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ABSTRACT

A multi-layer, topological detailed-router is described. This is the first router ever reported

that uses a rubber-band sketch (RBS) to represent the interconnect. The detail ed-router is part

of SURF, a routing system for multi-chip modules and VLS| that was desighed to handle
efficiently large multi-layer problems. The detail ed-router supports various routing goals and

can generate layouts for rectilinear, octilinear and any-angle wiring rules. It uses a novel

approach of unconstrained layer-assignment that makes a better usage of the routing resources

by considering a continuous metric of conflict between nets as opposed to the binary go/no-go
approach. The layer-assignment is formulated as an optimization problem and various routing

goals such as wire and via minimization or constrained-layers can be achieved by simple
modifications to the cost function. The layer-assignment partitions the multi-layer problem

into a set of single-layer sub-problems that are routed independently by a topological planar-

router. The planar-router uses a new net-ordering algorithm that results in shorter wiring than

the ‘shortest first’ approach. The nets are embedded sequentially using an optimal algorithm
that finds a shortest planar path in the RBS. The generated RBS is then optimized by a simple
re-route algorithm that takes advantage of the ‘attachment’ relation between branches and
terminals in the RBS. A mathematical formulation of the concept of RBS is also presented and
is used to prove the correctness of the shortest-path algorithm. This is the first exact analysis of
RBS ever published. Empirical results are also shown and they demonstrate the merit of the

router.
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1 INTRODUCTION

1.1 General

Currently available routers are running out of steam when it comes to meeting the challenges
presented by today’s VLSI designs and packaging technologies. Multi-Chip Modules (MEEM)

for example may consist of 60 or more layers and a large number of terminals and nets, and
therefore the router must be able to handle large designs efficiently in both time and space. SURF
is a routing system developed at University of California Santa Cruz that was designed to answer
these challenges. The subject of this research is a rubber-band based topological local router that
was developed as part of the SURF project. SURF is the first rubber-band based router ever
reported and it has many advantages compared to existing geometrical routers. Its flexible
representation of the interconnect enables it to achieve a high completion rate. It handles large
designs efficiently and the rubber-band representation of the interconnect provides a powerful

environment for manual editing.

1.2 Organization of This Thesis

In the rest of this chapter we present an overview of previous works related to our research and a
discussion of our original contribution. In Chaptmwe present an overview of topological
representation of interconnect and an overview of SURF. Ch&trS and6 cover four aspects

of our local router: layer-assignment, net ordering, topological net embedding, and the re- route
optimizer respectively. Chaptér also includes a formulation of the rubber-band sketch. The
formulation is based on mathematical terms from geometry and real analysis. The chapters of this
thesis were designed to be independent of each other such that a reader can have a good
understanding of each one without reading the previous ones. As a result, some degree of
redundancy does exist, especially in the introduction of each chapter where the general terms and

context are defined. Finally, Chapfecontains a conclusion and a discussion of future research.

1.3 Previous Works

A common method of handling large designs is to perform the routing in two phkxbes,.and

local routing. The global routing partitions the routing problem into a set of smaller sub-problems



which are then solved independently by the local router. Each of the sub-problems can be either a
channel with the terminals on its boundary, or can be channelless and have terminals and features
inside the routing area as well. Channd routing is more appropriate for Standard or Macro Cells
where the routing is done in the spaces between the components, while channelless routing fits
better MCM and modern VLSI designs. This dissertation describes a multi-layer, channelless,

local router that uses rubber-band topological representation of the interconnect.

The known methods of routing can be classified into the two main categories of geometric and
topological routing. Geometric routers determine the exact geometrical paths of the wires while
topological routers use a more abstract representation of the interconnect and determine only the
topology of the wires but not their exact paths. Geometric routing is by far the most common
routing method used today. Some of the geometric routers mentioned in the literature are maze
routers [51] [32] [19] that represent the wires as paths along atwo or three dimensional grid, line-
probe routers [21] [50] that use a gridless representation, and SLICE [29] which is an efficient

plane-sweep router.

Since topological representation is more abstract than geometrical representation, the interconnect
is easier to manipulate, and a topologica router can avoid making too detailed decisions in early
stages of the routing. When the topological routing is completed, it is checked to comply with the

spacing requirements and is then transformed to exact geometrical layout.

Various aspects of topological routing have been discussed in the literature including routability
check, topological representation, compaction and dynamic updating. The following is a

discussion of previous works related to these areas.

Thefirst problem related to topological routing mentioned in the literature isthat of routability test
defined in [54] [56]. This problem is also called Detailed Routing given an Homotopy (DRH) and
isdefined as follows: given a specification of the terminals and modules, and given a homotopy (a
rough planar sketch of the wires), is there a geometrical layout that conforms to the homotopy,
spacing requirements, and wiring rules? Cole and Siegal [5] proposed a polynomial-time
algorithm that finds a complying geometric layout, and showed that such a layout exists if and



only if every cut is safe. Leiserson and Maley [35] [44] showed that it is sufficient to check a
smaller set of critical cuts, and that the test can be done on the Rubber-Band Equivalent (RBE) in
which wires are as short as possible and zero spacing is allowed (while maintaining the topology
of the wires). Kong [31] used the idea of RBE and the concept of spokes, introduced by Leiserson
and Maley [35], to perform a constructive incremental routability check that resultsin acomplying
geometric layout, if one exists. The works of Leiserson and Maley [35][44], and of Kong [31],
assume no constraint on the wiring model. Maley, in alater work [46], showed that in the specia
case of polygonal grid-based wiring rules, the routability test can be performed in O(n logn)

time.

The topological representations mentioned in the literature fall roughly into two categories:
Triangulation Crossing Sketches (TCS) and Rubber-Band Sketches (RBS). TCS use a
triangulation of the routing area and capture the crossing of triangulation edges by nets’ wires.
RBS on the other hand represents the interconnect as flexible rubber-bands that bend and stretch to
form the shortest possible connection of a given topology. The RBS representation was originally
proposed by Rivest (see acknowledgmerii3b]). Leiserson and Maley formalized this concept

and called it th&ubber-Band Equivalent (RBE)[35] [44] [45]. As far as we are aware of, the only
rubber-band based router ever reported is SURF (Santa Cruz ULSI Routing Franj@jatbe)is

the framework of this research. SURF is based on ideas and results presented by Leiserson and
Maley [35] [44] and it covers various aspects of rubber-band based topological routing including:
global routing[63], multi-layer topological local routing (this research), representation and
manipulation of RB8], optimization of an RBS (ROAR optimization, part of this research),
testing for routability in an RBELO] [31], and transformation of an RBS to geometric lay64}.

An overview of SURF is presented later.

The flexible nature of topological representation makes it easier to move features while
maintaining the connectivity and the topology of the wikésrata and Kgjitani [52] [53], and Su

[65] proposed algorithms for moving objects in TSC and RBS respectively. The flexibility of the
topological sketches has also been used to solvbothetopic compaction problem. That is, to

find the smallest (area wise) layout that conforms to given homotopy, wire rules, and spacing



requirements. Maley [43] proposed a one dimensional compaction algorithm. His work was later

extended by [16] [45] [49] [66] [39] [13] and [25].

Several approaches for routing of multi-layer designs were discussed in the literature, including 3-
dimensional (3D) search, maximal-layer routing, and layer-assignment. The 3D search is an
extension of single-layer search agorithms such as maze-runner and line-probing that considers
layer crossings. In the maximal-layer approach, which is used for example by SLICE [29], the
layers are routed sequentially, trying to fit on each layer as much as possible of the missing
interconnect. The layer-assignment approach (survey in [26]) considers simultaneously all nets

and layers, and assigns nets or partial netsto the available layers.

Known methods for layer-assignment are usually classified as constrained or unconstrained (also
called topological). In a constrained layer-assignment, the geometric paths of the wires have
aready been determined prior to the assignment and the assignment step only determines on what
layers they will be routed. In an unconstrained layer-assignment on the other hand, the actual wire
paths are not specified to the layer-assignment. In this research we adopted the unconstrained
approach because it does not commit in early stages of the routing to specific wire routes, and
therefore it is more likely to take advantage of the flexibility of the underlying topological

representation.

The concept of unconstrained layer-assignment was introduced by Hsu [24] and since then has
received afair amount of attention in the literature. Hsu [24] and Marek-Sadowska [47] dealt with
two-layer problems where all the terminals are on the boundary of the routing area and the via
count is to be minimized, while guaranteeing planarity on each layer. This work was extended by
Haruyzama, Wong, and Fussell [20] to support multi-terminal nets. Sarrafzadeh and Lee [59]
showed that the via minimization problem is equivalent to the maximum 2-independent set
problem in a circle graph which is NP-complete. Pinter [54] proposed an algorithm that supports
terminals inside the routing area. It is based on a partitioning of the routing area into digjoint
regions called clusters such that the wires in each cluster can be routed on two layers without

crossing each other (i.e. each layer is planar). The agorithm then sub-optimally reduces the



problem into finding of a maximal cut in a planar graph, and this problem has a polynomial time

solution. The advances in VLSl and MCM which may utilize a significantly larger number of

layers resulted in published works that deal with multi-layers. Kiao, Lee, and Sarrafzadeh [36]
presented a polynomial algorithm for finding a maximal-weighted planar subset of multi-terminal

nets in a switchbox. This algorithm can be used to sequentially ‘peel’ maximal sets of nets for each
layer, assuming that all the terminals are on the boundary. If terminals do exist within the routing
area, the algorithm has exponential complexity. Other works that restricted terminals to exist on
the boundary includgg], [64], and[25]. Cho at al[4] proposed a layer-assignment algorithm that
handles terminals within the routing area and considers cross-talk, via count, and wire-length. This
algorithm which was developed independently, uses a net pair-wise cost function similar to the
one developed in our research (first publishefiLij). His algorithm however, assigns complete

nets to layers and does not consider insertion of vias as our algorithm does.

Our layer-assignment algorithm (called LAA) is to our best knowledge, the first successful attempt
to perform topological layer-assignment with simultaneous minimization of via-count and wire-
length. It scales well with an increasing number of layers, it supports multi-terminal nets, and it
handles terminals inside the routing area. The LAA models the layer-assignment as an
optimization problem with a cost function that considers via-count, and wire length. The cost
function can be extended to consider other routing goals such as preferred layers, and cross-talk.
The LAA supports rectilinear, octilinear, and any-angle wiring models, and it takes advantage of

the flexibility of the underlying RBS.

The LAA decomposes the multi-layer routing problem into a set of independent single-layer sub-
problems. Each single-layer problem specifies the terminals (which may include vias introduced
by the layer-assignment) and nets or partial nets to be connected on that layer. The nets of each
single-layer problem are guaranteed by the LAA to be planar (i.e. they can be topologically routed
with no intersections). This kind of routing problem is often referred singke-layer or planar

routing. Known methods for single-layer routing fall roughly into two categoriesoniential
andsimultaneous routing. In the sequential approach, nets are routed one-at-a-time, typically on a

least-cost path, considering the previously routed nets. The least-cost path can be determined for



example by a maze-runner or a line-probing algorithm. A draw-back of sequentia routing is its
sensitivity to the order in which the nets are routed. In some cases for example, the optimal

solution cannot be achieved by any order. Liao and Sarrafzadeh [38] addressed this problem with

an algorithm that applies the concept of global routing. It performs the least-cost path search on a

rough grid such that it makes decisions with a more global view. In simultaneous routing on the

other hand, all nets are routed at the same time and therefore no net gets higher priority than others.

This approach is used for example in SLICE [29] where it performs a single-layer routing in a

single plan sweep. SLICE’s approach is insensitive to the net order but is less likely to find more
complex paths and to efficiently handle ‘keep-out’ areas due to its one directional sweep and short

look-ahead.

In this research, we have focused on sequential routing for two reasons. First, the planar routing in
SUREF is done in a topological sketch and therefore is less sensitive to net ordering. Second, the
planar routing is performed on relatively small regions cdbied defined by the global routing

and therefore, any ‘bad’ decision made while determining the path of a net will have only local and
limited affect. Our router uses a net ordering algorithm that estimates the final wire-length for a
given order of nets, and a rerouting post-processor that searches for an alternative topology with
shorter wiring. The ordering and the planar routing algorithms considers the wire length

(Euclidean, rectilinear or octilinear) and are guaranteed to find a planar solution.

Another known concept which is used by our single-layer routepigp and reroute (RUR).

RUR is typically used to improve the completion rate and is performed by deleting some nets from
the sketch, routing a residual net, and then rerouting the deleted nets. A variant of this approach,
that can be used by routers that are able to represent violations such as cross-over, is to reduce the
number of conflicts between already routed nets. The main difficulty in performing RUR is to
determine which nets to delete and in what order to reroute them. Several works in@gHing

[61] [40] [7] [27] and[57] address this issue. The RUR approach is frequently used in sequential
routers to compensate for the sensitivity to net ordering. This problem is less significant in
topological routing. For example, the Puzzle Problem mentiong¥jmequires a RUR approach

to be solved optimally by a geometrical router, but is easily solved optimally using a topological



router because the wires are flexible and are pushed away to create clearance for new wires (Figure
1). Our router uses a RUR optimizer called ROAR that accepts a planar RBS and is guaranteed to
result in a planar RBS with the same or lower wire length. To determine which wires to remove
and in what order to reroute them, the algorithm uses the attachment relation between branches

and terminalsin the RBS. The ROAR optimizer is described later in thisthesis.

1.4 Contribution of this work

Our local router is the first ever published router that is based on rubber-band topological
representation. By taking advantage of the flexibility of the RBS, it can efficiently achieve high
quality layouts and to handle a wide range of routing problems. Our local router preforms the
routing in four steps: layer-assignment, net-ordering, net-embedding, and optimization. Our

contribution in each of these areasis outlined below.

Our unconstrained layer-assignment algorithm (LAA) uses a new approach in which the output of
the layer-assignment is unconstrained as well, that is, it does not specify the actual paths of the
wires but only what sub-nets are to be connected on what layers. This approach leaves more
freedom to the single-layer router and enables it to make more informed decisions. The layer-
assignment is formulated as an optimization problem with a cost function to be minimized. The
cost is based on an estimation of the final wire-length and supports user specification of the desired
balance between the conflicting goals of minimizing wire-length and via-count. The cost function
uses a continuous metric of the conflict between nets as opposed to the go-no-go approach
previously used. This enablesthe LAA to better utilize the routing resources by allowing nets with
low conflict to be assigned to the same layer. The cost function can be extended to support other
goals such as cross-talk minimization and constrained-layers. The cost function has afinite value
if and only if the assignment is planar and this enables the LAA to guarantee that the nets or partial
nets assigned to each layer can be routed on that layer without crossing each other. The LAA
handles multi-terminal nets and can break a net into multiple layers if this results in a more
desirable solution. The LAA handlesterminals on the boundary and within the routing area and the
terminals are not restricted to be on a grid. If terminals do exist on the boundary, the LAA can

consider specification of layer-assignment done previously on the other side of the boundary. This



makes the LAA suitable for routing systems like SURF that perform global routing before the
layer-assignment. The LAA is not restricted to a one-layer-one-direction routing style and
supports Euclidean, rectilinear and octilinear wiring rules. It uses an algorithm (called 2NAA) that
optimally assigns a single two-terminal net, given a sequence of candidate locations for vias and
the assignments of previously assigned nets. We have compared our router to SLICE and the
experimenta results show that it achieves better layouts, even when it is restricted to rectilinear

wiring rules.

Similar to the layer-assignment, our net-ordering algorithm is based on a formulation of net
ordering as an optimization problem with cost function to be minimized. The cost function
estimates the wire-length based on a pair-wise conflict between nets. The planarity of the order is
handled by the Planarity Operator that, given a net ordering, finds an order of the same cost that is
guaranteed to be routed with no net crossings. Experimental results show that our net ordering
algorithm reduces the wire length by 5% and 30% in average compared to the ‘shorter-net-first’

and ‘longer-net-first’ approaches respectively.

Our net-embedding algorithm performs a shortest path search in the RBS and is the first rubber-
band shortest path algorithm ever reported. The search algorithm is guaranteed to find a shortest
planar path inO((T2+S)Iog(T+S)) time wher& ardl  are the number of terminals and
number of wire segments respectively in the RBS. The algorithm can be modified to use a smaller
search graph and to find a planar path that is likely to be sh@t{i + S)log(T + S)) time. The
shortest-path algorithm is also used in our rip-up and reroute algorithm (called ROAR) that is used
to compensate for dependency of the generated layout on the net order. The ROAR algorithm uses

the ‘attachment’ relationship between wires and terminals that is unique to the RBS.

We also present a formulation that maps the concept of RBS into known mathematical terms from
geometric and real analysis. This clarifies the definition of the RBS as being both planar and of
zero spacing. The formulation is used to prove the correctness of the shortest planar path algorithm
using exact mathematical tools. To our best knowledge, this is the first time an exact analysis of

RBS is published.



2 OVERVIEW

In this chapter we present an overview of topological representation of the interconnect and an
overview of the SURF routing system. This introduces the terms commonly used in topological

routing and explains the context in which the proposed local-router is used.

2.1 Topological Representation and Routing

A topological sketch represents the embedding of nets in an abstract form. It contains the general

relationship of the nets and terminals but ignores details such as the exact geometrical paths of the

nets. This ‘partial’ representation avoids making too detailed decisions in early stages of the

routing (igure 1) and provides greater flexibility in manipulating the sketch. When the

topological routing is completed, it is then transformed into a geometrical layout with exact

location of the wires.

S R

a b

FIGURE 1 - The Puzzle problem. (a) shows an optimal solution to the Puzzle
example proposed {27]. The example has three nets that are routed in the order
1, 2, 3. A typical geometrical router that routes the nets sequentially on a shortest
path will fail routing net 3 because there is not enough clearance between the
previously routed nets 1, 2 and the two internal terminals. A topological router on
the other hand (b) can easily insert net 3 since no commitment was done on the
exact geometrical paths of nets 1, 2.

In the rest of this section we present an overview of topological representation of the interconnect.

The discussion is limited to single-layer sketches. Multi-layer sketches can be constructed using a

set of single-layer sketches and some specification of the layer crossings between terminals of
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adjacent layers. For clarity, we deal here with a simplified model of the routing that includes only

terminals and nets. Obstacle or ‘keep-out’ areas can be handled in a similar way.

2.1.1 Sketches and Topological Classes

A geometric sketch (sketch in short) represents the exact paths of the interconnect. It includes a set
of terminals, each has a unique point inside or on the boundary of the routing arémaactes,

each a connection between a pair of terminals. The terminals and the branches have zero width and
they represent the centers of the pads and the center-lines of the wires respectively. A maximal set
of terminals interconnected by branches is calledt @r component. The branches and terminals

of a component are assumed to have no cycles (i.e. the components are trees). A branch is
represented by a path connecting its two end-terminals. A branch path is a parametric line
P(t) = (X, Y;) » wheret[0..1] , andx,Y,) Iis a point on the plane, such that the two end-
points of the pathP(0) P(1) are the locations of the end-terminals of the branch. The decision
which of the two end-points of a brané&t{0) represents is arbitrary. A branch path is planar, it
does not cross itself, terminals, or other paths, except for possibly at its endR{@ntP (1) :
and is strictly contained inside the routing area. The fund®ign is continuous and piece-wise

differentiable.

Let A, B be two sketches with identical sets of terminals and same branch connectivity (but not
necessarily the same paths), and<ét(t)> <B;(t)> be the vectors of branch-path8of |,
respectively. We say that sketéh  hemotopic [35] to sketchB , or thad ‘has the same
topology’ asB , if there is a continuous transformation from the patt#s of to the pahs of
T(r) = <P;(r,t)>, rofo0..1], such that P,(0,t) = A(t) , P(Lt) =B(t) ,
Pi(r,0) = A(0), P;(r,1) = A(1), and all the intermediate sketches, whenr <1 , are
planar. Intuitively this represents a continuous co-deformation of the branches of Aketch , to
achieve those of sketd®d , while maintaining their end-points and their relative loc&tmure (

2).
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a b
FIGURE 2 - Homotopic sketches. The two sketches are homotopic since they
have the same sets of terminals, their branches represent the same connectivity,

and one can be continuously transformed to the other while preserving the
planarity and the end-points of the branches

The homotopic relation between sketches is reflexive, symmetrical, and transitive, and therefore it
partitions the set of al possible sketches (of same terminal set and branch connectivity) into

eguivalence classes called topology classes (classes in short).

The wire length of a given sketch is defined as the sum the lengths of its branches. A topology
class does not necessarily have a sketch of minimal length. That is because shorter wiring requires
smaller spacing but when the spacing reaches zero, the sketch is non-planar and therefore it is not
a member of the class, nor is it a valid sketch (Figure 3). Each class however has a upper lower
bound (ULB) L onitswirelength. That is, for every class, thereis L = 0 such that the wire length
of all the sketchesintheclass =L, and for every € >0, thereis a sketch in the class whose wire
length <L +¢€. Informaly, the neighborhood of sketches whose wire length are at the
infinitesimally small neighborhood of L is called the kernd of the class. The kernel of aclassis

significant because it contains the more desirable solutions with shorter wires.

A topological sketch represents a subset of a topology class. It can represent a single sketch, the
entire class, or a subset of it. It is possible to have the agreement that a topological sketch which
represents directly a subset of a class, also represents indirectly the rest of the sketches in that
class. In an extreme example, a geometrical sketch can be used to represent its entire class. This

sketch represents directly only a single member of the class (itself) and represents indirectly the
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rest of the class. In this discussion, unless explicitly specified otherwise, we will consider only

direct representation.

TN

a b

FIGURE 3 - Minimal length sketch. The topology class that contains the
sketch in (a) does not have a sketch of minimal length. To further reduce the
length of the sketch in (a) , the spacing between the branch and the terminal
need to be reduced. However when the spacing reaches zero, the sketch looses
its planarity (b) and therefore it is not a member of the class, nor it is a valid
sketch.

2.1.2 Triangulation Crossing Sketch (TCS)

A puretopological sketch represents directly all the sketches of the class. We are not aware of any
pure topological representations proposed in the literature, and it is even questionable if such
representation would be useful for routing. An example of a topological representation, which is
not pure, is the Triangulation Crossing Sketch (TCS) that represents directly only a subset of the
topology class. The TCS uses an arbitrary triangulation of the terminas, and for each triangle, it
specifies the connectivity of the nets crossing the triangle edges and of the terminals on its corners
(Figure 4). The TCS does not include exact specification of the locations of the edge crossings and
it indicates only their relative order along the triangulation edges. The TCS represents the subset of
the topology class that includes sketches having the same pattern of edge crossing and the same
connectivity in each triangle. A TCS represents its class with no ambiguity but is not unique. A
topology class may have more than one TCS representing it, even for a given triangulation. A
useful canonical version of the TCS is when the total number of crossings is minimized. This
representation, called Triangulation Crossings Normalized Sketch (TCNS), is unique for a given

topology class and triangulation. The TCNS is useful because it is more ‘focused’ on the kernel of
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the topology class and the set of sketches it represents include the sketches whose wiring lengths

arbitrarily close to the upper lower bound.

FIGURE 4 - The Triangulation Crossings Sketch (TCS). This

topological representation captures the crossings of the triangulation
edges by the branches (for a given triangulation of the terminals). The
TCS represents the connectivity of the paths within each triangle
without specifying exact locations of the edge crossings or the paths
inside the triangle. The shaded area indicates a typical triangle and the
arrows indicate the net crossings of the edges of this triangle. This
sketch is not a TCNS because the number of crossings can be reduced
(at the location marked by ‘x’) while preserving the topology.

2.1.3 Rubber-Band Sketch (RBS)

An alternative representation which is even more ‘focused’ on the kernel then the TCNS is the
Rubber-Band Sketch (RBS). Informally, RBS represents the shortest possible wiring of a topology
class. That is, when wires are as short as possible, zero spacing is allowed, and the topology is
preserved Kigure 5). If the class has a member of minimal length than its RBS is exactly that
member. Otherwise, the RBS represents the kernel of the class but not any specific member of it.
Later in this thesis, we present a formal definition of the RBS and show how it can be used to
prove properties of the RBS. Similar to the TCNS every class has a unique RBS representing it.
The RBS is more specific than the TCNS in the sense that it contains more geometrical
information. The RBS provides better estimation than the TCNS of the properties of the final

layout such as wire length, signals delay, and cross-talk.
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FIGURE 5 - Rubber-Band Sketch. (a) shows an arbitrary member of a topology
class and (b) showsthe RBS of that class.

2.1.4 Routability Tests

A topology classis said to be routable for given spacing requirements if it has a member sketch
that satisfies those requirements. Leiserson and Maley [35] [44] proposed a necessary and
sufficient condition for atopology class to be routable. The condition is based on the notion of cuts
and their capacity and flow. A cut is aline segment connecting two terminals that does not cross
any other terminal. The capacity of acut isthe distance between its end-terminals (using the metric
appropriate for each design), and its flow is the sum of the spaces needed to satisfy the spacing
reguirements along the cut. Thisincludes the widths of the branches crossing the cuts, the radius of
the end-terminals, and the required spaces separating the branches and the end-terminals. A cut is
said to be overflowed if its flow is greater than its capacity. Note that the set of cuts and their
capacities is independent of the sketch or topology class while the flow is specific to a given
sketch. By Leiserson and Maley [35] [44] a topology class is routable if and only if it has a
member sketch that none of its cuts is overflowed. Note that the criteria holds for the topology
class and not for a specific sketch, a sketch can has no overflowed cuts and yet not satisfies the
spacing requirements. Leiserson and Maley also showed that a class is routable if and only if the
sketches of its kernel (the term Rubber-Band Equivalent was used there) are routable, and this

again shows the significance of the kernel.

An aternative approach for routability test that is used by SURF [31] is to extend the RBS using
spokes [35]. Spokes (Figure 6) are artificial terminals which are added to the RBS to enforce the



15

desire spacing. The addition of spokes modifies the RBS such that the new RBS, which is called
extended rubber-band Sketch (ERBS), has a super set of the terminals of the original RBS. The
branch paths in the ERBS satisfy the spacing requirements if, and only if, the topological class
represented by the RBS is routable. Furthermore, the paths of the branches in the ERBS, represent
a minima length member of the topological class of the RBS that satisfies the spacing
requirements. This member represents, in the case of Euclidean metric routing, the fina
geometrical embedding. In case of rectilinear or octilinear routing, a conversion step called
geometrical transformation [62] is required to find the minimal length member of the class that
complies with the wiring rules. The advantage of testing for routability using spokes is that this
method is constructive and it results in a sketch that satisfies the spacing requirements, while the

flow/capacity criteriamerely indicates if such a sketch exits.

a b
FIGURE 6 - Spokes and ERBS. The RBS at (a) has zero spacing between the
branches. To achieve the required spacing, the RBS is extended into an ERBS (b)
by the introduction of spokes. The paths of the branchesin (b) are also the paths of

aminimal-length sketch in the topology class of (a) that has the required spacing.
The spokesin this example are for rectilinear metric.

The extended ERBS is an example how an RBS can aso be used to represent arbitrary piece-wise
linear geometrical sketches by the addition of artificial terminals along the branches. Sketches of
this kind do not contain attachments of branches to terminals and they represent exactly a single
member of their topology classes. This technique can be used for example to represent rectilinear
geometrical sketches (Figure 7). This demonstrates the flexibility of the RBS and its support for

step-wise refinement routing.
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FIGURE 7 - Rectilinear ERBS. This example shows how an RBS can be used to
represent ageometrica piece-wise linear sketch. The RBSin (a) is extended to (b)
by the addition of artificial terminals to have the require spacing and rectilinear
wiring model. This representation of the geometrical sketch provides flexibility in
manipulating the sketch.

2.1.5 Topological Routing

The problem of topological routing can be formulated as follows. given net-list and spacing
requirements, find a topology class with the connectivity specified by the net-list, that has a
member of minimal wiring length that satisfies the required spacing. A solution to the topological
routing problem can be specified in various ways including the forms of topological sketches such
as TCS, TCNS, or RBS, or by an arbitrary geometric sketch of that class. Since there are known
efficient methods to convert between all those forms, any of the these representationsis as good as

the others.

Given a topology class that has a member with the required spacing, the final result of the
embedding problem is a member of that class that satisfies the spacing requirements and has
minimal wiring length. Such a sketch can be found mechanically, given its topology class, for
example by extending the RBS with spokes. The conversion from atopological class to a member
of it with shortest wiring length that satisfies the spacing requirements has optimal polynomial-
time algorithms. Therefore, the main difficulty in routing a design is finding the topology class of
the solution. This observation supports the approach of topologica routing because it focuses on

the core problem and ignores geometrical details that can be determined later mechanically.
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A topological router is an agorithm that solves the topological routing problem. However, since
every router (such as a maze router which is usually considered to be a geometrical router) solves
the topological routing problem, we usually use this term only for routers that use topological
representation and avoid making exact geometrical decisions at early stages of the routing. SURF
for example is based on a topological router that uses RBS representation in the intermediate

stages of the routing.

2.2 SURF Routing System

2.2.1 Introduction

SURF is a routing system developed at University of California, Santa Cruz that uses the
topological local router presented in this thesis. SURF was designed to address some of the
challenges of routing thin-film MCM substrates, including handling of large problems efficiently,
conforming to a variety of non-traditional wiring geometries, supporting performance and
production-cost constraints, and providing powerful manual editing in a gridless environment. In
order to meet these needs, SURF adopts new routing strategies based on an efficient rubber-band
representation. Although it is designed primarily for routing MCM, the same approach can easily

be applied to other area-routing problems such as sea of gates, printed circuit boards, and VLSI.

Because existing routing systems generate precise geometry for nets one at a time, they lack the

flexibility and global view required to solve the problems mentioned above. The main strategy of

SURF is to transform the net-list to geometrical layout by a series of refinements. At each step,

the solution becomes more precise—more information is acquired and it more closely resembles
the final result. Because the earlier stages are not swamped with unnecessary information about
precise routing geometries, they can address more global concerns. This also makes it easier to
correct mistakes at earlier stages as more detailed information is discovered. Another aspect of the
SUREF strategy is to allow localized overflow regions or constraint violations during the refinement
process. These are then used to direct the refinement of the layout until a final correct design is

reached.
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SURF modél s the interconnect using a rubber-band sketch (RBS) (Figure 8a) for each layer. The
end-points of the rubber-bands may represent terminals, vias, or junction points. If an end-point is
moved, the wires automatically stretch and move as would an elastic rubber-band. This rubber-

band model also supports efficient and precise routability and design-rule checking.

W N [HIL:
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FIGURE 8 - Rubber-Band routing example. This figure shows various wiring
patterns that are topologically equivalent. These patterns correspond to different
stages of the transformation from rubber-band sketch to precise geometric layout.
Figure (a) shows a rubber-band sketch, (b) shows the extended rubber-band
sketch after spoke creation, and (¢) shows the rectilinear wiring.

To improve the efficiency of rubber-band updating, each layer of the sketch is built on top of a
triangular mesh. This mesh is maintained using an incremental constrained Delaunay triangulation
algorithm. In addition to providing incremental triangulation modifications, it supports efficient
geometrical queries such as point location, nearest neighbor, and range search [41][42]. Since the
size of the triangulation is linear in the number of terminals in the sketch, this data structure is

more space efficient than atraditional grid-graph.

2.2.2 Layout Refinement Strategy

The SURF routing approach is divided into two mgjor steps (Figure 9a): (1) topological routing

that transforms the net-list into a topological wire description in aform of a multi-layer RBS, and
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(2) geometrical transformation that converts the RBS into precise geometrical layout
[91[10][62][63].
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FIGURE 9 - SURF routing strategy. This  figure shows a hierarchical
decomposition of SURF routing stages with focus on the local-router presented in
thisthesis. The shaded blocks represent routing steps covered by this research. At
the top level (a) SURF has two routing stages, the topological routing which
generates a multi-layer RBS and the geometrical transformation that converts the
RBS to a geometrical layout. The topological routing (b) is done in three steps of
global-routing, local-routing, and global-optimizations. The local router () routes
each bin independently. This is done in two steps of layer-assignment and then a
planar routing of each bin-layer. The planar routing is done in four steps (d) of
decomposing the nets into single-layer point-to-point connections (called 2-Nets
of branches), ordering the 2-Nets, sequential routing of the 2-Nets, and
optimizing the sketch using the ROAR optimizer.

The RBS is generated in three steps (Figure 9b) of global routing, local routing, and global
optimizations. The global router (Figure 10) uses hierarchical partitioning to divide the original
problem into a set of smaller sub-problems [37][48][9]. The purpose of the global routing is to
produce an initial rough routing that loosely specifies the route of each net. When processing a
partition, the global router analyzes all nets simultaneously. Asaresult, it does not suffer from the
ordering problems of sequential net routing. Also, because it uses a top-down divide-and-conquer
approach, the global routing is produced relatively quickly. Oncethe globa router has partitioned

the original problem, the multi-layer topological local routing is performed on each of the sub-
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problems and when the local routing of each sub-problem is done, solutions are merged to form a
global RBS. The RBS is then optimized for various goals such as reducing wire-length, and

improving the production yield (even wire distribution).
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FIGURE 10 - Global routing. The global routing step partitions the routing
problem intabins and finds rough routes for each net. A typical net is shown. Note
that the global router determines the location at which the nets cross the bin
boundaries but not their paths or topologies within the individual bins.

The topological multi-layer local router (which is the subject of this research) routes the bins
generated by the globa assignment. Each bin represents a multi-layer routing problem of a
relatively small area of the design. The local routing is done in two steps (Figure 9b) of layer-

assignment and then a planar-routing of each bin-layer.

The layer-assignment phase takes the net-list for a single multi-layer sub-problem (a bin) and, by
adding vias, partitions it into a set of single-layer routing problems called bin-layers, one for each
layer. This layer-assignment is unconstrained since it occurs before any detail or local routing is
done. This allows for much greater flexibility. In constrained layer-assignment, when two wires

cross each other, they are treated as ‘conflicting’ and must be put on different layers. Since SURF
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performs layer-assignment prior to the creation of actual rubber-band paths, it can treat conflict as

a continuous value instead of a boolean one (a ‘go/no-go’ approach). The amount of conflict
between two nets is an estimate of the detour length required to route those two nets on the same
layer. SURF uses a cost function that balances detour against via cost to perform an iterative
layer-assignment process. This process starts with an initial assignment and then uses steepest
descent to reach a final solution. At each step, the connection that allows the largest cost reduction

is reassigned.

When layer-assignment of a bin is completed, a planar routing of each of the bin layers is
performed. This is dond-{gure 9d) by decomposing the nets of each bin layer into single-layer
point-to-point connections (call&dNets of branches), ordering the 2-Nets, and then routing them
sequentially within the bin layer. At this stage, the difficulties of sequential routing are
significantly reduced. There are two reasons for this. First, by determining a rough routing and
breaking the original problem into bins of relatively few nets, the global router has reduced the
magnitude of the problem. Second, because rubber-bands are flexible, a later branch can easily be
inserted between two previous branches without the need for explicit shoving or rerouting. When
the sequential routing is done, each bin-layer is optimized by the ROAR optimizer to further

reduce the total wire length.

After the rubber-band sketch is created by the topological router, it is transformed to a
topologically equivalent form that maintains the proper spacings and obeys the proper geometry.
An efficient process callegboke creation checks the routability of a sketch and satisfies the width

and spacing constrainf85][31]. This process pushes wires away from fixed objects with open-
ended line segments calledokes (Figure 8b). The number of spokes required at each point is
related to the final geometr¥Figure 11). Rectilinear wiring uses up to four spokes and octilinear
uses up to eight. If no spacing violations are detected, the result of the spoke creation phase is a

legal arbitrary-angle routing called extended rubber-band sketch (ERBS).



22

a b c

FIGURE 11 - Spokes. The spokes are used to enforce the required spacing. (a)
shows a terminal in the RBS and (b) and (c) show the same terminal with
rectilinear and octilinear spokes respectively. In case of any-angle routing, SURF
uses the octilinear spokes as an approximation to the arc required for pure
Euclidean routing. This enables to produce the layout with standard
manufacturing equipment.

The extended rubber-band sketch has a shorter wire length and fewer jogs than the corresponding
rectilinear or octilinear routing. However, if other CAD tools or the fabrication process requires a
more restricted wiring pattern, an extended rubber-band sketch can easily be converted to either
rectilinear (Figure 8c) or octilinear wiring. This conversion can be done with two plane sweeps.
The first sweep transforms the sketch to the proper geometry and the second removes unnecessary

jogs[62].

2.2.3 Routing Examples

In this section we present afew SURF generated layouts that demonstrate its capabilities. Because
of space limitations, only relatively small examples are shown. SURF, however, has been used to

route much larger designs with tens of thousands of nets.

Figure 12 shows an octilinear routing of a two-layer mixed-signa MCM. Figures 13, 14 and 15
show three layouts of the same MCM layer using rectilinear, octilinear, and Euclidean wiring rules
respectively. These three examples were intentionally routed to have the same layer-assignment
and wire topology and to differ only in the wiring rules. In the genera case however, changing the

wiring rules affects the layer-assignment and wire topology because it affects the cost function of
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the assignment and the distance metric used by the shortest-path algorithm. Finaly, Figure 16

shows alayer of alarger MCM with octilinear wires.
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FIGURE 12 - Mixed Analog/Digital. This figure shows an octilinear layout of a
two-layer mixed analog/digital consumer product.
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FIGURE 16 - Larger routing example. This figure shows alayer of alarger MCM

routed with octilinear wiring rules.
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3 TOPOLOGICAL LAYER-ASSIGNMENT

3.1 Introduction

The first routing step our topological local router performs is the layer-assignment. The layer-
assignment accepts a bin routing problem, which includes the placement of the terminals, and the
net-list inside the bin, and generates a set of single layer sub-problems, one for each layer. These
sub-problems are then solved independently by later steps of the local router and merged back to
form the final solution. Figure 17 shows the relationship between the design, the bins, and the

single layer sub-problems.

Entire Design —

/

Layer

FIGURE 17 - Thetwo level decomposition of arouting problem. First, the global
router partitions the routing area into bins and then the layer-assignment
decomposes each bin into a set of single-layer routing problems.

Figure 18 shows an example of alayer-assignment and routing of a bin. The set of input terminals
the layer-assignment accepts includes both terminals specified in the design input and cross-points
defined by the global router on the bin border. Each cross-point specifies the place where a net
crosses from one hin into another. The set of cross-points on a boundary between two bins
represents the interface between the two bins. The layer-assignment partitions the input nets into
single-layer sub-nets called components which are the input nets of the single-layer routing
problems. When doing so, the layer-assignment may introduce layer crossings called vias, which

define the interfaces between single layer sub-problems on adjacent layers.
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FIGURE 18 - An example of a bin layer-assignment and routing. The net list in (a)
is decomposed by the layer-assignment into two single-layer routing problems (b)
and (c) respectively. These sub-problems are then routed as shown in (d) and (e)
respectively and then merged together to form the final two layer routing (f). The six
nets in (a) are decomposed by the layer-assignment into eight components, four on
each layer. The assignment defines two vias (V') and a single Steiner point (‘S’).

The layer-assignment step does not determine the exact geometrical locations or even the

topologies of the traces—it leaves these decisions to later stages of the routing. However, it must
guarantee that each layer of the assignment it produces can be routed in a planar fashion. In
addition, it should choose an assignment that allows a final routing that has few vias, and short

wiring lengtht.

The rest of this chapter describes the details of the layer-assignment. First the Layer-Assignment
Problem is formulated as an optimization problem, then an algorithm is presented which solves the

problem, and finally experimental results of automatic routing are presented.

1. The layer-assignment can be extended to consider other goals such as the ‘one and a half layer’
routing presented later in this thesis.
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3.2 The Layer-Assignment Problem

The Layer-Assignment Problem (LAP) isformulated as a minimization problem with asimple and
useful objective function, which can be computed efficiently. A minimization problem is defined
by three components, an input domain of problem instances, a possibly empty output domain of
feasible solutions, and a cost function to be minimized. The next three sections defines these three

components of the LAP.

3.2.1 The Input Domain

Definition 1 (LAP Instance) Aninstance P of LAP is specified by the 5-tuple [B, n, 'I", E, ND,

where:
e B isarectangle on the routing plane representing the bin routing area.

e N2, isthe number of available layerswhich definesaset of layers L = {I; .. 1} . Thelayers

are oriented such that layer |; is said to be above layer Ij ifi>j.

o« T= {t;} isaset of input terminals, where each termina f; = [X, yO is specified by its loca-
tion in the routing area B. T includes the actua terminals of the design as well as the cross-

points defined by the global router over the bin boundary.

° E:(fi) > 2" is afunction which maps each input terminal t; to apossibly empty set of layerson
which the terminal is said to exist prior to the assignment. For terminals, it is the set of layerson
which the terminal is required to have pads. For cross-points it is the set of layers to which the
cross-point has aready been assigned in previously routed bins. E(fi) is contiguous, that is, if it
includeslayers |, and Ij, i <J,thenitincludesevery layer |, , i <k <] in between thetwo. This

information of pre-existing layersis used by the layer-assignment to reduce the number of vias.

o N = {n;} istheinput net-list. It is a partition of the input terminals T into subsets called nets

of terminals to be interconnected.

The input of an LAP does not include any specification of wire widths, spacing requirements, or
dimensions of the terminas. The layer-assignment considers only planarity and leaves the

handling of congestion and routability to later steps of the routing process. This can lead to
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situations where a routed layer has design rules violations. This case is analogous to a less than
100% compl etion-rate with a geometric router. In both cases, the designer is required to complete

or rectify the routing manually.

3.2.2 The Solution Domain

Definition 2 (Feasible Solution) A feasible solution S to P is specified by S = [, E, CO,

where:

o T = {fi} isaset of output terminals where each output terminal fi = [X, yO isspecified by a
unique location in the routing area B. ']' isasuper set of T, it includes all the input terminals as

well as any vias introduced by the layer-assignment.

. EA:'AI' _ 2" isafunction! which maps each output terminal t to aset of layers on which the ter-
minal exists after the assignment. An output terminal exists on alayer if it is connected on that
layer, if it crosses that layer or if it represents an input terminal that already exists on that layer.
Similar to E, the set E(1) is contiguous.

e C={ 6i} isaset of output net-components (components in short), each of which isaset of ter-
minalsto be interconnected on a specific layer. A component Ei = [, 10 isspecifiedby t O T,
the set of terminals to be connected and |, the layer on which to connect the terminals. The out-

put components defines the net-lists for the individual single layer sub-problems.

To be considered feasible, asolution S needs to satisfy the following conditions:

o If an output terminal Ti represents an input terminal Tj then it exists on al the layers on which

the input terminal exists E(Tj) O é(%i).

e Any pair of output terminalswhich represent apair of input terminalsisto be connected (defined
below) if and only if both input terminals belong to the same input net. Informally, apair of out-
put terminals is said to be connected if the solution S specifies that they should be connected

directly or indirectly by a sequence of vias and traces. Formally we define it recursively. A pair

1. Thisfunction can be implicit asit can be computed from T, and C.
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of output terminals is considered to be directly connected if the two output terminals belong to
the same component, or if they are vias at the same location (on different layers). A pair { a, b}
of output terminalsis said to be connected if it is directly connected or if there exists athird out-

put termina c, such that both pairs {a, c} and {b, ¢} are connected.

e If a component connects an output terminal t on layer | then t should exists on layer |,

| 0E®) .

¢ Finally, the output components can be topologically routed inside the bin area without crossing

each other. Thisisthe planarity property (discussed below).

A solution is planar if all the components on each layer can be routed entirely on that layer, inside
the bin area, without crossing any two. Note that violations of this requirement can only occur if a
component connects two or more points on the boundary of the routing area thereby partitioning
the routing area into two or more disconnected regions (Figure 19). The layer-assignment is not

required to find a planar routing but just to guarantee that the such a routing exists for its solution.

A solution to a LAP specifies the terminals and the components on each layer. It does not specify
however the exact geometry or topology of the connections. These decisions are determined by

later stages of the routing.

‘T

a b

FIGURE 19 - An example of non-planar layer-assignment. (a) and (b) represent
two solutions for the same layer-assignment problem. The black and gray lines
represents a pair of points to be interconnected on different layers. Solution (a) is
not feasible as it is not planar. The components specified by it can not be routed
inside the bin without crossing each other. Solution (b) which uses an extraviais
planar and thus feasible.
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3.2.3 The Cost Function

The cost function C maps afeasible solution of P to a non-negative real number that indicates the

relative cost of the solution such that more desirable solutions have lower cost.

Ideally, C should directly reflect the properties we prefer to have in the final layout. These
properties can vary widely, depending on the design requirements. In this thesis we focus on two
goals: minimizing the number of vias and minimizing the total wire length®. By making simple
modifications to the cost function we can address other goals such as preferred layers or “one and

a half” routing as presented later in this thesis.

rrahrd

FIGURE 20 - Minimizing the via count vs. minimizing wire length. Both (a) and
(b) are solutions of the same routing problem. Solution (a) minimizes the
Euclidean wire length but has three vias. Solution (b) minimizes the number of
vias but results in longer wiring.

The two goals are inherently conflicting as reducing the number of vias may require longer wires
to detour around other netBigure 20). So the cost function is defined as a weighted balance

between the two. IE is a feasible solutionPf |, the €S) is formulated as follows:
C(S) = aV(S) + (L—a)W(S) Q)
where:

e V(S) is the total number of vias i

1. Unless specified otherwise, we assume a Euclidean metric for wire length. Modifications for
rectilinear and octilinear wiring rules are discussed later in this thesis.



e W(S) isan estimate of thetotal wire length of S (explained below).

e 0<a <1 isauser controlled parameter which indicates the relative importance of the two goals
for the routed design. The setting of this parameter depends on the requirements of the specific

routed design and is done based on the experience of the user.

The value V(S) iswell defined and can be calculated precisely from S. W(S) on the other hand
requires a more precise definition since the actual wire length depends on the router and S does
not imply any specific routing. Logical solutionsfor W(S) might seem to be either the wire length
obtained by routing S with either a perfect router (that guarantees an optimal solution) or with the
actual router used in the subsequent single-layer routing phase. However, if C needs to be
computed efficiently during the layer-assignment process, such a choice would be impractical. To
overcome this problem, we define W(S) as an estimation function which can be computed
efficiently and is still closely related to the actual length. Our choice of estimation function is

validated by experimental results presented later in thisthesis.

Let ¢ be acomponent in assignment S and ¢ its embedding in some routing S of S. We define
three values related to the length of ¢, the basic length, the actual length and the detour length
(Figure 21):

Definition 3 (Basic Length) The basic length W (c) isthe length of the minimum Steiner tree of

theterminals of c. Thisis minimum wire length among all the possible interconnects of the c.
Definition 4 (Actual Length) The actual length \7V(c) isthe length of c.

Definition 5 (Detour Length) The detour length I:_)(c) = \TV(C) —Wj(c) , is the extra length of

the traces of ¢ beyond the basic length of c.

Note that the basic length can be computed solely from S, while the actual and the detour lengths
depend on the choice of the actual routing S. These three length metrics are also applied to

individual input nets and to the entire net list.
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FIGURE 21 - The basic, actual, and detour lengths of routed components. The
basic length of the component {a, b, c} is |(a, b)| +|(b, c)| . Its actual length is
the distance the length of its traces and its detour is the difference between its
actual and basic lengths which is the difference between the length of the trace
{a, b} and thedistance |(a, b)) .

Using these metrics, the actual wire length of S can be represented as:
W(S) = Wy(S) +D(9) )

where Wy(S) and I:_)(é) are the sums of the basic and the detour lengths respectively of the

components of S.

This form suggests a similar representation for the estimation of the wire length of S when Sisto

be routed with an unspecified router:

W(S) = Wy(S) +D(S) 3

Where W (S) isthe precise value of the basic length of the componentsin S and D(S) is some

estimation of the detour.

The detour estimation D(S) we use is based on the concept of conflict between pairs of
components assigned to the same layer. Figure 22 shows three examples of pairs of components.
In the first case we say that they have no conflict because they can be co-routed such that the
lengths of their wires equal their basic lengths. In the second and third examples, the components
have low and high conflicts respectively. The concept of conflict provides a continuous metric

which allows components with low conflict to be placed on the same layer.
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FIGURE 22 - Conflict between pairs of components. (a), (b), and (c) are three
pairs of components assigned to the same layer and (d), (), and (f) are their
optima embeddings respectively, ignoring any other component. The pair in (a)
has zero conflict while the (b) and (c) have low and high conflict respectively.

Formally, the conflict between a pair of componentsis defined as follows:

Definition 6 (Conflict) Let c;, G be components. Let WL be the length of an optimal routing of

¢; and C; inside the bin, independent of other componentst. The conflict H(ci,cj) is the
minimum pair-wise detour, that is: H(c;, cj) = \/\/D—(Wo(ci) +W0(cj)) . Note that H(c;, cj) is

zero if the components are assigned to different layers. If ¢, C; cannot be routed inside the bin

without crossing each other, the conflict is .

H represents precisely the detour in the case of two components. To estimate the detour of the

entire assignment, we use a sum of the pair-wise conflicts of the components:

D) = 5 H(c ) (4)

6,6 0C

1. A routing of a component is assumed to be embedded solely on the layer to which it was
assigned.
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By combining the detour estimation function from (4) and (1) and (3) we end up with the fina

cost-function:

C(S) = (1-)W(S) +aV(S) +(1-a) Z H(ci, ¢) ©)

c,,cJDé

3.2.4 Properties of the cost function

The cost function isalinear combination of two functions of S, V(S) and D(S), which represent
the exact number of layer crossings in S and the estimation of wire detour length in S
respectively, plusavalue (1 —a)Wq(S) whichisaconstant for agiven problem and thus does not
have to be considered when minimizing the cost. D(S) is anon-negative function. It is zero when
the components in the solution do not intersect at all and tends to give higher values when the
actual detour is higher. Note that D(S) is not alower or upper bound of the actual detour nor can
its error be bounded by a constant. This is because D(S) considers only the conflicts between
pairs of components and ignores the dependency between different pairs. Figure 23 shows two
examples, one with an underestimated detour and another with an overestimated detour. Figure 24
shows an example where the estimated detour can be arbitrarily high while the actual detour is
bounded. A large number of experiments however show a close correlation between the estimated

and the actual detour. The results of some of those experiments are included later in this chapter.
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FIGURE 23 - Pair-wise conflict vs. the actual detour. The pair-wise conflict is
neither an upper bound nor a lower bound on the actual optimal detour. In (a) the
horizontal component conflicts with the two vertical components, resulting in
overestimation of the detour compared to the actual routing in (b). In (c) the
horizontal component conflicts only with one component but in the actual routing
(d) it conflicts also with the diagonal component, which resultsin underestimation
of the detour.

a b

FIGURE 24 - The error of the estimated detour function has no upper bound. In
(a), a single horizontal component intersects with arbitrarily large number of
vertical nets which are € >0 spaced. The sum of the pair-wise detours goes to
infinity when the number of vertical nets goes to infinity while the actual detour
length is bounded (b).
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The cost function C(S) captures the planarity of the assignment. It is finite if and only if the
solution S isplanar (proven below). This property guarantees that a solution that satisfies the other

requirements for feasibility isfeasible if and only if its cost isfinite
Theorem 1 An assignment S isplanar if and only if itscost C(S) isfinite.

Proof From the definition of the cost function (5), the cost C(S) isfinite if and only if the pair-
wise conflict of all the component pairs assigned by S to the same layer isfinite, and by Definition
6, the conflict of a component pair is finite if and only if the pair is planar. Therefore, it is
sufficient to show that S isplanar if and only if every component pair assigned to the same layer is
planar. Further more, since the planarity of the individual layers are independent of each other, it is
sufficient to show that this holds for an arbitrary layer.

One direction of the proof issimple, if aset of components assigned by S to alayer is planar then,
by definition, the layer has a planar embedding and this embedding includes a planar embedding
of each component-pair on that layer which implies that all the component pairs are planar.

To prove the other di rection! we use induction on the number of components assigned to a layer.

Letc,..c be a set of components assigned to a layer such that every pair of them is planar.

n+1
From the induction assumption, the set ¢, ..c,, is planar and therefore has a planar embedding E .
The embedding E contains zero or more paths between external terminals (note that paths of the
same component may overlap). These paths, called external paths, divide the bin into non-
connected areas called regions (Figure 25). For any given pair of points in the bin, a planar path
between the points can be added to E if and only if the points are inside or on the boundary of the

same region. The set of regions divides the terminals of ¢, ; into acomplementary and disjoint

1. An alternative approach for the proof could be to use a known criteriafor planarity of non-sep-
arable graphs (see Lemma 7.2 in [15]). The criteriais based on a pair-wise property of bridgesin a
non-separable graph in respect to a ssimple cycle. This proof can be made by considering the com-
ponents as bridges and the bounding box as the cycle. This however requires some preparation
steps to match the conditions of Theorem 1 to the conditions of the criteria. Some of the differ-
ences are: (1) The graph in the theorem may be separable and even non-connected. (2) The loca
tions of terminals in the theorem are given while in the criteriathey are free. (3) In the criteria, the
tree for each component is given while in the theorem they are free and adding junction pointsis
allowed. We have chosen to present a proof which is somewhat closer to the concept of rubber-
band sketches.
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subsets of terminals g, ..g, (Figure 26-a) each of which isaset of terminasin adifferent region®.
We modify E by adding to it a planar embedding of each of the groups (Figure 26-b). If E
contains only one group of c,,, terminals then the resulting E is a planar embedding of
Cq.-Cphyq - Otherwise, let g, and g, be two arbitrary groups of c,,,. g; and g, can be
connected in E by apath P (Figure 26-¢) which does not intersect with any terminal and is planar
except for afinite number of crossings of external paths (at least one) of other components. If both
g, and g, have an externa terminal then every path between these external two terminals has to
cross an externa path of another component which separates between the terminals of g, an g,
but since c,, 4 is pair-wise planar with each of the components c, ..c,, thisis not the case and
therefore at least one of g; or g, contains no external terminals. Let assume, without lost of
generality, that g, has no external terminals. The path P crosses, in direction from g; to g, a
finite series Pl..Pq, g=1, (Figure 26-c) of external paths of components other than? Chs1- P1o
the first crossed path in the sequence can be transformed such that the terminals of g; and their
interconnect are moved to the region on the other side of P; while the rest of the terminals and
connections in E stay in the same regions (Figure 26-d). This step can be repeated for the paths
PZ"Pq (in that order) until g; end up in the same region of g, and the terminals of g, I g, are
connected within this region with no crossings. This reduced by one the number of non-connected
groupsin ¢, , 1, and if repeated will end with a planar embedding in which all the terminals of
C,+1 aeinasingleregion. The resulting embedding is a planar embedding of C;..C,,, ; and

thereforethe set of C, .. C,,, 1 isplanar. Q.E.D.

1. If any of theterminal of C,, ; happensto be on apath in E we can move this path such that
the terminal isin a close neighborhood of the path but does not intersect with it. Thisis true since
the number of terminalsin abin isfinite. Therefore, we assume, without loss of generality, that the
terminal of C, ; does not intersect with the paths of E.

2. Note that the planar embedding of each of the groups g, Qg Ccan include external paths. This
happens if a group contains two or more external terminals.
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FIGURE 25 - External pathsand regions. An  external path connects two
terminals on the bin boundary. The set of (possibly overlapping) external pathsin
ahin layer divides the bin area into disconnected regions. The gray shadow mark
the boundaries of the regions. Example (a) has a single region that includes the
entire bin while (b) has 4 regions (marked 1 to 4).

C d

FIGURE 26 - Constructing a planar embedding. The regions in this example (a)
divides the terminals of component C, , ; into three groups g, ..g3, each of
which isaset of terminalsin a separate region. The terminals of Jh group can be
interconnected with no intersections as shown in (b). Every pair of groups can
then be connected by a path which is planar except for a finite number of
crossings of external path of other components. (c) shows such a path between g
and g, with two crossings of external paths, P, and P,. By modifying the pat %1
Py as shown in (d) we can reduce the number of paths crossings by one.
Repeating this step for P, will end up with the groups g; and g, in the same
region, merged into a sin %e group. Repeating this group merglng s%ep will result
with a planar embeddlng in which all the terminas of C,,,; aein asingle
region.
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3.2.5 User control of O

The cost function (1) (page 33) is controlled by the parameter a which indicates the desired
balance between low number of vias and short wiring. A practical setting of a depends on the size
of the design and requires the user to perform scaling of a values for designs of different sizes. To
ease the selection of this value, SURF provides a more abstract way of controlling it and performs
the scaling automatically. This is done using a normalized parameter 3 in the range 0 to 100,
which indicates the relative importance of having alow number of vias compared to having short
wiring. Higher values of 3 prefer short wiring and lower values prefer fewer vias. SURF maps the
value of 3 to a such that a is zero when 3 is zero and a isincreased when B isincreased. The
mapping is done as follows. First a value a,, which represents the cost of a single viain length

unitsis computed (d isthe length of the diagonal of the design):

_ B
oy = 0.12d355 (6)

Then, a can be computed using the formula:

aq

a =13 a, (7
The constant 0.12 in (6) sets a range of a which was found useful by users though other values

may do as well.

3.3 The Layer-Assignment Algorithm

3.3.1 Introduction

The proposed Layer-Assignment Algorithm (LAA) solves the LAP. It accepts P, an instance of
the LAP, and outputs afeasible solution S, while trying to minimize the cost C(S) . The definition
of the LAP does not imply any specific optimization technique, and many optimization algorithms
can be used to solve it. Our choice, which is a greedy approach, is efficient, smple, and yet
generates practically good solutions as supported by the experimenta results included in this

thesis.
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The LAA performs the assignment in three steps (Figure 27):

STEP | - Generating 2-Nets. Each multi-terminal net is decomposed into a set of two-terminal nets
(2-Nets). This is done by generating a tree which spans the net terminas. The tree can include
Steiner points (junctions) to reduce the length of the tree. The decomposition into 2-Nets is done
independently for each net. Note that the 2-Nets defined by this step are used internally by the
LAA and do not necessarily correspond to the 2-Netsin the final design (which are determined by

the single-layer router in use).

STEP |1 - Building the assignment graph for each 2-Net. An assignment graph represents all the
assignments that the algorithm is going to consider for agiven 2-Net. Thisincludes all the possible
layer crossings and the point-to-point connections between the vias and terminals of this 2-Net.

The graph for each 2-Net is built independently of the other 2-Nets

STEP I11 - Assignment. In this step, the 2-Nets are assigned to layers while trying to minimize the
overall cost of the solution. Each 2-Net can be broken into sections which are assigned to different

layers. The proposed algorithm is guaranteed to generate a planar and feasible solution.

The details of the three steps are presented in the following sections.



> el
1
® 1‘
® 1
3 2
@ @
a b
C d
@ @
2 3
1
® 1‘
1
[ ] 3 Vv
o e3
® Y]
1 3 )
@ ®
e f

FIGURE 27 - The three steps of the assignment algorithm. The LAP in (&) has

three nets and should be routed on two layers. Step | breaks the nets into 2-
terminals nets (b) by generating a Steiner tree for each net. Step Il generates for

each 2-Net an assignment graph which defines a subset of its possible assignments

the algorithm will consider (to keep the example simple, we don’t include here the
actual assignment graphs of the 2-Nets). In this example we are considering only
assignments with possible vias at the candidate points marked with a short
segment (c). Step Il then assigns the 2-Nets to the layers by selecting for each 2-
Net one of its candidate assignments. In this example (d), nets 1 and 2 are
assigned entirely to the black and the gray layers respectively while net 3 crosses
layers at pointy . The output of the LAA, a single-layer routing problem for each
of the layers is shown in (e) and (f).

3.3.2 Step | - Breaking the Nets Into 2-Nets

This step decomposes each multi-terminal input net into 2-Nets that represent edges of a planar

tree. The nodes of each tree include the terminals of the input net as well as any Steiner points
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introduced by the algorithm. The decomposition is done independently for each input net and

ignores any layer consideration. The decomposition can be achieved in several ways which differ

in the count and total length of the tree edges (and 2-Nets) they generate. It is desirable on one

hand to reduce the total length of the tree as it affects the length of the wiring, and on the other

hand to reduce the number of edges (and thus the number of 2-Nets) so that the database is smaller

and the assignment is faster. Figure 28 shows three methods of generating the tree. The simplest

one isto generate a minimum spanning tree (MST) of the net terminals. An M ST can be generated
efficiently and resultsin atree with minimal number of edges. Itstotal length however can be up to

—? times the total length of the shortest possible tree [18] [14]. The second approach is to
generate a minimum Steiner tree (MSTT) of the terminal sl. Thisis the shortest tree among all the

possible trees, but its edge count can be aimost double that of the minimum spanning tree. The

third approach isto use a minimal Steiner tree with collapsed edges (MSTTC). ThisisaMSTT in

which Steiner points that don't significantly reduce the total tree length are removed. This is done
by collapsing edges which are incident to Steiner points if the increase in the total tree length is
below a predefined threshold. In general, the MSTTC is shorter than the MST and it has less nodes

and edges then the MSTT. The experimental results presented later in this thesis include

comparisons of routing using the three tree kinds.

1. Our implementation of the LAA includes an algoritfith] which uses heuristics to generate a
Steiner tree of a given set of points using Euclidean, Rectilinear, or Octilinear metrics. The
description of this algorithm is outside the scope of this thesis.
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FIGURE 28 - Three methods of decomposing a net (a) into 2-Nets. The
minimum spanning tree (b) results in a small tree while the minimum Steiner tree

(c) has lower wire length. The minimum Steiner tree with collapsed short edges
(d) provide a balance between the two (e denotes the collapsed edge).

3.3.3 Step Il - Generating The 2-Net Assignment Graphs

An assignment of a 2-Net decomposes the 2-Net into vias and single layer, point-to-point
connections caled branches. The vias are defined by their location in the routing area and the
layers on which they exist. The branches are used to connect the terminals and the vias of the 2-
Net. Since there is an infinite number of possible assignments for a single 2-Net, (even if we
consider only assignments with a single via), we reduce the search space by considering a smaller

set of assignments called candidate assignments.

A special graph caled an assignment graph is used to capture the set of candidate assignments
considered by the LAA for asingle 2-Net. In this directed graph, nodes correspond to branch end-

points, which include input terminals, Steiner points, and candidate via locations on specific
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layers. The arcs represent branches and layer crossings. This graph also contains special source
and sink nodes which represent the end-points of the 2-Netl. The assignment graph is constructed
so that each possible candidate assignment for the 2-Net corresponds to a source to sink path
through the graph. Also, the arcs are weighted2 so that a shortest path represents an optimal

assignment of the 2-Net.

A simplified version of the assignment graph is presented in Figure 29. For this 2-Net there are 3
wiring layers and a single via candidate location is considered. Note that there are 9 candidate
assignments in this case, 3 with no via, 4 with a single layer crossing, and 2 with two crossings,

each of which correspondsto a path through the graph.

1. The decision of which end-point will be the source and which will be the sink is arbitrary and
does not affect the result of the routing.

2. Because of the non-linearity of the cost function, the weights are actually assigned to a modi-
fied version of the assignment graph. Thisis described later, as part of Step |11 of the LAA.
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FIGURE 29 - An example of asimple 2-Net assignment graph. The 2-Net in (a)
is to connect two terminals t,, t, with three layers available for routing. A third
point v is defined as a position of a candidate via. The assignment graph for this
2-Net is shown in (b). Each of the three points t,, t,, and v defines three graph
nodes, one on each of the three layers |4, 1,, |5. Jl'he nodes s and t represent the
source and sink nodes respectively. The vertical edges represent layer crossings
between adjacent nodes of the same location while the horizontal edges represent
wires between nodes on the same layer. (c) and (d) show two paths on the graph
between s, and t, each representing a possible assignment of the 2-Net. The path
in (c) represents a direct connection of t;, t, on layer 1; while (f) represents a
connection with a crossing from layer |5 %o Fl at point v

The complexity of the assignment graph used by the LAA controls the number of candidate
assignments considered by the agorithm. A more complex graph considers a larger set of
candidate assignments and potentially yields a higher quality solution at the expense of a larger
search space and a longer running time (Figure 30). To achieve a reasonable running time, the
proposed LAA considers relatively few viacandidates (between 1 and 5)%, evenly spaced along the
straight line between the end-points of the 2-Net. Note that for a graph with m layers and n

possible candidate points, there are m"*1 possible assignments for the 2-Net.

1. To guarantee that the LAA will find afeasible solution, each 2-Net must have at least one can-
didate via. Thisisused in the proof of correctness of the LAA presented later.
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FIGURE 30 - Two choices for the number of candidate points per 2-Net. The
horizontal 2-Net in (a) and (c) are assigned using one and three candidate points
respectively which results in assignments (b) and (d) respectively. Assignment (d)
has a shorter wire length as the candidate points of (c) have a better resolution.

A post-processing step (Figure 31) [11] that locally repositions vias is used to compensate for the
limited granularity of the candidate points and for the fact that via positions are restricted to the
straight line between the end-points (the post-processing is not part of this research). Our
experiments show that when using this post-processor, considering more than five candidate

points per 2-Net yields no significant improvement in the final routing quality
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FIGURE 31 - The local-spacing post-processor. The sketch of the first example of
Figure 30 is shown in (a). The post-processor detects the ‘tension’ applied to via
v by the wirew and moves it in the direction of the arrow while treating the wires
as rubber bands. This is done iteratively and eventually converges to the sketch in
(b) with shortest wire length. In the general case, the post-processor finds a sketch
in which any topology preserving relocation of a single via or a Steiner point does
not reduce the wire length. The use of the post-processor compensates for the
limited number of via candidate points as well as the restriction of vias to be on

the straight line between the end points. The local-spacing post-processor is not
part of this research

3.3.4 Step lll - Solving the Layer-Assignment Problem

Step 111 of the LAA (the layer-assignment step) generates a solution for the LAP by selecting for
each 2-Net one of its candidate assignments such that the overall assignment is feasible and has

minimal cost. In this section we describe how the LAA performs this step.

3.3.4.1 Configurations and Assignments

The operation of the assignment step can be viewed as a search in the domain of configurations.

Definition 7 (configuration) A configuration is a mapping of some 2-Nets to their candidate
assignments. That is, each 2-Net of the design is either mapped to one of its candidate assignments
defined by its assignment graph, or it is not mapped at all. For a given configuration, the mapped
and unmapped 2-Nets are said to be assigned and free respectively in that configuration.

Intuitively, a configuration represents an assignment of part of the interconnect of the bin, and is

said to be complete when it assigns all the 2-Nets of the bin. A configuration is said to be planar if
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the branches defined by its assignments of the 2-Nets can be routed on their corresponding layers

without crossing each other or the bin boundary.

A solution to the LAP can be constructed directly from a complete configuration. The terminals of
the solution are the original terminals and any vias introduced by the assignment of the 2-Netsin
the configuration. A component in the solution is a maximal set of terminals and vias on a single
layer that are connected by branches in the complete configuration (Figure 32). Note that single-
layer Steiner points and explicit point-to-point connection topologies for multi-terminal
components do not appear in the solution. A component merely defines a set of points that must be
connected on a single layer leaving the single-layer router free to introduce Steiner points and
choose component topologies. The cost of a complete configuration is defined to be the cost of its

corresponding solution.
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FIGURE 32 - The corresponding solution of aconfiguration. In  this  simple
example, a design with a single net and three terminals 1, 2, and 3, is to be
assigned to two layers. The net is first decomposed into three 2-Nets (a) using a
Steiner point S, and then each 2-Nets is assigned to one of its candidate
assignments (b). The assignments of the 2-Net in this exampl e introduce two vias
marked 4 and 5. The corresponding LAP solution for the configuration in (b) is
shown in (¢) and (d) for the black and the gray layers respectively. The black layer
has a single component with three terminals { 3, 4, 5}, and the gray layer has two
components {1, 5} and {2,4} respectively. (e) and (f) show possible embeddings
of the assigned layersin (c) and (d) respectively. Note that on the black layer, the
branches in the embedding (which is suboptimal, for the purpose of
demonstration) do not map one-to-one to the branches defined by the
configuration in (b). That is because the single layer router has the freedom to
connect the components in arbitrary topology (a better embedding of the black
layer would be to have a Steiner point similar to S).
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The concept of corresponding solution of a complete configuration can be extended to a general
configuration. If the configuration is not complete then its corresponding solution is partial in the

sense that some connections might be missing.

The goa of the assignment step is to find a complete configuration whose corresponding solution
is feasible and has minimal cost. Since by definition the cost of a configuration is the cost of its
corresponding solution, it is sufficient to minimize the cost of the configuration found. As for
feasibility, by the following simple lemma, it is sufficient to find planar configuration to guarantee

feasibility.

Lemma 1 Let g be acomplete configuration and S its corresponding solution. If q is planar then

S isfeasible.

Proof By the method of constructing the 2-Nets and their candidate assignments, S is guaranteed
to have all the properties, except from planarity, required of a feasible solution (Definition 2). As
for planarity, if q is planar then it has a planar embedding, and this planar embedding includes a

planar embedding of S (Figure 33).

e L

FIGURE 33 - Planar embedding of the corresponding solution. The configuration
in (a) assigns three 2-Nets, two to the black layer and one to the gray one. This
configuration is planar and has a planar embeddings such as the one in (b). This
planar embedding is also a planar embedding for the corresponding solution which
is planar aswell.

Using Lemma 1 and the relation between planarity and finite cost (Theorem 1), the goal of the

assignment step can be re-formulated as:



Definition 8 (The Assignment Step Problem - ASP) Given the 2-Nets and their assignment

graphs, find a complete configuration with minimal cost.

3.3.4.2 The configuration search algorithm

The assignment step finds the solution by performing a search in the configuration domain. The
range of optimization techniques that can be used is wide and includes simulated annealing [30],
group migration, steepest descent, and others. Our implementation uses a simple steepest descent
that we have found to be both efficient and to result in high quality layouts. We believe that this
approach is sufficient to show the merits of the proposed approach though a more advanced search

technique may resultsin better solutions.

The search agorithm (Algorithm 1) consists of two phases, the assignment and the improvement.
The assignment phase starts with the empty configuration (i.e. al the 2-Nets are free) and
iteratively assigns a free 2-Net to one of its candidate assignments. The 2-Net and its assignment
chosen on each iteration are such that the cost of the resulting configuration will be minimal.
When all the 2-Nets have been assigned, the improvement phase tries to further improve the
solution by iteratively reassigning 2-Nets, one on every iteration. Again, the algorithm chooses in
each iteration a 2-Net and a new candidate assignment of it such that the overall cost isreduced the
most. The algorithm terminates when the cost cannot be further reduced by reassigning asingle 2-

Net.
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Il --- Assignment phase
g = empty configuration;
while g isnot complete {
for each 2-Net n; freein g do {
a; = Best2NetAssignment(n;, q)
A = C(qln; - &) —-C(q)
}
j = 1 minimizing 4,
q-= (Q|nj - aj)
}

Il --- Improvement phase
do{
for each 2-Net n; do {
a; = Best2NetAssignment(n,, q|n;, - free)
A; = C(aln; — &) -C(q)
}
j =i minimizing 4;
if (4;<0) then g =(q|n; — &)
} while A; <0

ALGORITHM 1 - The layer-assignment algorithm. The algorithm operates in two phases,
first it assigns all the 2-Nets and then reassigned them to further reduce the cost. This
algorithm is greedy and on each iteration it chooses the 2-Net whose its optimal candidate
assignment will result in the lowest overall cost. The core of the agorithm is the function
Best2NetAssignment which finds the optimal candidate assignment of a free 2-Net given a
configuration. An optimal algorithm for this function is presented later in this thesis.

Note that the cost of an assignment for a 2-Net depends on the assignments of the other 2-Nets,
both free and assigned. As aresult, changing the assignment of one 2-Net can change the optimal
assignment of other 2-Nets (Figure 34). This dependency is why the improvement phase is
required (Figure 35) and why the agorithm recalculates the optimal assignment of the 2-Nets on
each iteration. Our implementation reduces the amount of recalculation done by using an

incremental approach. On the first iteration, the best assignment for each 2-Net is calculated and
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saved. Later, when a 2-Net is assighed or reassigned, only the optimal candidate assignments for

the 2-Nets affected by this assignment are recomputed.

a b

FIGURE 34 - Interdependency between assigned 2-Nets. (a) and (b) show the
configurations before and after assigning 2-Net 4 to the black layer. The
assignments in (@) of the three 2-Nets 1, 2, and 3 are al optimal. However, after
assigning 4, the assignment of 2 is suboptimal as assigning it to the gray layer will
result in alower cost due to its conflict with 4. The other 2-Nets, 1 and 3, are not
affected by the assignment of 4 and their assignments are still optimal.

a b

FIGURE 35 - Example of assignment improvement. This figure shows an
example of improvement of an assignment. The design has three 2-Nets 1, 2, and
3, which are assigned to the black and the gray layers. The assignment phase
assigned the three 2-Nets in order and results in the complete assignment in (a).
Theimprovement phase then reassigns 2-Net 1 to the gray layer so the overall cost
is improved. Note the assignment phase initially assigned 2-Net 1 to the black
layer arbitrarily because the cost of assigning it to each of the layers was the same.
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The core of the algorithm is the function Best2NetAssignment which given a configuration g and a
free 2-Net n, finds a candidate assignment a of n that minimizes the cost of the configuration
after assigning n to a. A naive implementation of that function would be to enumerate all the
candidate assignments of n and calculate for each one its effect on the cost of . This however
would be much too time consuming because of the large number of candidate assignments and the
complexity of calculating the cost increase due to each assignment. A more efficient algorithm

which yields optimal resultsis presented later in this chapter.

3.3.5 Properties of the configuration search algorithm

Note: the discussion in this section assumes that the algorithm used to compute the function

Best2NetAssignment results in optimal solutions as done by the 2NAA algorithm (page 59).

The proposed search algorithm is guaranteed? to terminate with a complete configuration whose
corresponding solution is feasible. To show that, we first show that assigning a 2-Net cannot

change the cost of the configuration from finite to infinite.

Lemma 2 Let q be a configuration with afinite cost and let n be a 2-Net, freein . Under these
conditions, n has a candidate assignment a such that the cost of the configuration g, resulting

fromassigningnto a, q; = (q|n - a), isfiniteaswell.

Proof Let e; and e, bethe end-points of n. By the construction of the assignment graph, n has
at least one candidate via which like all the candidate vias, is internal to the bin. Let v be such a
candidate via. Let a be the candidate assignment of n with two branches, {e;, v} on one layer
and {v, e} on an adjacent layer?. Via v isinternal to the bin and is not connected to any branch

other then the two defined by a (each of a separate layer). These two branches do not disconnect

1. It isassumed that the design has at |east two layers and that each of the 2-Net has at least one
via candidate point.

2. We assume that any design submitted to the layer-assignment algorithm has at |east two layers.



58

the routing area on their respective layers and therefore, their components are pair-wise planar

with all the other components assigned to same layer. Q.E.D.

Theorem 2 The search algorithm is guaranteed to end with a complete configuration whose

corresponding solution is feasible.

Proof By Lemma 1, it is sufficient to show that the algorithm will result in a complete
configuration which is also planar, and by Theorem 1 it is sufficient to show that the result
configuration is complete and has finite cost. The assignment phase starts with a configuration of
finite cost and by Lemma 2 it is guaranteed to successfully assign on each iteration a free 2-Net
while increasing the cost by only a finite value. This guarantees that the assignment phase will
terminate with a complete configuration of finite cost. The improvement phase starts with a
complete and finite cost configuration and on each iteration can only decrease the cost by
reassigning a 2-Net. This guarantees that the completeness and the finite cost properties of the
configuration are preserved. The improvement phase is guaranteed to terminate since the number

of complete configurationsisfinite. Q.E.D.

Note that the bound on the complexity of the improvement phase as given in this proof istoo high
for practical applications. However, in al of our experiments, the improvement phase has about
the same number of iterations as the initial assignment step or less. In case the algorithm will fail
to converge, the improvement phase can be modified to terminate when the cost improvement is

smaller than agiven value or after a certain number of iterations have been compl eted.

The proposed steepest descent search algorithm is sub-optimal and can be trapped in local
minimum as shown in Figure 36. The sensitivity of the search to local minimum could be reduced
by using more complex optimization techniques which consider larger steps or do allow temporary

increases in the configuration cost.
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FIGURE 36 - Local minimum in the configuration search. The three 2-Nets in
(@), 1, 2, and 3, are to be assigned to two layers. The assignment phase (b) first
assigns net 1 to the black layer, and then net 2 to the gray layer. These were
arbitrary choices as the optimal assignments of the 2-Net are not unique. Then, it
assigns 2-Net 3 using avia as shown in (¢). The improvement phase can not make
any improvement to the assignment in (c) by reassigning a single 2-Net, and this
leaves (c), which is sub-optimal, to be the final solution. An optimal solution is
shown in (d).

3.3.6 The 2-Net Assignment Algorithm (2NAA)

The core of the Layer-Assignment Algorithm (Algorithm 1) is the function Best2NetAssignment

which finds a best assignment for a given 2-Net. This function solves the following problem:

Definition 9 (2-Net Assignment Problem - 2NAP) - Given a configuration g and afree 2-Net n,
find a candidate assignment a of n such that C(q|n - a), thecost of g after assigning n to a, is

minimized.

The proposed LAA uses an algorithm called the 2-Net Assignment Algorithm (2NAA), presented
below, which is guaranteed to find an optimal solution for the 2NAP. The 2NAA finds the solution
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by first assigning costs to the edges of the assignment graph?, and then finding a least-cost path in
the graph, which by the way the costs are assigned, is guaranteed to represent an optimal solution.

The costs of the edges are set according to their kinds, which can be one of the following:

e End-point edges - These are edges that connect the source and sink nodes with the nodes repre-

senting the end-points of the 2-Net.
¢ Via edges - These edges represent layer crossings (shown in Figure 29 as vertical lines).

e Branch edges - These edges represent branches (shown in Figure 29 as horizontal lines).

The cost of each end-point edge is set to either 0 or « (Figure 37). It is set to 0 when having the
end-point edge in the path will not require introduction of anew viaat that end-point. Otherwise, it
is set to o (which practically eliminates this edge from the graph). The cost is determined as
follows. Let u be either the source or the sink node of the graph, let t be the end-point at the u end
of the graph, let t;, 1<1<M, be the node of t on layer |, and let g = (u,t;) be the end-point
edge whose cost is to be determined. First, a set E; of existing layers of t is computed. The set
includes E(t) , the set of existing layersof t, if t represents an input terminal, and any other layer
on which aprevioudy assigned 2-Net has abranch incident to t. The set isthen is completed to be
contiguous such that if it includes two layers, then it also includes all the layers in between. The

cost of g issetto zeroif E; includesthelayer |, or if E; isempty and set to  otherwise.

1. Because of the non-linearity of the branch cost function, the actual search is donein a modified
assignment graph called the extended assignment graph. This is discussed in detail, later in this
chapter.
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FIGURE 37 - Cost of end-point edges. The 2-Net in (@) between end-points x and
yisto be assigned to two layers. The 2-Net has a single candidate via location v
and its end-points have incident branches of previously assigned 2-Nets. (b)
shows the assignment graph for the 2-Net. The cost of the end-point edge between
the source node s and the end-point node on layer |, is set tow since having this
edge in the path will require alayer crossing to connect to the preassigned branch
on layer |, . The other three end-point edges do not require vias and thus Are
assighed zero cost. This cost assignment insures that any least-cost path which
defines a branch connected to end-point x onlayer |, toincludealso aviaedge at
X between layer |, and |, (see shaded pathin (b)).

Setting the cost of the via edges is much simpler, they all have the same cost a, which is the

increase in the overall cost function (5) when asingle layer crossing is added.

The cost of a branch edge is set to represent the increase in the overall cost (5) when the branch
represented by the edge is added to the assignment. Adding a branch to the assignment can either:
() create anew component, (b) extend an existing component, or (c) join two existing components
into a single bigger component, and each of these cases may increase the assignment cost. Figure
38 shows an example of a 2-Net assignment with two branches, one (on the gray layer) forming a

new component and the other (on the black layer) extending an existing component.
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FIGURE 38 - Cost increase due to branch assignment. The configuration in (a)
has a free 2-Net between amgi , and three components from previously
assigned 2-Netsg; and,~ on the black layer, end on the gray layer. The
component; and, have conflict as shown in (b). (c) shows the configuration
after assigning the free 2-Net with two branchgs  land  on the black and gray
layer respectively. This assignment enlarges'the companent as shown in (d)
which increases its conflict with;  and also creates a new compopent  which
conflicts with the existing componeni

Theincrease in the cost function (5) when assigning a brandéh  is as follows. where is the user’s
cost function control parameter ih) @ndC is the set of componelbkfore the assignment of the

branch.

Case (a) - a new component is formed by the branch:

C(b) = (1-a) Z H(b, ¢ (8)

cocC

Case (b) - an existing componant is extended by the branch:
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Cb) = (1-a) ' {H(c+b,c)-H(c,c)) )

¢ O0(C-c)
Case (c) - two existing components ¢, , ¢, arejoined by the branch:
g

C(b) = (1_G)E_H(C1! Cy) + Z {H(c, +c,+b,¢) —H(cy, ¢;) —H(c,, )}
0

(10)

Ooodod

¢ O(C-cy—cy)

This branch cost function represents correctly the cost increase due to an assignment of a single
branch. However when it is used in a context of a path, it can result in underestimation of the cost
of the 2-Net assignment because of the non-linearity of the branch cost function. If two branches
b, , b, of a2-Net to be assigned are incident and are on the same layer, then having both branches
in the assignment will result in a single branch b, +b, which is the union of the two branches,
and the cost of this branch may be higher then the sum of the costs of the individual branches

(Figure 39).
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FIGURE 39 - Non-linearity of the branch cost function. The 2-Net in (@) has a
single via candidate point v and two branch edges b, , b, on the black layer (the
branch edges on other layers are not relevant to tJhIS example). A previously
assigned 2-Net, shown in (a) as a vertical line, has a branch on the black layer.

The branch edges b, and b, haverelatively low cost since they have low conflict
with the preassgned 2- Ne’[2 as shown in (b) and (c) respectively. However, if by

and b,, are both included in the assignment, their 2-Net will effectively be as ngle
brancﬁ which include both branches, and the conflict of this branch with the other
2-Net is higher than the sum of the conflicts of b; and b, with that 2-Net (d).

This underestimation of a 2-Net assignment cost can occur only when the path includes two
branches of the 2-Net which are on the same layer and incident to each other (Figure 40). Note that

this can happen even if the two branch edges are not consecutive in the path as shown in Figure 40.
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FIGURE 40 - Non-linearity of branch cost in a path. The two examples show two
paths with underestimation of the cost of a 2-Net candidate assignment. The path
in (a) has two consecutive branches edges b, , b, which represent two incident
branches and thus its cost may be lower than the cost of the 2-Net assignment it
represents. The same is true for the path in (b) (when the via cost is low enough)
even though the two branch-edges are not consecutive in the path.

To eliminate the cost underestimation, the assignment graph is converted into a directed graph
called, the extended assignment graph. This graph represents exactly al the candidate assignments
represented by the original graph and yet, no path from the source to the sink nodes contains two

branches which share an end-point and are on the same layer.

The extended graph is constructed by two modifications to the original assignment graph, adding
short-circuit branch-edges, and splitting its nodes. A short-circuit branch edge is added for every
sequence of consecutive (but not necessarily maximal) branch edges and it connects the origin of
the first edge in the sequence with the end of the last edge (Figure 41). This enables the
replacement of any sequence of consecutive branch edges in a path with a single short-circuit edge

so the cost is computed correctly.
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FIGURE 41 - Adding the short-circuit branch edges. (a) and (b) show an
assignment graphs before and after adding the short circuit branch edges. By
adding these edges, the graph in (b) has a path (shown with shade background)
representing the same candidate assignment as the path in (a) but without having
incident branches.

The second modification to the graph, splitting its nodes, is done to eliminate exactly all the paths

with incident branches and is done as follows. Every node in the graph, except for the source and

sink nodes, is replaced with three sub-nodes, called ‘up’, ‘down’, and ‘forwagtiré 42) which
represent a restriction on how the path can continue from this sub-node. If the path includes a sub-
node of type ‘up’ (‘down’) then the edge following it in the path must cross to the layer above
(below). If the sub-node is of type ‘forward’ then the following edge must be either a branch

(original or short-circuit) or an end-point edge.
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FIGURE 42 - Splitting the graph nodes. A typical graph node before (left) and
after (right) the splitting is shown. The gray edges are included in the graph only if
the split node represents one of the end-points of the 2-Net. The example shows a
node with typical incoming and outgoing forward edges. In the general case, a
node can have multiple such edges because of the addition of short-circuit edges.
Note that the source and sink nodes are not split.

The splitting of the nodes guarantees that exactly al the paths that include one of the following

patterns are removed from the graph:

e A branch edge followed by another branch edge. This is the simplest form of having incident

branches in a path as shown in Figure 40 (a).

e An ‘up’ (‘down’) layer crossing followed by a ‘down’ (‘up’) layer crossing. This pattern is elim-
inated to avoid paths such as the Bigaire 40 (b) which includes incident branches even though

they are not consecutive on the paths.

Eliminating exactly all the paths with these patterns guarantees that a search for a least-cost path in

the extended assignment graph will find a path which represents an optimal solution to the 2NAP.

3.3.7 2NAA complexity Analysis

Let m be the number of layers in the design, anchlet be the number of candidate locations for
vias of as a 2-Net. The extended assignment graph of the 2-Né&x(hag Qbdes, via
edges andD(mnz) branch edges (including the short-circuit ones). The complexity of computing

the edge costs is dominated by the cost computing of the branch edges v@ﬂnhnizsp) where
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p isthe complexity of computing the cost of asingle branch edge. By using an O(nlogn) shortest
path search algorithm, the complexity the search is O(mnz(logm+ logn)) and therefore, the

overall complexity of the algorithm is:

O(mnz(p+ logm+ logn)) (11)

Asfor p, if incremental computation is used (explained below) then the complexity of computing
a cost of a single branch edge is O(wr) when w is the average number of components a
component intersects with, and r isthe average time to route a pair of components. w depends on
the size of the nets and their spread across the routing area, and r depends on the size of the

components and the routing algorithm used.

SURF Practical Notes: Our experiments with SURF shows that increasing the value of n above

five does not result in significant improvement in the routing results and since n can be practically

bound by a constant, it does not affect how SURF’s run-time scales with increasing design sizes.
The complexityp depends on the number of nets and terminals in the bin but since these values
are kept bound by SURF’s global router it does not affect the asymptotic run-time of SURF. Only
m, the number of available layers affects the complexity of the 2NAA which grows as
O(mlogm) . To reduce the run-time of the 2NAA, SURF computes the cost of a branch edge only
upon demand, when the shortest path algorithm requires this value for the first time. Since most
searches do not traverse the entire extended assignment graph, the time of computing the cost of

the non traversed branch edges is saved.

3.3.8 LAA Implementation Notes

The LAA has been implemented as part of the SURF routing system. It iswrittenin ANSI C and

has been developed on Sun SPARC workstation under Motif, and using @dtLEempiler. It

has been ported successfully, as part of SURF, to other platforms such as IBM RS/6000 and DEC
Alpha workstations. The implementation includes 19 modules with a total of 15,000 lines of code,

comments, and intensive run-time checks.
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Some parts of the agorithm have been implemented sub-optimally to speed up the development
process and to simplify the code. This includes performing linear searches over lists, and using a
simple O(nz) sorting. A more efficient coding may result in a faster layer-assignment though the

routing results are expected be similar.

Various parts of the implementation use the List Management Package written by David Harrison,
University of California at Berkeley, with enhancements by David Staepelaere, University of
Cdiforniaat Santa Cruz.

3.4 LAA Extensions

The previous description of the LAA focuses on the basic principles of the algorithm. In this

section, we discuss several enhancements and extensions to the algorithm.

3.4.1 Constrained Assignment

Formulating the layer-assignment as an optimization problem with a cost function to be minimized
makes it possible to address different types of routing problems by merely making simple
modifications to the cost function. For example one of the specia routing methods we
experimented with is constrained or one and a half layer routing in which wires are embedded in
cut-outs in the ground and power planes. By embedding these connections in these planes, the
routing can be completed with fewer layers and the manufacturing cost of the MCM isreduced. To
preserve the current carrying ability of the planes, the embedded wires should be kept as short as

possible and can be viewed as ‘jumpeFsg(re 43).
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FIGURE 43 - Constrained layer-assignment. By dlightly modifying the cost
function, the LAA can produces special assignments such as the one and a half
layer-assignment in this example. Most of the routing is done on a single layer

with only short ‘jumpers’ on the other layer which are embedded in the ground
plane.

The constrained layer-assignment is done by adding aterm to the cost function (5) that penalizes
long wires on constrained layers in such a way that many shorter wires are preferred over fewer

longer ones. The cost of asolution S using the modified cost function is:
C() = C(9 + 5 d(c)" (12)
Cc

where C(S) is the standard cost function (5), ¢ is a component assigned to a constrained layer,
d(c) is the diameter of component ¢ (i.e. the maximal distance between terminals of c¢), and
k> 1 isaconstant which controls the penalty. The usage of the exponent favors multiple smaller
components over fewer and longer ones as the cost has polynomia growth with increasing

component size.
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3.4.2 Supporting Various Metrics in the Layer-Assignment

The above presentation of the LAA assumed an any-angle routing model and thus uses the
Euclidean metric in al distance calculations. Although any-angle routing potentially makes best
usage of routing resources and results in the shortest wiring, sometimes it is required, because of

production constraint, to restrict the wiring to be rectilinear or octilinear.

The LAA can be extended to handle rectilinear and octilinear wiring models as well. Thisis done
by using a rectilinear (‘Manhattan’) or octilinear metrics respectively instead of the Euclidean

metric. This change affects the following aspects of the LAA:

1. Whenever a distance between two points is calculated (for example, when computing the
conflict), the actual metric is used. With modular implementation, this change affects the single

function that calculates the distance between two points.

2. Step | of the layer-assignment breaks each net into 2-Nets by generating a minimum length tree

that spans the net’s terminals. This tree should be generated using the proper metric.

3. Step Il of the layer-assignment generates the assignment graph for each 2-Net by defining via
candidate locations along the shortest path between the end-points of the 2-Net. In the case of
Euclidean distance, this path is unique and is the straight line between the endrpguresid).

When rectilinear or octilinear metrics are used, the shortest path may not be unique and the
algorithm can choose one arbitrarily or choose a set of ‘well spaced’ paths. Considering multiple
candidate patdsmay result in better solutions as the assignment step has more choices in
positioning the vias, at the expense of increasing the run-time. Our implementation considers only

a single path, the straight line between the terminals, as done with Euclidean metric.

1. This can be handled by having multiple assignment graphs per 2-Net and searching all of them
for a best assignment of the 2-Net, or by merging all of them into a single assignment graph.
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FIGURE 44 - Candidate via location for Rectilinear metric. The 2-Net between t1
and t2 is to be assigned and two candidate via locations v1, v2, are used (a). The
shortest path using rectilinear metric between t1 and t2 is not unique and three
choices are shown in (a). The LAA uses the straight line between the two
terminals and spaces vias evenly along the path. In (b) a possible assignment with
two branches, one on the gray layer and one of the black layer is shown. (c) shows
a possible embedding for the assignment of that 2-Net. This embedding has the
minimal possible rectilinear wire length between the two terminals. A similar
approach is used for Octilinear metric.

SURF’s implementation of the layer-assignment algorithm supports any-angle, rectilinear and
octilinear routing models. It includes the above extensions except for the second one. When
breaking the nets into two terminals nets, a Euclidean Steiner tree is generated regardless of the
actual routing model in use. Generating a metric specific tree will potentially result with better

solutions.

3.4.3 Preferring 2-Net assignment to layers

The constrained assignment technique mentioned earlier is able, by having a minor change to the
cost function, to prefer assigning longer branches to the non constrained layers. This approach can
be used to achieve many other goals of preferential assignment of certain branches to certain
layers. A simple example is when it is preferable to assign a set of critical nets to some layers
which have more desirable electrical properties. Other criteria can be preferring layers according
to the general direction of the branch to achieve layers on which the branches are mostly in the
same direction (for example, x/y pairs in Manhattan routing). These goals can be achieved by two

modifications to the LAA. First, the cost function should be modified to preferred the desired
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assignments, and second, the assignment graphs of the 2-Nets may need to be modified or
extended to contain desire assignments of the 2-Nets (for example, having mostly horizontal/
vertical branches in a Manhattan one-layer-one-direction routing or having short branches in

constrain assignment).

3.5 Experimental Results

Since the proposed LAA uses heuristics to perform the assignment, the primary technique to
explore its merit and properties is experimentation. In this section we present empirical results of
benchmarks of the LAA against another router and of routing with various parameters settings. To
reduce external effects on the results, all experiments were done on a single bin so that they are
independent of the performance of the Global Router. Nevertheless, to find the actual cost of the
embeddings of the bins, a specific single-layer router had to be used. SURF’s rubber-band single-

layer router was used for this purpose.

3.5.1 Benchmark results

To evaluate the merits of the proposed LAA we compared the results of SURF to those of SLICE.
SLICE is a grid-based rout§29]. which is characterized by its simultaneous routing of all nets.
This makes SLICE insensitive to net ordering as opposed to most existing area routers. Ten two-
layer bin problems were routed by both SLICE and SURF and the results are sfi@ble ihand

are summarized ifiable 2. To make the routing conditions identical for both routers, the routing
problems were modified to comply with SLICE ‘s input requirements which include rectilinear
metric, and having terminals only on the top layer. The routing in SLICE was done using its
default setup. To allow comparison of both wire-length and number of via, the via-cost parameter
o of SURF was adjusted such that SURF's solutionstuo#ld shorter wiresand less vias than
SLICE’s. As shown ifTable 1, SURF was able to route the examples with slightly shorter wire
length (0.4%) and with 31% fewer vias.
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Example SLICE SURF

Name Nets | LenO Len Vias | Det% Len Vias | Det%
APEX/01 44 | 50195 | 52777 68 51| 52166 42 39
APEX/02 70 | 113414 | 122461 174 8.0 | 121205 99 6.9
APEX/03 41 | 74157 || 74440 161 04| 75337 | 106 16
DS15/01 19 6110 6194 35 14 6221 22 18
DS15/02 21 7693 8024 26 43 7914 25 29
DS15/03 22 8946 9204 12 29 9193 4 2.8
GDX/01 18 | 10057 | 10311 26 25| 10268 20 2.1
GDX/02 26 | 12607 | 12691 26 0.7 12686 12 0.6
GDX/03 24 8970 9269 16 3.3 9184 14 24
GDX/04 29 9892 | 10155 12 2.7 | 10082 12 19
Avg 314 | 30204 | 31552 55.6 31| 31425 | 35.6 2.7

TABLE 1 - Benchmark of SURF vs. SLICE. Ten bin-size problems were routed
in rectilinear metric by both SLICE and SURF. Len0 denotes the lower bound on
the wiring length and isthe sum of the lengths of the rectilinear Steiner trees of the
nets of each bin. Det% is the percentage of extra wire length in the bins
embeddings compared to the lower bound. The improvement of SURF over
SLICE issummarized in Table 2.
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Example Improvement

Name Len% | Vias%
APEX/01 116 | 38.24
APEX/02 1.03 | 43.10
APEX/03 -1.20 | 34.16
DS15/01 -0.44 | 37.14
DS15/02 137 3.85
DS15/03 0.12 | 66.67

GDX/01 042 | 2308
GDX/02 004 | 53.85
GDX/03 092 | 1250
GDX/04 072 000
Avg 041 | 31.26

TABLE 2 - SURF improvement over SLICE. Thistable summarizes the resultsin
Table 1. It shows the improvement in the total wire length and via count when
routing the ten binsin SURF. All values are in percents.

3.5.2 Balancing Between Wiring Length and Via Count

This experiment explores the effect of the viacost parameter 3 on the number of vias and the total
wire length of the routed bins. Ten bins were routed (Euclidean metric, optimizations enabled)
with twelve different values of 3. The via count and wire length of the routed bins are compared in
Table 3 and Table 4 respectively. The results are summarized in Figure 1 and Figure 2 which show
the average via count and average wire length respectively, both of which are normalized to 100
for B = 0. As expected, the over-al trend is for the number of vias to decrease and the wire
length to increase as [ isincreased. The results have several points in which increasing the value
B reduces the wire length (for example, the increase from 3 = 50 to B = 60 in Graph 2). A
possible cause of this behavior is the steepest descent optimization algorithm getting trapped in a

local minimum and failing to find an optimal solution.
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0 5 10 |20 30|40 |50 | 60| 70 | 80| 90 | 100
APEX/01 | 99| 71| 4743|3935 |31|31(29(23|21| 21
APEX/02 | 245 | 167 | 136 | 99 | 89| 77 | 67 | 67 | 61 | 59 | 59 | 59
APEX/03 | 220 | 118 | 90| 75|57 |58 |54 |54 |52 | 50 | 48 | 48
DS15/01 56| 36| 32|128|22|20|18|16|14|12|12| 10
DS15/02 56| 51| 4113934 (22|14 (14|14 14|14 | 12
DS15/03 3| 27| 25|18|16(12,10(10| 8| 8| 8
DS15/04 41 27| 2316|1313 |11 |11 11|11 |11
GDX/01 31| 17| 17|10|10| 6| 6| 6| 6
GDX/01 24| 18| 18|18| 7| 7| 6| 6| 3
GDX/02 27| 15| 10|10 8| 8| 6| 6| 4

N|IO|l b~ N

TABLE 3 - Number of viasvs. beta. This table shows the resulting number of
vias when routing ten bins, each which twelve different values of 3. As expected,
the overall trend is having fewer viaswhen 3 isincreased.

E| O 5 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
APEX/O1 || 2 || 442 | 443 | 445 | 445 | 448 | 451 | 453 | 453 | 455 | 471 | 469 | 469
APEX/02 | 3| 103 | 104 | 104 | 105 | 107 | 111 | 113 | 113 | 112 | 110 | 110 | 110
APEX/03 | 2 | 658 | 667 | 669 | 666 | 693 | 692 | 693 | 693 | 694 | 683 | 692 | 692
DS15/01 | 1 528 | 530 | 530 | 533 | 544 | 547 | 551 | 549 | 562 | 561 | 560 | 566
DS15/02 | 1| 688 | 689 | 530 | 533 | 544 | 547 | 551 | 549 | 562 | 561 | 560 | 566
DS15/03 | 1| 793 | 794 | 797 | 801 | 804 | 812 | 819 | 819 | 819 | 819 | 819 | 819
DS15/04 | 1| 918 | 922 | 928 | 930 | 934 | 934 | 938 | 938 | 938 | 938 | 938 | 983
GDX/01 || 2| 97| 97| 98| 98| 103 | 103 | 103 | 103 | 103 | 103 | 105 | 105
GDX/01 | 1| 815|815 | 815 | 815 | 833 | 833 | 847 | 847 | 857 | 866 | 866 | 899
GDX/02 || 1| 834 | 836 | 840 | 840 | 844 | 844 | 894 | 894 | 900 | 910 | 910 | 910

TABLE 4 - Wire length vs. beta. The table shows the total wire length of the ten
bins routed with twelve different settings of 3. To fit in the table, the values were
scaled down by 10~. As expected, the overal trend is having shorter wires when
[ isdecreased.
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GRAPH 1 - Number of viasvs. beta. This graph shows the average number of
vias of the ten binsin Table 3 versus the via cost parameter 3. The via counts are
normalized to 100when 3 = 0.
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GRAPH 2 - Wire length vs. beta. This graph shows the average wire length of the

ten bins in Table 4 versus the via cost parameter . The wire lengths are
normalized to 100 for B = O.
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3.5.3 Estimated vs. Actual Detour

The cost function used by the LAA estimates the detour length using conflicts between pairs of
components. This experiment explores the relationship between the estimated and the actual
detours. Ten bins were routed (Euclidean metric, optimizations enabled) and the estimated and the
actual detours were compared. To cover a wide range of conditions, each bin was routed with
twelve different settings of the via cost parameter 3, which has a significant effect on the detour

(higher B valuesresult in longer detours).

Table 5 shows the ratio of estimated to actual detours. For low values of 3 (which result in lower
detour) the cost function overestimates the actual detour by a factor of about three. These ratios

decrease as 3 increases (which also increases the detour length) and stabilizes around 1.4.

The convergence of the overestimation to 1.4 suggests pre-factoring of the cost function to
compensate for that error. This will reduce the overestimation for low detour to the factor of two
(2.9/1.4). This however has no practical benefit as the user specifies the via weight using the
parameter 3, which is an abstract value anyway. In addition, the large error ratio in assignments
with low detour does not present apractical difficulty sincethe detour isonly asmall percentage of

the total wire length and thus the error is small.



79

0 5|10 20| 30|40 |5 | 60| 70 | 80 | 90 | 100
APEX/01 | 16|16|17|19|17|15|16|16|16|12|15| 15
APEX/02 | 15|14|20|15{10|09|07|07|09|11|11]| 11
APEX/03 | 24| 14|15|20({09|10|211|211|11|16|213| 13
DS15/01 |26 |25|28 |24 12|12 |12 |15|12|15|14| 15
DS15/02 | 26|24 |119|20|12|24|19|19|19|19|19| 19
DS1503 |33(31(13|18|17|15|15|15|19|19|19| 19
DS15/04 | 2416|112 |13/19|19|22|22|22|22|22| 18
GDX/01 |23 (171712120606 |06|06|06|07| 0.7
GDX/02 ||79(40(40(40(11(11|13|13(13|13|13| 12
GDX/03 ||21(17(18|18|20(20(06]06]09|11|11| 11
Avg 291211202014 |14 (13|13 |14 |14 |14\ 14
Detour% | 0509 |11|14,28|35|50|50|54|57|60]| 7.0

TABLE 5 - Detour overestimation vs. beta. This table shows the ratio of
estimated to actual detour when routing ten bins with various values of 3. Avgis
the average of the estimated to actual detour ratios for each of the 3 settings and
the Detour% is the average of the percentage actual detour from the basic wire
length of the bins.

3.5.4 Comparison of Net Decomposition Methods

The LAA decomposes the multi-terminal netsinto 2-Nets by generating atree that connects the net
terminals. Our LAA implementation supports three kinds of trees, minimal spanning tree (MST),
minimal Steiner tree (MSTT), and Steiner tree with short edges collapsed (MSTTC). This
experiment explores the differences in routing quality and run-time between these three methods.
Fifteen bins, each with 25 nets of 4 terminas each were routed (Euclidean metric, optimizations
enabled, B = 25). The locations of the terminals were selected randomly with uniform

distribution of the x and y coordinates.

Table 6 shows statistics of routing the bins with the three methods. All the values in the table are
averages for the routed bins. The most significant values are the Bin Actual Cost and LAA Time

rows, which show the cost of the layouts and the run-time of the LAA respectively. These values
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are also compared in Graph 3. As expected the MST has the shortest run-time, the MSTT has the
best results (i.e. lowest cost), and the MSTTC provides a balance between the two.

The rest of the values in the table provide some insight into the operation of the LAA when using
the three methods. The 2-Nets Intersections column shows the number of 2-Net pairs whose paths
intersect. This value indicates the dependency between nets and is correlated to the amount of
computation done on each iteration to update the incremental data. The LAA Iterations column
shows the number of iterations needed to complete the bin assignment. 2NAA is the number of
timesthe 2NAA algorithm is invoked during the bin assignment to compute a best assignment of a
2-Net. Finally, the Pair Conflicts column shows the number of pair-wise component conflicts
computed during the assignment. The trends of all of these values when varying the decomposition

method are similar to that of the run-time.

Note that all of the nets routed in this experiment had 4 randomly located terminals. When routing
rea -life examples, the results are expected to vary. For example, in the extreme case where al the
nets have exactly two terminals, the three methods will give about the same results since the

decompositions are identical.

MST MSTT | MSTTC
nets 25 25 25
2-Nets 75 125 78
2-Net Intersections 345 457 360
LAA lterations 105 153 110
2NAA 1257 1688 1331
Pair Conflicts 96428 | 89061 | 1000865
Bin Actual Cost 2768 2596 2682
LAA Time [sec] 68 73 70

TABLE 6 - Comparison of 2-Net decomposition method. This table summarizes
the results of routing 15 random bins with three methods of decomposing the nets
into 2 Nets. All values are average for the 15 bins. Graph 3 provide a normalized
comparison of the two last rows.
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GRAPH 3 - Comparison of net decomposition methods. This graph shows the
relative cost and run-when routing bins using the three decomposition methods.
The values are based on the result$able 6 and are normalized to 100 for the
case of MST. As seen in the graph, the MST and the MSTT are on the two
extremes of routing quality and LA run-time, while the MSTTC provides a
balance between the two.

3.5.5 Candidate Via Density Versus Actual Cost

This experiment explores the effect that the number of candidate vias per 2-Net has on the routing
results. Ten bins were routed (euclidean metric, B = 5, optimizations enabled) with the number
of candidates varying from 1 to 10. Table 7 and Table 8 show the total wire length and number of
vias respectively. Graph 4 shows the average actual cost of the routed bins and Graph 5 shows the
average via count and wire length. All are normalized to 100 for the case of 10 candidate vias per

2-Net.

As expected, the actual cost decreases, when the number of candidate viasis increased (Graph 4).
The improvement in the cost is significant for low numbers of candidate points and stabilizes
around 5 candidates. Note that for low numbers of candidate vias, the average number of viasin
the routed bins is significantly lower, resulting in longer wiring (Graph 5). One reason for thisis
that as the number of via candidates and the granularity of potential via locations is reduced, it

becomes less likely that the LAA will consider vias that are “well placed” from the standpoint of
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reducing the detour length. As a result, the expected detour reduction will decrease, making it

harder to justify the additional via cost.

E| 1 2 3 4 5 6 7 8 9 10
APEX/O1 | 2 || 515 | 448 | 446 | 443 | 444 | 443 | 441 | 440 | 442 | 441
APEX/02 | 3| 132 | 105 | 104 | 104 | 103 | 103 | 103 | 104 | 103 | 103
APEX/03 | 2 || 712 | 668 | 667 | 667 | 660 | 659 | 658 | 656 | 656 | 656
DS15/01 | 1| 595 | 533 | 531 | 530 | 530 | 529 | 530 | 529 | 528 | 528
DS15/02 | 1| 756 | 713 | 692 | 689 | 687 | 685 | 684 | 684 | 683 | 683
DS15/03 | 1 873|805 | 795 | 794 | 795 | 794 | 793 | 794 | 794 | 793
DS15/04 | 1| 977 | 930 | 923 | 922 | 918 | 917 | 917 | 919 | 919 | 919
GDX/01 || 22107 | 98| 97| 97| 97| 97| 97| 97| 97| 97
GDX/02 || 1| 836|819 | 815 | 815 | 815 | 815 | 815 | 815 | 815 | 815
GDX/02 || 1841 | 836 | 839 | 836 | 838 | 836 | 836 | 836 | 836 | 836

TABLE 7 - Wire length vs. number of candidate vias. The table shows the actua
length of routing ten bins with ten different number of candidate vias per 2-Net.
Tofit in the table, the values have been scaled down by 10E.
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1 2 3 4 5 6 7 8 9 10
APEX/01 3| 49| 61| 71| 73| 75| 77| 81| 73| 77
APEX/02 | 70| 135 | 142 | 167 | 163 | 169 | 173 | 177 | 164 | 175
APEX/03 | 61| 111 | 115 | 118 | 122 | 124 | 124 | 127 | 130 | 126
DS15/01 6| 43| 40| 36| 40| 36| 36| 36| 36| 40
DS15/02 6| 37| 44| 51| 53| 54| 52| 58| 54| 52
DS15/03 3| 23| 29| 27| 26| 26| 24| 24| 28| 26
DS15/04 9| 20| 22| 27| 27| 26| 24| 24| 28| 28
GDX/01 3| 17| 17| 17| 17| 18| 18| 18| 16| 16
GDX/02 8| 23| 22| 18| 18| 18| 18| 18| 18| 18
GDX/03 12| 17| 13| 15| 14| 14| 14| 14| 14| 14

TABLE 8 - Viacount vs. number of candidate vias. The table shows the tota
number of vias when routing ten bins with ten different numbers of candidate vias

per 2-Net.
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GRAPH 4 - Actual cost vs. number of candidate vias. The graph is based on the
datain Table 7 and Table 8. The costs of each bin has been normalized to 100 for
the case of 10 candidate vias and the graph shows the averages of these costs.

Note that the Y axis of the graph startsin 100 and not zero.
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GRAPH 5 - Wire length and via count vs. number of candidate vias. The graph is
based on the datain Table 7 and Table 8. The values have been normalized to 100 for
the case of 10 candidate vias. Note that the Y axis of the graph starts in 20 and not
zero

3.5.6 Using Various Routing Metrics

This experiment explores the relationship between the distance metric considered by the LAA and
the final wire geometry style in terms of the effect on the actual cost of the embedding. Ten bins
were considered. Each was routed with all four combinations of rectilinear and Euclidean distance
metric and layout wiring style. The cost of these layouts are compared in Table 9. As expected,
when the LAA uses arectilinear metric to route Euclidean problems the cost is higher, on average
by about 7%, than when performing the assignment with the Euclidean metric. However, when
routing rectilinear problems, the average extra cost when performing the assignment using the
Euclidean metric instead of rectilinear is significantly lower, only about 0.6%. A possible cause
for this phenomenon isthat a shortest Euclidean path is also a shortest rectilinear path, but not vice
versa. Another possible explanation is that our implementation of the LAA does not take full
advantage of the properties of rectilinear wiring since it only considers placing candidate vias
aong the straight path between the end-points of the 2-Net even though the shortest rectilinear

path is not unique and other paths may yield better results.
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EE ER RR RE ER/EE | RE/RR
APEX/01 657.0 711.0 749.9 757.9 1.082 1.011
APEX/02 14644 | 1486.7 | 1557.6 | 1620.6 1.015 1.040
APEX/03 1148.7 | 1399.7 | 1496.6 | 12954 1.219 0.866
DS15/01 407.1 414.7 441.4 486.2 1.019 1.101
DS15/02 470.8 483.7 513.3 538.5 1.027 1.043
DS15/03 405.2 444.5 462.5 455.5 1.097 0.985
DS15/04 228.9 237.7 252.3 249.4 1.038 0.989

GDX/01 311.3 335.6 401.5 391.9 1.078 0.976
GDX/02 246.6 273.0 285.0 288.8 1.107 1.013
GDX/03 209.8 212.4 245.1 253.6 1.012 1.035
Average 1.069 1.006

TABLE 9 - Effect of the routing metric on the routing results. Ten bins has been

routed for both euclidean and rectilinear metrics. For each metric, the LA was

done with both ‘right’ and the ‘opposite’ metrics and the cost of the bin
embeddings are compared. ‘EE’ denotes, an euclidean routing with euclidean LA,
‘ER’ denotes euclidean routing but with rectilinear LA, etc. The columns ER/EE
and RE/RR show the ratios of the respective columns.

3.5.7 LAA Scalability

This experiment explores the scalability of the LAA interms of the number of nets per bin. Ninety
bins, grouped into nine different bin sizes, were assigned and the run-times of the LAA compared.
Half of the nets of each bin had two terminals and half had three terminals. The average number of
2-Nets per net was about 2*. The terminals were placed randomly with uniform distribution over
the X and Y axis. The statistics for the size groups are shown in Table 10. The values of variable
shown in each of the table columns were fitted by a polynomial function of the form anb where n
isthe problem size in terms of nets. The order b of the best fitted function is shown in the last row

of the table.

1. Since Steiner tree decomposition has been used, the 3 terminal nets were typically decomposed
into three 2-Nets and the two terminal netsinto a single 2-Net.
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TABLE 10 - LAA scaability. The table shows the statistics of running the LAA
over 90 bins. The bins are of nine different sizes from 1 to 100 nets per bin. All
values are averages for the bins in each size group. 2-Net Intersection are the
number of pairs of 2-Net whose paths of candidate vias intersect. 2NAA is the

number of time the 2NAA algorithm has been invoked during the LA of a bin.

Nets| 2-Nets LAA 2-Net | 2NAA | Exp. Branch Pair Time
lterations| Intersect. Edges Conflicts. | [Sec]
1 3 5 3 9 54 0 0.03
5 11 13 15 42 307 17% 0.19
10 20 23 34 92 712 748 0.6D
20 40 46 104 2771 2458 5298 3.38
35 71 87 339 932 11546 47507 25.34
50 100 127 617 1743 25164 1356)7 69|72
60 119 149 783 2113 30059 185045 97\74
80 158 212 1457 4399 69091 617100  311}56
100 199 274 2211 6855 121061 1227431 6845.58
p nt att 2 2 25 35 35

Expanded Branch Edges is the number of branch edges expanded by the 2NAA.
Pair Conflict is the number of time a component pair-wise conflict was computed
while assigning a bin. The last row shows the order of growth of each of the

variables as a function of the bin size

when fitted by a polynom.

The results indicates that the run-time of the LAA, in the tested range of bin sizes, grows

proportionally to n®> where n isthe number of netsin the bin. As seenin Table 10, the number of

2-Nets grows linearly with the bin size, and the number of LAA iterations grows ‘almost’

linearly’, about ntt . As expected, the number of intersections between 2-Nets grows

proportionally to n2 which suggests that a 2-Net intersects on average a number of 2-Nets

proportional ton . As as a result, in every iteration, after a 2-Net has been assigned, the number of

2-Nets whose best assignment is computed is proportional to , and this is confirmed by the

growth in the number of invocations of the 2NAA which is proportionaizto . The LAA run-time

and the computations of the pair-wise conflicts grow proportionaliys't% which confirms that,

as expected, the computation of a single pair-wise conflict is independent of the problem size. The
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ratio of computed pair-wise conflicts to the number of 2NAA invocations grows proportionally to
n1'5. This is because the number of branch edges expanded during each 2NAA grows
proportionally to n0'5, and because the average number of components intersecting an expanded
branch edge with grows linearly with n. The growth in the number of branch edges expanded
during each 2NAA is attributed to the increased density of nets which increases the chance of a
conflict between components and thus causes the 2NAA to explore more paths in the assignment
graph until a shortest path is found. Since the number of branch edgesin a 2-Net assignment graph
is upper- bounded by the graph size and is independent of the bin size, the growth of number of
expanded branch edges during the LAA would grow proportionally to n2 when the bins are large
enough and this will result in run-time proportional to n3. This however happens only in bins

which are too large to be practically solved by the LAA and thus we consider the practical run-

time of the LAA to grow proportionally to n3'5 .

3.6 Conclusion and Future Work

We have considered the problem of layer-assignment. That is, decomposing a multi-layer routing
problem into a set of single-layer sub-problems. The problem is a key building block in our
topological rubber-band based router. We have presented a simple and efficient cost function
which can be used to predict the wire length of the actual embeddings without the need to perform
explicit routing, and proved that the cost is finite if and only each of the sub-problems is planar.
This cost function allows us to formulate the layer-assignment problem as an optimization
problem. We presented the Layer-Assignment Algorithm (LAA) that solves this optimization
problem and an original algorithm (2NAA) which finds an optimal assignment for a given two
terminal net, and proved that the LAA is guaranteed to terminate and to find a planar solution if
such a solution exists. Experimental results show that the run-time of the LAA is proportional to
ne"5 where n isthe number of netsin the bin. We demonstrated the flexibility of LAA by showing
two examples of how a simple change to the cost function can achieve various routing goals such
as different metrics of the wire length and constrained (one and a half layer) routing. We presented

experimenta results of our implementation of the LAA that support the merits of the algorithm

and giveinsight into some of its properties.
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Our implementation of the LAA uses a steepest descent optimization technique which tends to be
sensitive to local minimums. A more complex technique such as simulating annealing, or group
migration, can possibly improve the quality of the solutions. Another possible improvement is
using a cost function that considers conflicts between larger sets of components, rather than only
pairs. This may better capture the dependency between conflicts and give more accurate detour
estimation at the expense of longer run-time. The LAA can also be extended to consider a wider
range of candidate vias for each 2-Net, to better support existence of obstaclesin the routing area,

to consider congestion and routability, and to handle critical nets and e ectrical requirements.
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4 TOPOLOGICAL NET ORDERING

4.1 Introduction

The Layer-Assignment Algorithm (LAA) generates for each bin a set of single-layer routing
problems, one for each layer. These bin layers are routed independently by the single-layer router
which embeds the nets to form a rubber-band sketch. The routing is done one two-terminal-net (2-
Net) at atime, each routed on aleast cost path between its end-points in the rubber-band sketch.
Since the order in which the 2-Nets are routed affects the planarity and final wiring length, it is

important to order the nets so that a planar routing with minimal wire length can be achieved.

The rest of this chapter deals with the problem of ordering the 2-Nets. First we discuss the
decomposition of the nets into 2-Nets and the goals and limitations of 2-Net ordering. Then we
present the two components of the proposed ordering agorithm, the wire length minimization, and
the Planarity Enforcement Operator (PEO). These two components are combined to achieve a
planar order which results in low wiring length. The wire minimization algorithm orders the 2-
Nets to reduce the wire length and the PEO transforms that order into an order that guarantees a
planar embedding. The problem of ordering the 2-Nets to minimize the wire length is formulated
as an optimization problem. The cost function estimates the wiring detour in the embedding and is
based on ordered pair-wise conflicts between nets. Then, an efficient heuristic to solve the
optimization problem is presented. Finally we present experimental results of our implementation

of the proposed algorithms.

4.2 Decomposition into 2-Nets

The LAA defines for each layer a set of components, each of which is a set of terminals to be
interconnected within the bin boundary and on that layerl. The terminals include the original

terminals of the design aswell as vias and bin boundary crossing points.

1. Inthe context of a single layer routing problem the components can be viewed as nets. How-
ever, for consistency, we will adhere to the notation in the Layer-Assignment chapter and will call
them components.
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Since the embedding is performed a 2-Net at atime, the components need to be decomposed into
2-Nets. This decomposition can be done in severa ways, including the methods described in the
Layer-Assignment chapter. The decomposition does not have to be the same as the one used by the
LAA. Using a different decomposition may even improve the routing results since the new
decomposition can consider the results of the LAA, information which was not available when the
LAA decomposition was performed. In our implementation, for sake of simplicity, we use the

same decomposition is used by the LAA.

4.3 2-Net Ordering

Since the order in which the 2-Nets are routed affects the wiring length of the embedding, (Figure
45) an order that minimizes the wiring length is desired. Note that number of vias is not affected

by the 2-Net routing order since the vias are determined by the layer-assignment step.

FIGURE 45 - Net ordering and wiring length. The two 2-Nets in this example
were routed in two different orders. In () n; wasrouted before n, andin (b) n;
was routed after n,. The order in (a) resultsin shorter wiring.

Routing the 2-Nets one at atime on aleast cost path between their end-points has its limitations. In
some cases, no order will result in an optimal embedding. Figure 46 shows an example problem
that cannot be solved optimally, for any net ordering followed by a shortest path search. SURF
handles this limitation by using a Rip-Out-And-Reroute (ROAR) post-processor (described
elsewhere in this document) that reduces the wiring length. The ROAR achieves the optimal

solution for the problem in Figure 46.
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a b
FIGURE 46 - The Triangle problem. This problem has three symmetrical 2-Nets
and its optima embedding is shown in (a). The optima embedding cannot be
achieved by routing 2-Net-at-a-time on a shortest path. Any such routing will result

in a sub-optimal solution similar to the one in (b). SURF handles this limitation by
post-processing the sketch with the ROAR optimizer.

In addition to minimizing the wiring length, the routing order needs to guarantee that a planar
embedding can be achieved. Figure 47 shows an example where a 2-Net cannot be routed because
its two end-points are disconnected by previously routed 2-Nets and the bin boundary. Such non-
planarity can happen only in the presence of nets that connect terminals located on the bin
boundary (external terminals). The 2-Nets should be routed in an order that guarantees that no

connections are blocked by nets routed earlier in the sequence.

@
n
1
® o Py P
®o—O
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a b

FIGURE 47 - Non-planar 2-Net routing order. The single-layer routing problem
in (a) has three 2-Nets. Routing the 2-Netsin the order n,, n,, n, failsbecause a
planar routing of n5 isimpossible as shown in (b). Routing the 2-Net for example
in the order ng, N3, n, is guaranteed to succeed.
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The proposed ordering is done in two steps

e First, the 2-Nets are ordered to minimize a cost function which estimates the wiring length when
embedding the 2-Netsin that order. This minimization step accepts the (unordered) set of the bin
layer 2-Nets and generates a compl ete order of the 2-Nets. This order however does not guaranty

successful planar embedding.

e The minimizing order is then constrained to guarantee planarity. This is done by the Planarity
Enforcement Operator (PEO, or PE operator) which accepts a 2-Net ordering and generates 2-
Net order which is based on the input order and guaranties successful planar embedding. The
order modification that the PEO does is guaranteed to preserve the wire length estimation of the

order.

These two steps are presented in the rest of the chapter. Since the minimization step considers the
operation of the PEO performed on its output, we present the PEO first, followed by presentation

of the minimization step.

4.4 Planarity Enforcement Operator (PEO)

The PEO accepts an order of the 2-Nets and generates an order that guarantees successful planar
embedding of the 2-Nets. The PEO does not make any specific assumption about the algorithm
used to embed the individual 2-Nets except that it is guaranteed to find a planar path if one exists.

The PEO is based on the classification of 2-Nets into ‘closed’ and ‘open’ 2-Nets:

(closed and open 2-Nets) A 2-Net is said to belosed in a given order of 2-Nets if it completes a
path between two external terminals when considering the 2-Nets preceding it in th&igaer (

48). Otherwise the 2-Net is said to tgen in that order.
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FIGURE 48 - Closed 2-Nets. The 2-nets in this example are ordered as n,..n;.
The only 2-Net which might disconnect the end-points of non routed 2-Net'is n,
which closes a path between two external terminals (a). (b) shows how a possible
path of n, can separate the end-points of n;.

Note that the definition ignores any specific embedding of the 2-Nets and considers only the 2-Net

order and connectivity

The significance of identifying the closed 2-Nets is that they partition the routing area into
disconnected regions and could potentially separate the end-points of an un-routed 2-Net. The
planarity enforcement is done by identifying the two subsequences of 2-Nets open and closed
respectively in the order and then forming a new order which is a concatenation of the
subsequence of the open and closed 2-Nets respectively (Algorithm 2). The PEO preserves the
relative order of the 2-Nets closed in the input order and the relative order of the 2-Nets open in
that order and positions al the 2-Nets closed in the original order after all the 2-Nets open in the
original order. The PEO modifiesthe order only if the input order contains a closed 2-Net foll owed
by an open 2-Net, otherwise it preserves the input order. Note that the fact that a 2-Net is closed
(open) in the input order, does not intuitively imply that it is also closed (open) in the output order
since the order has been modified. This however istrue and later we show that the PEO preserves
the closeness (openness) of the 2-Nets (which implies that every result of the PEO is also a fix

point of it).
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Let 11 betheinput order of 2-Nets

Let ) = ng.n, be the subsequence of open 2-Netsin 1t
Let T, = m;..m, be the subsequence of closed 2-Netsin Tt
The output order is il = n..n, my.m,

ALGORITHM 2 - The Planarity Enforcement operator. The PEO identifies
the two subsequences of 2-Nets open and closed respectively in the input
order and generates an order in which the 2-Nets closed in the input order
follows the 2-Nets open in the input order. The PEO preserves the relative
order of the open and closed 2-nets respectively.

To prove that the output of the PEO guaranties planar embedding, we first prove a sufficient

condition for a planar embedding of an ordered set of 2-Nets:

Lemma3Let T = n,..n, bean order of aplanar set of 2-Nets!. If Tt does not have a close 2-Net
followed (either immediately or not) by an open one then routing the 2-Nets in order by T is

guaranteed to result in a planar embedding.

Proof We prove this by contradiction. For the purpose of contradiction we assume when routing
the 2-Netsin order 11, the embedding of a 2-Net n; (the first one) failed because there is no planar
path between its end-points. This implies that the end-points of n; are separated from each other
by previously routed 2-Nets, and therefore, at least one closed 2-Net has already been routed (open
2-Nets do not disconnect the routing aread). Since open 2-Nets do not follow closed onesin 1, n; is
closed, and therefore if it would be routed this would close a path between two external terminals
a, b (Figure 49). Since the end-points of n, are disconnected, the previously routed 2-Nets forms
apath between two external terminals ¢, d that separates between the end-points of n; . This path
also separates a and b. Thisimplies that there are two crossing paths between external terminals
(Figure 49) and therefore the routing problem cannot have a planar embedding. This contradicts

the planarity of the set of 2-Nets. Q.E.D

1. Inthe context of SURF, the planarity of the set is guaranteed by the Layer-Assignment Algo-
rithm.
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FIGURE 49 - Non planar external paths. n; isaclosed 2-Net that is disconnected
by previously routed 2-Nets and therefore the 2-Net set includes paths between
external 2-Nets which crosses each other. This implies that the routing problemis
non-planar.

Corollary 1 An open 2-Net cannot be blocked by previously routed open 2-Nets. A closed 2-net
cannot be blocked by any 2-Net (assuming planarity of the 2-Net set). The only possibly blockade
is of an open 2-Net by a closed one.

In the general case, the sufficient condition of Lemma 3 is necessary as a path of the first closed 2-
Net can be constructed such that it separates the end point of an open 2-Net following it (Figure
50). However, if some assumptions about the 2-Net embedding algorithm are made (for example
2-Net embedding on a shortest planar path), this condition may not be necessary for planar
embedding.
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FIGURE 50 - Necessary condition for planar embedding. The example in (a) has
3 2-Nets ordered as ng, Ny, Ng. The 2-Nets ng and n, are closed in that order
and n, is open. If the 2-%\Iet embedding algorithm can potentially select any
planar path (and not necessarily the shortest one), it can choose for n, (the first
closed 2-Net) a path which disconnects open 2-Nets following it (ng in this
example) as shown in (b). Note that n, (which is a closed 2-Net) cannot be
blocked by n; .

Next we will prove that the output of the PEO satisfies the sufficient condition in Lemma 3. The
planarity of the 2-Net set is guaranteed by the LAA algorithm which generates this set and
therefore it is sufficient to show that the output of the PEO does not have an open 2-Net followed
by aclosed 2-Net. We show that by proving that the order modification done by the PEO does not
affect the closeness/openness of the 2-Net. In other words, a 2-Net that was closed (open) in the
input order of the PEO is aso closed (open) in the output order. The proof is done in two steps,
first we show that the closeness/openness of the 2-netsis preserved by a swap operation between a
closed 2-Net and by an open 2-Net immediately following it, and then we show that the output
order of the PEO can be achieved by performing a finite sequence of swapping operation of pairs

of adjacent 2-Nets, closed and open respectively in the input order.

Lemma 4 Let T; = nq..n, be an order of the 2-Nets, let n;, n;, ; be two successive 2-Nets
closed and open respectively in 1, and let 1, be the order 1; with the 2-Nets n;, n;, 4
swapped. A 2-Net is closed (open) in T, if an only if it is closed (open) in T, .

Proof For every 2-Net nj other than n; and Niy1 the sets of 2-Nets ahead of it in us andin T,
respectively are identical therefore its closeness/openness is preserved. n; is closed in 1; and by

definition it closes a path between two external terminals. This path is composed of n; and
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possibly some of the 2-Nets n,..n; _; preceding it in 1, . Since these 2-Nets also precede n; in

T, n; closes an external path in 1, and is closed in TT,. As for n itisopenin 1y and by

i+1
definition, it does not close an external path in 1; (considering the 2-Nets n,..n; preceding it in
T, ). This2-Net set { n,..n;} , isasuper set of the 2-Nets {n,..n, _,} preceding n, , ; in T, and

therefore n; , ; does not close an external path and isopenin1,. Q.E.D

Lemma 5 Let 1t and 1t be the input and output orders respectively of the PEO. A 2-Net is closed
in U if and only if itisclosed in Tt

Proof 1t can be transformed into 1 by a finite sequence of sweepings between pairs of adjacent
2-Nets, the first and the second are closed and open respectively in 11 (note that the closeness/
openness of the 2-Nets is determined in regard to 11 and not the intermediate orders between the
swap operations). The swapping ends when no such pair is found and the resulting order is exactly
mil. by Lemma 4, each such swap preserves the closeness/openness of the 2-Nets, and therefore a

2-Net is closed (open) in il if and only if it is closed (open) in 1. Q.E.D.

Theorem 3 If the set of 2-Nets is planar then the output order of the PE operator is guaranteed to

result in successful planar embedding.

Proof Let 1t and T be the input and output order s respectively of the PEO. By the way 1 is
constructed (Algorithm 2), it does not contain pairs of successive 2-Nets, the first of themis closed
in 1T and the second is open in 1. By Lemma 5 this aso holds when the openness/closeness is

determined by the order T, and by Lemma 3 the mil! guaranties planar embedding. Q.E.D.

We have shown how an arbitrary order can be made planar by the PE operator. Next will present

how an order which reduces the detour is achieved.

4.5 2-Net Ordering Problem (2NOP) Formulation

The 2-Net Ordering Problem (2NOP) could be defined as follows:. given a set of 2-Nets, find an
order of the 2-Nets that minimizes the wiring length when it is made planar by the PEO and then

routed one 2-Net at a time. This definition however would require running the embedding
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algorithm during the optimization process, which would require intensive computation. To keep
the run-time of solving the 2NOP practical, we use a cost function that estimates the total detour
length of the wiring. This function is similar to the one used by LAA and is based on pair-wise
conflicts (defined below) between components. However it differs from the LAA function in that
it considers a specific 2-Net routing order while the LAA function assumes the order that yields

the minimal detour.

Definition 10 (Ordered Pair-Wise Conflict) Let c;, ¢, be components, let T = n, ... n, be an
order of the union of the 2-Netsof c; and c,, let T, be the order Tt after planarity enforcement by
the PEO, and let S be the embedding of the 2-Nets when routed in the order T, The conflict of
C1, C, inorder Tt isthetotal length of the wiring in S minus the basic lengths of the components
Cy, C,. Thisconflict is denoted as H(c4, C,, ) . If the 2-Nets have no planar embedding, we say

that H(cy, c,, T0) isinfinite.

The cost of an order of 2-Netsisthe estimated total detour when the 2-Nets are routed by the order

after planarity enforcement. This cost is defined as follows:

Definition 11 (Order Cost) let T = n, ... n, be an order of the 2-Nets of a bin layer. The cost of

TT is the sum of the pair-wise ordered conflict of all the component pairs:

c(m= % H(ci,cj,nij) (13)
{c. ¢}

where:
e {c, cj} isapair of components, i #j .

° T isthe union of the 2-Nets of ¢; and Cj ordered in the same order asthey arein Tt.

Figure 51 shows an example of an order cost. In this example, the estimated cost is equal to the

actual detour. In the general case however, similar to the estimation function used by the LAA, the

1. Since the output of the LAA is guaranteed to be planar, the routing is guaranteed to succeed
(Theorem 3). In the rest of the chapter we assume that the pair-wise ordered cost is always finite
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estimated detour is not an upper nor alower bound on the actual detour, nor isits error bounded by

aconstant.

FIGURE 51 - 2-Net order cost. The 2-Nets in (a) form three components and are
ordered as n, Ny, Ng, Ny. The cost of this order is the sum of the ordered
conflicts of tﬁe components pairs. (c) and (b) show the ordered conflict of two
pairs of components. The conflict of the third pair is zero. (d) shows the total
conflict when routing the 2-Nets in this order. In this example, the estimated
detour is equal to the actual one.

Using the order cost function, the 2-Net ordering problem is defined as:

Definition 12 (2-Net Ordering Problem - 2NOP) Given a set of 2-Nets n,..n, of abinlayer, find

an order 11 of the 2-Nets that minimizes the cost C(1).

In the following sections we discuss the complexity of the 2NOP and propose an heuristic to solve
it but first we discuss an important property of the PEO related to the order cost function defined
above. The PEO, while enforcing the planarity of an order, preservesits cost. That is, the cost of
the output order of the PEO is exactly the cost of the input order. This property implies that while
transforming the output of the 2NOP by the PEO, things are not getting worse.
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Lemma 6 Let 1 be an order of the 2-Net and 1; be a subsequence of it that contains entire
components (i.e. if a2-netisin 1t; then all the 2-net of its components are also in 1, ) then a 2-Net

is closed (open) in T if and only if itis closed (open) in Tt

Proof Let n bea?2-Netin 1. If itisclosed in Tt then it closes an external path with possibly
some of the 2-Nets ahead of it in the order. Any such 2-Net (i.e. on the closed path) is of the same
component as n and thereforeitisalsoin Ty, and sinceitisahead of n in 1, itisaso ahead of n
in 1, . Thisimplies that n closes the same path in ; and therefore it is also closed in 1, . Ina

similar way, a2-Net of 1; thatisopenin Tt isaso openin ;. Q.E.D.
Theorem 4 The Planarity Enforcement operator preserves the cost of the 2-net order.

Proof Let 1 and il be the input and output orders respectively of the PEO. Since 1t and milJ
contain exactly the same set of componentsit is sufficient to prove that the ordered pair-wise cost
of every component is identical in 1t and . Let ¢, and ¢, be two arbitrary componentsin Tt
and let set c;, betheunion of the 2-Nets of c;, c,. Let 1, betheorder in 1t of c,,, and let T,
be the order T, after operated by the PEO. In asimilar way, let T, be the order in i of Cqp,and
let T[bD be the order T, after operated by the PEO. By the definition of the pair-wise cost, it is
sufficient to prove that the wire length when routing the 2-Nets ¢4, , in order naD isthe identica
to the wire length when routed in order ;1. We will prove that by showing that T, = 1. First
we prove that each 2-Net in i, 1, 7, m[, and m U is closed in that order if and only it is
closed in 1. For il this holds because the PEO preserves the closeness/openness of the 2-Nets
(see Lemma 5). For 1, and T, this holds by Lemma 6 and the fact that (as we have just shown)
the closeness/opennessin il isidentical to 11, and since it holds for T, T, by Lemma5 it holds
also for 1, m . The orders .1, 7 1. contain exactly the same 2-Nets (i.e. ¢, ) and since their
2-Nets have the same closeness/openness as in 1T, a 2-Net is open (closed) in TtaD if and only if it
is open (closed) in m,[. In addition, m 0, m [ are both results of the PEO, and therefore they
contain the closed 2-Nets after the open ones. The relative order of the closed (open) 2-Nets in

TraD isidentical to their relative order in T, (the relative order is preserved by the PEO) which is

identical to the onein Tt (the order is preserve when extracting a subsequence). In a similar way,
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the relative order of the closed (open) 2-Nets in Tth is identical to their relative order in T,
(preserved by the PEO) and therefore to their order in 1t (preserved when extracting a
subsequence). naD and Tth have exactly the same 2-Nets, the same sets of closed and open 2-
Nets, the same relative order of closed and open 2-Net respectively, and the all closed 2-Nets

following the open ones, and therefore they are identical. Q.E.D.

Corollary 2 For any given order of the 2-Nets, there is an order of the same cost which guaranties

planar embedding. Such an order can be found by the PEO.

4.6 2NOP Complexity

Let 22NOP be the sub-problem of 22NOP in which each component consists of a single 2-Net.
Since 2NOP contains 22NOP as a special case, we know that its complexity is at least that of
22NOP. The 22NOP can be viewed as a minimization of the sum of a lower triangle of a square

matrix using simultaneous permutations of rows and columns:

Definition 13 (Matrix Permutation Problem - MPP) Givenan n x n matrix A = (aij) with non-
negative rea values, find amatrix B = (bij) obtained from A by simultaneously row and column

permutations which minimizes z bij .
1<i<j<n

The 2NOP is mapped to the MPP by setting n to the number of components and setting & j to the

ordered pair-wise conflict H(n;, n;, ninj) when i #j andto zerowheni = j.

The MPP is NP-hard since the maximum Likelihood Ranking Problem (LRP) which is known to
be NP-C [17], can be reduced to it by setting a; = max(0, —ajj) where a; and a;; are the matrix
entries of the MPP and the LRP respectively. It isnot clear though if a M PP can be reduced back to
a 22NOP or if the geometrica characteristics of the pair-wise conflicts used by the 22NOP have
specid properties that cause the 22NOP to have lower complexity than the MPP. Considering this,
the question of the complexity of the 22NOP and the 2NOP is still open.
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4.7 Solving the 2NOP

The problem of finding a minimal cost order can be solved by various optimization techniques
such as Simulated Annealing [30], Group Migration, and Genetic Algorithms. We have chosen to
implement a greedy algorithm which is sufficient to show the merits of the proposed cost function.

More advanced optimization methods may result in better ordering.

The proposed minimization algorithm considers only non-interleaving permutations of the 2-Nets.
These are permutations in which the 2-Nets of each component are grouped together. This
restriction may eliminate optimal solutions as shown in Figure 52, but on the other hand, it
simplifies the solution by performing the ordering in two steps, first ordering the 2-Nets within

each component, and then ordering the components themsel ves.

FIGURE 52 - Limitations of non-interleaving order. (a8) shows an embedding of
two component with two 2-Nets each. The 2-Nets were routed in the interleaving
order ny,Ng,N,,N, which minimizes the cost. Any non-interleaving order will
results in higher cost such asthe order in (b)

Ordering the 2-nets within each components can be done in several ways. This order however is
less critical then the component order as any conflicts between 2-Nets of the same component can
be resolved by adding a Steiner point at the crossing point and removing redundant wires to
eliminate cyclesin the component. Therefore, our implementation uses an arbitrary order of the 2-

Nets within each component.

The component ordering is performed by transforming the component ordering problem to an

instance of MPP and then solving the MPP. The MPP instance is constructed as follows, n isthe
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number of components, the n x n matrixis A = (aij) where a; = H(c;, G ninj) wheni #i and
a; = O wheni =j. m and T are the internal orders of the 2-Nets of components ¢; and G
respectively and TG is the concatenation of Tt and TG . Intuitively, the vaue of a; j represents the
cost of routing component c; before component G- When the MPP problem is solved, the

permutations of its rows in reverse defines the component routing order.

Since the MPP is NP-Hard, we cannot expect to have a practical optimal agorithm for it and
therefore we use heuristics instead (Algorithm 3). The algorithm uses greedy approach to
iteratively pick rows (and matching columns) from the input matrix for the output matrix. The
rows are picked in descending order in the solution matrix such that the last row of the solution is
picked first and the first row is picked last. On each iteration the algorithm selects a row with
minimal sum in the not selected yet columns. The iteration continues until all rows have been
selected. The algorithm picks components in the order they will be routed. On each iteration it

chooses a component with lowest sum of conflicts with the non selected components.

let A = (aij) be the n x n matrix of the MPP
let T = A
fork = 1..n do{
letm=n-k+1. /I misk inreversed order

let S; bethesumofrowi of T, 1<i<n
select anot selected yet j, 1 <j <n, which minimizes Sﬁ
let b, =]

set to zero the entries of row and column j of matrix T

The solution is matrix A with permutation b, ..b,, of rows and columns

ALGORITHM 3 - Algorithm to solve the MPP. This greedy algorithm iteratively
picks from the input matrix the rows and matching columns of the solution matrix
from last to the first. On each iteration, it picks a row that will increase the least
the sum of the lower triangle of the solution matrix.
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The heuristics used to solve the 2-NOP which include considering only non-interleaving orders,
fixing in advance the order of the 2-Nets within each component, and using a greedy algorithm to
solve the MPP, are likely to reduce the quality of the final solution. Nevertheless, our experiments
show that this approach is good enough to demonstrate the merit of the proposed cost function. If a
more advance optimization technique is used, the solution found by the algorithm presented above

can be used as a good starting point for the search.

4.8 Experimental Results

To explore the merit of the proposed cost function and ordering algorithm, ten bins have been
routed?, each usi ng five different ordering methods and the wiring length of the solutions have
been compared. The ordering methods used are the proposed one, the proposed order reversed, the
2-Nets sorted in ascending and descending lengths, and a random order. All bins are from two-
layer designs and their wiring lengths are the sums of the wiring length of each layer. The 2-Nets
were embedded by a rubber-band shortest-path algorithm describe in Chapter 5. The relative wire
lengths are shown in Table 11 and summarized in Graph 6. The wiring length of routing with the
random order are averages with five different random orders per bin. As seen in the table, the
proposed order has the lowest wiring length with the ascending 2-Net length order following it
with 5.73% longer wiring. This supports our contention that the pair-wise cost function properly

captures the dependency between the nets.

1. Euclidean metric, 3 = 15, no optimizations.
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2-Nets || Proposed | Proposed | Ascending | Descending | Random
Reversed Length Length

APEX/01 48 100.00 225.01 108.41 239.71 | 139.67
APEX/02 140 100.00 171.00 104.17 119.21 | 164.06
APEX/03 136 100.00 182.20 101.12 164.20 | 144.33
DS15/01 36 100.00 130.47 103.66 24587 | 134.12
DS15/02 31 100.00 138.03 102.03 15553 | 112.28
DS15/03 27 100.00 118.38 111.36 11992 | 118.82
DS15/04 24 100.00 122.29 103.67 121.68 | 113.09
GDX/02 29 100.00 157.49 118.84 164.74 | 133.84
GDX/02 25 100.00 104.02 102.05 99.54 | 101.29
GDX/03 26 100.00 122.48 102.00 119.12 | 107.46
Average 100.00 147.14 105.73 15495 | 126.89

TABLE 11 - Routing with various orders of the 2-Net. The tables shows the
relative wiring length when routing each of the ten bins using five methods of
ordering the 2-Nets: the proposed one, the proposed one reversed, ascending and
descending order of 2-Net lengths and random order. The values has been
normalized to 100 in the case of the proposed order. The values of the random
order are averages of five different orders for each bin, using different seeds for
the random number generator. The values of the last rows are shown graphically
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GRAPH 6 - Wiring length vs. ordering method. This graph shows the average
wiring length for the 5 nets ordering methods Tieble 11. The values are
normalized to 100 for the proposed order. The proposed order results in the
shortest wiring, and is shorter by more than 5% than the ‘shorter nets first' order
(Ascending column).

4.9 Conclusion and Future Work

| have considered the problem of ordering 2-Nets to guarantee planar embedding and to minimize
wiring length. This problem is important when routing the 2-Nets one-at-a-time as done by many
routers. The wire length minimization is done by formulating the problem as an optimization
problem with cost function to be minimized and then solving it. The cost function estimates the
length of the wiring detour when the 2-Nets are routed in a given order and is based on conflicts
between pairs of components. We proposed a heuristic to solve the minimization problem by first
transforming it to a problem of ordering components and then transforming that problem into an
MPP which is then solved by a greedy agorithm. The presented Planarity Enforcement operator
guarantees planar embedding by classifying the 2-Nets into two categories of ‘open’ and ‘closed’

2-Nets and deferring the routing of the closed 2-Nets until after the open ones. We have shown that
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this reordering preserves the cost of the order and therefore is not expected to increase the wiring
length. Finally, we presented empirical results that show the proposed ordering method resultsin

shorter wire length than several other methods including shortest net first.

The cost function of the 2NOP considers only dependencies between pairs of components and
ignore dependencies between larger sets of components. Considering larger sets of components
might improve the accuracy of the cost function and may result in lower wiring length. Other
useful extensions to the cost function would be to consider congestion, wiring density, electrica
requirements such as cross talk, and upper and lower bounds on nets lengths. Improvements can
also be made to the algorithm used to solve the 2NOP. These include considering interleaving
orders and employing a more sophisticated optimization technigue which is less likely to be

trapped in alocal minima.
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5 TOPOLOGICAL PATH SEARCH

A common approach to route a set of nets is routing them one at a time. After the nets have been
decomposed into a set of two terminal nets (2-Nets) and the order of routing the 2-Nets has been
determined, the router iteratively searches for an appropriate planar path for the next 2-Net and
embedsit in the sketch on that path. The criteriafor a desired path can consider for example, wire
length, spacing requirements, and electrical properties of the interconnect. The search for adesired

path is done in the specific representation of the interconnect used by the router.

In the rest of this chapter we discuss the problem of finding a least-cost planar topological path.
First we formulate the general problem of finding a least-cost planar topological path. Then we
present an exact formulation of the Rubber-Band Sketch (RBS) based on geometric considerations
and real analysis. Then we present the concept of regions in the RBS and show the relationship
between planar paths in the RBS and sequences of region. Following it, we present an algorithm
that searches for a planar path in the domain of sequences of regions. The algorithm is optimal and
finds a shortest planar path in O((T2 +9)log(T+S)) time where T and S are the number of
terminals and wire segment respectively in the RBS. The algorithm can be modified to use a
smaller search graph such that it is guaranteed to find aplanar pathin O((T + S)log(T + S)) time
and the path islikely to be short.

5.1 Least-Cost Topological Path Problem (LCTP)

The general problem of finding a least-cost path in a topological sketch can be formulated as

follows:

Definition 14 (least-cost topological path problem LCTP) given a topological sketch, a cost
function, and two terminals in the sketch, find a least-cost planar path in the sketch between the
two terminals. It is assumed that the cost function has the property that if a planar path exists then

there exists a planar path of minimal cost.
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Solving the LCTP depends on the cost function and the sketch representation used. The focus in
this chapter is on finding a shortest path in a RBS, we will present an algorithm that solves it
optimally.

The LCTP could be generalized such that the path is to be found between two disjoint sets of
terminals (i.e. connecting between two terminals of the two sets respectively). This may be useful
when connecting existing sub-nets. For clarity, the discussion in this chapter focuses on the
simpler version of the problem but we will show how the proposed algorithm can handle the

extended version aswell.

5.2 Rubber-Band Sketch Formulation

Before we present the planar shortest path algorithm we formally define the idea of rubber-band
sketch. This formulation is used later to analyze the algorithm. Intuitively a Rubber-Band Sketch
(RBS) represents a minimal-length member of atopology class such that on one hand zero spacing
is alowed, and on the other hand the topology is preserved. However, when zero spacing is used,
the result may be non-planar, and in this case, the RBS is hot a member of the topology class, nor
isit avaid geometric sketch. To overcome this ambiguity, we formulate the concept of RBS as

follows.

Definition 15 (Rubber-Band Sketch - RBS) For a given topology classand € > 0, we defined the
€ -sketch of € spacing of atopology class as aminimal-length sketch of that class whose spacing is
a lest €. The RBS of the class is defined as an € -sketch of unspecified, infinitesimally small,

€>0.

If € istoo large, the class may have no member of spacing = €. However, every class, for small
enough € >0 , hasan ¢ -sketch of € spacing, and therefore, every class hasan RBS. In general, we
say that an RBS of some topology class hasaproperty P if thereisan n >0 such that for every €,

n >¢ >0, the £ -sketch of the class with € spacing has property P.

The paths in an € -sketch are composed of arcs (called attachment arcs) and straight segments

(Figure 53). The arcs have radius of integral numbee of ‘s and are centered at terminal locations.
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The decomposition of the branches into arcs and segments is identical in all €-sketch of small

enough € >0.

v
T

m

FIGURE 53 - €-sketch. An €-sketch is a minimal-length sketch having the
spacing of at least € for some € > 0. The pathsin an € -sketch are composed of
arcs and segments. The arcs are centered around terminals and have a radius of
integral number o€ ‘s.

For a given € -sketch of € spacing, we define the € -neighborhoods of a terminal as a circle of
radius Ce\ centered at the terminal location. Ce is defined as € plus the maximal radius of an
attachment arc among all the terminals in the € -sketch (Figure 54). If the € -sketch does not have
attachment arcs, Ce is defined as €. Note that by definition, the €-neighborhoods of all the
terminals in an €-sketch have the same radius. The €-neighborhood of each termina strictly
bounds the termina and all of its attachment arcs. c, = ke for someinteger k>0, and it goes to
0 when € goes to zero. Therefore, for small enough € >0, the ¢-neighborhood of different

terminals do not intersect with each other.
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FIGURE 54 - Terminal's -neighborhood. The -neighborhood (shaded) of a
terminal is a circle that strictly contains the terminal and its attachment arcs. The
radius of thee -neighborhoods of all the terminals in a sketch is identical and is
determined by the maximal radius of an attachment arc in the sketch. The radius is
proportional toe  (for small enough>0 ) and goes to zero when goes to zero.

In asimilar way, we define the € -neighborhood of acut between two terminals. Let t;, t, betwo
terminas, t; #t,. The € -neighborhood of the cut (t, t,) is defined as the closed domain formed

by the € -neighborhoods of t, , t, and the two tangent lines connecting them (Figure 55).

FIGURE 55 - Cut'ss -neighborhood. Tlee -neighborhood of a cut is the closed
domain (shaded) formed by the two -neighborhoods of the cut’s terminals and
the two tangent segments connecting them.&The -neighborhood of the cut strictly
contains all the segments between the two terminals.

A branch in an RBS is said to be incident to aterminal if the terminal is one of its end-points. A
branch can also be attached to aterminal. We defines three cases of attachment between a branch
b and terminal t (Figure 56). Case 1. b contains an arc centered at t and the limit of the angle of

the arc when € goesto zerois > 0. Case 2; similar to case 1 but the limit of the arc angle is 0.
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Case 3: b hasasegment s such that the end-points of s are not in the € -neighborhood of t, and s
intersects with the € -neighborhood of t. Attachments of case 1 are called explicitly attached and
attachments of cases 2 and 3 are called implicitly attached. Implicit attachments occur only in the
presence of co-linear terminds. In case of an implicit attachments of case 3, we consider the
segment s of the branch to be composed of two segments, one of each side of the attachment,
connected by a degenerate attachment arc of 0 angle, centered at t. Note that a branch can be

implicitly or explicitly attached to aterminal multiple times.

3
1\‘/ = 5 < \ — S /
tl . . .
- t2\‘-__‘4

FIGURE 56 - Attachmentsin RBS. The figure shows a portion of an ¢-sketch
with three co-linear terminals t;, t,, t; whose € -neighborhoods are indicated by
the broken circles. The branc% of2 segment s (shaded) is said to be explicitly
attached (attachment case 1 in the text) to terminals t; and t5. Itisalso said to be
implicitly attached (case 3) to terminal t, since it intersects with its -
neighborhood (for convenience, segment s is considered to be composed of two
segments s;, S,, connected by a O angle arc centered at t,). The branch
connecting %1 and t, is said to be implicitly attached (case 2) to terminal t,
because it has an attachment arc at t, but the limit of the arc angle goes to zero
when € goes to zero. Implicit attachment (both cases 2 and 3) occur only in the
presence of co-linear terminals.

The intersection of a net segment with the € -neighborhood of a terminal that it is incident to
defines an incident local net (Figure 57-a). In a similar way, every attachment of a branch to a
terminal defines an attached local net which includes the arc and the portions of the two segments

that intersect with the € -neighborhood of the terminal (Figure 57-b).
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FIGURE 57 - Local nets. (a) shows the two incident local nets (shaded) of a
terminal and (b) shows the two attached local nets of the same terminal.

Some properties of the branches in an RBS such as lengths, and the angle between a pair of
segments connected by an arc, are defined as their respective limitswhen € goesto zero. Since the
limit the length of the arcsis zero, the length of a branch is the sum of the limits of the lengths of
its segments. The limit of a segment length when € goes to zero is the distance between the two
terminalsit is attached or incident to. In asimilar way, the angle between two segments of abranch
connected by an attached arc (Figure 58) is the angle between the two rays originated at the center

terminal and intersecting with the terminals on the other ends of the two segments respectively.

FIGURE 58 - Angle between branch segments. This portion of an RBS shows a
branch attached to a terminal. The angle a, is the angle between the two
segments in an ¢ -sketch of € spacing. The angle all is the limit of a. when €
goes to zero

The representation of an RBS in computer memory can be implemented in various ways. SURF

uses the following representation [9] (which is not a contribution of this research). The set of
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terminals inside the routing area is triangulated using Constrained Delaunay Triangulation (CDT)
[3] [41]. An edge between two terminalsis constrained if there is a net segment connecting the € -
neighborhood of the two terminals (in this case we say the segment is along the edge). Every
triangulation edge has a possibly empty list of the net segments along it (the orientation of the
order is arbitrary). Each terminal is augmented with information about its local nets and the net
segments they connect. The incident local nets are stored in a cyclic ordered list and the list of
attached local netsare kept in alinear list in an inside-out order, starting from the inner-most arc. If
aterminal has only implicit attachments, it may have up to two separate lists of attached local nets,
representing the local nets on opposite sides of the terminal (Figure 59). If a terminal has an
explicit attachment then it has exactly one ordered list of local attached nets since it cannot have

attached local nets on opposite sides.

—_ —~ A T~
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FIGURE 59 - Implicit attached local nets. A Terminal (such ast in this example)
that has only implicitly attached nets can have up to two lists of attached local
nets, one on each side of the terminal (the two arrows). If the terminal has an
explicit attachment, it has exactly onelist of attached nets.

5.3 RBS Regions

The proposed agorithm for finding a shortest planar path in an RBS is based on the concept of
regions (defined below). As we will show later, the problem of finding a shortest path in an RBS

can be reduced to a search in the domain of sequences of regions.

The attached and incident nets of a terminal separate the €-neighborhood of the terminal into

regions, each is a maxima set of connected points which does not intersect with nets or the
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terminal (Figure 60). A point is said to be on the interface of aregion if it does not intersect with

any net, and it is on the intersection of the boundary of the region and the boundary of €-
neighborhood of the terminal. The interface of a region is non-empty and it defines one or more

disjoint continuous sections on the boundary of the termiral’'s -neighborhood. These open-
ended sections are called ttprts of the region Kigure 60). The interfaces of the regions of a
terminal partition the boundary of tke -neighborhood of the terminal such that every point on the
boundary either intersects with a net segment or is on an interface of exactly one region. If a region
is adjacent to its terminal or the terminal is fully contained inside the region, the region is said to
be anincident region, otherwise, it is said to be attached region. In general, a terminal has
max(1, n) incident regions andh  attached regions wheren ,  are the number of incident and
attached local nets respectively, of the terminal. For clarity of the presentation, the definition of
regions and regions visibility ignores the RBS boundary. later we will show how terminals on the

RBS boundary can be handled in a similar way.

iy

FIGURE 60 - Regions. The RBS terminal in the example has two incident nets
and two attached nets. The two solid circles indicate the circles of the arcs of the
attached nets and are of radaus @ad respectively. The broken circle indicates
the boundary of the -neighborhood of the terminal. The segments and the arcs of
the nets partition the -neighborhood of the terminal into 4 non-connected areas
called regions (marked 1 to 4). Regions 1,2 are incident to the terminal and
therefore are callenhcident regions. Regions 3,4 are not incident to the terminal
and therefore are callettached regions. The shaded arcs indicate fhwts of the
interface of region 2. The interfaces and ports of the other regions are defined in a
similar way.

1. With the exception of an incident region of a terminal with no attached or incident local net.
The port in this case is the entire boundary ofethe -neighborhood of the terminal.
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The above definition is for a region in a specific €-sketch. Since there is a one-to-one
correspondence between regions of € -sketches of the same topology class (for small enough
€>0), we can refer to regions in an RBS in general. If aterminal in the RBS has more than one
incident region, they can be uniquely identified by the incident loca net bounding them in CW
direction. If aterminal has more than one attached region, they can be uniquely identified by the

attached local net bounding them in the direction toward the terminal.

Letty, t, betwo terminds, t; # t,, such that the cut between them does not intersect with athird
terminal, and let rq, r, be two regions of t;, t, respectively. We say that regions r,, r, are
visible to each other if there exists a visibility link connecting them. A visibility link connecting
ry,» r, isaline segment connecting between two points of the interfaces of r, r, respectively
such that it is strictly contained within the € -neighborhood of the cut (t;,t,) and does not
intersect with terminals, nets, or inner points of the of the € -neighborhoods of t,, t, (Figure 61).
Note that if two regions are visible, then by definition they must be of different terminals. Note
aso that a visibility link connecting two regions is not unique. Since the definitions of visibility
between any two regions is insensitive to the choice of the € -sketch (as long as € >0 is small

enough), we can use these termsin general in the RBS.

\/\//
5

FIGURE 61 - Region Visibility. In this example, termina t; has two regions
(1,2 and té has three regions (3,4,5). The broken circles show the ¢-
S

neighborhoods of the terminals and the shade area indicates the € -neighborhood
of the cut (t,t,). In this example the pairs of visible regions are (1,3), (1,5),
(2,3), and (2,21), and avisibility link for each of the pairsis shown (broken lines).
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Lemma 7 Let rq, r, betwo regionsin an RBS, visible to each other, and let t;, t, be their
terminalsrespectively. Thereexists n >0 such that for every €, n >¢€ > 0, the € -neighborhood of

the cut (ty, t,) does not intersect with the € -neighborhood of any terminal other than t,, t,.

Proof By definition of visibility between Mg, o, T %0, and t #t,, and the fact that the cut
(t;,t,) does not intersect with any terminal other than t;, t,. We will show that for every
terminal t other than t , t,, thereisan n, >0 that satisfies the requirements in regard to the € -
neighborhood of t. Since the number of terminalsin the sketchisfinite, n = min(n,) will satisfy
the requirements of the lemmal. Let d be the distance between t and the line segment connecting
t,, t; (Figure 62). Since the segment (t,, t,) isclose ended, d exists, and because t does not
intersect with the segment, d >0 (notethat d isindependent of €). Let c. bethe radius of the € -
neighborhood of the terminalsin an € -sketch of spacing €. Since ¢, goesto O when & goesto O,
there exists n >0 such that for every €, n >€>0, c£<gl and therefore, for every €, N >€>0,

3
the € -neighborhood of the cut (t,, t,) does not intersect with the € -neighborhood of t. Q.E.D.

1. If ty, t, arethe only terminals in the sketch, the minimum is undefined but in this case, any
n >0 will do.
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FIGURE 62 - Neighborhoods intersection. The circles indicate the -
neighborhoods of terminals t; t, . Termirtal is known not to intersect with
the segmen(tg ttz) . The shade area isg¢he -neighborhood of the

etwe

The distance eén and the close ended sedinety) d>0s . which ié
independent of . It, , the radius of tike -neighborhood of the terminals is
equal tod/3 or smaller, the -neighborhood of the (yft,) andethe -

neighborhood ot do not intersect. Note that this holds even if the point of the
segmen((t,, t,) thatis closestto tis tor

Lemma 8 Let Il, I2, be two visibility links in an RBS. If there is atermina t and two regions
ry#ry of t such that one end of I1 is connected to ry and one end of I2 is connected to rs, then

Il, I2 do not intersect.

Proof (Figure63) Let rg, r, betheregions at the other ends of |, |, respectively, let t5, t, be
the terminals of 3, Iy respectively, and let a, b be the end points of Il, I2, respectively at their
t side. By definition of regionsvisibility, t #t; and t #t, butitispossiblethat t; = t,. We will
prove for the case that t5 # t,. The proof for the case when t3 = t, issimilar (whether ry = 1,
or not). Since r, # r, thereis anet ssgment w coming out of the € -neighborhood of t between!
a, b (otherwise, r4, r, would be the same region). Let p be the end-point of w at its end outside

the € -neighborhood of t. Point p, like any end-point of anet segment must be strictly inside an ¢ -

1. Since the& -neighborhood bf is a circle, the term ‘between’ is ambiguous. In this context we
refer to the points on the boundary of the -neighborhodd of that are strictly inside the triangle
formed bya ,b , and the intersection point of the two links.
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neighborhood of some terminal. However, by Lemma 7, the union of the € -neighborhoods of cuts
(t,t3), (t, t4) do not intersect with the € -neighborhood of any terminal other than t, t5, t,. This
implies that the closed domain A (Figure 63), formed by the two links and the boundary of the € -
neighborhood of t, does not intersect with an inner point of the € -neighborhood of any terminal of
the RBS, and therefore point p must be outside of A. If p isoutside A then w must intersect with

at least one of the two links, and this contradicts the definition of visibility links. Q.E.D.

FIGURE 63 - Link intersections. This figure shows a hypothetical case where two
visibility links I, |, that are connected to two regions r, # r, respectively of a
termina t, interSect with each other. In this case, the terminals t,, t, at the other
side of the links are assumed to be two distinct terminals, t; # t, The points a, b
arethe end-pointsof 1., |, respectively. The circlesindi caIe the €- neighborhood
of the terminals, and tjhe shaded area is the union of the € -neighborhood of the
cuts (t, t;) and (t,t3). Since ry #r, there must be a net segment w separating
them, ana itsend-pol nt p must be in an inner point of an € -neighborhood of some
terminal. However, since the shaded area does not intersect with € -neighborhood
of any terminal other than t, i, (based on Lemma 7), w must intersect with at
least one of the links. This con radicts the definition of visibility links, and
therefore, this case isimpossible.

5.4 Shortest Planar Path in RBS

Let S, bean RBSand let S, bethe RBS S, after the insertion of some branch b connecting a
pair of terminals t; , t,. The path of b splits some of theregions of S; into multipleregionsof S,
while the rest of the regions of S, are maintained with no change (Figure 64). Let r,, r, be
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regionsin S;, S, respectively. We say that r, containsr,, if r, isexactly ry orif r, isaresult
of asplitof r, . Every local net of b in S, (either incident or attached) is adjacent to two (possibly
identical) regions, one on each of its side, and these two regions are always contained in the same
region of S, . Therefore, the path of b in S, defines a sequence of regions of S, , one region for
each of its local nets, in the direction from t; to t,. Every pair of consecutive regions in the
sequence are visible to each other since they can be connected by a planar line segment similar to

the net-segment of b connecting the two local nets of b that define the two regions.

\/\//
5

FIGURE 64 - Region split by a branch. This example shows a portion of an RBS
S, which is the RBS S; with a new branch b inserted (shaded). The two
terminals shown have 2 ‘and 3 regions (of S,) respectively, marked 1 to 5.
Regions 3, 4 are the result of asplit of aregion of S; by theinsertion of b, while
theregions 1, 2, 5 existed in S1 as are. Note that an Tnsertion of a new branch can
split a region of an RBS into ‘more than two regions of the new RBS. This can
happen if the branch has multiple attachment arcs inside the same region.

Let ry.r,, n=2 be a sequence of regions in a RBS S (with possible repetition of the same

ne
regions). We say that r,..r, is a sequence of regions between regions r; and r . If ry.r is
between two incident regions of a pair of terminals t,, t, respectively, we say that the r,..r, is
between terminals t, 1, A consecutive pair of regions in the sequence, (rj, rj +1), 1<i<n,is
said to define a segment s; of the sequence. If the two regions of a segment are visible to each
other than the segment is said to be avisible segment. If all the segments in a sequence are visible,

the sequence is said to be a visible sequence. The length of a segment of a region sequence is
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defined as the distance between the terminals of its two regions. The length of the entire sequence
is defined as the sum of the lengths of its segmentsl.

The sequence of regions defined by a branch path as describe earlier is a visible sequence between

the branch’s end-terminals. Further more, the length of the branch and the length of the sequence
are equal. Later we use this similarity to reduce the problem of finding a shortest planar path to the
problem of finding a shortest visible sequence between two terminals. Before we do that, we will

prove several properties of a shortest visible sequence.
Lemma 9 A shortest visible sequence cannot include the same region more than once.

Proof By definition of region visibility, the two regions of avisible segment of the sequence must
be of two different terminals. Therefore the length of avisible sesgment > 0 and a shortest visible
sequence cannot contain the same region more than once otherwise it could be made shorter.

Q.ED..

Lemma 10 Let ry..r,,, n=2, be a shortest visible sequence, and let s,..s,_; be its segments.

nl
There exist a set 1;..1,,_; of visibility links for s;..s,_; respectively, such that any pair of

consecutivelinks |;, I, , 1 do not intersect with each other.

Proof r,..r, isavisible sequence of regions and by definition of region visibility, there is a set
l;..1,,_, of visibility links for s,..s,_; respectively. If any pair of consecutive links do not
intersect, then Il"ln—l satisfies the requirements. Otherwise, we fix Il"ln—l as follows. Let Ij,

I be two consecutive links intersecting each other. Thelink | J- connects regions r i T+ and

j+1

the link I;, ; connects rj, 4, 1, ,. Let t;, 1<i<n be the terminal of region r; respectively.

Regions SR are visible to each other and by the definition of region visibility, tj Z tj +1- For

similar considerations t; , y #t;, ,. By Lemma8 t; #; , , (otherwisetheregion r; #r, , , are of

jo !

respectively at their end near terminal tj +1 (Figure 65). Points a, b and any point between?

the same terminal and this would contradict Lemma 8). Let a, b be the end-points of | j+10

1. Note that ‘length’ of a sequence does not refer to the number of regions in the sequence. We use
the term ‘size’ for that purpose.
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them, on the boundary of the ¢ -neighborhood of t must be on the same port of region M1

j+ 1
otherwise there would be a net segment between a, b that must intersect with the visibility links
Ij or IJ- +1 (similar to w inthe proof of Lemma8). Let P be that port of r| +1- Theintersection of
port P with the inner points of the € -neighborhood of the cuts (tj, tj 1) (tj 1 tj +1) definesa
non empty, open-ended arc that intersects with both a, b. Let PUO P be that arc. We choose (as
defined below) two points al# bl on PU and define a new line segment 14 (1, 1) as the
segment of |j (Ij +1) with the end-point a (b) replaced by all (bU) (the broken lines in Figure
65). The points all, bl are two arbitrary points on PU oriented such that 10, 14, do not
intersect!. The line segments Iq , Iq +1 do net intersect with net segments (otherwise there would
jo ]

jr|

set of visihility links. This operation does not create a new intersection between consecutive links

be a net segment intersecting | or PU) or terminals (based on Lemma 7), and they connect

j+1

the same pairs of regions as | respectively, and therefore they can replace | i I j+1 in the

j+1
in the set since the new link IE] (Iq +1) intersects with its previous (next) link IJ-_1 (Ij +o)ifan
only if the old link Ij (Ij + 1) intersects with IJ-_l (Ij +2) (based on Lemma 9 and the observation

that r.

j+1%1 -1 and Me1% 1 +3)- Therefore, if we will repeat this operation for every pair of

consecutive links intersecting each other, we will end up with a set of links that satisfy the

requirements. Q.E.D.

2. Since the& -neighborhood t?f+ 1 lIscircular, the term ‘between’ is ambiguous. We use here a
definition of ‘between’ similar to the one used in the prodf @hma8.

1. Pointsa and be may be the same point, otherwise we could simply aldfibel b aas
respectively.
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j+2

FIGURE 65 - Intersection of consecutive visibility links. This example shows
how an intersection between two consecutive links of a shortest visible path can
be eliminated. The three circles indicate the €-neighborhoods of terminals t.,
ti+1, tj4o. The shaded area is the union of the €-neighborhoods of the cuts
(Jt-,%-+1), (tj+1, t: . ,). The ends of the two intersecting links Ij, l,, are
cdnrlected to'a por{ o% region r; , 4 (the dark arc) at points a, b resdec%lvely
(possibly a = b). By replacing the'end points a, b of the two links with points
all and bl respectively, we get an aternative pair of links (the broken lines) that
do not intersect. This operation does not create a new intersection between a pair
of consecutive links.

The previous lemma eliminates intersections between consecutive linksin 1.1 _ ;. Now we will

extend this for intersections between any pair of linksin I,..1,_;.

Lemma 11 Let rq..r,,, n>2 be a shortest visible sequence, and let s,..s,_; be its segments,

n!
Thereisaset I,..I,_, of visibility links of s;..s,_, respectively such that any pair of links do

not intersect.

Proof By Lemma 10 there is a set of visibility links I,..I,_; of s;..s,_, such that consecutive
links do not intersect. We will prove by contradiction that non consecutive links do not intersect as
well. For the purpose of contradiction we assume that there are two non-consecutive links | i I
that intersect. We assume without loss of generality that j <k. Thelink Ij is between regions r. ,
rj+1, and the link Ik is between regions Ner Teep- LEC L, 1<i<n, be the termina of the

respective region r; . By definition of visibility between ST tj ¢tj +1 andin asimilar way
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t #t,, 1. Thetwo links can share O, 1 or 2 terminals but do not share any region (they are not
consecutive and by Lemma 9 aregion has at most oneinstancein ry..r,).

Case 1. thelinks Ij : Ij +1 Sharenoterminal (Figure 66). In this case, we will show that the regions

r..ry can be replaced by a shorter visible sequence between r., r, , ; and this contradicts the

assumption that r,..r, is a shortest visible sequence between r,, r,. The new sub-sequence
includes the regions Mo Tk 1 and between them a (possibly empty) sub-sequence of regions
representing attachments to terminal's between b tsr These terminals are on the convex hull of
the terminals in the triangle formed by tj » t+ 1 and the intersection point of the cuts (tj, tj +1)
(tk! t|(+ 1) .

Case 2: the links Ij, Ij +1 share one or two terminals. This case is contradicted by Lemma 8.

Q.E.D.

FIGURE 66 - Intersection between non-consecutive links. This figure shows a
hypothetical example where |, |, are two non-consecutive visibility links of a
shortest visible sequence that ihtersect. The sequence of regions can be shorten by
replacing the regionsr;, r, , ; with a shorter visible sub-sequence (the broken
line), and therefore, thils caseisimpossible.

Lemma 12 Let r,..r,, be a shortest visible sequence of regions between terminals t,, t,. The
sequence defines a planar path connecting t, , t,. The path is composed of a set of visibility links,
one for each segment of the sequence, and of connections of infinitesimally small lengths, onein

each of the sequence regions.
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Proof By Lemma 10 thereis a set of visibility links I,..I,, _; of s;..s,_; such that the links do
not intersect with each other. By definition of region sequence between terminals, regions r, isan
incident region of terminal t; and therefore the first end-point of link 1, can be connected to
terminal t, insideregion r, (Figure 67a). The connection can be selected such that itsinner points
do not intersect with any net, terminal, or a boundary of an €-neighborhood of aterminal. In a
similar way, terminal t, can be connected inside region r, to the end-point of link I, _ ;. Asfor
the interim regions r;, 1<i<n, by Lemma 9 each region r; can appear exactly once in the
sequence and therefore there are exactly two consecutive visibility links I, _;, |, whose end-
points are on the boundary of r; and they can have a planar connection within that region (Figure
67 b). The connections can be made such that their length goes to zero when € goes to zero, and

this results in aplanar path between t, , t, that satisfy the requirements. Q.E.D.

FIGURE 67 - Link interconnection within regions. This figure shows two cases
of connecting visibility links within a region to form a planar path. The circles
indicate the € -neighborhoods of terminals and the straight line segments indicate
portions the visibility links. In (a) the beginning of the first link is connected to the
terminal t; such that the connection is contained within the incident region r; . In
(b) two consecutlve links are connected within the region r; . In both cases the
connections can be made such that their length goesto 0 when € goesto zero. The
connections do not intersect nets or other connections (every region of the
sequence has exactly one connection).

Theorem 5 Let t, be two terminals in RBS S, and let P = ry.r be a shortest visible

sequence of regions between t,, t,. P defines a shortest! planar path between t, by,

1. Note that the length of a path in a RBS isthe limit of itslength in € -sketch of € spacing when
€ goesto zero.
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Proof By Lemma 12 the sequence P defines a planar path P connecting t,, t, such that the
lengthsof P and P areidentical, |P| = [P|. For the purpose of contradiction we assume that there
is a shorter planar path P, connecting t,, t, such that ‘P_1’ <[P|. Let S, be the RBS of the
topology class of S; with the path P_1 inserted. S, contains arubber-band branch b representing

the path P, and therefore itslength is at most the length of P, [b] < "3_1‘ .Thebranch b defines a

visible sequence P, of regions of S; between t;, t,, and the lengths of the branch and the
sequence are equal, ‘Pz‘ = |b|. Thisimplies that ]P2] = |b| s’FTl‘ <!I5! = |P| and therefore P,
is shorter than P . Contradiction. Q.E.D.

Based on Theorem 5, finding a shortest planar path between a given pair of terminals t,, t, inan
RBS is relatively simple because it is sufficient to find a shortest visible sequence of regions
between the two terminals. This can be reduced to the problem of finding a least-cost path in a
graph G = (V, E) with positive costs. The nodes in the graph correspond to regions of the RBS.
An edge is defined between two nodes if their corresponding regions are visible to each other, and
the cost of an edge is the distance between the terminals of its two regions. The starting and the
termination nodes are those representing the incident regions of t,, t, respectively. This approach
can be generalized to find a shortest path between two sets of terminalsinthe RBS. Thisis done by
defining the starting and the termination nodes of the graph as the nodes that correspond to
incident regions of the two sets of terminals respectively. In both cases, based on Theorem 5, the

algorithm is guaranteed to find an optimal solution.

The following is an analysis of the size of the graph G. Let T, B, and S be the number of
terminals, branches, and net segments, respectively in the RBS. Every branch has at least one
segment and therefore S= B. The sketch has 2B incident local nets and S—B attached local
nets. The sketch with al the branches removed has exactly T incident regions and no attached
regions. An incident local net can contribute at most a single incident region and therefore the
number of incident regions in the sketch < T+2B. In a similar way, an attached local net
contributes exactly one attached region, and therefore the number of attached regions is S—B.

The total number of regions < (T +2B) + (S—B) and therefore the graph has O(T + S) nodes.
T(T-1)
2

As for the graph edges, the sketch with all branches removed has < visible pairs of
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regions'. Every incident or attached local net increases the count of visible pairs by at most one?
@ + 2B + (S—B) and the graph has O(T> + )
edges. By using an O(E logV) search algorithm, a shortest path can be found in

O((T? + S)log(T + 9)) time.

and therefore the total number of edges <

All the properties of the shortest visible sequence of regions hold for the Euclidean, octilinear and
rectilinear metrics and therefore the shortest path algorithm can be used for any of the these three
metrics. If the RBS has terminals on the RBS boundary, only the portion of the € -neighborhood of
the terminal that is strictly inside the sketch boundary is considered to contain regions (Figure 68).
All the properties of shortest visible sequences of regions shown above hold as well. In a similar
way, the concept of regions can be extended to handle disjoint obstacles, each a (possibly concave)
finite simple polygon. A pseudo terminal is added at every corner of the polygon whaose external
angle =11, and apair of regionsis considered for visibility only if the cut between their terminals
does not intersect with an inner point of an obstacle. Note that similar to the case of the terminals
on the sketch boundary, a net segment can be on an edge of a obstacle boundary but it cannot

intersect with an inner point of an obstacle.

1. If no three terminas in the RBS are co-linear, this is the exact number of visible pairs of
regions.

2. Thisis a conservative approach. Practically, the insertion of a branch reduces the number of
visibility edges because they block the visibility between terminals on the two sides of its seg-
ments. This observation however does not affect the worst case analysis.
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FIGURE 68 - Region on sketch boundary. This example shows a lower left
corner of arectangular RBS. Three terminals are shown, t, on the sketch corner,
and t,, t5 on the sketch lower boundary. Only points whi c]h are strictly inside the
sketcﬁ boundary can be members of aregion. The shaded areas show the union of
al theregions (1 to 7). Note that regions 1,3 are separated by the sketch boundary
otherwise they would be the same region. It isvalid for a net segment to be on the
sketch boundary similar to the one connecting t,, t, but net segments cannot
intersect with points outside the sketch. A corner ?erminal like t, can have
incident nets but cannot have any attachment since the internal angle o]f the corner
islessthan Tt.

5.5 Reducing the search graph size

The optimal shortest path algorithm described above searches in the graph G = (V, E) that has
O(T +9) nodes and O(T?+ S) edges and therefore the search time is O((T2 + S)log(T + S)) .
To reduce the search time, SURF uses a smaller graph that has the same set of nodes and only
O(T + S) edges, and therefore the search timein the reduced graphis O((T + S)log(T + S)) . The
agorithm is guaranteed to find a planar path if one exists but the path found may be not a shortest
path. The algorithm uses the graph GL! = (VU EL) that hasthe same set of nodesas G, VU = V,
and only asubset of the edges of G, EL/J E. The cost of the edges EU is the same as their cost in
E . Theterminals of the RBS are triangulated within the routing areaand an edge e 0 E isin EL if
the terminals of its two regions are on the two ends of a triangulation edge (Figure 69). The
triangulation is constrained to include an edge between any pair of terminals that have a net
segment between them (either attached or incident). The set of constrained edges is planar (each

can intersect with terminals or other edges only at its end-point) and therefore such a constrained
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triangulation exists!. Since the triangulation has only O(T) edges (a triangulation is a planar
graph), GU hasonly O(T + S) edges. Later on, we will prove that searching in GU is guaranteed

to find a planar path in the RBS if one exists.

FIGURE 69 - RBS triangulation. This figure shows a triangulation, within the
routing area of the terminals of an RBS. The shades indicate the constrained edges
of the triangulation. These are edges between pairs of terminals having a net
segment between them. Note that as opposed to G, the graph G does not contain
an edge between the regions of t, and t; because there is no triangulation edge
between them.

Lemma 13 Let ry..r,, n=2, be a shortest visible sequence of region in an RBS with some

nl
triangulation. Let 1.1, _, beaplanar set of visibility links of the segments of r,..r,, (by Lemma
11 it exists). Let Ij, I, ] #k, betwo links of the sequence, and let e = (t;,t,) beatriangulation
edge that does not have acommon end-terminal with | j and l,.. Under these conditions, if both | i

|, cross e, then the RBS has a net segment crossing e between Ij i

Proof Let a, b betheintersection points of IJ- » |, respectively with e (Figure 70). Since the two
links do not intersect, a# b. If no net crosses e between a, b , we can connect points a, b, and
remove any cycles created in the path defined by r,..r . This creates anew planar path connecting
the same terminals of the original path. When & goes to zero, the limit of the distance between the
edge e and each of the end-points of IJ- » I 1s >0 because e does not share end-terminalswith Ij :

., and like any triangulation edge, e does not intersect with athird co-linear termina. Therefore,

1. Notethat atriangulation is not necessarily unique.
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the limit of the length of the new path, when € goes to zero, is lower than the limit of the path
defined by r,..r,, , and this contradicts Theorem 5. Therefore e must be crossed by a net segment
between a and b. Q.E.D.

Proof

FIGURE 70 - Edge intersections. The two planar links | are of a shortest
visible sequence, and they intersect with the trlangulatloH edge e a points a, b
respectively. If no net segment crosses e between points a, b the path could be
made shorter by connecting a, b with a straight line segment (shaded) and
removing any cycle(s) it createsin the path. Thiswould contradict the fact that the
path represented by a shortest visible sequence is of shortest length. The figure
shows the case where the two links shares a single terminal. The cases where the
links share 0 or 2 end-terminals are similar.

Definition 16 (Corridorl) Let t;, t, betwo terminals in a RBS with some triangulation of its
terminds, such that the open segment (t;,t,) does not intersect with any terminal, and the
triangulation does not contain an edge for the cut (t4, t,) . Inthis case we say that the cut (t4, t,)
defines a corridor between t; and t, . The corridor is a simple polygon that includes the triangles

that intersect with the open ended segment (t,, t,) (Figure 71).

1. The definition here of a corridor is a specia case of the same term used in [35]. Here it is
defined by the straight line segment between the two terminal's as opposed to a general piece-wise
linear path in [35].
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e

c

FIGURE 71 - Corridor. The corridor of the c(it, t,) includes the shaded area.
The sequences of terminals on the two sides ofzthe corriddy aee b ,t,, , and
t,, C, d,e b respectively.

The corridor of the cut (t,t,) defines two sequences of terminals along the corridor boundary,
one sequence on each side. Each of the sequence starts with t; , ends with t, and has at |east one

terminal in between (Figure 71).

Definition 17 (Corridor internal point) A point is said to be internal to the corridor in agiven € -
sketch if it is inside the corridor’s boundary, and it does not intersect with the -neighborhood of

any cut between consecutive terminals on the corridor bouridiaxy € 72).

FIGURE 72 - Corridor internal point. The shade area indicates the internal area of
the corridor between terminals t.,

Lemma 14 Let ry..r, n>2, be a shortest visible sequence of regions in an RBS with some

n’

triangulation, and let 1,..I | _; beaplanar set of visibility links of the segmentsof r,..r , (it exists
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ot be the

]
terminal s of the two end regions of | i Under these conditions, if the triangul ation does not have an

by Lemma 11). Let Ij, 1<j<n, be an arbitrary link of the sequence, and let t i+ 1

edge between t;, t; , ;, then |, definesa corridor between t;, t; , 4,

link Ik, 1<k<n, k#]j, intersects with any internal point of the corridor.

and no net-segment or other

Proof First we will show this for a visibility link and then for a net segment. We assume for the
purpose of contradiction that thereis alink I, k# j, that intersects with an internal point of the
corridor. The link 1, can share 0, 1 or 2 terminals with the boundary of the corridor, and in each
these cases, there must exist an edge e within the corridor that does not share any end-terminal
with |, , andiscrossed by I, (see examplein Figure 73 of the case where |, sharestwo terminals).
This is based on the observations that |, cannot be between two consecutive terminas of the
corridor boundary (otherwise it will not intersect with an internal point), I, cannot cross | J-

(because the set of links is planar), I, cannot be co-linear with an edge inside the corridor
(otherwise it will intersect with Ij ), and as any visibility link, for small enough € > 0, it does not
intersect with € -neighborhood of any terminal other than its two ends (Lemma 7). Therefore, the
crossing point must be an internal point of the corridor. By applying Lemma 13 to links | i l,, and
e, there must be a net-segment crossing e between | i ., and the crossing point is at an internal
point of the corridor. However, no net segment can intersect with the inner point of the corridor (it
must be on atriangulation edge and | j crosses al the triangulation edges inside the corridor). This
isacontradiction. As for a net segment, by similar considerations, if anet segment intersects with
an inner point of the corridor then it must intersect with an edge inside the corridor that does not
share an end-terminal with it, and this implies that two edges of the triangulation (the constrained
edge of the net segment and the crossed edge) cross each other. Again, this is a contradiction.
QED
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FIGURE 73 - Link/Edge intersection. |, is a planar visibility link that intersects
with an inner point of the corridor. |, crosses the edge e inside the corridor, and
e, Ik do not share an end-terminalf . In this example, the link Ik shares two
terminals with the corridor boundary, and since it intersects with an inner point of
the corridor, there must be at least one terminal between them (marked t) on the
corridor boundary.

Next we will show that every planar path defined by a shortest visible sequence of regionsin G
has a corresponding planar path of the same topology that is defined by a path along edges of GL.

Lemmal5Letr,.r,, n>2, beashortest visible sequence of regions between two terminals, and
let P be a path defined by it (by Lemma 12). The RBS has a path PU, made of visibility links of
GU that has the same topology as P (i.e. inserting P or PL! the sketch will result in the same

topology class).

Proof Let|;..I,,_, bethesequence of visihility links of P. For every link Ij, 1<j<n, between
regions STRITEY that does not have an edge in GL, we replace it with a sequence of visibility
links of edgesin GU asfollows. Since there is no triangul ation edge between the end-terminals of
Ij , the link Ij defines a corridor between its end-terminals. Let t-t k> 2, be the sequence of
terminad on an arbitrary side of the corridor. t;, t, are the terminals of the two regions
respectively of | j (Figure 73). By Lemma 14, no net segment or link other than | j intersects with
an inner point of the corridor. For every cut (t,t,,), 0<i<Kk, aong the boundary of the
corridor between t;, t, we define a visibility link IiD connecting between a region of t, and a
region of t; ., as follows. The link IiD is selected such that it does not intersect with any net

segment or any other link that is between terminals t and no net segment of other link

i G
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between t;, t; , | is between IiD and the internal area of the corridor (Figure 74). The new links
and thelink | J- form a cycle. The links of the cycle do not intersect with any net segment or other
link (otherwise Lemma 14 would be contradicted), and for similar reasons® they can have planar
connections within the regions. Furthermore, the inner part of the cycle do not intersect with any
net, link, or terminal, and if we will remove IJ- , we will end up with a planar path of the same
topology as P . If we will repeat this step for all the links that are not on edges of GL, we will end
up with apath PU that satisfies the requirements. Q.E.D.

\ —_— — ——

FIGURE 74 - Replacing a G link with GU links. This example shows
how avisibility link of an edge in G can be replaced by a sequence of
links of edges of GU while maintaining the planarity and topology of
the path. The broken circles indicates the ¢-neighborhoods of the
terminals. The shade lines indicate possible links and net segments.
Since no net segment or link intersects with the inner part of the
corridor, the new path can be made planar.

In the other direction, we show that every shortest path in GU defines a planar path in the RBS
(but not necessarily a shortest path).

Lemma 16 Any shortest path in G* between incident regions of two terminals defines a planar

path that connects the two terminals.

1. We assume, without loss of generality, that the construction of the first and the last links 1L},
It} _1 issuch that they do not intersect with | i Such construction is always possible.
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Proof Thislemmais similar to Lemma 12 except that here the sequence of regions is shortest in
GU but not necessarily in G. Lemma 9, Lemma 10, Lemma 11 and Lemma 12 apply aso to a
shortest sequence of regionsin GU and can be proven in asimilar way. The only differenceis case
1 in the proof of Lemma 11 (Figure 66). In the case of a shortest path in GL, this case is
contradicted by the fact that triangulation edges cannot cross each other. Q.E.D.

Theorem 6 Searching in the GU graph will result in a planar path if and only if one exists.

Proof If there is a planar path in the RBS, then by Theorem 5, G contains a path that defines a
planar path in the RBS, and by Lemma 15, GU contains a path as well that defines a planar pathin
the RBS. The other direction is proved by Lemma 16. Q.E.D.

Let S; be an RBS with some triangulation of its terminals, let r,..r, be a shortest sequence of
regions between two terminals in the graph GU of S;, and let PU be a path defined by that
sequence. The length of PU is equal to the length of the sequence ry.ry-Let'S, bethe RBSof the
topology class of S; with the path PU inserted. PU has a corresponding branch bl in S, that
connects the same pair of terminals. The paths of PU and bU have similar topology but bl can be
shorter than PU (Figure 75). Thisimplies that the length of the sequence ry..r, isan upper-bound
of the length of bU (or the actual length of PL).

FIGURE 75 - A branch path of PL.. PU is a path defined by a shortest visible path
along triangulation edges. The RBS of the topology class with path PL inserted has a
branch bl (broken lin€e) representing the path PL.. The paths of PU and bl have the
same topology in respect to the other nets and terminals but bl is shorter than PL.
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When SURF inserts the path PU into the RBS, it first computes the net segments and local nets of
the new branch bU. This process is called a validation of PLl and is performed by iteratively
applying the attachment operator (described below) to every invalid attachment of PU, until PU
contains no invalid attachments. A connection between two links in PUis said to be an invalid
attachment if the limit of the angle between the links, on the side that does not include the
terminal, is <71 (Figure 76). Note that this definition isindependent of €, the actual choice of the
links between the regions, and the paths of the connections inside the regions, as long as the
sequence of regions along the path and the topology are maintained. Further more, the validity of
an attachment can be determined given the locations of the three terminals, and the topology of the

attachment.

FIGURE 76 - Invalid attachment. The thin broken lines indicates the cuts
(t 4+ 1) (4 4 1 tj+ o) and their €-neighborhoods. The two links I, |, ; ae
connected inside the € -neighborhood of terminal t; , ; by the connection ¢; , ;.
The connection ¢; , , partitions the & -nei ghborhooJ of t; ., into two areas and
one of them include%heterminal tyq. O isthe angle between |, |. +1 such the
terminal t; , ; isonthe other side of the connection Ci.q. The attachment in this
example is said to be invalid because the limit of a whén € goesto 0is <Tt. If
C;+q Wwould be replaced with the aternative connection (broken line) the
attac]hment would become valid (assuming it does not intersect with existing local
nets).

The attachment operator when applied to an invalid attachment between two links I, I, , 4,
replaces the two links in the path with a new sub-sequence of one or more links, and connections

of them, such that the new sub-sequence forms a planar path together with the head and tail of the
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original path (Figure 77). The new path has the same topology as the original path and is aways
shorter. If thereis more than one new link, all the connections between consecutive new links have

vaid attachments. Let (t;,t; 1), (%41, tj+ o) bethe two cuts of the end-terminas of I;, |; , ;

respectively. The new links are found by computing the convex hull of the terminals, other than

t intersecting with thetriangle t. (Figure 77). The attachment operator maintains

i+1 i’ |+1’|+2
the topology of the path and the validation process is guaranteed to terminate since the reduction in
the length of PU by each application of the attachment operator has a positive lower bound

independent of € 1.

FIGURE 77 - Attachment operator. In this example, the attachment operator is
applied to an invalid attachment between links |; and I, , ;. The operator r laces
the two links in the path with the sub sequence of new Tinks g, 1

The connections between the new links represent valid attachment to the terml nﬁ S
tH 1, t4 4+ . The new links can be found by computing the convex haul of the

terminals, other than t; intersecting with the triangle totiteo-

i+1
When validating a path, SURF allows the validation process to change the topology of the path in
order to further reduce its length. If an attachment between two consecutive links of the path is
valid but can be made invalid while maintaining the planarity of the path, the attachment is
modified to become invalid (Figure 78). This results in the attachment operator applied to that
attachment, reducing the length of the branch.

1. The lower-bound can be computed by considering the finite set of al the pairs and triplets of
terminalsin the RBS.
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FIGURE 78 - Invalidating an attachment. During the path validation, if a valid
attachment between two links of the path (a) can be made invalid while
maintaining the planarity of the path (b), SURF change the attachment to be
invalid. This causes a further reduction in the path length when the attachment
operator is applied to this attachment.

The path P* found by searching GU is not necessarily a shortest planar path (see example in
Figure 75). Even the actual length of PU (i.e. after it is inserted as a rubber-band branch) is not
guaranteed to be a shortest path because the search in GU can possibly miss a path with shorter
actual length because all the paths in GU representing it are longer than PU (note that by Lemma
15 a shortest path always has a path in GU representing it). We are not aware of any bound on the
error of the actual length of PLl compared to the shortest planar path. All the empirical results of
SURF presented in this thesis were achieved using a search in GL. A search in G will possibly
achieve better results at the expense of longer run-time. To increase the likelihood of the search in
GU resulting in paths of shorter actual length, SURF uses a Constrained Delaunay Triangulation
(CDT) [3] [41] which is likely to have shorter paths along triangulation edges. Non-constrained
Delaunay Triangulations (DT) [60] [33] [34] are known to closely approximate the complete
Euclidean graph with an upper-bound of about 2.42 [28] on the ratio between the distance over
CDT edges and the Euclidean length. We are not aware of a similar bound of CDT. That is, a
bound on the ratio between the length of a shortest path over CDT edges compared to the length of
the shortest path in the complete Euclidean graph excluding edges that intersect with internal

points of the constrained triangulation edges.

Table 12 shows experimental results of the ratio between the actual length of PU and its length in
GL. 10 bins with total of 427 branches where routed! using a shortest path search in GU. The

table shows the minimum, maximum and average of the ratios in each of the bins. The lower ratio
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in this experiment was 77.72% which implies that a path in PO was about 29% longer than its
length after validation. The maximum of 100% indicates that in each bin, at least one path in GU
was already validated. The average ratio of 95.73% suggest that the length of a shortest path in

GU, on average, is a close approximation to its actual length.

Branches | Min Max Avg
APEX/01 46 | 79.63 | 100.00 | 98.52
APEX/02 105 | 77.88 | 100.00 | 97.47
APEX/03 102 | 79.69 | 100.00 | 98.05
DS15/01 31| 8397 | 100.00 | 98.07
DS15/02 28 | 83.23 | 100.00 | 97.67
DS15/03 25| 77.87 | 100.00 | 96.83
DS15/04 21| 85.16 | 100.00 | 98.02
GDX/01 27 | 77.72 | 100.00 | 96.51
GDX/02 22 | 86.91 | 100.00 | 97.42
GDX/03 20 | 88.20 | 100.00 | 98.13
Total 427 | 77.72 | 100.00 | 97.73

TABLE 12 - Path actua Iength/ length. This table shows the ratio of paths actual
length to their length in GLI. All values are in percentages. The Min, Max, and
Avg columns show the minimal, maximal and average ratios respectively of the
branches of each of the ten designs. The Total row shows the total minimum,
maximum, and average of the respective columns (the total average is weighted
relatively to the number of branchesin each of the bins).

5.6 Conclusion and Future Work

The concept of Rubber-Band Sketch can be formulated using geometric terms and the concept of
limit when spacing approaches zero. This provides a sound framework for proving properties of
the RBS. A shortest pathin aRBS s closely related to a shortest visible sequence of regionsin the
RBS, and it can be found in O((T2+ S)log(T + S)) time by searching in the region visibility

1. Two layers, Euclidean metric, user via cost parameter 3 = 15, no optimizations.
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graph. By considering only a planar subset of the edges of the graph, the algorithm is guaranteed to
findin O((T + S)log(T + S)) time aplanar path, if one exists, that islikely to be short.

The proposed agorithm searches for a shortest planar path in the RBS. In practical routing
problems, other considerations may be required as well. This includes routability and electrical
properties such as cross-talk and delays. Other desired improvements would be finding aleast-cost
path between two given sub-nets with possible insertion of Steiner points, and a 3-dimensional

least-cost path search in amulti-layer RBS.
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6 TOPOLOGICAL SKETCH OPTIMIZER (ROAR)

6.1 General

In aaddition to theinitial routing of the design nets, the algorithm for finding a planar shortest path
in an RBS has other applications. One of them is the Rip-Out And Reroute (ROAR) optimizer
which accepts a single-layer RBS and tries to find an aternative planar topology with shorter
wiring. The ROAR optimization is useful for two reasons, first it compensates for possible bad
decisions made by the net ordering step, and second, it overcomes an inherit limitation of
sequentia routing of the nets on a shortest path that in some cases, no order of the nets will result

in an optimal solution (Figure 79).

-~ g~

a

a b

FIGURE 79 - The Triangle problem. This problem has three symmetrical
branches and its optima embedding is shown in (). The optimal embedding
cannot be achieved by routing branch-at-a-time on a shortest path. Any such
routing will result in a sub-optimal solution similar to the one in (b). SURF
compensates for this limitation using the ROAR optimizer.

The operation of the ROAR optimizer is relatively simple. It picks a terminal t which has an
attached local net and one or more incident local nets. Then it removes the branch with the inner-
most attachment to t, and all the branches incident to t. Then it reroutes the removed branches
using the shortest planar path algorithm, first the branch that was attached, and then the incident
ones (the order in which the incident branches are routed is arbitrary). If the re-routing is
successful (i.e. planar) and the total wire length of the RBS is reduced then the new RBS is

maintained. Otherwise, the operation is undone. This operator is applied iteratively to terminals of
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the RBS until the total wire length of the RBS cannot be reduced anymore. Figure 80 shows how

the ROAR optimizer improves the example in Figure 79b.

P
9

a

>

FIGURE 80 - The ROAR operator. This example shows how the optimal
solution of the example in Figure 79 is achieved by applying the ROAR operator
to terminal t of the RBS (a). First, the two branches, attached and incident
respectively to t are removed (b). Then, the branch that was attached is routed on
a shortest path between its end-terminal (c), and then the other branch is routed in
asimilar way (d). The re-routing is planar and the total wire length is reduced and
therefore the new topology is kept. Applying the ROAR operator to any of the
other terminals, or to theterminal t in (d) will not reduce the total wire length and
therefore will be rejected.

6.2 Experimental Results

Table 13 shows experimental results of performing ROAR optimization on 10 bins' (total of 427
branches in 20 bin layers). The table shows the detour before and after the optimization. The
detour of asketch is defined as the extrawire length compared to its basic length. The basic length
of a sketch is defined as the sum of the lengths of its nets when they are optimally routed

independently of each other. The basic length of the sketch isalower bound onitstotal wire length

1. Two layers, Euclidean metric, user viaweight parameter 3 = 35.
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and typically, the basic length is strictly lower than the wire length of the optimal routing (i.e.
shortest planar co-routing of the nets). The average detour before the ROAR was 8.84% and it was
reduced to 5.18% after optimization. This implies that the wire length was reduced by about 3.4%
and that about 38% of the detour length was eliminated.

Branches | Steps Detour Detour Improv.
Before[%] | After [%0] [%0]

APEX/01 76 11 5.06 4.39 0.68
APEX/02 165 66 19.90 11.46 8.44
APEX/03 142 41 11.85 6.60 5.25
DS15/01 49 9 11.10 4.95 6.16
DS15/02 42 4 4.90 4.53 0.37
DS15/03 33 12.34 4.78 7.56
DS15/04 31 1 3.05 3.00 0.04
GDX/01 33 11 12.33 7.04 5.29
GDX/02 28 3 4.34 2.99 1.35
GDX/03 24 5 3.56 2.03 153
AVG 8.84 5.18 3.67

TABLE 13 - ROAR optimization. This table summaries the result of performing
the ROAR optimization on 10 2-layers bins. The Steps column shows the number
of successful ROAR operations done. Detour Before and Detour After are the
extra wire length compared to the basic length of the sketch. Improv. is the
reduction in the detour due to the ROAR optimizer (higher is better).
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7 CONCLUSION AND FUTURE WORK

A multi-layer, topological local router was presented. Thisisthe first ever reported router that uses
a rubber-band sketch (RBS) to represent the interconnect. The local router is part of SURF, a
routing system for multi-chip modules and VLS| that was designed to efficiently handle large
multi-layer problems. The local router supports various routing goals and can generate layouts for
rectilinear, octilinear and any-angle wiring rules. It performs the routing in four steps of layer-
assignment, net-ordering, sequential net embedding, and wire-length reduction using the ROAR

optimizer.

The layer-assignment step partitions the multi-layer problem into a set of single-layer sub-
problems that are routed independently. It uses a new approach of unconstrained layer-assignment
that makes better usage of the routing resources by considering a continuous metric of the conflict
between nets as opposed to the binary go/no-go approach previously used. The layer-assignment is
formulated as an optimization problem and various routing goals such as wire-length and via
minimization or constrained layers can be achieved by simple modifications to the cost function.
Our layer-assignment algorithm (LAA) uses a simple optimization technique to solve the layer-
assignment problem and uses an optimal algorithm to determine the assignment of individual two-

terminal nets.

The net-ordering algorithm uses a continuous conflict metric similar to the one used by the layer-
assignment and it results in shorter wiring than the ‘shortest first’ approach. The nets are
embedded sequentially using an optimal algorithm for shortest planar path in an RBS. The
algorithm finds a shortest planar pathCM(T2 + 9)log(T+9)) time by searching in the region
visibility graph. By considering only a planar subset of the edges of the graph, the algorithm is
guaranteed to find Il©O((T + S)log(T+S)) time a planar path (if one exists), that is likely to be
short. The ROAR optimization is a simple application of the shortest path algorithm and it uses the
‘attachment’ relation between nets and terminals in the RBS to determine which nets to re-route. It
is guaranteed to maintain the planarity of the sketch it potentially reduces the total wire length. A

mathematical formulation of the of RBS was also presented and was used to prove the correctness
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of the shortest path algorithm. This is the first exact analysis of RBS ever publish. Empirical

results were also shown and they demonstrate the merit and properties of the proposed router.

Several extensions to the our local router are likely to increase the quality of the layouts it
generates and will enable it to address a wider range of routing goals. Using more advanced
optimization methods that are less likely to be trapped in local minimum will potentially improve
the quality of the layer-assignment and the net-ordering. Optimization for electrical properties of
the layout, such as cross-talk and signal delays, will make the router more useful for modern high-
speed designs. Consideration of routability will result in fewer design-rule violations and will
require less manual editing to complete the layout. A post-processing step that uses a 3-
dimensional least-cost planar path search can improve the routing by adding vias when necessary,

and compensating for ‘bad’ decisions made earlier by the layer-assignment.
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