
A dissertation submitted in partial satisfaction of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Tal Dayan

June 1997

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

RUBBER-BAND BASED TOPOLOGICAL ROUTER

Dean of Graduate Studies

Professor Wayne Wei-Ming Dai, Chair

The dissertation of Tal Dayan is approved:

Professor Martine Schlag

Professor F. Joel Ferguson

Copyright © by
Tal Dayan

1997

ABSTRACT

A multi-layer, topological detailed-router is described. This is the first router ever reported

that uses a rubber-band sketch (RBS) to represent the interconnect. The detailed-router is part

of SURF, a routing system for multi-chip modules and VLSI that was designed to handle

efficiently large multi-layer problems. The detailed-router supports various routing goals and

can generate layouts for rectilinear, octilinear and any-angle wiring rules. It uses a novel

approach of unconstrained layer-assignment that makes a better usage of the routing resources

by considering a continuous metric of conflict between nets as opposed to the binary go/no-go

approach. The layer-assignment is formulated as an optimization problem and various routing

goals such as wire and via minimization or constrained-layers can be achieved by simple

modifications to the cost function. The layer-assignment partitions the multi-layer problem

into a set of single-layer sub-problems that are routed independently by a topological planar-

router. The planar-router uses a new net-ordering algorithm that results in shorter wiring than

the ‘shortest first’ approach. The nets are embedded sequentially using an optimal algorithm

that finds a shortest planar path in the RBS. The generated RBS is then optimized by a simple

re-route algorithm that takes advantage of the ‘attachment’ relation between branches and

terminals in the RBS. A mathematical formulation of the concept of RBS is also presented and

is used to prove the correctness of the shortest-path algorithm. This is the first exact analysis of

RBS ever published. Empirical results are also shown and they demonstrate the merit of the

router.

iv

Dedicated to Nir

v

ACKNOWLEGMENT

I would like to thank the people that enabled and helped this research. First, to my advisor

Professor Wayne Dai that his vision, guidance, and leadership was the driving force behind the

SURF project. To all the students (‘SURF’ers’) that worked on various parts of SURF

including (in alphabetical order): Joel Darnauer, Mark Fitzpatrick, Duane Foote, Maggie

Zhiwei Kang, Kazuhiko Kobayashi, Raymond Kong, Michael Lanzetta, Yizhi Lu, Paul

Morton, Paul Pham, David Prather, Darren Senn, David Staepelaere, Joseph Russack, Karen

Wang, Jeffrey Su, Marco Man-Fai Yu, William Wu, and Qing Zhu.

Thanks to Professor Joel Ferguson for reviewing this dissertation. Thanks to Professor Martine

Schlag for her thorough comments and suggestions regarding contents, organization, style,

and spelling. Thanks for Caroline for here sincere notes. Special thanks to David Staepelaere

for his enlightening comments on the layer-assignment and the net-ordering chapters, and for

his overview of SURF that was the base for SURF overview included in this dissertation.

Thanks to Jeffrey Su for his implementation of the ‘region’ module and for supporting the

rubber-band ‘engine’ used by the local router. Thanks to George ‘Joe 19’ French for proof-

reading the introduction, overview, and the net-embedding chapters. Thank the people at

Frame Technology for making available Frame Maker, a great writing tool. And last but not

least, I would like to thank Teiko for her support and her help in proof-reading this paper.

vi
TABLE OF CONTENTS

1 INTRODUCTION .. 1
1.1 General .. 1
1.2 Organization of This Thesis.. 1
1.3 Previous Works... 1
1.4 Contribution of this work.. 7

2 OVERVIEW ... 9
2.1 Topological Representation and Routing.. 9
2.1.1 Sketches and Topological Classes ... 10
2.1.2 Triangulation Crossing Sketch (TCS) ... 12
2.1.3 Rubber-Band Sketch (RBS) .. 13
2.1.4 Routability Tests .. 14
2.1.5 Topological Routing .. 16
2.2 SURF Routing System.. 17
2.2.1 Introduction ... 17
2.2.2 Layout Refinement Strategy .. 18
2.2.3 Routing Examples ... 22

3 TOPOLOGICAL LAYER-ASSIGNMENT ... 28
3.1 Introduction... 28
3.2 The Layer-Assignment Problem... 30
3.2.1 The Input Domain ... 30
3.2.2 The Solution Domain .. 31
3.2.3 The Cost Function ... 33
3.2.4 Properties of the cost function ... 37
3.2.5 User control of ... 42
3.3 The Layer-Assignment Algorithm.. 42
3.3.1 Introduction ... 42
3.3.2 Step I - Breaking the Nets Into 2-Nets .. 44
3.3.3 Step II - Generating The 2-Net Assignment Graphs ... 46
3.3.4 Step III - Solving the Layer-Assignment Problem .. 50
3.3.4.1 Configurations and Assignments .. 50
3.3.4.2 The configuration search algorithm .. 54
3.3.5 Properties of the configuration search algorithm .. 57
3.3.6 The 2-Net Assignment Algorithm (2NAA) ... 59
3.3.7 2NAA complexity Analysis .. 67
3.3.8 LAA Implementation Notes .. 68
3.4 LAA Extensions.. 69
3.4.1 Constrained Assignment .. 69
3.4.2 Supporting Various Metrics in the Layer-Assignment .. 71
3.4.3 Preferring 2-Net assignment to layers ... 72
3.5 Experimental Results .. 73
3.5.1 Benchmark results ... 73
3.5.2 Balancing Between Wiring Length and Via Count ... 75
3.5.3 Estimated vs. Actual Detour .. 78

vii
3.5.4 Comparison of Net Decomposition Methods .. 79
3.5.5 Candidate Via Density Versus Actual Cost .. 81
3.5.6 Using Various Routing Metrics ... 84
3.5.7 LAA Scalability ... 85
3.6 Conclusion and Future Work .. 87

4 TOPOLOGICAL NET ORDERING .. 89
4.1 Introduction... 89
4.2 Decomposition into 2-Nets ... 89
4.3 2-Net Ordering .. 90
4.4 Planarity Enforcement Operator (PEO) .. 92
4.5 2-Net Ordering Problem (2NOP) Formulation ... 97
4.6 2NOP Complexity... 101
4.7 Solving the 2NOP ... 102
4.8 Experimental Results .. 104
4.9 Conclusion and Future Work .. 106

5 TOPOLOGICAL PATH SEARCH .. 108
5.1 Least-Cost Topological Path Problem (LCTP)... 108
5.2 Rubber-Band Sketch Formulation .. 109
5.3 RBS Regions... 114
5.4 Shortest Planar Path in RBS ... 119
5.5 Reducing the search graph size... 128
5.6 Conclusion and Future Work .. 139

6 TOPOLOGICAL SKETCH OPTIMIZER (ROAR) .. 141
6.1 General .. 141
6.2 Experimental Results .. 142

7 CONCLUSION AND FUTURE WORK ... 144

8 REFERENCES ... 146

viii
LIST OF FIGURES

FIGURE 1 - The Puzzle problem. .. 9
FIGURE 2 - Homotopic sketches... 11
FIGURE 3 - Minimal length sketch ... 12
FIGURE 4 - The Triangulation Crossings Sketch (TCS)... 13
FIGURE 5 - Rubber-Band Sketch.. 14
FIGURE 6 - Spokes and ERBS.. 15
FIGURE 7 - Rectilinear ERBS... 16
FIGURE 8 - Rubber-Band routing example... 18
FIGURE 9 - SURF routing strategy. .. 19
FIGURE 10 - Global routing.. 20
FIGURE 11 - Spokes.. 22
FIGURE 12 - Mixed Analog/Digital.. 23
FIGURE 13 - Rectilinear Routing.. 24
FIGURE 14 - Octilinear Routing ... 25
FIGURE 15 - Euclidean routing... 26
FIGURE 16 - Larger routing example. .. 27
FIGURE 17 - The two level decomposition of a routing problem... 28
FIGURE 18 - An example of a bin layer-assignment and routing. .. 29
FIGURE 19 - An example of non-planar layer-assignment... 32
FIGURE 20 - Minimizing the via count vs. minimizing wire length... 33
FIGURE 21 - The basic, actual, and detour lengths of routed components................................... 35
FIGURE 22 - Conflict between pairs of components. ... 36
FIGURE 23 - Pair-wise conflict vs. the actual detour.. 38
FIGURE 24 - The error of the estimated detour function has no upper bound.............................. 38
FIGURE 25 - External paths and regions... 41
FIGURE 26 - Constructing a planar embedding. ... 41
FIGURE 27 - The three steps of the assignment algorithm. .. 44
FIGURE 28 - Three methods of decomposing a net (a) into 2-Nets.. 46
FIGURE 29 - An example of a simple 2-Net assignment graph.. 48
FIGURE 30 - Two choices for the number of candidate points per 2-Net. 49
FIGURE 31 - The local-spacing post-processor. ... 50
FIGURE 32 - The corresponding solution of a configuration.. 52
FIGURE 33 - Planar embedding of the corresponding solution. ... 53
FIGURE 34 - Interdependency between assigned 2-Nets.. 56
FIGURE 35 - Example of assignment improvement ... 56
FIGURE 36 - Local minimum in the configuration search.. 59
FIGURE 37 - Cost of end-point edges ... 61
FIGURE 38 - Cost increase due to branch assignment .. 62
FIGURE 39 - Non-linearity of the branch cost function.. 64
FIGURE 40 - Non-linearity of branch cost in a path ... 65
FIGURE 41 - Adding the short-circuit branch edges... 66
FIGURE 42 - Splitting the graph nodes. .. 67
FIGURE 43 - Constrained layer-assignment.. 70
FIGURE 44 - Candidate via location for Rectilinear metric.. 72
FIGURE 45 - Net ordering and wiring length.. 90

ix

.. 111
.... 111
.... 112

..... 113
.... 114

.
.... 118
....
.... 120
.. 123
.... 124
.. 125
.... 128
... 1
.....

... 13
... 133
.. 134
....
.... 1
.... 137
.... 138
.... 141
.... 142
FIGURE 46 - The Triangle problem. ... 91
FIGURE 47 - Non-planar 2-Net routing order ... 91
FIGURE 48 - Closed 2-Nets. ... 93
FIGURE 49 - Non planar external paths .. 95
FIGURE 50 - Necessary condition for planar embedding ... 96
FIGURE 51 - 2-Net order cost ... 99
FIGURE 52 - Limitations of non-interleaving order.. 102
FIGURE 53 - -sketch.. 110
FIGURE 54 - Terminal’s -neighborhood. ..
FIGURE 55 - Cut’s -neighborhood. ...
FIGURE 56 - Attachments in RBS. ...
FIGURE 57 - Local nets... 113
FIGURE 58 - Angle between branch segments ..
FIGURE 59 - Implicit attached local nets ..
FIGURE 60 - Regions ... 115
FIGURE 61 - Region Visibility... 116
FIGURE 62 - Neighborhoods intersection. ..
FIGURE 63 - Link intersections. ...119
FIGURE 64 - Region split by a branch ..
FIGURE 65 - Intersection of consecutive visibility links ..
FIGURE 66 - Intersection between non-consecutive links ..
FIGURE 67 - Link interconnection within regions..
FIGURE 68 - Region on sketch boundary ...
FIGURE 69 - RBS triangulation ...29
FIGURE 70 - Edge intersections...130
FIGURE 71 - Corridor ... 131
FIGURE 72 - Corridor internal point. ...1
FIGURE 73 - Link/Edge intersection..
FIGURE 74 - Replacing a link with links ..
FIGURE 75 - A branch path of ..135
FIGURE 76 - Invalid attachment ...36
FIGURE 77 - Attachment operator. ...
FIGURE 78 - Invalidating an attachment...
FIGURE 79 - The Triangle problem. ...
FIGURE 80 - The ROAR operator...

x

LIST OF GRAPHS

GRAPH 1 - Number of vias vs. beta ..77
GRAPH 2 - Wire length vs. beta ..77
GRAPH 3 - Comparison of net decomposition methods..81
GRAPH 4 - Actual cost vs. number of candidate vias. ..83
GRAPH 5 - Wire length and via count vs. number of candidate vias.84
GRAPH 6 - Wiring length vs. ordering method ...106

xi

LIST OF TABLES

TABLE 1 - Benchmark of SURF vs. SLICE ... 74
TABLE 2 - SURF improvement over SLICE .. 75
TABLE 3 - Number of vias vs. beta... 76
TABLE 4 - Wire length vs. beta... 76
TABLE 5 - Detour overestimation vs. beta.. 79
TABLE 6 - Comparison of 2-Net decomposition method. .. 80
TABLE 7 - Wire length vs. number of candidate vias ... 82
TABLE 8 - Via count vs. number of candidate vias. ... 83
TABLE 9 - Effect of the routing metric on the routing results. ... 85
TABLE 10 - LAA scalability ... 86
TABLE 11 - Routing with various orders of the 2-Net.. 105
TABLE 12 - Path actual length / length ... 139
TABLE 13 - ROAR optimization .. 143

1

)

ts, and

. SURF

nswer

ter that

r ever

lexible

s large

werful

h and a

l

- route

he

 of this

 a good

ree of

ms and

h.

lems
1 INTRODUCTION

1.1 General

Currently available routers are running out of steam when it comes to meeting the challenges

presented by today’s VLSI designs and packaging technologies. Multi-Chip Modules (MCM[1]

for example may consist of 60 or more layers and a large number of terminals and ne

therefore the router must be able to handle large designs efficiently in both time and space

is a routing system developed at University of California Santa Cruz that was designed to a

these challenges. The subject of this research is a rubber-band based topological local rou

was developed as part of the SURF project. SURF is the first rubber-band based route

reported and it has many advantages compared to existing geometrical routers. Its f

representation of the interconnect enables it to achieve a high completion rate. It handle

designs efficiently and the rubber-band representation of the interconnect provides a po

environment for manual editing.

1.2 Organization of This Thesis

In the rest of this chapter we present an overview of previous works related to our researc

discussion of our original contribution. In Chapter 2 we present an overview of topologica

representation of interconnect and an overview of SURF. Chapters 3, 4, 5 and 6 cover four aspects

of our local router: layer-assignment, net ordering, topological net embedding, and the re

optimizer respectively. Chapter 5 also includes a formulation of the rubber-band sketch. T

formulation is based on mathematical terms from geometry and real analysis. The chapters

thesis were designed to be independent of each other such that a reader can have

understanding of each one without reading the previous ones. As a result, some deg

redundancy does exist, especially in the introduction of each chapter where the general ter

context are defined. Finally, Chapter 7 contains a conclusion and a discussion of future researc

1.3 Previous Works

A common method of handling large designs is to perform the routing in two phases, global and

local routing. The global routing partitions the routing problem into a set of smaller sub-prob

2

which are then solved independently by the local router. Each of the sub-problems can be either a

channel with the terminals on its boundary, or can be channelless and have terminals and features

inside the routing area as well. Channel routing is more appropriate for Standard or Macro Cells

where the routing is done in the spaces between the components, while channelless routing fits

better MCM and modern VLSI designs. This dissertation describes a multi-layer, channelless,

local router that uses rubber-band topological representation of the interconnect.

The known methods of routing can be classified into the two main categories of geometric and

topological routing. Geometric routers determine the exact geometrical paths of the wires while

topological routers use a more abstract representation of the interconnect and determine only the

topology of the wires but not their exact paths. Geometric routing is by far the most common

routing method used today. Some of the geometric routers mentioned in the literature are maze

routers [51] [32] [19] that represent the wires as paths along a two or three dimensional grid, line-

probe routers [21] [50] that use a gridless representation, and SLICE [29] which is an efficient

plane-sweep router.

Since topological representation is more abstract than geometrical representation, the interconnect

is easier to manipulate, and a topological router can avoid making too detailed decisions in early

stages of the routing. When the topological routing is completed, it is checked to comply with the

spacing requirements and is then transformed to exact geometrical layout.

Various aspects of topological routing have been discussed in the literature including routability

check, topological representation, compaction and dynamic updating. The following is a

discussion of previous works related to these areas.

The first problem related to topological routing mentioned in the literature is that of routability test

defined in [54] [56]. This problem is also called Detailed Routing given an Homotopy (DRH) and

is defined as follows: given a specification of the terminals and modules, and given a homotopy (a

rough planar sketch of the wires), is there a geometrical layout that conforms to the homotopy,

spacing requirements, and wiring rules? Cole and Siegal [5] proposed a polynomial-time

algorithm that finds a complying geometric layout, and showed that such a layout exists if and

3

wires.

tretch to

ginally

pt

ly

son and

ding:

and

h),

while

f the

acing
only if every cut is safe. Leiserson and Maley [35] [44] showed that it is sufficient to check a

smaller set of critical cuts, and that the test can be done on the Rubber-Band Equivalent (RBE) in

which wires are as short as possible and zero spacing is allowed (while maintaining the topology

of the wires). Kong [31] used the idea of RBE and the concept of spokes, introduced by Leiserson

and Maley [35], to perform a constructive incremental routability check that results in a complying

geometric layout, if one exists. The works of Leiserson and Maley [35][44], and of Kong [31],

assume no constraint on the wiring model. Maley, in a later work [46], showed that in the special

case of polygonal grid-based wiring rules, the routability test can be performed in

time.

The topological representations mentioned in the literature fall roughly into two categories:

Triangulation Crossing Sketches (TCS) and Rubber-Band Sketches (RBS). TCS use a

triangulation of the routing area and capture the crossing of triangulation edges by nets’

RBS on the other hand represents the interconnect as flexible rubber-bands that bend and s

form the shortest possible connection of a given topology. The RBS representation was ori

proposed by Rivest (see acknowledgment in [35]). Leiserson and Maley formalized this conce

and called it the Rubber-Band Equivalent (RBE) [35] [44] [45]. As far as we are aware of, the on

rubber-band based router ever reported is SURF (Santa Cruz ULSI Routing Framework) [9] that is

the framework of this research. SURF is based on ideas and results presented by Leiser

Maley [35] [44] and it covers various aspects of rubber-band based topological routing inclu

global routing [63], multi-layer topological local routing (this research), representation

manipulation of RBS [8], optimization of an RBS (ROAR optimization, part of this researc

testing for routability in an RBS [10] [31], and transformation of an RBS to geometric layout [62].

An overview of SURF is presented later.

The flexible nature of topological representation makes it easier to move features

maintaining the connectivity and the topology of the wires. Murata and Kajitani [52] [53], and Su

[65] proposed algorithms for moving objects in TSC and RBS respectively. The flexibility o

topological sketches has also been used to solve the homotopic compaction problem. That is, to

find the smallest (area wise) layout that conforms to given homotopy, wire rules, and sp

O n nlog()

4

requirements. Maley [43] proposed a one dimensional compaction algorithm. His work was later

extended by [16] [45] [49] [66] [39] [13] and [25].

Several approaches for routing of multi-layer designs were discussed in the literature, including 3-

dimensional (3D) search, maximal-layer routing, and layer-assignment. The 3D search is an

extension of single-layer search algorithms such as maze-runner and line-probing that considers

layer crossings. In the maximal-layer approach, which is used for example by SLICE [29], the

layers are routed sequentially, trying to fit on each layer as much as possible of the missing

interconnect. The layer-assignment approach (survey in [26]) considers simultaneously all nets

and layers, and assigns nets or partial nets to the available layers.

Known methods for layer-assignment are usually classified as constrained or unconstrained (also

called topological). In a constrained layer-assignment, the geometric paths of the wires have

already been determined prior to the assignment and the assignment step only determines on what

layers they will be routed. In an unconstrained layer-assignment on the other hand, the actual wire

paths are not specified to the layer-assignment. In this research we adopted the unconstrained

approach because it does not commit in early stages of the routing to specific wire routes, and

therefore it is more likely to take advantage of the flexibility of the underlying topological

representation.

The concept of unconstrained layer-assignment was introduced by Hsu [24] and since then has

received a fair amount of attention in the literature. Hsu [24] and Marek-Sadowska [47] dealt with

two-layer problems where all the terminals are on the boundary of the routing area and the via

count is to be minimized, while guaranteeing planarity on each layer. This work was extended by

Haruyzama, Wong, and Fussell [20] to support multi-terminal nets. Sarrafzadeh and Lee [59]

showed that the via minimization problem is equivalent to the maximum 2-independent set

problem in a circle graph which is NP-complete. Pinter [54] proposed an algorithm that supports

terminals inside the routing area. It is based on a partitioning of the routing area into disjoint

regions called clusters such that the wires in each cluster can be routed on two layers without

crossing each other (i.e. each layer is planar). The algorithm then sub-optimally reduces the

5

r each

outing

ist on

at

h. This

to the

te

tempt

wire-

and it

as an

 cost

ss-talk.

ge of

r sub-

duced

of each

routed

 on a

ined for
problem into finding of a maximal cut in a planar graph, and this problem has a polynomial time

solution. The advances in VLSI and MCM which may utilize a significantly larger number of

layers resulted in published works that deal with multi-layers. Kiao, Lee, and Sarrafzadeh [36]

presented a polynomial algorithm for finding a maximal-weighted planar subset of multi-terminal

nets in a switchbox. This algorithm can be used to sequentially ‘peel’ maximal sets of nets fo

layer, assuming that all the terminals are on the boundary. If terminals do exist within the r

area, the algorithm has exponential complexity. Other works that restricted terminals to ex

the boundary include [6], [64], and [25]. Cho at al [4] proposed a layer-assignment algorithm th

handles terminals within the routing area and considers cross-talk, via count, and wire-lengt

algorithm which was developed independently, uses a net pair-wise cost function similar

one developed in our research (first published in [11]). His algorithm however, assigns comple

nets to layers and does not consider insertion of vias as our algorithm does.

Our layer-assignment algorithm (called LAA) is to our best knowledge, the first successful at

to perform topological layer-assignment with simultaneous minimization of via-count and

length. It scales well with an increasing number of layers, it supports multi-terminal nets,

handles terminals inside the routing area. The LAA models the layer-assignment

optimization problem with a cost function that considers via-count, and wire length. The

function can be extended to consider other routing goals such as preferred layers, and cro

The LAA supports rectilinear, octilinear, and any-angle wiring models, and it takes advanta

the flexibility of the underlying RBS.

The LAA decomposes the multi-layer routing problem into a set of independent single-laye

problems. Each single-layer problem specifies the terminals (which may include vias intro

by the layer-assignment) and nets or partial nets to be connected on that layer. The nets

single-layer problem are guaranteed by the LAA to be planar (i.e. they can be topologically

with no intersections). This kind of routing problem is often referred to as single-layer or planar

routing. Known methods for single-layer routing fall roughly into two categories of sequential

and simultaneous routing. In the sequential approach, nets are routed one-at-a-time, typically

least-cost path, considering the previously routed nets. The least-cost path can be determ

6

 more

d short

uting in

nd, the

al and

 for a

gy with

ngth

s from

proach,

duce the

is to

g

ential

nt in

gical
example by a maze-runner or a line-probing algorithm. A draw-back of sequential routing is its

sensitivity to the order in which the nets are routed. In some cases for example, the optimal

solution cannot be achieved by any order. Liao and Sarrafzadeh [38] addressed this problem with

an algorithm that applies the concept of global routing. It performs the least-cost path search on a

rough grid such that it makes decisions with a more global view. In simultaneous routing on the

other hand, all nets are routed at the same time and therefore no net gets higher priority than others.

This approach is used for example in SLICE [29] where it performs a single-layer routing in a

single plan sweep. SLICE’s approach is insensitive to the net order but is less likely to find

complex paths and to efficiently handle ‘keep-out’ areas due to its one directional sweep an

look-ahead.

In this research, we have focused on sequential routing for two reasons. First, the planar ro

SURF is done in a topological sketch and therefore is less sensitive to net ordering. Seco

planar routing is performed on relatively small regions called bins defined by the global routing

and therefore, any ‘bad’ decision made while determining the path of a net will have only loc

limited affect. Our router uses a net ordering algorithm that estimates the final wire-length

given order of nets, and a rerouting post-processor that searches for an alternative topolo

shorter wiring. The ordering and the planar routing algorithms considers the wire le

(Euclidean, rectilinear or octilinear) and are guaranteed to find a planar solution.

Another known concept which is used by our single-layer router is rip-up and reroute (RUR).

RUR is typically used to improve the completion rate and is performed by deleting some net

the sketch, routing a residual net, and then rerouting the deleted nets. A variant of this ap

that can be used by routers that are able to represent violations such as cross-over, is to re

number of conflicts between already routed nets. The main difficulty in performing RUR

determine which nets to delete and in what order to reroute them. Several works includin[58]

[61] [40] [7] [27] and [57] address this issue. The RUR approach is frequently used in sequ

routers to compensate for the sensitivity to net ordering. This problem is less significa

topological routing. For example, the Puzzle Problem mentioned in [27] requires a RUR approach

to be solved optimally by a geometrical router, but is easily solved optimally using a topolo

7

router because the wires are flexible and are pushed away to create clearance for new wires (Figure

1). Our router uses a RUR optimizer called ROAR that accepts a planar RBS and is guaranteed to

result in a planar RBS with the same or lower wire length. To determine which wires to remove

and in what order to reroute them, the algorithm uses the attachment relation between branches

and terminals in the RBS. The ROAR optimizer is described later in this thesis.

1.4 Contribution of this work

Our local router is the first ever published router that is based on rubber-band topological

representation. By taking advantage of the flexibility of the RBS, it can efficiently achieve high

quality layouts and to handle a wide range of routing problems. Our local router preforms the

routing in four steps: layer-assignment, net-ordering, net-embedding, and optimization. Our

contribution in each of these areas is outlined below.

Our unconstrained layer-assignment algorithm (LAA) uses a new approach in which the output of

the layer-assignment is unconstrained as well, that is, it does not specify the actual paths of the

wires but only what sub-nets are to be connected on what layers. This approach leaves more

freedom to the single-layer router and enables it to make more informed decisions. The layer-

assignment is formulated as an optimization problem with a cost function to be minimized. The

cost is based on an estimation of the final wire-length and supports user specification of the desired

balance between the conflicting goals of minimizing wire-length and via-count. The cost function

uses a continuous metric of the conflict between nets as opposed to the go-no-go approach

previously used. This enables the LAA to better utilize the routing resources by allowing nets with

low conflict to be assigned to the same layer. The cost function can be extended to support other

goals such as cross-talk minimization and constrained-layers. The cost function has a finite value

if and only if the assignment is planar and this enables the LAA to guarantee that the nets or partial

nets assigned to each layer can be routed on that layer without crossing each other. The LAA

handles multi-terminal nets and can break a net into multiple layers if this results in a more

desirable solution. The LAA handles terminals on the boundary and within the routing area and the

terminals are not restricted to be on a grid. If terminals do exist on the boundary, the LAA can

consider specification of layer-assignment done previously on the other side of the boundary. This

8

t-first’

ubber-

shortest

and

maller

 The

s used

m uses

s from

nd of

gorithm

ysis of
makes the LAA suitable for routing systems like SURF that perform global routing before the

layer-assignment. The LAA is not restricted to a one-layer-one-direction routing style and

supports Euclidean, rectilinear and octilinear wiring rules. It uses an algorithm (called 2NAA) that

optimally assigns a single two-terminal net, given a sequence of candidate locations for vias and

the assignments of previously assigned nets. We have compared our router to SLICE and the

experimental results show that it achieves better layouts, even when it is restricted to rectilinear

wiring rules.

Similar to the layer-assignment, our net-ordering algorithm is based on a formulation of net

ordering as an optimization problem with cost function to be minimized. The cost function

estimates the wire-length based on a pair-wise conflict between nets. The planarity of the order is

handled by the Planarity Operator that, given a net ordering, finds an order of the same cost that is

guaranteed to be routed with no net crossings. Experimental results show that our net ordering

algorithm reduces the wire length by 5% and 30% in average compared to the ‘shorter-ne

and ‘longer-net-first’ approaches respectively.

Our net-embedding algorithm performs a shortest path search in the RBS and is the first r

band shortest path algorithm ever reported. The search algorithm is guaranteed to find a

planar path in time where and are the number of terminals

number of wire segments respectively in the RBS. The algorithm can be modified to use a s

search graph and to find a planar path that is likely to be short in time.

shortest-path algorithm is also used in our rip-up and reroute algorithm (called ROAR) that i

to compensate for dependency of the generated layout on the net order. The ROAR algorith

the ‘attachment’ relationship between wires and terminals that is unique to the RBS.

We also present a formulation that maps the concept of RBS into known mathematical term

geometric and real analysis. This clarifies the definition of the RBS as being both planar a

zero spacing. The formulation is used to prove the correctness of the shortest planar path al

using exact mathematical tools. To our best knowledge, this is the first time an exact anal

RBS is published.

O T
2

S+() T S+()log() T S

O T S+() T S+()log()

9

of the

the

xact

nnect.

sing a

nals of
2 OVERVIEW

In this chapter we present an overview of topological representation of the interconnect and an

overview of the SURF routing system. This introduces the terms commonly used in topological

routing and explains the context in which the proposed local-router is used.

2.1 Topological Representation and Routing

A topological sketch represents the embedding of nets in an abstract form. It contains the general

relationship of the nets and terminals but ignores details such as the exact geometrical paths of the

nets. This ‘partial’ representation avoids making too detailed decisions in early stages

routing (Figure 1) and provides greater flexibility in manipulating the sketch. When

topological routing is completed, it is then transformed into a geometrical layout with e

location of the wires.

In the rest of this section we present an overview of topological representation of the interco

The discussion is limited to single-layer sketches. Multi-layer sketches can be constructed u

set of single-layer sketches and some specification of the layer crossings between termi

1

2

3

a b

FIGURE 1 - The Puzzle problem. (a) shows an optimal solution to the Puzzle
example proposed in [27]. The example has three nets that are routed in the order
1, 2, 3. A typical geometrical router that routes the nets sequentially on a shortest
path will fail routing net 3 because there is not enough clearance between the
previously routed nets 1, 2 and the two internal terminals. A topological router on
the other hand (b) can easily insert net 3 since no commitment was done on the
exact geometrical paths of nets 1, 2.

1

2

3

10

 a set

idth and

imal set

s

anch is

ic line

nd-

cision

nar, it

,

-wise

ut not

,

e

of ,

re

 , to
adjacent layers. For clarity, we deal here with a simplified model of the routing that includes only

terminals and nets. Obstacle or ‘keep-out’ areas can be handled in a similar way.

2.1.1 Sketches and Topological Classes

A geometric sketch (sketch in short) represents the exact paths of the interconnect. It includes

of terminals, each has a unique point inside or on the boundary of the routing area, and branches,

each a connection between a pair of terminals. The terminals and the branches have zero w

they represent the centers of the pads and the center-lines of the wires respectively. A max

of terminals interconnected by branches is called a net or component. The branches and terminal

of a component are assumed to have no cycles (i.e. the components are trees). A br

represented by a path connecting its two end-terminals. A branch path is a parametr

, where , and is a point on the plane, such that the two e

points of the path, , are the locations of the end-terminals of the branch. The de

which of the two end-points of a branch represents is arbitrary. A branch path is pla

does not cross itself, terminals, or other paths, except for possibly at its end-points ,

and is strictly contained inside the routing area. The function is continuous and piece

differentiable.

Let , be two sketches with identical sets of terminals and same branch connectivity (b

necessarily the same paths), and let , be the vectors of branch-paths of

respectively. We say that sketch is homotopic [35] to sketch , or that ‘has the sam

topology’ as , if there is a continuous transformation from the paths of to the paths

, , such that , ,

, , and all the intermediate sketches, when , a

planar. Intuitively this represents a continuous co-deformation of the branches of sketch

achieve those of sketch , while maintaining their end-points and their relative locations (Figure

2).

P t() xt yt,()= t 0..1[]∈ xt yt,()

P 0() P 1()

P 0()

P 0() P 1()

P t()

A B

<Ai t()> <Bi t()> A B

A B A

B A B

T r() <Pi r t,()>= r 0..1[]∈ Pi 0 t,() Ai t()= Pi 1 t,() Bi t()=

Pi r 0,() Ai 0()= Pi r 1,() Ai 1()= 0 r 1< <

A

B

11
The homotopic relation between sketches is reflexive, symmetrical, and transitive, and therefore it

partitions the set of all possible sketches (of same terminal set and branch connectivity) into

equivalence classes called topology classes (classes in short).

The wire length of a given sketch is defined as the sum the lengths of its branches. A topology

class does not necessarily have a sketch of minimal length. That is because shorter wiring requires

smaller spacing but when the spacing reaches zero, the sketch is non-planar and therefore it is not

a member of the class, nor is it a valid sketch (Figure 3). Each class however has a upper lower

bound (ULB) on its wire length. That is, for every class, there is such that the wire length

of all the sketches in the class , and for every , there is a sketch in the class whose wire

length . Informally, the neighborhood of sketches whose wire length are at the

infinitesimally small neighborhood of is called the kernel of the class. The kernel of a class is

significant because it contains the more desirable solutions with shorter wires.

A topological sketch represents a subset of a topology class. It can represent a single sketch, the

entire class, or a subset of it. It is possible to have the agreement that a topological sketch which

represents directly a subset of a class, also represents indirectly the rest of the sketches in that

class. In an extreme example, a geometrical sketch can be used to represent its entire class. This

sketch represents directly only a single member of the class (itself) and represents indirectly the

a b

FIGURE 2 - Homotopic sketches. The two sketches are homotopic since they
have the same sets of terminals, their branches represent the same connectivity,
and one can be continuously transformed to the other while preserving the
planarity and the end-points of the branches

L L 0≥

 L≥ ε 0>

 L ε+<

L

12

rnel of
rest of the class. In this discussion, unless explicitly specified otherwise, we will consider only

direct representation.

2.1.2 Triangulation Crossing Sketch (TCS)

A pure topological sketch represents directly all the sketches of the class. We are not aware of any

pure topological representations proposed in the literature, and it is even questionable if such

representation would be useful for routing. An example of a topological representation, which is

not pure, is the Triangulation Crossing Sketch (TCS) that represents directly only a subset of the

topology class. The TCS uses an arbitrary triangulation of the terminals, and for each triangle, it

specifies the connectivity of the nets crossing the triangle edges and of the terminals on its corners

(Figure 4). The TCS does not include exact specification of the locations of the edge crossings and

it indicates only their relative order along the triangulation edges. The TCS represents the subset of

the topology class that includes sketches having the same pattern of edge crossing and the same

connectivity in each triangle. A TCS represents its class with no ambiguity but is not unique. A

topology class may have more than one TCS representing it, even for a given triangulation. A

useful canonical version of the TCS is when the total number of crossings is minimized. This

representation, called Triangulation Crossings Normalized Sketch (TCNS), is unique for a given

topology class and triangulation. The TCNS is useful because it is more ‘focused’ on the ke

FIGURE 3 - Minimal length sketch. The topology class that contains the
sketch in (a) does not have a sketch of minimal length. To further reduce the
length of the sketch in (a) , the spacing between the branch and the terminal
need to be reduced. However when the spacing reaches zero, the sketch looses
its planarity (b) and therefore it is not a member of the class, nor it is a valid
sketch.

a b

13

is the

logy

ology is

that

er of it.

sed to

ting it.

etrical

 final
the topology class and the set of sketches it represents include the sketches whose wiring lengths

arbitrarily close to the upper lower bound.

2.1.3 Rubber-Band Sketch (RBS)

An alternative representation which is even more ‘focused’ on the kernel then the TCNS

Rubber-Band Sketch (RBS). Informally, RBS represents the shortest possible wiring of a topo

class. That is, when wires are as short as possible, zero spacing is allowed, and the top

preserved (Figure 5). If the class has a member of minimal length than its RBS is exactly

member. Otherwise, the RBS represents the kernel of the class but not any specific memb

Later in this thesis, we present a formal definition of the RBS and show how it can be u

prove properties of the RBS. Similar to the TCNS every class has a unique RBS represen

The RBS is more specific than the TCNS in the sense that it contains more geom

information. The RBS provides better estimation than the TCNS of the properties of the

layout such as wire length, signals delay, and cross-talk.

FIGURE 4 - The Triangulation Crossings Sketch (TCS). This
topological representation captures the crossings of the triangulation
edges by the branches (for a given triangulation of the terminals). The
TCS represents the connectivity of the paths within each triangle
without specifying exact locations of the edge crossings or the paths
inside the triangle. The shaded area indicates a typical triangle and the
arrows indicate the net crossings of the edges of this triangle. This
sketch is not a TCNS because the number of crossings can be reduced
(at the location marked by ‘x’) while preserving the topology.

x

14
2.1.4 Routability Tests

A topology class is said to be routable for given spacing requirements if it has a member sketch

that satisfies those requirements. Leiserson and Maley [35] [44] proposed a necessary and

sufficient condition for a topology class to be routable. The condition is based on the notion of cuts

and their capacity and flow. A cut is a line segment connecting two terminals that does not cross

any other terminal. The capacity of a cut is the distance between its end-terminals (using the metric

appropriate for each design), and its flow is the sum of the spaces needed to satisfy the spacing

requirements along the cut. This includes the widths of the branches crossing the cuts, the radius of

the end-terminals, and the required spaces separating the branches and the end-terminals. A cut is

said to be overflowed if its flow is greater than its capacity. Note that the set of cuts and their

capacities is independent of the sketch or topology class while the flow is specific to a given

sketch. By Leiserson and Maley [35] [44] a topology class is routable if and only if it has a

member sketch that none of its cuts is overflowed. Note that the criteria holds for the topology

class and not for a specific sketch, a sketch can has no overflowed cuts and yet not satisfies the

spacing requirements. Leiserson and Maley also showed that a class is routable if and only if the

sketches of its kernel (the term Rubber-Band Equivalent was used there) are routable, and this

again shows the significance of the kernel.

An alternative approach for routability test that is used by SURF [31] is to extend the RBS using

spokes [35]. Spokes (Figure 6) are artificial terminals which are added to the RBS to enforce the

a b

FIGURE 5 - Rubber-Band Sketch. (a) shows an arbitrary member of a topology
class and (b) shows the RBS of that class.

15
desire spacing. The addition of spokes modifies the RBS such that the new RBS, which is called

extended rubber-band Sketch (ERBS), has a super set of the terminals of the original RBS. The

branch paths in the ERBS satisfy the spacing requirements if, and only if, the topological class

represented by the RBS is routable. Furthermore, the paths of the branches in the ERBS, represent

a minimal length member of the topological class of the RBS that satisfies the spacing

requirements. This member represents, in the case of Euclidean metric routing, the final

geometrical embedding. In case of rectilinear or octilinear routing, a conversion step called

geometrical transformation [62] is required to find the minimal length member of the class that

complies with the wiring rules. The advantage of testing for routability using spokes is that this

method is constructive and it results in a sketch that satisfies the spacing requirements, while the

flow/capacity criteria merely indicates if such a sketch exits.

The extended ERBS is an example how an RBS can also be used to represent arbitrary piece-wise

linear geometrical sketches by the addition of artificial terminals along the branches. Sketches of

this kind do not contain attachments of branches to terminals and they represent exactly a single

member of their topology classes. This technique can be used for example to represent rectilinear

geometrical sketches (Figure 7). This demonstrates the flexibility of the RBS and its support for

step-wise refinement routing.

FIGURE 6 - Spokes and ERBS. The RBS at (a) has zero spacing between the
branches. To achieve the required spacing, the RBS is extended into an ERBS (b)
by the introduction of spokes. The paths of the branches in (b) are also the paths of
a minimal-length sketch in the topology class of (a) that has the required spacing.
The spokes in this example are for rectilinear metric.

a b

16
2.1.5 Topological Routing

The problem of topological routing can be formulated as follows: given net-list and spacing

requirements, find a topology class with the connectivity specified by the net-list, that has a

member of minimal wiring length that satisfies the required spacing. A solution to the topological

routing problem can be specified in various ways including the forms of topological sketches such

as TCS, TCNS, or RBS, or by an arbitrary geometric sketch of that class. Since there are known

efficient methods to convert between all those forms, any of the these representations is as good as

the others.

Given a topology class that has a member with the required spacing, the final result of the

embedding problem is a member of that class that satisfies the spacing requirements and has

minimal wiring length. Such a sketch can be found mechanically, given its topology class, for

example by extending the RBS with spokes. The conversion from a topological class to a member

of it with shortest wiring length that satisfies the spacing requirements has optimal polynomial-

time algorithms. Therefore, the main difficulty in routing a design is finding the topology class of

the solution. This observation supports the approach of topological routing because it focuses on

the core problem and ignores geometrical details that can be determined later mechanically.

FIGURE 7 - Rectilinear ERBS. This example shows how an RBS can be used to
represent a geometrical piece-wise linear sketch. The RBS in (a) is extended to (b)
by the addition of artificial terminals to have the require spacing and rectilinear
wiring model. This representation of the geometrical sketch provides flexibility in
manipulating the sketch.

a b

17

mbles

n about

asier to

t of the

ment

sign is
A topological router is an algorithm that solves the topological routing problem. However, since

every router (such as a maze router which is usually considered to be a geometrical router) solves

the topological routing problem, we usually use this term only for routers that use topological

representation and avoid making exact geometrical decisions at early stages of the routing. SURF

for example is based on a topological router that uses RBS representation in the intermediate

stages of the routing.

2.2 SURF Routing System

2.2.1 Introduction

SURF is a routing system developed at University of California, Santa Cruz that uses the

topological local router presented in this thesis. SURF was designed to address some of the

challenges of routing thin-film MCM substrates, including handling of large problems efficiently,

conforming to a variety of non-traditional wiring geometries, supporting performance and

production-cost constraints, and providing powerful manual editing in a gridless environment. In

order to meet these needs, SURF adopts new routing strategies based on an efficient rubber-band

representation. Although it is designed primarily for routing MCM, the same approach can easily

be applied to other area-routing problems such as sea of gates, printed circuit boards, and VLSI.

Because existing routing systems generate precise geometry for nets one at a time, they lack the

flexibility and global view required to solve the problems mentioned above. The main strategy of

SURF is to transform the net-list to geometrical layout by a series of refinements. At each step,

the solution becomes more precise—more information is acquired and it more closely rese

the final result. Because the earlier stages are not swamped with unnecessary informatio

precise routing geometries, they can address more global concerns. This also makes it e

correct mistakes at earlier stages as more detailed information is discovered. Another aspec

SURF strategy is to allow localized overflow regions or constraint violations during the refine

process. These are then used to direct the refinement of the layout until a final correct de

reached.

18
SURF models the interconnect using a rubber-band sketch (RBS) (Figure 8a) for each layer. The

end-points of the rubber-bands may represent terminals, vias, or junction points. If an end-point is

moved, the wires automatically stretch and move as would an elastic rubber-band. This rubber-

band model also supports efficient and precise routability and design-rule checking.

To improve the efficiency of rubber-band updating, each layer of the sketch is built on top of a

triangular mesh. This mesh is maintained using an incremental constrained Delaunay triangulation

algorithm. In addition to providing incremental triangulation modifications, it supports efficient

geometrical queries such as point location, nearest neighbor, and range search [41][42]. Since the

size of the triangulation is linear in the number of terminals in the sketch, this data structure is

more space efficient than a traditional grid-graph.

2.2.2 Layout Refinement Strategy

The SURF routing approach is divided into two major steps (Figure 9a): (1) topological routing

that transforms the net-list into a topological wire description in a form of a multi-layer RBS, and

FIGURE 8 - Rubber-Band routing example. This figure shows various wiring
patterns that are topologically equivalent. These patterns correspond to different
stages of the transformation from rubber-band sketch to precise geometric layout.
Figure (a) shows a rubber-band sketch, (b) shows the extended rubber-band
sketch after spoke creation, and (c) shows the rectilinear wiring.

a cb

19
(2) geometrical transformation that converts the RBS into precise geometrical layout

[9][10][62][63].

The RBS is generated in three steps (Figure 9b) of global routing, local routing, and global

optimizations. The global router (Figure 10) uses hierarchical partitioning to divide the original

problem into a set of smaller sub-problems [37][48][9]. The purpose of the global routing is to

produce an initial rough routing that loosely specifies the route of each net. When processing a

partition, the global router analyzes all nets simultaneously. As a result, it does not suffer from the

ordering problems of sequential net routing. Also, because it uses a top-down divide-and-conquer

approach, the global routing is produced relatively quickly. Once the global router has partitioned

the original problem, the multi-layer topological local routing is performed on each of the sub-

FIGURE 9 - SURF routing strategy. This figure shows a hierarchical
decomposition of SURF routing stages with focus on the local-router presented in
this thesis. The shaded blocks represent routing steps covered by this research. At
the top level (a) SURF has two routing stages, the topological routing which
generates a multi-layer RBS and the geometrical transformation that converts the
RBS to a geometrical layout. The topological routing (b) is done in three steps of
global-routing, local-routing, and global-optimizations. The local router (c) routes
each bin independently. This is done in two steps of layer-assignment and then a
planar routing of each bin-layer. The planar routing is done in four steps (d) of
decomposing the nets into single-layer point-to-point connections (called 2-Nets
of branches), ordering the 2-Nets, sequential routing of the 2-Nets, and
optimizing the sketch using the ROAR optimizer.

Global Routing

a

Routing
Topological

Optimizations
Global Transformation

Geometrical

b

Net Ordering

Net Embedding
Sequential

Decomposition
Net

Optimization
ROAR

Assignment
Layer

c d

SURF

Local Routing

Planar Routing

20

 SURF
problems and when the local routing of each sub-problem is done, solutions are merged to form a

global RBS. The RBS is then optimized for various goals such as reducing wire-length, and

improving the production yield (even wire distribution).

The topological multi-layer local router (which is the subject of this research) routes the bins

generated by the global assignment. Each bin represents a multi-layer routing problem of a

relatively small area of the design. The local routing is done in two steps (Figure 9b) of layer-

assignment and then a planar-routing of each bin-layer.

The layer-assignment phase takes the net-list for a single multi-layer sub-problem (a bin) and, by

adding vias, partitions it into a set of single-layer routing problems called bin-layers, one for each

layer. This layer-assignment is unconstrained since it occurs before any detail or local routing is

done. This allows for much greater flexibility. In constrained layer-assignment, when two wires

cross each other, they are treated as ‘conflicting’ and must be put on different layers. Since

FIGURE 10 - Global routing. The global routing step partitions the routing
problem into bins and finds rough routes for each net. A typical net is shown. Note
that the global router determines the location at which the nets cross the bin
boundaries but not their paths or topologies within the individual bins.

a b

21

onflict

e same

erative

steepest

duction

ers is

yer

m

are

g and

d the

asily be

When

rther

to a

metry.

dth

en-

t is

ar

ase is a
performs layer-assignment prior to the creation of actual rubber-band paths, it can treat conflict as

a continuous value instead of a boolean one (a ‘go/no-go’ approach). The amount of c

between two nets is an estimate of the detour length required to route those two nets on th

layer. SURF uses a cost function that balances detour against via cost to perform an it

layer-assignment process. This process starts with an initial assignment and then uses

descent to reach a final solution. At each step, the connection that allows the largest cost re

is reassigned.

When layer-assignment of a bin is completed, a planar routing of each of the bin lay

performed. This is done (Figure 9d) by decomposing the nets of each bin layer into single-la

point-to-point connections (called 2-Nets of branches), ordering the 2-Nets, and then routing the

sequentially within the bin layer. At this stage, the difficulties of sequential routing

significantly reduced. There are two reasons for this. First, by determining a rough routin

breaking the original problem into bins of relatively few nets, the global router has reduce

magnitude of the problem. Second, because rubber-bands are flexible, a later branch can e

inserted between two previous branches without the need for explicit shoving or rerouting.

the sequential routing is done, each bin-layer is optimized by the ROAR optimizer to fu

reduce the total wire length.

After the rubber-band sketch is created by the topological router, it is transformed

topologically equivalent form that maintains the proper spacings and obeys the proper geo

An efficient process called spoke creation checks the routability of a sketch and satisfies the wi

and spacing constraints [35][31]. This process pushes wires away from fixed objects with op

ended line segments called spokes (Figure 8b). The number of spokes required at each poin

related to the final geometry (Figure 11). Rectilinear wiring uses up to four spokes and octiline

uses up to eight. If no spacing violations are detected, the result of the spoke creation ph

legal arbitrary-angle routing called an extended rubber-band sketch (ERBS).

22
The extended rubber-band sketch has a shorter wire length and fewer jogs than the corresponding

rectilinear or octilinear routing. However, if other CAD tools or the fabrication process requires a

more restricted wiring pattern, an extended rubber-band sketch can easily be converted to either

rectilinear (Figure 8c) or octilinear wiring. This conversion can be done with two plane sweeps.

The first sweep transforms the sketch to the proper geometry and the second removes unnecessary

jogs [62].

2.2.3 Routing Examples

In this section we present a few SURF generated layouts that demonstrate its capabilities. Because

of space limitations, only relatively small examples are shown. SURF, however, has been used to

route much larger designs with tens of thousands of nets.

Figure 12 shows an octilinear routing of a two-layer mixed-signal MCM. Figures 13, 14 and 15

show three layouts of the same MCM layer using rectilinear, octilinear, and Euclidean wiring rules

respectively. These three examples were intentionally routed to have the same layer-assignment

and wire topology and to differ only in the wiring rules. In the general case however, changing the

wiring rules affects the layer-assignment and wire topology because it affects the cost function of

FIGURE 11 - Spokes. The spokes are used to enforce the required spacing. (a)
shows a terminal in the RBS and (b) and (c) show the same terminal with
rectilinear and octilinear spokes respectively. In case of any-angle routing, SURF
uses the octilinear spokes as an approximation to the arc required for pure
Euclidean routing. This enables to produce the layout with standard
manufacturing equipment.

a b c

23
the assignment and the distance metric used by the shortest-path algorithm. Finally, Figure 16

shows a layer of a larger MCM with octilinear wires.

FIGURE 12 - Mixed Analog/Digital. This figure shows an octilinear layout of a
two-layer mixed analog/digital consumer product.

24
FIGURE 13 - Rectilinear Routing. Rectilinear (Manhattan) layout of an MCM layer.
The same layer is shown in Figure 14 and Figure 15 with octilinear and any-angle
wires respectively.

25
FIGURE 14 - Octilinear Routing. This is the same layer shown in Figure 13 but
with octilinear wires.

26
FIGURE 15 - Euclidean routing. This example shows the same layer in Figure 13
but with euclidean (any-angle) routing.

27
FIGURE 16 - Larger routing example. This figure shows a layer of a larger MCM
routed with octilinear wiring rules.

28
3 TOPOLOGICAL LAYER-ASSIGNMENT

3.1 Introduction

The first routing step our topological local router performs is the layer-assignment. The layer-

assignment accepts a bin routing problem, which includes the placement of the terminals, and the

net-list inside the bin, and generates a set of single layer sub-problems, one for each layer. These

sub-problems are then solved independently by later steps of the local router and merged back to

form the final solution. Figure 17 shows the relationship between the design, the bins, and the

single layer sub-problems.

Figure 18 shows an example of a layer-assignment and routing of a bin. The set of input terminals

the layer-assignment accepts includes both terminals specified in the design input and cross-points

defined by the global router on the bin border. Each cross-point specifies the place where a net

crosses from one bin into another. The set of cross-points on a boundary between two bins

represents the interface between the two bins. The layer-assignment partitions the input nets into

single-layer sub-nets called components which are the input nets of the single-layer routing

problems. When doing so, the layer-assignment may introduce layer crossings called vias, which

define the interfaces between single layer sub-problems on adjacent layers.

FIGURE 17 - The two level decomposition of a routing problem. First, the global
router partitions the routing area into bins and then the layer-assignment
decomposes each bin into a set of single-layer routing problems.

Bin

Layer

Entire Design

29

it must

hion. In

 short

nment

es the

alf layer’
The layer-assignment step does not determine the exact geometrical locations or even the

topologies of the traces—it leaves these decisions to later stages of the routing. However,

guarantee that each layer of the assignment it produces can be routed in a planar fas

addition, it should choose an assignment that allows a final routing that has few vias, and

wiring length1.

The rest of this chapter describes the details of the layer-assignment. First the Layer-Assig

Problem is formulated as an optimization problem, then an algorithm is presented which solv

problem, and finally experimental results of automatic routing are presented.

1. The layer-assignment can be extended to consider other goals such as the ‘one and a h
routing presented later in this thesis.

FIGURE 18 - An example of a bin layer-assignment and routing. The net list in (a)
is decomposed by the layer-assignment into two single-layer routing problems (b)
and (c) respectively. These sub-problems are then routed as shown in (d) and (e)
respectively and then merged together to form the final two layer routing (f). The six
nets in (a) are decomposed by the layer-assignment into eight components, four on
each layer. The assignment defines two vias (‘V’) and a single Steiner point (‘S’).

fed

6.2

4.2

2.2

6.2

3.2

5.2

4.2
2.2

c

3.1

4.1

5.1
1.1

3.1

1.1

1.1

1.1

b

6

34

5

2

6

1

3

5

4

21

1

a

5.1

4.1

5.2

v

vv
v

30
3.2 The Layer-Assignment Problem

The Layer-Assignment Problem (LAP) is formulated as a minimization problem with a simple and

useful objective function, which can be computed efficiently. A minimization problem is defined

by three components, an input domain of problem instances, a possibly empty output domain of

feasible solutions, and a cost function to be minimized. The next three sections defines these three

components of the LAP.

3.2.1 The Input Domain

Definition 1 (LAP Instance) An instance of LAP is specified by the 5-tuple ,

where:

l is a rectangle on the routing plane representing the bin routing area.

l , is the number of available layers which defines a set of layers . The layers

are oriented such that layer is said to be above layer if .

l is a set of input terminals, where each terminal is specified by its loca-

tion in the routing area . includes the actual terminals of the design as well as the cross-

points defined by the global router over the bin boundary.

l is a function which maps each input terminal to a possibly empty set of layers on

which the terminal is said to exist prior to the assignment. For terminals, it is the set of layers on

which the terminal is required to have pads. For cross-points it is the set of layers to which the

cross-point has already been assigned in previously routed bins. is contiguous, that is, if it

includes layers and , , then it includes every layer , in between the two. This

information of pre-existing layers is used by the layer-assignment to reduce the number of vias.

l is the input net-list. It is a partition of the input terminals into subsets called nets

of terminals to be interconnected.

The input of an LAP does not include any specification of wire widths, spacing requirements, or

dimensions of the terminals. The layer-assignment considers only planarity and leaves the

handling of congestion and routability to later steps of the routing process. This can lead to

P B n T
·

E
·

N
·

, , , ,〈 〉

B

n 2≥ L l1 .. ln{ }=

li lj i j>

T
·

t·i{ }= t·i x y,〈 〉=

B T
·

E
·
: t·i() 2

L→ t·i

E
·

t·i()

li lj i j< lk i k j< <

N
·

n·i{ }= T
·

31
situations where a routed layer has design rules violations. This case is analogous to a less than

100% completion-rate with a geometric router. In both cases, the designer is required to complete

or rectify the routing manually.

3.2.2 The Solution Domain

Definition 2 (Feasible Solution) A feasible solution to is specified by ,

where:

l is a set of output terminals where each output terminal is specified by a

unique location in the routing area . is a super set of , it includes all the input terminals as

well as any vias introduced by the layer-assignment.

l is a function1 which maps each output terminal to a set of layers on which the ter-

minal exists after the assignment. An output terminal exists on a layer if it is connected on that

layer, if it crosses that layer or if it represents an input terminal that already exists on that layer.

Similar to , the set is contiguous.

l is a set of output net-components (components in short), each of which is a set of ter-

minals to be interconnected on a specific layer. A component is specified by ,

the set of terminals to be connected and , the layer on which to connect the terminals. The out-

put components defines the net-lists for the individual single layer sub-problems.

To be considered feasible, a solution needs to satisfy the following conditions:

l If an output terminal represents an input terminal then it exists on all the layers on which

the input terminal exists .

l Any pair of output terminals which represent a pair of input terminals is to be connected (defined

below) if and only if both input terminals belong to the same input net. Informally, a pair of out-

put terminals is said to be connected if the solution specifies that they should be connected

directly or indirectly by a sequence of vias and traces. Formally we define it recursively. A pair

1. This function can be implicit as it can be computed from , and .

S P S T̂ Ê Ĉ, ,〈 〉=

T̂ t̂i{ }= t̂i x y,〈 〉=

B T̂ T
·

E:ˆ T̂ 2
L→ t̂

T̂ Ĉ

E
·

Ê t̂()

Ĉ ĉi{ }=

ĉi t l,〈 〉= t T̂⊆

l

S

T̂i T
·
j

E
·

Tj
·() Ê T̂i()⊆

S

32
of output terminals is considered to be directly connected if the two output terminals belong to

the same component, or if they are vias at the same location (on different layers). A pair

of output terminals is said to be connected if it is directly connected or if there exists a third out-

put terminal , such that both pairs and are connected.

l If a component connects an output terminal on layer then should exists on layer ,

.

l Finally, the output components can be topologically routed inside the bin area without crossing

each other. This is the planarity property (discussed below).

A solution is planar if all the components on each layer can be routed entirely on that layer, inside

the bin area, without crossing any two. Note that violations of this requirement can only occur if a

component connects two or more points on the boundary of the routing area thereby partitioning

the routing area into two or more disconnected regions (Figure 19). The layer-assignment is not

required to find a planar routing but just to guarantee that the such a routing exists for its solution.

A solution to a LAP specifies the terminals and the components on each layer. It does not specify

however the exact geometry or topology of the connections. These decisions are determined by

later stages of the routing.

a b,{ }

c a c,{ } b c,{ }

t l t l

l Ê t()∈

FIGURE 19 - An example of non-planar layer-assignment. (a) and (b) represent
two solutions for the same layer-assignment problem. The black and gray lines
represents a pair of points to be interconnected on different layers. Solution (a) is
not feasible as it is not planar. The components specified by it can not be routed
inside the bin without crossing each other. Solution (b) which uses an extra via is
planar and thus feasible.

a b

33

ne and

 wires

nce

ns for
3.2.3 The Cost Function

The cost function maps a feasible solution of to a non-negative real number that indicates the

relative cost of the solution such that more desirable solutions have lower cost.

Ideally, should directly reflect the properties we prefer to have in the final layout. These

properties can vary widely, depending on the design requirements. In this thesis we focus on two

goals: minimizing the number of vias and minimizing the total wire length1. By making simple

modifications to the cost function we can address other goals such as preferred layers or “o

a half” routing as presented later in this thesis.

The two goals are inherently conflicting as reducing the number of vias may require longer

to detour around other nets (Figure 20). So the cost function is defined as a weighted bala

between the two. If is a feasible solution of , the cost is formulated as follows:

(1)

where:

l is the total number of vias in

1. Unless specified otherwise, we assume a Euclidean metric for wire length. Modificatio
rectilinear and octilinear wiring rules are discussed later in this thesis.

C P

C

FIGURE 20 - Minimizing the via count vs. minimizing wire length. Both (a) and
(b) are solutions of the same routing problem. Solution (a) minimizes the
Euclidean wire length but has three vias. Solution (b) minimizes the number of
vias but results in longer wiring.

a b

S P C S()

C S() αV S() 1 α–()W S()+=

V S() S

34
l is an estimate of the total wire length of (explained below).

l is a user controlled parameter which indicates the relative importance of the two goals

for the routed design. The setting of this parameter depends on the requirements of the specific

routed design and is done based on the experience of the user.

The value is well defined and can be calculated precisely from . on the other hand

requires a more precise definition since the actual wire length depends on the router and does

not imply any specific routing. Logical solutions for might seem to be either the wire length

obtained by routing with either a perfect router (that guarantees an optimal solution) or with the

actual router used in the subsequent single-layer routing phase. However, if needs to be

computed efficiently during the layer-assignment process, such a choice would be impractical. To

overcome this problem, we define as an estimation function which can be computed

efficiently and is still closely related to the actual length. Our choice of estimation function is

validated by experimental results presented later in this thesis.

Let be a component in assignment and its embedding in some routing of . We define

three values related to the length of , the basic length, the actual length and the detour length

(Figure 21):

Definition 3 (Basic Length) The basic length is the length of the minimum Steiner tree of

the terminals of . This is minimum wire length among all the possible interconnects of the .

Definition 4 (Actual Length) The actual length is the length of .

Definition 5 (Detour Length) The detour length , is the extra length of

the traces of beyond the basic length of .

Note that the basic length can be computed solely from , while the actual and the detour lengths

depend on the choice of the actual routing . These three length metrics are also applied to

individual input nets and to the entire net list.

W S() S

0 α 1≤ ≤

V S() S W S()

S

W S()

S

C

W S()

c S c S S

c

W0 c()

c c

W c() c

D c() W c() W0 c()–=

c c

S

S

35
Using these metrics, the actual wire length of can be represented as:

(2)

where and are the sums of the basic and the detour lengths respectively of the

components of .

This form suggests a similar representation for the estimation of the wire length of when is to

be routed with an unspecified router:

(3)

Where is the precise value of the basic length of the components in and is some

estimation of the detour.

The detour estimation we use is based on the concept of conflict between pairs of

components assigned to the same layer. Figure 22 shows three examples of pairs of components.

In the first case we say that they have no conflict because they can be co-routed such that the

lengths of their wires equal their basic lengths. In the second and third examples, the components

have low and high conflicts respectively. The concept of conflict provides a continuous metric

which allows components with low conflict to be placed on the same layer.

FIGURE 21 - The basic, actual, and detour lengths of routed components. The
basic length of the component is . Its actual length is
the distance the length of its traces and its detour is the difference between its
actual and basic lengths which is the difference between the length of the trace

 and the distance .

a b c, ,{ } a b,() b c,()+

a b,{ } a b,()

a

d

e
b

c

S

W S() W0 S() D S()+=

W0 S() D S()

S

S S

W S() W0 S() D S()+=

W0 S() S D S()

D S()

36
Formally, the conflict between a pair of components is defined as follows:

Definition 6 (Conflict) Let , be components. Let be the length of an optimal routing of

 and inside the bin, independent of other components1. The conflict is the

minimum pair-wise detour, that is: . Note that is

zero if the components are assigned to different layers. If , cannot be routed inside the bin

without crossing each other, the conflict is .

 represents precisely the detour in the case of two components. To estimate the detour of the

entire assignment, we use a sum of the pair-wise conflicts of the components:

(4)

1. A routing of a component is assumed to be embedded solely on the layer to which it was
assigned.

FIGURE 22 - Conflict between pairs of components. (a), (b), and (c) are three
pairs of components assigned to the same layer and (d), (e), and (f) are their
optimal embeddings respectively, ignoring any other component. The pair in (a)
has zero conflict while the (b) and (c) have low and high conflict respectively.

a b c

d e f

ci cj W∗

ci cj H ci cj,()

H ci cj,() W∗ W0 ci() W0 cj()+()–= H ci cj,()

ci cj

∞

H

D S() H ci cj,()

ci cj, Ĉ∈

∑=

37
By combining the detour estimation function from (4) and (1) and (3) we end up with the final

cost-function:

(5)

3.2.4 Properties of the cost function

The cost function is a linear combination of two functions of , and , which represent

the exact number of layer crossings in and the estimation of wire detour length in

respectively, plus a value which is a constant for a given problem and thus does not

have to be considered when minimizing the cost. is a non-negative function. It is zero when

the components in the solution do not intersect at all and tends to give higher values when the

actual detour is higher. Note that is not a lower or upper bound of the actual detour nor can

its error be bounded by a constant. This is because considers only the conflicts between

pairs of components and ignores the dependency between different pairs. Figure 23 shows two

examples, one with an underestimated detour and another with an overestimated detour. Figure 24

shows an example where the estimated detour can be arbitrarily high while the actual detour is

bounded. A large number of experiments however show a close correlation between the estimated

and the actual detour. The results of some of those experiments are included later in this chapter.

C S() 1 α–()W0 S() αV S() 1 α–() H ci cj,()

ci cj, Ĉ∈

∑+ +=

S V S() D S()

S S

1 α–()W0 S()

D S()

D S()

D S()

38
FIGURE 23 - Pair-wise conflict vs. the actual detour. The pair-wise conflict is
neither an upper bound nor a lower bound on the actual optimal detour. In (a) the
horizontal component conflicts with the two vertical components, resulting in
overestimation of the detour compared to the actual routing in (b). In (c) the
horizontal component conflicts only with one component but in the actual routing
(d) it conflicts also with the diagonal component, which results in underestimation
of the detour.

a

c

b

d

FIGURE 24 - The error of the estimated detour function has no upper bound. In
(a), a single horizontal component intersects with arbitrarily large number of
vertical nets which are spaced. The sum of the pair-wise detours goes to
infinity when the number of vertical nets goes to infinity while the actual detour
length is bounded (b).

ε 0>

a b
ε

39
The cost function captures the planarity of the assignment. It is finite if and only if the

solution is planar (proven below). This property guarantees that a solution that satisfies the other

requirements for feasibility is feasible if and only if its cost is finite

Theorem 1 An assignment is planar if and only if its cost is finite.

Proof From the definition of the cost function (5), the cost is finite if and only if the pair-

wise conflict of all the component pairs assigned by to the same layer is finite, and by Definition

6, the conflict of a component pair is finite if and only if the pair is planar. Therefore, it is

sufficient to show that is planar if and only if every component pair assigned to the same layer is

planar. Further more, since the planarity of the individual layers are independent of each other, it is

sufficient to show that this holds for an arbitrary layer.

One direction of the proof is simple, if a set of components assigned by to a layer is planar then,

by definition, the layer has a planar embedding and this embedding includes a planar embedding

of each component-pair on that layer which implies that all the component pairs are planar.

To prove the other direction1 we use induction on the number of components assigned to a layer.

Let .. be a set of components assigned to a layer such that every pair of them is planar.

From the induction assumption, the set .. is planar and therefore has a planar embedding .

The embedding contains zero or more paths between external terminals (note that paths of the

same component may overlap). These paths, called external paths, divide the bin into non-

connected areas called regions (Figure 25). For any given pair of points in the bin, a planar path

between the points can be added to if and only if the points are inside or on the boundary of the

same region. The set of regions divides the terminals of into a complementary and disjoint

1. An alternative approach for the proof could be to use a known criteria for planarity of non-sep-
arable graphs (see Lemma 7.2 in [15]). The criteria is based on a pair-wise property of bridges in a
non-separable graph in respect to a simple cycle. This proof can be made by considering the com-
ponents as bridges and the bounding box as the cycle. This however requires some preparation
steps to match the conditions of Theorem 1 to the conditions of the criteria. Some of the differ-
ences are: (1) The graph in the theorem may be separable and even non-connected. (2) The loca-
tions of terminals in the theorem are given while in the criteria they are free. (3) In the criteria, the
tree for each component is given while in the theorem they are free and adding junction points is
allowed. We have chosen to present a proof which is somewhat closer to the concept of rubber-
band sketches.

C S()

S

S C S()

C S()

S

S

S

c1 cn 1+

c1 cn E

E

E

cn 1+

40
subsets of terminals .. (Figure 26-a) each of which is a set of terminals in a different region1.

We modify by adding to it a planar embedding of each of the groups (Figure 26-b). If

contains only one group of terminals then the resulting is a planar embedding of

.. . Otherwise, let and be two arbitrary groups of . and can be

connected in by a path (Figure 26-c) which does not intersect with any terminal and is planar

except for a finite number of crossings of external paths (at least one) of other components. If both

 and have an external terminal then every path between these external two terminals has to

cross an external path of another component which separates between the terminals of an

but since is pair-wise planar with each of the components .. this is not the case and

therefore at least one of or contains no external terminals. Let assume, without lost of

generality, that has no external terminals. The path crosses, in direction from to a

finite series .. , , (Figure 26-c) of external paths of components other than2 . ,

the first crossed path in the sequence can be transformed such that the terminals of and their

interconnect are moved to the region on the other side of while the rest of the terminals and

connections in stay in the same regions (Figure 26-d). This step can be repeated for the paths

.. (in that order) until end up in the same region of and the terminals of are

connected within this region with no crossings. This reduced by one the number of non-connected

groups in , and if repeated will end with a planar embedding in which all the terminals of

 are in a single region. The resulting embedding is a planar embedding of .. and

therefore the set of .. is planar. Q.E.D.

1. If any of the terminal of happens to be on a path in we can move this path such that
the terminal is in a close neighborhood of the path but does not intersect with it. This is true since
the number of terminals in a bin is finite. Therefore, we assume, without loss of generality, that the
terminal of does not intersect with the paths of .

2. Note that the planar embedding of each of the groups .. can include external paths. This
happens if a group contains two or more external terminals.

g1 gk

Cn 1+ E

Cn 1+ E

E E

cn 1+ E

c1 cn 1+ g1 g2 cn 1+ g1 g2

E P

g1 g2

g1 g2

cn 1+ c1 cn

g1 g2

g1 P g1 g2

P1 Pq q 1≥ cn 1+ P1

g1 gq

g1

P1

E

P2 Pq g1 g2 g1 g2∪

cn 1+

cn 1+ C1 Cn 1+

C1 Cn 1+

41
a b

2

1

3

1

FIGURE 25 - External paths and regions. An external path connects two
terminals on the bin boundary. The set of (possibly overlapping) external paths in
a bin layer divides the bin area into disconnected regions. The gray shadow mark
the boundaries of the regions. Example (a) has a single region that includes the
entire bin while (b) has 4 regions (marked 1 to 4).

a b

g1

g2
g3

g1

g2

g3

c

p1

p2

d
FIGURE 26 - Constructing a planar embedding. The regions in this example (a)
divides the terminals of component into three groups .. , each of
which is a set of terminals in a separate region. The terminals of each group can be
interconnected with no intersections as shown in (b). Every pair of groups can
then be connected by a path which is planar except for a finite number of
crossings of external path of other components. (c) shows such a path between
and with two crossings of external paths, and . By modifying the path

 as shown in (d) we can reduce the number of paths crossings by one.
Repeating this step for will end up with the groups and in the same
region, merged into a single group. Repeating this group merging step will result
with a planar embedding in which all the terminals of are in a single
region.

Cn 1+ g1 g3

g1
g2 P1 P2

P1
P2 g1 g2

Cn 1+

42
3.2.5 User control of

The cost function (1) (page 33) is controlled by the parameter which indicates the desired

balance between low number of vias and short wiring. A practical setting of depends on the size

of the design and requires the user to perform scaling of values for designs of different sizes. To

ease the selection of this value, SURF provides a more abstract way of controlling it and performs

the scaling automatically. This is done using a normalized parameter in the range 0 to 100,

which indicates the relative importance of having a low number of vias compared to having short

wiring. Higher values of prefer short wiring and lower values prefer fewer vias. SURF maps the

value of to such that is zero when is zero and is increased when is increased. The

mapping is done as follows. First a value , which represents the cost of a single via in length

units is computed (is the length of the diagonal of the design):

(6)

Then, can be computed using the formula:

(7)

The constant 0.12 in (6) sets a range of which was found useful by users though other values

may do as well.

3.3 The Layer-Assignment Algorithm

3.3.1 Introduction

The proposed Layer-Assignment Algorithm (LAA) solves the LAP. It accepts , an instance of

the LAP, and outputs a feasible solution , while trying to minimize the cost . The definition

of the LAP does not imply any specific optimization technique, and many optimization algorithms

can be used to solve it. Our choice, which is a greedy approach, is efficient, simple, and yet

generates practically good solutions as supported by the experimental results included in this

thesis.

α

α

α

α

β

β

β α α β α β

α1

d

α1 0.12d
β

100
---------=

α

α
α1

1 α1+
---------------=

α

P

S C S()

43
The LAA performs the assignment in three steps (Figure 27):

STEP I - Generating 2-Nets. Each multi-terminal net is decomposed into a set of two-terminal nets

(2-Nets). This is done by generating a tree which spans the net terminals. The tree can include

Steiner points (junctions) to reduce the length of the tree. The decomposition into 2-Nets is done

independently for each net. Note that the 2-Nets defined by this step are used internally by the

LAA and do not necessarily correspond to the 2-Nets in the final design (which are determined by

the single-layer router in use).

STEP II - Building the assignment graph for each 2-Net. An assignment graph represents all the

assignments that the algorithm is going to consider for a given 2-Net. This includes all the possible

layer crossings and the point-to-point connections between the vias and terminals of this 2-Net.

The graph for each 2-Net is built independently of the other 2-Nets

STEP III - Assignment. In this step, the 2-Nets are assigned to layers while trying to minimize the

overall cost of the solution. Each 2-Net can be broken into sections which are assigned to different

layers. The proposed algorithm is guaranteed to generate a planar and feasible solution.

The details of the three steps are presented in the following sections.

44
3.3.2 Step I - Breaking the Nets Into 2-Nets

This step decomposes each multi-terminal input net into 2-Nets that represent edges of a planar

tree. The nodes of each tree include the terminals of the input net as well as any Steiner points

FIGURE 27 - The three steps of the assignment algorithm. The LAP in (a) has
three nets and should be routed on two layers. Step I breaks the nets into 2-
terminals nets (b) by generating a Steiner tree for each net. Step II generates for
each 2-Net an assignment graph which defines a subset of its possible assignments
the algorithm will consider (to keep the example simple, we don’t include here the
actual assignment graphs of the 2-Nets). In this example we are considering only
assignments with possible vias at the candidate points marked with a short
segment (c). Step III then assigns the 2-Nets to the layers by selecting for each 2-
Net one of its candidate assignments. In this example (d), nets 1 and 2 are
assigned entirely to the black and the gray layers respectively while net 3 crosses
layers at point . The output of the LAA, a single-layer routing problem for each
of the layers is shown in (e) and (f).

v

a b

c d

1

1

1
2

2

3

3

e f

1

1

1

1

3

3

3

32

2

v

v

v

45

 done

gth is

 nodes

nclude

 a
. The
introduced by the algorithm. The decomposition is done independently for each input net and

ignores any layer consideration. The decomposition can be achieved in several ways which differ

in the count and total length of the tree edges (and 2-Nets) they generate. It is desirable on one

hand to reduce the total length of the tree as it affects the length of the wiring, and on the other

hand to reduce the number of edges (and thus the number of 2-Nets) so that the database is smaller

and the assignment is faster. Figure 28 shows three methods of generating the tree. The simplest

one is to generate a minimum spanning tree (MST) of the net terminals. An MST can be generated

efficiently and results in a tree with minimal number of edges. Its total length however can be up to

 times the total length of the shortest possible tree [18] [14]. The second approach is to

generate a minimum Steiner tree (MSTT) of the terminals1. This is the shortest tree among all the

possible trees, but its edge count can be almost double that of the minimum spanning tree. The

third approach is to use a minimal Steiner tree with collapsed edges (MSTTC). This is a MSTT in

which Steiner points that don’t significantly reduce the total tree length are removed. This is

by collapsing edges which are incident to Steiner points if the increase in the total tree len

below a predefined threshold. In general, the MSTTC is shorter than the MST and it has less

and edges then the MSTT. The experimental results presented later in this thesis i

comparisons of routing using the three tree kinds.

1. Our implementation of the LAA includes an algorithm [11] which uses heuristics to generate
Steiner tree of a given set of points using Euclidean, Rectilinear, or Octilinear metrics
description of this algorithm is outside the scope of this thesis.

3
2

46
3.3.3 Step II - Generating The 2-Net Assignment Graphs

An assignment of a 2-Net decomposes the 2-Net into vias and single layer, point-to-point

connections called branches. The vias are defined by their location in the routing area and the

layers on which they exist. The branches are used to connect the terminals and the vias of the 2-

Net. Since there is an infinite number of possible assignments for a single 2-Net, (even if we

consider only assignments with a single via), we reduce the search space by considering a smaller

set of assignments called candidate assignments.

A special graph called an assignment graph is used to capture the set of candidate assignments

considered by the LAA for a single 2-Net. In this directed graph, nodes correspond to branch end-

points, which include input terminals, Steiner points, and candidate via locations on specific

FIGURE 28 - Three methods of decomposing a net (a) into 2-Nets. The
minimum spanning tree (b) results in a small tree while the minimum Steiner tree
(c) has lower wire length. The minimum Steiner tree with collapsed short edges
(d) provide a balance between the two (denotes the collapsed edge).e

a b

c d

e

47
layers. The arcs represent branches and layer crossings. This graph also contains special source

and sink nodes which represent the end-points of the 2-Net1. The assignment graph is constructed

so that each possible candidate assignment for the 2-Net corresponds to a source to sink path

through the graph. Also, the arcs are weighted2 so that a shortest path represents an optimal

assignment of the 2-Net.

A simplified version of the assignment graph is presented in Figure 29. For this 2-Net there are 3

wiring layers and a single via candidate location is considered. Note that there are 9 candidate

assignments in this case, 3 with no via, 4 with a single layer crossing, and 2 with two crossings,

each of which corresponds to a path through the graph.

1. The decision of which end-point will be the source and which will be the sink is arbitrary and
does not affect the result of the routing.

2. Because of the non-linearity of the cost function, the weights are actually assigned to a modi-
fied version of the assignment graph. This is described later, as part of Step III of the LAA.

48
The complexity of the assignment graph used by the LAA controls the number of candidate

assignments considered by the algorithm. A more complex graph considers a larger set of

candidate assignments and potentially yields a higher quality solution at the expense of a larger

search space and a longer running time (Figure 30). To achieve a reasonable running time, the

proposed LAA considers relatively few via candidates (between 1 and 5)1, evenly spaced along the

straight line between the end-points of the 2-Net. Note that for a graph with layers and

possible candidate points, there are possible assignments for the 2-Net.

1. To guarantee that the LAA will find a feasible solution, each 2-Net must have at least one can-
didate via. This is used in the proof of correctness of the LAA presented later.

FIGURE 29 - An example of a simple 2-Net assignment graph. The 2-Net in (a)
is to connect two terminals with three layers available for routing. A third
point is defined as a position of a candidate via. The assignment graph for this
2-Net is shown in (b). Each of the three points , , and defines three graph
nodes, one on each of the three layers . The nodes and represent the
source and sink nodes respectively. The vertical edges represent layer crossings
between adjacent nodes of the same location while the horizontal edges represent
wires between nodes on the same layer. (c) and (d) show two paths on the graph
between , and , each representing a possible assignment of the 2-Net. The path
in (c) represents a direct connection of on layer while (f) represents a
connection with a crossing from layer to at point

t1 t2,
v

t1 t2 v
l1 l2 l3, , s t

s t
t1 t2, l1

l3 l1 v

s t
l3
l2
l1

t1 v t2

c

s t
l3
l2
l1

t1 v t2

b

s t
l3
l2
l1

t1 v t2

d

a

t1 v t2

m n

m
n 1+

49
A post-processing step (Figure 31) [11] that locally repositions vias is used to compensate for the

limited granularity of the candidate points and for the fact that via positions are restricted to the

straight line between the end-points (the post-processing is not part of this research). Our

experiments show that when using this post-processor, considering more than five candidate

points per 2-Net yields no significant improvement in the final routing quality

FIGURE 30 - Two choices for the number of candidate points per 2-Net. The
horizontal 2-Net in (a) and (c) are assigned using one and three candidate points
respectively which results in assignments (b) and (d) respectively. Assignment (d)
has a shorter wire length as the candidate points of (c) have a better resolution.

a b

c d

50
3.3.4 Step III - Solving the Layer-Assignment Problem

Step III of the LAA (the layer-assignment step) generates a solution for the LAP by selecting for

each 2-Net one of its candidate assignments such that the overall assignment is feasible and has

minimal cost. In this section we describe how the LAA performs this step.

3.3.4.1 Configurations and Assignments

The operation of the assignment step can be viewed as a search in the domain of configurations.

Definition 7 (configuration) A configuration is a mapping of some 2-Nets to their candidate

assignments. That is, each 2-Net of the design is either mapped to one of its candidate assignments

defined by its assignment graph, or it is not mapped at all. For a given configuration, the mapped

and unmapped 2-Nets are said to be assigned and free respectively in that configuration.

Intuitively, a configuration represents an assignment of part of the interconnect of the bin, and is

said to be complete when it assigns all the 2-Nets of the bin. A configuration is said to be planar if

FIGURE 31 - The local-spacing post-processor. The sketch of the first example of
Figure 30 is shown in (a). The post-processor detects the ‘tension’ applied to via

 by the wire and moves it in the direction of the arrow while treating the wires
as rubber bands. This is done iteratively and eventually converges to the sketch in
(b) with shortest wire length. In the general case, the post-processor finds a sketch
in which any topology preserving relocation of a single via or a Steiner point does
not reduce the wire length. The use of the post-processor compensates for the
limited number of via candidate points as well as the restriction of vias to be on
the straight line between the end points. The local-spacing post-processor is not
part of this research

v w

a b

v

w

51
the branches defined by its assignments of the 2-Nets can be routed on their corresponding layers

without crossing each other or the bin boundary.

A solution to the LAP can be constructed directly from a complete configuration. The terminals of

the solution are the original terminals and any vias introduced by the assignment of the 2-Nets in

the configuration. A component in the solution is a maximal set of terminals and vias on a single

layer that are connected by branches in the complete configuration (Figure 32). Note that single-

layer Steiner points and explicit point-to-point connection topologies for multi-terminal

components do not appear in the solution. A component merely defines a set of points that must be

connected on a single layer leaving the single-layer router free to introduce Steiner points and

choose component topologies. The cost of a complete configuration is defined to be the cost of its

corresponding solution.

52
a b

c d

1
3

2

S
5

4

3

5

4

2

4

1 5

FIGURE 32 - The corresponding solution of a configuration. In this simple
example, a design with a single net and three terminals 1, 2, and 3, is to be
assigned to two layers. The net is first decomposed into three 2-Nets (a) using a
Steiner point , and then each 2-Nets is assigned to one of its candidate
assignments (b). The assignments of the 2-Net in this example introduce two vias
marked 4 and 5. The corresponding LAP solution for the configuration in (b) is
shown in (c) and (d) for the black and the gray layers respectively. The black layer
has a single component with three terminals {3, 4, 5}, and the gray layer has two
components {1, 5} and {2,4} respectively. (e) and (f) show possible embeddings
of the assigned layers in (c) and (d) respectively. Note that on the black layer, the
branches in the embedding (which is suboptimal, for the purpose of
demonstration) do not map one-to-one to the branches defined by the
configuration in (b). That is because the single layer router has the freedom to
connect the components in arbitrary topology (a better embedding of the black
layer would be to have a Steiner point similar to).

S

S

1
3

2

S

e

3

5

2

4

1 5

4

f

53
The concept of corresponding solution of a complete configuration can be extended to a general

configuration. If the configuration is not complete then its corresponding solution is partial in the

sense that some connections might be missing.

The goal of the assignment step is to find a complete configuration whose corresponding solution

is feasible and has minimal cost. Since by definition the cost of a configuration is the cost of its

corresponding solution, it is sufficient to minimize the cost of the configuration found. As for

feasibility, by the following simple lemma, it is sufficient to find planar configuration to guarantee

feasibility.

Lemma 1 Let be a complete configuration and its corresponding solution. If is planar then

 is feasible.

Proof By the method of constructing the 2-Nets and their candidate assignments, is guaranteed

to have all the properties, except from planarity, required of a feasible solution (Definition 2). As

for planarity, if is planar then it has a planar embedding, and this planar embedding includes a

planar embedding of (Figure 33).

Using Lemma 1 and the relation between planarity and finite cost (Theorem 1), the goal of the

assignment step can be re-formulated as:

q S q

S

S

q

S

a b

FIGURE 33 - Planar embedding of the corresponding solution. The configuration
in (a) assigns three 2-Nets, two to the black layer and one to the gray one. This
configuration is planar and has a planar embeddings such as the one in (b). This
planar embedding is also a planar embedding for the corresponding solution which
is planar as well.

54
Definition 8 (The Assignment Step Problem - ASP) Given the 2-Nets and their assignment

graphs, find a complete configuration with minimal cost.

3.3.4.2 The configuration search algorithm

The assignment step finds the solution by performing a search in the configuration domain. The

range of optimization techniques that can be used is wide and includes simulated annealing [30],

group migration, steepest descent, and others. Our implementation uses a simple steepest descent

that we have found to be both efficient and to result in high quality layouts. We believe that this

approach is sufficient to show the merits of the proposed approach though a more advanced search

technique may results in better solutions.

The search algorithm (Algorithm 1) consists of two phases, the assignment and the improvement.

The assignment phase starts with the empty configuration (i.e. all the 2-Nets are free) and

iteratively assigns a free 2-Net to one of its candidate assignments. The 2-Net and its assignment

chosen on each iteration are such that the cost of the resulting configuration will be minimal.

When all the 2-Nets have been assigned, the improvement phase tries to further improve the

solution by iteratively reassigning 2-Nets, one on every iteration. Again, the algorithm chooses in

each iteration a 2-Net and a new candidate assignment of it such that the overall cost is reduced the

most. The algorithm terminates when the cost cannot be further reduced by reassigning a single 2-

Net.

55
Note that the cost of an assignment for a 2-Net depends on the assignments of the other 2-Nets,

both free and assigned. As a result, changing the assignment of one 2-Net can change the optimal

assignment of other 2-Nets (Figure 34). This dependency is why the improvement phase is

required (Figure 35) and why the algorithm recalculates the optimal assignment of the 2-Nets on

each iteration. Our implementation reduces the amount of recalculation done by using an

incremental approach. On the first iteration, the best assignment for each 2-Net is calculated and

// --- Assignment phase
 = empty configuration;

while is not complete {
for each 2-Net free in do {

 =
 =

}
 =
 =

}

// --- Improvement phase
do {

for each 2-Net do {
 =
 =

}
 =

if then =
} while

q
q

ni q
ai Best2NetAssignment ni q,()
∆i C q ni ai→() C q()–

j i minimizing ∆i
q q nj aj→()

ni
ai Best2NetAssignment ni q ni free→,()
∆i C q ni ai→() C q()–

j i minimizing ∆i
∆j 0<() q q nj aj→()
∆j 0<

ALGORITHM 1 - The layer-assignment algorithm. The algorithm operates in two phases,
first it assigns all the 2-Nets and then reassigned them to further reduce the cost. This
algorithm is greedy and on each iteration it chooses the 2-Net whose its optimal candidate
assignment will result in the lowest overall cost. The core of the algorithm is the function
Best2NetAssignment which finds the optimal candidate assignment of a free 2-Net given a
configuration. An optimal algorithm for this function is presented later in this thesis.

56
saved. Later, when a 2-Net is assigned or reassigned, only the optimal candidate assignments for

the 2-Nets affected by this assignment are recomputed.

a

1

3

2

b

1

3

24

FIGURE 34 - Interdependency between assigned 2-Nets. (a) and (b) show the
configurations before and after assigning 2-Net 4 to the black layer. The
assignments in (a) of the three 2-Nets 1, 2, and 3 are all optimal. However, after
assigning 4, the assignment of 2 is suboptimal as assigning it to the gray layer will
result in a lower cost due to its conflict with 4. The other 2-Nets, 1 and 3, are not
affected by the assignment of 4 and their assignments are still optimal.

a

1

3

2

b

1

3

2

FIGURE 35 - Example of assignment improvement. This figure shows an
example of improvement of an assignment. The design has three 2-Nets 1, 2, and
3, which are assigned to the black and the gray layers. The assignment phase
assigned the three 2-Nets in order and results in the complete assignment in (a).
The improvement phase then reassigns 2-Net 1 to the gray layer so the overall cost
is improved. Note the assignment phase initially assigned 2-Net 1 to the black
layer arbitrarily because the cost of assigning it to each of the layers was the same.

57
The core of the algorithm is the function Best2NetAssignment which given a configuration and a

free 2-Net , finds a candidate assignment of that minimizes the cost of the configuration

after assigning to . A naive implementation of that function would be to enumerate all the

candidate assignments of and calculate for each one its effect on the cost of . This however

would be much too time consuming because of the large number of candidate assignments and the

complexity of calculating the cost increase due to each assignment. A more efficient algorithm

which yields optimal results is presented later in this chapter.

3.3.5 Properties of the configuration search algorithm

Note: the discussion in this section assumes that the algorithm used to compute the function

Best2NetAssignment results in optimal solutions as done by the 2NAA algorithm (page 59).

The proposed search algorithm is guaranteed1 to terminate with a complete configuration whose

corresponding solution is feasible. To show that, we first show that assigning a 2-Net cannot

change the cost of the configuration from finite to infinite.

Lemma 2 Let be a configuration with a finite cost and let be a 2-Net, free in . Under these

conditions, has a candidate assignment such that the cost of the configuration , resulting

from assigning to , , is finite as well.

Proof Let and be the end-points of . By the construction of the assignment graph, has

at least one candidate via which like all the candidate vias, is internal to the bin. Let be such a

candidate via. Let be the candidate assignment of with two branches, on one layer

and on an adjacent layer2. Via is internal to the bin and is not connected to any branch

other then the two defined by (each of a separate layer). These two branches do not disconnect

1. It is assumed that the design has at least two layers and that each of the 2-Net has at least one
via candidate point.

2. We assume that any design submitted to the layer-assignment algorithm has at least two layers.

q

n a n

n a

n q

q n q

n a q

n a q1 q n a→()=

e1 e2 n n

v

a n e1 v,{ }

v e2,{ } v

a

58
the routing area on their respective layers and therefore, their components are pair-wise planar

with all the other components assigned to same layer. Q.E.D.

Theorem 2 The search algorithm is guaranteed to end with a complete configuration whose

corresponding solution is feasible.

Proof By Lemma 1, it is sufficient to show that the algorithm will result in a complete

configuration which is also planar, and by Theorem 1 it is sufficient to show that the result

configuration is complete and has finite cost. The assignment phase starts with a configuration of

finite cost and by Lemma 2 it is guaranteed to successfully assign on each iteration a free 2-Net

while increasing the cost by only a finite value. This guarantees that the assignment phase will

terminate with a complete configuration of finite cost. The improvement phase starts with a

complete and finite cost configuration and on each iteration can only decrease the cost by

reassigning a 2-Net. This guarantees that the completeness and the finite cost properties of the

configuration are preserved. The improvement phase is guaranteed to terminate since the number

of complete configurations is finite. Q.E.D.

Note that the bound on the complexity of the improvement phase as given in this proof is too high

for practical applications. However, in all of our experiments, the improvement phase has about

the same number of iterations as the initial assignment step or less. In case the algorithm will fail

to converge, the improvement phase can be modified to terminate when the cost improvement is

smaller than a given value or after a certain number of iterations have been completed.

The proposed steepest descent search algorithm is sub-optimal and can be trapped in local

minimum as shown in Figure 36. The sensitivity of the search to local minimum could be reduced

by using more complex optimization techniques which consider larger steps or do allow temporary

increases in the configuration cost.

59
3.3.6 The 2-Net Assignment Algorithm (2NAA)

The core of the Layer-Assignment Algorithm (Algorithm 1) is the function Best2NetAssignment

which finds a best assignment for a given 2-Net. This function solves the following problem:

Definition 9 (2-Net Assignment Problem - 2NAP) - Given a configuration and a free 2-Net ,

find a candidate assignment of such that , the cost of after assigning to , is

minimized.

The proposed LAA uses an algorithm called the 2-Net Assignment Algorithm (2NAA), presented

below, which is guaranteed to find an optimal solution for the 2NAP. The 2NAA finds the solution

a b

1 2

1

3

2

3

FIGURE 36 - Local minimum in the configuration search. The three 2-Nets in
(a), 1, 2, and 3, are to be assigned to two layers. The assignment phase (b) first
assigns net 1 to the black layer, and then net 2 to the gray layer. These were
arbitrary choices as the optimal assignments of the 2-Net are not unique. Then, it
assigns 2-Net 3 using a via as shown in (c). The improvement phase can not make
any improvement to the assignment in (c) by reassigning a single 2-Net, and this
leaves (c), which is sub-optimal, to be the final solution. An optimal solution is
shown in (d).

c

v

d

q n

a n C q n a→() q n a

60
by first assigning costs to the edges of the assignment graph1, and then finding a least-cost path in

the graph, which by the way the costs are assigned, is guaranteed to represent an optimal solution.

The costs of the edges are set according to their kinds, which can be one of the following:

l End-point edges - These are edges that connect the source and sink nodes with the nodes repre-

senting the end-points of the 2-Net.

l Via edges - These edges represent layer crossings (shown in Figure 29 as vertical lines).

l Branch edges - These edges represent branches (shown in Figure 29 as horizontal lines).

The cost of each end-point edge is set to either or (Figure 37). It is set to when having the

end-point edge in the path will not require introduction of a new via at that end-point. Otherwise, it

is set to (which practically eliminates this edge from the graph). The cost is determined as

follows. Let be either the source or the sink node of the graph, let be the end-point at the end

of the graph, let , , be the node of on layer , and let be the end-point

edge whose cost is to be determined. First, a set of existing layers of is computed. The set

includes , the set of existing layers of , if represents an input terminal, and any other layer

on which a previously assigned 2-Net has a branch incident to . The set is then is completed to be

contiguous such that if it includes two layers, then it also includes all the layers in between. The

cost of is set to zero if includes the layer , or if is empty and set to otherwise.

1. Because of the non-linearity of the branch cost function, the actual search is done in a modified
assignment graph called the extended assignment graph. This is discussed in detail, later in this
chapter.

0 ∞ 0

∞

u t u

tl 1 l M≤ ≤ t l el u tl,()=

Et t

E
·

t() t t

t

el Et l Et ∞

61
Setting the cost of the via edges is much simpler, they all have the same cost , which is the

increase in the overall cost function (5) when a single layer crossing is added.

The cost of a branch edge is set to represent the increase in the overall cost (5) when the branch

represented by the edge is added to the assignment. Adding a branch to the assignment can either:

(a) create a new component, (b) extend an existing component, or (c) join two existing components

into a single bigger component, and each of these cases may increase the assignment cost. Figure

38 shows an example of a 2-Net assignment with two branches, one (on the gray layer) forming a

new component and the other (on the black layer) extending an existing component.

s t
l2

l1

x v y

ba

x v y

FIGURE 37 - Cost of end-point edges. The 2-Net in (a) between end-points and
is to be assigned to two layers. The 2-Net has a single candidate via location

and its end-points have incident branches of previously assigned 2-Nets. (b)
shows the assignment graph for the 2-Net. The cost of the end-point edge between
the source node and the end-point node on layer is set to since having this
edge in the path will require a layer crossing to connect to the preassigned branch
on layer . The other three end-point edges do not require vias and thus Are
assigned zero cost. This cost assignment insures that any least-cost path which
defines a branch connected to end-point on layer to include also a via edge at

 between layer and (see shaded path in (b)).

x
y v

s l1 ∞

l1

x l1
x l1 l2

layer 2
layer 1

∞

0

0

0

α

62

er’s
The increase in the cost function (5) when assigning a branch is as follows. where is the us

cost function control parameter in (1) and is the set of components before the assignment of the

branch.

Case (a) - a new component is formed by the branch:

(8)

Case (b) - an existing component is extended by the branch:

a b

t1 t2

c1

c2

c1

c2

c d

b1
b2

c1

c2

c1
c2

v

c4

FIGURE 38 - Cost increase due to branch assignment. The configuration in (a)
has a free 2-Net between and , and three components from previously
assigned 2-Nets, and on the black layer, and on the gray layer. The
components and have conflict as shown in (b). (c) shows the configuration
after assigning the free 2-Net with two branches and on the black and gray
layer respectively. This assignment enlarges the component as shown in (d)
which increases its conflict with and also creates a new component which
conflicts with the existing component .

t1 t2
c1 c2 c3

c1 c2
b1 b2

c2
c1 c4

c3

c3 c3

c3 c3

b α

C

C b() 1 α–() H b ci,()

ci C
 ∈

∑=

c

63
(9)

Case (c) - two existing components , are joined by the branch:

(10)

This branch cost function represents correctly the cost increase due to an assignment of a single

branch. However when it is used in a context of a path, it can result in underestimation of the cost

of the 2-Net assignment because of the non-linearity of the branch cost function. If two branches

, of a 2-Net to be assigned are incident and are on the same layer, then having both branches

in the assignment will result in a single branch which is the union of the two branches,

and the cost of this branch may be higher then the sum of the costs of the individual branches

(Figure 39).

C b() 1 α–() H c b+ ci,() H c ci,()–{ }

ci C c–() ∈

∑=

c1 c2

C b() 1 α–() H c1 c2,()– H c1 c2 b+ + ci,() H c1 ci,() H c2 ci,()––{ }

ci C c1– c2–() ∈

∑+
 
 
 
 

=

b1 b2

b1 b2+

64
This underestimation of a 2-Net assignment cost can occur only when the path includes two

branches of the 2-Net which are on the same layer and incident to each other (Figure 40). Note that

this can happen even if the two branch edges are not consecutive in the path as shown in Figure 40.

FIGURE 39 - Non-linearity of the branch cost function. The 2-Net in (a) has a
single via candidate point and two branch edges , on the black layer (the
branch edges on other layers are not relevant to this example). A previously
assigned 2-Net, shown in (a) as a vertical line, has a branch on the black layer.
The branch edges and have relatively low cost since they have low conflict
with the pre-assigned 2-Net as shown in (b) and (c) respectively. However, if
and are both included in the assignment, their 2-Net will effectively be a single
branch which include both branches, and the conflict of this branch with the other
2-Net is higher than the sum of the conflicts of and with that 2-Net (d).

v b1 b2

b1 b2
b1

b2

b1 b2

a

t1 v t2
b1 b2

b

t1 v

b1

c

v t2
b2

d

t1 t2

b1 b2+

65
To eliminate the cost underestimation, the assignment graph is converted into a directed graph

called, the extended assignment graph. This graph represents exactly all the candidate assignments

represented by the original graph and yet, no path from the source to the sink nodes contains two

branches which share an end-point and are on the same layer.

The extended graph is constructed by two modifications to the original assignment graph, adding

short-circuit branch-edges, and splitting its nodes. A short-circuit branch edge is added for every

sequence of consecutive (but not necessarily maximal) branch edges and it connects the origin of

the first edge in the sequence with the end of the last edge (Figure 41). This enables the

replacement of any sequence of consecutive branch edges in a path with a single short-circuit edge

so the cost is computed correctly.

s t

a

b1 b2

FIGURE 40 - Non-linearity of branch cost in a path. The two examples show two
paths with underestimation of the cost of a 2-Net candidate assignment. The path
in (a) has two consecutive branches edges , which represent two incident
branches and thus its cost may be lower than the cost of the 2-Net assignment it
represents. The same is true for the path in (b) (when the via cost is low enough)
even though the two branch-edges are not consecutive in the path.

b1 b2

s t

b

b1 b2

66

 a sub-

bove

anch
The second modification to the graph, splitting its nodes, is done to eliminate exactly all the paths

with incident branches and is done as follows. Every node in the graph, except for the source and

sink nodes, is replaced with three sub-nodes, called ‘up’, ‘down’, and ‘forward’ (Figure 42) which

represent a restriction on how the path can continue from this sub-node. If the path includes

node of type ‘up’ (‘down’) then the edge following it in the path must cross to the layer a

(below). If the sub-node is of type ‘forward’ then the following edge must be either a br

(original or short-circuit) or an end-point edge.

s t

a

s t

b

FIGURE 41 - Adding the short-circuit branch edges. (a) and (b) show an
assignment graphs before and after adding the short circuit branch edges. By
adding these edges, the graph in (b) has a path (shown with shade background)
representing the same candidate assignment as the path in (a) but without having
incident branches.

b1 b2

b1 b2+

67

m-

gh

t path in

NAP.

ns for

 via

uting

 where
The splitting of the nodes guarantees that exactly all the paths that include one of the following

patterns are removed from the graph:

l A branch edge followed by another branch edge. This is the simplest form of having incident

branches in a path as shown in Figure 40 (a).

l An ‘up’ (‘down’) layer crossing followed by a ‘down’ (‘up’) layer crossing. This pattern is eli

inated to avoid paths such as the one Figure 40 (b) which includes incident branches even thou

they are not consecutive on the paths.

Eliminating exactly all the paths with these patterns guarantees that a search for a least-cos

the extended assignment graph will find a path which represents an optimal solution to the 2

3.3.7 2NAA complexity Analysis

Let be the number of layers in the design, and let be the number of candidate locatio

vias of as a 2-Net. The extended assignment graph of the 2-Net has nodes,

edges and branch edges (including the short-circuit ones). The complexity of comp

the edge costs is dominated by the cost computing of the branch edges which is

U

D

F

to/from lower layer

from/to lower layer

to next
node

from prev.
node

from prev.
node

to next
node

FIGURE 42 - Splitting the graph nodes. A typical graph node before (left) and
after (right) the splitting is shown. The gray edges are included in the graph only if
the split node represents one of the end-points of the 2-Net. The example shows a
node with typical incoming and outgoing forward edges. In the general case, a
node can have multiple such edges because of the addition of short-circuit edges.
Note that the source and sink nodes are not split.

(typical) (typical) (typical) (typical)

to/from
upper layer

to/from
lower layer

m n

O mn() O mn()

O mn
2()

O mn
2
p()

68

 sizes.

 values

 Only

 as

 only

e most

 cost of

d DEC

code,
 is the complexity of computing the cost of a single branch edge. By using an shortest

path search algorithm, the complexity the search is and therefore, the

overall complexity of the algorithm is:

 (11)

As for , if incremental computation is used (explained below) then the complexity of computing

a cost of a single branch edge is when is the average number of components a

component intersects with, and is the average time to route a pair of components. depends on

the size of the nets and their spread across the routing area, and depends on the size of the

components and the routing algorithm used.

SURF Practical Notes: Our experiments with SURF shows that increasing the value of above

five does not result in significant improvement in the routing results and since can be practically

bound by a constant, it does not affect how SURF’s run-time scales with increasing design

The complexity depends on the number of nets and terminals in the bin but since these

are kept bound by SURF’s global router it does not affect the asymptotic run-time of SURF.

, the number of available layers affects the complexity of the 2NAA which grows

. To reduce the run-time of the 2NAA, SURF computes the cost of a branch edge

upon demand, when the shortest path algorithm requires this value for the first time. Sinc

searches do not traverse the entire extended assignment graph, the time of computing the

the non traversed branch edges is saved.

3.3.8 LAA Implementation Notes

The LAA has been implemented as part of the SURF routing system. It is written in ANSI C and

has been developed on Sun SPARC workstation under Motif, and using GNU’s gcc compiler. It

has been ported successfully, as part of SURF, to other platforms such as IBM RS/6000 an

Alpha workstations. The implementation includes 19 modules with a total of 15,000 lines of

comments, and intensive run-time checks.

p O n nlog()

O mn
2

mlog nlog+()()

O mn
2

p mlog nlog+ +()()

p

O wr() w

r w

r

n

n

p

m

O m mlog()

69
Some parts of the algorithm have been implemented sub-optimally to speed up the development

process and to simplify the code. This includes performing linear searches over lists, and using a

simple sorting. A more efficient coding may result in a faster layer-assignment though the

routing results are expected be similar.

Various parts of the implementation use the List Management Package written by David Harrison,

University of California at Berkeley, with enhancements by David Staepelaere, University of

California at Santa Cruz.

3.4 LAA Extensions

The previous description of the LAA focuses on the basic principles of the algorithm. In this

section, we discuss several enhancements and extensions to the algorithm.

3.4.1 Constrained Assignment

Formulating the layer-assignment as an optimization problem with a cost function to be minimized

makes it possible to address different types of routing problems by merely making simple

modifications to the cost function. For example one of the special routing methods we

experimented with is constrained or one and a half layer routing in which wires are embedded in

cut-outs in the ground and power planes. By embedding these connections in these planes, the

routing can be completed with fewer layers and the manufacturing cost of the MCM is reduced. To

preserve the current carrying ability of the planes, the embedded wires should be kept as short as

possible and can be viewed as ‘jumpers’ (Figure 43).

O n
2()

70
The constrained layer-assignment is done by adding a term to the cost function (5) that penalizes

long wires on constrained layers in such a way that many shorter wires are preferred over fewer

longer ones. The cost of a solution using the modified cost function is:

(12)

where is the standard cost function (5), is a component assigned to a constrained layer,

 is the diameter of component (i.e. the maximal distance between terminals of), and

 is a constant which controls the penalty. The usage of the exponent favors multiple smaller

components over fewer and longer ones as the cost has polynomial growth with increasing

component size.

FIGURE 43 - Constrained layer-assignment. By slightly modifying the cost
function, the LAA can produces special assignments such as the one and a half
layer-assignment in this example. Most of the routing is done on a single layer
with only short ‘jumpers’ on the other layer which are embedded in the ground
plane.

S

C’ S() C S() d c()k

c

∑+=

C S() c

d c() c c

k 1>

71

dean

ng the

single

th tree

ing via

case of

nd the

ultiple

es in

rs only

f them
.

3.4.2 Supporting Various Metrics in the Layer-Assignment

The above presentation of the LAA assumed an any-angle routing model and thus uses the

Euclidean metric in all distance calculations. Although any-angle routing potentially makes best

usage of routing resources and results in the shortest wiring, sometimes it is required, because of

production constraint, to restrict the wiring to be rectilinear or octilinear.

The LAA can be extended to handle rectilinear and octilinear wiring models as well. This is done

by using a rectilinear (‘Manhattan’) or octilinear metrics respectively instead of the Eucli

metric. This change affects the following aspects of the LAA:

1. Whenever a distance between two points is calculated (for example, when computi

conflict), the actual metric is used. With modular implementation, this change affects the

function that calculates the distance between two points.

2. Step I of the layer-assignment breaks each net into 2-Nets by generating a minimum leng

that spans the net’s terminals. This tree should be generated using the proper metric.

3. Step II of the layer-assignment generates the assignment graph for each 2-Net by defin

candidate locations along the shortest path between the end-points of the 2-Net. In the

Euclidean distance, this path is unique and is the straight line between the end-points (Figure 44).

When rectilinear or octilinear metrics are used, the shortest path may not be unique a

algorithm can choose one arbitrarily or choose a set of ‘well spaced’ paths. Considering m

candidate paths1 may result in better solutions as the assignment step has more choic

positioning the vias, at the expense of increasing the run-time. Our implementation conside

a single path, the straight line between the terminals, as done with Euclidean metric.

1. This can be handled by having multiple assignment graphs per 2-Net and searching all o
for a best assignment of the 2-Net, or by merging all of them into a single assignment graph

72

r and

When

s of the

etter

e to the

ach can

certain

layers

ording

 in the

by two

sired
SURF’s implementation of the layer-assignment algorithm supports any-angle, rectilinea

octilinear routing models. It includes the above extensions except for the second one.

breaking the nets into two terminals nets, a Euclidean Steiner tree is generated regardles

actual routing model in use. Generating a metric specific tree will potentially result with b

solutions.

3.4.3 Preferring 2-Net assignment to layers

The constrained assignment technique mentioned earlier is able, by having a minor chang

cost function, to prefer assigning longer branches to the non constrained layers. This appro

be used to achieve many other goals of preferential assignment of certain branches to

layers. A simple example is when it is preferable to assign a set of critical nets to some

which have more desirable electrical properties. Other criteria can be preferring layers acc

to the general direction of the branch to achieve layers on which the branches are mostly

same direction (for example, x/y pairs in Manhattan routing). These goals can be achieved

modifications to the LAA. First, the cost function should be modified to preferred the de

a

FIGURE 44 - Candidate via location for Rectilinear metric. The 2-Net between t1
and t2 is to be assigned and two candidate via locations v1, v2, are used (a). The
shortest path using rectilinear metric between t1 and t2 is not unique and three
choices are shown in (a). The LAA uses the straight line between the two
terminals and spaces vias evenly along the path. In (b) a possible assignment with
two branches, one on the gray layer and one of the black layer is shown. (c) shows
a possible embedding for the assignment of that 2-Net. This embedding has the
minimal possible rectilinear wire length between the two terminals. A similar
approach is used for Octilinear metric.

b c

t1

t2

v1

v2

b1

b2

b1

b2

73

 single-

LICE.

ts.

n two-

ing

ear

g its

meter

ire
assignments, and second, the assignment graphs of the 2-Nets may need to be modified or

extended to contain desire assignments of the 2-Nets (for example, having mostly horizontal/

vertical branches in a Manhattan one-layer-one-direction routing or having short branches in

constrain assignment).

3.5 Experimental Results

Since the proposed LAA uses heuristics to perform the assignment, the primary technique to

explore its merit and properties is experimentation. In this section we present empirical results of

benchmarks of the LAA against another router and of routing with various parameters settings. To

reduce external effects on the results, all experiments were done on a single bin so that they are

independent of the performance of the Global Router. Nevertheless, to find the actual cost of the

embeddings of the bins, a specific single-layer router had to be used. SURF’s rubber-band

layer router was used for this purpose.

3.5.1 Benchmark results

To evaluate the merits of the proposed LAA we compared the results of SURF to those of S

SLICE is a grid-based router [29]. which is characterized by its simultaneous routing of all ne

This makes SLICE insensitive to net ordering as opposed to most existing area routers. Te

layer bin problems were routed by both SLICE and SURF and the results are shown in Table 1 and

are summarized in Table 2. To make the routing conditions identical for both routers, the rout

problems were modified to comply with SLICE ‘s input requirements which include rectilin

metric, and having terminals only on the top layer. The routing in SLICE was done usin

default setup. To allow comparison of both wire-length and number of via, the via-cost para

 of SURF was adjusted such that SURF’s solutions had both shorter wires and less vias than

SLICE’s. As shown in Table 1, SURF was able to route the examples with slightly shorter w

length (0.4%) and with 31% fewer vias.

α

74
Example SLICE SURF

Name Nets Len0 Len Vias Det% Len Vias Det%

APEX/01 44 50195 52777 68 5.1 52166 42 3.9

APEX/02 70 113414 122461 174 8.0 121205 99 6.9

APEX/03 41 74157 74440 161 0.4 75337 106 1.6

DS15/01 19 6110 6194 35 1.4 6221 22 1.8

DS15/02 21 7693 8024 26 4.3 7914 25 2.9

DS15/03 22 8946 9204 12 2.9 9193 4 2.8

GDX/01 18 10057 10311 26 2.5 10268 20 2.1

GDX/02 26 12607 12691 26 0.7 12686 12 0.6

GDX/03 24 8970 9269 16 3.3 9184 14 2.4

GDX/04 29 9892 10155 12 2.7 10082 12 1.9

Avg 31.4 30204 31552 55.6 3.1 31425 35.6 2.7

TABLE 1 - Benchmark of SURF vs. SLICE. Ten bin-size problems were routed
in rectilinear metric by both SLICE and SURF. Len0 denotes the lower bound on
the wiring length and is the sum of the lengths of the rectilinear Steiner trees of the
nets of each bin. Det% is the percentage of extra wire length in the bins
embeddings compared to the lower bound. The improvement of SURF over
SLICE is summarized in Table 2.

75
3.5.2 Balancing Between Wiring Length and Via Count

This experiment explores the effect of the via cost parameter on the number of vias and the total

wire length of the routed bins. Ten bins were routed (Euclidean metric, optimizations enabled)

with twelve different values of . The via count and wire length of the routed bins are compared in

Table 3 and Table 4 respectively. The results are summarized in Figure 1 and Figure 2 which show

the average via count and average wire length respectively, both of which are normalized to 100

for . As expected, the over-all trend is for the number of vias to decrease and the wire

length to increase as is increased. The results have several points in which increasing the value

 reduces the wire length (for example, the increase from to in Graph 2). A

possible cause of this behavior is the steepest descent optimization algorithm getting trapped in a

local minimum and failing to find an optimal solution.

Example Improvement

Name Len% Vias%

APEX/01 1.16 38.24

APEX/02 1.03 43.10

APEX/03 -1.20 34.16

DS15/01 -0.44 37.14

DS15/02 1.37 3.85

DS15/03 0.12 66.67

GDX/01 0.42 23.08

GDX/02 0.04 53.85

GDX/03 0.92 12.50

GDX/04 0.72 0.00

Avg 0.41 31.26

TABLE 2 - SURF improvement over SLICE. This table summarizes the results in
Table 1. It shows the improvement in the total wire length and via count when
routing the ten bins in SURF. All values are in percents.

β

β

β 0=

β

β β 50= β 60=

76
0 5 10 20 30 40 50 60 70 80 90 100

APEX/01 99 71 47 43 39 35 31 31 29 23 21 21

APEX/02 245 167 136 99 89 77 67 67 61 59 59 59

APEX/03 220 118 90 75 57 58 54 54 52 50 48 48

DS15/01 56 36 32 28 22 20 18 16 14 12 12 10

DS15/02 56 51 41 39 34 22 14 14 14 14 14 12

DS15/03 35 27 25 18 16 12 10 10 8 8 8 8

DS15/04 44 27 23 16 13 13 11 11 11 11 11 7

GDX/01 31 17 17 10 10 6 6 6 6 6 4 4

GDX/01 24 18 18 18 7 7 6 6 3 2 2 0

GDX/02 27 15 10 10 8 8 6 6 4 2 2 2

TABLE 3 - Number of vias vs. beta. This table shows the resulting number of
vias when routing ten bins, each which twelve different values of . As expected,
the overall trend is having fewer vias when is increased.

β
β

E 0 5 10 20 30 40 50 60 70 80 90 100

APEX/01 2 442 443 445 445 448 451 453 453 455 471 469 469

APEX/02 3 103 104 104 105 107 111 113 113 112 110 110 110

APEX/03 2 658 667 669 666 693 692 693 693 694 683 692 692

DS15/01 1 528 530 530 533 544 547 551 549 562 561 560 566

DS15/02 1 688 689 530 533 544 547 551 549 562 561 560 566

DS15/03 1 793 794 797 801 804 812 819 819 819 819 819 819

DS15/04 1 918 922 928 930 934 934 938 938 938 938 938 983

GDX/01 2 97 97 98 98 103 103 103 103 103 103 105 105

GDX/01 1 815 815 815 815 833 833 847 847 857 866 866 899

GDX/02 1 834 836 840 840 844 844 894 894 900 910 910 910

TABLE 4 - Wire length vs. beta. The table shows the total wire length of the ten
bins routed with twelve different settings of . To fit in the table, the values were
scaled down by . As expected, the overall trend is having shorter wires when

 is decreased.

β
10

E

β

77
0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 20 40 60 80 100 120

GRAPH 1 - Number of vias vs. beta. This graph shows the average number of
vias of the ten bins in Table 3 versus the via cost parameter . The via counts are
normalized to 100 when .

β
β 0=

of

 v
ia

s
(n

or
m

al
iz

ed
)

β

100.00

101.00

102.00

103.00

104.00

105.00

106.00

107.00

108.00

0 20 40 60 80 100 120

GRAPH 2 - Wire length vs. beta. This graph shows the average wire length of the
ten bins in Table 4 versus the via cost parameter . The wire lengths are
normalized to 100 for .

β
β 0=

β

to
ta

l w
ir

e
le

ng
th

 (
no

rm
al

iz
ed

)

78
3.5.3 Estimated vs. Actual Detour

The cost function used by the LAA estimates the detour length using conflicts between pairs of

components. This experiment explores the relationship between the estimated and the actual

detours. Ten bins were routed (Euclidean metric, optimizations enabled) and the estimated and the

actual detours were compared. To cover a wide range of conditions, each bin was routed with

twelve different settings of the via cost parameter , which has a significant effect on the detour

(higher values result in longer detours).

Table 5 shows the ratio of estimated to actual detours. For low values of (which result in lower

detour) the cost function overestimates the actual detour by a factor of about three. These ratios

decrease as increases (which also increases the detour length) and stabilizes around 1.4.

The convergence of the overestimation to 1.4 suggests pre-factoring of the cost function to

compensate for that error. This will reduce the overestimation for low detour to the factor of two

(2.9/1.4). This however has no practical benefit as the user specifies the via weight using the

parameter , which is an abstract value anyway. In addition, the large error ratio in assignments

with low detour does not present a practical difficulty since the detour is only a small percentage of

the total wire length and thus the error is small.

β

β

β

β

β

79
3.5.4 Comparison of Net Decomposition Methods

The LAA decomposes the multi-terminal nets into 2-Nets by generating a tree that connects the net

terminals. Our LAA implementation supports three kinds of trees, minimal spanning tree (MST),

minimal Steiner tree (MSTT), and Steiner tree with short edges collapsed (MSTTC). This

experiment explores the differences in routing quality and run-time between these three methods.

Fifteen bins, each with 25 nets of 4 terminals each were routed (Euclidean metric, optimizations

enabled,). The locations of the terminals were selected randomly with uniform

distribution of the x and y coordinates.

Table 6 shows statistics of routing the bins with the three methods. All the values in the table are

averages for the routed bins. The most significant values are the Bin Actual Cost and LAA Time

rows, which show the cost of the layouts and the run-time of the LAA respectively. These values

0 5 10 20 30 40 50 60 70 80 90 100

APEX/01 1.6 1.6 1.7 1.9 1.7 1.5 1.6 1.6 1.6 1.2 1.5 1.5

APEX/02 1.5 1.4 2.0 1.5 1.0 0.9 0.7 0.7 0.9 1.1 1.1 1.1

APEX/03 2.4 1.4 1.5 2.0 0.9 1.0 1.1 1.1 1.1 1.6 1.3 1.3

DS15/01 2.6 2.5 2.8 2.4 1.2 1.2 1.2 1.5 1.2 1.5 1.4 1.5

DS15/02 2.6 2.4 1.9 2.0 1.2 2.4 1.9 1.9 1.9 1.9 1.9 1.9

DS15/03 3.3 3.1 1.3 1.8 1.7 1.5 1.5 1.5 1.9 1.9 1.9 1.9

DS15/04 2.4 1.6 1.2 1.3 1.9 1.9 2.2 2.2 2.2 2.2 2.2 1.8

GDX/01 2.3 1.7 1.7 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.7 0.7

GDX/02 7.9 4.0 4.0 4.0 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.2

GDX/03 2.1 1.7 1.8 1.8 2.0 2.0 0.6 0.6 0.9 1.1 1.1 1.1

Avg 2.9 2.1 2.0 2.0 1.4 1.4 1.3 1.3 1.4 1.4 1.4 1.4

Detour% 0.5 0.9 1.1 1.4 2.8 3.5 5.0 5.0 5.4 5.7 6.0 7.0

TABLE 5 - Detour overestimation vs. beta. This table shows the ratio of
estimated to actual detour when routing ten bins with various values of . Avg is
the average of the estimated to actual detour ratios for each of the settings and
the Detour% is the average of the percentage actual detour from the basic wire
length of the bins.

β
β

β 25=

80
are also compared in Graph 3. As expected the MST has the shortest run-time, the MSTT has the

best results (i.e. lowest cost), and the MSTTC provides a balance between the two.

The rest of the values in the table provide some insight into the operation of the LAA when using

the three methods. The 2-Nets Intersections column shows the number of 2-Net pairs whose paths

intersect. This value indicates the dependency between nets and is correlated to the amount of

computation done on each iteration to update the incremental data. The LAA Iterations column

shows the number of iterations needed to complete the bin assignment. 2NAA is the number of

times the 2NAA algorithm is invoked during the bin assignment to compute a best assignment of a

2-Net. Finally, the Pair Conflicts column shows the number of pair-wise component conflicts

computed during the assignment. The trends of all of these values when varying the decomposition

method are similar to that of the run-time.

Note that all of the nets routed in this experiment had 4 randomly located terminals. When routing

real-life examples, the results are expected to vary. For example, in the extreme case where all the

nets have exactly two terminals, the three methods will give about the same results since the

decompositions are identical.

MST MSTT MSTTC

nets 25 25 25

2-Nets 75 125 78

2-Net Intersections 345 457 360

LAA Iterations 105 153 110

2NAA 1257 1688 1331

Pair Conflicts 96428 89061 1000865

Bin Actual Cost 2768 2596 2682

LAA Time [sec] 68 73 70

TABLE 6 - Comparison of 2-Net decomposition method. This table summarizes
the results of routing 15 random bins with three methods of decomposing the nets
into 2 Nets. All values are average for the 15 bins. Graph 3 provide a normalized
comparison of the two last rows.

81

nt of
3.5.5 Candidate Via Density Versus Actual Cost

This experiment explores the effect that the number of candidate vias per 2-Net has on the routing

results. Ten bins were routed (euclidean metric, , optimizations enabled) with the number

of candidates varying from 1 to 10. Table 7 and Table 8 show the total wire length and number of

vias respectively. Graph 4 shows the average actual cost of the routed bins and Graph 5 shows the

average via count and wire length. All are normalized to 100 for the case of 10 candidate vias per

2-Net.

As expected, the actual cost decreases, when the number of candidate vias is increased (Graph 4).

The improvement in the cost is significant for low numbers of candidate points and stabilizes

around 5 candidates. Note that for low numbers of candidate vias, the average number of vias in

the routed bins is significantly lower, resulting in longer wiring (Graph 5). One reason for this is

that as the number of via candidates and the granularity of potential via locations is reduced, it

becomes less likely that the LAA will consider vias that are “well placed” from the standpoi

GRAPH 3 - Comparison of net decomposition methods. This graph shows the
relative cost and run-when routing bins using the three decomposition methods.
The values are based on the results in Table 6 and are normalized to 100 for the
case of MST. As seen in the graph, the MST and the MSTT are on the two
extremes of routing quality and LA run-time, while the MSTTC provides a
balance between the two.

100.0

93.8

96.9

100.0

108.8

103.8

85.00

90.00

95.00

100.00

105.00

110.00

MST MSTT MSTTC

Cost

Time

β 5=

82
reducing the detour length. As a result, the expected detour reduction will decrease, making it

harder to justify the additional via cost.

E 1 2 3 4 5 6 7 8 9 10

APEX/01 2 515 448 446 443 444 443 441 440 442 441

APEX/02 3 132 105 104 104 103 103 103 104 103 103

APEX/03 2 712 668 667 667 660 659 658 656 656 656

DS15/01 1 595 533 531 530 530 529 530 529 528 528

DS15/02 1 756 713 692 689 687 685 684 684 683 683

DS15/03 1 873 805 795 794 795 794 793 794 794 793

DS15/04 1 977 930 923 922 918 917 917 919 919 919

GDX/01 2 107 98 97 97 97 97 97 97 97 97

GDX/02 1 836 819 815 815 815 815 815 815 815 815

GDX/02 1 841 836 839 836 838 836 836 836 836 836

TABLE 7 - Wire length vs. number of candidate vias. The table shows the actual
length of routing ten bins with ten different number of candidate vias per 2-Net.
To fit in the table, the values have been scaled down by .10E

83
1 2 3 4 5 6 7 8 9 10

APEX/01 3 49 61 71 73 75 77 81 73 77

APEX/02 70 135 142 167 163 169 173 177 164 175

APEX/03 61 111 115 118 122 124 124 127 130 126

DS15/01 6 43 40 36 40 36 36 36 36 40

DS15/02 6 37 44 51 53 54 52 58 54 52

DS15/03 3 23 29 27 26 26 24 24 28 26

DS15/04 9 21 22 27 27 26 24 24 28 28

GDX/01 3 17 17 17 17 18 18 18 16 16

GDX/02 8 23 22 18 18 18 18 18 18 18

GDX/03 12 17 13 15 14 14 14 14 14 14

TABLE 8 - Via count vs. number of candidate vias. The table shows the total
number of vias when routing ten bins with ten different numbers of candidate vias
per 2-Net.

100

101

102

103

104

105

106

107

108

109

110

1 2 3 4 5 6 7 8 9 10

GRAPH 4 - Actual cost vs. number of candidate vias. The graph is based on the
data in Table 7 and Table 8. The costs of each bin has been normalized to 100 for
the case of 10 candidate vias and the graph shows the averages of these costs.
Note that the Y axis of the graph starts in 100 and not zero.

via candidates

ac
tu

al
 b

in
 c

os
t

84
3.5.6 Using Various Routing Metrics

This experiment explores the relationship between the distance metric considered by the LAA and

the final wire geometry style in terms of the effect on the actual cost of the embedding. Ten bins

were considered. Each was routed with all four combinations of rectilinear and Euclidean distance

metric and layout wiring style. The cost of these layouts are compared in Table 9. As expected,

when the LAA uses a rectilinear metric to route Euclidean problems the cost is higher, on average

by about 7%, than when performing the assignment with the Euclidean metric. However, when

routing rectilinear problems, the average extra cost when performing the assignment using the

Euclidean metric instead of rectilinear is significantly lower, only about 0.6%. A possible cause

for this phenomenon is that a shortest Euclidean path is also a shortest rectilinear path, but not vice

versa. Another possible explanation is that our implementation of the LAA does not take full

advantage of the properties of rectilinear wiring since it only considers placing candidate vias

along the straight path between the end-points of the 2-Net even though the shortest rectilinear

path is not unique and other paths may yield better results.

20

30

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10

GRAPH 5 - Wire length and via count vs. number of candidate vias. The graph is
based on the data in Table 7 and Table 8. The values have been normalized to 100 for
the case of 10 candidate vias. Note that the Y axis of the graph starts in 20 and not
zero

length

vias

via candidates

85
3.5.7 LAA Scalability

This experiment explores the scalability of the LAA in terms of the number of nets per bin. Ninety

bins, grouped into nine different bin sizes, were assigned and the run-times of the LAA compared.

Half of the nets of each bin had two terminals and half had three terminals. The average number of

2-Nets per net was about 21. The terminals were placed randomly with uniform distribution over

the X and Y axis. The statistics for the size groups are shown in Table 10. The values of variable

shown in each of the table columns were fitted by a polynomial function of the form where

is the problem size in terms of nets. The order of the best fitted function is shown in the last row

of the table.

1. Since Steiner tree decomposition has been used, the 3 terminal nets were typically decomposed
into three 2-Nets and the two terminal nets into a single 2-Net.

EE ER RR RE ER/EE RE/RR

APEX/01 657.0 711.0 749.9 757.9 1.082 1.011

APEX/02 1464.4 1486.7 1557.6 1620.6 1.015 1.040

APEX/03 1148.7 1399.7 1496.6 1295.4 1.219 0.866

DS15/01 407.1 414.7 441.4 486.2 1.019 1.101

DS15/02 470.8 483.7 513.3 538.5 1.027 1.043

DS15/03 405.2 444.5 462.5 455.5 1.097 0.985

DS15/04 228.9 237.7 252.3 249.4 1.038 0.989

GDX/01 311.3 335.6 401.5 391.9 1.078 0.976

GDX/02 246.6 273.0 285.0 288.8 1.107 1.013

GDX/03 209.8 212.4 245.1 253.6 1.012 1.035

Average 1.069 1.006

TABLE 9 - Effect of the routing metric on the routing results. Ten bins has been
routed for both euclidean and rectilinear metrics. For each metric, the LA was
done with both ‘right’ and the ‘opposite’ metrics and the cost of the bin
embeddings are compared. ‘EE’ denotes, an euclidean routing with euclidean LA,
‘ER’ denotes euclidean routing but with rectilinear LA, etc. The columns ER/EE
and RE/RR show the ratios of the respective columns.

an
b

n

b

86

ost’

rows

-Nets

ber of

by the

ime

that,

e. The
The results indicates that the run-time of the LAA, in the tested range of bin sizes, grows

proportionally to where is the number of nets in the bin. As seen in Table 10, the number of

2-Nets grows linearly with the bin size, and the number of LAA iterations grows ‘alm

linearly’, about . As expected, the number of intersections between 2-Nets g

proportionally to which suggests that a 2-Net intersects on average a number of 2

proportional to . As as a result, in every iteration, after a 2-Net has been assigned, the num

2-Nets whose best assignment is computed is proportional to , and this is confirmed

growth in the number of invocations of the 2NAA which is proportional to . The LAA run-t

and the computations of the pair-wise conflicts grow proportionally to which confirms

as expected, the computation of a single pair-wise conflict is independent of the problem siz

Nets 2-Nets LAA
Iterations

2-Net
Intersect.

2NAA Exp. Branch
Edges

Pair
Conflicts.

Time
[Sec]

1 3 5 3 9 54 0 0.03

5 11 13 15 42 307 175 0.19

10 20 23 34 92 712 743 0.60

20 40 46 104 277 2458 5298 3.38

35 71 87 339 932 11546 47507 25.34

50 100 127 617 1743 25164 135677 69.72

60 119 149 783 2113 30059 185045 97.74

80 158 212 1457 4399 69091 617100 311.56

100 199 274 2211 6855 121061 1227431 6845.58

P n
1

n
1.1

n
2

n
2

n
2.5

n
3.5

n
3.5

TABLE 10 - LAA scalability. The table shows the statistics of running the LAA
over 90 bins. The bins are of nine different sizes from 1 to 100 nets per bin. All
values are averages for the bins in each size group. 2-Net Intersection are the
number of pairs of 2-Net whose paths of candidate vias intersect. 2NAA is the
number of time the 2NAA algorithm has been invoked during the LA of a bin.
Expanded Branch Edges is the number of branch edges expanded by the 2NAA.
Pair Conflict is the number of time a component pair-wise conflict was computed
while assigning a bin. The last row shows the order of growth of each of the
variables as a function of the bin size when fitted by a polynom.n

n
3.5

n

n
1.1

n
2

n

n

n
2

n
3.5

87
ratio of computed pair-wise conflicts to the number of 2NAA invocations grows proportionally to

. This is because the number of branch edges expanded during each 2NAA grows

proportionally to , and because the average number of components intersecting an expanded

branch edge with grows linearly with . The growth in the number of branch edges expanded

during each 2NAA is attributed to the increased density of nets which increases the chance of a

conflict between components and thus causes the 2NAA to explore more paths in the assignment

graph until a shortest path is found. Since the number of branch edges in a 2-Net assignment graph

is upper- bounded by the graph size and is independent of the bin size, the growth of number of

expanded branch edges during the LAA would grow proportionally to when the bins are large

enough and this will result in run-time proportional to . This however happens only in bins

which are too large to be practically solved by the LAA and thus we consider the practical run-

time of the LAA to grow proportionally to .

3.6 Conclusion and Future Work

We have considered the problem of layer-assignment. That is, decomposing a multi-layer routing

problem into a set of single-layer sub-problems. The problem is a key building block in our

topological rubber-band based router. We have presented a simple and efficient cost function

which can be used to predict the wire length of the actual embeddings without the need to perform

explicit routing, and proved that the cost is finite if and only each of the sub-problems is planar.

This cost function allows us to formulate the layer-assignment problem as an optimization

problem. We presented the Layer-Assignment Algorithm (LAA) that solves this optimization

problem and an original algorithm (2NAA) which finds an optimal assignment for a given two

terminal net, and proved that the LAA is guaranteed to terminate and to find a planar solution if

such a solution exists. Experimental results show that the run-time of the LAA is proportional to

 where is the number of nets in the bin. We demonstrated the flexibility of LAA by showing

two examples of how a simple change to the cost function can achieve various routing goals such

as different metrics of the wire length and constrained (one and a half layer) routing. We presented

experimental results of our implementation of the LAA that support the merits of the algorithm

and give insight into some of its properties.

n
1.5

n
0.5

n

n
2

n
3

n
3.5

n
3.5

n

88
Our implementation of the LAA uses a steepest descent optimization technique which tends to be

sensitive to local minimums. A more complex technique such as simulating annealing, or group

migration, can possibly improve the quality of the solutions. Another possible improvement is

using a cost function that considers conflicts between larger sets of components, rather than only

pairs. This may better capture the dependency between conflicts and give more accurate detour

estimation at the expense of longer run-time. The LAA can also be extended to consider a wider

range of candidate vias for each 2-Net, to better support existence of obstacles in the routing area,

to consider congestion and routability, and to handle critical nets and electrical requirements.

89
4 TOPOLOGICAL NET ORDERING

4.1 Introduction

The Layer-Assignment Algorithm (LAA) generates for each bin a set of single-layer routing

problems, one for each layer. These bin layers are routed independently by the single-layer router

which embeds the nets to form a rubber-band sketch. The routing is done one two-terminal-net (2-

Net) at a time, each routed on a least cost path between its end-points in the rubber-band sketch.

Since the order in which the 2-Nets are routed affects the planarity and final wiring length, it is

important to order the nets so that a planar routing with minimal wire length can be achieved.

The rest of this chapter deals with the problem of ordering the 2-Nets. First we discuss the

decomposition of the nets into 2-Nets and the goals and limitations of 2-Net ordering. Then we

present the two components of the proposed ordering algorithm, the wire length minimization, and

the Planarity Enforcement Operator (PEO). These two components are combined to achieve a

planar order which results in low wiring length. The wire minimization algorithm orders the 2-

Nets to reduce the wire length and the PEO transforms that order into an order that guarantees a

planar embedding. The problem of ordering the 2-Nets to minimize the wire length is formulated

as an optimization problem. The cost function estimates the wiring detour in the embedding and is

based on ordered pair-wise conflicts between nets. Then, an efficient heuristic to solve the

optimization problem is presented. Finally we present experimental results of our implementation

of the proposed algorithms.

4.2 Decomposition into 2-Nets

The LAA defines for each layer a set of components, each of which is a set of terminals to be

interconnected within the bin boundary and on that layer1. The terminals include the original

terminals of the design as well as vias and bin boundary crossing points.

1. In the context of a single layer routing problem the components can be viewed as nets. How-
ever, for consistency, we will adhere to the notation in the Layer-Assignment chapter and will call
them components.

90
Since the embedding is performed a 2-Net at a time, the components need to be decomposed into

2-Nets. This decomposition can be done in several ways, including the methods described in the

Layer-Assignment chapter. The decomposition does not have to be the same as the one used by the

LAA. Using a different decomposition may even improve the routing results since the new

decomposition can consider the results of the LAA, information which was not available when the

LAA decomposition was performed. In our implementation, for sake of simplicity, we use the

same decomposition is used by the LAA.

4.3 2-Net Ordering

Since the order in which the 2-Nets are routed affects the wiring length of the embedding, (Figure

45) an order that minimizes the wiring length is desired. Note that number of vias is not affected

by the 2-Net routing order since the vias are determined by the layer-assignment step.

Routing the 2-Nets one at a time on a least cost path between their end-points has its limitations. In

some cases, no order will result in an optimal embedding. Figure 46 shows an example problem

that cannot be solved optimally, for any net ordering followed by a shortest path search. SURF

handles this limitation by using a Rip-Out-And-Reroute (ROAR) post-processor (described

elsewhere in this document) that reduces the wiring length. The ROAR achieves the optimal

solution for the problem in Figure 46.

a b

n1

n2 n1

n2

FIGURE 45 - Net ordering and wiring length. The two 2-Nets in this example
were routed in two different orders. In (a) was routed before and in (b)
was routed after . The order in (a) results in shorter wiring.

n1 n2 n1
n2

91
In addition to minimizing the wiring length, the routing order needs to guarantee that a planar

embedding can be achieved. Figure 47 shows an example where a 2-Net cannot be routed because

its two end-points are disconnected by previously routed 2-Nets and the bin boundary. Such non-

planarity can happen only in the presence of nets that connect terminals located on the bin

boundary (external terminals). The 2-Nets should be routed in an order that guarantees that no

connections are blocked by nets routed earlier in the sequence.

a

a b

FIGURE 46 - The Triangle problem. This problem has three symmetrical 2-Nets
and its optimal embedding is shown in (a). The optimal embedding cannot be
achieved by routing 2-Net-at-a-time on a shortest path. Any such routing will result
in a sub-optimal solution similar to the one in (b). SURF handles this limitation by
post-processing the sketch with the ROAR optimizer.

a

n1

n2

n3

b
FIGURE 47 - Non-planar 2-Net routing order. The single-layer routing problem
in (a) has three 2-Nets. Routing the 2-Nets in the order , , fails because a
planar routing of is impossible as shown in (b). Routing the 2-Net for example
in the order , , is guaranteed to succeed.

n1 n2 n3
n3

n1 n3 n2

92

a

The proposed ordering is done in two steps

l First, the 2-Nets are ordered to minimize a cost function which estimates the wiring length when

embedding the 2-Nets in that order. This minimization step accepts the (unordered) set of the bin

layer 2-Nets and generates a complete order of the 2-Nets. This order however does not guaranty

successful planar embedding.

l The minimizing order is then constrained to guarantee planarity. This is done by the Planarity

Enforcement Operator (PEO, or PE operator) which accepts a 2-Net ordering and generates 2-

Net order which is based on the input order and guaranties successful planar embedding. The

order modification that the PEO does is guaranteed to preserve the wire length estimation of the

order.

These two steps are presented in the rest of the chapter. Since the minimization step considers the

operation of the PEO performed on its output, we present the PEO first, followed by presentation

of the minimization step.

4.4 Planarity Enforcement Operator (PEO)

The PEO accepts an order of the 2-Nets and generates an order that guarantees successful planar

embedding of the 2-Nets. The PEO does not make any specific assumption about the algorithm

used to embed the individual 2-Nets except that it is guaranteed to find a planar path if one exists.

The PEO is based on the classification of 2-Nets into ‘closed’ and ‘open’ 2-Nets:

(closed and open 2-Nets) A 2-Net is said to be closed in a given order of 2-Nets if it completes

path between two external terminals when considering the 2-Nets preceding it in the order (Figure

48). Otherwise the 2-Net is said to be open in that order.

93
Note that the definition ignores any specific embedding of the 2-Nets and considers only the 2-Net

order and connectivity

The significance of identifying the closed 2-Nets is that they partition the routing area into

disconnected regions and could potentially separate the end-points of an un-routed 2-Net. The

planarity enforcement is done by identifying the two subsequences of 2-Nets open and closed

respectively in the order and then forming a new order which is a concatenation of the

subsequence of the open and closed 2-Nets respectively (Algorithm 2). The PEO preserves the

relative order of the 2-Nets closed in the input order and the relative order of the 2-Nets open in

that order and positions all the 2-Nets closed in the original order after all the 2-Nets open in the

original order. The PEO modifies the order only if the input order contains a closed 2-Net followed

by an open 2-Net, otherwise it preserves the input order. Note that the fact that a 2-Net is closed

(open) in the input order, does not intuitively imply that it is also closed (open) in the output order

since the order has been modified. This however is true and later we show that the PEO preserves

the closeness (openness) of the 2-Nets (which implies that every result of the PEO is also a fix

point of it).

a

n1

n4

n3

n2

n5

b

n1

n4

n3

n2

n5

FIGURE 48 - Closed 2-Nets. The 2-nets in this example are ordered as .
The only 2-Net which might disconnect the end-points of non routed 2-Net is
which closes a path between two external terminals (a). (b) shows how a possible
path of can separate the end-points of .

n1..n5
n4

n4 n5

94
To prove that the output of the PEO guaranties planar embedding, we first prove a sufficient

condition for a planar embedding of an ordered set of 2-Nets:

Lemma 3 Let be an order of a planar set of 2-Nets1. If does not have a close 2-Net

followed (either immediately or not) by an open one then routing the 2-Nets in order by is

guaranteed to result in a planar embedding.

Proof We prove this by contradiction. For the purpose of contradiction we assume when routing

the 2-Nets in order , the embedding of a 2-Net (the first one) failed because there is no planar

path between its end-points. This implies that the end-points of are separated from each other

by previously routed 2-Nets, and therefore, at least one closed 2-Net has already been routed (open

2-Nets do not disconnect the routing area). Since open 2-Nets do not follow closed ones in , is

closed, and therefore if it would be routed this would close a path between two external terminals

, (Figure 49). Since the end-points of are disconnected, the previously routed 2-Nets forms

a path between two external terminals , that separates between the end-points of . This path

also separates and . This implies that there are two crossing paths between external terminals

(Figure 49) and therefore the routing problem cannot have a planar embedding. This contradicts

the planarity of the set of 2-Nets. Q.E.D

1. In the context of SURF, the planarity of the set is guaranteed by the Layer-Assignment Algo-
rithm.

Let be the input order of 2-Nets
Let be the subsequence of open 2-Nets in
Let be the subsequence of closed 2-Nets in
The output order is

π
πo n1..nj= π
πc m1..mk= π

π∗ n1..nj m1..mk,=

ALGORITHM 2 - The Planarity Enforcement operator. The PEO identifies
the two subsequences of 2-Nets open and closed respectively in the input
order and generates an order in which the 2-Nets closed in the input order
follows the 2-Nets open in the input order. The PEO preserves the relative
order of the open and closed 2-nets respectively.

π n1..nk= π

π

π ni

ni

π ni

a b ni

c d ni

a b

95
Corollary 1 An open 2-Net cannot be blocked by previously routed open 2-Nets. A closed 2-net

cannot be blocked by any 2-Net (assuming planarity of the 2-Net set). The only possibly blockade

is of an open 2-Net by a closed one.

In the general case, the sufficient condition of Lemma 3 is necessary as a path of the first closed 2-

Net can be constructed such that it separates the end point of an open 2-Net following it (Figure

50). However, if some assumptions about the 2-Net embedding algorithm are made (for example

2-Net embedding on a shortest planar path), this condition may not be necessary for planar

embedding.

a

b

c dni

FIGURE 49 - Non planar external paths. is a closed 2-Net that is disconnected
by previously routed 2-Nets and therefore the 2-Net set includes paths between
external 2-Nets which crosses each other. This implies that the routing problem is
non-planar.

ni

96
Next we will prove that the output of the PEO satisfies the sufficient condition in Lemma 3. The

planarity of the 2-Net set is guaranteed by the LAA algorithm which generates this set and

therefore it is sufficient to show that the output of the PEO does not have an open 2-Net followed

by a closed 2-Net. We show that by proving that the order modification done by the PEO does not

affect the closeness/openness of the 2-Net. In other words, a 2-Net that was closed (open) in the

input order of the PEO is also closed (open) in the output order. The proof is done in two steps,

first we show that the closeness/openness of the 2-nets is preserved by a swap operation between a

closed 2-Net and by an open 2-Net immediately following it, and then we show that the output

order of the PEO can be achieved by performing a finite sequence of swapping operation of pairs

of adjacent 2-Nets, closed and open respectively in the input order.

Lemma 4 Let be an order of the 2-Nets, let , be two successive 2-Nets

closed and open respectively in , and let be the order with the 2-Nets ,

swapped. A 2-Net is closed (open) in if an only if it is closed (open) in .

Proof For every 2-Net other than and , the sets of 2-Nets ahead of it in and in

respectively are identical therefore its closeness/openness is preserved. is closed in and by

definition it closes a path between two external terminals. This path is composed of and

a

n1

n2

n3

a

n1

n2

n3

FIGURE 50 - Necessary condition for planar embedding. The example in (a) has
3 2-Nets ordered as , , . The 2-Nets and are closed in that order
and is open. If the 2-Net embedding algorithm can potentially select any
planar path (and not necessarily the shortest one), it can choose for (the first
closed 2-Net) a path which disconnects open 2-Nets following it (in this
example) as shown in (b). Note that (which is a closed 2-Net) cannot be
blocked by .

n1 n2 n3 n1 n2
n3

n1
n3

n2
n1

a b

π1 n1..nk= ni ni 1+

π1 π2 π1 ni ni 1+

π2 π1

nj ni ni 1+ π1 π2

ni π1

ni

97
possibly some of the 2-Nets preceding it in . Since these 2-Nets also precede in

, closes an external path in and is closed in . As for , it is open in and by

definition, it does not close an external path in (considering the 2-Nets preceding it in

). This 2-Net set , is a super set of the 2-Nets preceding in , and

therefore does not close an external path and is open in . Q.E.D

Lemma 5 Let and be the input and output orders respectively of the PEO. A 2-Net is closed

in if and only if it is closed in

Proof can be transformed into by a finite sequence of sweepings between pairs of adjacent

2-Nets, the first and the second are closed and open respectively in (note that the closeness/

openness of the 2-Nets is determined in regard to and not the intermediate orders between the

swap operations). The swapping ends when no such pair is found and the resulting order is exactly

. by Lemma 4, each such swap preserves the closeness/openness of the 2-Nets, and therefore a

2-Net is closed (open) in if and only if it is closed (open) in . Q.E.D.

Theorem 3 If the set of 2-Nets is planar then the output order of the PE operator is guaranteed to

result in successful planar embedding.

Proof Let and be the input and output order s respectively of the PEO. By the way is

constructed (Algorithm 2), it does not contain pairs of successive 2-Nets, the first of them is closed

in and the second is open in . By Lemma 5 this also holds when the openness/closeness is

determined by the order , and by Lemma 3 the guaranties planar embedding. Q.E.D.

We have shown how an arbitrary order can be made planar by the PE operator. Next will present

how an order which reduces the detour is achieved.

4.5 2-Net Ordering Problem (2NOP) Formulation

The 2-Net Ordering Problem (2NOP) could be defined as follows: given a set of 2-Nets, find an

order of the 2-Nets that minimizes the wiring length when it is made planar by the PEO and then

routed one 2-Net at a time. This definition however would require running the embedding

n1..ni 1– π1 ni

π2 ni π2 π2 ni 1+ π1

π1 n1..ni

π1 n1..ni{ } n1..ni 1–{ } ni 1+ π2

ni 1+ π2

π π∗

π∗ π

π π∗

π

π

π∗

π∗ π

π π∗ π∗

π π

π∗ π∗

98
algorithm during the optimization process, which would require intensive computation. To keep

the run-time of solving the 2NOP practical, we use a cost function that estimates the total detour

length of the wiring. This function is similar to the one used by LAA and is based on pair-wise

conflicts (defined below) between components. However it differs from the LAA function in that

it considers a specific 2-Net routing order while the LAA function assumes the order that yields

the minimal detour.

Definition 10 (Ordered Pair-Wise Conflict) Let , be components, let be an

order of the union of the 2-Nets of and , let be the order after planarity enforcement by

the PEO, and let be the embedding of the 2-Nets when routed in the order . The conflict of

, in order is the total length of the wiring in minus the basic lengths of the components

, . This conflict is denoted as . If the 2-Nets have no planar embedding, we say

that is infinite1.

The cost of an order of 2-Nets is the estimated total detour when the 2-Nets are routed by the order

after planarity enforcement. This cost is defined as follows:

Definition 11 (Order Cost) let be an order of the 2-Nets of a bin layer. The cost of

 is the sum of the pair-wise ordered conflict of all the component pairs:

(13)

where:

l is a pair of components, .

l is the union of the 2-Nets of and ordered in the same order as they are in .

Figure 51 shows an example of an order cost. In this example, the estimated cost is equal to the

actual detour. In the general case however, similar to the estimation function used by the LAA, the

1. Since the output of the LAA is guaranteed to be planar, the routing is guaranteed to succeed
(Theorem 3). In the rest of the chapter we assume that the pair-wise ordered cost is always finite

c1 c2 π n1 ... nj=

c1 c2 πp π

S πp

c1 c2 π S

c1 c2 H c1 c2 π, ,()

H c1 c2 π, ,()

π n1 ... nk=

π

C π() H ci cj πij, ,()
ci cj,{ }
∑=

ci cj,{ } i j≠

πij ci cj π

99
estimated detour is not an upper nor a lower bound on the actual detour, nor is its error bounded by

a constant.

Using the order cost function, the 2-Net ordering problem is defined as:

Definition 12 (2-Net Ordering Problem - 2NOP) Given a set of 2-Nets of a bin layer , find

an order of the 2-Nets that minimizes the cost .

In the following sections we discuss the complexity of the 2NOP and propose an heuristic to solve

it but first we discuss an important property of the PEO related to the order cost function defined

above. The PEO, while enforcing the planarity of an order, preserves its cost. That is, the cost of

the output order of the PEO is exactly the cost of the input order. This property implies that while

transforming the output of the 2NOP by the PEO, things are not getting worse.

a

n1
n2

n4

n3

b

n1
n2

n4

c

n2

n4

n3

d

n1
n2

n4

n3

FIGURE 51 - 2-Net order cost. The 2-Nets in (a) form three components and are
ordered as , , , . The cost of this order is the sum of the ordered
conflicts of the components pairs. (c) and (b) show the ordered conflict of two
pairs of components. The conflict of the third pair is zero. (d) shows the total
conflict when routing the 2-Nets in this order. In this example, the estimated
detour is equal to the actual one.

n1 n2 n3 n4

n1..nk

π C π()

100
Lemma 6 Let be an order of the 2-Net and be a subsequence of it that contains entire

components (i.e. if a 2-net is in then all the 2-net of its components are also in) then a 2-Net

is closed (open) in if and only if it is closed (open) in .

Proof Let be a 2-Net in . If it is closed in then it closes an external path with possibly

some of the 2-Nets ahead of it in the order. Any such 2-Net (i.e. on the closed path) is of the same

component as and therefore it is also in , and since it is ahead of in , it is also ahead of

in . This implies that closes the same path in and therefore it is also closed in . In a

similar way, a 2-Net of that is open in is also open in . Q.E.D.

Theorem 4 The Planarity Enforcement operator preserves the cost of the 2-net order.

Proof Let and be the input and output orders respectively of the PEO. Since and

contain exactly the same set of components it is sufficient to prove that the ordered pair-wise cost

of every component is identical in and . Let and be two arbitrary components in

and let set be the union of the 2-Nets of , . Let be the order in of , and let

be the order after operated by the PEO. In a similar way, let be the order in of , and

let be the order after operated by the PEO. By the definition of the pair-wise cost, it is

sufficient to prove that the wire length when routing the 2-Nets , in order is the identical

to the wire length when routed in order . We will prove that by showing that . First

we prove that each 2-Net in , , , , and is closed in that order if and only it is

closed in . For this holds because the PEO preserves the closeness/openness of the 2-Nets

(see Lemma 5). For and , this holds by Lemma 6 and the fact that (as we have just shown)

the closeness/openness in is identical to , and since it holds for , , by Lemma 5 it holds

also for , . The orders , . contain exactly the same 2-Nets (i.e.) and since their

2-Nets have the same closeness/openness as in , a 2-Net is open (closed) in if and only if it

is open (closed) in . In addition, , are both results of the PEO, and therefore they

contain the closed 2-Nets after the open ones. The relative order of the closed (open) 2-Nets in

 is identical to their relative order in (the relative order is preserved by the PEO) which is

identical to the one in (the order is preserve when extracting a subsequence). In a similar way,

π π1

π1 π1

π1 π

n π1 π

n π1 n π n

π1 n π1 π1

π1 π π1

π π∗ π π∗

π π∗ c1 c2 π

c12 c1 c2 πa π c12 πa
∗

πa πb π∗ c12

πb
∗ πb

c12 πa
∗

πb
∗ πa

∗ πb
∗=

π∗ πa πb πa
∗ πb

∗

π π∗

πa πb

π∗ π πa πb

πa
∗ πb

∗ πa
∗ πb

∗ c12

π πa
∗

πb
∗ πa

∗ πb
∗

πa
∗ πa

π

101
the relative order of the closed (open) 2-Nets in is identical to their relative order in

(preserved by the PEO) and therefore to their order in (preserved when extracting a

subsequence). and have exactly the same 2-Nets, the same sets of closed and open 2-

Nets, the same relative order of closed and open 2-Net respectively, and the all closed 2-Nets

following the open ones, and therefore they are identical. Q.E.D.

Corollary 2 For any given order of the 2-Nets, there is an order of the same cost which guaranties

planar embedding. Such an order can be found by the PEO.

4.6 2NOP Complexity

Let 22NOP be the sub-problem of 22NOP in which each component consists of a single 2-Net.

Since 2NOP contains 22NOP as a special case, we know that its complexity is at least that of

22NOP. The 22NOP can be viewed as a minimization of the sum of a lower triangle of a square

matrix using simultaneous permutations of rows and columns:

Definition 13 (Matrix Permutation Problem - MPP) Given an matrix with non-

negative real values, find a matrix obtained from by simultaneously row and column

permutations which minimizes .

The 2NOP is mapped to the MPP by setting to the number of components and setting to the

ordered pair-wise conflict when and to zero when .

The MPP is NP-hard since the maximum Likelihood Ranking Problem (LRP) which is known to

be NP-C [17], can be reduced to it by setting where and are the matrix

entries of the MPP and the LRP respectively. It is not clear though if a MPP can be reduced back to

a 22NOP or if the geometrical characteristics of the pair-wise conflicts used by the 22NOP have

special properties that cause the 22NOP to have lower complexity than the MPP. Considering this,

the question of the complexity of the 22NOP and the 2NOP is still open.

πb
∗ πb

π

πa
∗ πb

∗

n n× A aij()=

B bij()= A

bij
1 i j n≤<≤

∑

n aij

H ni nj ninj, ,() i j≠ i j=

aij max 0 aij–,()= aij aij

102
4.7 Solving the 2NOP

The problem of finding a minimal cost order can be solved by various optimization techniques

such as Simulated Annealing [30], Group Migration, and Genetic Algorithms. We have chosen to

implement a greedy algorithm which is sufficient to show the merits of the proposed cost function.

More advanced optimization methods may result in better ordering.

The proposed minimization algorithm considers only non-interleaving permutations of the 2-Nets.

These are permutations in which the 2-Nets of each component are grouped together. This

restriction may eliminate optimal solutions as shown in Figure 52, but on the other hand, it

simplifies the solution by performing the ordering in two steps, first ordering the 2-Nets within

each component, and then ordering the components themselves.

Ordering the 2-nets within each components can be done in several ways. This order however is

less critical then the component order as any conflicts between 2-Nets of the same component can

be resolved by adding a Steiner point at the crossing point and removing redundant wires to

eliminate cycles in the component. Therefore, our implementation uses an arbitrary order of the 2-

Nets within each component.

The component ordering is performed by transforming the component ordering problem to an

instance of MPP and then solving the MPP. The MPP instance is constructed as follows, is the

a

n1

n2

n4

n3

b

n1

n2

n4

n3

FIGURE 52 - Limitations of non-interleaving order. (a) shows an embedding of
two component with two 2-Nets each. The 2-Nets were routed in the interleaving
order , , , which minimizes the cost. Any non-interleaving order will
results in higher cost such as the order in (b)

n1 n3 n2 n4

n

103
number of components, the matrix is where when and

 when . and are the internal orders of the 2-Nets of components and

respectively and is the concatenation of and . Intuitively, the value of represents the

cost of routing component before component . When the MPP problem is solved, the

permutations of its rows in reverse defines the component routing order.

Since the MPP is NP-Hard, we cannot expect to have a practical optimal algorithm for it and

therefore we use heuristics instead (Algorithm 3). The algorithm uses greedy approach to

iteratively pick rows (and matching columns) from the input matrix for the output matrix. The

rows are picked in descending order in the solution matrix such that the last row of the solution is

picked first and the first row is picked last. On each iteration the algorithm selects a row with

minimal sum in the not selected yet columns. The iteration continues until all rows have been

selected. The algorithm picks components in the order they will be routed. On each iteration it

chooses a component with lowest sum of conflicts with the non selected components.

n n× A aij()= aij H ci cj πiπj, ,()= i i≠

aij 0= i j= πi πj ci cj

πiπj πi πj aij

ci cj

let be the matrix of the MPP
let
for do {

let . // is in reversed order
let be the sum of row of ,
select a not selected yet , , which minimizes
let
set to zero the entries of row and column of matrix

}

The solution is matrix with permutation of rows and columns

A aij()= n n×
T A=
k 1..n=

m n k– 1+= m k
Si i T 1 i n≤ ≤

j 1 j n≤ ≤ Sj
bm j=

j T

A b1..bn

ALGORITHM 3 - Algorithm to solve the MPP. This greedy algorithm iteratively
picks from the input matrix the rows and matching columns of the solution matrix
from last to the first. On each iteration, it picks a row that will increase the least
the sum of the lower triangle of the solution matrix.

104
The heuristics used to solve the 2-NOP which include considering only non-interleaving orders,

fixing in advance the order of the 2-Nets within each component, and using a greedy algorithm to

solve the MPP, are likely to reduce the quality of the final solution. Nevertheless, our experiments

show that this approach is good enough to demonstrate the merit of the proposed cost function. If a

more advance optimization technique is used, the solution found by the algorithm presented above

can be used as a good starting point for the search.

4.8 Experimental Results

To explore the merit of the proposed cost function and ordering algorithm, ten bins have been

routed1, each using five different ordering methods and the wiring length of the solutions have

been compared. The ordering methods used are the proposed one, the proposed order reversed, the

2-Nets sorted in ascending and descending lengths, and a random order. All bins are from two-

layer designs and their wiring lengths are the sums of the wiring length of each layer. The 2-Nets

were embedded by a rubber-band shortest-path algorithm describe in Chapter 5. The relative wire

lengths are shown in Table 11 and summarized in Graph 6. The wiring length of routing with the

random order are averages with five different random orders per bin. As seen in the table, the

proposed order has the lowest wiring length with the ascending 2-Net length order following it

with 5.73% longer wiring. This supports our contention that the pair-wise cost function properly

captures the dependency between the nets.

1. Euclidean metric, , no optimizations.β 15=

105
2-Nets Proposed Proposed
Reversed

Ascending
Length

Descending
Length

Random

APEX/01 48 100.00 225.01 108.41 239.71 139.67

APEX/02 140 100.00 171.00 104.17 119.21 164.06

APEX/03 136 100.00 182.20 101.12 164.20 144.33

DS15/01 36 100.00 130.47 103.66 245.87 134.12

DS15/02 31 100.00 138.03 102.03 155.53 112.28

DS15/03 27 100.00 118.38 111.36 119.92 118.82

DS15/04 24 100.00 122.29 103.67 121.68 113.09

GDX/02 29 100.00 157.49 118.84 164.74 133.84

GDX/02 25 100.00 104.02 102.05 99.54 101.29

GDX/03 26 100.00 122.48 102.00 119.12 107.46

Average 100.00 147.14 105.73 154.95 126.89

TABLE 11 - Routing with various orders of the 2-Net. The tables shows the
relative wiring length when routing each of the ten bins using five methods of
ordering the 2-Nets: the proposed one, the proposed one reversed, ascending and
descending order of 2-Net lengths and random order. The values has been
normalized to 100 in the case of the proposed order. The values of the random
order are averages of five different orders for each bin, using different seeds for
the random number generator. The values of the last rows are shown graphically

106

losed’

wn that
4.9 Conclusion and Future Work

I have considered the problem of ordering 2-Nets to guarantee planar embedding and to minimize

wiring length. This problem is important when routing the 2-Nets one-at-a-time as done by many

routers. The wire length minimization is done by formulating the problem as an optimization

problem with cost function to be minimized and then solving it. The cost function estimates the

length of the wiring detour when the 2-Nets are routed in a given order and is based on conflicts

between pairs of components. We proposed a heuristic to solve the minimization problem by first

transforming it to a problem of ordering components and then transforming that problem into an

MPP which is then solved by a greedy algorithm. The presented Planarity Enforcement operator

guarantees planar embedding by classifying the 2-Nets into two categories of ‘open’ and ‘c

2-Nets and deferring the routing of the closed 2-Nets until after the open ones. We have sho

GRAPH 6 - Wiring length vs. ordering method. This graph shows the average
wiring length for the 5 nets ordering methods in Table 11. The values are
normalized to 100 for the proposed order. The proposed order results in the
shortest wiring, and is shorter by more than 5% than the ‘shorter nets first’ order
(Ascending column).

100.00

147.14

105.73

154.95

126.89

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Proposed Reversed Ascending Descending Random

W
ire

 L
en

gt
h

Ordering Method

107
this reordering preserves the cost of the order and therefore is not expected to increase the wiring

length. Finally, we presented empirical results that show the proposed ordering method results in

shorter wire length than several other methods including shortest net first.

The cost function of the 2NOP considers only dependencies between pairs of components and

ignore dependencies between larger sets of components. Considering larger sets of components

might improve the accuracy of the cost function and may result in lower wiring length. Other

useful extensions to the cost function would be to consider congestion, wiring density, electrical

requirements such as cross talk, and upper and lower bounds on nets lengths. Improvements can

also be made to the algorithm used to solve the 2NOP. These include considering interleaving

orders and employing a more sophisticated optimization technique which is less likely to be

trapped in a local minima.

108
5 TOPOLOGICAL PATH SEARCH

A common approach to route a set of nets is routing them one at a time. After the nets have been

decomposed into a set of two terminal nets (2-Nets) and the order of routing the 2-Nets has been

determined, the router iteratively searches for an appropriate planar path for the next 2-Net and

embeds it in the sketch on that path. The criteria for a desired path can consider for example, wire

length, spacing requirements, and electrical properties of the interconnect. The search for a desired

path is done in the specific representation of the interconnect used by the router.

In the rest of this chapter we discuss the problem of finding a least-cost planar topological path.

First we formulate the general problem of finding a least-cost planar topological path. Then we

present an exact formulation of the Rubber-Band Sketch (RBS) based on geometric considerations

and real analysis. Then we present the concept of regions in the RBS and show the relationship

between planar paths in the RBS and sequences of region. Following it, we present an algorithm

that searches for a planar path in the domain of sequences of regions. The algorithm is optimal and

finds a shortest planar path in time where and are the number of

terminals and wire segment respectively in the RBS. The algorithm can be modified to use a

smaller search graph such that it is guaranteed to find a planar path in time

and the path is likely to be short.

5.1 Least-Cost Topological Path Problem (LCTP)

The general problem of finding a least-cost path in a topological sketch can be formulated as

follows:

Definition 14 (least-cost topological path problem LCTP) given a topological sketch, a cost

function, and two terminals in the sketch, find a least-cost planar path in the sketch between the

two terminals. It is assumed that the cost function has the property that if a planar path exists then

there exists a planar path of minimal cost.

O T
2

S+() T S+()log() T S

O T S+() T S+()log()

109

tions.
Solving the LCTP depends on the cost function and the sketch representation used. The focus in

this chapter is on finding a shortest path in a RBS, we will present an algorithm that solves it

optimally.

The LCTP could be generalized such that the path is to be found between two disjoint sets of

terminals (i.e. connecting between two terminals of the two sets respectively). This may be useful

when connecting existing sub-nets. For clarity, the discussion in this chapter focuses on the

simpler version of the problem but we will show how the proposed algorithm can handle the

extended version as well.

5.2 Rubber-Band Sketch Formulation

Before we present the planar shortest path algorithm we formally define the idea of rubber-band

sketch. This formulation is used later to analyze the algorithm. Intuitively a Rubber-Band Sketch

(RBS) represents a minimal-length member of a topology class such that on one hand zero spacing

is allowed, and on the other hand the topology is preserved. However, when zero spacing is used,

the result may be non-planar, and in this case, the RBS is not a member of the topology class, nor

is it a valid geometric sketch. To overcome this ambiguity, we formulate the concept of RBS as

follows.

Definition 15 (Rubber-Band Sketch - RBS) For a given topology class and , we defined the

-sketch of spacing of a topology class as a minimal-length sketch of that class whose spacing is

at lest . The RBS of the class is defined as an -sketch of unspecified, infinitesimally small,

.

If is too large, the class may have no member of spacing . However, every class, for small

enough , has an -sketch of spacing, and therefore, every class has an RBS. In general, we

say that an RBS of some topology class has a property if there is an such that for every ,

, the -sketch of the class with spacing has property .

The paths in an -sketch are composed of arcs (called attachment arcs) and straight segments

(Figure 53). The arcs have radius of integral number of ‘s and are centered at terminal loca

ε 0>

ε ε

ε ε

ε 0>

ε ε≥

ε 0> ε ε

P η 0> ε

η ε 0> > ε ε P

ε

ε

110
The decomposition of the branches into arcs and segments is identical in all -sketch of small

enough .

For a given -sketch of spacing, we define the -neighborhoods of a terminal as a circle of

radius , centered at the terminal location. is defined as plus the maximal radius of an

attachment arc among all the terminals in the -sketch (Figure 54). If the -sketch does not have

attachment arcs, is defined as . Note that by definition, the -neighborhoods of all the

terminals in an -sketch have the same radius. The -neighborhood of each terminal strictly

bounds the terminal and all of its attachment arcs. for some integer , and it goes to

0 when goes to zero. Therefore, for small enough , the -neighborhood of different

terminals do not intersect with each other.

ε

ε 0>

FIGURE 53 - -sketch. An -sketch is a minimal-length sketch having the
spacing of at least for some . The paths in an -sketch are composed of
arcs and segments. The arcs are centered around terminals and have a radius of
integral number of ‘s.

ε ε
ε ε 0> ε

ε

ε

ε ε ε

cε cε ε

ε ε

cε ε ε

ε ε

cε kε= k 0>

ε ε 0> ε

111
In a similar way, we define the -neighborhood of a cut between two terminals. Let , be two

terminals, . The -neighborhood of the cut is defined as the closed domain formed

by the -neighborhoods of , and the two tangent lines connecting them (Figure 55).

A branch in an RBS is said to be incident to a terminal if the terminal is one of its end-points. A

branch can also be attached to a terminal. We defines three cases of attachment between a branch

 and terminal (Figure 56). Case 1: contains an arc centered at and the limit of the angle of

the arc when goes to zero is . Case 2: similar to case 1 but the limit of the arc angle is 0.

FIGURE 54 - Terminal’s -neighborhood. The -neighborhood (shaded) of a
terminal is a circle that strictly contains the terminal and its attachment arcs. The
radius of the -neighborhoods of all the terminals in a sketch is identical and is
determined by the maximal radius of an attachment arc in the sketch. The radius is
proportional to (for small enough) and goes to zero when goes to zero.

ε ε

ε

ε ε 0> ε

ε t1 t2

t1 t2≠ ε t1 t2,()

ε t1 t2

FIGURE 55 - Cut’s -neighborhood. The -neighborhood of a cut is the closed
domain (shaded) formed by the two -neighborhoods of the cut’s terminals and
the two tangent segments connecting them. The -neighborhood of the cut strictly
contains all the segments between the two terminals.

ε ε
ε

ε

b t b t

ε 0>

112
Case 3: has a segment such that the end-points of are not in the -neighborhood of , and

intersects with the -neighborhood of . Attachments of case 1 are called explicitly attached and

attachments of cases 2 and 3 are called implicitly attached. Implicit attachments occur only in the

presence of co-linear terminals. In case of an implicit attachments of case 3, we consider the

segment of the branch to be composed of two segments, one of each side of the attachment,

connected by a degenerate attachment arc of 0 angle, centered at . Note that a branch can be

implicitly or explicitly attached to a terminal multiple times.

The intersection of a net segment with the -neighborhood of a terminal that it is incident to

defines an incident local net (Figure 57-a). In a similar way, every attachment of a branch to a

terminal defines an attached local net which includes the arc and the portions of the two segments

that intersect with the -neighborhood of the terminal (Figure 57-b).

b s s ε t s

ε t

s

t

FIGURE 56 - Attachments in RBS. The figure shows a portion of an -sketch
with three co-linear terminals , , whose -neighborhoods are indicated by
the broken circles. The branch of segment (shaded) is said to be explicitly
attached (attachment case 1 in the text) to terminals and . It is also said to be
implicitly attached (case 3) to terminal since it intersects with its -
neighborhood (for convenience, segment is considered to be composed of two
segments , , connected by a 0 angle arc centered at). The branch
connecting and is said to be implicitly attached (case 2) to terminal
because it has an attachment arc at but the limit of the arc angle goes to zero
when goes to zero. Implicit attachment (both cases 2 and 3) occur only in the
presence of co-linear terminals.

ε
t1 t2 t3 ε

s
t1 t3

t2 ε
s

s1 s2 t2
t1 t2 t2

t2ε

t3
t1 t2

s2
s1

s1

2

3 1

ε

ε

113
Some properties of the branches in an RBS such as lengths, and the angle between a pair of

segments connected by an arc, are defined as their respective limits when goes to zero. Since the

limit the length of the arcs is zero, the length of a branch is the sum of the limits of the lengths of

its segments. The limit of a segment length when goes to zero is the distance between the two

terminals it is attached or incident to. In a similar way, the angle between two segments of a branch

connected by an attached arc (Figure 58) is the angle between the two rays originated at the center

terminal and intersecting with the terminals on the other ends of the two segments respectively.

The representation of an RBS in computer memory can be implemented in various ways. SURF

uses the following representation [9] (which is not a contribution of this research). The set of

FIGURE 57 - Local nets. (a) shows the two incident local nets (shaded) of a
terminal and (b) shows the two attached local nets of the same terminal.

ε

ε

αε

α∗

FIGURE 58 - Angle between branch segments. This portion of an RBS shows a
branch attached to a terminal. The angle is the angle between the two
segments in an -sketch of spacing. The angle is the limit of when
goes to zero

αε
ε ε α∗ αε ε

114
terminals inside the routing area is triangulated using Constrained Delaunay Triangulation (CDT)

[3] [41]. An edge between two terminals is constrained if there is a net segment connecting the -

neighborhood of the two terminals (in this case we say the segment is along the edge). Every

triangulation edge has a possibly empty list of the net segments along it (the orientation of the

order is arbitrary). Each terminal is augmented with information about its local nets and the net

segments they connect. The incident local nets are stored in a cyclic ordered list and the list of

attached local nets are kept in a linear list in an inside-out order, starting from the inner-most arc. If

a terminal has only implicit attachments, it may have up to two separate lists of attached local nets,

representing the local nets on opposite sides of the terminal (Figure 59). If a terminal has an

explicit attachment then it has exactly one ordered list of local attached nets since it cannot have

attached local nets on opposite sides.

5.3 RBS Regions

The proposed algorithm for finding a shortest planar path in an RBS is based on the concept of

regions (defined below). As we will show later, the problem of finding a shortest path in an RBS

can be reduced to a search in the domain of sequences of regions.

The attached and incident nets of a terminal separate the -neighborhood of the terminal into

regions, each is a maximal set of connected points which does not intersect with nets or the

ε

t

FIGURE 59 - Implicit attached local nets. A Terminal (such as in this example)
that has only implicitly attached nets can have up to two lists of attached local
nets, one on each side of the terminal (the two arrows). If the terminal has an
explicit attachment, it has exactly one list of attached nets.

t

ε

115

open-

a

n the

 region

aid to

s

t and

ion of

n the

l net.
terminal (Figure 60). A point is said to be on the interface of a region if it does not intersect with

any net, and it is on the intersection of the boundary of the region and the boundary of -

neighborhood of the terminal. The interface of a region is non-empty and it defines one or more

disjoint continuous sections on the boundary of the terminal’s -neighborhood. These

ended1 sections are called the ports of the region (Figure 60). The interfaces of the regions of

terminal partition the boundary of the -neighborhood of the terminal such that every point o

boundary either intersects with a net segment or is on an interface of exactly one region. If a

is adjacent to its terminal or the terminal is fully contained inside the region, the region is s

be an incident region, otherwise, it is said to be an attached region. In general, a terminal ha

 incident regions and attached regions where , are the number of inciden

attached local nets respectively, of the terminal. For clarity of the presentation, the definit

regions and regions visibility ignores the RBS boundary. later we will show how terminals o

RBS boundary can be handled in a similar way.

1. With the exception of an incident region of a terminal with no attached or incident loca
The port in this case is the entire boundary of the -neighborhood of the terminal.

ε

ε

ε

ε

max 1 n,() m n m

1

23

4

FIGURE 60 - Regions. The RBS terminal in the example has two incident nets
and two attached nets. The two solid circles indicate the circles of the arcs of the
attached nets and are of radius and respectively. The broken circle indicates
the boundary of the -neighborhood of the terminal. The segments and the arcs of
the nets partition the -neighborhood of the terminal into 4 non-connected areas
called regions (marked 1 to 4). Regions 1,2 are incident to the terminal and
therefore are called incident regions. Regions 3,4 are not incident to the terminal
and therefore are called attached regions. The shaded arcs indicate the ports of the
interface of region 2. The interfaces and ports of the other regions are defined in a
similar way.

ε 2ε
ε

ε

116
The above definition is for a region in a specific -sketch. Since there is a one-to-one

correspondence between regions of -sketches of the same topology class (for small enough

), we can refer to regions in an RBS in general. If a terminal in the RBS has more than one

incident region, they can be uniquely identified by the incident local net bounding them in CW

direction. If a terminal has more than one attached region, they can be uniquely identified by the

attached local net bounding them in the direction toward the terminal.

Let , be two terminals, , such that the cut between them does not intersect with a third

terminal, and let , be two regions of , respectively. We say that regions , are

visible to each other if there exists a visibility link connecting them. A visibility link connecting

, is a line segment connecting between two points of the interfaces of , respectively

such that it is strictly contained within the -neighborhood of the cut and does not

intersect with terminals, nets, or inner points of the of the -neighborhoods of , (Figure 61).

Note that if two regions are visible, then by definition they must be of different terminals. Note

also that a visibility link connecting two regions is not unique. Since the definitions of visibility

between any two regions is insensitive to the choice of the -sketch (as long as is small

enough), we can use these terms in general in the RBS.

ε

ε

ε 0>

t1 t2 t1 t2≠

r1 r2 t1 t2 r1 r2

r1 r2 r1 r2

ε t1 t2,()

ε t1 t2

ε ε 0>

1

2

3

5

4

FIGURE 61 - Region Visibility. In this example, terminal has two regions
(1,2) and has three regions (3,4,5). The broken circles show the -
neighborhoods of the terminals and the shade area indicates the -neighborhood
of the cut . In this example the pairs of visible regions are (1,3), (1,5),
(2,3), and (2,4), and a visibility link for each of the pairs is shown (broken lines).

t1
t2 ε

ε
t1 t2,()

t1

t2

117
Lemma 7 Let , be two regions in an RBS, visible to each other, and let , be their

terminals respectively. There exists such that for every , , the -neighborhood of

the cut does not intersect with the -neighborhood of any terminal other than , .

Proof By definition of visibility between , , and , and the fact that the cut

 does not intersect with any terminal other than , . We will show that for every

terminal other than , , there is an that satisfies the requirements in regard to the -

neighborhood of . Since the number of terminals in the sketch is finite, will satisfy

the requirements of the lemma1. Let be the distance between and the line segment connecting

, (Figure 62). Since the segment is close ended, exists, and because does not

intersect with the segment, (note that is independent of). Let be the radius of the -

neighborhood of the terminals in an -sketch of spacing . Since goes to 0 when goes to 0,

there exists such that for every , , and therefore, for every , ,

the -neighborhood of the cut does not intersect with the -neighborhood of . Q.E.D.

1. If , are the only terminals in the sketch, the minimum is undefined but in this case, any
 will do.

r1 r2 t1 t2

η 0> ε η ε 0> > ε

t1 t2,() ε t1 t2

r1 r2 r1 r2≠ t1 t2≠

t1 t2,() t1 t2

t t1 t2 ηt 0> ε

t η min ηt()=

d t

t1 t2
η 0>

t1 t1 t1 t2,() d t

d 0> d ε cε ε

ε ε cε ε

η 0> ε η ε 0> > cε
d
3
---< ε η ε 0> >

ε t1 t2,() ε t

118

xt we
iangle
Lemma 8 Let , , be two visibility links in an RBS. If there is a terminal and two regions

 of such that one end of is connected to and one end of is connected to , then

, do not intersect.

Proof (Figure 63) Let , be the regions at the other ends of , respectively, let , be

the terminals of , respectively, and let , be the end points of , , respectively at their

 side. By definition of regions visibility, and but it is possible that . We will

prove for the case that . The proof for the case when is similar (whether

or not). Since there is a net segment coming out of the -neighborhood of between1

, (otherwise, , would be the same region). Let be the end-point of at its end outside

the -neighborhood of . Point , like any end-point of a net segment must be strictly inside an -

1. Since the -neighborhood of is a circle, the term ‘between’ is ambiguous. In this conte
refer to the points on the boundary of the -neighborhood of that are strictly inside the tr
formed by , , and the intersection point of the two links.

t1

t2

t

d cε

cε

cε

FIGURE 62 - Neighborhoods intersection. The circles indicate the -
neighborhoods of terminals , , . Terminal is known not to intersect with
the segment . The shade area is the -neighborhood of the cut .
The distance between and the close ended segment is , which is
independent of . If , the radius of the -neighborhood of the terminals is
equal to or smaller, the -neighborhood of the cut and the -
neighborhood of do not intersect. Note that this holds even if the point of the
segment that is closest to is or .

ε
t t1 t2 t

t1 t2,() ε t1 t2,()
t t1 t2,() d 0>

ε cε ε
d 3⁄ ε t1 t2,() ε

t
t1 t2,() t t1 t2

l1 l2 t

r1 r2≠ t l1 r1 l2 r2

l1 l2

r3 r4 l1 l2 t3 t4

r3 r4 a b l1 l2

t t t3≠ t t4≠ t3 t4=

t3 t4≠ t3 t4= r3 r4=

r1 r2≠ w ε t

ε t
ε t

a b

a b r1 r2 p w

ε t p ε

119
neighborhood of some terminal. However, by Lemma 7, the union of the -neighborhoods of cuts

, do not intersect with the -neighborhood of any terminal other than , , . This

implies that the closed domain (Figure 63), formed by the two links and the boundary of the -

neighborhood of , does not intersect with an inner point of the -neighborhood of any terminal of

the RBS, and therefore point must be outside of . If is outside then must intersect with

at least one of the two links, and this contradicts the definition of visibility links. Q.E.D.

5.4 Shortest Planar Path in RBS

Let be an RBS and let be the RBS after the insertion of some branch connecting a

pair of terminals , . The path of splits some of the regions of into multiple regions of

while the rest of the regions of are maintained with no change (Figure 64). Let , be

ε

t t3,() t t4,() ε t t3 t4

A ε

t ε

p A p A w

r2

r1

r3t

t3

A

w

p

l4

t4

FIGURE 63 - Link intersections. This figure shows a hypothetical case where two
visibility links , that are connected to two regions respectively of a
terminal , intersect with each other. In this case, the terminals , at the other
side of the links are assumed to be two distinct terminals, . The points ,
are the end-points of , respectively. The circles indicate the -neighborhood
of the terminals, and the shaded area is the union of the -neighborhood of the
cuts and . Since there must be a net segment separating
them, and its end-point must be in an inner point of an -neighborhood of some
terminal. However, since the shaded area does not intersect with -neighborhood
of any terminal other than , , (based on Lemma 7), must intersect with at
least one of the links. This contradicts the definition of visibility links, and
therefore, this case is impossible.

l1 l2 r1 r2≠
t t3 t4

t3 t4≠ a b
l1 l2 ε

ε
t t3,() t t3,() r1 r2≠ w

p ε
ε

t t3 t4 w

l1

l2a

b

S1 S2 S1 b

t1 t2 b S1 S2

S1 r1 r2

120
regions in , respectively. We say that contains if is exactly or if is a result

of a split of . Every local net of in (either incident or attached) is adjacent to two (possibly

identical) regions, one on each of its side, and these two regions are always contained in the same

region of . Therefore, the path of in defines a sequence of regions of , one region for

each of its local nets, in the direction from to . Every pair of consecutive regions in the

sequence are visible to each other since they can be connected by a planar line segment similar to

the net-segment of connecting the two local nets of that define the two regions.

Let , be a sequence of regions in a RBS (with possible repetition of the same

regions). We say that is a sequence of regions between regions and . If is

between two incident regions of a pair of terminals , respectively, we say that the is

between terminals , . A consecutive pair of regions in the sequence, , , is

said to define a segment of the sequence. If the two regions of a segment are visible to each

other than the segment is said to be a visible segment. If all the segments in a sequence are visible,

the sequence is said to be a visible sequence. The length of a segment of a region sequence is

S1 S2 r1 r2 r2 r1 r2

r1 b S2

S1 b S2 S1

t1 t2

b b

1

2

3

5

4

FIGURE 64 - Region split by a branch. This example shows a portion of an RBS
 which is the RBS with a new branch inserted (shaded). The two

terminals shown have 2 and 3 regions (of) respectively, marked 1 to 5.
Regions 3, 4 are the result of a split of a region of by the insertion of , while
the regions 1, 2, 5 existed in as are. Note that an insertion of a new branch can
split a region of an RBS into more than two regions of the new RBS. This can
happen if the branch has multiple attachment arcs inside the same region.

S2 S1 b
S2

S1 b
S1

b

r1..rn n 2≥ S

r1..rn r1 rn r1..rn

t1 t2 r1..rn

t1 t2 rj rj 1+,() 1 i≤ n<

si

121

quence

 to the

e will

 We use
defined as the distance between the terminals of its two regions. The length of the entire sequence

is defined as the sum of the lengths of its segments1.

The sequence of regions defined by a branch path as describe earlier is a visible sequence between

the branch’s end-terminals. Further more, the length of the branch and the length of the se

are equal. Later we use this similarity to reduce the problem of finding a shortest planar path

problem of finding a shortest visible sequence between two terminals. Before we do that, w

prove several properties of a shortest visible sequence.

Lemma 9 A shortest visible sequence cannot include the same region more than once.

Proof By definition of region visibility, the two regions of a visible segment of the sequence must

be of two different terminals. Therefore the length of a visible segment and a shortest visible

sequence cannot contain the same region more than once otherwise it could be made shorter.

Q.E.D..

Lemma 10 Let , , be a shortest visible sequence, and let be its segments.

There exist a set of visibility links for respectively, such that any pair of

consecutive links , do not intersect with each other.

Proof is a visible sequence of regions and by definition of region visibility, there is a set

 of visibility links for respectively. If any pair of consecutive links do not

intersect, then satisfies the requirements. Otherwise, we fix as follows. Let ,

, be two consecutive links intersecting each other. The link connects regions , and

the link connects , . Let , be the terminal of region respectively.

Regions , are visible to each other and by the definition of region visibility, . For

similar considerations . By Lemma 8 (otherwise the region are of

the same terminal and this would contradict Lemma 8). Let , be the end-points of , ,

respectively at their end near terminal (Figure 65). Points , and any point between2

1. Note that ‘length’ of a sequence does not refer to the number of regions in the sequence.
the term ‘size’ for that purpose.

 0>

r1..rn n 2≥ s1..sn 1–

l1..ln 1– s1..sn 1–

li li 1+

r1..rn

l1..ln 1– s1..sn 1–

l1..ln 1– l1..ln 1– lj

lj 1+ lj rj rj 1+

lj 1+ rj 1+ rj 2+ ti 1 i n≤ ≤ ri

rj rj 1+ tj tj 1+≠

tj 1+ tj 2+≠ tj tj 2+≠ rj rj 2+≠

a b lj lj 1+

tj 1+ a b

122

here a

 ,
them, on the boundary of the -neighborhood of , must be on the same port of region

otherwise there would be a net segment between , that must intersect with the visibility links

 or (similar to in the proof of Lemma 8). Let be that port of . The intersection of

port with the inner points of the -neighborhood of the cuts , defines a

non empty, open-ended arc that intersects with both , . Let be that arc. We choose (as

defined below) two points on and define a new line segment () as the

segment of () with the end-point () replaced by () (the broken lines in Figure

65). The points , are two arbitrary points on oriented such that , do not

intersect1. The line segments , do net intersect with net segments (otherwise there would

be a net segment intersecting , , or) or terminals (based on Lemma 7), and they connect

the same pairs of regions as , respectively, and therefore they can replace , in the

set of visibility links. This operation does not create a new intersection between consecutive links

in the set since the new link () intersects with its previous (next) link () if an

only if the old link () intersects with () (based on Lemma 9 and the observation

that and). Therefore, if we will repeat this operation for every pair of

consecutive links intersecting each other, we will end up with a set of links that satisfy the

requirements. Q.E.D.

2. Since the -neighborhood of is circular, the term ‘between’ is ambiguous. We use
definition of ‘between’ similar to the one used in the proof of Lemma 8.

1. Points and be may be the same point, otherwise we could simply define , as
respectively.

ε tj 1+

ε tj 1+ rj 1+

a b

lj lj 1+ w P rj 1+

P ε tj tj 1+,() tj 1+ tj 1+,()

a b P∗ P⊆

a∗ b∗≠ P∗ l∗j l∗j 1+

lj lj 1+ a b a∗ b∗

a∗ b∗ P∗ l∗j l∗j 1+

l∗j l∗j 1+

a b a∗ b∗ b a

lj lj 1+ P∗

lj lj 1+ lj lj 1+

l∗j l∗j 1+ lj 1– lj 2+

lj lj 1+ lj 1– lj 2+

rj 1+ rj 1–≠ rj 1+ rj 3+≠

123
The previous lemma eliminates intersections between consecutive links in . Now we will

extend this for intersections between any pair of links in .

Lemma 11 Let , be a shortest visible sequence, and let be its segments,

There is a set of visibility links of respectively such that any pair of links do

not intersect.

Proof By Lemma 10 there is a set of visibility links of such that consecutive

links do not intersect. We will prove by contradiction that non consecutive links do not intersect as

well. For the purpose of contradiction we assume that there are two non-consecutive links ,

that intersect. We assume without loss of generality that . The link is between regions ,

, and the link is between regions , . Let , , be the terminal of the

respective region . By definition of visibility between , , and in a similar way

rj

rj 2+

tj

tj 2+

lj

lj 1+

tj 1+

rj 1+
a

b
a∗

b∗

FIGURE 65 - Intersection of consecutive visibility links. This example shows
how an intersection between two consecutive links of a shortest visible path can
be eliminated. The three circles indicate the -neighborhoods of terminals ,

, . The shaded area is the union of the -neighborhoods of the cuts
, . The ends of the two intersecting links , are

connected to a port of region (the dark arc) at points , respectively
(possibly). By replacing the end points , of the two links with points

 and respectively, we get an alternative pair of links (the broken lines) that
do not intersect. This operation does not create a new intersection between a pair
of consecutive links.

ε tj
tj 1+ tj 2+ ε
tj tj 1+,() tj 1+ tj 2+,() lj lj 1+

rj 1+ a b
a b= a b

a∗ b∗

l1..ln 1–

l1..ln 1–

r1..rn n 2≥ s1..sn 1–

l1..ln 1– s1..sn 1–

l1..ln 1– s1..sn 1–

lj lk

j k< lj rj

rj 1+ lk rk rk 1+ t1 1 i n≤ ≤

ri rj rj 1+ tj tj 1+≠

124
. The two links can share 0, 1 or 2 terminals but do not share any region (they are not

consecutive and by Lemma 9 a region has at most one instance in).

Case 1: the links , share no terminal (Figure 66). In this case, we will show that the regions

 can be replaced by a shorter visible sequence between , and this contradicts the

assumption that is a shortest visible sequence between , . The new sub-sequence

includes the regions , , and between them a (possibly empty) sub-sequence of regions

representing attachments to terminals between , . These terminals are on the convex hull of

the terminals in the triangle formed by , and the intersection point of the cuts ,

.

Case 2: the links , share one or two terminals. This case is contradicted by Lemma 8.

Q.E.D.

Lemma 12 Let be a shortest visible sequence of regions between terminals , . The

sequence defines a planar path connecting , . The path is composed of a set of visibility links,

one for each segment of the sequence, and of connections of infinitesimally small lengths, one in

each of the sequence regions.

tk tk 1+≠

r1..rn

lj lj 1+

r1..rn rj rk 1+

r1..rn r1 rn

rj rk 1+

tj tk 1+

tj tk 1+ tj tj 1+,()

tk tk 1+,()

lj lj 1+

rk 1+

FIGURE 66 - Intersection between non-consecutive links. This figure shows a
hypothetical example where , are two non-consecutive visibility links of a
shortest visible sequence that intersect. The sequence of regions can be shorten by
replacing the regions , with a shorter visible sub-sequence (the broken
line), and therefore, this case is impossible.

lj lk

rj rk 1+

rj

rk

rj 1+

lj

lk

tk 1+tj 1+

tk

tj

r1..rn t1 t2

t1 t2

125
Proof By Lemma 10 there is a set of visibility links of such that the links do

not intersect with each other. By definition of region sequence between terminals, regions is an

incident region of terminal and therefore the first end-point of link can be connected to

terminal inside region (Figure 67a). The connection can be selected such that its inner points

do not intersect with any net, terminal, or a boundary of an -neighborhood of a terminal. In a

similar way, terminal can be connected inside region to the end-point of link . As for

the interim regions , , by Lemma 9 each region can appear exactly once in the

sequence and therefore there are exactly two consecutive visibility links , whose end-

points are on the boundary of and they can have a planar connection within that region (Figure

67 b). The connections can be made such that their length goes to zero when goes to zero, and

this results in a planar path between , that satisfy the requirements. Q.E.D.

Theorem 5 Let , be two terminals in RBS , and let be a shortest visible

sequence of regions between , . defines a shortest1 planar path between , .

1. Note that the length of a path in a RBS is the limit of its length in -sketch of spacing when
 goes to zero.

l1..ln 1– s1..sn 1–

r1

t1 l1

t1 r1

ε

t2 rn ln 1–

ri 1 i n< < ri

li 1– li

ri

ε

t1 t2

r1t1
riti

ri

li 1–

li
l1

a b

FIGURE 67 - Link interconnection within regions. This figure shows two cases
of connecting visibility links within a region to form a planar path. The circles
indicate the -neighborhoods of terminals and the straight line segments indicate
portions the visibility links. In (a) the beginning of the first link is connected to the
terminal such that the connection is contained within the incident region . In
(b) two consecutive links are connected within the region . In both cases the
connections can be made such that their length goes to 0 when goes to zero. The
connections do not intersect nets or other connections (every region of the
sequence has exactly one connection).

ε

t1 r1
ri ε

t1 t2 S1 P r1..rn=

t1 t2 P t1 t2

ε ε
ε

126
Proof By Lemma 12 the sequence defines a planar path connecting , such that the

lengths of and are identical, . For the purpose of contradiction we assume that there

is a shorter planar path connecting , such that . Let be the RBS of the

topology class of with the path inserted. contains a rubber-band branch representing

the path and therefore its length is at most the length of , . The branch defines a

visible sequence of regions of between , , and the lengths of the branch and the

sequence are equal, . This implies that and therefore

is shorter than . Contradiction. Q.E.D.

Based on Theorem 5, finding a shortest planar path between a given pair of terminals , in an

RBS is relatively simple because it is sufficient to find a shortest visible sequence of regions

between the two terminals. This can be reduced to the problem of finding a least-cost path in a

graph with positive costs. The nodes in the graph correspond to regions of the RBS.

An edge is defined between two nodes if their corresponding regions are visible to each other, and

the cost of an edge is the distance between the terminals of its two regions. The starting and the

termination nodes are those representing the incident regions of , respectively. This approach

can be generalized to find a shortest path between two sets of terminals in the RBS. This is done by

defining the starting and the termination nodes of the graph as the nodes that correspond to

incident regions of the two sets of terminals respectively. In both cases, based on Theorem 5, the

algorithm is guaranteed to find an optimal solution.

The following is an analysis of the size of the graph . Let , , and be the number of

terminals, branches, and net segments, respectively in the RBS. Every branch has at least one

segment and therefore . The sketch has incident local nets and attached local

nets. The sketch with all the branches removed has exactly incident regions and no attached

regions. An incident local net can contribute at most a single incident region and therefore the

number of incident regions in the sketch . In a similar way, an attached local net

contributes exactly one attached region, and therefore the number of attached regions is .

The total number of regions and therefore the graph has nodes.

As for the graph edges, the sketch with all branches removed has visible pairs of

P P t1 t2

P P P P=

P1 t1 t2 P1 P< S2

S1 P1 S2 b

P1 P1 b P1≤ b

P2 S1 t1 t2

P2 b= P2 b P1 P<≤ P= = P2

P

t1 t2

G V E,()=

t1 t2

G T B S

S B≥ 2B S B–

T

 T 2B+≤

S B–

 T 2B+() S B–()+≤ O T S+()

T T 1–()

2
--------------------≤

127
regions1. Every incident or attached local net increases the count of visible pairs by at most one2

and therefore the total number of edges and the graph has

edges. By using an search algorithm, a shortest path can be found in

 time.

All the properties of the shortest visible sequence of regions hold for the Euclidean, octilinear and

rectilinear metrics and therefore the shortest path algorithm can be used for any of the these three

metrics. If the RBS has terminals on the RBS boundary, only the portion of the -neighborhood of

the terminal that is strictly inside the sketch boundary is considered to contain regions (Figure 68).

All the properties of shortest visible sequences of regions shown above hold as well. In a similar

way, the concept of regions can be extended to handle disjoint obstacles, each a (possibly concave)

finite simple polygon. A pseudo terminal is added at every corner of the polygon whose external

angle , and a pair of regions is considered for visibility only if the cut between their terminals

does not intersect with an inner point of an obstacle. Note that similar to the case of the terminals

on the sketch boundary, a net segment can be on an edge of a obstacle boundary but it cannot

intersect with an inner point of an obstacle.

1. If no three terminals in the RBS are co-linear, this is the exact number of visible pairs of
regions.

2. This is a conservative approach. Practically, the insertion of a branch reduces the number of
visibility edges because they block the visibility between terminals on the two sides of its seg-
ments. This observation however does not affect the worst case analysis.

T T 1–()

2
-------------------- 2B S B–()+ +≤ O T

2
S+()

O E Vlog()

O T
2

S+() T S+()log()

ε

 π≥

128
5.5 Reducing the search graph size

The optimal shortest path algorithm described above searches in the graph that has

 nodes and edges and therefore the search time is .

To reduce the search time, SURF uses a smaller graph that has the same set of nodes and only

 edges, and therefore the search time in the reduced graph is . The

algorithm is guaranteed to find a planar path if one exists but the path found may be not a shortest

path. The algorithm uses the graph that has the same set of nodes as , ,

and only a subset of the edges of , . The cost of the edges is the same as their cost in

. The terminals of the RBS are triangulated within the routing area and an edge is in if

the terminals of its two regions are on the two ends of a triangulation edge (Figure 69). The

triangulation is constrained to include an edge between any pair of terminals that have a net

segment between them (either attached or incident). The set of constrained edges is planar (each

can intersect with terminals or other edges only at its end-point) and therefore such a constrained

FIGURE 68 - Region on sketch boundary. This example shows a lower left
corner of a rectangular RBS. Three terminals are shown, on the sketch corner,
and , on the sketch lower boundary. Only points which are strictly inside the
sketch boundary can be members of a region. The shaded areas show the union of
all the regions (1 to 7). Note that regions 1,3 are separated by the sketch boundary
otherwise they would be the same region. It is valid for a net segment to be on the
sketch boundary similar to the one connecting , , but net segments cannot
intersect with points outside the sketch. A corner terminal like can have
incident nets but cannot have any attachment since the internal angle of the corner
is less than .

t1
t2 t3

t2 t3
t1

π

1

2

3

4

t1 t2 t3

5
6

7

G V E,()=

O T S+() O T
2

S+() O T
2

S+() T S+()log()

O T S+() O T S+() T S+()log()

G∗ V∗ E∗,()= G V∗ V=

G E∗ E⊆ E∗

E e E∈ E∗

129
triangulation exists1. Since the triangulation has only edges (a triangulation is a planar

graph), has only edges. Later on, we will prove that searching in is guaranteed

to find a planar path in the RBS if one exists.

Lemma 13 Let , , be a shortest visible sequence of region in an RBS with some

triangulation. Let be a planar set of visibility links of the segments of (by Lemma

11 it exists). Let , , , be two links of the sequence, and let be a triangulation

edge that does not have a common end-terminal with and . Under these conditions, if both ,

 cross , then the RBS has a net segment crossing between , .

Proof Let , be the intersection points of , respectively with (Figure 70). Since the two

links do not intersect, . If no net crosses between , , we can connect points , , and

remove any cycles created in the path defined by . This creates a new planar path connecting

the same terminals of the original path. When goes to zero, the limit of the distance between the

edge and each of the end-points of , is because does not share end-terminals with ,

, and like any triangulation edge, does not intersect with a third co-linear terminal. Therefore,

1. Note that a triangulation is not necessarily unique.

O T()

G∗ O T S+() G∗

t1
t4

t2

t3

t5

t6

FIGURE 69 - RBS triangulation. This figure shows a triangulation, within the
routing area of the terminals of an RBS. The shades indicate the constrained edges
of the triangulation. These are edges between pairs of terminals having a net
segment between them. Note that as opposed to , the graph does not contain
an edge between the regions of and because there is no triangulation edge
between them.

G G∗
t3 t5

r1..rn n 2≥

l1..ln 1– r1..rn

lj lk j k≠ e t1 t2,()=

lj lk lj

lk e e lj lk

a b lj lk e

a b≠ e a b a b

r1..rn

ε

e lj lk 0> e lj

lk e

130
the limit of the length of the new path, when goes to zero, is lower than the limit of the path

defined by , and this contradicts Theorem 5. Therefore must be crossed by a net segment

between and . Q.E.D.

Proof

Definition 16 (Corridor1) Let , be two terminals in a RBS with some triangulation of its

terminals, such that the open segment does not intersect with any terminal, and the

triangulation does not contain an edge for the cut . In this case we say that the cut

defines a corridor between and . The corridor is a simple polygon that includes the triangles

that intersect with the open ended segment (Figure 71).

1. The definition here of a corridor is a special case of the same term used in [35]. Here it is
defined by the straight line segment between the two terminals as opposed to a general piece-wise
linear path in [35].

ε

r1..rn e

a b

FIGURE 70 - Edge intersections. The two planar links , are of a shortest
visible sequence, and they intersect with the triangulation edge at points ,
respectively. If no net segment crosses between points , the path could be
made shorter by connecting , with a straight line segment (shaded) and
removing any cycle(s) it creates in the path. This would contradict the fact that the
path represented by a shortest visible sequence is of shortest length. The figure
shows the case where the two links shares a single terminal. The cases where the
links share 0 or 2 end-terminals are similar.

lj lk
e a b

e a b
a b

e

lk

lj a

b

t1 t2

t1 t2,()

t1 t2,() t1 t2,()

t1 t2

t1 t2,()

131

od of
.

The corridor of the cut defines two sequences of terminals along the corridor boundary,

one sequence on each side. Each of the sequence starts with , ends with and has at least one

terminal in between (Figure 71).

Definition 17 (Corridor internal point) A point is said to be internal to the corridor in a given -

sketch if it is inside the corridor’s boundary, and it does not intersect with the -neighborho

any cut between consecutive terminals on the corridor boundary (Figure 72).

Lemma 14 Let , , be a shortest visible sequence of regions in an RBS with some

triangulation, and let be a planar set of visibility links of the segments of (it exists

t1 t2

FIGURE 71 - Corridor. The corridor of the cut includes the shaded area.
The sequences of terminals on the two sides of the corridor are , , , and

, , , , respectively.

t1 t2,()
t1 a b t2

t1 c d e t2

b

c
d

e

a

t1 t2,()

t1 t2

ε

ε

FIGURE 72 - Corridor internal point. The shade area indicates the internal area of
the corridor between terminals , . t1 t2

t1
t2

r1..rn n 2≥

l1..ln 1– r1..rn

132
by Lemma 11). Let , , be an arbitrary link of the sequence, and let , be the

terminals of the two end regions of . Under these conditions, if the triangulation does not have an

edge between , , then defines a corridor between , , and no net-segment or other

link , , , intersects with any internal point of the corridor.

Proof First we will show this for a visibility link and then for a net segment. We assume for the

purpose of contradiction that there is a link , , that intersects with an internal point of the

corridor. The link can share 0, 1 or 2 terminals with the boundary of the corridor, and in each

these cases, there must exist an edge within the corridor that does not share any end-terminal

with , and is crossed by (see example in Figure 73 of the case where shares two terminals).

This is based on the observations that cannot be between two consecutive terminals of the

corridor boundary (otherwise it will not intersect with an internal point), cannot cross

(because the set of links is planar), cannot be co-linear with an edge inside the corridor

(otherwise it will intersect with), and as any visibility link, for small enough , it does not

intersect with -neighborhood of any terminal other than its two ends (Lemma 7). Therefore, the

crossing point must be an internal point of the corridor. By applying Lemma 13 to links , , and

, there must be a net-segment crossing between , , and the crossing point is at an internal

point of the corridor. However, no net segment can intersect with the inner point of the corridor (it

must be on a triangulation edge and crosses all the triangulation edges inside the corridor). This

is a contradiction. As for a net segment, by similar considerations, if a net segment intersects with

an inner point of the corridor then it must intersect with an edge inside the corridor that does not

share an end-terminal with it, and this implies that two edges of the triangulation (the constrained

edge of the net segment and the crossed edge) cross each other. Again, this is a contradiction.

Q.E.D

lj 1 j n<≤ tj tj 1+

lj

tj tj 1+ lj tj tj 1+

lk 1 k n<≤ k j≠

lk k j≠

lk

e

lk lk lk

lk

lk lj

lk

lj ε 0>

ε

lj lk

e e lj lk

lj

133
Next we will show that every planar path defined by a shortest visible sequence of regions in

has a corresponding planar path of the same topology that is defined by a path along edges of .

Lemma 15 Let , , be a shortest visible sequence of regions between two terminals, and

let be a path defined by it (by Lemma 12). The RBS has a path , made of visibility links of

 that has the same topology as (i.e. inserting or the sketch will result in the same

topology class).

Proof Let be the sequence of visibility links of . For every link , , between

regions , , that does not have an edge in , we replace it with a sequence of visibility

links of edges in as follows. Since there is no triangulation edge between the end-terminals of

, the link defines a corridor between its end-terminals. Let , , be the sequence of

terminal on an arbitrary side of the corridor. , are the terminals of the two regions

respectively of (Figure 73). By Lemma 14, no net segment or link other than intersects with

an inner point of the corridor. For every cut , , along the boundary of the

corridor between , we define a visibility link connecting between a region of and a

region of as follows. The link is selected such that it does not intersect with any net

segment or any other link that is between terminals , , and no net segment of other link

FIGURE 73 - Link/Edge intersection. is a planar visibility link that intersects
with an inner point of the corridor. crosses the edge inside the corridor, and

, do not share an end-terminal. In this example, the link shares two
terminals with the corridor boundary, and since it intersects with an inner point of
the corridor, there must be at least one terminal between them (marked) on the
corridor boundary.

lk
lk e

e lk lk

t

lj

lk

e

t

G

G∗

r1..rn n 2≥

P P∗

G∗ P P P∗

l1..ln 1– P lj 1 j n<≤

rj rj 1+ G∗

G∗

lj lj t1..tk k 2>

t1 tk

lj lj

ti ti 1+,() 0 i k<≤

t1 tk li∗ ti

ti 1+ li∗

ti ti 1+

134
between , is between and the internal area of the corridor (Figure 74). The new links

and the link form a cycle. The links of the cycle do not intersect with any net segment or other

link (otherwise Lemma 14 would be contradicted), and for similar reasons1 they can have planar

connections within the regions. Furthermore, the inner part of the cycle do not intersect with any

net, link, or terminal, and if we will remove , we will end up with a planar path of the same

topology as . If we will repeat this step for all the links that are not on edges of , we will end

up with a path that satisfies the requirements. Q.E.D.

In the other direction, we show that every shortest path in defines a planar path in the RBS

(but not necessarily a shortest path).

Lemma 16 Any shortest path in G* between incident regions of two terminals defines a planar

path that connects the two terminals.

1. We assume, without loss of generality, that the construction of the first and the last links ,
 is such that they do not intersect with . Such construction is always possible.

ti ti 1+ li∗

lj

l∗1
l∗k 1– lj

lj

P G∗

P∗

t1

t2
t3

t4

lj

FIGURE 74 - Replacing a link with links. This example shows
how a visibility link of an edge in can be replaced by a sequence of
links of edges of while maintaining the planarity and topology of
the path. The broken circles indicates the -neighborhoods of the
terminals. The shade lines indicate possible links and net segments.
Since no net segment or link intersects with the inner part of the
corridor, the new path can be made planar.

G G∗
G

G∗
ε

l∗1

l∗3

l∗2

G∗

135
Proof This lemma is similar to Lemma 12 except that here the sequence of regions is shortest in

 but not necessarily in . Lemma 9, Lemma 10, Lemma 11 and Lemma 12 apply also to a

shortest sequence of regions in and can be proven in a similar way. The only difference is case

1 in the proof of Lemma 11 (Figure 66). In the case of a shortest path in , this case is

contradicted by the fact that triangulation edges cannot cross each other. Q.E.D.

Theorem 6 Searching in the graph will result in a planar path if and only if one exists.

Proof If there is a planar path in the RBS, then by Theorem 5, contains a path that defines a

planar path in the RBS, and by Lemma 15, contains a path as well that defines a planar path in

the RBS. The other direction is proved by Lemma 16. Q.E.D.

Let be an RBS with some triangulation of its terminals, let be a shortest sequence of

regions between two terminals in the graph of , and let be a path defined by that

sequence. The length of is equal to the length of the sequence . Let be the RBS of the

topology class of with the path inserted. has a corresponding branch in that

connects the same pair of terminals. The paths of and have similar topology but can be

shorter than (Figure 75). This implies that the length of the sequence is an upper-bound

of the length of (or the actual length of).

G∗ G

G∗

G∗

G∗

G

G∗

S1 r1..rn

G∗ S1 P∗

P∗ r1..rn S2

S1 P∗ P∗ b∗ S2

P∗ b∗ b∗

P∗ r1..rn

b∗ P∗

P∗

b∗

FIGURE 75 - A branch path of . is a path defined by a shortest visible path
along triangulation edges. The RBS of the topology class with path inserted has a
branch (broken line) representing the path . The paths of and have the
same topology in respect to the other nets and terminals but is shorter than .

P∗ P∗
P∗

b∗ P∗ P∗ b∗
b∗ P∗

136
When SURF inserts the path into the RBS, it first computes the net segments and local nets of

the new branch . This process is called a validation of and is performed by iteratively

applying the attachment operator (described below) to every invalid attachment of , until

contains no invalid attachments. A connection between two links in is said to be an invalid

attachment if the limit of the angle between the links, on the side that does not include the

terminal, is (Figure 76). Note that this definition is independent of , the actual choice of the

links between the regions, and the paths of the connections inside the regions, as long as the

sequence of regions along the path and the topology are maintained. Further more, the validity of

an attachment can be determined given the locations of the three terminals, and the topology of the

attachment.

The attachment operator when applied to an invalid attachment between two links , ,

replaces the two links in the path with a new sub-sequence of one or more links, and connections

of them, such that the new sub-sequence forms a planar path together with the head and tail of the

P∗

b∗ P∗

P∗ P∗

P∗

 π< ε

ti 2+

ci 1+

li

ti 1+

ti

li 1+

α

FIGURE 76 - Invalid attachment. The thin broken lines indicates the cuts
, and their -neighborhoods. The two links , are

connected inside the -neighborhood of terminal by the connection .
The connection partitions the -neighborhood of into two areas and
one of them include the terminal . is the angle between , such the
terminal is on the other side of the connection . The attachment in this
example is said to be invalid because the limit of when goes to 0 is . If

 would be replaced with the alternative connection (broken line) the
attachment would become valid (assuming it does not intersect with existing local
nets).

ti ti 1+,() ti 1+ ti 2+,() ε li li 1+
ε ti 1+ ci 1+

ci 1+ ε ti 1+
ti 1+ α li li 1+

ti 1+ ci 1+α ε π<
ci 1+

li li 1+

137
original path (Figure 77). The new path has the same topology as the original path and is always

shorter. If there is more than one new link, all the connections between consecutive new links have

valid attachments. Let , be the two cuts of the end-terminals of ,

respectively. The new links are found by computing the convex hull of the terminals, other than

, intersecting with the triangle , , (Figure 77). The attachment operator maintains

the topology of the path and the validation process is guaranteed to terminate since the reduction in

the length of by each application of the attachment operator has a positive lower bound

independent of 1.

When validating a path, SURF allows the validation process to change the topology of the path in

order to further reduce its length. If an attachment between two consecutive links of the path is

valid but can be made invalid while maintaining the planarity of the path, the attachment is

modified to become invalid (Figure 78). This results in the attachment operator applied to that

attachment, reducing the length of the branch.

1. The lower-bound can be computed by considering the finite set of all the pairs and triplets of
terminals in the RBS.

ti ti 1+,() ti 1+ ti 2+,() li li 1+

ti 1+ ti ti 1+ ti 2+

P∗

ε

ti

ti 1+

ti 2+

li li 1+

l∗i

l∗i 1+

l∗i 2+t∗i 1+
t∗i 2+

FIGURE 77 - Attachment operator. In this example, the attachment operator is
applied to an invalid attachment between links and . The operator replaces
the two links in the path with the sub sequence of new links , , .
The connections between the new links represent valid attachment to the terminals

, . The new links can be found by computing the convex haul of the
terminals, other than , intersecting with the triangle , , .

li li 1+
l∗i l∗i 1+ l∗i 2+

t∗i 1+ t∗i 2+
ti 1+ ti ti 1+ ti 2+

138
The path P* found by searching is not necessarily a shortest planar path (see example in

Figure 75). Even the actual length of (i.e. after it is inserted as a rubber-band branch) is not

guaranteed to be a shortest path because the search in can possibly miss a path with shorter

actual length because all the paths in representing it are longer than (note that by Lemma

15 a shortest path always has a path in representing it). We are not aware of any bound on the

error of the actual length of compared to the shortest planar path. All the empirical results of

SURF presented in this thesis were achieved using a search in . A search in G will possibly

achieve better results at the expense of longer run-time. To increase the likelihood of the search in

 resulting in paths of shorter actual length, SURF uses a Constrained Delaunay Triangulation

(CDT) [3] [41] which is likely to have shorter paths along triangulation edges. Non-constrained

Delaunay Triangulations (DT) [60] [33] [34] are known to closely approximate the complete

Euclidean graph with an upper-bound of about 2.42 [28] on the ratio between the distance over

CDT edges and the Euclidean length. We are not aware of a similar bound of CDT. That is, a

bound on the ratio between the length of a shortest path over CDT edges compared to the length of

the shortest path in the complete Euclidean graph excluding edges that intersect with internal

points of the constrained triangulation edges.

Table 12 shows experimental results of the ratio between the actual length of and its length in

. 10 bins with total of 427 branches where routed1 using a shortest path search in . The

table shows the minimum, maximum and average of the ratios in each of the bins. The lower ratio

ti

li li 1+

ti

li li 1+

a b

FIGURE 78 - Invalidating an attachment. During the path validation, if a valid
attachment between two links of the path (a) can be made invalid while
maintaining the planarity of the path (b), SURF change the attachment to be
invalid. This causes a further reduction in the path length when the attachment
operator is applied to this attachment.

G∗

P∗

G∗

G∗ P∗

G∗

P∗

G∗

G∗

P∗

G∗ G∗

139
in this experiment was 77.72% which implies that a path in was about 29% longer than its

length after validation. The maximum of 100% indicates that in each bin, at least one path in

was already validated. The average ratio of 95.73% suggest that the length of a shortest path in

, on average, is a close approximation to its actual length.

5.6 Conclusion and Future Work

The concept of Rubber-Band Sketch can be formulated using geometric terms and the concept of

limit when spacing approaches zero. This provides a sound framework for proving properties of

the RBS. A shortest path in a RBS is closely related to a shortest visible sequence of regions in the

RBS, and it can be found in time by searching in the region visibility

1. Two layers, Euclidean metric, user via cost parameter , no optimizations.β 15=

P∗

G∗

G∗

Branches Min Max Avg

APEX/01 46 79.63 100.00 98.52

APEX/02 105 77.88 100.00 97.47

APEX/03 102 79.69 100.00 98.05

DS15/01 31 83.97 100.00 98.07

DS15/02 28 83.23 100.00 97.67

DS15/03 25 77.87 100.00 96.83

DS15/04 21 85.16 100.00 98.02

GDX/01 27 77.72 100.00 96.51

GDX/02 22 86.91 100.00 97.42

GDX/03 20 88.20 100.00 98.13

Total 427 77.72 100.00 97.73

TABLE 12 - Path actual length / length. This table shows the ratio of paths actual
length to their length in . All values are in percentages. The Min, Max, and
Avg columns show the minimal, maximal and average ratios respectively of the
branches of each of the ten designs. The Total row shows the total minimum,
maximum, and average of the respective columns (the total average is weighted
relatively to the number of branches in each of the bins).

G∗

O T
2

S+() T S+()log()

140
graph. By considering only a planar subset of the edges of the graph, the algorithm is guaranteed to

find in time a planar path, if one exists, that is likely to be short.

The proposed algorithm searches for a shortest planar path in the RBS. In practical routing

problems, other considerations may be required as well. This includes routability and electrical

properties such as cross-talk and delays. Other desired improvements would be finding a least-cost

path between two given sub-nets with possible insertion of Steiner points, and a 3-dimensional

least-cost path search in a multi-layer RBS.

O T S+() T S+()log()

141
6 TOPOLOGICAL SKETCH OPTIMIZER (ROAR)

6.1 General

In a addition to the initial routing of the design nets, the algorithm for finding a planar shortest path

in an RBS has other applications. One of them is the Rip-Out And Reroute (ROAR) optimizer

which accepts a single-layer RBS and tries to find an alternative planar topology with shorter

wiring. The ROAR optimization is useful for two reasons, first it compensates for possible bad

decisions made by the net ordering step, and second, it overcomes an inherit limitation of

sequential routing of the nets on a shortest path that in some cases, no order of the nets will result

in an optimal solution (Figure 79).

The operation of the ROAR optimizer is relatively simple. It picks a terminal which has an

attached local net and one or more incident local nets. Then it removes the branch with the inner-

most attachment to , and all the branches incident to . Then it reroutes the removed branches

using the shortest planar path algorithm, first the branch that was attached, and then the incident

ones (the order in which the incident branches are routed is arbitrary). If the re-routing is

successful (i.e. planar) and the total wire length of the RBS is reduced then the new RBS is

maintained. Otherwise, the operation is undone. This operator is applied iteratively to terminals of

a

a b

FIGURE 79 - The Triangle problem. This problem has three symmetrical
branches and its optimal embedding is shown in (a). The optimal embedding
cannot be achieved by routing branch-at-a-time on a shortest path. Any such
routing will result in a sub-optimal solution similar to the one in (b). SURF
compensates for this limitation using the ROAR optimizer.

t

t t

142
the RBS until the total wire length of the RBS cannot be reduced anymore. Figure 80 shows how

the ROAR optimizer improves the example in Figure 79b.

6.2 Experimental Results

Table 13 shows experimental results of performing ROAR optimization on 10 bins1 (total of 427

branches in 20 bin layers). The table shows the detour before and after the optimization. The

detour of a sketch is defined as the extra wire length compared to its basic length. The basic length

of a sketch is defined as the sum of the lengths of its nets when they are optimally routed

independently of each other. The basic length of the sketch is a lower bound on its total wire length

1. Two layers, Euclidean metric, user via weight parameter .

a b

c d

t

FIGURE 80 - The ROAR operator. This example shows how the optimal
solution of the example in Figure 79 is achieved by applying the ROAR operator
to terminal of the RBS (a). First, the two branches, attached and incident
respectively to are removed (b). Then, the branch that was attached is routed on
a shortest path between its end-terminal (c), and then the other branch is routed in
a similar way (d). The re-routing is planar and the total wire length is reduced and
therefore the new topology is kept. Applying the ROAR operator to any of the
other terminals, or to the terminal in (d) will not reduce the total wire length and
therefore will be rejected.

t
t

t

β 35=

143
and typically, the basic length is strictly lower than the wire length of the optimal routing (i.e.

shortest planar co-routing of the nets). The average detour before the ROAR was 8.84% and it was

reduced to 5.18% after optimization. This implies that the wire length was reduced by about 3.4%

and that about 38% of the detour length was eliminated.

Branches Steps Detour
Before [%]

Detour
After [%]

Improv.
[%]

APEX/01 76 11 5.06 4.39 0.68

APEX/02 165 66 19.90 11.46 8.44

APEX/03 142 41 11.85 6.60 5.25

DS15/01 49 9 11.10 4.95 6.16

DS15/02 42 4 4.90 4.53 0.37

DS15/03 33 6 12.34 4.78 7.56

DS15/04 31 1 3.05 3.00 0.04

GDX/01 33 11 12.33 7.04 5.29

GDX/02 28 3 4.34 2.99 1.35

GDX/03 24 5 3.56 2.03 1.53

AVG 8.84 5.18 3.67

TABLE 13 - ROAR optimization. This table summaries the result of performing
the ROAR optimization on 10 2-layers bins. The Steps column shows the number
of successful ROAR operations done. Detour Before and Detour After are the
extra wire length compared to the basic length of the sketch. Improv. is the
reduction in the detour due to the ROAR optimizer (higher is better).

144

ts are

. The

gion

hm is

 be

es the

ute. It

gth. A

ectness
7 CONCLUSION AND FUTURE WORK

A multi-layer, topological local router was presented. This is the first ever reported router that uses

a rubber-band sketch (RBS) to represent the interconnect. The local router is part of SURF, a

routing system for multi-chip modules and VLSI that was designed to efficiently handle large

multi-layer problems. The local router supports various routing goals and can generate layouts for

rectilinear, octilinear and any-angle wiring rules. It performs the routing in four steps of layer-

assignment, net-ordering, sequential net embedding, and wire-length reduction using the ROAR

optimizer.

The layer-assignment step partitions the multi-layer problem into a set of single-layer sub-

problems that are routed independently. It uses a new approach of unconstrained layer-assignment

that makes better usage of the routing resources by considering a continuous metric of the conflict

between nets as opposed to the binary go/no-go approach previously used. The layer-assignment is

formulated as an optimization problem and various routing goals such as wire-length and via

minimization or constrained layers can be achieved by simple modifications to the cost function.

Our layer-assignment algorithm (LAA) uses a simple optimization technique to solve the layer-

assignment problem and uses an optimal algorithm to determine the assignment of individual two-

terminal nets.

The net-ordering algorithm uses a continuous conflict metric similar to the one used by the layer-

assignment and it results in shorter wiring than the ‘shortest first’ approach. The ne

embedded sequentially using an optimal algorithm for shortest planar path in an RBS

algorithm finds a shortest planar path in time by searching in the re

visibility graph. By considering only a planar subset of the edges of the graph, the algorit

guaranteed to find in time a planar path (if one exists), that is likely to

short. The ROAR optimization is a simple application of the shortest path algorithm and it us

‘attachment’ relation between nets and terminals in the RBS to determine which nets to re-ro

is guaranteed to maintain the planarity of the sketch it potentially reduces the total wire len

mathematical formulation of the of RBS was also presented and was used to prove the corr

O T
2

S+() T S+()log()

O T S+() T S+()log()

145
of the shortest path algorithm. This is the first exact analysis of RBS ever publish. Empirical

results were also shown and they demonstrate the merit and properties of the proposed router.

Several extensions to the our local router are likely to increase the quality of the layouts it

generates and will enable it to address a wider range of routing goals. Using more advanced

optimization methods that are less likely to be trapped in local minimum will potentially improve

the quality of the layer-assignment and the net-ordering. Optimization for electrical properties of

the layout, such as cross-talk and signal delays, will make the router more useful for modern high-

speed designs. Consideration of routability will result in fewer design-rule violations and will

require less manual editing to complete the layout. A post-processing step that uses a 3-

dimensional least-cost planar path search can improve the routing by adding vias when necessary,

and compensating for ‘bad’ decisions made earlier by the layer-assignment.

146
8 REFERENCES

[1] R. Bruce, W. Meuli, and J. Ho, Multichip modules - an Overview. In Proc. of the 26th
Design Automation Conf., pp. 389-393, 1989.

[2] Chen, H.-F.S., Lee, D.T., A faster algorithm for rubber-band equivalent transformation for
planar VLSI layouts. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol.15, (no.2):217-27, Feb. 1996.

[3] L. P. Chew, Constrained Delanuay triangulations, in Algorithmica, vol 4, pp. 97-108, 1989.

[4] J. D. Cho, S. Raje, M. Sarrafzadeh, M. Sriram, S. M. Kang, Crosstalk-Minimum layer
assignment, In Proceedings of the IEEE 1993 Custom Integrated Circuits Conference, San
Diego, CA, 1993, pp 29.7.1-29.7.4.

[5] R. Cole, A. Siegal, River Routing every which way, but loose. In Proc. of 25th Annual Sym-
posium on Foundations of Computer Science. pp 65-73, 1984.

[6] J. Cong, C. L. Liu, On the k-Layer planar subset and topological via minimization problems.
In IEEE Transactions on Computer-Aided Design, Vol 10, No. 8, Aug 1991.

[7] F. Curatelli, Switchbox routing with rerouting capabilities in VLSI design, In IEEE Proceed-
ings, Vol. 137, Pt. G, No. 3, June 1990.

[8] W. M. Dai, R. Kong, J. Jue, M. Sato, Rubber-band routing and dynamic data representa-
tion. In IEEE Int. Conf. on Computer Aided Design, 1990.

[9] W. M. Dai, T. Dayan, D. Staepelaere, Topological routing in SURF: generating rubber-
band sketch, In Proc. ACM/IEEE 28th Design Automation Conf. pp 41-44, 1991.

[10] W. M. Dai, R. Kong, M. Sato, Routability of a rubber-band sketch, in Proc. ACM/IEEE 28th
Design Automation Conf. pp. 45-48, 1991.

[11] T. Dayan, D. W. M. Dai, Force-driven constrained wiring optimization, Technical report
UCSC-CRL-91-40, CMPE, Univ. of California Santa Cruz, 1991.

[12] T. Dayan, D. W. M. Dai, Layer assignment for rubber-band routing, Technical report
UCSC-CRL-92-50, CMPE, Univ. of California Santa Cruz, 1992.

[13] P. de Dood, J, Wawrzynek, E. Liu, R. Suaya. A two dimensional topological compactor with
octagonal geometry. In Proc. of the 28th Design Automation Conf. pp 727-731. June 1991.

[14] D. Z. Du and F.K Hwang, A proof of the Gilbert-Pollack conjecture on the Steiner Ratio,
Algorithmics 1992 Vol 7.

[15] Shimon Even, Graph Algorithms, Computer Science Press Inc., Rockville, Maryland USA,
1979, ISBN 0-914894-21-8.

147
[16] S. Gao, M. Kaufmann, F. M. Maley, Advances in homotopic layout compaction, In Proceed-
ings of the ACM Symposium on Parallel Algorithms and Architectures, 1989, pp 273-82.

[17] M. R. Garey, D. S. Johnson, Computers and Intractability A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, N. Y., N. Y. USA. pp. 281.

[18] E. N. Gilbert, H. O. Pollak, Steiner minimal trees, Bull. Inst. Math. Siam J. Appl. Math. Vol
16, pp. 1-29, 1968

[19] A. Hanafusa, Y. Yamashita, M Yasuda, Three-dimensional routing for multi-layer ceramic
printed circuit boards, In Proc. IEEE Int. Conf. Computer-Aided Design, pp 386-389, Nov
1990.

[20] S. Haruyzama, D. F. Wong, D. Fussell, Topological channel routing, In Proc. 25th ACM
IEEE Design Automation Conference, pp 406-409, 1988.

[21] [D. W. Hightower, A solution to line routing problems on the continuous plane, In Proc. of
the Sixth Design Automation Workshop, pp 1-24, IEEE, 1969.

[22] J. M. Ho, M. Sarrafzadeh, G. Vijayan, C. K. Wong, Layer assignment for multi-chip mod-
ules, IEEE Trans. CAD, Vol. 9. No. 12, pp 1272-1277, Dec 1990.

[23] J. M. Ho, G. Vijayan, C. K. Wong, Planar topological routing of pad nets, In Integration,
the VLSI Journal, Vol. 11, pp 295-316, 1991.

[24] C. P. Hsu, Minimum-via topological routing, IEEE Trans. Computer Aided Design, Vol.
CAD-2, pp 235-246, Oct. 1983.

[25] T. A. Hughes Jr., Topological routing problems, Ph.D. dissertation, Dept. of Electrical and
Computer Engineering, North Carolina State University, Raleigh, NC, 1992.

[26] Donald A. Joy, Maciej J, Ciesielsky, Layer assignment for printed circuit boards and inte-
grated circuits, In Proceedings of the IEEE, Vol. 80, No. 2, Feb. 1992, pp 311-331 (prolog
in pp 310).

[27] Kawamura, K.; Shindo, T.; Shibuya, T.; Miwatari, H.; and others. Touch and cross router.
In 1990 IEEE International Conference on Computer-Aided Design, Santa Clara, CA, USA,
11-15 Nov. 1990.

[28] J. Mark Keil, Carl A. Gutwin, The Delaunay triangulation closely approximates the com-
plete Euclidean graph. ACM Computational Geometry, 1989.

[29] Kei-Yong Khoo, Jason Cong. A fast multi-layer general area router for MCM designs. In
IEEE Transactions on Circuits and Systems, Vol. 39, No. 11, pp 841-851, 1992.

[30] S. Kirkpatric, C. Gellat, M. Vecchi, Optimization by simulated annealing, Science, Vol 220,
No. 4598, May 1983, pp 671-680.

148

ges

ce

nta

ring

.

[31] Raymond Kong, Incremental routability test for planar topological routing, Master’s thesis,
Computer Engineering, University of California Santa Cruz, Dec. 1992.

[32] C. Y. Lee, An algorithm for path connection and its applications. IRE Transactions on Elec-
tronic Computers, EC-10(3), pp 346-365, 1961

[33] D. T. Lee, B, Schachter, Two algorithms for constructing a Delaunay triangulation, Int. J.
Comp. Inform. Sci. 9 (1980) pp 219-242

[34] D. T. Lee, A. K. Lin, Generalized Delaunay triangulation for planar graphs, Discrete and
Computational Geometry, 1 (1986), pp 201-217

[35] C.E. Leiserson and F.M. Maley. Algorithms for routing and testing routability of planar
VLSI layouts. In Proc. of the 17th Annual ACM Symposium on Theory of Computing, pa
69-78, 1985.

[36] K. F. Kiao, D. T. Lee, M. Sarrafzadeh, Planar subset of multi-terminal nets, Integration, The
VLSI journal, 10, 1990, pp 19-37.

[37] Ulrich Lauther, Top down hierarchical routing for channelless gate array based on linear
assignment, In VLSI 87: VLSI Design of Digital Systems, pp 141-151, Elsevier Scien
Publishers B. B., 1987.

[38] K. F. Liao, M. Sarrafzadeh, Single-layer global routing, In IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, Jan 1994, Vol. 13, No. 1, pp 38-47.

[39] E. Liu, P. de Dood, R. Suaya, J, Wawrzynek, A topological framework for compaction and
routing. In Advance Research in VLSI: Proc. of the 1991 University of California Sa
Cruz Conf., pp 221-228. The MIT Press, March 1991.

[40] R. Linsker, An iterative-improvement penalty-function-driven wire routing system, IBM J.
Res. Develop. Vol. 28, No. 5, 1984, pp 613-624.

[41] Yizhi Lu, Wayne Wei-Ming Dai, A numerically stable algorithm for constructing con-
strained delaunay triangulation and application to multichip module layout, Proc. China
1991 Int'l Conf. Circuits and Systems, pp 644-647, 1991.

[42] Yizhi Lu, Dynamic constrained Delanunay triangulation and application to multichip mod-
ule layeout, Master’s Thesis, University of California, Santa Cruz, Computer Enginee
Dept., Dec. 1991.

[43] F. Miller Maley, Compaction with automatic jog introduction. Masters’s thesis, MIT, May
1986.

[44] F. Miller Maley, Single-layer wire routing, Ph.D.. dissertation, MIT, Cambridge MA, 1987

[45] F. Miller Maley, Single-layer wire routing and compaction, MIT Press, Cambridge MA,
1990.

149
[46] F. Miller Maley, Testing homotopic routability under polygonal wiring rules, Algorithmica,
Springer-Verlag, New York, 1996, pp 1-16.

[47] M. Marek-Sadowska, An unconstrained topological via minimization problem for two-layer
routing, IEEE Trans. Computer-Aided Design, Vol. CAD-3, pp 184-190, July 1984.

[48] M. Marke-Sadowska, Route planner for custom chip designs, In IEEE International Confer-
ence Computer Aided Design, pp 246-240, 1986.

[49] K. Mehlhorn, S. Naher, A faster compaction algorithm with automatic jog insertion, IEEE
Transactions on CAD Vol. 9. No. 2, pp 158-166, 1990.

[50] K. Mikami, K. Tabuchi. A computer program for optimal routing of printed circuit connec-
tors. IFIPS Proc., H47 pp 1475-1478, 1968.

[51] E. F. Moore, Shortest path through a maze, In proc. of the International Symposium on
Switching Circuits, pp 285-292, Harvard University Press, Cambridge MA, 1959 (In Annals
of the Harvard Computing Laboratory, Vol. 30, Part II).

[52] H. Murata, and Y. Kajitani, Interactive terminal sliding algorithm for hybrid IC planar lay-
out, Transactions of Information Processing Society of Japan, Vol.35, No.23, pp.2806-2815,
1994 (in Japanese).

[53] H. Murata, and Y. Kajitani, Creeping: smooth and flexible layout sketch editing, to be pub-
lished.

[54] R. Y. Pinter, The impact of layer assignment methods on layout algorithms for integrated
circuits, Ph.D. Thesis, EECS Department, MIT, 1982.

[55] R. Y. Pinter, Optimal layer-assignment for interconnect, In Proc. IEEE Int. Conf. Circuits
and Computers, pp. 398-401, 1982.

[56] R. Y. Pinter, River routing, methodology and analysis, In Proceedings of the Third Caltech
Conference on VLSI, Computer Science Press, Rockville, MD, 1983, pp 141-163.

[57] M. Raith, M. Bartholomeus, A new hypergraph based rip-up and reroute strategy, In Proc.
28th ACM.IEEE Design Automation Conference, San Francisco, CA, USA, pp. 17-21, June
1991.

[58] F. Rubin, An interactive technique for printed wire routing, In Proc. 11th Design Automa-
tion Workshop, 1974, pp 308-313.

[59] M. Sarrafzadeh, D. T. Lee. A new approach to topological via minimization, IEEE Trans.
Computer-Aided Design, Vol. 8, pp 890-900, 1989.

[60] M. I. Shamos, D. Hoey, Closest point problems, Proc. of the 16th IEEE Symposium on
Foundations of Computer Science, pp 151-162, October, 1975.

150

ec

ch
[61] I. Shirakawa, S. Futagami, A rerouting scheme for single-layer printed wiring boards, IEEE
Transactions on Computer-Aided Design, Vol. CAD-2, No. 4, October 1983.

[62] David J. Staepelaere, Geometric transformation for a rubber-band sketch, Master’ thesis,
Computer Engineering, University of California Santa Cruz, Sep. 1991.

[63] David J. Staepelaere, Jeffrey Jue, Tal Dayan, Wayne Wei-Ming Dai, Surf: a rubber-band
routing system for multichip modules, In Proc. IEEE Design and Test of Computers, D
1993.

[64] M. Stallmann, T. Hughes, W. Liu, Unconstrained via minimization for topological multi-
layer routing, In IEEE Trans. on Computer-Aided Design, Vol. 9, No. 9, Sept. 1990.

[65] Jeffrey Z. Su, Dynamic Updating in Surf Using a Rubber-Band Wiring Model, 1997, to be
published.

[66] J. Valainis, S. Kaptanoglu, E. Liu, R. Suaya, Two dimensional IC layout compaction based
on topological design rule checking. IEEE Transactions on CAD, 9-3 pp 260-275, mar
1990.

	RUBBER-BAND BASED TOPOLOGICAL ROUTER
	Copyright © by Tal Dayan 1997
	ABSTRACT
	Dedicated to Nir
	ACKNOWLEGMENT

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 General
	1.2 Organization of This Thesis
	1.3 Previous Works
	1.4 Contribution of this work

	2 OVERVIEW
	2.1 Topological Representation and Routing
	2.1.1 Sketches and Topological Classes
	2.1.2 Triangulation Crossing Sketch (TCS)
	2.1.3 Rubber-Band Sketch (RBS)
	2.1.4 Routability Tests
	2.1.5 Topological Routing

	2.2 SURF Routing System
	2.2.1 Introduction
	2.2.2 Layout Refinement Strategy
	2.2.3 Routing Examples

	3 TOPOLOGICAL LAYER-ASSIGNMENT
	3.1 Introduction
	3.2 The Layer-Assignment Problem
	3.2.1 The Input Domain
	3.2.2 The Solution Domain
	3.2.3 The Cost Function
	3.2.4 Properties of the cost function
	3.2.5 User control of

	3.3 The Layer-Assignment Algorithm
	3.3.1 Introduction
	3.3.2 Step I - Breaking the Nets Into 2-Nets
	3.3.3 Step II - Generating The 2-Net Assignment Gr...
	3.3.4 Step III - Solving the Layer-Assignment Prob...
	3.3.4.1 Configurations and Assignments
	3.3.4.2 The configuration search algorithm

	3.3.5 Properties of the configuration search algor...
	3.3.6 The 2-Net Assignment Algorithm (2NAA)
	3.3.7 2NAA complexity Analysis
	3.3.8 LAA Implementation Notes

	3.4 LAA Extensions
	3.4.1 Constrained Assignment
	3.4.2 Supporting Various Metrics in the Layer-Assi...
	3.4.3 Preferring 2-Net assignment to layers

	3.5 Experimental Results
	3.5.1 Benchmark results
	3.5.2 Balancing Between Wiring Length and Via Coun...
	3.5.3 Estimated vs. Actual Detour
	3.5.4 Comparison of Net Decomposition Methods
	3.5.5 Candidate Via Density Versus Actual Cost
	3.5.6 Using Various Routing Metrics
	3.5.7 LAA Scalability

	3.6 Conclusion and Future Work

	4 TOPOLOGICAL NET ORDERING
	4.1 Introduction
	4.2 Decomposition into 2-Nets
	4.3 2-Net Ordering
	4.4 Planarity Enforcement Operator (PEO)
	4.5 2-Net Ordering Problem (2NOP) Formulation
	4.6 2NOP Complexity
	4.7 Solving the 2NOP
	4.8 Experimental Results
	4.9 Conclusion and Future Work

	5 TOPOLOGICAL PATH SEARCH
	5.1 Least-Cost Topological Path Problem (LCTP)
	5.2 Rubber-Band Sketch Formulation
	5.3 RBS Regions
	5.4 Shortest Planar Path in RBS
	5.5 Reducing the search graph size
	5.6 Conclusion and Future Work

	6 TOPOLOGICAL SKETCH OPTIMIZER (ROAR)
	6.1 General
	6.2 Experimental Results

	7 CONCLUSION AND FUTURE WORK
	8 REFERENCES

