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Abstract

Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then th
shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the conte
line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contac
line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding ¢
this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of
anisotropic wetting and to proposergethodology to quantify the apparestntact angles and the drop skajiVe report a theoretical and an
experimental study of wetting of surfaces with parallel groove geometry.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction termed a ‘composite’ contact. A drop with a composite con-
tactis of interest because it easily moves on the substrate due
Amplification of hydrophobicity due to surface rough- reduced resistan_ct@,lO]. This is desirable in applications
ness is frequently seen in natUtg and has been demon- ~ Such as ‘self-cleaning’ surfacs]. _
strated for microfabricated rough surfag@s4]. Roughness ~ Ifthe roughness geometry is isotropic then the drop shape
induced superhydrophobicity is considered a viable option |s.almost spherical andt_he apparent.contact angle of the drop
for surface tension induced drop motion in microfluidic de- With the rough surface is nearly uniform along the contact
vices. Another application is inspired by superhydrophobic Ine- The apparent contact angle for a ‘composite’ spherical
plant leaves. Water drops are almost spherical on some planflfOP iS given by Cassie’s formula1] while that for a ‘wet-
leaves and can easily roll off, cleaning the surface in the €d’ spherical drop is given by Wenzel's formyle2].

procesg1]. There are numerous applications of artificially T the roughness geometry is not isotropic, e.g., parallel
prepared ‘self-cleaning’ surfaces. grooves, then the apparent contact angle is no longer uni-

A drop can typically reside in two ways on a given rough form along the contact line. It was 'reported that the apparen.t
hydrophobic surfacf87]. It either sits on the peaks of the contact angles observed perpendicular and parallel to the di-

surface roughness or wets the grooves (to be referred to as éectlon ofthe grooves are differefa]. The exact mechanism

wetted contact), depending on how it is formed. The energy or amsc;t:jqpm wettlngAar)d tthe f""‘s““g.”t sfhapc; of t'he"drop
of these two states is different—the one with a larger con- were not discussef8]. Anisotropic wetting for chemically

tact angle has higher enerffy,8]. Which of the two states patterned hydrophilic surfaces has also been obs¢iajd
has lower energy is determined by the geometry of the sur- Wenzel and Cassie formulas are insufficient to understand

face roughnesfs,8]. A drop that sits on the peaks has ‘air this anisotropy in the wetting of rough surfaces. A better

pockets’ along its contact with the substrate; hence it will be understanding Of this problers Cr't.lcal In designing rough
superhydrophobic surfaces. In this paper we report a theo-

retical and an experimental study of the wetting of surfaces
* Corresponding author. with anisotropic roughness. The primary objective of this
E-mail address: n-patankar@northwestern.e@M.A. Patankar). work is to determine the mechanism of anisotropic wetting
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and to propose a methodology to quantify the apparent con-the free energy (Eq.(1)) with respect to the liquid—fluid in-

tact angles and the drop shape.

terface shape, while constraining the drop volume to a fixed

In Section2 we will present results based on numerical value, gives the equilibrium drop shape. In the solution pro-

simulations to understand the primary characteristics of the
drop shape on anisotropic roughness. In Sec3iorwe will

cedureG /oyt is minimized. Hence, for a given problem, the
only material parameter we need to specifg4s

present experimental results of contact angle measurements. It can be showri18] using variational principles that the

The mechanism of anisotropic wetting will be discussed. A
concept of ‘equivalent’ contact line will be used to theo-
retically reproduce the experimental results. Discussion and
conclusions will be presented in Sectidn

2. Numerical smulation of the drop shape

Public domain software by Ken Brakk#4,15]is used to

constrained minimization procedure, above, is equivalent to
solving the Laplace equation for the pressure drop at each
point on the liquil—fluid interface,

3)

along with Young’s equatioif2) on the solid—liquid—fluid
contact line as the boundary conditiaRy, is the mean ra-
dius of curvature and\p is the pressure drop, at a point on

numerically investigate the 3D drop shapes and the apparen{l® drop surface. A stationary drop on a substrate, in con-

contact angles on rough surfaces. We consider a roughnes
geometry of horizontal groove§ig. 1). A similar investi-
gation of drop shapes on chemically heterogeneous surface
has been reported earlier by Brandon e{®5,17] We ne-
glect gravity, which is a reasonable assumption for small
drops.

The numerical procedure is based on minimizing the free
energy of the system to obtain the equilibrium drop shape.
The free energys of the system is given by

G

- = S —

f COSHad A,
ol
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1)

where | denotes the liquid that makes the drop, f denotes
the fluid (typically air) surrounding the drop, s denotes the
solid surfaceSir and Sg are the liquid—fluid and the solid—
liquid interfacial areas of contact amg is the liquid—fluid
interfacial tension (or surface energy density)is assumed

to be constant. The intrinsic contact an@ef the substrate
material is defined by Young’s equation,
Osf — Os|

3

(@)

COS@a =
olf

whereog andost are the local solid—liquid and solid—fluid
interfacial tensions, respectivelly > 90° represents a hy-
drophobic contact. The expression for the free energy can be
appropriately modified to account for gravity. Minimizing

l Top view

Side view

\From view

Fig. 1. Schematic of a sessile drop on a substrate with horizontal grooves.
Note the definitions of the different views.

stant ambient pressure, will have a constant pressure drop at

each point on the liqadi-fluid interface (gravity neglected).

Hence, it follows directly from Eq(3) that a sessile drop

should have a constant mean curvature surface. In two di-
mensions, the arc of a circle is the only constant mean cur-
vature curve. In three dimensions, the spherical surface is
one of the many possible constant mean curvature surfaces.

Detailed information about the numerical methodology
to solve the constrained minimization problem (Et)) is
available in the Surface Evolver manyal]. A brief de-
scription is given here.

The equilibrium drop shape is obtained iteratively from
the initial shape. At each iteration the vertices on the liquid—
fluid interface are moved in order to reduce the energy of
the system while adhering to the imposed constraints (e.g.,
constant volume). Iterations are repeated until the system’s
energy does not change significantly. Suitable modifications
were done to the software to handle a rough substrate.

We consider a drop of a given volume placed on the rough
substrate. We start with an initial drop shapég( 2). The
grooves underneath the drop are initially filled with liquid
(Fig. 2). The intrinsic contact angle of the drop on the solid
surface is specified. The Surface Evolver is used to obtain
the final equilibrium drop shape from a given initial shape
(Fig. 2.

Our objective here is to understand the general qualitative
features of the drop shape. To this end we consider a drop of
unit volume. The groove is 0.1 unit wide 0.1 unit deep.
The pillar width is also taken as 0.1 unit. Multiple equilib-
rium shapes can be obtained for the drop depending to the

Fig. 2. Initial and equilibrium configurations of a drop on six pillars. The
intrinsic contact angle is 90
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Fig. 5. Equilibrium drop shape fdi; = 105°. All other parameters are the
same as the case Fig. 2

Fig. 3. (a) Front, (b) sideyal (c) top views of the drop iRig. 2 A andB are
the lengths of the base of the drop in the side and front views, respectively.
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Fig. 6. A cartoon of the front view of a drop with a composite contact with
a rough substrate with horizontal grooves.

Fig. 4. Equilibrium drop shapes as a function of the number of pillars on
which it settles. Two figures on the left are for five pillars and the two on
the right are for four pillars (figures for the two cases are not drawn to the
same scale).

The apparent contact angle increases in the front view as the
number of pillars on which the drop residd®]. During a number of pillars is reduced. In each case the left and the
given run we fixed the number of pillars on which a drop fight edges are pinned on the edge of the horizontal pillars.
sits and find if an equilibrium shape is possible. Note that Of the three cases considered here, the free energy of the
an equilibrium shape is not possible for any choice of the drop sitting on six pillarsgig. 3) is minimum. The drop can
number of pillars underneath the drop. acquire any of the configurations above depending on how

Fig. 2shows the initial shape (which is arbitrary) and the it is formed. Cases with more pillars were not considered in
final equilibrium shape when the drop resides on six pillars. View of the computational cost.
The left and the right edges of the drop are constrained to  In Figs. 2—4we considered drops with wetted contacts;
move on the first and the sixth horizontal pillars, respectively i.€., the grooves are filled with liquid. The qualitative fea-
(seeFig. 2). The equilibrium shape thus obtained is the local tures presented above remain typically unaltered for hy-
minimum of the free energy. The resultant equilibrium shape drophobic cases (i.e2a > 90°) if a wetted contact is formed
satisfies the condition that the mean curvature of the surface(Fig. 5
is constant. The local contact angle along the actual solid— In this work we are mainly interested in hydrophobic
liquid—fluid contact line is equal to the intrinsic contact angle drops with composite contacts with the substrate. In the later

(6a= 90° in this case). sections we will present experimental results for the com-
Fig. 3shows the various views of the dropfig. 2. We posite contact case. The composite contact case can be set

see that the fluid ‘pins’ on the edge of the horizontal pillars. up for numerical simulations as depictedHig. 6.

For an intrinsic contact angle of 9the apparent contact an- Fig. 6shows a cartoon of the front view of a drop on six

gle on the edge can vary betweert @did 180 (see Oliver et pillars with a composite contact with the rough substrate.
al.[20]). The apparent contact angles in the front and side are The assumptions involved are that the liquid—fluid interface
different (Fig. 3), in qualitative agreement with previous ex- on top of the empty grooves is almost flat. This is reasonable
perimentg3]. We will report similar observations from our  when the drop size is large so that the mean radius of curva-
experiments to be discussed later in this paper. Note that theture is large compared to the size of the roughness features.
apparent contact angles are not equal to the intrinsic contactThe problem is then equivalent to a drop on a heterogeneous
angle of 90. (i.e., intrinsic contact angle changes) flat surface. On the hor-
Fig. 4shows the effect of the number of pillars on which izontal pillars the intrinsic contact angle is same as that of
the drop resides. All the other parameters, i.e., the drop vol- the substrate material and at the location of the grooves the
ume, the liquid—fluid surface tension and the intrinsic contact effective intrinsic contact angle is 18QFig. 6).
angle, are the same as in the casEim 2 The shape of the We solve the composite drop case using Surface Evolver.
drop becomes longer as the number of pillars is reduced.The intrinsic contact angle of the substrate material is taken
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Table 1
Experimental data for drops of different volum®&son a rough surface of
parallel groove geometry

V(mm3) Or(°) 6s(®) A6(°) A(mm) B(mm) Pilars

0.59 1404 1254 15 Q0898 0698 15
1432 1437 125 187 1215 0898 19
2.077 1441 1255 186 1376 1008 21
4.818 1481 128 201 1764 1267 26
5151 1495 1265 23 1855 1247 26
5.679 1507 1272 235 1887 1267 26

Fig. 7. The drop shape on a rough substrate for the composite contact casedr is the apparent contact angle in the front viég,is the apparent con-
tact angle in the side view andl = 0 — 6s. The number of pillars are

to be 120. The pillar and groove widths and the drop vol- estimated based aB and the pillar and groove dimensions.

ume are the same as in the cases depicteHigs. 2—-4 ) ) ) . )
Similar to the wetted drop case, there are multiple equilib- 3- Experimental observation of anisotropic wetting
rium shapes depending on the number of pillars on which the
drop residesFig. 7 shows the drop shape for the case when ~ We fabricated a rough substrate with a parallel groove
there are six pillars underneath the drop. Once again we segdeometry. The fabrication method is discussed by He et
pinning of the liquid at the edge of the pillars. The apparent al- [4]. The substrate material was made of PDMg £
contact angles in the front and side views are different and 114°). The pillar width was 23 um, the groove width was
greater than 120 25.6 um and the pillar height (i.e., also the groove depth) was
A few comments are in order. We have observed the pin- 30 pm. A droplet of specified volume was gently deposited
ning of the fluid at the edge of the pillars for the cases we On the substrate by an automatic pipette. This resulted in a
have considered (a few of which are presented above). Therecomposite contad]. The contact angles were then mea-
is no guarantee that we have exhausted all the possible casesured in the front and side views. We also measured the
Thus, pinning may not exist for all possible equilibrium length of the base of the drop (see definitiond-ig. 3) in
shapes. However, we note that Surface Evolver simulationsthe front and side views. These measurements were done by
of Brandon et al[17] for chemically patterned surfaces do agoniometer (AST Products Inc., VCA Optima XE, Boston,
show similar characteristics. MA) that takes and analyzes images of sessile droplets on
Based on the above we conclude that there are, as ex-Surfaces. The data are givenTiable 1 Each case was mea-
pected, multiple gquilibrium shapegor a drop on a rough  sured after depositing a new drop.
surface with parallel grooves. A particular equilibrium shape  In all cases the apparent contact angles in the two views
can be typically obtained by fixing the number of pillars on are unequal and both are greater than the intrinsic contact
which the drop resides. For the case of a composite contactangle of PDMS ¢, = 114°). The angle in the front view
of a hydrophobic drop, the apparent contact angles in theis larger than the angle in the side view; correspondingly
front and side views are different and both are usually larger the base lengt® in the front view is smaller than the base
than the intrinsic value of the substrate material. In addition, lengthA in the side view Fig. 8).
the apparent angle in the front view is usually larger than ~ The apparent contact anghe for a spherical compos-
the apparent angle in the side view (also see the next secdite drop on this substrate can be calculated by Cassie for-
tion). This is a consequencéthe squeezing and pinning of mula[5,11]. For the geometric parameters given above we
the drop in the front view and stretching of the drop in the getf. = 136. This value is betweeér andfs. The Cassie
side view. Further discussion on this will follow in the next formula assumes a spherical drop with a circular contact line
section. so that the apparent contact angle is uniform as seen from all

-

Fig. 8. Front (left) and side (right) views of a sessile drop on a rough suwaheparallel groove geometry. It is/elent from the front view that therdp is
sitting on top of the pillars. The drop volume is 5.15 Mg = 1495°, 65 = 1265° andB < A.
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Table 2 the number of pillars on which a spherical composite drop
Comparison oDsp, A, B and D for the experiments iffable 1 would sit on the same substrate. We did not get this case
V (mm3) Dsp (Mm) A (mm) B (mm) D (mm) experimentally. These conclusions are consistent with the
059 0736 0898 0698 Q798 results of Brandon et aJ17] for chemically patterned sur-
1.432 0989 1215 0898 1057 faces.

2.077 112 1376 1008 1192 In Section2 we have seen that different equilibrium drop
4.818 148 1764 1267 1516 shapes are obtained depending on the number of pillars on
2151 152 1855 1241 1551 which a drop resides. We also saw that the fewer the pillars
5.679 1566 1887 1267 1577

on which the drop resides, the greater the apparent angle in
the front view. The experimental observations are consistent
directions. This is not the case here. The average shape of thevith the simulation results. The discussion here, although

contact line in this case is not circular singe# B. Thus, qualitative, highlights the mechanism of anisotropy in wet-
Cassie formula does not fully explain the observed behavior ting.
in Table 1 Next, we obtain quantitative information regarding the

The anisotropy in wetting can be explained based on the apparent contact angles and the drop shape. One option is
results presented in Secti@nTo this end, consider a spheri-  to perform simulations as in Secti@for a composite drop
cal composite drop on the rough substrate. The dianigfgr ~ on the substrate. The number of pillars on which the drops,
of the circular contact line at the base of the spherical drop in the experiments, reside range from 15 to 26. It is compu-

is given by tationally very expensive to resolve the drop shape in such
3y 1/3 detail. We consider a different approach, which is discussed
7 (1 — c0sHc)=(2 + o) At the microscopic scale the actual contact line of a

whereV is the drop volume. ITable 2we list the value of ~ drop on a rough substrate is not smooth. However, the ac-
Dsy, for different drop volumes in the experiment. For com-  tual contact line can be approximated, e.g., by an equivalent

parison, the values od and B are listed again iTable 2 smooth circular contact line in the case of a spherical com-

We also note thaDsp is a good estimate (within 7%) of the  posite drop. This particular drop shape can be regarded as
mean diameter) = (A + B)/2, of the base of the drod&- the one with the lowest energy among all the constant mean
ble 2. curvature surfaces of spherical shgp#]. This approxima-

It is seen fromTable 2that Dsp, is always greater than  tion works well for isotropic rough surfaces. For anisotropic
B while it is always less tham. This implies that the ex-  rough surfaces, the drop can form a different mean curvature
perimentally observed drop is such that it resides on fewer surface that is not spherical. In order to approximate such a
pillars compared to a spherical composite drop on the sameshape we assume an equivalent smooth noncircular contact
substrate. Thus the base of the drop is ‘squeeZ€d’. ©) line along the base of the drop instead of resolving the details
in the front view compared to a spherical composite drop of the actual contact line. We can then find a constant mean
on the same substrat® (< Dsp). The ‘squeezing’ is possi- ~ curvature surface that has this specified noncircular contact
ble because the drop pins on the edge of the pillars as seetine. The resultant shape will give the apparent contact an-
in the front view (Sectior?). Due to squeezing and pin-  glesin the front and side views.
ning, the apparent anglg in the front view is larger than We hypothesized different shapes for the equivalent con-
fc = 136 (which is itself larger than the intrinsic contact tact line that matched the valugsand B in the two views.
angled, = 114 of the substrate material because of the pres- An ellipse is one choice but we found that a cubic equation
ence of air in the grooves). resulted in better agreement with the experimental data. The
Since the drop is ‘trapped’ on fewer pillars, i.e., squeezed equation for the cubic contact line is
as seen in the front view, it leads to ‘stretchingid. 8) in 3 3
the side view compared to a spherical composite drop on the<@) + <@) =1, (5)
same substrated(> Dgp). This results in an elongated drop B
as simulated in Sectioh Stretching causes the apparentan- where| | denotes the positive value of the variable. For each

gle 6s in the side view to be smaller thal. Note thatfs of the experimental cases, we used the experimental values
is still larger than the intrinsic contact angle of the substrate of A andB in the cubic equation above. This gave the equiv-
due to the presence of air. alent contact line of the drop. Then we used Surface Evolver

The above two paragraphs qualitatively explain vy to find a constant mean curvature surface that has the speci-
andés are greater than the intrinsic contact angle of the sub- fied contact line and the specified (experimental value) vol-
strate material. The fact that > s is because the drop sits  ume. The resultant drop shapes were long—similar to those
on fewer pillars compared to the number of pillars on which in Section2. The apparent contact angles in the side and
a spherical composite drop would sit on the same substrate front views were then calculated from the simulated drop
It is possible thate would be less tha#ds if the drop some- shapesFig. 9 shows a comparison of the experimental and
how got trapped on more number of pillars compared to numerical values ofr andfs. We see that the agreement is
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Fig. 10. Comparison of the elliptic and cubic shapes of the equivalent con-
tact line forA = 1.887 andB = 1.267. The inset shows the direction of the
pillars and grooves. The contact line is shown only in the first quadrant; it
can be symmetrically reproduced in the remaining quadrants.

fairly good (within 10-15%) and consistent in terms of the

trend. We note that a correct trend was obtained even with an

elliptic contact line but the quantitative agreement with the

experimental data was not very good. This indicates that the

cubic curve for the equivalent contact line is a good approx-

imation of the average shape of the actual contact line of the

drop, at least for the parameter we have considered.

In Fig. 10we compare the elliptic and cubic shapes of the
equivalent contact line foA = 1.887 andB = 1.267 (last
experimental date point ifiables 1 and 2 We note that the
cubic line is ‘flatter’ on the sides, thus indicating a shape
closer to the ‘pinned’ contact line seen in Sectiabove.

This further corroborates the mechanism of anisotropic wet-

ting as discussed above.

The trend inFig. 9 can be understood better by consider-
ing the parameters that influence the valueAsf. Nondi-
mensionalizing the variables of interestd, V, A, B) we
getAd = f(V', ¢), where

1 _A-B
T D%

/

= . 6
*TAT+B ©)
V’ is the nondimensional volume of the drop ands a
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Fig. 11. Plot ofA#@ as a function ot for increasing values of’. The plot
is obtained from numerical simulations by assuming an elliptic contact line
at the base of the drop.

Table 3
A6, V' ande for the experimental data points plottedFig. 9

vV (mm3) A6 (°) (expt.) 1% €

0.59 15 2955 Q125
1.432 187 3091 Q150
2.077 186 3121 Q154
4818 201 3523 Q164
5.151 23 3514 0196
5.679 235 3.686 Q196

of the drop. The qualitative features for the cubic contact line
will be the same. We see thab increases with increasirng
This is expected since larger valuessamply a less spher-
ical drop leading to greater anisotrofsig. 11 also shows
that for the same value af A0 decreases ag’ increases.
The drop tends to be more spherical for larger volumes.

In Table 3we list A@, V' ande for the experimental data
points plotted inFig. 9. The results irFig. 11readily shed
light on the qualitative features of the changes in the value
of A6.

4, Discussion and conclusions

We conclude that there are, as expected, multiple equi-
librium shapes for a drop on a rough surface with parallel
grooves. A particular equilibrium shape can be typically ob-
tained by fixing the number of pillars on which the drop
resides. This helps to explain the anisotropy in the wetting
of rough surfaces with parallel grooves.

We considered (theoretically and experimentally) a hy-
drophobic composite drop, i.e., a drop that does not wet the
grooves of the rough surface. The apparent contact angles
in the front and side views are different and both are larger
than the intrinsic value of the substrate material. The drop

nondimensional measure of the aspect ratio of the contactis typically trapped in a state where it resides on fewer pil-

line of the drop. InFig. 11we plot A6 as a function ot for
increasing values df’. The plot is obtained from numerical

lars compared to a spherical composite drop on the rough
surface. As a result, the apparent angle in the front view is

simulations by assuming an elliptic contact line at the base larger than the apparent angle in the side view. This is a con-
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