such as whether the
instruction is valid for the SCP’s mode of
execution and whether the operands are
appropriately aligned. I f an instruction
fails a test, bits placed into a GPR define
the reason for the failure. Only instruc-
tions that pass these validity tests have a
vectored entry. Others share a common
entry, so that we know vectored instruc-
tions to be immediately executable. The
net effect of all these features is minimized
overhead of entry to, and exit from,
emulative code for the instructions most
frequently emulated.

We make the fast-assist entry branches
relative to the fast-assist base so that we
can have macrocode specific to each
domain and thus support, for example,
both System/370 and System/370-XA.

Emulation assistance. Whether emula-
tive code is entered through vectored fast
assist, normal fast assist, or interruption,
emulation will require that macrocode be
able to inspect and alter domain resources.
Time-multiplexed resources encounter no
particular problem, but where resources
are duplicated, or there are mappings, we
would want fur ther a rch i tec tura l
assistance because the addresses used by
macrocode normally apply to system
resources. The extensions tnade are differ-
ent, but appropriate, for each type of
resource.

In control state, instructions use the sys-
tem GPRs. User GPRs can be manipu-
lated using new instructions to move
values between the system and user GPRs
and also to store and load multiple user
GPRs to and from system memory. Table
4 lists these and other new instructions.

Macrocode programmers would like to
use many of the instructions to refer to
domain main storage. Ideally, we would
like t o have the ability to specify that any
main-storage address used in control state
is either a system or domain address, but
we know of no easy way to modify the Sys-
tem/370 instruction format to distinguish
the address type. The first solution we tried

26 COMPUTER

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

specified a useful subset of instructions
and provided new variants referring to
domain main storage from control state.
We selected these instructions because we
expected them to be frequently used (such
as OR-Immediate) or because the effect
would otherwise be difficult to program
(such as Purge Translation Lookaside
Buffer and, for synchronization, Compare
and Swap). Later, we made a nice exten-
sion where we selected some of the system
base registers as always generating domain
addresses.

Of course, many modes of addressing
arc possible when referring to domain
main storage. How we specify the address-
ing mode depends on whether the CPU is
in control state or fast-assist mode. One
system register contains a copy of the con-
trol fields in the user-state PSW, called the
domain CPU status. The status loads
automatically when macrocode is entered
by interruption, but also can be changed
by macrocode to alter addressing modes.
In fast-assist mode, the type of addressing
used is predetermined for system
addresses. For domain addresses, i t is still
controlled, in the main, by the retained
user-state PSW.

For 1 / 0 operations, the instructions
executed in control state usually refer
directly to the system channel or subchan-
nel. The domain channel map is still avail-
able, so new instructions are provided to
allow a channel program in domain stor-
age to be initiated from control state. Var-
iants of the Start 1/0 domain instruction
allow the domain SCP to receive resulting
1/0 interruptions, or we can specify that
all 1/0 interruptions cause a switch of state
to macrocode control. The domain chan-
nel map has a bit for each address that will
allow execution of I/O instructions for
each individual channel or subchannel to
be fast assisted. Thus, all levels of involve-
ment in 1/0 are possible, from none at all
to having macrocode d o the whole job.

The most frequent SIGP instructions
execute directly in the user state. The infre-
quent cases cause entry into fast-assist
mode. Because these are infrequent, the
SIGP in system state uses only system
CPU addresses (except for two extended
orders to sense and reset a domain CPU).

Measurement and monitoring. We
included some monitoring features to
emulate the functions of the console in the
System/370 architecture. The console can
single-step the machine and also halt when
a specific main-storage address is used. We
provided these features on a domain basis,

?

but, rather than stopping, a system inter-
ruption occurs. We used the domain com-
pa re address here . Measurement
instructions are used solely for perfor-
mance evaluation within Amdahl.

Development of the
Amdahl architecture

The first machine with the multiple
domain facility built in, the AmdahlS860

Table 4. Added macrocode instructions.

was first delivered in mitl-1982. Initially,
it operated compatibly with the old Sys-
tem/370 architecture without using any
extensions.

After the 5860 shijlmcnt, Amdahl
received its first major compatibility chal-
lenge when IBM released details of the Sys-
tem/370-XA architecture. This had been
threatened for some time and weexpected
that we would have to make hardware
alterations to data paths o r implement fre-
quently executed instructions.

Domain Main Storage Variants 1
AND Immediate Domain
Compare Double and Swap Domain
Compare and Swap Domain
Invalidate PTLB Entry Domain
Load Real Address Domain
Load System from Domain
Move Characters System to Domain
Move Characters Domain to System
OR Immediate Domain
Store System to Domain
Test Under Mask Domain

Instructions to Implement XA
Request Subchannel Process
Request Channel Monitor
Request Set Address Limit
Request Interruption Deletion
Test 1 / 0 Subchannel Status

Control Instructions
Enter Fast Assist Mode
Load PSW and Return
Load System Registers
Load and Test Registers System from User
Load and Test Registers User from System
Purge Domain Maps
Purge System Maps
Resume User State
Set Domain Controls
Set Channel
Set Channel Domain
Start 1 / 0 Domain Mandatory
Start 1 / 0 Domain Optional

i Store Domain Controls
Store System Registers

Measurement Instructions
Test 1 / 0 Channel Status
Write Hardware Measurement Command
Write Hardware Measurement Data

October 1988 27

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

The XA architecture did force us to
make some hardware changes and imple-
ment some instructions (such as the 3 1-bit
address branch instructions), but we emu-
lated all of the new XA 1/0 instructions on
the 580 using macrocode. We encountered
one unexpected flexibility-we could emu-
late some new instructions partly in hard-
ware but mainly in macrocode. Some of
the Amdahl instructions circa 1984 (see
Table 4), such as Request Set Address
Limit, were to allow implementation of the
extended architecture. We paid a slight
performance penalty for partial emulation
o f XA, but the speed of reintroduction of
compatibility was as we had hoped.

Because we used macrocode to attain
compatibility, it became a necessity. All
machines Amdahl has shipped since have
required macrocode to operate. The next
computer designed, the 5890, imple-
mented more XA architecture in hard-
ware, particularly in the 1 /0 area,
reducing the performance hit to negligible
levels. Since all 5890s would run under
macrocode, it became attractive to use
macrocode as a permanent method of
implementing infrequently executed
instructions. Even with only one SCP
executing, macrocode is always involved
in the interpretation of some instructions
(such as most tracing instructions).

Further extensions to the IBM architec-
ture have-to the extent that they are
important to the customer base-been
absorbed and emulated. Of particular
interest was IBM’s introduction of
expanded storage-a large address space
separate from main storage and addressed
as 4K pages only. Given that Amdahl sys-
tems had a large main storage, we simply
used a portion of system main storage as
expanded storage, with macrocode doing
ordinary memory-to-memory moves to
emulate paging to and from the expanded
storage.

erhaps the most gratifying result
of the Amdahl architecture has P been the acceptance of multiple-

domain operation. On the 580 and 5890
machines, this is offered as the added-
value Multiple Domain Facility, with
which users can run up to four domains.
Although we knew that many customers
would find MDF useful, we have been sur-
prised by the extent of its use. As of this
writing, the MDF feature is used by 50 per-
cent of Amdahl’s customers and is
included on 75 percent of all new ship-
ments. It is perhaps fortunate that Amdahl

introduced MDF at a time when main-
frame performance was growing at an
unprecedented rate (due to multiproces-
sing “within the cabinet”), thereby ena-
bling many customers to consolidate
operations on the one computer. MDF
offers a much simpler consolidation than
requiring systems to be merged under a
single SCP.

Another interesting development has
been the convergence of ideas in this area.
The major Japanese manufacturers,
Fujitsu’ and Hitachi,’ have developed
their own architectures to allow multiple
production SCPs. IBM has improved its
VM assists to allow multiple production
guest SCPs. All these developments
employ a user-visible, VM-like SCP. How-
ever, the most recent development, IBM’s
introduction of the PR/SM (Processor
Resource/Systems Managerg) feature,
supports multiple domains using a hidden
controller (the architecture is based on the
assists developed for VM/XA). It now
appears that multiple domain operation
has become a permanent feature of large
mainframes. 0

Acknowledgments
So many people have been involved with the

Amdahl architecture that the following list can-
not begin to be complete. My apologies to those
not mentioned. However, particular credit is
due to the other architects, Art Willis, Bob Lent,
Ken Weng, Nai-Ting Hsu, Kai Wong, and Arno
Krakauer; to the managers at various times and
levels whose support caused the project to pro-
ceed, Dave Anderson, Kornel Spiro, Harold
Shattuck, Howard Honig, Richard Bishop,
Lloyd Dickman, David Morgenthaler, Gene
White, and Gene Amdahl; to the hardware
designers who implemented it all, in particular
Bob Maier, Sherman Lee, Uli Spannagel, Gary
Woffinden, and Ron Kreuzenstein; and, finally,
to the macrocode programmers who made it
work, Steve Harrold, John Andoh, Jim
Smullen, Kevin Ewert, Joe Tumminaro, and
Bob Slate. I also would like to thank my col-
leagues at Amdahl for their assistance in read-
ing this article and for their many valuable
suggestions. Finally, I would like to thank
Amdahl Corp. for support during the writing of
this article and the European Organization for
Nuclear Research (CERN) for support during
its preparation.

References
1. H. Hellerman, “The SPREAD Discussion

Continued,” Annals of the History of
Computing, Vol. 6 , No. 2, April 1984, pp.
144-149.

2. R.J. Creasy, “The Origin of the VM/370
Time-sharing System,” IBM J . Research
and Development, Vol. 25, No. 5, Sept.
1981, pp. 483-490.

3. R.A. MacKinnon, “The Changing Virtual
Machine Environment: Interfaces to Real
Hardware, Virtual Hardware, and Other
Virtual Machines,” IBM Systems J . , Vol.
18, No. 4, 1979, pp. 18-46.

4. P.H. Gum, “System/370 Extended Archi-
tecture: Facilities for Virtual Machines,”
IBM J . Research arid Developmenf, Vol.
27, No. 6, Nov. 1983, pp. 530-544.
R.P. Goldberg, “Survey of Virtual
MachineResearch,” Computer, Vol. 7, No.
6, June 1974, pp. 34-45.
G.H. Bean and P.H. Gum. “Method and
Means for Switching System Control of
CPUs,” US Patent No. 4,494,189, Jan. 15,
1985.
S. Kanada et al., “Virtual Machine Sys-
tem,” US Patent No. 4,400,769, Aug. 23,
1983.
H. Umeno and S.Tanaka,”New Methods
for Realizing Plural Near-Native Perfor-
mance Virtual Machines.” IEEE Trans.
Computers, Vol. C-36, No. 9, Sept. 1987,

IBM, “IBM 3090 Processor Resource/Sys-
tems Manager (E’R/SM) Feature,”
IBM product announcement 188-039,
Feb. 15, 1988.

pp. 1,076-1,087.

Robert W. Doran is an associate professor of
computer science at the University of Auckland
in New Zealand, where he serves as head of the
department. From 1976 until 1982, he worked
at Amdahl, where he became a principal com-
puter architect, responsible for the specification
of the architecture of the 580 series computers.

Doran’s research interests lie in the areas of
computer architecture, logic circuits, and com-
puter history. He was educated at Canterbury
University in New Zealand and at Stanford Uni-
versity in California.

Readers may contact the author at the Dept.
of Computer Science, University of Auckland,
Private Bag, Auckland, New Zealand.

28 COMPUTER

Authorized licensed use limited to: Princeton University. Downloaded on June 24, 2009 at 18:24 from IEEE Xplore. Restrictions apply.

