
Ken Lassesen 

Microsoft Developer Network Technology Group 

October 17, 1995 

Sixteen sample applications are associated with this article. The buttons that access those 

samples are located throughout the article where each sample is discussed. 

Abstract 

This technical article shows how to use the many OLE Automation servers available in 

Microsoft® Office and other products to develop solutions to fulfill corporate development 

needs. Sixteen different servers are discussed, with examples of code provided for each. 

Introduction 

OLE Automation enables many Microsoft products to work together as a single entity. To 

appreciate the potential, consider the following scenario: 

A travel industry customer service representative uses a Visual Basic® application as the 

ultimate business solution. When a customer calls, the application uses the Remote Data 

Object (RDO) to access data from Microsoft® SQL Server. The application inserts this customer 

data into Microsoft Excel and creates a variety of pivot tables that it presents to the 

representative. The application inserts selected data into Microsoft Access and prints for the 

customer a report of possible flights. The customer selects a list of cities to visit and the 

application launches Microsoft Project to create and print an itinerary. The application passes 

the new transaction to Microsoft Word to print a confirmation letter. From Microsoft SQL 

Server, the application pulls pictures and text and creates a PowerPoint® presentation of the 

trip for the customer. Entries are made into the representative Schedule+ file for follow-up 

phone calls. All of these reports and presentations are e-mailed or faxed to the customer using 

the Messaging API (MAPI), which saves mail, paper, and handling costs. Finally, all of the 

documents are bound into a unit, by using the Binder, and then saved. 

What do the customer service representatives do now? They do what they did before—the 

application, not the user, controls all of the products. Representatives need no additional 

training time—they create no documents in Microsoft PowerPoint or Microsoft Project. They are 

ready to handle their next customer, and the customer receives a rich set of documents as an 

extra service. 

Not all products that support OLE features support OLE Automation. For example, many 

products enable OLE linking and embedding, but not OLE Automation. Linking and embedding 

allow the user to access the object; OLE Automation allows one program (the controller) to 

control another program (the server).  

This article serves as a jump start in using OLE Automation servers. There are many OLE 

Automation servers available—I will not explore any one OLE Automation server in depth. I will 

only cover the server sufficiently for you to write code that works, to show you what you need, 

and to send you in the right direction. To prevent version-specific complexities, I will 

concentrate on the Windows® 95 versions. I would recommend a brief reading of Kenneth 

Nilsen's "Using the OLE Automation Interface with Visual Basic" (MSDN Library Archive, 

Conference and Seminar Papers) as a general introduction to OLE and its concepts, or "Your 

Unofficial Guide to Using OLE Automation with Microsoft Office and Microsoft BackOffice" for a 

high-level overview.  

Before we look at the servers, I will discuss the OLE Automation controllers and point out a few 

important general concepts. 

OLE Automation Controllers 

Using Microsoft OLE Automation Servers to Develop Solutions 

Office Development (General) Technical xArticles  

Page 1 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



In this article I use the term controller for anything that controls an OLE Automation server. 

Other common names are OLE Automation controller, OLE controller, or incorrectly, OLE 

Automation client. The OLE Automation controller can connect to an OLE Automation server 

using one of several different methods. The method depends on the controller product and the 

version of the controller product.  

A controller may connect to a server in one of three ways:  

� Late binding  

� Early binding  

� OLE control binding  

Once the OLE Automation controller establishes a connection, it controls the server with the 

same commands that the server uses. The OLE Automation commands require ordered 

arguments syntax in most earlier controller product versions, such as Visual Basic versions 2.0 

or 3.0, or Microsoft Access version 20. All of the 32-bit versions of the controller products (for 

example, Windows 95 versions) support the preferred named arguments syntax. 

The ABCs: Arguments, Bindings, and Controllers 

Table 1 shows the OLE connection methods for all of the Microsoft products discussed in this 

technical article. All future products from Microsoft should support early binding and named 

arguments. If a product cannot function as an OLE Automation controller, "Controller Binding 

Allowed" in Table 1 is marked as None. (Note that version 7.0 of a product is the same as a 

"95" designation, for example, Microsoft Excel 95 is the same as Microsoft Excel version 7.0.) 

Table 1. Relationship of Products, Binding, and Arguments 

A Rose by Any Other Name . . . 

Depending on the products you are using, there are several different sets of vocabulary to 

Official Name Version

Controller Binding 

Allowed Arguments

Microsoft Access 1.1, 2.0 Late, OLE Control Ordered

Microsoft Access 7.0 Late, Early, OLE Control Ordered, Named

Microsoft Excel 4.0 None  

Microsoft Excel 5.0 Late Ordered, Named

Microsoft Excel 7.0 Late, Early Ordered, Named

Microsoft Graph 1.0 None  

OLE Messaging 1.0 None  

Microsoft PowerPoint 4.0, 5.0, 

7.0

None  

Microsoft Project 4.0, 7.0 Late, Early Ordered, Named

Microsoft Schedule+ 7.0 None  

Microsoft SQL Server 6.0 None  

Microsoft Word 2.0, 6.0, 

7.0

None  

Visual Basic 4.0 Late, Early, OLE Control Ordered, Named

Visual Basic 2.0, 3.0 Late, OLE Control Ordered

Page 2 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



describe OLE components.  

� In this article, I call the program that supplies services to an application a server and the 

application that uses the services a controller.  

� A variable declared as an Object data type or as an application-defined object type 

("server.object": Excel.Wordsheet, DAO.DBEngine) is called an object.  

� The variable that has been initialized (bound to a server) is called an instance.  

� The set of methods, properties, and objects that the server makes available through an 

instance is called the class.  

� You can create and destroy an instance many times in a procedure. You can modify its 

properties repetitively.  

� You can declare an object only once in a procedure. You cannot change or modify the 

class—it exists external to the controller.  

Binding the Controller to the Server 

The easiest way to explain the difference between bindings is to show you some code samples 

of the three ways of establishing the connection to the server. I will then explain what the 

differences mean to the developer. For a more technical discussion, see "Information for Visual 

Basic Programmers" in the "National Language Support Functions" Appendix under OLE 

Automation in the Win32® Software Development Kit (SDK) documentation. 

Late Binding 

Late binding declares a variable as an object or a variant. The variable is initialized by calling 

GetObject or CreateObject and naming the OLE Automation programmatic identifier 

(ProgID). For example, if the ProgID is "Mom.ApplePie," the code could appear like this: 

Dim objPie As Object 
Dim objSlice as variant 
Set objPie = CreateObject("Mom.ApplePie") 
Set objSlice = CreateObject("Mom.PieSlice") 

Late binding was the first binding method implemented in controller products. Late binding is 

the friendly name for what C programmers call lDispatch-based binding. It uses a lot of 

overhead—it is faster than DDE, but slower than early binding. It is available in all products 

capable of being controllers. All OLE Automation servers support late binding. 

Early Binding 

Early binding declares a variable as an application-defined object type. Early binding is the 

friendly name for what C programmers call virtual function table bindings or vtable binding. 

Although some variables can be declared with New for some servers (this would initialize the 

variable automatically), avoid using it (see comments in the "Microsoft Schedule+" section 

later). The variable should be initialized using the CreateObject or GetObject commands. A 

type library, object library, or dynamic-link library is required to declare a variable as an 

application-defined object type. This library must be checked in the controller application's 

References dialog box. The OLE Messaging, Schedule+, and Microsoft Graph OLE Automation 

servers do not support early binding at present. 

Dim objPie As New Mom.ApplePie 'Invalid use of the New Keyword common 

Or: 

Dim objPie As Mom.ApplePie 
Set objPie = CreateObject("Mom.ApplePie") 

OLE Control Binding 

OLE control binding uses an OLE control to contain the OLE Automation server in a window 

belonging to the controller. This control is usually used for linking and embedding, but may 

Page 3 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



also be used for OLE Automation if the OLE product supports it. In the following code sample, 

the ole1 variable is a MSOLE2 control: 

ole1.Class = "Mom.ApplePie" 
ole1.Action = VB.OLEContainerConstants.vbOLEEmbedde d 
ole1.Action = VB.OLEContainerConstants.vbOLEActivat eAuto 
ole1.Object.CrustThickness = 3 
ole1.Object.Apples = "Granny Smith" 
ole1.Object.Slices = 8 

OLE control binding does late binding to the server. 

Binding Factors 

Some OLE Automation controller products have three options available for binding—which do 

you use? Early binding is preferred for several important reasons:  

� Early binding checks all of the code against the syntax stored in the type library when you 

compile the executable or compile Visual Basic for Applications code. Syntax errors are 

detected during the compile. This is not true with late binding or OLE control binding.  

� Early binding is insensitive to the localized version of the products you are using. Late 

binding and control binding are sensitive to the localized version. If the user is running the 

French version of Microsoft Word and you did not use a type library, the commands must 

be the French version's commands.  

� Early binding performance is significantly faster than late or control binding.  

I did some timings of early binding to in-process servers using Visual Basic 4.0. I found that 

early binding sometimes performed better than having the class instance within the 

executable.  

Given these factors, I will assume in the remainder of this article that you are always using a 

library—a type library, an object library, or a DLL—and doing early binding (if it is available).  

Performance Factors 

OLE Automation servers contained in executables are called out-of-process servers. Servers 

contained in dynamic-link libraries (DLLs) are called in-process servers. If the controller is 16-

bit, the in-process server must be a 16-bit DLL, and if the controller is 32-bit, the in-process 

server must be a 32-bit DLL. This requirement for in-process servers—that the controller and 

library both have the same "bitness"—results in data going directly between the DLL and the 

application with very, very little overhead—literally nothing! 

Out-of-process servers move data indirectly between the controller executable and the server 

executable. This can result in many milliseconds to pass an integer, but 32-bit executables and 

16-bit executables can talk to each other without thunking. This is an important issue if you are 

writing the server, but inasmuch as we are only talking about using servers, it is a moot issue. 

If performance is critical to the controller, I do the following steps:  

1. Count the number of communications between OLE Automation server and OLE Automation 

controller and try to reduce the steps by changing the commands or the algorithm.  

2. Check to see if the server supports macros or procedures. If so, create the code as a macro 

or procedure in one or two communications and then call the macro or procedure.  

These suggestions assume that I have already coded the commands as recommended in the 

next section. So let us look at coding commands in the controller application. 

Writing Commands 

There are several ways of writing commands in the controller code. The ways available in 

newer products such as Visual Basic 4.0 and Microsoft Access 7.0 are better than the ways 

required in the older products. Better? Yes, the code is cleaner, easier to understand, and runs 

faster. My basic rules for writing code in the newer products are:  

Page 4 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



� Use named arguments.  

� Fully qualify objects and methods.  

� Eliminate requalifying.  

Use Named Arguments 

Most developers have had the frustrating experience of misplacing an argument in a function 

call. With earlier versions of many products, you were required to give all arguments in the 

correct argument order for the function to work. At times, this programming approach can get 

very old—like the instructions from my old social studies teacher, Miss Schooly, who required 

us to put our name, class, date, and home room on the top of each page (including the back 

side of pages!).  

The newer version gives the options of named arguments and optional arguments. An 

illustration may clarify the change. 

A$ = SillyWalks(3, ra, cs, rs, 0) 'Ordered Argument s 
 
A$ = SillyWalks(Actor:=rs, _ 
                    CrazySteps:=cs, _ 
                    RouteArray:=ra, _ 
                    Speed:=3) 'Named Arguments 
'Note that 0 is dropped because this is the default  value. 

The named argument syntax above is easier to read and more meaningful—especially to 

anyone who inherits this code! There is no speed lost in the Windows 95 controller products 

when you use named arguments. 

Fully Qualify Objects and Methods 

Most developers are familiar with data access objects (DAOs) and will refer to them simply as 

DBEngine or Database in their code. Well, that's not cool anymore. This way will still work in 

many products (for backward compatibility), but you should qualify all application-defined 

object types by their library name (in this case, DAO). The new way is to use DAO.DBEngine 

or DAO.Database instead. Every object is qualified for some very significant reasons. 

First, this approach allows the developer to know where this object is coming from—this will 

become a greater and greater problem as more OLE Automation servers are added to the 

marketplace. If I find a line of code declaring a variable as a DocumentProperty or 

Permission, can you tell me where to look for documentation on this object? Variables defined 

as MicrosoftOffice.DocumentProperty or SQLOLE.Permission clarify this quickly. I usually 

go the extra mile and fully qualify constants by including their object. Figure 1 shows an 

example of a fully qualified constant with the names of the components. 

 

Figure 1. The structure of a full qualified constant 

Second, this approach prevents ambiguous references. If two different OLE Automation servers 

have the same object name, you will be forced to qualify every instance later—it will happen. It 

has happened, for example with SQLOLE.Databases and DAO.Databases or with 

SQLOLE.Properties, DAO.Properties, and Access.Properties. 

Third, if you do not qualify the object, the Visual Basic for Applications engine must search 

Page 5 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



through all of the references to find it. This slows down the application. In short, using qualified 

objects means faster execution! 

Note   Visual Basic for Applications reconciles an object first against its host and then 

against the type libraries in the order that they appear in the References dialog box. 

Eliminate Requalifying 

OLE Automation sends messages back and forth between controller and server. The older 

versions of controller products could not keep a connection open, so a new connection occurred 

each time a message needed to be sent, known as requalifying in the documentation. This 

connection can be kept open in the newer controller products if the With and For ... With 

commands are used. Some examples may clarify the difference in code.  

'Reconnection occurs each time 
MyObject.Height = 100 
MyObject.Caption = "Hello World" 
MyObject.Font.FontSize = 32 
MyObject.Font.FontBold = True 
 
'Only two connections 
With MyObject 
    .Height = 100 
    .Caption = "Hello World" 
    With .Font 
        .FontSize = 32 
        .FontBold = True 
    End With 
End With 

I recommend always using the With command for early binding—the code is easier to 

understand and is faster. If you are using late binding, the With command will slow down 

execution and should be avoided. Table 2 shows the results on a sample automation I wrote to 

verify this information. 

Table 2. Time to Execute an Automation Sequence with Different Options 

Writing Code 

"How do I write OLE Automation code? There is no documentation!" is a frequent complaint 

from developers new to OLE Automation. This is false—but people cannot see it because they 

expect a huge tome and get a few lines instead. Because the goal is to write code and not to 

read thousands of pages, I will start by looking at how to write code. 

The three ways to write code are:  

� Using a recorder  

� Using the Object Browser  

� Using the documentation  

To be truthful, there is a fourth method: "Firing commands at random, blindfolded and drunk 

on fatigue." Since I've "been there, done that, ain't going back," I describe it simply as 

guessing object names, command names, and arguments until you get it right or give up in 

frustration. If you have been there and don't want to be there again, read the following 

carefully and get your wall clear for some big maps to these OLE Automation servers. 

Using Recorders 

Binding Requalifying Using "With"

Early 16.06 seconds 14.39 seconds

Late 25.78 seconds 28.06 seconds

Page 6 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



My favorite trick is using a recorder to record a series of actions in the server application. I 

modify this recording to produce OLE Automation code for the controller. Recorders are not 

available in all products, but third-party developers will fill this void as the OLE Automation 

paradigm increases. The products with recorders built-in are shown in Table 3.  

Table 3. Recorders Available in OLE Servers 

The Microsoft Excel recorder created the following code: 

    Range("A1").Select 
    ActiveCell.FormulaR1C1 = "Name" 
    Range("A1").Select 
    With Selection.Font 
        .Name = "Arial Black" 
        .FontStyle = "Bold" 
        .Size = 11 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlNone 
        .ColorIndex = 3 
    End With 

You must make some changes for this code to work from a controller:  

� Commands must be qualified by an instance.  

� Commands (including constants!) must be prefixed with a dot (".").  

� Arguments must be changed from "=" to ":=".  

The resulting controller code becomes: 

With ThisSpreadSheet 
    .Range("A1").Select                '<== Dot add ed 
    .ActiveCell.FormulaR1C1 = "Name"   '<== Dot add ed 
    .Range("A1").Select                '<== Dot add ed 
    With .Selection.Font               '<== Dot add ed 
        .Name = "Arial Black" 
        .FontStyle = "Bold" 
        .Size = 11 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = Excel.xlNone     '<== Library name and dot added 
        .ColorIndex = 3 
    End With 
End With 

Product Version Recorder Location Comments

Microsoft 

Excel

4.0, 5.0, 7.0 Tools / Record 

Macro

Check that Options is set to Visual 

Basic. Code is stored in a module in 

the active workbook.

Microsoft 

Project

4.0, 7.0 Tools / Record 

Macro

Code is stored in module in the 

active project.

Microsoft 

Word

1.0, 2.0 ,6.0, 

7.0

Tools / Macro / 

Record

Code is stored in a macro in the 

template files.

Page 7 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



No major rocket science here—just monkey see, monkey do.  

Using the Object Browser 

The Object Browser is available in all of the Microsoft products that have Visual Basic for 

Applications built in. Visual Basic 3.0 (or earlier) and Microsoft Access 2.0 (or earlier) do not 

have Visual Basic for Applications built into them and do not have the Object Browser. (They 

also do not support named arguments.) When you are viewing a module or code window and 

you press F2, an Object Browser appears, similar to the one shown in Figure 2.  

 

Figure 2. A sample Object Browser 

The topmost drop-down list box shows all the available libraries from the References dialog 

box. These libraries allow you to "early bind" to OLE Automation servers. The left list box 

shows the objects in the library. The right list box shows the methods and properties (including 

constants). The bottom of the dialog box gives additional information about the item in the 

right list box, including a command button to jump to a Help topic (if available). 

This dialog box makes life simpler. Object variables are declared by taking the first word in the 

Libraries/Workbooks drop-down list box, "Word," and then adding this word to the desired 

object in the left list box, "WordBasic," to get "Word.WordBasic." For example: 

Dim MyWord as Word.WordBasic 

To use a method or property, simply select the desired method or property, and click Paste to 

have a template pasted into your code. For example: 

EditFind Find:=, Direction:=, MatchCase:=, WholeWor d:=, PatternMatch:=,  
SoundsLike:=, Format:=, Wrap:= 

(In the above line of code, we added a hard return to make it visible on your screen. If you are 

pasting the code into your project, be sure to remove the hard return before "SoundsLike".) 

You must then add the dot, qualify it by an instance, remove unneeded named arguments, and 

supply the appropriate argument values. For example: 

With MyWord 
    .EditFind Format:=1, Wrap:=1 
    ' etc. 

Page 8 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



End With 

A word of advice: Most OLE servers have their constant values defined in the library. ALWAYS 

(I do mean to shout!) use the built-in constants! The numeric values of some constants can 

change between product versions. Remember to qualify the constants with at least the library 

name. For example: 

MyPreparedStatement.OpenResultset _ 
     (Type:=RDO.rdOpenForwardOnly, _ 
      LockType:=RDO.rdConcurRowver, _ 
      Options:=RDO.rdAsyncEnable) 

If the type library has many objects that contain constants, include the object name as shown 

here: 

MyPreparedStatement.OpenResultset( _ 
      Type:=RDO.ResultsetTypeConstants.rdOpenForwar dOnly, _ 
      LockType:=RDO.LockTypeConstants.rdConcurRowve r, _ 
      Options:=RDO.OptionConstants.rdAsyncEnable) 

If the object browser does not list the OLE server you need, you must put a check mark by its 

library in the References dialog box, as shown in Figure 3. If the OLE Automation server does 

not appear in the list, you must add it by selecting the appropriate library file using the 

Browse... command button. Table 4 (below Figure 3) shows a list of these essential library 

files and their related products. Select the file listed under the heading Reference File. For 

more information, see "VBA Editing and Debugging Tools" in Chapter 2 of Eric Wells's 

Developing Microsoft Excel 5 Solutions. 

 

Figure 3. Selecting a reference 

Table 4. Name of Product File Containing Object Browser Information 

Product Version Reference File Library Name Reference Title

Microsoft Access 7.0 MSACCESS.TLB Access Microsoft Access for 

Windows 95

Binder 1 BINDER.TLB OfficeBinder Office Binder 1.0 Type 

Library

DAO 2.5/3.0 DAO2532.DLL DAO Microsoft DAO 2.5/3.0 

Compatibility Library

DAO 2.5 DAO2516.DLL DAO Microsoft DAO 2.5 Object 

Library

DAO 3.0 DAO3032.DLL DAO Microsoft DAO 3.0 Object 

Page 9 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



The Confession 

Some problems can frustrate your use of application-specific object types. These are not 

features, but bugs! They are fixed in the later version of Visual Basic for Applications shipped 

with Visual Basic 4.0 and Microsoft Access 7.0. 

The Object Browser in Microsoft Excel 7.0 and Microsoft Project 4.1 will display hidden and 

disabled elements in some servers. Check the server's Help file or the extended map listed 

below to identify elements that you can use. A simple way to check that the Object Browser 

displays only enabled elements is to examine the "Microsoft DAO 2.5/3.0 Compatibility 

Library," found in Microsoft Access, Visual Basic, and some Microsoft Office products—the 

IndexFields object should not be visible in the Object Browser. 

With the same products (Microsoft Excel 7.0 and Microsoft Project 4.1), you cannot successfully 

declare a variable as Access.Application. If you try, you will receive an "Object library feature 

not supported" message. Placing an underscore in front of the object and enclosing it in square 

brackets will generally resolve this problem. The variable should be declared as Access.

[_Application]. 

Further, in Microsoft Excel 7.0 and Microsoft Project 4.1, you cannot use the New keyword 

when you dimension the application-specific object types. One last confession—some of the 

Library

Microsoft Excel 5.0 XL5EN32.OLB Excel Microsoft Excel 5.0 

Object Library

MS Graph 5.0 GREN50.OLB. Graph Microsoft Graph 5.0 

Object Library

MAPI 7.0 MDISP32.TLB 

MDISP.TLB

MAPI OLE/Messaging 1.0 

Object Library

Office 7.0 MSO50ENU.DLL MicrosoftOffice Microsoft Office 95 

Object Library

PowerPoint 7.0 POWERPNT.TLB PowerPoint PowerPoint 7.0 Object 

Library

Microsoft Project 4.1 PJ4EN32.OLB MSProject Microsoft Project 4.1 

Object Library

RDO 1.0 MSRDO32.DLL RDO Microsoft Remote Data 

Object 1.0

Schedule+ 7.0 SP7EN32.OLB SPL Microsoft Schedule+ 7.0 

Object Library

SQL-DMO 6.0 SQLOLE32.TLB SQLOLE Microsoft SQLOLE Object 

Library

Voice Command 1.0 VCAUTO.TLB VCmdAuto VoiceCommand 1.0 Type 

Library

Voice Text 1.0 VTXAUTO.TLB VTxtAuto VoiceText 1.0 Type 

Library

Word 6.0 WB60EN.TLB Word Microsoft WordBasic 

Object Library

Word 7.0 WB70EN32.TLB Word Microsoft WordBasic 95 

Type Library

Word 7.0 WD95ACC.TLB Word95ACC Word 95 Objects for 

Access

Page 10 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



type libraries still have bugs in some of their commands; occasionally you will be forced to use 

late binding. 

Using the Documentation 

A properly constructed server comes with a type library that points to topics in a Help file. 

Dream on. The reality of the industry is that many type libraries and Help files often ship as 

afterthoughts because there was not enough time to complete them, test them, and still meet 

the product shipment date. 

Microsoft Word is a good example. In Word version 2.0, the programming reference Help file 

did not ship with the product; it was a separate fulfillment product. In Word version 6.0 and 

Word 95, the Word type libraries did not ship with the product; they were distributed later for 

free. A few products succeed in delivering the dream—DAO, SQL Distributed Management 

Objects (SQL-DMO), and RDO shipped with polished type libraries and Help files. 

You can use a programming reference Help file to write OLE Automation code. The Help file 

does describe the topics from the perspective of the OLE Automation application, so remember 

the following:  

� Qualify every command with the appropriate object. Use the library name if you cannot 

identify an object.  

� Always use named arguments. The arguments may not be shown in the correct ordered 

argument sequence.  

A command from Microsoft Word will illustrate this. The following line from the WordBasic 

Reference gives the arguments for the GetAddress$ command in Word 95 (a hard return was 

added before [SelectDialog] to make the line visible on your screen): 

GetAddress$([Name$], [AddressProperties$], [UseAuto Text], [DisplaySelectDialog],  
[SelectDialog], [CheckNamesDialog], [MRUChoice], [U pdateMRU]) 

To use this command in Visual Basic, I qualify it with a Word object. For example: 

Dim MyWord as Word.WordBasic  
.... 
With MyWord 
   letterAddress$ = .GetAddress$( _ 
      Name$ :="Ken Lassesen", _ 
      AddressProperties :="" _ 
      ) 
   .StartOfDocument 
   .Insert letterAddress$ 
End With 

Now that I have explained the general methods of creating OLE Automation code, it is time to 

look at each Microsoft OLE Automation server. 

OLE Automation Servers 

OLE Automation servers are like a family—each child inherits a mixture of characteristics that 

makes all the children look similar in some aspects, but each child has his or her own special 

characteristics. Different servers may contain very similar objects, commands, and behavior. 

Servers can also be very dissimilar—so much so, in fact, that a developer can become 

frustrated when one server does not behave like another server. Each server has its own 

personality. 

In this section I will not contrast the many servers covered—that would be at least 240 sub-

sections. I will, however, give:  

� A thumbnail description of the server and some of its uses.  

� A short tabular summary of necessary information about the server.  

� A programmatic identifier (ProgID) and class identifier (CLSID) table for the server.  

Page 11 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



� An example of using the server with a very brief discussion of any important points.  

An example of a tabular summary of information for a type library is shown in Table 5. The 

type library is used to do API calls. This API type library is not covered in this article, but it is 

shipped with the Microsoft Press® book Hard Core Visual Basic by Bruce McKinney. 

Table 5. Quick Summary Example 

The programmatic identifier and class identifier table for Microsoft Project is shown in Table 6. 

Table 6. Sample Identifier Table 

Let us examine what these tables contain. 

Reference File 

This is the name of the file that must be registered in the References dialog box to use the 

Object Browser or early binding. If the server does not appear in the References dialog box, 

you must select the reference file name using the Browse command button. Use the Find 

command in Windows 95 to search your computer for this file. 

The English version is listed first, before any foreign language versions. For example, the Visual 

Basic for Applications reference file may be one of the following: 

VBAEN32.OLB 

VBABRZ32.OLB 

Property Notes

Reference File WINAPI32.TLB, WINAPI16.TLB

Reference Title Windows API Functions

Object Browser Library 

Name

Win

Object Browser Title Windows API Functions

Programming Help File Use the MSDN Library CD for the SDK documentation and Bruce 

McKinney's Hard Core Visual Basic book from Microsoft Press. 

Extended Map Not available at present 

Redistribution Rights See the McKinney book, or contact Microsoft Press for current 

rights. 

Source Information Available in Hard Core Visual Basic by Bruce McKinney, Microsoft 

Press 

Externally Creatable 

(New)

False

Server Command Multiple-system DLLs 

CreateObject Not used. 

GetObject Not used. 

Terminate Object Terminate with controller. 

ProgID CLSID

MSProject.Application {00020AFE-0000-0000-C000-000000000046}

MSProject.DocFile {00020A00-0000-0000-C000-000000000046}

MSProject.Project {00020A00-0000-0000-C000-000000000046}

Page 12 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



VBAFR32.OLB 

VBADE32.OLB 

VBAIBP32.OLB 

Future versions of all products may have only an English reference file. 

Reference Title 

This is the name of the server as it appears in the References dialog box. 

Object Browser Library Name 

This is the name that qualifies all of the server's objects, methods, and constants. 

Object Browser Title 

This is the name of the server as it appears in the Object Browser dialog box. This name does 

not appear in the Microsoft Excel 7.0 or Microsoft Project 4.1 Object Browser. (See the earlier 

section "The Confession.") Although the Object Browser Title and the Reference Title should be 

the same, some older servers give them different names. 

Programming Help File 

This is the name of the file that contains detailed information about programming the server. I 

hate to admit it, but the shipped product may not include this essential documentation. If you 

must use the product before obtaining this documentation, use the Object Browser. It provides 

enough essential information to program the server. 

Extended Map 

An "extended map" is an exhaustive chart showing all of the objects, methods, properties, and 

lists in an object. It was an idea that I tossed out, and my fab boss, Nigel Thompson, said 

"Make it so!" A map is a good learning aid and a quick reference when developing an 

application. After producing a map, I found that it was easy to work with the object: I just post 

the appropriate map on my wall for quick reference, which is a lot faster than clicking objects 

in a Help file one by one to discover their properties and methods. Figure 4 shows an example 

of a simple extended map.  

 

Figure 4. Extended map of the Microsoft Office 95 Object Library  

Redistribution Rights 

Page 13 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



The Redistribution Rights entry gives you a short description of some restrictions that may 

apply. This summary is not a legal statement of the rights, nor is it complete. You'll find the 

legal statement regarding redistribution rights somewhere in the product's documentation or 

subsequent official notifications. 

Source Information 

When developers do not find the reference file on their computer, they start to search. They 

often spend a day reinstalling the product, calling friends, and checking computer bulletin 

board systems. Finally, they look through the file lists on all of the CD-ROM discs in the 

Development Platform (28 CD-ROMs for October 1995). Well, that gets old fast, so I include 

information on where to find the Reference File (or Programming Help File). 

Externally Creatable 

Can the topmost object be created using the New keyword? A server may contain both objects 

that are externally creatable and those that are not externally creatable. The name of the 

object according to the type library is shown. Some objects may be creatable only in some 

circumstances. 

Server Command 

This is the value of the LocalServer or LocalServer32 property for the Class ID listed in the 

system registry (removing any path information). This is the file that supplies the server to the 

application. If the file is an executable (.EXE), the server is an out-of-process server. If the file 

is a dynamic-link library (.DLL), the server is an in-process server. 

Some server executables require a command-line argument that includes the word 

Automation. These executables include MSGRAPH.EXE, EXCEL.EXE, WINWORD.EXE, 

SCHPLS32.EXE, MDISP32.EXE, and POWERPNT.EXE. 

CreateObject 

When the CreateObject function is called, one of three things could happen:  

� A new instance is automatically created. The Excel.Application server behaves like this.  

� A prior instance is used if available; otherwise, an instance is created. The 

Word.WordBasic server behaves like this.  

� The call fails because the object is not creatable. The MicrosoftOffice.Properties server 

behaves like this.  

The server's topmost object behavior is described only in this section. Each creatable object 

may display different behavior. 

GetObject 

When the GetObject function is called, the response could be one of the following:  

� Succeed by creating a system instance.  

� Succeed by seizing a prior system instance.  

� Fail because there are no prior system instances loaded.  

� Fail because it cannot be created.  

The server's topmost object behavior is described here. Each creatable object may display 

different behavior. 

TerminateObject 

I would love to state that Object.Quit will terminate every server, but I can't. Different 

servers have many commands and conditions required before the server will terminate. The 

Page 14 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



requirements to terminate the object are listed here in this section.  

ProgID 

The programmatic identifier (ProgID) is the name of the object in the system registry. This 

string is used in CreateObject or GetObject to obtain an instance. In some cases, there may 

be a disagreement between the ProgID and the application-specific object type name shown in 

the library. The Office Binder shown below illustrates this.  

Dim ThisBinder as OfficeBinder.Binder 
Set ThisBinder = CreateObject("Office.Binder") 

I can modify the registry to agree with the type library by creating a .REG file to modify the 

system registry. The lines below allow me to use OfficeBinder.Binder in addition to 

Office.Binder. Yes, I can use either, but I must remember to redistribute this file when I 

install an application that uses it. 

REGEDIT 
HKEY_CLASSES_ROOT\OfficeBinder.Binder = Microsoft O ffice Binder 
HKEY_CLASSES_ROOT\OfficeBinder.Binder\CLSID =  
  {59850400-6664-101B-B21C-00AA004BA90B} 
HKEY_CLASSES_ROOT\OfficeBinder.Binder\CurVer = Offi ce.Binder.95 

For further information about this, see "Identifying and Registering an Object Class" in The 

Component Object Model Specification (MSDN Library, Specifications). If you distribute a type 

library with your application, you should include a .REG file to register it on other PCs. 

CLSID 

The class identifier (CLSID) is a unique identifier for the server. If several program IDs have 

the same class identifier, the programmatic identifiers are synonyms. In our sample above, 

MSProject.DocFile and MSProject.Project are the same. 

A Word of Caution 

The bad news is that the Quick Summary can be complex because each object in a server may 

have its own behavior. My advice is simple: Test each object and keep notes. 

The Servers 

This article covers more than OLE Automation servers—it covers the libraries available in the 

Object Browser. These libraries are described in three sections:  

� Out-of-process servers  

� Library encapsulations  

� In-process servers  

Out-of-Process Servers 

Out-of-process servers are executables that allow controllers, whether 16-bit or 32-bit, to pass 

data between the controller and the server. The cost of this flexibility is slow data transfer. All 

the Microsoft Office products are out-of-process servers. 

In general, these servers create a new instance for each CreateObject call or New 

declaration. The new instances may be system instances, as shown in this example: 

Dim obj(0 To 5) As Object 
For i = 0 To 5 
    Set obj(i) = CreateObject("Excel.Application") 
    obj(i).Visible = True 
Next I 

The code above will create six system instances of Microsoft Excel that will continue to exist 

after the controller closes. The new instances may be documents in a system instance instead. 

Page 15 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



For example. 

Dim obj(0 To 5) As Object 
For i = 0 To 5 
    Set obj(i) = CreateObject("Excel.Sheet") 
    obj(i).Visible = True 
Next i 
obj(0).Parent.Parent.Visible = True 

This code will create six Microsoft Excel sheets in a single Microsoft Excel instance. The sheets 

will close as soon as their instance is set to Nothing. The Microsoft Excel application will 

continue to exist if it was visible when the sheets were set to Nothing. 

Out-of-process servers will usually terminate when all instances are set to Nothing, the 

application is not visible, and the last instance is set to Nothing. 

The out-of-process OLE Automation servers I will cover are:  

� OLE Messaging  

� Microsoft Schedule+  

� Microsoft PowerPoint 7.0  

� Microsoft Project 4.1  

� Microsoft Excel 7.0  

� Microsoft Binder 1.0  

� Microsoft Graph 5.0  

� Microsoft Access 7.0  

� Microsoft Word 7.0  

� Microsoft Voice Text 1.0  

� Microsoft Voice Command 1.0  

� Word 95 Objects for Access  

OLE Messaging 

The OLE Messaging server works using the Messaging API (MAPI). Table 7 shows a quick 

summary of the properties of OLE Messaging, which allows you to send, receive, and process 

electronic mail, including faxes. (Table 8 shows the MAPI ProgIDs.) You can write an obnoxious 

application to send e-mail to the world, asking everyone to send their VISA number, charge 

them $20 on their VISA card, automatically delete the flame mail, and process the donations. 

Of course, you can also do much more commendable work than this. 

Table 7. Quick Summary for OLE Messaging 

Property Notes 

Reference File MDISP32.TLB, MDISP.TLB

Reference Title OLE Messaging 1.0 Object Library 

Object Browser Library 

Name

MAPI

Object Browser Title OLE Messaging 1.0 Object Library

Programming Help File OLEMSG.HLP

Extended Map None

Redistribution Rights Yes

Page 16 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 8. Identifier Table for OLE Messaging 

The following code sends an e-mail message to me, so I know that someone has executed the 

sample. Because I hope to get my boss to give me a $1 bonus for every e-mail I receive, give 

it a try! 

Option Explicit 
Sub Create_Message() 
    Dim objSession As Object 'MAPI.Session 
    Dim objMessage As Object 'MAPI.Message 
    Dim  objRecip As Object 'MAPI.Recipient 
    Set objSession = CreateObject("MAPI.SESSION") 
    objSession.Logon 
    Set objMessage = objSession.Outbox.Messages.Add  
    objMessage.Subject = "Thank you for your articl e." 
    Set objRecip = objMessage.Recipients.Add 
    objRecip.Name = "Kenl@Microsoft.Com" 
    objRecip.Type = 1     ' 1 is the value of the " mapiTo" constant. 
    objMessage.Update 
    objMessage.Send showDialog:=True 
    objSession.Logoff 
End Sub 

At the time of writing, the server is still in its beta version and does not support early binding, 

so you must use late binding. 

MAPI can become challenging because you may find two mail servers available on your PC: the 

Mapi.Session server described above and the MSMAPI.MAPISession that is part of 

MSMAPI.OCX. You can call CreateObject successfully with MSMAPI.MAPISession, but this 

instance is very different from a OLE Messaging instance. 

Microsoft Schedule+ 

Schedule+ allows events to be scheduled on the user's calendar. Customer representatives can 

schedule call-backs or enter tasks from Microsoft Project or Microsoft Excel in their calendars, 

to cite just a few of the new possibilities with this server. It is assumed that the version of 

Schedule+ in the final version of the Microsoft Exchange Server SDK is installed. 

Table 9. Quick Summary for Schedule+ 

Source Information Backoffice SDK, Microsoft Solutions Development Kit 2.0, Win32 

SDK

Externally Creatable 

(New)

False (Type library may not be used)

Server Command MDISP32.EXE /Automation 

CreateObject Obtains running system instance, or starts a system instance if 

none exists.

GetObject Obtains running system instance, or starts a system instance if 

none exists.

Terminate Object Executes a Mapi.Logoff. Sets Objects to Nothing.

ProgID CLSID

MAPI.Session {3FA7DEB3-6438-101B-ACC1-00AA00423326}

MAPI.Message {3FA7DEB4-6438-101B-ACC1-00AA00423326)

MAPI.Folder {3FA7DEB5-6438-101B-ACC1-00AA00423326}

Page 17 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 10. Identifier Table for Microsoft Schedule+ 

The following code reminds you to be Santa Claus for your kids: 

Dim appSchPlus As SPL.Application 
Set appSchPlus = CreateObject("Schedule+.Applicatio n") 
Visible = True 
With appSchPlus 
    .Logon 
    .ScheduleSelected.Activate 'Makes visible 
    Set MyAppt = .ScheduleSelected.singleappointmen ts.New 
        With MyAppt 
            .SetProperties Text:="Santa Claus", _ 
                Start:=CVDate("12/24/95 23:30"), _ 
                End:=("12/25/95 00:30") 
        End With 
End With 

This OLE Automation server has many unique characteristics; for a detailed introduction, see 

my article "An Extended Introduction to Schedule+ OLE Automation Programming." 

Microsoft PowerPoint 

The PowerPoint server allows you to automatically create or update PowerPoint presentations. 

For example, you could publish yesterday's sales figures each morning as part of an Executive 

Information System.  

Table 11. Quick Summary for Microsoft PowerPoint 

Property Notes

Reference File Sp7en32.olb

Reference Title Microsoft Schedule+ 7.0 Object Library

Object Browser Library 

Name

SPL

Object Browser Title Microsoft Schedule+ 7.0 Object Library

Programming Help File Microsoft Exchange Server SDK:Microsoft Schedule+ 

Programmer's Guide 

Redistribution Rights None

Source Information The reference file may be obtained from the Microsoft 

Exchange Server SDK. 

Externally Creatable (New) Yes

Server Command schdpl32.exe -Automation

CreateObject Obtains running system instance or starts a system instance if 

none exists.

GetObject Obtains running system instance or starts a system instance if 

none exists.

Terminate Object Sets Visible to False. Set all instances to Nothing. 

ProgID CLSID

SchedulePlus.Application {0482E074-C5B7-101A-82E0-08002B36A333}

Schedule+.Application {0482E074-C5B7-101A-82E0-08002B36A333}

Page 18 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 12. Identifier Table for Microsoft PowerPoint  

The following code creates a simple slide containing a graphic: 

Dim ThisPowerPnt As PowerPoint.Application 
Dim ThisPresentation As PowerPoint.Presentation 
Dim CurrentSlide As PowerPoint.Slide 
 'PowerPoint 7 is the first version as an OLE Serve r. 
Set ThisPowerPnt = CreateObject("PowerPoint.Applica tion") 
ThisPowerPnt.AppWindow.Visible = True 
 
Set ThisPresentation = ThisPowerPnt.Presentations.A dd( _ 
    WithWindow:=True _ 
    ) 
Set CurrentSlide = ThisPresentation.Slides.Add( _ 
    Index:=1, _ 
    Layout:=PowerPoint.SlideLayout.ppLayoutText _ 
    ) 
    With CurrentSlide 
        'Note: Objects are "SlideObects" 
        .Objects(1).Text = "MSDN PowerPoint Program mability" 
        .Objects(2).Text = "Sixteen Point Star" 
        .Objects.AddShape _ 
            type:=PowerPoint.ShapeType.ppShapeSixte enPointStar, _ 
            Left:=4800, _ 
            Top:=4300, _ 

Property Notes

Reference File POWERPNT.TLB

Reference Title PowerPoint 7.0 Object Library

Object Browser Library Name PowerPoint

Object Browser Title PowerPoint 7.0 Object Library

Programming Help File VBA_PP.HLP

Extended Map None

Redistribution Rights None

Source Information Part of PowerPoint

Externally Creatable (New) False

Server Command powerpnt.exe /AUTOMATION

CreateObject Obtains running system instance, or starts a system instance 

if none exists.

GetObject Obtains running system instance, or starts a system instance 

if none exists.

Terminate Object Calls Powerpoint.Quit.

ProgID CLSID

PowerPoint.Application {81C3B541-2E17-101B-AF3C-00AA0038A98A}

PowerPoint.Show {EA7BAE70-FB3B-11CD-A903-00AA00510EA3}

PowerPoint.Slide {EA7BAE71-FB3B-11CD-A903-00AA00510EA3}

PowerPoint.Template {EA7BAE71-FB3B-11CD-A903-00AA00510EA3}

Page 19 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



            Width:=5000, _ 
            Height:=5000 
        'Units of measurement are in TWIPS (like Vi sual Basic). 
        .Objects(3).GraphicFormat.Fill.PresetTextur ed _ 
            PowerPoint.PresetTexture.ppPresetTextur eWovenMat 
    End With 

The sample application changes the graphic's texture every tenth of a second as a special 

effect. Do not use numbers for constants or unqualified constants such as 

ppShapeSixteenPointStar; instead, use a fully qualified constant such as 

PowerPoint.ShapeType.ppShapeSixteenPointStar. 

Microsoft Project 

The Microsoft Project server allows the information on a project to be retrieved, added to, and 

updated. Using the MAPI server, reminder notices regarding tasks, deadlines, and milestones 

can be automatically mailed to members of a team. Reports can be generated for senior 

management. Meetings can be entered automatically into team members' Schedule+ 

calendars. A custom front end could be produced to simplify use of Microsoft Project. 

Table 13. Quick Summary for Microsoft Project 

Table 14. Identifier Table for Microsoft Project 

The following example code adds a series of tasks for a new project: 

Dim oProjApp As MSProject.Application 

Property Notes

Reference File PJ4EN32.OLB, PJ4ES32.OLB, PJ4DE32.OLB, PJ4FR32.OLB, 

PJ4SV32.OLB, PJ4IT32.OLB

Reference Title Microsoft Project 4.1 Object Library

Object Browser Library 

Name

MSProject

Object Browser Title Microsoft Project 4.1 Object Library

Programming Help File VBA_PJ.HLP

Extended Map None.

Redistribution Rights None.

Source Information Part of Microsoft Project 95

Externally Creatable (New) False

Server Command winproj.exe

CreateObject Obtains running system instance, or starts a system instance if 

none exists.

GetObject Obtains running system instance, or starts a system instance if 

none exists.

Terminate Object Calls MSProject.Quit

ProgID CLSID 

MSProject.Application {00020AFE-0000-0000-C000-000000000046}

MSProject.DocFile {00020A00-0000-0000-C000-000000000046}

MSProject.Project {00020A00-0000-0000-C000-000000000046}

Page 20 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Dim oProjDoc As MSProject.Project 
Dim  i As Integer 
    Set oProjApp = CreateObject("MSProject.Applicat ion") 
    oProjApp.Visible = True 
    oProjApp.FileNew SummaryInfo:=False 
    Set oProjDoc = oProjApp.ActiveProject 
    For i = 1 To 10 
        oProjDoc.tasks.Add Name:="Task" & i 
    Next i 
    oProjApp.fileSave 
    oProjApp.Quit 

Microsoft Excel 

The Microsoft Excel server can be used to do complex mathematics, such as trend lines, can be 

used as a report engine, and can be used to manipulate data using pivot tables. Data may be 

passed to Microsoft Excel for statistical analysis.  

Table 15. Quick Summary for Microsoft Excel 

Table 16. Identifier Table for Microsoft Excel 

Property Notes

Reference File XL5EN32.OLB, XL5BRZ32.OLB, XL5FR32.OLB, XL5DE32.OLB, 

XL5IBP32.OLB

Reference Title Microsoft Excel 5.0 Object Library

Object Browser Library 

Name

Excel

Object Browser Title Microsoft Excel 5.0 Object Library

Programming Help File VBA_XL.HLP 

Extended Map Not available at present

Redistribution Rights None

Source Information Part of Microsoft Excel 95 and Microsoft Excel 5

Externally Creatable (New) False

Server Command excel.exe /Automation

CreateObject Creates a new system instance each time.

GetObject Creates a new system instance, unless a system instance 

already exists. 

Terminate Object Calls Excel.Quit

ProgID CLSID 

Excel.Addin {00020810-0000-0000-C000-000000000046}

Excel.Application {00020841-0000-0000-C000-000000000046}

Excel.Backup {00020810-0000-0000-C000-000000000046}

Excel.Chart {00020811-0000-0000-C000-000000000046}

Excel.CSV {00020810-0000-0000-C000-000000000046}

Excel.Dialog {00020810-0000-0000-C000-000000000046}

Page 21 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



The example code below inserts an array of numbers into a worksheet and charts the 

information using the Chart object. 

Dim ThisExcel As Excel.Application 
Dim ThisChart As Excel.Chart 
Dim TitleArray As Variant 
Dim DataArray As Variant 
TitleArray = Array("Dogs", "Cats", "Horses") 
DataArray = Array(34, 53, 12) 
Set ThisExcel = CreateObject("Excel.application") 
With ThisExcel 
    .Workbooks.Add 
    .Range("A1:C1").Value = TitleArray 
    .Range("A2:C2").Value = DataArray 
    .Range("A1:C2").Select 
    Set ThisChart = .Charts.Add() 
    .Visible = True 
End With 
With ThisChart 
    .Type = Excel.Constants.xl3DColumn 
    .HasLegend = False 
End With 

The actual sample adds automatic turning of the three-dimensional (3-D) chart in Microsoft 

Excel to illustrate how a Microsoft Excel presentation can be enhanced. Microsoft Excel Chart is 

usually used instead of MSGraph because MSGraph lacks the ability to transfer data easily. 

The reference file for Microsoft Excel 95 is the same as that for Microsoft Excel 5.0. (There is 

no XL7EN32.OLB.) 

Microsoft Binder 

The Microsoft Binder server allows some types of documents to be combined into a single 

document.  

Table 17. Quick Summary for Microsoft Binder 

Excel.DIF {00020810-0000-0000-C000-000000000046}

Excel.Macrosheet {00020810-0000-0000-C000-000000000046}

Excel.Sheet {00020810-0000-0000-C000-000000000046}

Excel.SLK {00020810-0000-0000-C000-000000000046}

Excel.Template {00020810-0000-0000-C000-000000000046}

Excel.VBAModule {00020810-0000-0000-C000-000000000046}

Excel.Workspace {00020810-0000-0000-C000-000000000046}

Excel.XLL {00020810-0000-0000-C000-000000000046}

Property Notes

Reference File BINDER.TLB

Reference Title Office Binder 1.0 Type Library

Object Browser Library 

Name

OfficeBinder

Object Browser Title Office Binder 1.0 Type Library

Programming Help File VBA_BIN.HLP

Page 22 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 18. Identifier Table for Microsoft Binder 

The following code creates a binder and adds two existing documents to it: 

Sub Create_Binder() 
    Dim objBinder As OfficeBinder.Binder, objWord A s Object 
    Set objBinder = CreateObject("Office.Binder") 
    objBinder.Visible = True 
    Set objWord = CreateObject("Word.Basic") 
    With objWord 
        .FileNewDefault 
        .formatfont Points:=22, Bold:=True, Italic: =True 
        .Insert "Russell says Binders are cool!" 
    End With 
    objWord.insertPara 
    objWord.fileSaveAs "c:\Binder Summary.DOC" 
    Set objWord = Nothing 
    objBinder.Sections.Add filename:="c:\Binder Sum mary.doc" 
     
    objBinder.Sections(1).Name = "Binder Summary" 
    objBinder.SaveAs filename:="Mybinder.obd", save Option:=3 
    '3 is the value of the "bindDisplayDialog" cons tant 
End Sub 

Microsoft Graph 

The MSGraph server allows data to be displayed on a graph. The functionality is similar to 

Charts in Microsoft Excel but requires fewer system resources to load. 

Table 19. Quick Summary for Microsoft Graph 

Extended Map Mapping the Office Binder: Binder 1.0

Redistribution Rights None

Source Information Part of Office 95

Externally Creatable (New) False

Server Command BINDER.EXE

CreateObject Creates a new system instance each time.

GetObject Creates a new system instance, unless specified file exists.

Terminate Object Sets Visible to False; sets instance to Nothing.

ProgID CLSID

Office.Binder {59850400-6664-101B-B21C-00AA004BA90B}

Property Notes

Reference File GREN50.OLB, GRBRZ32.OLB, GRFR32.OLB, GRDE32.OLB, 

GRIBP32.OLB

Reference Title Microsoft Graph 5.0 Object Library

Object Browser Library 

Name

Graph

Object Browser Title Microsoft Graph 5.0 Object Library

Programming Help File VBA_GRP.HLP

Page 23 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 20. Identifier Table for Microsoft Graph 

The following example code graphs some silly data using the MSGraph server (note the extra 

hard return before "vbTab"): 

Dim ThisGraph As Object 'Graph.Application  
MyData = "Cats" & vbTab & 20 & vbCr & "Dogs" & vbTa b & "13" & vbCr & "Horses" &  
vbTab & "4" 
Clipboard.SetText MyData 
Set ThisGraph = CreateObject("MSGraph.Application")  
ThisGraph.Visible = True 
SendKeys "%VD", True 
SendKeys "%EP", True 
ThisGraph.Chart.HasTitle = True 
ThisGraph.Chart.ChartTitle.Caption = "Favorite Pets " 
ThisGraph.Chart.AutoFormat Gallery:=xlColumn, Forma t:=2 

The MSGraph server does not have a simple mechanism for inserting data series. To speed the 

entry of data, the data was copied to the Clipboard and then inserted into the data sheet using 

the SendKeys command. Using the Clipboard can greatly speed data transfers with out-of-

process servers. 

Microsoft Access Version 7.0 

The Microsoft Access server makes Microsoft Access reports and forms available to the 

controller. Although DAO and Microsoft Access share some of the same functionality, the 

Microsoft Access server exposes the report and form objects that may be used an alternative to 

Crystal Reports and other products. 

Table 21. Quick Summary for Microsoft Access 

Extended Map Mapping Microsoft Graph 5.0: MSGraph, MSDN Library, October 

1995

Redistribution Rights None.

Source Information Installed with several Microsoft Office applications.

Externally Creatable (New) False

Server Command Graph5.exe /Automation

CreateObject Creates a new system instance each time.

GetObject Creates a new system instance each time.

Terminate Object Sets Visible to False; sets instances to Nothing.

ProgID CLSID

MSGraph.Application {000208EC-0000-0000-C000-000000000046}

MSGraph.Chart {00020801-0000-0000-C000-000000000046}

Property Notes

Reference File MSACCESS.TLB

Reference Title Microsoft Access for Windows 95

Object Browser Library Name Access

Object Browser Title Microsoft Access for Windows 95

Programming Help File VBA_ACC.HLP, VBAACCSP.HLP

Page 24 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 22. Identifier Table for Microsoft Access 

The following code previews a report and opens a form using Microsoft Access: 

Dim ThisAccess As New Access.Application 
With ThisAccess 
        .OpenCurrentDatabase "E:\Office95\Access\sa mples\NorthWind.mdb" 
   With .DoCmd 
       .OpenForm FormName:="Orders", _ 
         View:=Access.acNormal, _ 
         DataMode:=Access.acEdit, _ 
         WindowMode:=Access.acNormal 
         'WARNING: "WindowMode:=Access.acDialog" wi ll not return until  
         ' user closes form! 
       .OpenReport ReportName:="Invoice", _ 
        View:=Access.acPreview 
   End With 
End With 

Although the Microsoft Access server exposes a DAO, it should not be used because Microsoft 

Access is an out-of-process server; instead, the in-process DAO server should be used. A 

controller should never invoke a method that does not return immediately; for example, 

opening a form with the WindowMode being acDialog. If the server does not return control 

to the controller in a reasonable time, an OLE time-out may occur, and the controller will 

appear to "hang" until the server returns. 

Microsoft Word 

The Microsoft Word server can be used as a form-letter generator, label generator, and report 

generator. It can also be used as a device for entering documents into databases. 

Table 23. Quick Summary for Microsoft Word 

Redistribution Rights None

Source Information Installs with Microsoft Access 7.0

Externally Creatable (New) True (Access.Application)

Server Command MSACCESS.EXE

CreateObject Creates a new system instance each time.

GetObject Creates a new system instance each time.

Terminate Object Calls Access.Quit

ProgID CLSID

Microsoft Access.Application {B54DCF20-5F9C-101B-AF4E-00AA003F0F07}

Property Notes

Reference File WB70EN32.TLB

Reference Title Microsoft WordBasic 95 Type Library

Object Browser Library Name Word

Object Browser Title Microsoft WordBasic 95 Type Library

Programming Help File WRDBASIC.HLP

Extended Map None

Page 25 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 24. Identifier Table for Microsoft Word 

The following code creates a document and records its creation date: 

Dim objWord As Word.WordBasic 
Set ThisWord = CreateObject("Word.Basic") 
With ThisWord 
    .AppMaximize 
    .FileNewDefault 
    .FormatFont _ 
        Points:=22, _ 
        Bold:=True, _ 
        Italic:=True 
    .Insert "Welcome to Word OLE  Automation" 
    .InsertPara 
    .FormatFont _ 
        Points:=10, _ 
        Bold:=False, _ 
        Italic:=False 
    .Insert "Report Created:" 
    .InsertDateTime _ 
        DateTimePic:="YYYY MM DD HH:MM:SS", _ 
        InsertAsField:=False 
    .InsertPara 
End With 

Microsoft Word is an arcane OLE server. It was the first OLE server and is inconsistent with 

later OLE servers. All commands are directed to the active document, which may be changed 

by the user or other applications. Always use named arguments with Microsoft Word; the 

ordered argument sequences are recorded incorrectly in some documentation, including the 

type library and what the recorder writes into macros. 

Redistribution Rights Freely redistributable

Source Information CompuServe®, WWW.Microsoft.Com

Externally Creatable (New) False

Server Command WINWORD.EXE /Automation [

CreateObject Returns a system instance if available, otherwise creates a 

system instance.

GetObject Returns a system instance if available, otherwise creates a 

system instance.

Terminate Object Sets instance to Nothing. (Word may be visible.) 

ProgID CLSID 

Word.Backup {00020900-0000-0000-C000-000000000046}

Word.Bakup {00020900-0000-0000-C000-000000000046}

Word.Basic {000209FE-0000-0000-C000-000000000046}

Word.Document {00020900-0000-0000-C000-000000000046}

Word.Picture {00020901-0000-0000-C000-000000000046}

Word.RTF {00020900-0000-0000-C000-000000000046}

Word.Template {00020900-0000-0000-C000-000000000046}

Word.Wizard {00020900-0000-0000-C000-000000000046}

Page 26 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Microsoft Voice Text 

The Microsoft Voice Text Object (VTxtAuto) ships with the Microsoft Speech Software 

Development Kit (SDK). This object allows an application to speak any text aloud. The 

pronunciation engine is very advanced, and you can have it read a Microsoft Word document 

through a sound system, switching to Spanish or German when the text changes in the 

document. See the Speech API SDK documentation for further information (MSDN Library, 

Platform, SDK, and DDK Documentation), or search future issues of the MSDN Library. 

Table 25. Quick Summary for Microsoft Voice Text 

Table 26. Identifier Table for Microsoft Voice Text 

The following sample code opens a Microsoft Word document and reads it aloud. 

Dim Vtxt As New VTxtAuto.VTxtAuto 
Dim Word As Word.WordBasic 
Set Word = CreateObject("Word.Basic") 
Vtxt.Register pszSite:="", pszApp:=App.Title 'Easy way in VB4 
Word.FileOpen Name:= "My Sample.Doc" 
While Not Word.AtEndOfDocument() 
With Word 
    .PageDown Count:=1, Select:=1 'Select next para graph. 
    .EditCopy  '.Selection is logical here BUT it g ives errors on long text. 
    A$ = Clipboard.GetText 'So we use the clipboard  instead. 
    If Len(A$) > 0 Then 'Make sure there is some te xt to read. 
        Vtxt.Speak pszBuffer:=A$, dwFlags:=VTxtAuto .vtxtst_READING 
    End If 
    .CharRight Count:=1, Select:=0 'Move to start o f next paragraph. 
    While Vtxt.IsSpeaking() 'Wait until it is finis hed before going on. 
        If fStop Then Vtxt.StopSpeaking: GoTo Stop_ Now 'User terminate 

Property Notes

Reference File VTXTAUTO.TLB

Reference Title VoiceText 1.0 Type Library

Object Browser Library Name VTxtAuto

Object Browser Title VoiceText 1.0 Type Library

Programming Help File None at present

Redistribution Rights See the Speech API SDK documentation.

Source Information A component of the Microsoft Speech API SDK.

Behavior Only a single instance may exist in the system.

Externally Creatable (New) Yes (VTxtAuto.VTxtAuto)

Server Command vcmd.exe

CreateObject Returns a system instance if available; otherwise, creates a 

system instance.

GetObject Returns a system instance if available; otherwise, creates a 

system instance.

Terminate Object Sets instances to Nothing.

ProgID CLSID

Speech.VoiceText {FF2C7A52-78F9-11ce-B762-00AA004CD65C}

Page 27 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



        DoEvents 'Server runs independent of this a pplication. 
    Wend 
End With 
Wend 
Stop_Now: 
Word.FileClose 

Although it is impolite to interrupt someone speaking, the module or global variable fStop 

allows the user to interrupt. The controller using the VtxtAuto server must register its name 

before the server can be used. The Word.Selection command often gives errors on long text 

selections, so I moved the text from Microsoft Word to the controller using the Clipboard 

instead. Having two sets of server commands mixed prevented me from using With to qualify 

both objects. I used With to qualify the most frequently used server, Microsoft Word, and 

requalify the less frequently used server, VTxtAuto. 

Microsoft Voice Command 

The Microsoft Voice Command object (VCmdAuto) ships with the Microsoft Speech API SDK. 

This object allows applications to understand spoken commands. See the Speech API SDK 

documentation for further information, or search future issues of the MSDN Library. 

Table 27. Quick Summary for Microsoft Voice Command 

Table 28. Identifier Table for Microsoft Voice Command 

The following Visual Basic code allows an application to respond to words listed in a list box. 

The words are in a list box called WordSpoken. 

Dim VCmd As Object 
Dim VMenu As Object 
WordSpoken.AddItem "Stop" 

Property Notes

Reference File VCAUTO.TLB

Reference Title VoiceCommand 1.0 Type Library

Object Browser Library 

Name

VCmdAuto

Object Browser Title VoiceCommand 1.0 Type Library

Programming Help File None at present

Redistribution Rights See the Speech API SDK documentation.

Source Information A component of the Microsoft Speech API SDK.

Behavior Only a single instance may exist in the system.

Externally Creatable (New) Yes (VCmdAuto.VCmdAuto)

Server Command vcmd.exe

CreateObject Returns a system instance if available; otherwise, creates a 

system instance.

GetObject Returns a system instance if available; otherwise, creates a 

system instance.

Terminate Object Sets instances to Nothing.

ProgID CLSID

Speech.VoiceCommand {A26D7620-6FA0-11ce-A166-00AA004CD65C}

Page 28 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



WordSpoken.AddItem "Go" 
WordSpoken.AddItem "Yield" 
Set VCmd = CreateObject("Speech.VoiceCommand") 
Call VCmd.Register("") 
Set VMenu = VCmd.MenuCreate("VB Test Program", "Tes tMenu", 1033&, "", vcmdmc_CREATE_ALWAYS)
For i = 0 To WordSpoken.ListCount - 1 
    Call VMenu.Add(i, WordSpoken.List(i)) 
Next i 
VMenu.Active = True 
 
 
Private Sub Timer1_Timer() 
WordSpoken.ListIndex = VCmd.CommandSpoken 
End Sub 

The above sample code requires a timer to periodically check whether a command was spoken. 

Timers can be simulated with DoEvents loops in other products, as shown below. 

Sub Checkforword(ByVal Seconds As Single) 
endat = Seconds / (24# * 3600#) + Now 
While Now < endat 
    DoEvents 
    WordSpoken.ListIndex = VCmd.CommandSpoken 
Wend 
End Sub 

This is a fun OLE server to play with! If you use this OLE server with the Microsoft Voice Text 

server, you can spend hours talking to your computer. 

"Word95 Objects for ACCESS" 

"Word95 Objects for ACCESS" is a custom type library that exposes some parts of Microsoft 

Word that are useful from Microsoft Access. "Word95 Objects for ACCESS" enables the 

developer to manipulate Microsoft Word mail merge facilities. It is a subset of the Microsoft 

WordBasic 95 type library and contains only one object, despite the name claiming to have 

multiple objects. 

Table 29. Quick Summary for "Word95 Objects for ACCESS" 

Property Notes

Reference File WD95ACC.TLB

Reference Title Word 95 Objects for Access

Object Browser Library Name Word95ACC

Object Browser Title Word 95 Objects for Access

Programming Help File WRDBASIC.HLP

Redistribution Rights None

Source Information Is installed with Microsoft Access 95

Externally Creatable (New) False

Externally Creatable (New) False

Server Command WINWORD.EXE /Automation

CreateObject Returns a system instance if available; otherwise, creates a 

system instance.

GetObject Returns a system instance if available; otherwise, creates a 

system instance.

Page 29 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Table 30. Identifier Table for "Word 95 Objects for ACCESS" 

The following code creates form letters from the first 10 customer records in the Northwind 

sample database shipped with Microsoft Access 95. 

Dim ThisWord As wORD95aCC.Word95Access 
Set ThisWord = CreateObject("Word.Basic") 
ThisWord.FileOpen Name:=App.Path & "\MyMerge.Doc" 
ThisWord.AppShow 
With ThisWord 
    .MailMergeOpenDataSource Name:="\Office95\ACCES S\Samples\Northwind.mdb", _ 
        LinkToSource:=1, _ 
        Connection:="TABLE Customers", _ 
        SQLStatement:="SELECT * FROM [Customers]" 
 
    .MailMerge CheckErrors:=1, _ 
        Destination:=0, _ 
        MergeRecords:=1, _ 
        From:="1", _ 
        To:="10", _ 
        MailMerge:=1 
End With 

This type library is the same as the Microsoft Word type library except that only a few of the 

methods and properties are exposed in the library. When an instance of Word is created using 

the "Word95 Objects for ACCESS" library, this instance is created as not visible. (When the 

Word type library is used, it is created as visible.) The .MailMerge method is not exposed by 

the "Word95 Objects for ACCESS" library, but it is still available. This illustrates an important 

aspect of the libraries: They show what is recommended, not what is possible. This feature 

allows hidden methods and properties to be included for backward compatibility. Always write 

code according to the library model; it shows the recommended methods for the servers. 

Library Encapsulations 

Library encapsulations are libraries that are neither in-process nor out-of-process servers. They 

may use objects passed from other servers or be wrappers around API calls. They can simplify 

development for programmers by exposing unpublished API calls or encapsulating existing API 

calls in an object model. 

There is only one type library server: the Microsoft Office server. The Windows API type library 

published by Bruce McKinney in his upcoming Microsoft Press book, Hard Core Visual Basic, is 

another important server, which I described in my article "Corporate Developer's Guide to 

Office 95 API Issues." 

Microsoft Office 95 Object 

The Microsoft Office 95 object is very badly misnamed; a more appropriate name would be the 

"Summary Information object." This object allows manipulation of the document properties of 

Microsoft Excel, Microsoft Project, and Binder documents. Document properties used to be 

called Summary Information. If you click the Summary tab in the Properties dialog box in 

Microsoft Excel (Figure 5), you will see what can be manipulated. 

Terminate Object Set instance to Nothing. (May be visible.)

ProgID CLSID

Word.Basic {000209FE-0000-0000-C000-000000000046}

Page 30 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



 

Figure 5. Properties dialog box showing the values that can be manipulated 

Table 31. Quick Summary for Microsoft Office 

Table 32. Identifier Table for Microsoft Office 

Property Notes

Reference File Mso5enu.dll

Reference Title Microsoft Office 95 Object Library

Object Browser Library Name MicrosoftOffice

Object Browser Title Microsoft Office 95 Object Library

Programming Help File VBA_OFF.HLP 

Redistribution Rights None. User must own Microsoft Office.

Source Information Microsoft Office 95

Externally Creatable (New) False

Server Command Mso5enu.dll

CreateObject Invalid

GetObject Invalid

Terminate Object Invalid

Page 31 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



The following code sample receives an object, ThisObject, which has been set to an 

Excel.Workbook, MSProject.Project, or Office.Binder. The code displays all of the current 

values of the BuiltinDocumentProperties and CustomDocumentProperties in the 

document.  

List1.Clear 
List1.AddItem "Build in Properties" 
On Error GoTo BadValue_err 
For Each Prop In ThisObject.BuiltinDocumentProperti es 
    With Prop 
        AName$ = .Name 
        List1.AddItem .Name & ":= " & .Value 
    End With 
Next 
List1.AddItem "Custom in Properties" 
For Each Prop In ThisObject.CustomDocumentPropertie s 
    With Prop 
        AName$ = .Name 
        List1.AddItem .Name & ":= " & .Value 
    End With 
Next 
On Error GoTo 0 
Exit Sub 
BadValue_err: 
List1.AddItem AName$ & ":= #NULL#" 
Resume Next 

The sample application demonstrates two important points:  

� Some property values are not initialized, causing an error to occur.  

� The built-in properties are not the same for the three different objects.  

In-Process Servers 

In-process servers require the controller to be the same "bitness" as the server—that is, if the 

controller is 16-bit, the server must also be 16-bit. This requirement allows data to be passed 

directly between the controller and the server, resulting in high-performance data transfer. In-

process servers should always use early binding via a type library. All the database engines are 

in-process servers. 

In general, these servers use a single instance for each application with implicit creation of the 

root instance. For example, if you open five databases and then create the application (or 

DBEngine) instance, you will find these five databases as children. If you create additional 

instances of the application (or DBEngine) instance, the first instance will always be returned. 

In-process servers terminate when the calling application terminates because they are DLLs. 

Setting all of the instances to Nothing will not unload the DLL. The three Microsoft in-process 

OLE Automation servers are:  

� Data Access Objects  

� SQL Distributed Management Objects (SQL-DMO)  

� Remote Data Objects  

Data Access Objects 

The Data Access Object server allows data to be accessed from Indexed Sequential Access 

Method (ISAM), Microsoft Access, and ODBC data sources. This server is the most used server 

of all the servers because data is the essence of business. It may access more different types 

ProgID CLSID

There is no ProgID for MicrosoftOffice. {2DF8D04C-5BFA-101B-BDE5-00AA0044DE52}

Page 32 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



of databases than the other database servers in this article. This server supports remote OLE 

Automation—that is, the server may be running on a different computer. 

Table 33. Quick Summary for Data Access Object 

Table 34. Identifier Table for Data Access Object 

The following code creates a database and then creates an ad-hoc table. The tables and their 

fields are then shown in a list box. (Note that you will have to remove the extra hard returns in 

the "Set MyDB" and "Query:" lines.) 

Dim appDAO As New DAO.DBEngine 
Dim MyDB As DAO.Database 
Set MyDB = appDAO.CreateDatabase(Name:="MSDN1.MDB",   
   Connect:=DAO.Constants.dbLangNorwDan, Option:=DA O.Constants.dbEncrypt) 
With MyDB 
    .Execute _ 

Property Notes

Reference File DAO2532.TLB, DAO2516.DLL, DAO3032.DLL

Reference Title Microsoft DAO x.x Object Library

Object Browser Library Name DAO

Object Browser Title Microsoft DAO x.x Object Library

Programming Help File DAO.HLP, DAOSDK.HLP

Redistribution Rights See product documentation for Visual Basic or Microsoft 

Access.

Source Information DAO.HLP ships with Visual Basic, Microsoft Access, and 

Microsoft Excel. DAOSDK.HLP ships with Visual C++.

Externally Creatable (New) True (DAO.DBEngine). Not needed because DBEngine is 

created automatically when any component of DAO is 

referenced.

Server Command DAO3032.DLL or DAO2516.DLL

CreateObject Always returns same instance.

GetObject Always returns same instance.

Terminate Object Closes all DAO.Workspaces; sets DAO.DBEngine to Nothing.

ProgID CLSID

DAO.DBEngine {00025e15-0000-0000-c000-000000000046}

DAO.Field {00025e4c-0000-0000-c000-000000000046}

DAO.Group {00025e5f-0000-0000-c000-000000000046}

DAO.Index {00025e55-0000-0000-c000-000000000046}

DAO.PrivateDBEngine {00025e19-0000-0000-c000-000000000046}

DAO.QueryDef {00025e7a-0000-0000-c000-000000000046}

DAO.Relation {00025e8b-0000-0000-c000-000000000046}

DAO.TableDef {00025e43-0000-0000-c000-000000000046}

DAO.User {00025e68-0000-0000-c000-000000000046}

Page 33 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



        Query:="Select 'Dr.Gui' As Name, 'MSDN@Micr osoft' As Email, #1/1/52# 
 as Birthdate into MyTables" 
    For i% = 0 To .TableDefs.Count - 1 
        List1.AddItem .TableDefs(i%).Name 
        For j% = 0 To .TableDefs(i%).Fields.Count -  1 
            List1.AddItem "  Field:" & .TableDefs(i %).Fields(j%).Name 
        Next j% 
    Next i% 
End With 

There are many other examples of using the DAO in samples shipped with various products, 

such as Visual Basic or Microsoft Access. Use DAO.Database.Execute to quickly create an ad-

hoc table when the default data types assigned by the database engine are acceptable. This 

command can save many lines of code and can be easier to read. The Microsoft Access server 

is an out-of-process server; for this reason its DAO child object should be avoided by using the 

DAO server directly.  

SQL Distributed Management Objects 

The SQL Server object is a fair rose, officially named SQL Distributed Management Objects or 

SQL-DMO. It is called SQLOLE in the type library. (The poor developers could not change 

names to match the marketing manager's whims and still ship on time.) It exposes the 

complete Microsoft SQL Server as an object and allows the Microsoft SQL Server administration 

application to be easily managed. It should not be used for developing end-user applications. 

Table 35. Quick Summary for SQL Distributed Management Objects 

Table 36. Identifier Table for SQL Distributed Management Objects 

Property Notes

Reference File SQLOLE32.TLB

Reference Title Microsoft SQLOLE Object Library

Object Browser Library 

Name

SQLOLE

Object Browser Title Microsoft SQLOLE Object Library

Programming Help File SQLBOOKS.MVB

Redistribution Rights See documentation for Microsoft SQL Server.

Source Information A component of SQL Server and SQL Server tools

Externally Creatable (New) True (SQLOLE.Application). Not needed because the instance 

is created automatically when any component of SQLOLE is 

referenced.

Server Command SQLOLE32.DLL

CreateObject Always returns same instance.

GetObject Always returns same instance.

Terminate Object Closes application.

ProgID CLSID

SQLOLE.Alert {00026bb0-0000-0000-C000-000000000046}

SQLOLE.Application {00026ba0-0000-0000-C000-000000000046}

SQLOLE.Article {00026ba0-0000-0000-C000-000000000046}

Page 34 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



The following code obtains information on the status of a series of databases on a SQL server. 

Dim ThisSQLOLE As New SQLOLE.Application 
Dim ThisSQLServer As New SQLOLE.SQLServer 
Dim objSQLdb As SQLOLE.Database 
ThisSQLServer.Connect ServerName:=ServerName$, Logi n:="sa", Password:=Null 
List1.Clear 
For Each objSQLdb In ThisSQLServer.Databases 
    With objSQLdb 
       If .Status <> SQLOLE.SQLOLE_DBSTATUS_TYPE.SQ LOLEDBStat_Inaccessible Then 
          List1.AddItem .Name & "[Size=" & Format$( .Size, "0.0") & " Mbytes, " _ 
          & " Used= " & Format$(.DataSpaceUsage, "0 .0") _ 
          & ", Users=" & Format(.Users.Count, "0") & "]" 
       End If 
    End With 

SQLOLE.Backup {00026bb7-0000-0000-C000-000000000046}

SQLOLE.Check {00026bbd-0000-0000-C000-000000000046}

SQLOLE.Column {00026ba4-0000-0000-C000-000000000046}

SQLOLE.Database {00026ba2-0000-0000-C000-000000000046}

SQLOLE.Default {00026ba7-0000-0000-C000-000000000046}

SQLOLE.Device {00026baf-0000-0000-C000-000000000046}

SQLOLE.Group {00026baa-0000-0000-C000-000000000046}

SQLOLE.HistoryFilter {00026bb8-0000-0000-C000-000000000046}

SQLOLE.Index {00026bac-0000-0000-C000-000000000046}

SQLOLE.Key {00026bad-0000-0000-C000-000000000046}

SQLOLE.Language {00026bb2-0000-0000-C000-000000000046}

SQLOLE.Login {00026bb1-0000-0000-C000-000000000046}

SQLOLE.Operator {00026bb9-0000-0000-C000-000000000046}

SQLOLE.Publication {00026bba-0000-0000-C000-000000000046}

SQLOLE.RemoteLogin {00026bb4-0000-0000-C000-000000000046}

SQLOLE.RemoteServer {00026bb3-0000-0000-C000-000000000046}

SQLOLE.Rule {00026ba8-0000-0000-C000-000000000046}

SQLOLE.SQLServer {00026ba1-0000-0000-C000-000000000046}

SQLOLE.StoredProcedure {00026bab-0000-0000-C000-000000000046}

SQLOLE.Subscription {00026bbc-0000-0000-C000-000000000046}

SQLOLE.Table {00026ba3-0000-0000-C000-000000000046}

SQLOLE.Task {00026bb5-0000-0000-C000-000000000046}

SQLOLE.Transfer {00026bb6-0000-0000-C000-000000000046}

SQLOLE.Trigger {00026bae-0000-0000-C000-000000000046}

SQLOLE.User {00026ba9-0000-0000-C000-000000000046}

SQLOLE.UserDefinedDatatype {00026ba6-0000-0000-C000-000000000046}

SQLOLE.View {00026ba5-0000-0000-C000-000000000046}

Page 35 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Next 

The SQL-DMO server encapsulates the complete essence of SQL Server. The SQL Server Books 

Online gives many excellent examples of using this object. Kudos to my former boss, Casey 

Kiernan, for doing an excellent job, and to Ted Hart for creating one of the best examples of a 

type library! 

Remote Data Object 

The Remote Data Object (RDO) ships with Visual Basic 4.0 Enterprise Edition. It is a very thin 

layer over the ODBC API. The RDO does not use the Jet engine. It is fast and requires little 

memory to run. 

Table 37. Quick Summary for Remote Data Object 

Table 38. Identifier Table for Remote Data Object 

The following sample code populates a list box with the results of an SQL query from an SQL 

server. It uses the sample "Pubs" database that is installed with Microsoft SQL Server. 

Dim DB As rdo.rdoConnection 
Dim RS As rdo.rdoResultset 
 
Set DB = rdoEngine.rdoEnvironments(0).OpenConnectio n( _ 
    dsName:="Pubs", _ 
    Connect:="ODBC;Userid=sa;Password=;") 
Set RS = DB.OpenResultset( _ 
    Name:="Select * from Authors;") 
While Not RS.EOF 
    List1.AddItem (RS(0)) 

Property Notes

Reference File MSRDO32.DLL

Reference Title Microsoft Remote Data Object 1.0

Object Browser Library 

Name

RDO

Object Browser Title Microsoft Remote Data Object 1.0

Programming Help File ENTPRISE.HLP 

Redistribution Rights May be redistributed only with executables or DLLs generated 

by Visual Basic 4.0 Enterprise Edition. Not supported with other 

products.

Source Information Visual Basic 4.0 Enterprise Edition

Externally Creatable (New) True (RDO.rdoEngine). Not needed because the rdoEngine is 

created automatically when any component of RDO is 

referenced.

Server Command MSRDO32.DLL

CreateObject Always returns same instance.

GetObject Always returns same instance.

Terminate Object Closes application.

ProgID CLSID 

rdoEngine 

MicrosoftRDO.rdoEngine

{A93E470F-62D3-11CE-920A-08002B369A33}

Page 36 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



    RS.MoveNext 
Wend 
RS.Close 

This is similar to using the Data Access Object described above with the names changed to 

confuse the innocent. 

Coding Tips 

By this time, you should be pointed in the right direction. A few general words of advice may 

spare you some angst:  

� Always fully qualify objects, properties, methods, and constants. Write your code for the 

person who is going to maintain it.  

� Use the Clipboard to speed data transfer.  

� Use macros or modules to speed execution.  

� Use early binding whenever it is available.  

� Use a splash screen when initializing an OLE Automation server and disable any forms until 

the OLE Automation server is loaded.  

It is very reckless to assume anything about the window state of an OLE Automation server. It 

is important to remember that if you intend to make the OLE server visible to the user, you 

should include code to explicitly do the following:  

� Make the server visible.  

� Move the server on the screen.  

� Restore the server from an icon and resize to an appropriate size.  

Dream Sweet Dreams 

This article covers a lot of territory in very few words. I smile when I look at these OLE 

Automation servers and controllers. This technology pushes the limit of practical corporate 

solutions to new levels. I am still trying to fully understand what it is possible to produce in one 

week of hard coding—it's awesome! As new servers are added, the potential grows and the 

labor hours decrease. Using OLE Automation servers and controllers represents a paradigm 

shift in how you code. Your learning curve will be steep for a while, but I hope this article 

flattens it for you. Try the examples, then dream, then code the dream. 

Bibliography 

Bienick, Paul. "Using OLE in Microsoft Visual FoxPro." (MSDN Library, Conference Papers) 

Gilbert, Michael. "Building Custom Solutions with Schedule+." (MSDN Library Archive, 

Conference and Seminar Papers) 

Hodges, Douglas. "Managing Object Lifetimes in OLE Automation." January 1995. (MSDN 

Library, Technical Articles) 

Knowledge Base Q111311. "XL: CreateObject Function Starts Invisible Instance of 

Excel." (MSDN Library, Knowledge Base) 

Knowledge Base Q112194. "How to Navigate Excel Objects from Visual Basic Version 

3.0." (MSDN Library, Knowledge Base) 

Knowledge Base Q114225. "XL5: OLE Automation Error Using Quit Method with 

GetObject." (MSDN Library, Knowledge Base) 

Knowledge Base Q119469. "INF: How to Use OLE Automation to Modify MS Graph 

Object." (MSDN Library, Knowledge Base) 

Knowledge Base Q120418. "INF: Using OLE Automation to Change a Graph's Type." (MSDN 

Page 37 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm



Library, Knowledge Base) 

Knowledge Base Q128994. "Behavior of GETOBJECT() with Excel and Word for 

Windows." (MSDN Library, Knowledge Base) 

Knowledge Base Q129252. "XL7: Error Creating OLE Automation Object with Microsoft 

Excel." (MSDN Library, Knowledge Base) 

Knowledge Base Q132535. "PRB: Releasing Object Variable Does Not Close Microsoft 

Excel." (MSDN Library, Knowledge Base) 

Lassesen, Ken. "An Extended Introduction to Schedule+ OLE Automation 

Programming." (MSDN Library, Technical Articles) 

Lassesen, Ken. "Mapping the Schedule+ Type Library: SPL 7.0." (MSDN Library, Technical 

Articles) 

Microsoft Exchange Server SDK. Microsoft Schedule+ Programmer's Guide. 

Microsoft Solutions Development Kit. "Your Unofficial Guide to Using OLE Automation with 

Microsoft Office and Microsoft BackOffice" 1995. (MSDN Library, Technical Articles) 

Microsoft Visual FoxPro version 3.0 Developers' Guide. "Creating Objects with OLE 

Automation." 1995.  

Microsoft Win32 Software Development Kit OLE Programmer's Reference. "OLE Registry 

Entries." 1995. (MSDN Library, Platform SDK) 

Nilsen, Kenneth. "Using the OLE Automation Interface with Visual Basic." (MSDN Library 

Archive, Conference and Seminar Papers) 

Wells, Eric. Developing Microsoft Excel 95 Solutions. Redmond, WA: Microsoft Press, 1995. 

Note especially "VBA Editing and Debugging Tools" in Chapter 2. 

 

Send feedback to Microsoft 

© 2003 Microsoft Corporation. All rights reserved. 

Page 38 of 38Using Microsoft OLE Automation Servers to Develop Solutions

10/2/2006ms-help://MS.MSDNQTR.2003FEB.1033/dnoffdev/html/msdn_ole2soln.htm


