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PREFACE

Before the year 1923 the literature dealing with generalized
hypergeometric series was somewhat scattered, but in that year
Professor G. H. Hardy published his paper ‘“ A chapter from Ra-
manujan’s note-book ”’ in which he gave an account and proofs of
the results then known, most of which had been rediscovered by
Ramanujan. Since then numerous papers have been written on
the subject, and it seems desirable that the mass of special results,
obtained by one method or another, should be collected together.
This is the primary object of this tract.

No attempt has been made to give a complete account of the
ordinary hypergeometric series. In fact the first chapter simply
gives the minimum required for the succeeding chapters. Again,
all parts of the subject, such as asymptotic expansions, which
definitely belong to function theory, have been deliberately
ignored.

Although the main part of the work deals with generalized
hypergeometric series, there are also short accounts of Heine’s
basic hypergeometric series and Appell’s hypergeometric func-
tions of two variables.

My thanks are due to Professor G. H. Hardy who made valuable
suggestions regarding the general plan of the work, and to
Professor L. J. Mordell who suggested the desirability of a tract

on this subject.
W. N. B.

MANCHESTER,
January 1935.



CHAPTER I
THE HYPERGEOMETRIC SERIES

1.1. Introduction. The series*

a.b ala+1)bdb+1) alea+1){a+2)b(b+1)(b+2)
et T oeeeD) © 7 T 238ce)ct2)  °

is called the hypergeometric series, and is denoted by ¥ (a, b; ¢; z).
It is assumed that ¢ is not a negative integer.

The series converges when | z | < 1, and also when z=1 provided
that R (c—a—b)> 0, and when z= — 1 provided that

R(c—a—-b+1)>0.
For brevity we write
(@),=a(@+1){(a+2)...(a+n—1), (a)=1,

and then F(a,b;c; z)= E Mz".
n=0 n! (C)n

1.2. The differential equation satisfied by F(a, b; c; 2).
The differential equation
@ +c—-1)-z(3+a)(9+b)}y=0,
where 9 denotes the operator zd/dz, is evidently satisfied by
y= > 4,20 if
Y Dt m A=) (b0 4,
This is the relation satisfied by consecutive coefficients of the

series F (a,b;c;z), and consequently the equation is satisfied by
the series. The equation can be written as

d%y dy -
(1) z(l—z)d?+{c—(a+b+l)z}(E—aby—O.
It is easily seen that the complete solution is
y=AF(a,b;¢;2)4+ Bzl F(a+1—c, b+1—c; 2—c; 2),

valid for |z]| < 1.

* Introduced into analysis by Gauss 1.
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By changing the dependent variable it can be verified that the

function (1=zy-*°F(c—a, c-b; c; 2)

also satisfies (1). This solution can therefore be expressed in
terms of the other solutions, and by comparing coefficients we
have the relation*

(2) F(a, b;c; 2)=(1=2z)2bF (c—a, c=b; c; 2).
By changing z into 1 — { in (1) we obtain

Q1 —C)Z—g+{(a+b+ l1—¢c)—(a+db+ l){}gz—z—aby=0,

which has the solutions
F(a, bya+b+1—c;{) and {F92F(c—a,c—b; 14+c—a—-b; {).
There is thus a relation of the form
(8) Fla,b;¢c;2)=CF(a,b;a+b+1—c; 1-2)
+D(1—z)-9tF(c—a,c—b; 1+c—a—b; 1—2z),
where C and D are constants, valid in the region for which
2] <1, |1-2z]| < 1. The constants € and D can be found by put-

ting z=0 and z= 1, provided that we know the sum of the hyper-
geometric series when z = 1. This sum will now be obtained.

1.3. Gauss’s theorem. We shall prove that, when
R{c—a—56)>0,
_I'e)T'(c—a—-b)
"Tc—a)T(c-b)
By comparing the coefficients of z7, it is easily verified that, if
O0gx<l,
c{c—1—(2c—a—-b-—1)a} F(a, b; c; x)
+(c—a)(c—b)zF(a, b; c+1; 2)

=c¢c(c—1)(L—2x)F(a,b;c—1; x)

(1) F(a, b;¢c; 1)

o

=c(c—1){l+ T (w,—u,,)z"},
n=1

where u,, is the coefficient of 2" in F(a,b;c~1;z). Now make

* Due to Euler.
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x> 1. The right-hand side tends to zero if v, >0, which is so when
R(c—a—b)>0. Thus

F(a’ b; c; l)=(C__M)

c(c—a—b)—F(a’ b; c+1; 1),
By repeating this process, we see that
(c—a),(c—b)
Fa, byc, 1)="—""___ME(q b:ct+m; 1).
( )= @nle—a=b)," )
lim €= %m(c=b)n_T()L(c—a-b)
m—»oo(c)m(c—a_b)m F(C_G)P(G'b)
Also, if v, (a, b, ¢) is the coefficient of z* in F (g, b; ¢; z), and
m>|c|, we have

Now

| F(@, b; c+m; 1)=1|< I |v,(a, b, c+m)]

n=1

a0
< Zlvn(lal, 6], m—|c])
n=

<

[ab] s v (le]+1,]b|+1,m+1-]|c|)
m—|c|pa0 * . ’ '

Now the last series converges when m>|c|+|a|+|b]|+1,
and is a positive decreasing function of m. Hence

lim F(a, b; c+m; 1)=1,
m—>0

and Gauss’s theorem is proved.

When a is a negative integer —x, the theorem becomes

F(—n,b;c; 1)=(—C(—;—)§)-”,

and this is equivalent to Vandermonde’s theorem, familiar in
connection with one proof of the binomial theorem.

1.4. Connection between hypergeometric functions of
zand 1 —z. We now return to the relation (3) of § 1.2, By putting
z=0and z=1 we have,if R(c—a—b6)>0, R{c) <],

F'a+b+1-¢)T'(1—c) C4 I't+c-a-56)T"(1~-c)
F'ae+l-c)T'(b+1—¢) F'l-a)F(1-b)
_T©Tl(c—-a-0)
" Te—a)T(c=b)°

D=1,
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We thus find that*
o ' e—a=0b)
(1) F(a, b; c; z)'_1"(6—0,)1"((:—())
L@l (a+b—c)
I'a)T' (b)
1.5. A definite integral for F(a, b3 c; z). Consider the
integral

Fa, b;a+b+1—c; 1-2)

(1=2)~a-0F (c—a,c—b; 1 +c—a—b; 1 —z).

1
I= f £o-1(1 —£)e=b-1(1 — tz)-a d,
0

where, for convergence, R(¢)> R(b)>0, and |z| < 1. It is sup-
posed that the branch of (1 —¢z)~¢ is chosen so that (1 —#z)*—>1
as t—0. Then
1 o (a)
I=| = Tognpin-1(]pe-v-14
0n=0 7:
L § @ TO+mT =)
a0 7! T'(c+n)
_TR)Te=b) 2 @,0b)y .,
T woo alle),
the change in the order of integration and summation being easily
justified. We therefore have, under the given conditions,
PP — P (C) ' H—1 c—b—1 -
(1) F(a,b; 6 2)= F(c—b)Jot (1 — )-5-1(1 — fz)-a dt.
When z=1, the integral on the right reduces to a beta function
and we are led again to Gauss’s theorem.
Again, if 2= —1, a=1+b—c¢, the integral in (1) becomes

1
j $o~-1 (1 — tz)c—b—l dt,
0

which can be evaluated in terms of gamma functions. This sug-
gests that probably the sum of the series F (b, 1+b—c¢; ¢; — 1) can
be found.

Finally, if b=1—a, 2=14, we are led to the integral
1
f (2t — )-8 (1 —g)e-b-14,
0
* See also Barnes 1 where another method is used to obtain this formula. The

method is reproduced in Whittaker and Watson, Modern Analysis (ed. 4, 1927),
§ 14.53.
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and, taking (1—1?)2 as the new wvariable, this becomes a beta
function. We can thusevaluate ¥ (a,1—a;c; 4)in terms of gamma
functions. The actual formulae will be given in Chapter I1.

1.6. Barnes' contour integral for F(a, b; c; 2).* Consider
the contour integral

L (= Tla+s)C(b+s)T(—s)

- — —_— 8

2mi) _iw T (c+3) (—zpds,
where |arg(—z)|<m, and the path of integration is curved,
if necessary, to separate the poles s=—-a—n, s=—-b—n,

(n=0,1, 2, ...) from the poles s=0, 1, 2, .... This contour can
always be drawn if @ and & are not negative integers, as then
none of the decreasing sequences of poles coincides with one of
the increasing sequence.
Now,f if |arg(s+a)|<m—38, |args| <7 —3, then
log I (s+a) = (s +a— ) logs — s + L log (2m) +0(1),
when |s|—c0.
Thus, the integrand, which can be written
F@a+s)T(b+s) m(—2)
" T(c+s)T(1+s) sinsm’
is asymptotically equal to

m(—2)*
~ e €XP [(@+b—c—1)logs].

Putting s =<v on the contour, we see that, for large values of v,
the integrand is
O [vetb—<-lexp{—varg(—z)—=|v]}].

Thus the integral is an analytic function of z throughout the
domain | arg (—z)| < 7~ 8, where 8 is any positive number.

Now let € denote the semi-circle of radius N + } on the right of
the imaginary axis with centre at the origin, N being an integer.
As before the integrand is ,

0 (Nast-e-1) 2V
sinsw
for large values of N, the implied constant being independent of
arg s when s is on the semi-circle.
* Barnes 1. 1 Whittaker and Watson, Modern Analysis, § 13.6.
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Ifs=(N+3})ei? and |z] <1, we have

(=2

sin smw

=0 [exp{(N +})cosflog|z| — (N +3)sinfarg (—2)
—(N+})7|sind |}]
=O[exp{(N + §)cosflog|z|— (N +3)3|sinb|}],
and this is
Olexp{2 (W +Dlog|zl}] i 0<|6] <},
and  Ofexp{—2t8(N+1)}] if in<|0|<in
Hence, if log | z| is negative, that is if |z | < I, the integrand
tends to zero sufficiently rapidly to ensure that | — 0 as N — co.
By using Cauchy’s theorem for the contour fo;med by € and
the part of the imaginary axis from ¢ (N +3) to —#(N + 1), and
then making N — o0, we see that, when |arg(—z)|<7—38 and
|z] <1,
1 (*® T{@+8)T(d+s)T'(—9)

2 i T(cts) (—z)ds
N
— lim > F@+n)T(+n) ,

b

Nown-0 R!T{c+n)
since I' (—s) has a simple poleat s=n, (n=0,1, 2, ...) with residue
(—1)*71/n). Thus the integral represents an analytic function in
the region | arg (—2)| <, and when | z| < 1 this analytic function
may be represented by the series

()T (b)
I(c)
The symbol F (a,b;c;2) may therefore be used to denote the

more general function defined by the integral when divided by
['(a)T (0)/T (c).
1.7. Barnes’ lemma.* If the path of integration is curved so as
to separate the increasing and decreasing sequences of poles, then
1 (i

2m o

Fa,b;c; 2).

I(a+8)F(B+8)T (y~s)T'(8—s)ds

_T(e+y)T{a+3)T(B+y)T(B+38)
C(x+B+y+39) ’

* Barnes 1.
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Worite I for the expression on the left. Let C be the semi-circle
of radius p on the right of the imaginary axis with its centre at the
origin, and suppose that p —co in such a way that the lower bound
of the distance of C from the poles of I' (y - ) I" (6 — 8) is definitely
positive. Then
L(x+s)C(B+8)T(y—8)T'(3-3)
Cle+s)I'(B+s) m?

=0 [s*++y+i-2exp {27 | I(s)|}]
as | ¢| >oo0 on the imaginary axis or on €. Thus the original
integral converges, and the integral round C tends to zero as
p—~>c0 when R(x+f8+y+8—1)<0. The integral is therefore
equal to minus 2-i times the sum of the residues of the integrand
at the poles on the right of the contour. Thus

I= gjol“(a+y+n)I‘(B+y+n)l‘(8—y—n)(_ 1)*/n!

+ 5 Ta+d5+n)T(B+5+n)T (y=8—n)(—1)*/n!

n=0
=P+ T(B+7)TG—y) Flaty, B+y; 1+y=8 1)
+ a similar expression with ¢ and & interchanged.

Using Gauss’s theorem we obtain the required result after a

little reduction. The formula has been proved only when
R(a+B+y+5-1)<0,

but by the theory of analytic continuation it is true for all
values of «, B, v, 8 for which none of the poles of I" (x +8) I' (B + 8)
coincide with any of the poles of I' (y —s) I (6 — s).

By writing s—k, a + &, B+k, y—k, 80—k fors, o, B, v, 8, we see
that the result is still true when the limits of integration are
k + ico, where k is any real constant.



CHAPTER IT

GENERALIZED HYPERGEOMETRIC SERIES.
FURTHER RESULTS CONCERNING OR-
DINARY HYPERGEOMETRIC SERIES

2.1. Introductory remarks. In the ordinary hypergeometric
series F (a,b;c;z) there are two numerator parameters a, b, and
one denominator parameter ¢. More generally, we can consider

the serie
° § (xl)n (“‘2)11 "'7(05;0)71 n

n=9 n! (Pl)n o (pq)n
which we denote by

7 I:al, Byy eeny Oy} z]
plyq .
P1s +-os Pq

With this notation the series F(a, b; c; 2) is denoted by
oF (a, b; ¢; z).

When p<gq, the series converges for all values of z. When
P>q+1, the series converges only for z=0, and is therefore
significant only when it terminates.

Usually we shall be concerned with the case when p=g+1.
Then the series converges when |z | < 1, and also when 2=1 pro-
vided that RB(Zp—2a)>0, and when z= —1 provided that
R(Zp—Za+1)>0.

The differential equation satisfied by

®ys Og, eues Opig; 2

P1s s Pp

)

is, asin § 1.2,

BFE+p—1. . F+p,— D=2+ ) (S +a)... O+, ,)}y=0,

where § denotes the operator 2d/dz. The other solutions of this

equation are easily found to be

an_ F [1 toy—prs L+ag~py, Lt ag—p1, eees 1oy, —py Z:I
priv e 2-p, 1+P2"Pl""7 1+p,—py

and p— 1 similar expressions. These solutions are distinct and
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valid for | z| < 1if no two of the numbers 1, p;, ps, ..., p,, differ by
an integer.
2.2. Saalschiitz’'s theorem. In the formula
(1 —z)atb—c, F (a, b; ¢; 2)=,F,(c—a, c—b; ¢; 2),
obtained in §l 2, equate the coefficients of 27, and we obtain
1 (@), (), (c—a=b),,_(e—a),(c=b),

o rle),  (n—7)! ale),
Hence
& (@, (), (c—a—b),(=m), _(c—a),(c—b),
o 71O, AF¥a+bcn)n!™ alle),
It follows that
Al fl, b;._n;l (C a)n(c b)n
(1) ‘Jﬂ[ c, l+a+b—c—n:| (), (c—a—b),’

a result due to Saalschiitz.* It sums the series

oy, Oy, Og; 1
o2 [ P> P2 ]

when p;+p,=o;+ay+a;+1 and one of the numerator para-
meters is a negative integer. The theorem reduces to Gauss’s
theorem when n —oc0.t

In future, when the argument z is omitted, it will be assumed
that z=1. Saalschiitz’s theorem can then be written in the form

@) ,F, a, b, c] Fd)l'(l+a—e)T'(1+b—¢e)'(1+c—e)

I‘(l—e)I‘(d—a) 'd-6)Td—-c) °’

provided that a, b or cis a negativeintegerandd +e=a+b+c+1.

2.3. Kummer's theorem.f We shall prove that

) 2F1|: , b =1 =I‘(1+a—b)1"(l+%a)‘
l+a-b Frad+ae)l'(1+3a-b)

As a preliminary lemma we show that

b ta,3+%a—b; -
(2)'2F1|: 1+a—bz]=(l_z)—a2F[ 1+a-b - )]

* Saalschiitz 1, 2. See also Sheppard 1 and Dougall 1.
1 For the details of the limiting process, see Dougall 1.
1 Kummer 1, p. 53.
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a formula* which is valid inside the loop of the curve
[42] = 1—z2|?
which surrounds the origin. The right-hand side of (2) is analytic

inside this region, and can therefore be expanded in powers of z
when [z | < 3—24/2. Now the right-hand side of (2) is

lg—
2, (Leanp), (A=A

and the coefficient of 2" is
z (?a)r (7+'Za b)r (_4)r (a+2r)n—r
0 r(1+a-—b), (n—n)!
(@), & 3+3a-b)(a+n)(—n)

n! r=0 T!(l'*'a_b)r(%a'*'%)r

_@), p[i+ia—b atn, —n;]
nl +Fo l+a—bta+}

__ (@), (b),
n'(l+a— b),’

by Saalschiitz’s theorem. The formula (2) is therefore proved
when | z| < 3-24/2, and the complete result follows by analytic
continuation.

Now let z— — 1, and we find that

a, b, -1 ta, }+ia-b;
= 9—a
2F‘[ 1+a—-b ]“2 2F‘[ l+a-b

The series on the right can be summed by Gauss’s theorem, and
the required formula is easily obtained.

2.4. Some other sums. Asa preliminary lemma we prove the

formula
a, b, —2/(1—=2 a,c—b;2

(1) (1—2)%,F, ( )]=2F1|: ¢ ]’

* Gauss 1.

validif |z| <1 and R (2) < }.
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The coefficient of 2* on the left is

(@), (b), (=1)(a+7),_, (a), % (D),
I et A S
_ (a)n (C - b n
T onle),
by Vandermonde’s theorem, and the formula is proved. The
argument is valid if | z| <1, and the complete result follows by
analytic continuation.
Now let z— — 1, and we find that

a, b; 1 a, c—b; —1
2F1[ c :|=2a2F1 e :I

The series on the right can be summed by Kummer’s theorem
when either c=1(a+b+1) or a+b=1. We thus obtain the
formulae

V\}v
=
O
=

b

T()T(2+1a+1b)
(2) F[%(a+b+l):| T(1+ia) TG FLb)

a, l—a; §]_ ()T (3c+3)
(3) ‘ZFI ¢ 2]_1—‘(2-04‘2‘:3)77% zc—j.

The formula (2) is due to Gauss.*

2.5. Standard types of generalized hypergeometric series.
When the parameters of the series

®py Ry eevy Opyp; 2
F
p+1-

P1r s Pp

are such that Zp=ZTua+ 1 (which is satisfied by the series ,F, in
Saalschiitz’s theorem) the series will be said to be Saalschiitzian.
If the parameters satisfy the relations
l+oy=py+oy=...=p,+a,,,
the series will be said to be well-poised.
The series will be called nearly-poised if all but one of the pairs
of parameters have the same sum. If
. PrHoa=petog=...=py+ 0y,
* Gauss 1.

t The names ‘Saalschiitzian’, ‘ well-poised’ and ‘nearly-poised’ are due to Whipplo
3, 2 and 5. Whipple applied the term ‘Saalschiitzian’ to terminating series only.
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8o that the breakdown in the equality of sums of pairs of para-
meters occurs with the first pair (regarding 1 as the first denomin-
ator parameter) we shall call the series a nearly-poised series of
the first kind. If, however, the breakdown occurs with the last
pair, so that

Lty =pi+op=...=p, ;+a,,
we shall call the series a nearly-poised series of the second kind.

It will be noticed that the series in Kummer’s theorem is well-
poised, while the series in Gauss’s theorem is nearly-poised.

CHAPTER III

SERIES OF THE TYPE ,F, WITH
UNIT ARGUMENT

3.1. Dixon’s theorem. The theorem of Saalschiitz gives one
case in which the scries 4 #, with unit argument can be summed.
In this paragragh we show that any convergent well-poised
series of this type can be evaluated in terms of gamma functions.
The formula is*

. [a, b c:
(1) 3ﬁ2[ 1+a-—b,l+a—c:|

F+3a)M(l+a—b) T (L+a—e) T (1+}a—b—c)

TT0Ya) T (l+sa-b T (1+da—c T (l+a-b—c)’
and includes as a special case the sum of the cubes of the co-
cfficients in the binomial expansion. It reduces to Kummer’s
theorem when ¢ —— co.

Now, by Gauss’s theorem,
T(l+a+20)T(1+a-b—c) _ 7 b+mn, c+n;
FQ+a-b4+n)T(1+a—c+n) > ' 1+a+2n |

Thus
__L@T®Te) o [“: b, ¢ :l
Pl+a-0T(d+a-c)* % 1+a-b,1+a—c
d I'a+n)T(®+n)I'(c+n)
o' T(+a—b+n)T(1¥a—c+n)
® 'a+n)T'b+n)I(c+n) S [h+n, c+mn;
AT (ifatomT(l4acb-c)® 1[ 1+a+2n]
°2°,‘ [@+n}l'(b+n+m)T (c+n+m)
nom=oR!mIL(l+a+2n+m)C(l+a—-b—c)
_ E % F'a+n)T'(d+p)I'(c+p)
pet amo ! (=) T (1+a+n+p)T'(1+a—-b—c)
_ 3 _ T@le+ple+p) [a, -7 —1]
T aop! T(A+a-b—c)T'(I+a+p)* [ 14a+p

* Dixon 2. The proof given here is due to Watson 3.
1 Morley 1. Sec also Dixon 1, Richmond 1, MacMahon 1.

Mg
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_% _ T@LG+pTe+p)T(1+}a)

poo P! T(l+a-b—c)T'(1+a)l'(1+3a+p)

_ '(@)I'(d)T (¢) 7 b, c;
"T(+a)L(Q+a-b—c)*?

P@r®)Te)l'(14+4a)T 1+;a b—c)

“TAQ¥e)TAfa—b- —o)F'(l+da—b)T(1+La—c)

and the formula is proved. In the analysis* we have used the

theorems of Kummer and Gauss.

3.2. Some transformations of series 3F,. In this paragraph
we prove two fundamental relations, one involving two series
al'y, and the other involving three series of this type. The first
formula ist

(1) F a, b, ¢; - ') (f)T(s) F [e—a,f——a, 8;:|

2 e f P@ s+ (s+¢)¥ 2L s+b,s+c |’
where s=e+f—a—b—c.

The proof proceeds on similar lines to the proof of Dixon’s
theorem, Gauss’s theorem being used in the analysis,

F(a) L) (c) a, b, c;
- rery ® 2[ e, f
S Tat+n)T'(+n)T (c+n)

= 2 LI
n=0 nll(e+n)I’ f+n

_ g T@o+n)T(c+n) e—a, f—a;

amon!T(e+f—a+n)? 1I:e+f—a+n:|
;: §F(b+n)I‘(c+n)I‘(e a+m)I'(f—a+m)

T alvmean mIT(e+f—a+n+m) T (e—a ) (f—a)

_ % Tle—a+mT(f—a+mT (BT () b, ¢;

_m—Om!F(e+f_a+m)F(e_a)F(f—a)2 1[e+f—a+m

g I'e—a+m)L{(f—a+m)T )T (c)(e+f-a—b— ¢+ m)

m— om‘[‘(e+f a—=b+m)T(e+f—a—c+m)T(e—a)T (f—a)

@) Irlre+f-a—b—c) P e—a,f—a, e+f—a—-b—c;

—l‘(e+f—a—b)I‘(e+f—a—c)3 2|: et+f—a—b,e+f—a—c :I

* The justification of the interchange in the order of summation is similar to that
of the next paragraph. t Thomae 1, equation 11.
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and this is the formula stated. The argument requires that the
double series should be absolutely convergent. This is certainly
«o if the real part of e+f—a is sufficiently large. Suppose, for
example, that e+f—-a>2r+ 1, where 7 is an integer. Then*

Pet+f—a+m+n)>T@m+r+1)T(m+r+1)

and the double series may be compared with the product of two
absolutely convergent simple series.
The second fundamental relation ist
9 7| b, ¢; I'(l—a) e)F(f)F(c o)
@) 3| L T T e—6 D=6 T(1+6—a) T (o)
b,b—e+1,b—f+1,
1+b—¢, 14b6—a

x oy

+ a similar expression with b and ¢ interchanged.

To prove this consider the integral

1 i s T (=8)T(a+s)T(b+s)I'(c+s)
%f bt T(e+a)T(f+9)

where the contour is curved, as usual, to separate the increasing
and decreasing sequences of poles. As in the proof of Barnes’
lemma this integral is equal to minus 27: times the sum of the
residues at poles of the integrand on the right of the contour.
Similarly by taking a large semi-circle on the left of the contour
we can prove that the integral is equal to 27 times the sum of the
residues at poles on the left of the contour. Equating these two
results we have

F'@re)r , b, ¢
@IOrQ p[ob

ds,

') T () e, f
_ simgL @ (b—a)I (c—a) a, l+a—e, 1+a—f;
_,,,%,ce Tle—a)l (f—a) 3F2[ l+a—b, 14+a—c

Now multiply these two relations by ¢¥*"¢ and subtract, and
we obtain (2).

* Cf. Hardy 2, p. 500.
t Thomae 1, p. 72. See also Hardy 2, p. 501.
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3.3. Watson's theorem on the sum of a ,F,. Using the
transformation (1) of § 3.2 we have
, c; F'(3a+ 310+ HT(2)T(c+Li—La— 1)
fli(@+b+1),2 I‘(a)I"(c+s—la+~‘;b)I‘(2c+~;—la 1b)
« F [Zc (l+b-a), c+i(l—a- b):l
2c+%(l-—a b), c+i(l—a+b)

The series on the right can be summed by Dixon’s theorem,
and we find that

» ¢;
(1) oFy %-(a+b+l),2c]
_IAOT3+9TG+4a+3b)T(3-3a—}b+o)
FG+iaTG+30)TE-3a+e)T(3—4b+¢)
This formula was given by Watson* in the case when a is a

negative integer, and the more general case was given by Whip-
ple.f When ¢—co, the theorem reduces to §2.4(2).

3.4. Whipple's theorem on the sum of a ,F,. We now prove
that, whena+b=1and e+f=2c+1,

m k[
al' (e) ' ( f)
T 2%l FGa+ie)TRa+if)TE

a result given by Whipple.}
Using the transformation (1) of §3.2, we see that, under the

given conditions,
PAKS b, c; _ FE)l'(f)T () 7 I:e—a,f—a, c;
8 ef 1l T@Tb+c)I(2)> 2 b+c,26:|'
The series on the right can be summed by Watson’s theorem,
and the result follows. When we substitute for  and e and let
¢ — 00, the theorem reduces to §2.4(3).

e T(3b+4f)

3.5. The functions Fp and Fn. The fundamental relations
of §3.2 are only two of many relations obtained in 1879 by
Thomae§ who approached the subject through the calculus of

* Watson 5. See also Hardy 2. T Whipple 1.
1 Whipple 1. § Thomae 1.
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finite differences. In 1923 Whipple* introduced a notation which
provided a clue to the numerous formulae obtained by Thomae.
Let ry, 7y, 7y, 73, 74, 75 be 8ix parameters such that

5
Z 'I‘i = 0.
i=0
With these parameters associate numbers « and 8 such that
Xmn = ’} +r Tt

Brn=147p—17p.
Define functions ¥p and Fn by the equations

y 1 & o e
Fp(0; 4,5)= F. | Fuse Fuso 345’],
Bl ) [ (105) T (Byo) T (ﬁso)a ? Baos Pso
1 o o P
Fn(0; 4,5 F I: 023> %0135 om,:l.
O )= M o) T o T (o) ® B B

The Frn function is derived from the corresponding Fp function
by changing the signs of all the r’s.
By permutation of the suffixes 60Fp’s and 60 F'n’s can be found.

Bio=¢ Bs=1/

oz=e+f—a—b—c=s,

If X5 =0, Ups=b, aze=C,

so that the hypergeometric function occurring in the definition
of Fp(0;4,5)is ,F,[a,b,¢c;e,f], then all the «’s and B’s can be
expressed in terms of a, b, ¢, e and f. They are set out in Table I.

Table I.
Ezxpressions for «’s and 8’8 in terms of a, b, c, e, f
(s=e+f—a—-b-c).

P2

=1l-¢ Hypa =8 ! Bu=2—-8-a Brpo=s+b L B=e
=1-b Hyge=€—C l Bos=2—8—b Ba=l—a+b

=l=ft+a| aps=f—c | Bu=2-s—c Bs=1+b-c

=l—¢ctai xy=€—b | Bpe=2—c¢ fu=l—-a—c+f

=l—a ayps=f-b | Bps=2—f Bus=1l-a—cte | By=1+e—f
=1—f+b | a=a w=3+a Bio=8+c Bso=f
=l—e+b| ay=¢—a | B=1l4+a-b Ba=1l+c—a

=l=fte| ayp=f-c ﬁn—l+a—c Byz=1-b+ec

=l=edc| o=0b Bu=1l-b—c+f | Byuy=l—a—-b+f

=l-s U345 =C iﬁl..—l"b—"'*‘e I Bis=l-a—-b+e | By=l—e+f

Bau=1+b+c~f
Bia=1l+a+c—f
Bu=l+et+bdb—f

Bsi=1+b+c—e
Bize=l+at+ec—~e
Bis=1+a+b—e

* Whipple 1. Cf. Barnes 2.
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In Tables IT A and II B the parameters of the Fp’s and Fn'’s are
given in terms of a, b, ¢, ¢, f.

Table I1a.
1 a o T T
Ipp (u; v W)=*~»~ - F |: twr? Crwy vwz’:ll
’ Loy T (Bo) T (Buu)® 2 Bows Buou
' v, w Numerator parameters Denominator parameters
4,5 @, b, e e, f
Fp (0) 2,3 8, e—a, f—a 8+b, s+c
1,4 a, e-b, e—c¢ e, st+a
Fp (1) 0,2 l—e+b, 1—f+b, 1-a l14+b6—a, 2—s—a
[F f?)ﬂnd 0,4 1—8, ]—f+b, l—f+c l+b+c—f, 2—s—a
If’p(3) are 2,3 e—a, f—a, l—a I—a+bd, l—a+c
ofthistype] | 204 b, e—a, 1—f+b | l+b+e—f, lib-a
ype 4, 5 1-s, b, c 1+b+e—f, 14b+c—e
Fp(4) 0,1 1—¢+4a, 1-0b, 1—¢ 2—e¢, 1+4f-b—c
) L 005 | 1—eta, 1—etb, 1—ete 2_¢, 1-e+f
[t}?‘({;) 1, 2 f-e, 1-c¢, 8 14f—a—e¢, 14+f—b—
is type] 1.5 | 1=e+a, f—¢, f=b 1%f~e, 14f=b—
Table Il B.
1 o o Oyrars
Fn (u; v, w) —_ - e 3F2[ uyz) UL ua:y:] .
F(auvw)F(Bm))F(:Buw) ﬁ’qu Buw
v, w Numerator parameters E Denominator parameters
45 | 1-a, 1=b  l-c | 2-¢ 2_f
Fn (0) 2,3 l—s, l—e+a, l—f+a ' 2-s—b, 2-3-¢
1, 4 l—a, l—e+b, 1—etc 2—e, 2—-s—a
. oz | T fob @ | lvach era
Fl'nz(” d 0, 4 8, f—b, f—¢c | 1—-b—c+f, s+a
[ani)an 2, 3 l-e+a, 1—f+a, a ' l+a-0b, l+a—c
f"l(.) are | o’ 4 1—=b, l—e+a, f—b 1-b—c+f, l+a—b
ofthistype] | o’ 5 s, 1-b,  l1—c¢ l—b—c+f, 1—b—cte
o o1 | e-a b, c | e 1—f+b+e
[F;l;?g)()‘li;of 0,5 e—a, e—b, e—c¢ e, l+e—f
this typo) 1, 2 1-f+e, <, 1—¢ 1-f+a+c, 1—f+b+c
S WP 1, 5 e=a, l1—f+e¢, 1—f+b l+ve—f, I—f+b+c

In these tables only representative forms are given. The per-
mutation of the indices 1, 2, 3 corresponds with the permutation
of a, b, ¢, whilst the permutation of 4 and 5 corresponds with the
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permutation of e, f. Thus Fp (2) and Fp (3) are of the same type
as Fp(1) in the sense that they can be derived from it by the
interchange of b or ¢ with a. For example, by comparison with
Fp (1; 0, 2) it is seen that Fp (2; 0, 1) has the parameters
l-e+a,1—f+a,1-b;1+a—b, 2—5-b.

The condition that the series Fp (u; v, w) may be convergent is
B(xg,,)>0. It will be noticed that I'(«,,,) occurs in the de-
nominator in the definition of the F'p function. The condition for
Fn (u; v, w) to be convergent is R(«,,,,) > 0.

3.6. Transformations of series 3F, with unit argument.
We now turn to the fundamental relations of § 3.2. The formula (1)
of that paragraph can be written, in our new notation,

(1) Fp(0;4,5)=Fp(0;2,3).

By interchanging r, and r; we find that

Fp(0;1,5)=Fp(0;2,3),

wvw

and thus

(2) Fp(0;4,5)=Fp(0;1,5).

Accordingly all the permutations of the indices 1 to 5 are
legitimate, and we see that all the ten expressions Fp (0;v,w) are
equal* and may be conveniently denoted by Fp(0). Similar
results are true for the other Fp’s and the Fn’s. Thus the 60 series
Fp may be divided into six groups of 10, the members of any one
group being allequal. A similar remark applies to the 60 series Fn.

3.7. Three-term relations. Now turn to the relation (2) of
§3.2. In our present notation this can be written

( 1 ) _S_l_t_l 77623 _ Fn (2)
7L (%ge3) T (ot330) T (oty35) T (etg45)

_ Fn(3)
I (otya0) T (0105) T (295)
Changing the signs of the »’s, we obtain
(2) _S_l_n ‘”B32 FP (2)
71" (ay45) I (at005) I (2004} T' (1)
_ . Fp3
I (otg35) T (%034} T (%15)
* Barnes 2, Hardy 2, Whipple 1.

Fp(0)=

Fr(0)=
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By combining three equations like (1) it is found* that

sinmfy; 0
) F(“om)r “013)1-‘(“023) Fp P
sin 50 F
+F(°‘124)F(°‘134)F(°‘234) )
sm1r)804 - Fp(5)=0,

F (0‘125) )T (oy35) T (oy35) T (“235)
and, changing the signs of the r’s,

sinnf,,
4 NE————_ Y Fn (0
) F(“aqs F(“zas)r(“ms) n(0) 8
) sin 7By 4
+F(°‘035)F(°‘025)F(%15) Fr{4)
sinaa

N I (ot034) T' (etg24) T' (0tp14)
Now eliminate Fzn (2) from the relation of the type (1) con-
necting Fp(5), Fn(0), Fn(2) and the relation of the type (2)
connecting Fx (2), Fp (0), Fp(5). It follows thaty

(5) 1 o Fp
T (ct109) T (130) I (2a30) T (0tag0) I' (2140} T (x340)
sinm B, Fn (0) X Fos
771‘ (a123) F (a124) P (a134) P (“234) 0 p (0)7
where

w3 K o= 8IN 7oty 45 81N 7olya5 SIN Totgys + SIN 7095 81N 77849 SIN 7 S50,
or, in terms of the r’s,

5
473Ky= X cosw(rg+ 2r,)—cos 3mr,.

n=1
The analogue of (5) is
(6) o s Fn (0)__‘ e
[ (otg05) T' (tg45) T (0305) I (oy35) T (0xg35) T (2y25)
sin 785, F'p (0) — K, Fn(5).

ﬂ'F (%0as) T (cgas) I (g9s) T (0‘015)
All the three-term relations between the 120 hypergeometric
series are typified by the equations (1) to (6).

* Cf. Thomae 1, equation 46, Hardy 2, equation 7.1.
t Cf. Thomae 1, equation 53. The discussion given here is due to Whipple 1.
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38. An example. As an example of the use of the tables
consider the formula*

a, b, c; LT (e—a=b a, b, f—c;
) 3F2|: e f]=i‘§e)—a()F(e-b;3F2[a+b{e+1,f]
FETl(f)iT{@a+b—e)l'(e+f-a-b—c)
L@ )T (f-c)T(e+f—-a—b)
e—a,e~b,e+f—a—b—c¢;
xoFy e—a—b+1, ef+f—a—b
By the use of Tables IT4 and I8 we identify the series as
multiples of Fp (0; 4 5) Fnr(5,0,3)and Fn(3;0,5). Hence, after

division by I (s) I (¢) I" (f), the formula may be written (with the
help of Table I) in the form

_ T (2g3s)
Fp(0; 4, 5)=——" 05) . Fn(5;0,3
p( ) Sln‘lTB53 F(°¢234)F(°‘134)F(°‘123) ( )

4T - I" (2ga5)
sin w5 T (x145) T (ta5) T (oty05)

This is equivalent to §3.7 (1) with the indices 2 and 5 inter-
changed.

The formula (1) has an interesting connection with Saalschiitz’s
theorem. Ife+ f=a+b+c+ 1, the first series on the right reduces
to a ¥, which can be summed by Gauss’s theorem, and we ob-
taint

@ o[

Fn(3;0,5).

a, b etf-a—b—1;

e, f

_T{)I'(f)I'(e—a—b) I'(f-a—b)

" Te-a)T(e-b)T(f-a)I'(f-b)

1 T'e)T(f)
NI Y C@T(®)T(e+f—a—b)
e—a,e—0b, 1;
* 3F2|:e—a—b+ Let+f—a—b]

If a or b is a negative integer, the second term on the right
vanighes, and we obtain Saalschiitz’s theorem. Thus (2) gives the
form which Saalschiitz’s theorem assumes when we remove the

* Hardy 2, equation 5.2.
1 Saalschiitz 2. See also Hardy 2.
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restriction that one of the numerator parameters must be a
negative integer.

3.9. Terminating series. When the parameter c is a negative
integer, say —m, the series ,F,[a,b,¢;¢,f] terminates. In this
case the series can be written in the reverse order, and we find
that, when oy =c= —m,

(1) T (0t12) T (0t15) Fp (0) = (= 1)™ I (atg03) T (0t043) £ (3).

This equation is a degenerate form of §3.7 (1).

There are 18 terminating series altogether. Three of these are
forms of Fp (0), namely Fp(0;4,5), Fp(0;3,5) and Fp(0;3,4).
When reversed these three give Fn(3,1,2), Fn(4;1,2) and
Fn (5;1,2). The relations between the 18 series are shown by the
equations*

T (0tg24) T (ot34) T (22y05) Fp (0)

=T (otgz5) I (ctg24) T (%35) Fip (1)

= I" (%913) T (2g14) T (2tgy5) F'p (2)

=(— 1) T (ot304) T (0tg24) T (0tg33) F'.(3)

= (= 1) T (0154) T (otg24) T (02gy4) F'm {4)

=(—1)"T (ety95) I" (gas) T" (2g15) ' (5).

The other series such as ¥» (0) do not give any specially simple
relations.

* The relation between Fp(0; 4, 5) and Fp (1; 4, 5) was established by Shep-
pard 1. For the other relations see Whipple 1.

CHAPTER 1V

METHODS OF OBTAINING TRANSFORMATIONS
OF HYPERGEOMETRIC SERIES; (1) BY
SUMMING SERIES OF LOWER ORDER

4.1. Introductory remarks. We now consider various me-
thods by which transformations of generalized hypergeometric
series have been obtained. The argument z will usually be equal
to unity and will therefore be omitted, but later we shall derive
some transformations of series for which z= — 1.

In §3.1 we have shown how Dixon’s theorem can be obtained
from Kummer’s theorem by using Gauss’s theorem in the analysis.
Whipple* extended this method to obtain transformations of
both well-poised and nearly-poised series. Instead of following
Whipple’s method we use a methodt which gives results for
series of higher order when the series terminate. In this chapter
we shall be concerned only with terminating series except in the
case of some deductions in §4.4 and §4.6.

4.2. A method of obtaining transformations. Suppose we
have the formula

(1) % _(El_)): ((12),. ((l3),.~( - n)r (Kl + n)r(ul—l) (Kz + n)r(;_tz—l) (ll)vlr ( - l)rcr

r=0 r! (Bl)r(BZ)r (ll+n)r(v1—1) (Kl)p.u- (K2);ur
— _(pl)n (P2)n (Pa)n (ll)'n b
(01)n(02)n  (K1)n (K2)n”

giving the sum of a certain hypergeometric series. Then

F| P> Pe> P35 Grs B2, =M b _ g (al)n(a2)n(—nq’_)n('cl)n('c2£t

01,03, P1> P2 P =0 NP (P2 (Po)r ()n
x g (al)r (“2)r (“3)r ( - 71/),. (Kl + n)r(m—-l) ("2 + n)r(p.z-—l) (ll)vlr ( - l)r cr
r=0 7! (ﬁl)r (Bz)r (ll + n)r(vl—l) (Kl);ur (Kz)pzr

— g E (a'l)n (as), (— m), (Kl + 17 )y (K2 + f"zr)n—r(“l)r (“2)7' (ag)pC"
r=0n=r (=) (P1)n (Po)n (P3)n (L + 17 )71 (B1)r (Bo)r
* Whipple 2 and 5. 1 Bailey 3.
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Putting n=7+1¢, we get
'2': er (@1)r 1t (@o)r g (= 1)y (1 + pa Ty (13 + paa7)y (g), (0ta), (25), €

r=0{_0 rit! (pl)r+l(p2 r+1(P‘; rit (G + 22 7) (B, (Ba), -
Thus, if (1) is true, we have

(2) F PLs P25 P3> @1, Ay, —M b
01,02, P1,P2> P
- w (@) (ay) (= m)r (“1) (x4), (23),C"
r—0  THP (22, (P3)r (B (Ba):
o p|ratmn K2+;.L2'I", Gy +7, Gy +7, —m+r;:|
Ltwvr. po+r, potr, py+r |

In these formulae there may be any number of the quantities
o, B,p.0,x,1,a, p. The numbers u and vmay be positive or negative
integers provided that (a)_, is replaced by (- 1)*/(1-a),

The series on the left of (1) can be expressed as a generalized
hypergeometric series. If we can sum the series on the right of (2)
in terms of gamma functions, the right-hand side of (2)can also be
expressed as a generalized hypergeometric series. Thus, from a
known sum of a generalized hypergeometric series we have a
method of deducing transformations of such series.*

4.3. Transformations of well-poised series. In our first
application of the method we use Saalschiitz’s theorem in the
form

F |:1+a—b—c,a+n, —n;:lz (6).(C)n
l1+a—b,14+a—c (I1+a-b),(1+a—c),”

We thus obtain

a b c Ay, Oy, ney &, —M,;
l . F 3 E) ) 1> 2o » Wgo 3
( ) ard S+3|: l+a_b: l+a'_c» P15 D2 ""ps’ps+l
— g _4)r(1+a_b_c)r(ilfa)r(%a’-i_%)r(a’l)r (az)r (as)r( m)
r=0 r!(l+a_b)r(l+a_c)r(p1)r(p2) (ps+1)r
F [a+2r, @ +7, G+ 7, oy Gt T, —m+r;:|
$+2% s+1 . *
PrL+7, PotTy eory Pot7, P+ 7

* The method given by Bailey 3 is slightly more general than that given here.
The number A of that paper is here taken equal to unity, the case which gives the
most intcresting formulae.

OF HYPERGEOMETRIC SERIES 25

Taking s=1 and choosing the parameters so that Dixon’s
theorem sums the series ,F, on the right, we find that

a, b c, d, —m;
(2) 5F4[ l+a—b,1+a—c 1+a—-d, 1+a+m

_(1+a),(1+3a-d), l1+a—-b—c, }a, d, ]
T(+ia),(1+a-d),* L 1+a-b, 1+a—c,d—Lta—m

The series on the right of (2) is Saalschiitzian and so can be
summed when it reduces to a ,F,. Taking 6=1+ }a we obtain
the formula*

a, 1+3a, ¢, d, —m;
ta, l+a—-c, l+a—d, 1+a+m
_(1+a),(1+a—c—d),
(14+a—-c),(1+a-d),

Now choose the parameters in (1) so that the series on the right

can be summed by (3), and we obtain the transformation

F a’l+ a, ’ ¢, d) e, —m;
3a, l+a-b1+a—-c,1+a—-d,1+a—el+a+m
_(1+a),(1+a-d-e), l+a—b—c,d, e, —m;
T (l+a-d),(1+a—e),* }|L1+a—b, 1+a—c,d+e—a—m

(3) sF,

a result due to Whipple.f It transforms a terminating well-
poised ,Fg¢ into a Saalschiitzian ,F;, and conversely transforms
any terminating Saalschiitzian ,F into a well-poised ,F,. When
e=}a it reduces to (2).

In the particular case when

1+2a=b+c+d+e—m,

the series on the right of (4) reduces to a ;. F', which can be summed
by Saalschiitz’s theorem and we obtain Dougall’s theorem,}

* Dougall 1, equation 9; Hardy 2, equation 3.1; Whipple 2, equation 5.2. The
formula is true, with slight modifications when m is not a positive integer. For the
more general case see § 4.4 (1).

+ Whipple 2. See also Whipple 4. The formuls is also true with slight modi-
fications when 1+a -b -¢ is a negative integer and m is not a positive integer.
See §4.4.

1 Dougall 1, equation 6. See also Hardy 2. The formula is fundamental in
Hardy’s paper.
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namely
) F a,l-il-éa, b, c, d, e, —m;
ia, l+a-b,1+a—c,1+a—d,1+a—e l+a+m
_(1+a), (l_-|—»c_z__—_b:~c) (1+a-b—d),(l1+a-c—-d),

T (I+a-b)(l+a—c),(I+a—d),1+a—-b-c—d),’
provided that 1+2e¢=b+c+d+e—m.

This formula sums a terminating well-poised ,Fg, with the
special form of the second parameter, when the sum of the
denominator parameters exceeds the sum of the numerator
parameters by two.

Dougall’s theorem cannot be used on the right of (1) for general
values of . We therefore apply the method of §4.2 to Dougall’s
theorem itself, which can be written in the form

7 k,1+ik, k+b-ak+c—a,k+d—a, a+n, -n; ]
8 1k, l+a-b1+a—-c,1+a—d, 1+k—-a—n,1+k+n
(14+k), (5)n(¢)n (@)

T @k, +a=b),(l+a—c),(1+a—d),’
where k= 1+ 2¢ —b—c—d. This is equivalent to

(= 1)y (k), (14 3k), (k+b—a) (k+c—a), (k+d—a),
(a+n) {a=k+n)_.(— n),
o (1B, (1+a-b),(1+a—c),(l+a—d),(1+k+n),

(1+ &), (8), (€)r (@)
~(a—k),(1+a=b),(T+a—c), (I +a—d),’

and so, by the process of § 4.2, we deduce that

Z

r=

6 r.[® b, c, d, Ayy Aoy vevy Bg, —M;
(6) s158sra 1+a—b, 1+a—c, L+a—d, Py, Pgs -+-» Pg» Pes1
(k), (k+b—a),(k+c—a) (k+d—a).(}a) (3 +1a),
_n (@), - (@), (=m),
_r-—-()r!(%k)r('%'i'%k)r(l+a’_b)r(l+a’_c)r(l+a—d)r .
(P1); e (Dgsr)r
F a+2r, a-k, a+r, ..., 6,47, —m+r;:|
X 43 st 14 k420, pr+7, coey Do+, Do +7 1
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In this formula we can choose the parameters so that Dougall’s
theorem sums the series on the right, and we obtain the trans-
formation*

1) F a, 1+ia, b, c, d, e,
-8 la, 1+a-b,+a—c l+a—d, 1+a—e,
£ g, —m;

l+a—f, 14+a—g, 1+a+m
=(_1j_a)m(1+k_e)m(l+k_f)m(l+k—g)m
(l+k)m(l+a_e)m(l+a’_f)m(l+a_g)m
« . F k, 143k, k+b—a, k+c—a, k+d—a, e,
578 3k, 14a-b 14+a—c, 1+a—d, 1+k—e,
f: g’ -m;
1+k—f, 14+k—g, 1+k+m]’

where k=1 + 2a — b — ¢ —d, and the parameters are subject to the
restriction that

bt+ct+d+e+f+g—m=2+3a.

This formula, which is one of the most general known trans-
formations of terminating well-poised series, connects two well-
poised series, either of which is of general type except for the
second parameter, and the restriction that the sum of the de-
nominator parameters exceeds the sum of the numerator para-
meters by two.

44. Some deductions from the formulae of § 4.3. Dougall’s
theorem includes as limiting cases some of the previous results.
For example, if we replace d,e by 1+a—d, 1+a~—e, and then let
a—o0, we obtain Saalschiitz’s theorem. If we substitute for &
and let m - o0 we obtaint

a, 1+ia, ¢, d, €;
(1) ¥, la, l1+a—c, 1+a—d, l+a—e:|
_T'l+a—c)T(1+a-d)I'(1+a—-e)T' (1 +a—c—d—e)
"T(+a)T(l+a-d-e)T'(1+a-c~e) (1 +a—c—d)’

* Bailey 3.
t The justification of the passage to the limit is not particularly difficult. The
details are given by Dougall 1, § 8.
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which generalizes §4.3(3). The last formula reduces to Dixon’s
theorem when e=}a.

Similarly, if we let m — oo in Whipple’s transformation § 4.3 (4),
we derive the formula*

@) F a, 1+ 1a, b, c, d, e; —l]
84 5

ta, l14+a-b,1+a—c l+a—-d,1+a—e

_TF(l+e-d)T'(1+a—e) l+a—-b—c, d, e;
TTQ+a)(l+a—-d—e)* % 1+a—-b, 14+a—c

which expresses a well-poised ¢ F; with argument — 1 in terms of
a 4F,, or conversely expresses any ,F, with unit argument in
terms of a well-poised (5.

From (2), taking b+ ¢=1+a, we obtain

a, 1+1a, d, e; —1
@) o[ ]

la, 1+a—-d, 1+a—e
_T'(1+a-d)T(1+a—e)
"T(l+a)T(Q+a—-d—e)’

a result which can also be derived from (1) by making
¢—>—o00.

Dougall’s theorem isitself an obvious particular case of § 4.3 (7),
obtained by taking & =a — b, when the series on the right reduces
to unity.

Now let m—o0 in §4.3(7), after replacing £ and & by their
values in terms of the other parameters. In doing this some care
is necessary since, when m is large, the terms near both ends of
the series on the right are important while the terms in the middle
become negligible. We therefore suppose for convenience that m
is odd, divide the series on the right into two parts of } (m+1)
terms each, and reverse the terms of the second half. There is
then no great difficulty in justifying the limiting process, and we
obtain the formulat

* Whipple 2, equation 6.3.
1 Sce Bailey 5 where the details are given. Another method of obtaining (4) is
given in Chapter VI.
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&), F a,t+1e, o a, e, b g;
e ta, l1+a—c,1+a—d,1+a—e 1+a—f 1+a—g

_T+a-¢l'Q+a-f)T (1+a-g)T'(1+a-e—f—g)

"T'l+e)TQ+a—f-g)T (1+a—g—e)'(L+a—e—f)
X4F3|:l+a—c—d, e, [, 93 :I

1+a—c, 1+a—d, e+f+g—a

I‘(l+a P(l+a-d)T'(1+a-e)T'(1+a-f)T'(1+a—g)
F'l+a)T'(1+a—-c—-d)L'(e)T(f)I'(g)
3 Fe+f+g9—1—-a)[(2+2a—c—d—e—f—g)
Fr2+2a—c—e—f—g)I'(2+2a—d—e—f—g)
y F[2+2a—c—d—e—f—g,l+a—_f—g,l+a—g—e,l+a—e—f;
24+a—e—f—g,24+2a—c—e—f—g,2+2a—d—e—f—g |

This relation is true if
R2+2a—c—-d—e—f—g)>0.

It is a generalization of Whipple’s transformation §4.3(4). It
will be noticed that, when one of ¢, f, g, 1 + @ —c—d is a negative
integer —n, the second term on the right vanishes owing to the
presence of I' (—#) in the denominator. We thus see that

5 F a, | <+ %‘a, C, d, e, f’ g;

(5) 2 ta, 1+a—c,1+a—d, 14+a—-e¢, 1+a—-f 1+a—g
_I'l+a—e)T'(1+a-f)T(1+a—-g)T(1+a—e—-f-g)
—P(l+a)I‘(l+a—f—g)I‘(l+a—g-—e)I‘(l+a—e—f)

% oF, l+a—c— e, f, g
4 1+a— c,1+a d,et+f+g—a

provided only that the series on the right terminates and the
series on the left converges. This is the form in which Whipple*
stated his theorem.

Again, if in §4.3(7) we substitute for g and let f > 00, or sub-
stitute for 4 and let ¢ —>oc0, we obtain relations between well-
poised ,F,. Such relations will be discussed in Chapter VII.

* Whipple 2, equation 7.7. See also Whipple 4.
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4.5. Transformations of nearly-poised series of the second
kind. In §4.3(1) take s=0 and sum the series on the right by
Vandermonde’s theorem. We thus obtain the formula

a, b, e, —m;
(1) 4F3[ 14a-b, 1+a—c, w]

_(w—a)

m

(¢)

7 l+a—-w, {a, 1 (1+a), 1+a—-b—c, —m;

554 1 La b1 +a—c, (1 +a—~w—-m), 1+ {a-w—m)]’
which is due to Whipple,* and transforms a nearly-poised ,F;
into a Saalschiitzian  #,.

If the series on the right of (1) reduces to a , F, it can be summed

by Saalschiitz’s theorem. We thus derive the following special
cases:

(o, 1+3a, —m)7]_(w—a-1-m)(w-a),_,
(1.1) 3F2_ la, w :I— (w),, ' !
1.2 F _a, b, —1m; _(a_2b)m(l+%a’_b)m(_é)m
(1.2) 55, 1+a—b,14+26—m | (14a-0b),( a—"b),(—2b),,’
L3y Fl® l1+3a, b, —m; | _ (a—2b),,(=b)y,
(1.3) oF la, 1+a—-b,1+2b—m]| (Y+a-b),(—-2b),’
[a, 1+3a, b, —m;
(14) ,Fy ta, l1+a-b,2+2b-m

_(a—20-1),(3+a=b),(—=b=1),
T (Tta=b),(e—b=—1)n(=2-1),

Of these formulae (1.1) is the only one that we can use on the
right of §4.3 (1), and in this case we derive the formulaf

. a, 1+ 1}a, b, c, —m;
(2) sF4 la, l4+a-b,1+a-c, w

_(30—01— 1 _m) (w_a)m—l
B (@)

P 1+3a, 3+%a, 1+a-b—c, l+a—w, —m;
*st4| 1 Bta—w—m), 1+} (a—w—m), L +a—b, 1 +a—c]’

* Whipple 5. t Bailey 3, equation 8.5,
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which expresses a nearly-poised ;F, in terms of a Saalschiitzian
sFa-

We now turn to § 4.3 (6) and choose the parameters so that the
series on the right can be summed by Saalschiitz’s theorem, (1.3),
(1.2) or (1.4). We thus derive the four following transformations*

a b c d —m;
3 F b b ’ H 3

(3 ¥, l1+a-b1+a—c, 1+a—-d, w

_(1+2k—a),(1+k—a),
(1+ k), (1 +2k— 2a),,

< F, k,1+ 3}k, }a, t+ida, k+b—-a,k+c—a,k+d—a,
1k, 1+k~3a,3+k~1a,1+a~b,1+a~c,1+a—d,
l+a—w, —m;
k—at+w, l+k+m
where k=1+2a—b—c—d, w=2a-2k—m;
(4) F, a, 1+%a, b, ¢, d, —m;

ta, l+a-b,1+a—-c¢, 1+a—-d, w
_ (2k—a),, (k—a),
_(l+k)m(2k—2a)m
T [k, 1+3k, dt+3%a, 1+la, k+b—a,k+c—a, k+d—a,
st 8 3k, ‘d+k—}a, k-}a,1+a—b, l+a—c, 1+a—d,
l+a—w, —m;
k—a+w, 1+4k+m
where w=1+2a — 2k —m, and k is the same as before;
a, b ¢ d —m;
5 F 3 H 3 3
) s “[ l+a-b,1+a—c, 1+a—d, w
=(k—-a)m(l+2k—a)m_1(2k—a+2m)
(1+%), (2k—2a),
<. F [k,l+%k, i1+1ia, ia, k+b—a,k+c—a, k+d—a,
578 ik, 3+k—3o, 1 +k—}a,14a—b,1+a—¢, 14+a—d,
l+a—w, —m;
k—a+w, 1+k+m|’

where w=142a — 2k —m;

* Bailey 8, equations 8.1-8.4.
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a, 1+%a, b ¢, d, -m
(6) Fs la, l+a—b,14+a—c, 1+a—d, w :|
(k"' )m (2k a)m 1 (21" a+ 2m~ 1)

(1+4&),, (2k—2a— l)m
Tk 1+1k d+ie, l1+da,k+b—a, k+c—a, k+d—a,
xglfg[ Ak, Y+k-4a,k—%a, 1+a-b, 1+a—-c, 1+a—d,
l+a—uw, —m;
k—a+w, 1+k+m
where w=2+2a -2k —m.

The last four formulae all express nearly-poised series in terms
of well-poised series. In (3) and (4) the nearly-poised series are
Saalschiitzian, and in (5) and (6) they are such that the sum of the
denominator parameters exceeds that of the numerator para-
meters by two.

4.6. Transformations of nearly-poised series of the first
kind. A terminating series can evidently have its terms written
in the reverse order. A nearly-poised series of the second kind then
becomes a similar series of the first kind,* while a Saalschiitzian
series or a well-poised series remains of the same type. Thus from
the formulae of the last paragraph we can derive transformations
of nearly-poised series of the first kind. The results obtained from
§4.5(1) and (2) aref

a, b, ¢ —m7|_(K)pk—b—0),
(1) 4F[ k=b, k—c, k+m; (K b) (k—<),,
< F, dk—3a, t+3x—43a, b, ¢, —m;

k—a, tx, 1+3xk, b+c—k+1—m

a, 1+4x, b, ¢, —m;
T, l4wx—b 1+x—c, 1+x+m

(1+K)m(l+’c_b c)m

T (Lt k- )m(l + K- c)m

%, —%a, t+3c—13a, b, ¢, — :I
1+K a, 3, 1 +3k, b+c—k—m

(2) 5F4

* Whipple 5, § 6.
1 (1) is due to Whipple 5, and (2) to Bailey 3. For the results derived from § 4.5,

{3)-(6), sce Bailey 3.
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1t should be noticed that if, in (1), we let m tend to infinity
through integral values, we obtain the formula*

a, b, ¢, —1
O A ]

k=0T (x—¢) F[b ¢, 3(k—a), 1(1+«k— a);:l
T T (k—-b=c)? K — a,11<,~;(r<+l) ’

which transforms a non-terminating nearly-poised ,F, with
argument — 1. The series on the right is not Saalschiitzian.

When ¢ =}« in (3), the relation expresses any ,F, with argu-
ment — 1 in terms of a 3 F,. This 3 F, can be transformed by the
formulae of Chapter III, and so a large number of series can be
found allied to a given o F, with argument — 1. Such series have
been considered in detail by Whipple.t

4.7. The case when a is a negative integer. In certain
applications of nearly-poised series of the second kind the para-
meter a is a negative integer. Returning to § 4.3 it is evident that
formula (1) of that paragraph is still true if a is a negative integer
—n, and —m is not necessarily a negative integer. Thus, taking
s =0 and using Vandermonde’s theorem, we derive the formula*

¢, d; (w—d),
(1) oFy |: l—n b, 1-n—c, w:l_ 7(712)7)7"
7 d.l1-n—-b-c, —in, }—in, 1—n—w;
5Tl 1, l-n—c,{(1+d—w—n), 1+3({d—w-n)|
This appears to be the most interesting formula of its type.
* Whipple 5.
t Whipple 8.

+ Whipple 5, equation 6.6.



CHAPTER V

METHODS OF OBTAINING TRANSFORMATIONS
OF HYPERGEOMETRIC SERIES; (2) BY
DOUGALL’S METHOD AND CARLSON’S

THEOREM

51. An elementary proof of Dougall's theorem. When
transformations of terminating series have been discovered, they
are usually capable of being proved in a very simple way. We
begin by proving Dougall’s theorem in a manner substantially
equivalent to his original proof.*

Writing fin place of —m, the theorem becomes

a, 1+ }a, b, c, d, e, I
ta, 1+a-b,1+a—c, l+a—d, 1+a—e, l+a—f

_ T'(l+a-b)T(Q+a—)T(1+a—d)T(1+a—f)

TTAye)T(lta-b—¢)T(1+a-b—-d)T (1 +a-c—d)

Frl+a-b—c—d)T(1+a-b—c—f)T'(1+a-b—d-f)

9 ) Fl+a—c—d—f)

FQ+e—-b—f)T(1+a-c=f)T(1+a—d—-f)

'l+a—b—c—d—f)
provided that 1 +2a=b+c+d+e+f, and f is a negative integer.

Suppose the theorem is true when —f=0, 1,2, ..., m—1. We
shall prove it true when f= —m, and then the result will follow by
induction.

Now, by symmetry, the result is true if —c or —d has one of the
values 0, 1, 2, ..., m—1, that is if —corb+c+e+f—1—2a has
one of these values. It is therefore true in particular when f= —m
and ¢ has one of 2m values. But, when f= —m, we can multiply
by (1+a—¢),(l+a—b—c—d), and the formula states the
equality of two polynomials of degree 2m in c¢. Thus, if we can
prove the equality for one more value of ¢, the result will be proved.
We choose the value ¢ =a +m which is a pole of the last term only
of the series, and the result is easily verified.

* Dougall 1. See also Hardy 2.

¥
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52. An elementary proof of a transformation of well-
poised series ¢Fg. Similarly we can prove the more general
relation §4.3(7) connecting two well-poised (F;. This relation
can be written

a, l+%a, b, C, d, e’
ofs
ta, l+a-b,1+a—c,1+a—d, 1+a—e,

S g, h; :I

1+a—f, 1+a—g, 1+a—h

- Fl+e—e)lQ+a—fHI'A+a—g)T (1 +a—h)
Fl+a)TOQ+a—e—fiTQ+a—e—g)T(1+a—e—h)

'l+a—f—g—h)I'Q+a—e—g—Rh)I'(1+a—e—f-h)
- Fl+a—e-f-g)
F'l+a—f—g)l'Q+a—f-hBT'(1+a—g-h)
F'l+a—e—f—g—~h)

k,1+%k, k+b—a,k+c—a, k+d—a, e,

F :
Xols +k, 14+a—b, 1+a—c, 1+a—d, 1+k—e,
S g k;
V4k—f, l4k—g, L+k—h
where k=1+2a—b—c—d,

b+ct+d+e+f+g+h=2+3a,

and % is a negative integer.

Suppose this result is true when — A has any one of the values
0,1, 2, ..., m—1. Then, by symmetry, it is true when —e, —for
—g has one of these values. We proceed to prove that the result is
true when & = — m, and then the theorem will follow by induction.

If h= —m, the formula can be written

(l) (l+k)m(1+a’_e)m(l+a—f)m(l+k_e_f)m

<. F I:a, 1+ia, b, c, d, e,
9" 8 “Ya, l4+a—-b,14a—c, 1+a—d, 1+a—e,

£, l+a+k—e—f+m, —m;
l1+a--f, e+f—k—m, l+a+m
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=(1+a)m(l+k_e)m(l+k—f)m(l+u_6_f)m

Y F 1+ 3k k+b—a, k+c—a, k+d—a, e,
88 1k, l14a—b,1+a—c, 1+a—d, 1 +k—e,

£ l+a+k—e—f+m. -—-m;
1+k—f, e+f—a—m, 1+k+m

where k=1+2¢—b—c—d.

By hypothesis this is true when for 1 +a+k—e—f+m(=g)
has one of the values 0, — 1, —2, ..., —m + L, that is for 2m values
of f.

But the expressions on each side of (1) are polynomials in f of
degree 2m. It will therefore be sufficient if these expressions are
equal for one other value of f to establish the fact that (1) is an
identity. We choose the value f =k +m, and then we require

F a, l+ %ay bs ¢, d) f) —m;
e la, l+a-b,1+a-c l+ta—d, 1+a—f 1+a+m
_(1+q)m(k+b—a),,,(/c+c—a),,,(k+d—a)l,_,

- (k - a’)m ( l+a- b)m (T + @ ;-é)m (~i~+ a _d)m )

This is true by Dougall’s theorem, and so the proof is complete.

5.3. Carlson's theorem. When a transformation is known to
be true for terminating series, it can sometimes be shown to be
true also (with slight modifications) for non-terminating series,
by using a theorem due to Carlson.* To prove this theorem we
require some preliminary lemmas.

Lemmad. Iff(z)isreqularin aregion D and on its boundary C
(a simple closed curve), and if | f(z) | S Mon C, then | f(z)| < M atall
interior points of D.

We first notice that if ¢ () is continuous, ¢ (z) < £, and
' ["$@ydask
. - e ; 8
b—a_[ud) (z)da

* Carlson1. See also Wigert 1, Riesz 1 and Hardy 1. The proof given here follows
that given by Titchmarsh, Theory of functions (1932), Chapter V.,
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then ¢ () =k. For if ¢ (£) <k, there is an interval (£ -8, £+8) in
which ¢ (x) <% — e (say), and

rqﬁ(x)dxs 28 (k—e)+(b—a—28)k=(b—a)k— 28¢,

which contradicts the hypotheses.

Now suppose that, at an interior point z, of D, |f(z)| has a
value at least equal to its value anywhere else. Let I' be a circle
centre 2z, lying entirely in D. Then

(1) Fe =< [ L% q..

T 2mfpz—2,

Putting z —zy=re®, f(2){f (z,) = pe'?, so that p and ¢ are func-
tions of 8, we may write (1) as

2 RN e
& — 1
(2) 1_277.[0 peid df.

Hence 15 2}5 J: pdo.

But by hypothesis p < 1, and so p=1 for all values of 6.
Taking the real part of (2), we now obtain

1 2 0
I=EJ.0 cos ¢db,

and so cos¢ =1. Hence f(z) =f(z,) on I, and so everywhere; that
18 f () is a constant.

Thus |f(2)| <M at all interior points of D unless f(z) is a
constant.

Lemma 2. Let f(z) be an analytic function of z(=re'®), reqular
in the region D between two straight lines making an angle =« at
the origin, and on the lines themselves. Suppose that

() Ifz) <M
on the lines, and that, as r — o0,
(4) : fl2)=01(?),

where B < «, untformly in the angle. Then the inequality (3) holds
throughout the region D.
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We may suppose, without loss of generality, that the two lines
are = + lnja.

Let F(2)=ef(2),
where 8 <y <a and € > 0. Then
(%) | F @) | =emeeonr? | ).

On the lines § = + 4w/, cos y8 > 0 since y < «. Hence on these
lines
| F )| <|f(2) <M.
Also on the arc | 8| < 7/« of the circle |z|=R,
| F(2) | < e-eFreostymia| f(2) | < AeRf~eRrecondynia

and the right-hand side - 0 as B—co. Hence, if R is sufficiently

large, | F (z) | < M on this arc also. Thus, by lemma 1, | F ()| < M

throughout the interior of the region | 8| < }=/a, r< R; that is,

since Ris arbitrarily large, throughout the region D. Hence by (5)
| f(z)| < Mee

in D, and, making ¢ 0, the result stated follows.

Lemma 3. Suppose that f(2) is reqular and of the form O (ek'#!)
for 0, <0<80,, where 8,—68, <m. Suppose also that f(z)= 0 (e'z)
when 0=0,, and f(z)= O (eh:!*1) when 0=0,. Let H (0) be the func-
tion of the form acos@+bsind which takes the values k, k, at
6y, 8;. Then f(2)=0 (et®r)
uniformly in the angle 6, <6< 8,.

The value of H (8) is easily seen to be
hysin (8, — 0) + h,sin (6 - 6,)

H6)= sin (6,—6,)
Let F2)=f(z)ea-i0)z,
Then
(6) | F(2)| =|f(2) | e @,

and so, if » is large enough,
| F (reie,) | =0 (em,—}l(@l))r) =0 (1).
A similar result holds for F (re%2). Hence by lemma 2, F (2) is
bounded in the angle (8, , 8,) and the result stated follows from (6).
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Lemma 4. If f(z) is regular and of the form O (ek'#!) for
R(2) 20, and f(2)= 0 (e2!?!), where a > 0, on the imaginary axis,
then f(z) is identically zero.

We apply lemma 3 to f(z) with 8,=0, 8,=1=, b=k, hy= —a.
Then

(7) f(z)=0{6(kcost9—a|sln0|)r}
for 0<8< .

Similarly, by taking 6,= — 3=, 6,=0, b, = —a, k, =k in lemma
3, we find that (7) also holds for — {7 <6<0.

Let F (z)=ewif(2),
where w is a (large) positive number. Then by (7) there is a con-
stant M, independent of w, such that

(8) | F (2) | < Melk+wicos O—atsinfi}r
for — 17 <6< iw. In particular we have
(9) |F2)| <M

for 8= + imand 8= + «, where a =arc tan {(k + w)/a}.

We can now apply lemma 2 to each of the three angles
(=37, —a), (—a, a)and («, § 7). It follows that (9) actually holds
for —in << }n Hence

| f(2) | < Me~wrcos®
and, making w—>00, it follows that |f(z)|=0. This proves the
lemma.*

Carlson's theorem. If f(z)is regular and of the form O (e¥?),
where k< m, for R(z) 20, and if f(2)=0forz=0, 1, 2, ..., then f(z)
is tdentically zero.

Consider the function

F (2) =f(z) cosec rz.

On the circles | z] =n + 4, where 2 is a positive integer, cosec 7z
is bounded. Hence F (z)= O (¢*'?!) on the circles and also on the
imaginary axis. Since F (z) is regular, it follows that, if

n—-i<|z|<n+i,
F (2) = O (eknth) = O (ek121),

* Also due to Carlson 1.
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and 8o F (z) is of this form throughout R (z) > 0. Also
F (z) — 0 (e(k—ﬂ)lﬂ)

on the imaginary axis. The result therefore follows from lemma 4.

5.4. An example on Carlson’s theorem. We shall illustrate
the use of Carlson’s theorem by applying it (with & = 0) to Whip-
ple’s transformation of a well-poised ,F,, §4.4(5). We shall
assume that the result is known to be true when g is a negative
integer. This has been proved in §4.3, but it can also be proved
by Dougall’s method.* Writing — k —z for g, where k is a positive
integer, the theorem to be proved is

a, 1+31a, ¢, d, e, [

1
( ) 7FG %a, l+a—c, 1+a"‘d, l+a—8, ]'+a’_fy

—k—z;
1+a+k+z]
PQ4+a—e)l'(M+a—-f)T'(1+a+k+2)(1+a—e—f+k+2)
"TI'(Q+a)l'(M+a—e—f)T(1+a—f+k+z)T (1 +a—e+k+2)

< F l+a—c—d, e, f, —k—z;
YIl14a—-c, 1+a-d, e+f-a—k-=z

and it is known to be true whenz=0,1, 2, ....
We proceed to prove that (1) is true when 1+a—c—d is a
negative integer and the series on the left is convergent, so that

(2) R{4¢+4a—2(c+d+e+f)+2k+22}>0.

The series ¢Fg derived from the left-hand side of (1) by sup-
pressing the parameters involving z is absolutely and uniformly
convergent for real values of a, ¢, d, ¢, f such that all the denomin-
ator parameters are positive and

(3) 3+3a—2(c+d+e+f)>0.
Also, if B(z) =0,
—k—z+r !<
l+a+k+z+”

)

* See Whipple 4 where Carlson’s theorem is also used to prove the result when
the serics on the left does not terminate. Carlson’s theorem had previously been
uscd by Hardy 2 to prove § 4.4 (1).
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forr=0,1, 2, ... since 1 +a>0. Hence the function ,F is abso-
lutely and uniformly convergent for R (z) >0, and is regular and
bounded in this region.

Now, if also

(4) l+a+k-e—f>0,
the function
Fl+a+k+2)F(1+a—e—f+k+2)

F(l+a—f+k+2)T(1+a—e+k+2)

is regular for R (z) 2 0. Since it tends to unity when | z| >0, it is
bounded in the half-plane. The series ,F, consists of a finite
number of terms, and each term is bounded for R(z) > 0 if

(3) 1+2a+k—-c—d—e-f>0,

in which case e+f—a—k—2z cannot be a negative integer
2 1+a—c—d. Accordingly, if f(z) is the difference between the
two sides of (1), the conditions of Carlson’s theorem are satisfied
by f(z). It follows that (1) holds so long as the parameters are
subject to the conditions (3), (4) and (5) and the restrictions that
the denominator parameters not involving z are real and positive.
These conditions may be removed by analytic continuation, and
(1) is true provided that 1 +a —c —d is a negative integer and the
series on the left is convergent.

It will be noticed that the formula §4.3(7) connecting two
terminating series o Fg cannot possibly be generalized in this way
owing to the presence of a denominator parameter of the form
A —m on both sides of the formula.



CHAPTER VI

METHODS OF OBTAINING TRANSFORMATIONS
OF HYPERGEOMETRIC SERIES; (3) BY
BARNES' CONTOUR INTEGRALS

6.1. Introductory remarks. In Chapter V we saw how
transformations of non-terminating series can sometimes be
derived by a use of Carlson’s theorem, and in §4.4 some trans-
formations of such series were obtained by a limiting process from
transformations connecting terminating series of higher orders.
In this chapter a direct method* is given in which free use is made
of contour integrals of Barnes’ type.

6.2. Barnes' second lemma. We now prove the formulat

) J‘ (14 8) (g +8) T (a3 +8) P (1 - B, —5) ' (—3)ds
2m F(B2+8)

F(al)F(az)F(m3)P(l—ﬁl+al)P(l—B1+a2)I‘(l l31+°‘32
T (By— 1) T (By— ) T' (By—xy)

provided that 8, + B, =, + «, + a3+ 1. The path of integration is
a line parallel to the imaginary axis except that it is curved, if
necessary, so that the decreasing sequences of poles lie to the left,
and the increasing sequences of poles to the right of the contour.f
All the integrals in this chapter are of this type.

By Barnes’ lemma (§ 1.7) we have

-élﬂ;.'ff‘(al+s) [ (x,+s) I (n—3) I‘(,Bl—ozl—az—s)ds

F(“l"‘”f)_E(fgj‘”) I'(Bi—) T (B — )
B+ n) '

* Bailey 8.

1 Barnes 2.

1 The integral is taken from ¢ —i» to c+ico. In some papers the integrals are
taken in the opposite direction, and so variations in sign oceur.
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Thus

.F a‘l>°‘2’°‘3;:|= I'(8)
: Bi, B (B —a) I'(By— ) I (o)) T ()
* 1
E 2—Jn§°;‘73)5"F(a1+8)F(a2+s)I‘(n—s)l’(ﬁl—al—az—s)ds
_ L
I'(Bi—a) F(Bl (o) I ()

JF(“1+8)F(“2+8)P(ﬁl‘“l‘“z $)I(—8), Fy [“3’ _-st

and so
) JF [“1’ g “3,] Bl) I'(8,)
ine B, Be P(;Bl—al rg,— “2) ['(By— ) I (oy) T ()

Lo, +8) Moy +8) T (By—ay—o,—8) [ (B — a3+ 8)
I‘(—s)d_s

% . L (B, +s)
The interchange in the order of summation and integration can
easily be justified if R(B,—oa;+8)>0. Now take B,=ay; the
series on the left can be summed by Gauss’s theorem, and the
lemma is proved.

If the integral in (1) is evaluated in terms of hypergeometric
series by considering the residues at poles on the right of the
contour, we obtain a relation which reduces to Saalschiitz’s
theorem when one of the parameters «;, x,, «; is a negative
integer.*

6.3. Integrals representing well-poised series. From
Barnes’ second lemma it is easily verified that
FCx—o;+n) L (k—ag+n)['(k—az+n)
_ 1
Tl (k—ap—ag) D (k—ag—o)) [ (k—o; — )
[y +8) M (ag+8) Doz +8) M (— ay— oy —og—8)'(n—s)ds
2m [ («c+n+s)

* The relation similarly obtained from (2) is equivalent to § 3.8 (1).
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It follows, by expansion and the interchange of the order of
summation and integration, that

[ R ]
D(x—a,) [ (k—op) [ (1 —y)

=T (o) T (atg) T (atg) T (i — oty — 009) T (s — oty — tg) T (16 — oy — )
1 J‘I"(oa1 +8) F,(oi?j' )T (a3+s) I (x— e —is)va( —8)

X o -
2m

< F @, P13 Pgs +r Pr» —8;:|d8.
Oy, O35 +eey 0, K+ 8
Thus, if we can sum the series on the right of (1) in terms of
gamma functions, we can find an integral of Barnes’ type repre-
senting the series on the left. If we use Dixon’s theorem on the
right, we obtain an integral representing the well-poised series

F a, b, C, d, €;
574 l1+a=b,1+a—c,1+a—d, 1+a—e]’

and when b=1+ }a the integral can be evaluated by Barnes’
second lemma, giving the formula § 4.4 (1). We therefore adjust
the parameters in (1) so that the series on the right can be summed
by that formula, and we obtain

a,1+3}a, b, ¢, d, e f;
(2) F ta, l+a—b,1+a—c,l+a—d,1+a—e,1+a—f]
_ F(l+a—ﬂF(l+a—c)I‘i(_l>+a—d)I‘(l+aie)I‘(l+a—f)ﬁ
“T(l+a) BT (T @I (1+a—c—-d)T(1+a-b—d)
M(l+a-b-—c)I'(1+a—e—f)

Lp+s)Tic+s)l@d+s)T(1+a—e—f+3)
1 l L l"(l+a-—-b—c-—d—s)l"‘(:'3)gs
“omi) T(l+a—e+8)T(1+a—f+3) i

When f= —n, a negative integer, and 1 +2a=b+c+d+e—-n,
the integral on the right can be evaluated by Barnes’ second
lemma, and we obtain Dougall’s theorem. We cannot use this
theorem on the right of (1) and so the process comes to an end for
well-poised series.
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If we evaluate the integral on the right of {(2) by considering
the residues at poles on the right of the contour, we obtain the

transformation §4.4(4) of a well-poised ;F, in terms of two
Saalschiitzian (F.

6.4. Integrals representing nearly-poised series of the
first kind. Now in §6.3(1) take =0 and sum the ,#, on the
right by Gauss’s theorem, and we find that

a, b, c, d;
(1) 4F3|: k—b, k—c K—d:l

-  I'(x=b)T(k—c)l(x=d)
TOTETET (k—c—d) T (xk—b~d)T (xk—b—-c)

JI‘(b+s)I‘(c+s)I‘(d+s)P(:c—a+2s)

x 1
2mi

- o Ttembocod-g)P(-s)ds
Fu—ata Tt

If d=%+1x, c=4«, we can evaluate the integral on the right
by Barnes’ second lemma, and (changing « into 1 + «) we find that

a, 1 +3x, b
(2) 3F2|: Y, 1+K—b:|
_TPE)r(Q+3c-3a)T(1+k—8)T (x—a—2b)

TTU+30T Gc—da)T(1+xk—a—b)T"(x—2b)°
Now use this result on the right of §6.3 (1) and we obtain

a,l+3k, b c d;
3 F 2 ) 2 b )
( ) 574 %Ky 1+K_b,l+K—C,1+K—d]

_k—a Pl+«—8T'(1+x—c)I'(1+x~d)
x DO T@T T (1+x—c—d)T(Q+x—b—d)
Fl+x—b-c¢)

FP+s)Tc+s)l{d+s) T (x—a+2s)
’ - TPQ+x=b-c—d—-s)I'(-s)ds
F(l+xk—a+s)T (x+29) ' )

6.5. Traasformations of nearly-poised series of the first
kind. We now evaluate the integral on the right of §6.4(1) by
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considering the residues at poles on the right of the contour, and
80 obtain the formula

a, b, c, d;
(1) 4F3[ K—b,K—C,K—d]

_F(K—b)F(K—C)F(K—d)F(K—b—c——d)

“T(k—c—d)T(xk—b—d)T (k—b—c)T (x)
b, ¢, d, }(x—a), 1(1+x—a);

x5ﬁ4|: K—a,{;x,%(x+l),l—x+b+c+d:|

F(K—b)P(K—C)F(K—d)F(b+6+d—K)[‘(3K—a—2b-—26—2d)
O TN @ @c—a—b-c—d) [ (3x—26—2—2d)
k—c—d, k—b—d, k—b—c, §x—}a—-b—c—d,
l1+3x—3a—-b-c-d;
14 k—b-—c—d, 2k—a—-b—c—d, ’
$k—b—c—d, }+3x—b—c—d

x g F

This is a generalization of §4.6 (1), and expresses a nearly-poised
oI, in terms of two Saalschiitzian ; F,.

Similarly from § 6.4 (3) we obtain a transformation of a nearly-
poised ; F, into two Saalschiitzian ; ¥, and this is a generalization
of §4.6(2). '

6.6. The integral analogue of Dougall's theorem. The
second lemma of Barnes may be regarded as the integral analogue
of Saalschiitz’s theorem of which it gives a generalization. We
may similarly enquire whether there is an integral analogous to
Dougall’s theorem.

First consider the integral

Fa+s)l'(1+3a+8)T'(b+s)T(cts) '{d+s)

I Tb—a—s)I'(—s)ds
9wl T T atsC(l+a—c+s)T(L+a—d+s)
which is analogous to a well-poised series s ;. By considering the
residues at poles on the right of the contour, the integral can be
expressed in terms of two well-poised which can be summed
by §4.4 (1). We can thus evaluate the integral in terms of gamma

functions, and we find after some reduction that
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MNa+s)T(1+3a+8)To+8)T(c+8) ' (d+s)
(1) L B F'b—a—-s)I'(—s)ds
2 Pla+s)F(l+a—c+s)'(1+a—d+¢)

=F(b)I‘@)F(d)l‘(b+c—_¢_l)l’(b+d—a)
2P (l+a—c—d)T'(b+c+d—a)

Similarly the more general integral

Ma+s)F(1+ta+8)Tb+s)Lc+9)T(d+39)
R Ce+s) I (f+s)T(b—a—s)(—s)ds
2 |T'(3a+s)I'(l+a—c+8) L (1+a—d+s)

'l+a—-e+s)'Q+a—f+s)

can be expressed in terms of two well-poised series ,Fg, but these
can only be evaluated by Dougall’s theorem when they terminate,
and then the contour cannot be drawn to separate the increasing

and decreasing sequences of poles. We can, however, evaluate the
integral in another way.

From Barnes’ second lemma we have
'@+s)T'(e+s)I'(f+s)
'l+a—d+s)I'(1+a—e+s8)'(1+a—f+s)
_ 1
F(l+a—e—f)I'(l+a-d—f)I'(1+a—d—e)

><_1_"’1‘((i-{-t)l"(e+t)I‘(j'+t)I’(l +a—-d—e—f-t)(s—t)dt
2m T(l+a+s+t) '

Thus our integral is equal to*

1 (T@+y)T e+ T (f+y)I'(A+a—d—e~f-t)dt
2ni) T(l+a—e~f)I'(1+a—-d-f)I'(1+a—d—e)

'b—a—-s)I'(—8)ds
Mie+8)'(1+a—c+s)T' (1 ta+s+18)

. Fa+8)I'(1+3a+s8)I'(6+8)(c+s) T (s—1¢)
xé—ﬂ‘_il

* For the justification of the interchange in the order of integration cf. Whittaker
and Watson, Modern Analysis, § 14.53, The lower bound of the distance between
the s and ¢ contours is supposed to be definitely positive.
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The integration with respect to s can be performed by means
of (1), and we obtain

Fre)rE)r'b+c—a)
A (l+a—e—f)iT(A+a—d—f)TQ+a—d— —¢)

’F(d+t)F(e+t)F(f+t (b—a-1)

1
2L

I'l+a—-d—e—f— t)I‘(—t)dt

% C T+a—c+T(B+c—a—t)

This integral can be evaluated by Barnes’ second lemma when
1+2a=b+c+d+e+f.
With this restriction we thus find that
F@a+s)C(1+3a+s)T(b+s)I'(c+s)I'(d+3)
2m F'da+s)T(1+a— c+8)T(1+a—d+s)
I‘(e+s)P(f+s)Pb a—-8)'(—38)ds

Fl+a—e+s)I'(1+a—f+3s)
F(b)P(c)F(d)F(e P(/iT(+c—a)l'(b+d—a)

M(1+a-d—e)'(1+a—c—e)(1+a—c— d)
I'b+e—a)T'(b+f—a

*Tl4a—c—fiT (1+a—d f)I‘(l+a--e X
This is the integral analogue of Dougall’s theorem. By con-
sidering the residues at poleson the right of the contour, we obtain
the formula

a,l+3a, b, ¢, d, e, ;
(3) +Fs [ la, 1+a—-b,1+a—c,1+a—-d,1+a—e,1+a—f
Fl+a—c)T(Q+a-d)T(1+a-e)I'(1+a—f)
“TPTA+a)T-a)T(1+a—d— eT(l+a—c—e)T(l+a—c—d)
Fp+c—a)T(b+d-a)l (b+e—a)T'(b+/-a)
T+a—c—f)F(1+a—d—f)T(1+a—e—f)
l‘(l+2b— )T(+c—a)I'(b+d— a)'(b+e—a I‘(b+f a)
T(l+b—c) T (I4b—d)T (A1 +b—e)T(1+b—f)
F(a b) (1+a—c)l"(l+a -d)F(l+a-e)F (1 +a—f)

T Te-a)T(1+a)T () D@ T () (f)
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<. F 2b—a, 1+b—1}a, b, b+c—a,
e b—1la, l4b—a,l+b—c,
b+d—a, b+e—a, b+f-
1+b-d, 1+b—e, 1+b—f
where 1 +2a=b+c+d+e+f.
This is the form assumed by Dougall’s theorem when we remove

the restriction that one of the parameters must be a negative
integer.

6.7. A method of obtaining transformations of integrals of
Barnes' type. In the formula §6.6 (2) write k=1+2a—c—d—e,
andreplacea, ¢, d, e, k,bbyk, k+c—a, k+d—a,k+e—a,a,a+t,
and we find that

Fa+)Tc+)T@+)T e+ (=)
T(l+a—c+)T(1+a—d+t)T(1+a—e+t)

_ 2T ()T (@) T (e)

"Te-kT(k+c—a)'k+d—a)T (k+e—a)

[F(k+s)[‘(l+-}k+s)P(k+c a+s)

1
217'&

'k+d—a+8)'(k+e—a+s)
TGk+s)T(l+a—c+8)F(l+a—-d+s)I'(1+a—e+3)
I‘_(—‘t_-}-s)l‘g-}-wt-‘}r-s)l‘(a k+t— s)I‘(—s)ds
F(l+k+t+s)
Now multiply by

Tipy+ )T (py+ )T (b—a—1)
I'(o,+10) ’

integrate with respect to ¢, and then put ¢+ s for ¢ on the right.
We thus obtain

T(op+8) T (b—a—) T (—¢)de

Cla+t)Tec+)T{d+t)Le+t) T (p, +1t)
( ) 2171[

FTQ+a—c+)l(l+a—d+)T(L+a—e+t)I (o, +1)

B 2 (c) T (d) T (e)
“Ta-klk+c—a)T'(k+d—a)T (k+e—a)
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DE+s) (1 +4k+s) ' (k+c—a+s)

1 F'k+d—a+s)I'(k+e—a+8)'(—s)ds
“omi ) TGk +8) L (1 +a—c+a) I (1+a—d+8) L (1+a—c+s)
Fa+2s+t)(@a~-k+t)T (py+8+1)

1 I(py+s+)T(b—a—s—t) T (~t)dt

“omi | C(l+k+2s+8) (o, +8+1) ’
where k=1+2a—c—-d—e.

In this formula there may be any number of the quantities p
and o. If we can integrate with respect to ¢ on the right, we can
obtain a relation between two integrals of Barnes’ type.

6.8. An integral related to well-poised series. In the
formula § 6.7 (1) choose the parameters p, o 80 that we can evaluate
the t integral by §6.6 (2). We thus find that

Fe+)l(1+3a+) PO+ (c+) T (d+¢) I (e+i)
2m T (Ja+t) T (1+a—c+)TQ+a—d+t) T (1+a—e+?)
P(f+)Dg+) L E+t)Tb—a-t) I (—t)dt
'l+a-f+6)P(l+a—g+) T (1 +a—-h+t)
P L@ ()l (f+b—a)T'(g+b—a)l'(h+b—a)

“Tk+c—a)I'(k+d—a)T(k+te—a)T(I+a—g—h)
Fl+a-f-RT'(l+a—f—9g)

Dk+8)I'(1+3k+8) T (b+s)
'k+c—a+8)T'(k+d—a+3)

IF'3k+s)T(Q+a-c+s)T(Q+a—-d+s)F(1+a—e+s)

Pk+e—a+s)I'(f+s)T(g+8)T(h+s)T(b—k—s)T'(—s)ds
% T+k—f+8)T(0+k—g+s) L (01+k—h+s) ’
where k=1+ 2a —c —d —e, and the parameters are connected by
the relation

2) 2+3a=b+c+d+e+f+g+h.

From this formula we can, in the usual way, obtain a relation
connecting four well-poised series of the type 45, If we write
Via;b,c,d,e.f,g,k)

FA4+a)TG)T )T @ T () (f)T(g) I' (%)

“TU+a-b6T(l+a—c)l(l+a—d) T (1+a—e)
F+e=f)T(1+a—g)T(L+a—h)

(1)

X =— |+
2m
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a, 1+ia, b, ¢, d,
ta, 1+a-b,1+a—c,1+a—-d,

e, [ g, ;
l+a—-e, l+a—f,14+a—-g, 1+a-h

x oFyg

the formula can be written

(3) cosec(b—a)nw
x{V(a; b,¢c,d, e, f,g,R)=V(2b-a;b,b+c—a, b+d—a,
bte—a, b+f-a, b+g—a,b+h—a)}
T(c)T@) T ()T (f+b—a)T(g+b—a)
_ » F'h+b- ajcosec(l+a—f—g—h)m
"T'(l+a—d—e)T(14a—c—e)T(1+a—c—d)
'l+a—g-mI'l+a—f-A)T(1+a—-f-g)
x{V(1+2a—c~d—e; b, 1 +a~d—e,
l+a—c—e, 1+a—c—d, f, g,k
-V(@b—-2a—-14+c+d+e;b,b—a+c, b—a+d,
b—ate, l+ta—g—h, 1+a—f—k, 1 +a-f—g)},

provided that (2) is satisfied. Any one of the series , Fy is of general
type except for the second parameter and the restriction that the
sum of the denominator parameters exceeds the sum of the
numerator parameters by two. When f, g or 4 is a negative integer,
the formula reduces to §4.3 (7).

The parameters of the second serigs are obtained from those of
the first series by the addition of b —a to each, the parameter so
obtained from b becoming the first parameter of the second series.
We shall say that the two series are ‘ complementary with respect
to the parameter b.” It will be noticed that the two series on the
right of (3) are also complementary with respect to the para-
meter b.

6.9. Integrals related to Saalschiitzian nearly-poised
series. Now in the formula §6.7 (1) take p,=f, b=1+2k—a—f,
so that we can integrate on the right by means of Barnes’ second
lemma. We are thus led to the formula
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F(a+t)P(c+t)I‘(d+t)P(e+t)F(f+t)
1] r(l+2k—2a—f-t)T(-t)dt
(1) 2m) D(l+a-c+t)T(l+a-d+t)T'(1+a—e+t)

()T (@) T () (1+2k—22)
“Tktc—a)T(itd—a)T (k+e—a)T (1+k—a)

1 E(lc+s)l‘(l+§k+s)l‘(a+28 )T (f+s8)T(k+c—a+s)

* omi FRk+)T(1+2%k—a+2)T(1+k—f+8)

Pk+d—a+s)T(k+e—a+s) I (1+2k~a—f+3)
PA+k—a—f-s)T'(-s)ds
I'l+a—c+8)TQ+a—-d+s)T(l+a— e+s)

X ]
where k=1+2a—c—d—e.

From this formula we find, in the usual way, a relation in
which there are two nearly-poised series s F, on the left and two
well-poised series 4F; on the right. The nearly-poised series are

rl® o d, e, ;
54 14a-c,14+a-d,1+a—e, 2a+f—2k

and
14+2%k—2a, 14+2k-2a—f+c, 1+2k—2a~f+d,
1+2k—2a—f+e, 1+2k—a—f;

41242 —a—f—c, 2+2k—a-f-d,
2+2k—a—f—e 2+2k—2a— f

F

while one series ¢ F has the pumerator parameters £, 1+ 1%, }a,
1+ia,f k+c—a, k+d—a, k+e—a, 1+2k—a—f, and the other
oF is complementary to this with respect to the parameter
1+ 2k—a—f. The nearly-poised series are Saalschiitzian in type.
One is of the first kind and the other of the second kind. When
f is a negative integer the relation reduces to §4.5(3), while if
1+2k—2a+e—fis a negative integer the relation reduces to a
transformation of a Saalschiitzian nearly-poised series ; F, of the
first kind into a well-poised 4F4. This is equivalent to the trans-
formation obtained from § 4.5 (3) by the reversal of series, referred
to in §4.6.

As a particular case of (1) take d=1+}a, e=}+1a, so that
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k=a—c—1, and the integral on the right can be evaluated by
§6.6 (1). Replacing f by d, we obtain the formula

Fe+t)'(1+3a+t)T(c+) D (d+1)
() __l_[ - (=2c—-d-9)'(=¢)d!
2m TQa+t)T(l+a—c+?)

l"(1+a)I‘() @(-2c)l(@—2c—-d) ' (—-c—d)
T (@a—20)T(1+a—c—d)T'(—¢c) ‘

Now in §6.7(1) take p, =1+ 1a, p,=f, 0, = La. The integration
on the right with respect to ¢ can be performed by (2) provided
that b=2k—a—f, and we are led to the formula

(3) }_Jr(amI‘(1+la+z)I‘(c+e)I‘(d+¢)1‘(e+t)r(f+t
2mi Fla+t)L(l+a—c+t)T(1+a—d+1t) '

P(k—2a—f-)T(-t)dt
F(l+a—e+1)

T ()T (d)T (e)T (2k — 2a)
[‘(lc+c a)T'(k+d—a)T (k+e—a)T (k—a)

F(IC+8)F(1+§,C+S)F(]C+C a+s)
oL 1 ’ P'k+d—a+s)I'(k+e—a+s)
2m [T (3k+s) T (1+a—c+s)TA+a—d+s)T(1+a—e+s)

F(l+a+2s)P(f+s)F(2k a=f+8)l'(k—a—f-s)I' (- s)ds
T(2k—a+2)T(1+k—f+s)

where k=1+2a¢—c—d—e.

This formula leads to a relation involving two Saalschiitzian
nearly-poised series ¢#'; and two well-poised 43 which are com-
plementary with respect to the parameter 2k —a—f. One of the
nearly-poised series is of the first kind and one of the second kind.
When f is a negative integer the relation reduces to §4.5(4), and
when 2k —2a+e¢—f is a negative integer the relation reduces to
the corresponding transformation of a nearly-poised series of the
first kind.

Generalizations of §4.5(5) and (8) can be found in a manner
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entirely analogous to that of §4.5. In each case we obtain a rela-
tion involving two nearly-poised series, one of each kind, and two
well-poised o Fg.

It will be noticed that no direct generalizations of §4.5(1) and
{2) have been given. The formulae obtained in these casesinvolve
five series instead of three or four as previousiy obtained. In each
case two of the series are nearly-poised and of the second kind, one
is nearly-poised and of the first kind, and the other two are
Saalschiitzian in type.

CHAPTER VII

FURTHER TRANSFORMATIONS OF
WELL-POISED SERIES

741. Introductory remarks. The formula §4.4 (5) transforms
a well-poised series ,Fginto a Saalschutzian ,F, provided that the
latter series terminates. There are thus two distinct cases, one in
which the , Fg terminates and another in which the ,F¢ does not
terminate although the , 7 does.

We suppose that

u+v+w=r+y+z—n+1,
and then the formula in the two cases can be written
x, 4,2, —n;

1) 705

. Twt+w-a)T(1+y—-uw) (1 +2-u) T (1—n—wu)

T(l+y—-n—u)TQ+z—n—-u)L(Q+y+z—u)T (1 —u)
a, 1+%a, w—x, v—z, Y, 2,

ta, v, w, l+z—n—u, l+y—n—u,

X Fg

_n’
l+y+z—u]’
wherea=y+z—n—-u=w+v—-z-1; and
z, Y, 2z, —n;
2 F
@ F[70E ]

_ Fwtw+n)T(+z—-u) (1 +y—u) T (14+2—u)
"TO+y+z—u)TQ+z+x—uw) P (l+x+y—w) I (1—w)

a', 1+1a’, wtn, v+mn, x, Y,
%, Fg
ia’, v, w, l+y+z—u, l+z+x—1u,
z;
l+x+y—u]’

where @' =z+y+z—u=v+w+n—1.

It is evident that § 4.4 (5) and these equivalent formulae can be
used to find additional relations connecting two well-poised series
or connecting a well-poised series and a Saalschiitzian series. These
relations have been fully worked out by Whipple.*

* Whipple 3.
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7.2. A relation connecting terminating Saalschiitzian ,F;.
When the ,F in §7.1(1) is transformed by § 4.4 (5), withg= —n,
into a Saalschiitzian ,F,, we obtain the formula

z, Y, 2,
1
( ) AFQ[ u, v, w :|
(U Z)"( :—Z)" U—Z, U—3yY, 2, —N,
= 4F3 ,
(L),,(w)" l—-v+z—n, l—-wt+z—n,u

where, of course, the parameters are subject to the condition

U+ v+w=r+y+z—n+1l.

The formula (1) can be obtained immediately by equating the
coeflicients of {* on the two sides of the relation

z, y; & l-n—v, 1—n—w; {
O E N

=,F, “ x,z; v C] 2 I:v lz,_z::_z, ¢ )
which is an immediate consequence of § 1.2 (2).

The series occurring in (1) can both be reversed, and so we
obtain two more Saalschiitzian series related to the given ,F,.
By interchanging the parameters z, ¥, z or u, v, win (1) we obtain
9 distinct ,F, related to the given ,F,, apart from the 10 equi-
valent series obtained by merely reversing the order of the terms.

7.3. Notation for terminating well-poised ,Fg. The method
of obtaining transformations of a given terminating well-poised
. Fg is simple. Starting from §4.4(5), with g= —=, we obtain
a Saalschiitzian ,F, from which other related ,F, can be derived
by §7.2(1). These 4F; can now be transformed by §7.1(1) and (2)
into well-poised series, either terminating or non-terminating.
The number of series involved is, however, fairly large, and so it
is convenient to use a notation* analogous to that of §3.5.

Let r,, 75, ..., 74 be six parameters such that

2r=0,
and write ¢ for the fraction 4 (n —1).
* Whipple 3.
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We write €i=ri+r;—¢,
dyy=r;—r;—mn.
Then evidently epteyteg=1l-n
and dp=€13— €33 — N

Now let
(1) 81,2 3)= <-1>"BL és0) [ (1 —€0) T (1—cy)

I'(1—n—e5) Pl—n—e) [(1-n—ey)
x oy l: €23> €135 €125 — 7
I-n—eq, 1 -n—e€5, 1 —n—e,; |
D(14+8),) I'(1—e5y) ' (1 —€3) ' (1 — 45)

: I'(1—e)
(2) W(L4)= F(l+n+514)P(l 'n—€24)P(l"n_€34) o
rl—= _545)F(1—n—€4s)

x P [814> 1;‘8‘5814’ : €165 €15, €3,
1354, —N—egq, l =N —€45, 1 —n — €y,
€125 -
l—n—ey, I+n+8,, Y
all permutations of the numbers 1, 2, ..., 6 being allowed. These

definitions may also be written in the forms

(3) S(1,2,3)= § C (ezs)p (513) (512) (€56) n—p(€46) _p(€45) n—p>»

P

(4) W(;4)= (_1)nzn i fatZpon

p=0 1—7

(elz)p ('-‘13)7; (fls)p (fls)p (542)n-p (643);;-;) (qu)n-p (€4s)n-p
(1 - 7‘1 + rd)n—p (l +TI T-l)p
The equation § 7.1 (1) can now be written
(5) §(1,2,3)=W(1;4).

As the series involved in S(1, 2, 3) and W (1, 4) terminate, they
may each be written in the reverse order, and (3) and (4) show that

(6) S(1,2 3)=8(4, 5, 6),

(7) W(l; 4)=W(4; 1).

The equation (5) may now be used repeatedly. Thus
8(1,2,3)=W(1;4)=8(1,2,5)= W (2;6)= S (2,3,5)=....
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Formally there are 20 §’sand 30 W’s, but each series is counted
twice if we make no distinction between a given series and that
obtained by reversal of the terms.

There are therefore 10 distinct S’s and 15 W’s. The 25 series
are all equal. The identities involved in addition to (5), (6) and
(7) are

(8) S(1,2,3)=S8(1,2,4)=8(3,5,6),
(9) W(1:4)= W (2;6)= W (8;2),
(10) W (1;4)=W (1;5)= W (5;1),
(11) 8(1,2,3)=W (2;1)= W (1;2).

7.4. Notation for non-terminating well-poised ;Fs. In
§7.1(2) the first of the parameters of the series on the right is

a'=v+w4n—1=—¢—2r,—r;—7,.
We write Migg= —¢—2ry—T5—Tg
and
(1) W(4;5,6)

P4 T =) T (1 =€) T (1 —€30) [ (1~ €4) T {1 = cae)

TTO+n+8,)T(Lta+8,) (1+n+38;) I'(1—n—eg)
( 14) ( 24 34 F(l—n—€46)r(€56)

% F Aiiser 1+ 3056 1—€uss 1 —€yq, €23»
e yise, 1—n—egg, 1 -1 —eqs, 1+7 438,

€135 €125 ]
1+7n+8;, 14+n+85]
and then §7.1(2) can be written in the form

(2) S(1,2,3)=W(4; 5, 6).

The series in W (4; 5, 6) is convergent when E(e5) > 0.

Since § (4, 5, 6) is the same as S(1,2, 3) written in the reverse
order, there are six non-terminating well-poised series corre-
sponding with each Saalschiitzian series. It should be noticed,
however, that not all the six are convergent since the €’s ha\‘re a
negative sum. The total number of non-terminating ,F ¢ derived
from the 10 equal Saalschiitzian series is 60.
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By combining (2) with the relations between the &’s, we find
the following formulae:

(3) W4; 5 6)=8(1, 2, 3)=8(4, 5, 6),
(4) W(4; 5, 6)=8(1, 2, 4)=8(3, 5, 6),
(5) W(4; 5, 6)=8(1, 2, 5)=8(3, 4, 6),
(6) Wi(4; 5 6)=W(l;, 4)=W(4; 1),
(7) W(4; 5, 6)=W(l; 5)=W(5; 1),
(8) W(4; 5 6)=W(1; 2)=W(2; 1),
9 W(4; 5, 6)=W(4; 5)= W (5; 4),
(10) W (4; 5, 6)=W (5; 6)=W (6; 5),

(11) W (4; 5, 6)=W (5, 4, 6),

(12) W(4; 5, 6)=W(5; 1, 6),

(13) W4; 5 6)=W(5;1, 2),

(14) W(4; 5, 6)=W(5; 1, 4),

(15) W(4;5,6)=W(4; L, 5),

(16) W4; 5 6)=W(4; 1, 2),

(17) W(4; 5 6)=W(Q, 2, 3),

(18) Wi(4; 5 6)=W(l,; 2, 4),

(19) W (4; 5, 6)=W(1; 2, 5),

(20) W (4; 5, 8)=W (1; 5, 6),

2 W(4; 5, 6)=W(1; 4, 5).

Thus associated with a given non-terminating well-poised
series there are 3 distinct Saalschiitzian series, 5 terminating well-
poised series, and 11 non-terminating well-poised series. Also,
associated with a given terminating well-poised ,F; there are 2
distinct Saalschiitzian series, 3 terminating well-poised series,
and 8 non-terminating well-poised series.

Asin § 3.5 we can work out the parameters of the various series
associated with a given well-poised series, either terminating or
non-terminating. Tables of these parameters have been given by
Whipple* and are set out below. The second parameters of the

* Whipple 3. Whipple also gives tho parameters of the well-poised serics asso-
ciated with a given Saalschiitzian series,
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well-poised series are omitted, and only numerator parameters of
these series are given.

Table 1. Paramelters of associated series. Master series
well-poised and terminating

s=c+dtet+f—2a—n~1

2) ajed,ef, —n }

1) —a—-2n;¢c—a—n, d—a—n,e—a—n, f—a—n, —n

3) s+a—-c;s.de f, —n }
1) ¢c—a—s—2n;c—a—n, l+e—e—f, 1+a—-d—f, l+a—d—e, —n
3) s—c—n; 9 d—a—n,e—a—n,f—¢—n, —n }

2) c—s—n; e, 1+a—e—f, l+a—d—f,1+a—d—e, —n

4) c—d-n;c,c—a—n, l+a-d—f,1+a—d—e, —n

$(1,2,3) s c,e—a—n, —n;c+f—-a—n,c+e—a—n,c+d—a—n

S(4,5,6) l+a—c—d,1+a=-c—f, l+a—c—¢, —n; 1-n—8,1-n—¢, 14+a—c¢
8(1,3,4) ¢,d, 1+a—e—f, —n; l+a—e, 1+a—f,c+d—a—n }
S{2,56) e—a-n,f—a—mn, l4+a—c—d, —n3;l—n—¢,1=n—d,e+f—a—n

W(l;
W(2;
Wi(3;
wi(l;
W (2;
W(3;
W (3;
W (3;

W (4;
W (5;
W (5;
W (5;
W (5;
W(4;
Wi4;
W(l;

w;

w(l;
W(l;
W(l;

2,3 l—s—n—c;1—38,1—0¢; l+a—c—d, l1+a—c—e, 1+a—c—f

1,3) l—s+a—c;l—s,1+nt+a—c; l+a—c—d, l ta—c—e, 1 +ta—¢c—f
1,2) l4a—=2¢;1—c, 14+n+a—c; l+a—c—d, l+a—c—e, L +a—c—f
3, 4) l—c—d—'n;l—c.l—d;e--a—n,f—a—n,l+a—c—d

3, 4) e+f—s;1—c+a+n,l—d+a+n-, e,f,1+a—c—d

1,4) e+f—c—a—n; l—¢c,e+f—a;e—a—n,f—a—n, l14a—c—4d

2,4) e+f—c;l=c+a+n,e+f—asef, l+a—c—d

4,5 s—cie+f—a,d+f—a;sf.f—-a—n

Table II. Parameters of associated scries. Master series
well-poised and non-terminating

t=c+d—e—f—g—-2n
5,6) c+d—n-1;¢,d;¢,f. ¢
4,8) c—t—nic,1-t¢6f g
1, 8) lt+e—t—d; l—d+e+n, 1=t;¢,1—n—f—t,1-n—g—t
1,2) l+etf—2d+n;1—d+e+n, 1—d+f+n;l1-n—g—t c—g—n, 1-
1,4) ¢—d+e l—d+et+n,cie,c—f—n,c—g—n
1,5) e+e+t—1l;e+i+n,c; e,c—f—m,c—g—n
1, 2) e+f+2t+n—1;e+t+n,f+t+n;d—g—n,c—g—n,t
2, 3) l—f—g—n;l—f,l—g;l—c,l—d,t
2,4) e—g+t;1—g, e+t+n;d—g—n.c—g—n,t
2,5) l—d+e—-g;1—g, 1—-dtet+n; l-g—t—n,c—g—n, 1-d
5,6) l—c—d+2¢+n;l—dtetn, l—ctetn;e l-n—f=~t, 1—n—g-
4,5) c+e—f—g-n;e+t+n, l—d+etn;e,c—f-mc—g-n
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Table II (cont.)
S(1,2,8) efigo—n;e—n,d=n, l—-t—n
S4,5,6) l—c, 1—d,t, —n;1—e—n, 1 —f—n, l—g—n}
S(L2,4) l—-n—e—t,1—n—f-t, g, —n;1—d+g, l—c+g, 1—-t—n
S(3,5,6) de=g—n,c—g—n,t, —nse+t, f+t,1—g—n }
S§(1,2,5) d—e—-n,d—f—n, g, —n;g+t, 1 —c+g. d—n
S(3,4,6) l—n—g—tiec—g—n,1—d, —n; l=d+e, | =d+/, l—(_/—n}
W(;4) c+d—e-2n—-1;f, g d—e—n,c—e—~n, —n
Wi41) l—c—dt+e;l—n—f—t,l—n-g-t, 1—c, 1-d, —n}
W(l;38) f+g-d;f,g, 1—ti—e—t,c—e—n, —n
Wi 1) d=f—g=2n;d—f—n,d—g—-n,1—c¢,¢, —n}
W(l;2) f—e—-n;f,l—n—e~t,d—e—n,c—e—n, —n
W(4:5) l—d—t—-n;l—n—e—t,1—n—f—t,l—n—g—t, 1-d, —n}
W54 d+t—n—-l:d—e—~n,d—f—n,d—g—~n,{, —n
W(5;6) d—c—n;d—e—n,d—f—n,d—g~n,1—¢, —n

The parameters tabulated for S(1,2,3) are ey, €5, €35, — 7}
1—n—e5, L —n— €45, 1 = —€,;. Those tabulated for W (1;4) are
8145 €165 €15+ €135 €12, — 1, and the parameters shown for W (4; 5, 6)
are Ay se; 1 — €5, 1 — €gq5 €93, €13, €15

7.5. Transformations of unrestricted well-poised ;F;. In
the transformations given so far in this chapter, a parameter or
a linear combination of parameters has been restricted to be a

negative integer. We now consider transformations when there
is no such restriction.*

The formula § 4.4 (4) is a formula of this type. It is convenient
to write

Wia;c,d, e f, g)

I R L d, e, S g
ST 3a, l+a—c,1+a—d,1+a—¢ 1+a—fl+a—g]"

Now transform the series
W(+2e—e—f-g;¢c,d, 1+a~f—g, 1+a—e—g, 1+a—c—f)

by §4.4 (4) and we obtain the same series ,F, as occur in that
formula. We thus find that

* Bailey 12.
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(1) Wiase d, e f9)
'l+a-¢c)'(1+a—d)I'(2+2a~e—f—g)
I'(2+2a—c—d—-e-f—g)
Tt T(ta—c—-d)[(2+2e—c—e—f—g)
I'2+2a—d—e—f—g)

xW(l+2a—-e—f—g;¢,d, 1+a~f—¢g,1+a—e—g,1+a—e—f).

On duplicating this formula we obtain

(2) Wiase d,ef,9)

Fl+a—-c)F(l+a-d)T(1+a-e)I'(1+a-f)
Fi+a)T@r+2e—d—e—f—g)T(2+2a—c~e—f—g)
F(3+3a—c—d—e-f-29)I'(2+2a—c—d—e— f g)
T2+2e—c—d—f—-g)T'(2+2a—c—d—e—g)
xW(2+3a—-c—d—e—f—29; 1+a—c—-g, 1+a—-d—y,
l+a—e—g, 1+a—f—g, 2+2a—c—-d—e—f—g).

If g or 1+a—e—f is a negative integer, (1) gives a relation
between a terminating and a non-terminating well-poised series,
whereas if ¢ is a negative integer the formula reduces to one
connecting two terminating series. Similarly (2) gives, in certain
circumstances, a relation between two series, only one of which
terminates.

The series on the right of (2) can now be transformed by § 4.4 (4),
and we thus derive the formula

a, 1+%a, ¢, d, e, Js 7; ]
(3) ¥ ta, 1+a—c¢,1+a—-d,1+a-¢, 1+a-f,1+a—g
F'l+a-c)I'(l+a—-d)I'(1+a—e)l'(1+a—f)
T T+ L@l U+a—c—HT(U+a—d—f)
I‘(g -NHT 2+2a——c—-d-—e—f—gl_
Fl+a—e-f)I'(2+2a—c—d—e—g)
l1+a—-c-g, 1+a-d—-g, 1+a—-e—yg, f;
xaFs I: 24+2a—c—d—e—g, 1+a—g, 1+f-y¢
Frl+e=c)F'(l+a—-d)I'(1+a—-e)(1+a—g)
F(1+a)F(f)F(l+a—c—g)I‘(1+a—d—g)
P(f-g)l'(2+2a—-c—d—e—f—g)

FTl+a—e—g)L(2+2a—c—d—e—f)
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< 7 lya—c—f 1+a—d-f 1+a—e—f g;
Y3 242a—c—d—e—f, 14+a—f, 1+g—f

This formula and §4.4 (4) appear to be the only formulae of
their type. They generalize all Whipple’s formulae expressing a
well-poised , Fg in terms of a Saalschiitzian 4 #;. The formulae (1)
and (2) do not, however, generalize all Whipple’s formulae ex-
pressing a well-poised series in terms of another well-poised series.

Apparently the generalizations of the other formulae are not of
such a simple type.

7.6. Transformations of well-poised (F;. The formula
§4.3(7) transforms a terminating well-poised ¢Fy into another
series of the same type. It would seem at first sight as if we could
take the parameters in different scts of three and so obtain several
formulae connecting well-poised ,Fy. It appears however that,
apart from the mere reversal of series, there is only one other

formula of this type, obtained by duplicating §4.3(7). This
formula is*

l) F a l+%a’, ) C’ d’ e)
8 ta, l4+a—b,1+a—c, 1+a—d, l+a—e,
fs g —n;
l+a—f, 1+a—~g, 1+a+n
(1+a),(1+a-b-c),(1+a-b—d),(1+a—b—e),
(1+a-b6-f),
(1+a’ b) (1+a’ c)n(1+a’ d)n(l+a e)n l+a_f)ng b)
7 b—g—n,1+3(b~g—n), b, l+a—c—g,
%o [ t(b-g—mn), l1-g-—n,btc—a—n,
l+a—d—g,1+a—e—g, 1+ta—f—g, b—a—-n, —n; :I
btd—a-mn,bte—a-n,b+f-a—-n,1+a—g, 1+b—yg

where 2+ 3a=b+c+d+e+f+g—n.

Similarly, by duplicating § 6.8 (3), we obtain, with the notation
of that paragraph,

* Bailey 12. See also Whipple 10 where the formula is proved by Dougall’s
method. We can derive § 4.3 (7) from this formula by duplication.
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(2) cosec(b—a)m.{V(a;b,c,d e f, g k)
-V(@2b—a; b, b+c—a,b+d—a,bt+e—a, b+f—a,b+g—a,
b+h—a)}
TEOT@rEr(f)Tc+b-a)T(d+b—a)
TT+a—c—g)T(l+a-d—g)T(1+a—e— N (1+a—f—g)
I'e+b-a)I'(f+b—a)cosec(g—h)w L
“Tlya—c-mT(ta—d-mT (l+a—e—mT(l+a—f-h)
x{Vib—g+h; b, 1+a—c—g, 1+ta—d—g, 1+a—e—yg,
l+a—f~g, b h+b—a)
~Vib+g-h;b,1+a—c—h, 1+a—-d—h, 1 +a—e—nh,
1+a—‘f"hs9,9+b—a)}

provided that o\ o 4t otdtetftg+h

The transformation §7.5(3) can be deduced from (1) by a
limiting process analogous to that by which § 4.4 (4) was deduced
from the previous relation connecting two well-poised series o Fg.

CHAPTER VIII
BASIC HYPERGEOMETRIC SERIES

8.1. Introductory remarks. The hypergeometric series was
generalized in a different way by Heine* who considered the
series

(1-9“)(1—qﬁ)z+(1- g*) (1-g**) (1-¢f) (1 —gf+) ,
(1-9)(1-¢) (I-g9)(1-¢®)(1-g)(1-g*)
which reduces to ,F, («, B;y;2) when ¢ 1.

We shall follow Heine in Writing a, B, y instead of ¢%, ¢B, ¢q7,
and define the basic series by

@1 (e, B; ¥; 2)
(l*d)(l—ﬂ)z+(1 *) (1 —ag) (1-B)(1-Bg) 2
(I-g)A-»)"" (I-9)(A-g®)(1-y)(1-yg)
where |¢| <1, |z| < 1.
For brevity we write
(@)gn=(1-a)(1—ag) (1 -ag?...(1—ag™), (a)g,=1,

and then D1 (x, B; y; 2)= o E;))a.n((f))" @onWor 2
n= »n a.n

224 ...,

=1+ 294 ..

and, more generally,
rq)s [al ’ a2’ veay O3 Z} = § (al)q,n (MZ)Q. ( r)q nzn
Prs ++e5 Py n=0 (Q)q,n (Pl)q,n (Ps)q n

82. Some elementary results. As particular cases of the
series ,0, we have

4 2z z2 za
1 F— (D s gt =
( ) l_qz 1(9',9,9»2) 1_q+l_q2+qu3+...,
22 23
+ +—
2z 4 228 223

3) (g -1 —g;2)=1 !
D, (¢ g; 2) +l+q+l+q2+l+q3+"'

2
_E b g 2)=
(2) l_q%ﬂ’](q,q,q,z)— +..0,

* E. Heine, Theorie der Kugelfunctionen, 1 (1878}, pp. 97-125.
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If we divide (2) by 23, and replace g, z by ¢2, g¢**, where z is real,
the imaginary part of the series becomes

q* sinx qg sm 3z q‘ sin 5x
T-g " 1-¢¢ " 1-¢°
Kk 2K7:

which is the series for -— sn ——
2 T

Similarly from (3) we can derive a series connected with

dn (2Kz/=).
We now show that
“ (l—aq"z
(4) Py (a; 2) = II (1 s )-

By subtracting scries term by term, it is easily shown that
D (a:2) — Dy (a; g2) = (1 —a) 2, P (ag; 2),
Qo (a;2)—a @ (a; gz) = (1—a}),Polag;2).
Eliminating the series which occurs on the right, we have

1—az

Pola; 2)=-5— ‘D (a; g2),

and thus

Do (a; 2)= (1-az)(1—agz)... (1-ag"'2)

(1-2)(1-g2)...(1—¢g""12) !
Now make n — o0 and (4) follows at once.
As particular cases of this result we note that, ifa=0,

®,(a; g"2).

z® ]
O 1 gt g T A @ g
and, if z is replaced by z/a and then a o0,
: @t (=lpgineten
(6) 1—1‘_’Q+(1_q)(1_q2) T v (l—n)

=(1=2)(1—gz)(1-¢%)....
Another consequence* of (4) is that
(7) 100 (a;2) 1@y (b; az) = @ (ab; 2)-
8.3. The analogue of Dougall’s theorem. The method of
Chapter 1V for obtaining transformations of generalized hyper-
* TFor the results of this paragraph see Heine, loc. cil.
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geometric series does not appear to be capable of generalization
80 as to apply to basic series. The transformations of well-poised
series, however, have their analogues for basic series, with the
possible exception of the transformations of non-terminating
well-poised  Fy . We first prove the analogue of Dougall’s theorem,
namely*

(1) [a q\/a —gva, b, ¢, d, e gqg¥ ¢

® —va, agfb, agjc, agid, agje, ag¥+!
(@9)g. ¥ (aq/"d v (aq/bd), v (‘W/bc)q N
" (ag/b),,x (agfc),, x (@g/d), v (agfbod)y, »”
provided that bede =a?g¥+!, and N is a positive integer.

It will be noticed that the effect of the presence of the four
elements g+/a, —g+/a, va, —+/a in the function on the left is
merely the insertion of the factor (1 —ag?*)/(1 —a) in the general
term of the series.

The proof follows the same general lines as the proof of Dougall’s
theorem given in § 5.1. Writing f in place of ¢—¥, the theorem be-
comes

o a, 9’\/0, —QX/a b, G d’ :I
8%7 va, —+v/a, agq/b, agjc, agid, aq/e a‘l’f
- i [ gl o) 1)

1—aq"jb) (1 —ag"jc) (1-agq"/d) (1 —ag"|f)
) (1 aq?87) (1 g (1 —agPd (1 —ag?bedf)
(1 - aq"/bed) (1 — ag™/bef) (1 — aq*bdf) (1 —ag*jcdf) |’
provided that a%q = bedef, and f is of the form ¢~ where N is a
positive integer.

Suppose the theorem is true when f=1,¢1,¢72, ..., g7 -2, We
shall prove it true when f=¢~¥, and then the result will follow by
induction. Now by symmetry the result is true if ¢ or d has one
of the values 1, g7, ..., ¢~™-D, that is if ¢ or a?q/bcef has one
of these values. It is therefore true in particular when f=¢—¥
and ¢ has one of 2N values. But when f=g¢~¥ we can multiply
by (aqjc), y (aglbed), y and the formula states the equality of
two polynomials of degree 2N in ¢. Thus, if we can prove the

* Jackson 1.




68 BASIC HYPERGEOMETRIC SERIES

equality for one more value of ¢, the result will be established.
We choose the value c=aq¥, which is a pole of the last term
only of the series, and the result is easily verified.

8.4. The analogue of Saalschiitz's theorem. In the formula
just proved substitute for e, replace d by ag/d, and let a—0.
We thus obtain the formula*

(1) 3(1)2 b7 s q_N;' q (d/b q N (d/C Q ’V

d, beg'=¥[d |~ (d)y,x (dfbe)y,x
which is the analogue of Saalschiitz’s theorem.

By comparing the coefficients of powers of z and using (1), it is
easy to prove the formulat

2) l:on, ﬁ; z:l =@, [aBly; 21,9,

This is the analogue of §1.2(2).
Finally, if we let N —ooin (1), we obtain the analogue of Gauss’s
theorem, namely

b, c; d/bc © (1 —dg*/b) (1 —dg*/c)
3 “q"[ d ]=n130[(1—dq“)(l—dq"/bc):|'

8.5. Transformations of well-poised basic series. The
argument of §5.2-can be used, with trivial alterations in the
wording, to prove the transformation}

l:y/a, ;'/B ; aBZ/V:l '

(l) q) a, Q\/a Q‘\/a, ¢ d$ e, fs J a 2 q]
107 va -\/a aqjc, aq/d, aqfe, aglf, aqlg, aglh, aqjj
_ & [(—ag") (1 —ag"[fy) (1-ag"[fh) (1 — ag™{f})

—aq"/f ) (1 —ag/g) (1 —ag™[k) (1 —aq"[j)
o (1 —aq”/gh) (1 —ag*/gj) (1 - ag”/kj) (1 — ag™/(fghj)
(1 - ag*/ghj) (1 — aq™kjf) (1 — aq™[ifg) (1 - ag™[fgh)
o l:k, vk, —qvk, keja, kdja, kefa, f, g, h, J; q
WL vk, —vk, agle, ag/d, agle, kqlf, kqlg, kq/h, kqlj
where k=a%g/cde and cdefghj=a’g? and f, g, k or j is of the form
g~Y where N is a positive integer or zero.

* Watson 8, Watson derives (1) from (2). (1) had been given previously by
F. H. Jackson.
t Heine, loc, cit. p. 115, formula 13. { Bailey 4.
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This is the analogue of the transformation §4.3 (7) connecting
two terminating well-poised series (Fg. It includes the analogue
of Dougall’s theorem as an obvious particular case (when ¢d =ag).

If we substitute for k and j, and make e—>00, the formula
becomes*

@) o[BIV -ava o d e [ g “242/°d6f9:|
8% va, —+/a, aqic, agid, aq/e, aqlf, aqlg

_ & [ (1=ag®) (1 —ag{fy) (1 —ag*jge) (1 — aq”/ef)

a=1L{1—ag"fe) (1 - a<I”f)(1— aq™(g) (1 —ag"/efg)
agjed, ¢, f, g; q:l
*Lefg/a, agfc, ag/d

where e, f or g is of the form g-¥. This is the analogue of Whipple’s
formula §4.3(4) transforming a well-poised ,F, into a Saal-
schiitzian ;F,. When d =1 the series on the left of (2) reduces to
unity, and we again obtain the analogue of Saalschiitz’s theorem.
The formula (2) is due to Watson who used it to prove the Rogers-
Ramanujan identities.}

Now in (1) replace ¢ and & by their values in terms of the other
parameters, putting j =¢~¥, and then let NV -0, and in the same
way as we obtained §4.4 (4) we derive the formula

(3) q) -a,-Q\/a’ _Q\/a) d’ e, f» g, h; azqz/defgh]
L wva, —\/a aq/d, agje, aglf, aqlg, ag/h
-1 (l—aq" ag”/fg) (1 —aq*|fh) (1 — aq”/gh)

-1 L(1—ag"/f) (l aq"(g) (1 —ag™h) (1 —aq"/fgh)

'W/de, fra9hq
| agid, agje, fyh/a]
+ n [(1— aq") (1 —ag*ide) (1 —fg* 1) (1 —gg*~1) (1 —hg™1)

(1-ag*/d) (1—aq"/e) (1 —ag™/f) (1 —aq*[g) (1 — aq™[k)
(L —afq +ijdfgh) (1—a q"“/efgh):l
(1 —a%q™t1/defgh) (1 — ¢*~%fgh/a)

X (D aq.‘/gh’ a‘I:{fh’ a'q/fg’ a2q2/defgh;q

3L ag?fgh, a?q?(dfgh, a*q?jefgh

* Watson 6. t Given in the next paragraph,
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This is the analogue of §4.4(4) and generalizes (2). It also
shows that (2) is true provided only that the series on the right
terminates and the series on the left converges, a fact which
Watson stated was probable.

It is evident that other transformations of well-poised basic
series could be worked out in a way entirely analogous to that of
Chapter VII.

8.6. Some limiting cases. Now in the formula §8.5(2) make
¢,d, e, fand g tend to infinity. The process of making ¢, 4, ¢, and f
tend to infinity presents no theoretical difficulty when g=¢=%,
since we are dealing with terminating series. To justify the process
of subsequently making N — oo through integral values, an appeal
must be made to Tannery’s theorem.

@)
N Clg,n
ow lim i),

with similar formulae in d, ¢, f and g. Hence

M= ( _ l)” qin(n—l)

g;
(c,d,¢,f,g—>) cdefy

a2q2
lim 8(D7 liaﬁ Q\/(l, "‘I\/a: c, d, e, f’ ; _—]
’\/aw _\/as (IQ/C, CLQ/d, 04/6, aq/.f> aq/g

( )q nl aq2n — 157 gin(n—-1) 420 421
+nzl(Q)qn l-a ( 1) 7 e
Also
im0 [ (1 —ag*ifg) (1 —aq”/ge) (1 —ag"/ef)
(e.f,g—>0)n=1 (1—aq”'/e)(l—aq“/f)(l—aq“/g)(l-—aqn/efg)

=1II (l_aq")>
n=1
and
lim [aq/cd, e fi g q
(c,d,e.f,g =) 3 efg/a aq/c aQ/d
1, & fmyrgheop o

nm1 (= Drgtrebjgr (1=} (1=¢)... (1-¢")

anqnz

et (1—9) (1=¢%) .. (T—¢™)’

+ X
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We thus have the formula

(1) 1+ 3 (= 1)rateginGn—D(] —ggen)

n=1
 (1—ag)(1—ag’) ... (1 —ag*)
(1-9)(1—-¢%...(1 -¢*)
anqm’

I (1 =agr). [”n (T=p=g9o (l—q")]‘

By putting a=1 and =g in this result, and using Jacobi’s
well-known formula

I [(1-g=22) (1 -1y (-] = E (—1pgren

n=-o
to express the series on the left of (1) as one of two products, we
obtain the Rogers-Ramanujan identities*

9 148 4 L, ¢
@ I s tapa=a T a<ga-¢a=g"
1
S A=) (= A= =g (1= ...’
2 12
1+ L q
@ I gt aspaat Soa-pa=a "
1

(1-¢%)(1-g) (1-¢) (1 -¢%) (1 —¢"%) (1 —¢®)....

In these formulae the indices of the powers of ¢ in the numer-
ators on the left are #»? and n (= + 1), while, in the products on the
right, the indices of the powers of ¢ form two arithmetic progres-
sions with difference 5.

Now in the formula §8.5(2) let cd =aq and let ¢, f, g0, and
we obtain

4) 1+ I (- l)nanqin(sfz—l) (1—ag®)
n=
(1-ag) (1-ag?)... (1—ag")
(1-¢)(1-¢%)...(1—¢q")
= 10 (1-aq).
n=1
* For the history of these formulae see Rogers and Ramanujan 1, or Ramanujan,

Collected Papers (1927), p. 344. See also Rogers 1 and 2, Schur 1. The proof given
here is due to Watson 6.
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For a=1 this gives

(5) 1+ § (_l)n{qémsn-1)+q§n(3n+1)}= T (1—-gm),
n=1 n=1

a classical result (due to Euler) in the theory of partitions.
Again, if we put cd =ag, e =+/(aq), and let f, g > co, we obtain

1-aq)(1-ag?... (1 —ag"™")
6) 1 E tn gnin-b (] — gg2n ( .
@ 1+ 2 om0 —erm) (=9 (=) 02"
= 1'[ et &
(1 aéq"“*
For example, if @ = 1, we have, replacing g by ¢2,
1 q2n

(7) 1+ girn+D = I (—?ﬁ),

n=1 n=1 -

a result due to Gauss.
Lastly, if we put c=+/a,d= —+/a, and let ¢, f, g 00, we obtain
the relation

(1—a)(1—ag)...(1—ag"-)
®) ”,fl =g (1) ... (1_g)

=ﬁ(1_aqn),[1+§ g™ (1+g)(1+g?) .. (1+q")‘_v}
=1

anq!n(3n+l)

w1 (1—q)(1-¢%) ... (1-g") x
(1-ag?) (1-ag?)... (1 —ag®)

n

and, in particular, when a=1,

qn2 E 1
9 1+ Y et s 1l (—)
©) D= (=g e \ T
When a =g we find from (8), after using (7), that

(4@ (1+¢Y)... (1+g")gn**Y
1(1-)(1=¢%) ... (1-¢") (1 =g) (1 —¢°) ... (1 —g***)

1-—- qsn
H (1- qﬁu 3)(1 q" rl)]
Evidently a large number of such formulae could be found, but

sufficient have been given to indicate the possibilities of the
transformations given in this chapter.

(10) 1+ 2

CHAPTER IX

APPELL’'S HYPERGEOMETRIC FUNCTIONS
OF TWO VARIABLES

9.1. Definitions of Appell's functions. We have seen how
the hypergeometric series can be generalized by simply increasing
the number of parameters. Some other generalizations have been
studied by Appell* in which the number of variables is increased.

Consider the two hypergeometric series

F(«,Biy;2), Fla,B5y59)

If we form their product we obtain a double series, depending

on the two variables z and y, in which the general term is

(@) (%) (B (B
minl(y),(y),
Now replace one, two or three of the products («),(«’),,
(B (B)n> (¥)m ('), by the corresponding expressions

yn

(Dmins  Blnin> Vs
There are five possibilities, one of which gives the series

% omtnl (y')m+n y*

which is simply the expansion of the function

F (e, Biy; 2 +y).
The four remaining possibilities lead to the definitions of
Appell’s hypergeometric functions of two variables, namely

(1) Fils B, Bsyszy EE( L’;‘f;,@g"nfﬁ)"xmy",

(2) FZ (a; ﬁ) ﬁl’ y, ‘yl, x, y)=zz (:Zzn’:;z((ﬁ)m(f)ln xmyn’

(3) Fylx, o'; B, B's y; %, y) =X () (%) (B)n (B )uxmy':l’

m!n! (')’)m+n

(a )m +n (ﬁ)m+n
(4) F&(a’ Ig. H ’)"§ x’ y)=22 —————-——x”‘y".
7 minl () (v)n
* See Appell and Kampé de Fériet, Fonctions hypergéométriques et hypersphériques
(1926).
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The double series are absolutely convergent for

(1a) lz]<1, |y|<1;
(2a) lz|+]y|<1;
(3a) jz|<1, |y|<l;
(4a) |zt +|ylt<1.

To prove these statements we know that the general term of
F,is
__ T
P (B (8)
Llat+m+n)T(B+m) I'(B'+n)
Fy+m+n)C(im+1)I'(n+1)
and, using Stirling’s formula, we see that for large values of m
and =,

m
4,, amy"

amy",

- P('}’) _1,,8—1 x—
Ann~T@TRTE™ Y

Write R(@)=a;, R(B)=B,, R(B)=8/s Rly)=v,
and let N be a number greater than the modulus of

Fy)T ()T (B)I'(B).
Write also @ and b for | x| and |y|. Then, for all large enough
values of m and 7,

N - am bn

| Ann 29" | < ot Bt B

from which we conclude that F, is convergent when ¢ and b are
less than unity.

It can be shown in the same way that the series is divergent if
a or b is greater than unity.

Similarly, if 4, ,z™y" denotes the general term in F,, we
find that

| ‘Am,n xmynl <N

f
(mT n)! (m + n) - 1mbr—vinh/-n ambn,

m!in!

Let & be a positive number greater than both 8, ~y, and
B, —vy'. Then

2k
mbPr—" B < mFnk < (.7_"'_‘*'12) ..

4%
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The series of moduli, therefore, has its terms less than those of
the series

N !
S R o et gmip,
Sy N =
which is 1 Borthra-lig 1 by
r=0

and is convergent when e+ b < 1.
For the series F'y we find, for the general term 4, , z™y", that

| A ™y | < Nma+Bi-2 g +87 -2 (m 4 )N

< Nmearthi-2 g +B/ =2 (m + n)l-n1amb®,

and so the series ¥, is convergent when a and b are less than unity.
Finally, for F, we find that

12
[ A, 2™y | <N (m+n)atBi-2ml-vipl—»' [(%-:lg‘l—} amb»,

Let k be a positive number greater than both 1 -y, and 1 -5/,
and then

ne
IAm’nxmyn | <f_k(m+n)2k+al+ﬁl_2 {(M+n)_.} ambn,

m!n!
Grouping together those terms of the series
IE (m+ n)Peroath-2 {(_m +n) !}2am b

m!n!
for which m 4+ n» =7, we obtain

[ . r 2 r 2
5 ot {a"+(l) a’-1b+(9) ar—2b2+...+b'}
r=0 =

which is less than

B phrethiot(yat o),
=0

r

and this series is convergent if /@ ++/b < 1.

It will be noticed that the functions all reduce to the ordinary
hypergeometric series F («, 8;y; ¥) when y is zero. The first three
functions also reduce to F («, B; y; #) when 8’ is zero.
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9.2. The partial differential equations satisfied by the
functions. Consider the function F,, and let
z=Fy(«; B, B’ v; o, y)=ZL 4, n 2"Y"
(x+m+n)(B+m)
(m+1)(y +m+n)" ™"

Then Am+l n=

Write §$ =2 Then, as in § 1.2, we see that ¥, satisfies

a,fﬁ yay

the differential equation
[+prm@+m-L90+s4y-1]2=0

and a similar result is obtained by considering the relation
between 4,, , and 4, ,..,.

Now write p, ¢, 7, s, t for the first and second order partial
derivatives, and we find that the function F, satisfies the equa-
tions

(2(l—2)r+y(1—2x)s+{y—(«+B+1)x}p—Byg—apz=0, }
Hy(-pt+z(1-y)s+{y—(x+F +1)ylg—Bzp—ofz=0
Similarly we find that the other functions satisfy the equations

fe(l—z)r—zys+{y—(a+ B+ 1)2}p—Byg—afz=0, }
ly(Q-y)t-ays+{y' —(@+f + ylg—Fap-ofz=0)’
7 % (-—z)r+ys+{y—(2+ B8+ 1)x}p—aBz=0, |
*ly (l—y)t+ws+{y—<oc'+8'+l)y}q—a’ﬁ'z=0}
1 z(l-x)r—y*t—2ays+{y—(a+B+1)x}p
—(e+B+1)yg—afz=0,

ty(l—y)t—a2r—2zys+{y —(@+B+1)y}g
t —(x+B+1)ap—aBfz=0

9.3. Expression of the functions F,, F,, F,; in terms of
definite integrals. The functions F,, F,, F, can be expressed
in terms of double integrals. The formulae are

o HAEENOEP)p s g, v )

4

=fjuﬁ—1vﬁ “1(1 = gy = 0)7BF -1 (1 —uz — vy)~*dudy

taken over the triangle # >0, v2 0, u+v<1;
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r LBIY(y—-B Iy —§
@ L& (’81)1(?()?[\(5)) OB Py B By, o % w)

101
=f I w18 -1 (1 —u)y=-B-1(1 — o) -B-1(1 - uz — vy)-*dudv;

rg)r r
(3) &) (/31)1(),()7! A= @F(a, «; B, By x, y)

=f uB— 1B -1 (B—y — o)y —BF -1 (1 —ux)=* (1 —vy)~~ dudy,

taken over the triangle ¥ >0, v > 0, w + v < 1. The parameters are,
of course, supposed to be such that the double integrals are con-
vergent. The formulae are readily proved by expanding the inte-
grand in powers of x and y and integrating term by term. There
appears to be no simple integral representation of this type for
the function F,.

The function F, can also be expressed by a simple integral, the
formula being

F()T(y-
(4) le—(gﬁ-)ﬁ’l(a;ﬂ,ﬂ’;y;x,y)

1
I w*1(1 — )= (1 —ux)=B (1 —uy)~F du.
0

The four functions can also be expressed as double contour

integrals taken along contours of Barnes’ type.

94. Transformations of the functions F, and F,. Consider
the integral

1
f w1 (1 — )= (1 —uz) B (1 —uy)~F du,
0
which occurs in §9.3(4). There exist five changes of variable

which leave unaltered the form of the integral, namely

v v
u=1-v, U=-—-— Y=——
1—z+vx’ l—y+vy

1—-v» 1—v
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On making these changes in the variable, we are immediately
led to the following transformations:

(1) F, (8. 8712,9)
—(1—z)F(1- )-Hl(y “ B By ,_}L),

rlx

3) =<1—y)*~F1(a; By—B-F3 7 "{:'Z, - %),

(4) =(1 -z B(L-y)FF (7 a;y—B—=8, 8y 2, ?Af)

(3) = (0 =2)BA =gy Fy(y—i B y= B 1 {0 1).

When 8'=0, (1) and (2) rcduce to §2.4(1) and (4) reduces to
§1.2(2).

The above formulae show that there are at least six solutions
of the differential equations satisfied by F,. It has been shown
that there are 60 integrals of these equations,* each integral in-
volving a function ¥, and that there is a linear relation connect-
ing any four of these integrals. The 60 solutions correspond to
Kummer’s 24 solutions of the hypergeometric equation.

Similarly by considering the double integral

1 p1
J f wb- 1981 (1 —u)y=B-1(1 — vy —F-1(1 —uzx —vy) *dudv,
0Jo

which occurs in §9.3 (2), and making the substitutions

(a) u=1-v, v=v,
()] u=u', v=1-9"
(c) w=1—-u'", v=1-v

we deduce the formulae
6) Fy(e; B, By, vs % 9)

’ ! x
e By v B s o 1),

1-2" 1—2

* A table of these G0 solutions is reproduced in Appell and Kampé de Fériet,
loc. cit. pp. 62-64.
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’ ’ t x y

7 —_ - - - — . - o — v_
(7) (1-y) Fg(a,B,y B,y,y,l__y, l—y)’
x

— P —a . - ' Q. L e

(8) (1-z-y) Fz(“"}’ By =Bivys =i ooy
L

There do not appear to be similar transformations for the
functions F; and F,.

9.5. Cases of reducibility of F,, F,, F;. As particular cases
of the formulae (4), (3) and (8) of § 9.4, we have

(1) Fy(a; B, 85 v; x, x)
=(1 _x)y—a-B—B'F(y—a, y—B8-F;v; %
=F(a, B+ y; ),

(2) Fui BB BB 9)=(1-0)"F (= B B+ 53 1=2),

(3) Fo(s; BB B Y5 2 y)=(1—x)'°‘F(°" B y’;'i'z—).

x/

Of these formulae the second shows that the function F,
reduces to an ordinary hypergeometric function when y =8+ f§/,
and the third shows that F, similarly reduces when y = 8 (or, by
symmetry, when y' = g’).

Now, from the definition of #'|, we have

Fi(e; 8, 5 v; =, J)— Ozzr(iﬁm"‘ﬁ‘(a+m B y+m; y)am

= {: () (B)m(l—y)‘ﬂ F(y—% B y+m,; —%y)w"'

() 1
_ (B)m Y- a) n B )n ¥ \"
— B m
1 J) mZOnEO m!in! (7)m+n ( 1-1 ) ’

and so
(4) Fi(; B, B yiz 9)

==y # By B iy — ).

Thus the function F, can always be expressed in terms of F,.



80 APPELL’S HYPERGEOMETRIC FUNCTIONS

Conversely, the function F,(«,a’; B, 8';y;x,y) reduces to the
fanction F; when y=a+a'.

Now F, reduces to an ordinary hypergeometric series when
y =B+ B’. Thus the function F, similarly reduces when

y=ata'=f+f,
the formula being
(5) Fyle, y—o; B, y—Biyv; 2, ¥)
=(1—y)*F=> F(«, B; v; x+y —xy).

We now show that the function F, can always be expressed in
terms of F,. For

(1- y‘BFz( BBy w2z —lfy)

=(1—y)F E (B)mx"‘F(oc+m B —-—y—)

m=0 m’()’)m -y
2 (Bl m
=mz=o m'( EaIc) FFs =mi o 9)
A B)"‘F(B —m; 1+ 8 —a—m; 1—y),

m=0 M. (7) (a)n

the last step following from §1.4 (1), though it can easily be veri-
fied by simple algebra since the series terminate. We thus have
2 8 BB B)(=m)y

m=0n=0m!n'( m l+ﬁ —a—- m)n

czo: b (B)n+s(°‘ ﬁ)n+s(B)n(_l xn+s(1 y)"

(-9

n=03=90 stul(y)ps(1 4+ B —a—n=3),
- (ﬁ)n+s(°‘ B ﬁ)
= Y T Windsi® [ /M /n n+s n
n= 0920 810 () nte s (1-y)",
and so
(6) (l_?/)—B’Fz(“; B, By a2, —-l—g?/)

, =F\[Ba—F, B yizz(1-9)],
which proves the result.

This formula also shows that the function F, reduces to F,
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when y'=a. Now the function F; on the right of (6) reduces to
an ordinary hypergeometric function when y =«. Thus

Folas B, B3 v, v % y)
similarly reduces when y =9’ =a. The formula can be written in
the form

(1) Fple; B, B @, 25 2, y)
~(=ay Py # F(p Bim o ),

and this can be proved very easily by expandmg the right-hand
side in powers of x and y.

9.6. A case of reducibility of F,. The cases of reducibility
given in § 9.5 have all been known for a considerable time, and
are all given in the treatise by Appell and Kampé de Fériet. In
this paragraph a formula will be given which has only been dis-
covered quite recently.* This formula is

(1) F,[a, B; y,a+ﬁ 'y+l'z(l—Z) Z(1-2)]
w B y; 2) F(x, B a+B—y+1; Z),

and is valid inside s1mply-connected regions surrounding z =0,

Z =0 for which
lz(1-Z)}+|Z(1-2) |t <L

If we change z, Z into 1 — Z, 1—z, we see that
(2) Fyla, B3y, 2a+B—y+1;2(1—-2), Z(1-2)]
=F(a, B;y; 1-Z) F(x, B a+B—y+1; 1-2),
inside simply-connected regions surrounding z=1, Z=1 which
satisfy the same inequality as before.
The formulae (1) and (2) give the complete expression of ¥, in

termsof ordinary hypergeometricfunctionswheny +y" =a + 8+ 1.
To prove (1) we first consider the function

— ) (1 —y)B . oo _ Y )
(= PR o5 = (i~ ey 1)
which is an analytic function of z and y when {x| and |y | are

sufficiently small, and can therefore be expanded in a double

* Bailey 11 and 13.
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series of powers of  and y. The coefficient of ™y*in this expan-
sion is

- ;: ('x)r+s (B)H-g (=1y*+*{x+ T+ 8)im_r (ﬂ +7+8),_;

r=03=07!8!(7)r(7')s (m—r)!(n—s)!
_@n (Bl g g (xtm) (Btn), (—m), (=),
T Tminl 2o r1s1(y), (¥')s
=& lBh s, —n; ) F Bt —m3 )

m!in!

_ (a)m (ﬁi)n_('yl - m)n ('}’ - B_ n)m
- MIR! () (D

(@) (B). (1 +°‘_'y')m(l + Bf Y)a (7'—/3)7"3—@’
m!n! (y)m(yl)n(l +°‘_'y,)m—n

Now, if y + 9" =« + 8 + 1, the factors*
(y=Bhm—n and (l+a—y)p,
cancel, and so we obtain

(1—z)-o(1—g)F
___ & oy
< Fi( 85, 7' o=y’ (l—x)u—y))

- (“)m(B)n()’_B)m(y'—a)n st
L mala e, Y

=F(a,y—Bsyv; ) F (B, v'—a; 95 y)

. o et Y
—(=ay s (1=gy PP (s By -5 ) P (e By - 1E5).
and this is equivalent to the formula stated. It has been proved
for small enough values of || and | ¥ |, and therefore of |z | and
| Z |, and the complete result follows by analytic continuation.

If « is & negative integer, (1) can be written

F4[_n’ ﬁ+'n; Y ﬁ_‘}"l'l; ZZ, (l—z)(l—Z)]
=F(—n, B+n; y; 2) F(—n, B+n; B—y+1;1-Z).

* If m <=, an expression such as (a),,_,, must be replaced by ( ~ 1)»~"/(1 -a),_ ..
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The second series on the right can be rearranged in powers of Z,
and we obtain

(B) Fil-n, B+un;y, B—y+1;2Z, (1-2)(1—2Z)]

- ( - l)n (Y)zg
(B —y+ 1 )n
a formula due to Watson.*

There are other cases in which Appell’s functions of two vari-
ables reduce to ordinary hypergeometric functions, but the cases
given above include those in which the number of conditions
satisfied by the parameters is as small as possible.

F(—n,B+n;y;2)F(—n, B+, y; Z),

* Watson 2. See also Watson, Theory of Bessel Functions (1922), § 11.6, where
the formula is used to prove Bateman’s expansion.



CHAPTER X

SOME MISCELLANEOUS RESULTS

10.1. The theorems of Cayley and Orr. In 1858 Cayley*
published, without proof, the theorem that, if

(1 —2)*#B~r F (2«, 28; 2y; 2z) = g‘. a,z",
then "= « ),
) 1. _y
Fa, By+42) Fy—a, y—Biy+3};2)= z 0(y+z)"

Cayley stated that he had discovered the result in discussing
certain relations in planetary theory. It was not until forty years
later that a proof was published by Orr,§ who discussed the
differential equation satisfied by the product of two hyper-
geometric series, and obtained several additional results. The
main results given by Orr may be stated as follows:

If (1—2)e+B-r-t F (24, 28; 2y; 2)=Sa, 2",

then (y+1)
sy 2) Fly—at} y—B+d y+1;2)=2 L 20 on
Flo, B3y;2) Fy—a+}, y—B+3 y+1;2) (y+1)nanz

and if (1—z)xBrtF(2c—1, 28; 2y—1; 2)=Za,z2",

a,z".

=3,
=0, e

Several proofs of these results have been given,} but it is only
during the last few years that a proof with any real claim to
simplicity has been discovered. §

If we compare coefficients of 2 in the products, the identities
to be proved are seen to be

2a, 23: —n; _('y_a)n (Y—B)n
(1) 3F2|:2y, 1+a+ﬁ—y—n]_(7)n(7—a—ﬁ)n

then F(x, B;v; o) Fy—a+4,y—B—3%;y:2)=

,d—y—n, —n;
x o F, 2, B, 4—y—n, ) :I,
y+4 l+a—y-n,1+B—y—n
* Cayley 1. t Orr .

1 Edwardes 1, Watson 4, Whipple 6 and 7.
§ For the proof given here see Whipple 7.
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21, 2B: —n; (‘y_a+%)n ()’—)6‘*';)
2 F = =R
( ) 3 2[27’%+a+8~7_n:| ('y+‘})n(7'+%_a—.3)n

XF[ YT
}/,%+fx y—n,3+B-y—n

2a—1, 28, —n; (yzot by ly=F=1h
3) ,F {y=B=1)
() : [ 7 "+u+ﬂ Y- n:l ( )n(‘y+l—a B

< F [ B l—y—n, —n; :l
T Y dta—y-n3+p—y—n]l

It is convenient first to prove (2) and (3). The series on the right
of (2) and (3) are Saalschiitzian. If we change «, y into « + 3Ly+3
in (3), the right-hand side of (3) can then be transformed into the
right-hand side of (2) by §7.2 (1), the transformation of termin-
ating Saalschiitzian ,F;. Thus (3) follows from (2).

To prove (2) we use the transformation of Saalschiitzian o8,
already referred to, the transformation of a nearly-poised 3 Fs
into a Saalschiitzian ,F; (§4.5(1) with ¢ =1 + la), and also the
formula*

y b, =0l (e—a),(f-a) l-s,a, —n;
F.|¢ W lj =)y »
82 e, f (e)n(f)n l:l+a’°'f_nxl+a’_e_n:|

where s=e+f—a—b+n.
We thus find that

2a, 28, —n;
3F2|:27,%+a+3—7—n:|
=(_é+a_ﬁ+7)n(2y_2a)q [201,%4-0!-*-3—%—";
n(d—a—B+yh P2 A+a—B+y, 1+20L—2'y—n]
_Gte—B+y) & l:a,}’—ﬁ, 2y+n, —n;
(l_a_ﬁ+.),"4 3 el ’)’+‘%,%+K—B+’}’:|
g%#?+7)n(% B+ ) F « B, —y—n, —n;
(% a—B+7y)( 7+%)n4 3 Y, b +a—y—n, t+B—y— n:I
and (2) is proved.

* In the notation of Chapter IIT this is the relation between Fp(0; 4, 5) and
Fp(2;4,5). It can also be deduced from § 7.2 (1) by substituting for » in terms of
the other parameters and making x tend to infinity.
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To prove (1), multiply (2) by v, change «, y into« + 1, ¥ + 1in (3)
and multiply by «, and subtract term by term. We then find that

F [2«, 28, —n; :I

2 2y+1, b+atB-y—n
_y—atd) (y—B+1), %, B, —y—mn, —n; :I
Tyt ie—p, )’+1 Ptoa—y-nf+B—y—nl
This is (1) with y + } instead of y, and so Cayley’s theorem is

proved.
When y =« + 8, Cayley’s theorem becomes

)

a result due to Clausen.*
Similarly from Orr’s theorems we obtain

CR I L T e it

o, Bz 20,281,004 B—1;2
© F[ ] [a+ﬁ 3 3F2[2a+2ﬁ—2,a+ﬁ—%
both of whxch were given by Orr.

10.2. Somesimilarresults. Furtherresultsofasimilarnaturet
can be obtained by using the transformation § 4.5 (1) of a nearly-
poised series into a Saalschiitzian ;F,. When the nearly-poised
series is also Saalschiitzian, the ;F, reduces to a ,F';. We can thus
prove for example that, if

wt B 20, 28, y; n
(1—z)e+B-r-t p, [2% ot Bt %] Za,z",
I: %+7_“’%+7 B)z] s ('y+%n
a+B+% Zy—a—f+} (Zy—a—B+1),
The identity implied is
20, 28, v, —m;
o ‘F3[2y, at+B+1, %—n+a+ﬁ—y]
= (%’+7_°‘)n (%+7— B)n
+dF—a—B+y)
N « B, d+a+B—2y—n, —n; :I
U3 tra—y—n, 3+B—y-n, a+B+3l
* Clausen 1. 1 Bailey 14.

then

- @, 2",
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To prove this identity, we have

F [21, 23, Y, —1;
L2y, a+B+} t—ntatf—y

_(2y—2a), (3 +a—B+y),
(2y)y (3—a~B+v),

< F |:2a, fta+B—vy, 3 +a~8, —n;
s tta—B+y, I+a+p, V—n+20—2y

(%+gljwﬁ+7)n F [“ ati, Zy+n, —n; ]
(%’ “—18‘*')’)"4 3 §+d )3‘*')’: ')’+§; a+ﬁ+%
_(3

(3+y— “Liﬁ_x:_ﬁ)n
+ 7)11 (3-a- B + 9
< F I::x, B, 3+a+B—2y—mn, —n;
47 3| 1 ey 11]1°
bHB—y—n f+a—y—n atp+}
Here we have used §7.2(1), then §4.5(1), and finally §7.2(1)
again.
Further results containing more parameters can be obtained

from §4.7(1). Replacing d in that formula by 1—-n—d, it is
easily shown that, if

NaLE
y 3

B, 3(y+3), 3(y+8-1);.42(1 —2) (y+8—1)
F _ -
: [HB 7, 8 :l_z (@+p),

Similarly, by changing b, w into 1 —~n b, 1 —n —w in the same
formula, we see that, if

P[* B 6 5] e
Y Y
then

N B, 8, y—o; —22d (1 ~2) _ (¥),
=2 3[ v 3(B+8), 3(B+3+1) | “(B+9),

then

a,z".
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As a particular case of the first of these results, take y =8=§8,
and we obtain the quadratic transformation of Gauss

a,B 4z(1 24, 2ﬁ;z
(2) F oc+ﬁ+2 ] [a+ﬁ+%

Again, taking §=a + 8-y + 1, we have

o YL
_.F, I:a B. ;J(ra; f’+a1l,ﬁ%_(o;:ﬁl); 4z (1— z)]

b

which can also be deduced from §9.6 (1).

10.3. Darling's theorems on products. From §1.2(2) it is
evident that

(1) 2F1(°‘, B; v; 2)oF1(1—a, 1-185 2—y;2)
=oF (a+1—y, B+1—y; 2—y;2), F{y—x, y—8; y; 2).

This relation and §1.2(2) have been generalized by Darling,*
and the generalizations apply to series of any order. For series of
the type 4F, the formulae are

P R A e e
2-8,2—¢

_e—1 a+1-8, B+1—-8, y+1-35; 2
- 2-8, e+1-98

8—a,8—8,8—y; 2
X3F2[ 8, 8+1—e ]

3—1 F a+l—¢ B+1—€, y+1l—¢; 2
S—ed 2 2—¢, 3+1—¢

gl e=B e—y; 2
X3 2[ €, e+1-—35 ’

4

* Darling 2. For the proofs given here see Bailey 9 and Burchnall 1.
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and
(3) (1_2)a+ﬂ+y-8-e3F B 7" :|

_e—1 ¥ 8—oa, 8—B,0—y; 2 1z
T e—93% 2 8,0+ 1—¢ 3 "2 e—l e+1—3

1 €E—a, €— 0—a,0—PB, 8—y; 2
[y FI: ee+l— :Ist 8—1,8+1—¢ :l’
which reduce to (1) and §1.2(2) when y =€ > 0.

In order to give a proof which is applicable to series of any
order, it is convenient to write

% P,y 2
A=3F2 g: ]7

a+1-8, B+1-5,y+1-8;2
2-8,e+1-38 ’

e at+l—e€ f+l—c,y+1—¢;2
C=z 3F2|: 2—¢,8+1—¢ ’

’ 1_“)1_ 91_ ) %
4 =3F2|: 2—8'82—6)/ :I’

B’=z3-13F2[8—°" 8B, 3~y; z]’

B=21"%F,

8’ 8 + 1 — €
' =261 F [ v, z:l
€, €+ I - ?
dB dC |
and A= . |
B, C
Then (2) and (3) can be written as*
(4) 44 ="Lpp 3 1loe,
€ — 8 8 — €
(5) A= (E — 8) zl_S—f (1 —_ z)3+c—a—‘9_1_1 A'.

* (5) expresses A’ in terms of B, ¢ and their differential coefficients, whereas
(3) oxpresses A in terms of B’, C'. The two formulae are, however, equivalent.
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By comparing the coefficients of z* in (2), we see that the
formula to be proved is

% =1y (=7, (B=r)uly =7

,=0r!(n—r)‘(8—l .r)n+1(€ r)n«}-l
L3 (1 (e1-8 _7_~_)L,_(ﬁ_t_1_§—r)n(y+1—3 -7,
r=0 7'!(71,—7‘)'(1— r)n‘il(e ’r)n+1
< (—l)r(a+l_€-7)rz ﬁ+l—€-—-7‘)n(‘y+l—€—7‘)n=0
+r§0 r'(n T) (l_e_r)u-i-l( T)n+1 .

Now consider the integral

f (a—‘g)n (ﬁ_'s)n (’)/"'s)nds
(-—8),1_“ (-1 —8)ns1 (e—1 _8)n+l,

taken round a large circle | s | = R. This integral evidently tends
to zero as R — o0, and, equating to zero the sum of the residues at
the poles, we obtain the required identity.

To prove (5) we consider the integral

f (1—3)" (B s)n (}’ S)n
(

- 'g)n—m-i-l (8 8)1&1 (5 -1- 3)n+1

where m =0, 1, 2. The case when m =0 has already been con-
sidered and leads to (4). When m =1 and 2 we find similarly that
dd e—1 ,dB 5—1 ,dC
dz e—BB dz S—en dz’

,d2A e-1 _ d*B &6-1 . d*C a
O Y-S e e taay

6) A=

where a is a constant. In the case when m =2 the integrand is

—§+0(812) and so the integral —~—2mi as R—+>oc0. The term

afz? (1 —z) arises from the series £ z*-2. Whenn <m — 1, (—8),,_ni1
n=0

must be replaced by (—1)y"-"-1/(1+s),,_,_,, and the identity to
be proved connects two series instead of three. The corresponding
powers of z in (6) and (7) are then negative.
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From (4), (6) and (7) we find that
A GA
Yz
where A1=I d*4 d*B dC

@& A
a4 dB dC

dz’ dz’ dz
. 4, B ¢ |
. dA 34 d3B  d3C
Evid e SEE e tig
vidently dz dz8’ d23° d2® l
g{l_ dB ac |-
dz’ dz’ dz ’
A, B, c
But, by §2.1, 4, B, C satisfy a differential equation of the form
d”y dz dy
3;3 + Q + Ry 0
where P= 8+e+1—(a+B+y+3)z
z(l—2)
It follows that
dA,
= PA,,
so that Al = be—TPdz — hy—B+e+D) (1— z)5+c—a—ﬁ—y—2,

where b is a constant. Thus
A=MA'Z-0¢ (1 —zpre—ap-y-1,

where M is a constant. Equating coefficients of z21—%—< we find that
M =e-38, and so (5) is proved.

Exactly similar results are true for series of any order, and they
can be proved in the same way.

Similar results are also true for basic series. Thus, by con-
sidering the integral

J (as)q,n (ﬁs)(],ﬂ (Ys)q,n ds
(

s)q, n-+1 (Ss/q)q, n+1 (GS/Q)q.n+l
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round a large circle, we can prove that

o o

_8(g—¢) q/8, 9B[S, qv[3; 7 /o, OfB, 8ly; aPygz[de
(8- e)“q)zl: 4%/, ge/d ]3%[ 3, gd/e ]

e(q 5) qufe, qBle, qy/e; 2 efa, /B, €ly; afyqz[de
—8)° 2[ q%le, gd/e ]3(1)[ €, ge/d :I

This is the analogue of (2). The analogue of (3) is

" q,[ B Selebr] [ 3]

dfw, 8/B, 8ly; ¢z efa, €/B, €ly; 2
q(a—e)“ 2[ 8, gbe :I“(Dz[ €/q, qe/d ]
€(g—9) efa, €/B, €ly; gz 3/, 8/B, 8ly; 2
+esym ], Mgt

If we put y = € and then let € - 0, this reduces to Heine’s formula
§8.4(2).

10.4. Partial sums of hypergeometric series. A number of
theorems have recently been given which express the sum of »
terms of an ordinary hypergeometric series with unit argument
in terms of an infinite series of the type ;%,. The subject had
previously received some attention from Hill and Whipple,* but
new interest was aroused by a theorem due to Ramanujan, who
stated that

(1) ;ﬁ(;) nl it (1.3) n-|1-2+

~{eme) (1o (a) + (28] +vom terms].

This was proved by Watson and Darling, and generalized by
Whipple, Hodgkinson and Bailey.t The method used by Watson

* Hill and Whipple 1, and Hill 1 and 2.
t Watson 7, Darling 1, Whipple 8, Hodgkinson 1, Bailey 8 and 7.
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is particularly simple. In §3.8(1) put c=f+n—1, where 7 is a
positive integer. Then

F I:a b, f+n—1 _T(e)l'(e—a-b) a, b, 1—n
“T(e—a)T(e—b)° 2[a+b——e+l,f

Now let e > @ + b+ n, and we get*
@) LF, [“’ fb;] to n terms

_L@+m)lb+n) ol b f+n-1;
"IP)T(@+b+n)* 2L f,a+b+n
Ramanujan’s result is the particular case of (2) whena=5=1},

S=1. The method of proof applies when f > a + .
A more general result ist

3) Fx+m)I(y+m) [m y vtm—1 to n terms

Pm)T(x+y+m)* 2 v, 2+y+m

_P+n)'(y+n) [x ¥, v+n—1

"Tm)Fx+y+n)* 2L o, x+y+n:| to m terms.

We can evidently suppose that #» >m. Then, in the terms of the
series on the left, the factors v + 7 in the denominator cancel with
factors in the numerator when 7> m — 1. Thus if we multiply by
(v),n_1 We obtain two polynomials in v of degree m — 1. If therefore
we can prove that these polynomials are equal for m values of »,
we have established the result.

Now for each of the m values v= —n+1, —n, ..., —n—m+2,
the partial series become complete hypergeometric series which
can be summed by Saalschiitz’s theorem and the verification is
immediate. When m — oo the theorem gives (2), and the proof is
valid for all values of the parameters.

The series 4 F; in (2) can be transformed in many ways by the
transformations of Chapter III. In particular, by using the

* Bailey 6.
t Bailey 7. Three proofs are given there.
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relation between Fp (0; 4, 5), Fp(4;0,1) and Fp(1;0,4), we find
that

(4) F,[« B;v] to n terms

_[‘(1+a_y)1‘(1+/3—y){1_ (@n (Bln_ g l:l_“’l_ﬁ’n;:”,

"TA—y)F(1—y+a+p) nl(y—1), ¥ L 2—y,n+1

a result which is due to Whipple.*
Again from (2), using the relation Fp (0;4,5)=Fp (0;1,4), we
find that

(5) 2F1 [a, B;)’] to n terms

_ P{e+n)'(B+n) F ['y—a,'y—ﬂ,'y—l+n;:|
"T@T(a+B—y+1)T(y+n)* ? Y, y+n ’
which was given by Hodgkinson.f In both (4} and (5) it is assumed

that R(a+8+1—%)>0.
Now Whipple’s transformation § 4.4 (5) can be written

Lz, Y %
4F3[ %, v, W :I
Fo+w-)F(A+z-w)PQ+y~u)(1+2-u)
Fl+y+z—uw) ' +z+x—w) L (M1 +2+y—u) (1 —u)
a, l+%a, w—t, v-t, x, 9,z :I
u ’

x . Fyg da, v, w, 1+y+2z—u, 1+24+2—u, 1 +x+y—
where a=2+y+z—u, ut+v+w—t—r—-y—z=1,
and one of ¢, z, ¥, z is a negative integer.

Put t=1—7» and let #— 1—n. Then we find that]

(6) SF, [x’vy’wz; to u terms
_Tw+w+n-1)T@+n)T'(y+n) I (z+n2)
"T@T(y+2z+n)Tz+ax+n) L (z+y+n)

a, 1+%a, w+n—-1, v+n-1,z, vy, z;
}a, v, w, y+z+n, z+x+n, z+y+n |’

x 3 Fg

® Whipple 8. See also Hodgkinson 1; his first formuls is equivalent to (4).
t Hodgkinson 1. i Bailey 6.
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where a=x +y+2 +n— 1 and the series on the left is restricted to
be Saalschiitzian. This reduces to (2) when we substitute for w
and let z— co.

The well-poised ,Fg in (6) can be transformed in various ways
into two Saalschiitzian ,F, by § 4.4 (4) and § 7.5(3). In particular,
using the latter formula, we find that

(7) F, x,v1 ,wz;] to n terms
_FE+n)Ty+n) T (z+n)
T +n-1)(w+n—1)
{ ) I'(w) T (w-v)

“Torn DT (w—2)T(w—g)T (o —2)

V-2, v—y, V—2, V+n—1;
X F ’
4 3|: v, v+1—w, v+n :I

+ IF'@I'e—w)
Tw+n— )T w—a)Fv—y)T(v=2)

wW—x, w—Y, w—2, w+n—1;7)
X o F'y ,
w, w+l—v, w4+n

where v+ w=2+y +2+ 1. This result was given by Darling.*

Similarly from §6.8(3) and §7.6(2), the relations connecting
four well-poised 4Fg, by putting c=1—n where n is a positive
integer, and then letting 6 —»a + n, we obtain two formulae each
of which gives the sum of n terms of the series

7 a, 1+1%a, d, e, i g, h;
e ta, l4a-d,1+a-e l+a—f l+a—g, l+a—-r]’

where 1+ 2a=d+e+f+¢g+h, in terms of two infinite well-
poised series. The formulae are very complicated and their only
interest lies in the fact of their existence.

* Darling 2, p. 335.
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1. Prove the following results, subject to convergence conditions:

3
(i) 8+(8+2)( ) +(s+4) {81‘;—"521—)} +...

smmr T{3s+ 1T {31 —3s)}

n (T'{: (1 —s)})? ’
(ii) 3—(s+2)< ) +s+4) [Ll%—)} .= 30
x— (z—1)(x—2) _
(lll) l+3.’t 5m =2,
. (x—1)(x—-2) _  _
-1 z-1)@E=-21°_ _(T@+hPTEz=1)
v) 1_3(:c+l) +e {(z+l)(x+2)} (T (2))° '
1— 1 l(:t—l)(x—2)_ _2“{P(Z+1)}4
(vi) 3x+l+5(w+15(x+2) T 42 {T(2x+ DI
(@=1) (z—2)}? % (T(z+ )T (dz+1)
vii) 1+( wy +{(:v+l)(x+2)] ol TRerFE
2wyz

il 1=+ D+ D)

2x(x—Nyly-1)z(z-1)
(x+ D(x+2)(y+ 1)(y+2)(z+l)(z+2)
T+ )T+ YT+ YT z+y+z+])
T Ty+z+ 1) T'z+z+ H Tz +y+1)

[Dougall and Ramanujan. Sce Hardy 2.]

2. Prove the results:

(i) 1—5(%)3+9( ) ~13( )+ =2,
(ii) l+9(1\ +17 (l g) 5(47%> =\7%}/(2¥_)_}§,
PO R .

o 1-()'+ (2 ’—(é%%)’+~~-={$’m} -

[Ramanujan. See Hardy 8 and Whipple 4.]
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3. Prove that
. i‘, ‘%‘l‘z) %—-’L’; -1
. n'z
“V2sinma T3z + DT+ HT(E— ) T({ - =)’
.. 4z + 4y, 6z, 6y, t+r+y; —1
(i) ‘F’[ 1-2x+4dy, 1+42—2y, $+3x+3y :I

P T(1+4x-2y) I'(1-22+4y) I (3+32+3y) T (1 +2+y)
TT3+3) T (3+3yn P (l+z-2y)T(1-2x+3y) T (1 +4x+ 4y)’

a, 1+3a, +x, 32, +y, —y; -1

(i) “Fs[ éz, éj—a x,%+a+x,«}iayy, {riaﬁ-y ]

nl(3+a+x)T({+a—x)T(d+a+y)T(d+a—y)
= 37a- 11‘((1)F(l+a)I“{%(l+a+x+'y)}r{§(l+a+x )} :
T(h(1+a—-z+y) T3l +a—z-y)
[See Whipple 2, where further results of this kind are given.]

4. By comparing coefficients of powers of , prove the formulae:
(i) F;(a;p,z)lF (%5 p; —2)=2F3(x, p—; p5 4p, $p+4; $27),
o o= x? _ }

) {1+ ) -t
3!x? 6!xt 918

Trep T @ray @’

(iii) Fy{a, B a+B+34x(1—2)}=.F (2a, 28; x+ B+ 4; x),

—4x
(IV) (l_x)_aalpz[%a, §+§a, l+a——b—o; (“1—1‘)2]

=]~

14a-b, 1l+a-c

_ a, b, ¢
"F’[ l1+a~b, 14+a—c ]

each of the formulae (iii) and {iv) being valid inside a certain region sur-
rounding the origin. For example, (iii) is valid inside the loop of the
lemniscate | 42 (1 —z) | = 1 which surrounds the origin. Show that inside
the other loop of this lemniscate

(V) oFi{o, B a+ B+ dx (1 =)= F, (20, 28; x+ B+ 4; 1—-2).
[See Bailey 1, where further formulae of this type are given. (i) and (ii)

are due to Ramanujan, (iii) is Gauss’s quadratic transformation, and (iv)
is due to Whipple.]

5. From Ex. 4 (iv) deduce §4.5(1) by multiplying by (l z)e+m-1 gnd
equating coefficients of x™,
[Bailey 2.]

6. By comparing coefficients of powers of , prove that

—4
(1+x)(1_x)-u—1spz|:%+%a. 1+4a, 1+a—b-c; (l_—;’),]
l+a-b, l+a-c

=,F [anl‘}’i‘a; b, c; x
TaTs ta, l+a—-b,1+a-c |
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By multiplying by (1 -=x)¥*™—! and equating coefficients of ™, deducc
§4.5(2).

[Bailey 8.]

7. Obtain theformula§3.8 (1) by multiplying § 1.4 (1) by 29-1(1 —z)/-4-!
and integrating from 0 to 1.
Similarly from § 1.2 (2) deduce the formula

F [0‘1’ g, ag; | _ L (Bg) I'(B + By — oy — g —t5)
i - P(Byi—ay) I' (Bt Br—o1— )

. F ﬁl—“vﬁl—“v“s;].
3 2[»81- BitBr—y—oy

{Hardy 2.]

8. Prove the identity
F a, l+4%a, id, 1+id, a-d,14+2a—-d+m, —m;
e da, l+a—3d, $+a—-3d,14d, d—a—m, l+a+m
_ {(1+a)u(t +2a—2d),
“(M+a=d)n(l+2a—d),’
where m is a positive integer.
(Bailey 3.)

9. Prove that

F V+H+l’ V+ta V_M+l; — P(2II+2)
2 2042, v+ RN TSN CETES)

N {¢(v+p+2)+¢(v—p2:.+2)_¢(v+;+l)_¢(v—g+l>}’
where (z) =T (z)/T (z).
[Watson 1. See also Hardy 2.}

10. Evaluate the integral
f T (=)L (1-8—-8)T'(1—-e—3s)ds
27t )y T(I—a—g)T(1-f—s) T (1—y—3)
by considering the poles on the two sides of the contour, and hence show
that
i B v; T(l-a) T (1= T (1)) T'(8—¢)
%2 5 |TTE-9)TU-al-x)L5-pT(—9)
«+1-8, B+1-=5,y+1-3;
O R LA
- PA-a)T(A-BT(1-y)T()T(e—3)
PER-gT (=3I (e—a)(e— BT (e—)

x 3 Fy a+l—¢ B+1l=¢ y+l—c,
2—¢, 8+ 1—¢

provided that R(§+e—a~B~—y)>0.
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Also deduce this result from §10.3(2). Obtain similar results for series
of any order.

[Darling 2. The second method is used there.]

11. If F(J‘?+8)F(y+s)[‘(z+s)r(t+s)
I(z,y,2,¢; 0,0 1 f Me+tw—-z— y—z—t-.s)l“(_s)ds
e Fw+8)T (w+s)
prove that

I(z,y,2,t;v,0)
I(z)I‘(t)I‘(v+u—t - (vtw—y—z—¢
Tw-o)T(w—y)Tw=2)T(w—1) 7
xI(x, y, w—2z, w—t; v+w—z—1t, w)
I‘(v)F(J)I‘(v+w—1—z—t)F(L+w y—z—1)
Tv—2)T(r=T(w=z)T (w—1)
xI(v—tw—tz,vt+w—r—y—t; v+rw—r—f, e+w=y=—1)
F(r)P(y Pl fe+w—2—z—lr+w—y—2~1)
Fe—a)T(e—y)LTle—a)T (v =0
F(v+w-:r y—2'(v+w—a—-y—1)
Mw—2)T (w— y) Dw—2)T (w—1)
xw—x,w—y.w—z,w—t; w, v+ 2w—r—y—z—t).

Hence obtain three formulae cach connecting four Saalschiitzian series
of the type ,F;. Deduce expressions for the sum of »n terms of a Saal-
schiitzian 3 F; in terms of two non-terminating Saalschiitzian (Fy.

(Tse §6.3(2).]

12. If a —— . f)r—y—t

T {f— i, (f-Fa),

prove that the equations
L ayry =1 (8=0,1,2, .., 1)

a1+, (=n), (f—a),
a+2r  at o Trt (),

are satisfied by x, .=

Prove also that
[}
1: a
%. Xy o=, F, |:-§ féa ] to n+1 terms,

: . _T()l(j=a

and hence that lim o, .=

n» e ;o4 {F.f fa }2'

[The particular case when f={ (¢ + 5) was given by Chapman 1.]

13. Prove that
Fix,24+3—B; v, B+ B 2.y

— 4z |
—1—12’Fzz+ .2.——*“/
( ) 2 1-8 8 v 28; y)z’( y)zl
[Appell and Kampé de Férict, Fonctions izypergeometrlques et hyper-
sphériques, p. 217.]
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14. Prove that
Fla, 8; y;2) Fla, ;5 y; 2)
_LNTy—a—B) ) _ . _ .
TT(y—o)T(y- 5)F4[°‘95’)"°¢+ﬁ y+1;2Z,(L—2)(1-2))]
M+ﬁ P (1 (1 — Zryoat
+ INTNT) {1=2)(1-2)}
x Fyly=B, y=as y, y—a=p+1;22, (1-2) (1= 2))
Provs also that
F(a, Biyi2 F(“»ﬂ,y,Z)

«

=3 E (fl)m+n(ﬁ)m+n()’ fl)m()’ ﬁ)m(zZ)"' (2+Z—ZZ)”
m‘—-O n=0 'm‘n'(}’)m (‘)’)2m+n
[Watson 2. The first formula can be derived from § 9.6 (1) and § 1.4 (1).]

15. If

o, B _ ]- o
1 §)=5=0m=1" 5=Ts 6=173
a(a+1)B(B8+1)
(y=1Dy(y+1)(8-1H3(5+1)
o B\ _pg(v—% y—8B
prove that H(y,S)_H( ’ y+8—a-—ﬁ)'
Prove also that, if H, (a, B) denotes the sum of the first r terms of

Y 8/
H (“’ ﬂ) , then
y» 8

( ) (y y:z’r+8_°t ﬂ)

+...

() (B), H(y—a, y—8 \
(y=1),0-1), \y+r, y+8—a—8/
Deduce from the first result that
1 1 1 1
1000 1012 T 1oz * 103+
and show that a million terms of the given series give only the samc order

of accuracy as three terms of the transformed series.
[Hill and Whipple 1.]

16. Show that, if
(1 —z)e+B-v, F, [2&, 2B. v+ 4 :' Ta,z",

=0-0100502 ...,

2y, a+ 8+13
a Bz —o, y— 8527 _ (Y)n n,
wen  F| O L e

Deduce that

PNt ol S vt ol

(For the first result see Bailey 14. The second result was given by

Orr 1.]
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17. If
— 1= 2+ 10 B+1-4,y+1-0,8+1-(;2
C=z JFal: 2_€’€+]_{’0+1_£ ’
D=21-0 F [a+1—0, B+1—8,y+1-6,8+1—-6;2
AT 20, e+1-8,0+1—0 ’

. l=2,1-8,1—-y,1-3;2
a= [ TR TR 0,

i e ce—% =B e—y, e—8;2
b=z 4F:’|: etl—0 e+1-—0 ]’
prove that
QC_ CdD 60— { "
dz
Show that, by taking
e+l{+0-1—a—B—y=8=0
and equating coefficients of z#, the formula § 7.6 (1) is obtained.
[For the first result see Darling 2.]

~e—§—8 (] 2} +$+0-1-a—P—y-8 ’ ,
(1~2) Y (A dz -B dz)

6—

18. Assuming Murphy’s formula
Po(p)=Fn+1, —n;l;§— )
for the Legendre polynomial of order n, prove that

2n)!
Po ()= gamnss 2 F (3 — s d=nszod),

where 2=y +4/(u2—1).
Hence prove the formula of Neumann and Adams

A, 4,4, ,(2p+2q 4r+1
Poip) Polp)= ﬁ A rer 2p+2q_2r+1> P yiq-ar(p)
1.3.5.. 1)
where A,=—~—T and p>gq.
More generally, if
_ _(m+m)! im . .
P"m(“)_émm!(n—m)!("z_l) F(m=nm+n+l;m+1;4—4p),
where m and n are positive integers and m < n, prove that
. 2= (2n)! L im _
P, W= T WD F (b4 m, m—n; d—n; 27
=2 (2n)! 2 j)-im . -
and = mz”+m(“ D) F({—m, ~m—n;}—n;z79),

4

x«z‘i:w A, WAy A7, (2p+ 2g+ 2m—4r+ l)

;”fq-i-m-w (F’)’

r=v ApToim,  2p+2942m=2r+1
— (% _(%_m)f
where An= (s+'m) 1 =

and p, ¢, m are positive integers such that p > ¢+ 2m, g=m.
{See Bailey 10, where other references are given.]
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19. If

PG B)(I)_(_l)nI‘(n+a+l)

T3 T) F(—n,n+a+f+1;a+1;1—}2),

prove that
o nl{e+p+1),

wmo (2 + T (B+ 1)y

=1+ F1F [ (a+B+1), d(a+ B+2); a4 ], B+1; a%k?, b¥k?)
and

f, n!{a+B+1)

wmo (1), (B+ 1),

(x+8+1)(1

=““(_1_}_t)a_’Tp2_'2)FI[é( +B+2), $(x+B+3); a+ 1, B+ 1; a¥jk?, B2k7,

tnpsta-.ﬂ) (cos 2¢) PS'“' 8) (cos 20)

t(2n+a+ B4 1)t PP (cos 24) PL-#) (cos 20)

where a=sin¢sin®, b=cos$cosd, k=14 ("t +Y). Deduce in particular
that

. 2t (1
=(H-“7)7+73:7F{%(a+3+1)’ A —(f+—’:f’]
g+1

[Cf. Watson 8, where the sum of the second series is expressed as an
integral of an elementary function.]
20. Prove the formulae
() Fyla, By, 1 ta—y;2(1 = 2), Z(1-2))]
=Fyla; B, By 1+2—v5 2, Z),

s . . _ T _ Yy
) B4 o B 85 =i =y ~ (=)
=(l—2) (1l —y)* F,[x; y—=B8. 14+a—y; v; 2, 2yl

From (ii) deduce the formulae

vie F ’—- . . I
(iii) s % Bi a, B T(-x)(l-y)’ l—w)(l—?/)]

=(l—zy) 1 (1-x)8(1—y)*,

. [ . " _ ¥
R R ===l

=(1—-a)y(l—yr Fla, 1+2—8; 8; 2y),

v) Fylo, g5 14+a—8, 8

_ x _ y ]
(I-2)(i-y) (T-2)(1-v)

=(1—y)‘F[a, B l14+a—8; _1'(11_—1‘9) .

[Bailey 15.]

BIBLIOGRAPHY

[This list is largely additional to the bibliographies given in Klein's
Vorlesungen tiber die hypergeometrische Funktion (revised by Haupt,
1933) and Appell and Kampé de Fériet’s Fonctions hypergéométriques et
hypersphériques (1926).]

W. N. Bailey

1. Products of generalized hypergeometric series, Proc. London Math.
Soc. (2), 28 (1928), 242-254.

2. Transformations of generalized hypergeometric series, Proc. London
Math. Soc. (2), 29 (1929), 495-502.

3. Some identities involving generalized hypergeometric series, Proc.
London Math. Soc. (2), 29 (1929), 503-516.

4. An identity involving Heine’s basic hypergeometric series, Journal
London Math. Soc., 4 (1929), 254-257.

5. An extension of Whipple’s theorem on well-poised hypergeometric
series, Proc. London Math. Soc. (2), 31 (1930), 505-511.

6. The partial sum of the coefficients of the hypergeometric serics,
Journal London Math. Soc., 6 (1931), 40-41.

7. On one of Ramanujan’s theorems, Journal London JMath. Soc., 7
(1932), 34-36.

8. Some transformations of generalized hypergeometric series, and con-
tour integrals of Barnes' tvpe, Quart. J. of Math. {Oxford), 3 (1932),
168-182.

9. On certain relations between hypergeometric series of higher order,
Journal London Math. Soc., 8 (1933), 100-107,

10. On the product of two Legendre polyvnomials, Proc. Camb. Phil. Soc.,

29 (1933), 173-177.

11. A reducible case of the fourth type of Appell’s hypergeometric
functions of two variables, Quart. J. of Math. (Oxford), 4 (1933),
305-308.

12. Transformations of well-poised hypergeometric series, I’roc. London
Math. Soc. (2), 36 (1934), 235-240.

13. On the reducibility of Appell’s function F,, Quart. J. of Math.
{Oxford), 5 (1934), 291-292.

14, Some theorems concerning products of hypergeometric series, Proc.
London Math. Soc. (2), 38 (1933), 377-384.

15. Some infinite integrals involving Bessel functions, Proc. London
Math. Soc. [In course of publication.]



104 BIBLIOGRAPHY

E. W, Barnes

1. A new development of the theory of the hypergeometric functions,
Proc. London Math. Soc. (2), 6 (1908), 141-177.

2. A transformation of gencralized hypergeometric series, Quart. J. of
Matk., 41 (1910), 136-140.

J. L. Burchnall

1. Arelation between hypergeometric series, Quart. J. of Math. (Oxford),
3 (1932), 318-320.

F. Carlson

1. Sur une classe de séries de Taylor, dissertation, Upsala (1914).

A. Cayley

1. On a theorem relating to hypergeometric series, Phil. Mag. (4), 16
(1858), 356-357. {Collected papers, 3, 268—269.]

S. Chapman

1. Some ratios of infinite determinants occurring in the kinetic theory of
gases, Journal London Math. Soc., 8 (1933), 266-272.

T. Clausen

1. Ueber die Fiille wenn die Reihe y=1+ Olt.__ﬁ z+ ... ein quadrat von der
Y

Form z=1 +%‘-%,l;~ x+ ... hat, Journal fiir Math., 3 (1828), 89-95.

H. B. C. Darling

1. On a proof of one of Ramanujan’s theorems, Journal London Math.
Soc., 5 (1930), 8-9.

2. On certain relations between hypergeometric series of higher orders,
Proc. London Math. Soc. (2), 34 (1932), 323-339.
A. C. Dixon

1. On the sum of the cubes of the coefficients in a certain expansion by
the binomial theorem, Messenger of Math., 20 (1891), 79-80.

2. Summation of a certain scries, Proc. London Math. Soc. (1), 35 (1903),
285-289.

3. On a certain double integral, Proc. London Math. Soc. (2), 2 (1905),
8-15.

J. Dougall

1. On Vandermonde's thcorem and some more general expansions,
Proc. Edinburgh Math. Soc., 25 (1907), 114-132.

D. Edwardes

1. An expansion in factorials similar to Vandermonde’s theorem, and
applications, Messenger of Math., 52 (1923), 129-136.

BIBLIOGRAPHY 105
A. R. Forsyth

1. On linear differential equations, Quart. J. of Math., 19 (1883),
292337,

C. Fox

1. The expression of hypergeometric series in terms of similar series,
Proc. London Math. Soc. (2), 26 (1927), 201-210.

C. F. Gauss

1. Disquisitiones generales circa seriem infinitam, Ges. Werke, 3 (1866),
123-163 and 207-229.

G. H. Hardy
t. On two theorems of F. Carlson and 8. Wigert, Acta Math. 42 (1920),
327-339.

2. A chapter from Ramanujan’s note-book, Proc. Camb. Phil. Soc., 21
(1923), 492-503.

3. Some formulae of Ramanujan, Proc. Lordon Math., Soc. (2), 22 (1923),
xii-xiii (Records for 14 Dec., 1922).

M. J. M. Hill

1. On a formula for the sum of a finite number of terms of the hyper-
geometric sertes when the fourth clement is equal to unity, Proc,
London Math. Soc. (2), 5 (1907), 335-341.

2. On a formula for the sum of a finite number of terms of the hyper-
geometric series when the fourth element is unity. (Second com-
munication.) Proc. London Math. Soc. (2), 6 (1908), 339-348.

M. J. M, Hill and F. J. W. Whipple

1. A reciprocal relation between generalized hypergeometric series,
Quart. J. of Math., 41 (1910), 128-135.

J. Hodgkinson

1. Note on one of Ramanujan’s theorems, Journal London Math. Soc., 6
(1931), 42-43.

F. H. Jackson

1. Summation of g-hypergeometric series, Messenger of Math., 50 (1921),
101-112.

E. E. Kummer

1. Ueber die hyvpergeometrische Reihe, Journal fiir Math., 15 (1836),
39-83.

P. A. MacMahon

1. The sums of the powers of the binomial coefficients, Quart. J. of Math.,
33 (1902), 274-288.



106 BIBLIOGRAPHY
F. Morley

38 3
1. On the series 1+ (Ll’) + {%g—”} + ..., Proc. London Math. Soc. (1),

34 (1902), 397-402.

W. McF. Orr

1. Theorems relating to the product of two hypergeometric series,
Trans. Camb. Phil. Soc., 17 (1899), 1-15.

C. T. Preece

1. Dougall's theorem on hypergeometric functions, Proc. Camb. Phil.
Sor., 21 (1923), 595-598.

2. The product of two generalized hyvpergeometric functions, Proc,
London Math. Soc. (2), 22 (1924), 370-380.

H. W. Richmond

1. The sum of the cubes of the coefficients in (1 —2)2*, Messenger of
Math., 21 (1892), 77-18.

M. Riesz

1. Sur le principe de Phragmén-Lindelof, Proe. Camb. Phil. Sac., 20
(1920), 205-207; and eorrection, /bid. 21 (1921), 6.

L. J. Rogers

1. Second memoir on the expansion of certain infinite products, Iroc.
London Math. Soc. (1), 25 (1894), 318-343.

2. On two theorems of eombinatory analysis and some allied identities,
Proc. London Math. Soc. (2), 16 (1917). 315-336.
L. J. Rogers and S. Ramanujan

1. Proof of certain identities in combinatory analysis (with a prefatory
note by G. H. Hardy), Proc. Camb. Phil. Soc., 19 {1919), 211-216.

L. Saalschiitz

1. Eine Summationsformel, Zeitschrift fir Math. w. Phys., 35 (1890),
186-188.

2. Uber einen Spezialfall der hypergeometrischen Reihe dritter Ordnung,
Zeitschrift fur Math. u. Phys., 36 (1891), 278-295 and 321-327.

I. Schur

1. Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Ketten-
briche, Berliner Sitzungsberichte, 1917, No. 23, 301-321.

J. H. C. Searle

1. The summation of certain series, Messenger of Math., 38 (1909),
138-144,

BIBLIOGRAPHY 107
W. F. Sheppard

1. b'um.mation of the coefficients of some terminating hypergeometric
series, Proc. London Math, Soc. (2), 10 (1912), 469-478.

J. Thomae

1. Ueber die Funktionen welche durch Reihen von der Form dargestellt
werden: 1+1—1’§,—;’,, +..., Journal fir Math., 87 (1879), 26-73.

G. N. Watson

1. The integral formula for generalized Legendre functions, I’roc.
London Math. Soc. (2), 17 (1918), 241-246.

2. The product of two hypergeometric functions, Proc. London Math.
Soc. (2), 20 (1922), 189-195.

3. Dixon’s theorein on generalized hypergeometric functions, Proc.

Lg;don Math. Soc. (2), 22 (1924), xxxii—xxxiii (Records for 17 May,
1923),

4. The th.eorems of Clausen and Cayley on products of hypergeometric
functions, Proc. London Math. Soc. (2), 22 (1924), 163-170.

5. A note on generalized hypergeometric series, Proc. London Math.
Soc. (2), 23 (1925), xiii-xv (Records for 8 Nov., 1923).

6. A new proof of the Rogers-Ramanujan identities, Journal London
Math. Soc., 4 (1929), 4-9.

7. The(?rems stated by Ramanujan (VIII): Theorems on divergent
series, Journal London Math. Soc., 4 (1929), 82-86.

8. Notes on generating functions of polynomials: (4} Jacobi polynomials,
Journal London Maih. Soc., 9 (1934), 22-28.

F. J. W. Whipple

1. A group of generalized hypergeometric series: relations between 120
allied series of the type F[a, b, c; d, e], P’roc. London Math, Soc.
(2), 23 (1925), 104-114.

2, On well-poiscd series, generalized hypergeometric series having para-
meters in pairs, each pair with the same sum, Proc. London Math.
Soc. (2), 24 (1926), 247-263.

3. Well-poised series and other generalized hypergeometric series, Proc.
London Math. Soc. (2), 25 (1926), 525-544.

4. A fundamental relation between generalized hypergeometric series,
Journal London Math, Soc., 1 (1926), 138-145.

5. Some transformations of generalized hypergeometric series, Proc.
London Math. Soc. (2), 26 (1927), 257-272.



108 BIBLIOGRAPHY
F. J. W. Whipple (cont.)

6. Algebraic proofs of the theorems of Cayley and Orr concerning the
products of certain hypergeometric series, Journal London Math,
Soc., 2 (1927), 85-90.

7. On a formula implied in Orr’s theorems concerning the products of
hypergeometric series, Journal London Math. Soc., 4 (1929), 48-50.

8. On series allied to the hypergeometric series with argument — 1, Proc.
London Math. Soc. (2), 30 (1930), 81-94.

9. The sum of the coefficients of a hypergeometric series, Journal
London Math. Soc., 5 (1930), 192.

10. On transformations of terminating well-poised hypergeometric
series of type oFy, Journal London Math. Soc., 9 (1934), 137-140.

S. Wigert

1. Sur un théoréme concernant les fonctions entiéres, Arkiv for Mat. Ast.
o. I'ys., 11 (1916), No. 22.



