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Abstract

LDPC codes are one of the hottest topics in coding theory today. Originally invented in

the early 1960’s, they have experienced an amazing comeback in the last few years. Unlike

many other classes of codes LDPC codes are already equipped with very fast (probabilistic)

encoding and decoding algorithms. The question is that of the design of the codes such that these

algorithms can recover the original codeword in the face of large amounts of noise. New analytic

and combinatorial tools make it possible to solve the design problem. This makes LDPC codes

not only attractive from a theoretical point of view, but also perfect for practical applications. In

this note I will give a brief overview of the origins of LDPC codes and the methods used for their

analysis and design.

1 Introduction

This note constitutes an attempt to highlight some of the main aspects of the theory of low-density

parity-check (LDPC) codes. It is intended for a mathematically mature audience with some back-

ground in coding theory, but without much knowledge about LDPC codes.

The idea of writing a note like this came up during conversations that I had with Dr. Khos-

rovshahi, head of the Mathematics Section of the Institute for Studies in Theoretical Physics and

Mathematics in December 2002. The main motivation behind writing this note was to have a written
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document for Master’s and PhD students who want to gain an understanding of LDPC codes at a

level where they feel comfortable deciding whether or not they want to pursue it as their research

topic. The style is often informal, though I have tried not to compromise exactness.

The note is by no means a survey. I have left out a number of interesting aspects of the theory,

such as connections to statistical mechanics, or artificial intelligence. The important topics of general

Tanner graphs, and factor graphs have also been completely omitted. Connections to Turbo codes

have also been left untouched.

My emphasis in writing the notes has been on algorithmic and theoretical aspects of LDPC codes,

and within these areas on statements that can be proved. I have not discussed any of the existing and

very clever methods for the construction of LDPC codes, or issues regarding their implementation.

Nevertheless, I hope that this document proves useful to at least some students or researchers

interested in pursuing research in LDPC codes, or more generally codes obtained from graphs.

2 Shannon’s Theorem

The year 1948 marks the birth of information theory. In that year, Claude E. Shannon published his

epoch making paper [1] on the limits of reliable transmission of data over unreliable channels and

methods on how to achieve these limits. Among other things, this paper formalized the concept of

information, and established bounds for the maximum amount of information that can be transmitted

over unreliable channels.

A communication channel is usually defined as a triple consisting of an input alphabet, an out-

put alphabet, and for each pair (i, o) of input and output elements a transition probability p(i, o).

Semantically, the transition probability is the probability that the symbol o is received given that i

was transmitted over the channel.

Given a communication channel, Shannon proved that there exists a number, called the capacity

of the channel, such that reliable transmission is possible for rates arbitrarily close to the capacity,

and reliable transmission is not possible for rates above capacity.

The notion of capacity is defined purely in terms of information theory. As such it does not

guarantee the existence of transmission schemes that achieve the capacity. In the same paper Shannon

introduced the concept of codes as ensembles of vectors that are to be transmitted. In the following

I will try to motivate the concept. It is clear that if the channel is such that even one input
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element can be received in at least two possible ways (albeit with different probabilities), then

reliable communication over that channel is not possible if only single elements are sent over the

channel. This is the case even if multiple elements are sent that are not correlated (in a manner to

be made precise). To achieve reliable communication, it is thus imperative to send input elements

that are correlated. This leads to the concept of a code, defined as a (finite) set of vectors over the

input alphabet. We assume that all the vectors have the same length, and call this length the block

length of the code. If the number of vectors is K = 2k, then every vector can be described with k

bits. If the length of the vectors is n, then in n times use of the channel k bits have been transmitted.

We say then that the code has a rate of k/n bits per channel use, or k/n bpc.

Suppose now that we send a codeword, and receive a vector over the output alphabet. How do we

infer the vector that we sent? If the channel allows for errors, then there is no general way of telling

which codeword was sent with absolute certainty. However, we can find the most likely codeword

that was sent, in the sense that the probability that this codeword was sent given the observed vector

is maximized. To see that we really can find such a codeword, simply list all the K codewords, and

calculate the conditional probability for the individual codewords. Then find the vector or vectors

that yield the maximum probability and return one of them. This decoder is called the maximum

likelihood decoder. It is not perfect: it takes a lot of time (especially when the code is large) and it

may err; but it is the best we can do.

Shannon proved the existence of codes of rates arbitrarily close to capacity for which the proba-

bility of error of the maximum likelihood decoder goes to zero as the block length of the code goes to

infinity. (In fact, Shannon proved that the decoding error of the maximum likelihood decoder goes

to zero exponentially fast with the block length, but we will not discuss it here.)

Codes that approach capacity are very good from a communication point of view, but Shannon’s

theorems are non-constructive and don’t give a clue on how to find such codes. More importantly,

even if an oracle gave us sequences of codes that achieve capacity for a certain rate, it is not clear

how to encode and decode them efficiently. Design of codes with efficient encoding and decoding

algorithms which approach the capacity of the channel is the main topic of this note.

Before I close this section, let me give an example of two communication channels: the binary

erasure channel (BEC), and the binary symmetric channel (BSC). These channels are described in

Figure 1. In both cases the input alphabet is binary, and the elements of the input alphabet are

called bits. In the case of the binary erasure channel the output alphabet consists of 0, 1, and
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Figure 1: Two examples of channels: (a) The Binary Erasure Channel (BEC) with erasure probability

p, and (b) The Binary Symmetric Channel (BSC) with error probability p

an additional element denoted e and called erasure. Each bit is either transmitted correctly (with

probability 1 − p), or it is erased (with probability p). The capacity of this channel is 1 − p.

In the case of the BSC both the input and the output alphabet is F2. Each bit is either transmitted

correctly with probability 1 − p, or it is flipped with probability p. This channel may seem simpler

than the BEC at first sight, but in fact it is much more complicated. The complication arises since

it is not clear which bits are flipped. (In the case of the BEC it is clear which bits are erased.)

The capacity of this channel is 1 + p log2(p) + (1 − p) log2(1 − p). Maximum likelihood decoding for

this channel is equivalent to finding, for a given vector of length n over F2, a codeword that has

the smallest Hamming distance from the received word. It can be shown that maximum likelihood

decoding for the BSC is NP-complete [2]. In contrast, for linear codes maximum likelihood decoding

on the BEC is polynomial time, since it can be reduced to solving a system of equations (cf. [3]).

3 Algorithmic Issues

Soon after Shannon’s discoveries researchers found that random codes are capacity achieving. In

fact, this is implicit in Shannon’s treatise itself.

But achieving capacity is only part of the story. If these codes are to be used for communication,

one needs fast algorithms for encoding and decoding. Note that random codes of rate R bpc are just

2Rn random vectors of length n over the input alphabet. We need some description of these vectors

to be able to embed information into them, or we need to write all of them down into a so-called

codebook describing which sequence of Rn bits gets mapped to which codeword. This requires a
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codebook of size 2Rn, which is too big for any reasonably sized code (say of length 1000 and rate 0.5,

which yields 2500 vectors—too large to handle).

If the input alphabet has the structure of a field (for example the binary alphabet which yields

the field F2), then one can do better, at least as far as encoding goes. Elias and Golay independently

introduced the concept of linear codes of block length n and dimension k defined as subspaces of the

vector space F
n
2 . Such codes have rate k/n (we will omit the unit bpc for binary codes from now

on), and since they are linear, they can be described in terms of a basis consisting of k vectors of

length n. A codebook can now be implicitly described in a natural manner by mapping a bit vector

(x1, . . . , xk) to the vector obtained by taking linear combinations of the basis vectors given by the

coefficients x1, . . . , xk.

The class of linear codes is very rich. Shannon’s arguments can be used (almost verbatim) to

show that there are sequences of linear codes with rates arbitrarily close to capacity and for which

the error probability of the maximum likelihood decoder approaches zero (exponentially fast) as

the block length goes to infinity. Moreover, it can also be shown that random linear codes achieve

capacity. Unlike their non-linear brethren, linear codes can be encoded in polynomial time, rather

than exponential time. This is good news.

How about decoding? The decoding problem seems much tougher. As was mentioned above, the

maximum likelihood problem on the BSC has been shown to be NP-hard for many classes of linear

codes (e.g., general linear codes over Fq for any q). It is therefore unlikely to find polynomial time

algorithms for maximum likelihood decoding of general linear codes. One way to get around this

negative result is to try to repeat the success story for the encoding problem and to specialize to

subclasses of general linear codes. However, we have not been able to find subclasses of linear codes

for which maximum likelihood decoding is polynomial time and which achieve capacity.

Another possiblity is to look at sub-optimal algorithms that are polynomial time by construction.

This is the path we will follow in the next section.

4 LDPC Codes

LDPC codes were invented by Robert Gallager [4] in his PhD thesis. Soon after their invention, they

were largely forgotten, and reinvented several times for the next 30 years. Their comeback is one of

the most intriguing aspects of their history, since two different communities reinvented codes similar
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x1 + x2 + x3 + x4 + x6 + x8 + x10 = 0

x1 + x3 + x4 + x7 + x8 + x9 + x10 = 0

x2 + x4 + x8 = 0

x1 + x5 + x7 + x8 + x9 + x10 = 0

x3 + x4 + x5 + x7 + x9 = 0
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Figure 2: An LDPC code

to Gallager’s LDPC codes at roughly the same time, but for entirely different reasons.

LDPC codes are linear codes obtained from sparse bipartite graphs. Suppose that G is a graph

with n left nodes (called message nodes) and r right nodes (called check nodes). The graph gives

rise to a linear code of block length n and dimension at least n − r in the following way: The n

coordinates of the codewords are associated with the n message nodes. The codewords are those

vectors (c1, . . . , cn) such that for all check nodes the sum of the neighboring positions among the

message nodes is zero. Figure 2 gives an example.

The graph representation is analogous to a matrix representation by looking at the adjacency

matrix of the graph: let H be a binary r × n-matrix in which the entry (i, j) is 1 if and only if the

ith check node is connected to the jth message node in the graph. Then the LDPC code defined

by the graph is the set of vectors c = (c1, . . . , cn) such that H · c> = 0. The matrix H is called a

parity check matrix for the code. Conversely, any binary r × n-matrix gives rise to a bipartite graph

between n message and r check nodes, and the code defined as the null space of H is precisely the

code associated to this graph. Therefore, any linear code has a representation as a code associated

to a bipartite graph (note that this graph is not uniquely defined by the code). However, not every

binary linear code has a representation by a sparse bipartite graph.1 If it does, then the code is

1To be more precise, sparsity only applies to sequences of matrices. A sequence of m× n-matrices is called c-sparse

if mn tends to infinity and the number of nonzero elements in these matrices is always less than c max(m, n).
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called a low-density parity-check (LDPC) code.

The sparsity of the graph structure is key property that allows for the algorithmic efficiency of

LDPC codes. The rest of this note is devoted to elaborating on this relationship.

5 Decoding Algorithms: Belief Propagation

Let me first start by describing a general class of decoding algorithms for LDPC codes. These

algorithms are called message passing algorithms, and are iterative algorithms. The reason for their

name is that at each round of the algorithms messages are passed from message nodes to check nodes,

and from check nodes back to message nodes. The messages from message nodes to check nodes are

computed based on the observed value of the message node and some of the messages passed from

the neighboring check nodes to that message node. An important aspect is that the message that

is sent from a message node v to a check node c must not take into account the message sent in

the previous round from c to v. The same is true for messages passed from check nodes to message

nodes.

One important subclass of message passing algorithms is the belief propagation algorithm. This

algorithm is present in Gallager’s work [4], and it is also used in the Artificial Intelligence commu-

nity [5]. The messages passed along the edges in this algorithm are probabilities, or beliefs. More

precisely, the message passed from a message node v to a check node c is the probability that v has

a certain value given the observed value of that message node, and all the values communicated to

v in the prior round from check nodes incident to v other than c. On the other hand, the message

passed from c to v is the probability that v has a certain value given all the messages passed to c in

the previous round from message nodes other than v.

It is easy to derive formulas for these probabilities under a certain assumption called independence

assumption, which I will discuss later. It is sometimes advantageous to work with likelihoods, or

sometimes even log-likelihoods instead of probabilities. For a binary random variable x let L(x) =

Pr[x = 0]/Pr[x = 1] be the likelihood of x. Given another random variable y, the conditional likelihood

of x denoted L(x | y) is defined as Pr[x = 0 | y]/Pr[x = 1 | y]. Similarly, the log-likelihood of x is

lnL(x), and the conditional log-likelihood of x given y is lnL(x | y).

If x is an equiprobable random variable, then L(x | y) = L(y | x) by Bayes’ rule. Therefore, if
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y1, . . . , yd are independent random variables, then we have

lnL(x | y1, . . . , yd) =

d
∑

i=1

lnL(x | yi). (1)

Now suppose that x1, . . . , x` are binary random variables and y1, . . . , y` are random variables. Denote

addition over F2 by ⊕. We would like to calculate lnL(x1 ⊕ · · · ⊕ x` | y1, . . . , y`). Note that if

p = 2Pr[x1 = 0 | y1]− 1 and q = 2Pr[x2 = 0 | y2]− 1, then 2Pr[x1 ⊕x2 = 0 | y1, y2]− 1 = pq. (Why?)

Therefore, 2Pr[x1 ⊕ · · · ⊕ x` = 0 | y1, . . . , y`]− 1 =
∏`

i=1(2Pr[xi = 0 | yi]− 1). Since Pr[xi = 0 | yi] =

L(xi | yi)/(1 + L(xi | yi)), we have that 2Pr[xi = 0 | yi] − 1 = (L − 1)/(L + 1) = tanh(`/2), where

L = L(xi | yi) and ` = lnL. Therefore, we obtain

lnL(x1 ⊕ · · · ⊕ x` | y1, . . . , y`) = ln
1 +

(

∏`
i=1 tanh(`i/2)

)

1 −
(

∏`
i=1 tanh(`i/2)

) , (2)

where `i = lnL(xi | yi). The belief propagation algorithm for LDPC codes can be derived from

these two observations. In round 0, the check nodes send along all the outgoing edges their log-

likelihoods conditioned on their observed value. For example, if the channel used is the BSC with

error probability p, then the first message sent to all the check nodes adjacent to a message node

is ln(1 − p) − ln p if the node’s value is zero, and it is the negative of this value if the node’s value

is one. In all the subsequent rounds of the algorithm a check node c sends to an adjacent message

node v a likelihood according to (2). A message node v sends to the check node c its log-likelihood

conditioned on its observed value and on the incoming log-likelihoods from adjacent check nodes

other than c using the relation (1).

Let m
(`)
vc be the message passed from message node v to check node c at the `th round of the

algorithm. Similarly, define m
(`)
cv . At round 0, m

(0)
vc is the log-likelihood of the message node v

conditioned on its observed value, which is independent of c. We denote this value by mv. Then the

update equations for the messages under belief-propagation can be described as

m(`)
vc

=







mv, if ` = 0,

mv +
∑

c
′∈Cv\{c}

m
(`−1)
c
′
v

, if ` ≥ 1,
(3)

m(`)
cv

= ln
1 +

∏

v
′∈Vc\{v}

tanh
(

m
(`)
v
′
c
/2
)

1 −
∏

v
′∈Vc\{v}

tanh
(

m
(`)
v
′
c
/2
) , (4)

where Cv is the set of check nodes incident to message node v, and Vc is the set of message nodes

incident to check node c.
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The computations at the check nodes can be simplified further by performing them in the log-

domain. Since the value of tanh(x) can be negative, we need to keep track of its sign separately. Let γ

be a map from the real numbers [−∞,∞] to F2 × [0,∞] defined by γ(x) := (sgn(x),− ln tanh(|x|/2))

(we set sgn(x) = 1 if x ≥ 1 and sgn(x) = 0 otherwise.) It is clear that γ is bijective, so there exists

an inverse function γ−1. Moreover, γ(xy) = γ(x) + γ(y), where addition is component-wise in F2

and in [0,∞]. Then it is very easy to show that (4) is equivalent to

m(`)
cv

= γ−1





∑

v
′∈Vc\{v}

γ
(

m
(`−1)
v
′
c

)



 (5)

We will use this representation when discussing density evolution later.

In practice, belief propagation may be executed for a maximum number of rounds or until the

passed likelihoods are close to certainty, whichever is first. A certain likelihood is a likelihood in

which lnL(x | y) is either ∞ or −∞. If it is ∞, then Pr[x = 0 | y] = 1, and if it is −∞, then

Pr[x = 1 | y] = 1.

One very important aspect of belief propagation is its running time. Since the algorithm traverses

the edges in the graph, and the graph is sparse, the number of edges traversed is small. Moreover, if

the algorithm runs for a constant number of times, then each edge is traversed a constant number of

times, and the algorithm uses a number of operations that is linear in the number of message nodes!

Another important note about belief propagation is that the algorithm itself is entirely indepen-

dent of the channel used, though the messages passed during the algorithm are completely dependent

on the channel.

One question that might rise is about the relationship of belief propagation and maximum like-

lihood decoding. The answer is that belief propagation is in general less powerful than maximum

likelihood decoding. In fact, it is easy to construct classes of LDPC codes for which maximum

likelihood decoding can decode many more errors than belief propagation (one example is given by

biregular bipartite graphs in which the common degree of the message nodes is very large but the

reader is not required to see this right away).
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6 Asymptotic Analysis of Belief Propagation and Density Evolu-

tion

The messages passed at each round of the belief propagation algorithm are random variables. If at

every round in the algorithm the incoming messages are statistically independent, then the update

equation correctly calculates the corresponding log-likelihood based on the observations. (This is

what I meant by the independence assumption above.) This assumption is rather questionable,

though, especially when the number of iterations is large. In fact, the independence assumption is

correct for the ` first rounds of the algorithm only if the neighborhood of a message node up to depth

` is a tree.

Nevertheless, belief propagation can be analysed using a combination of tools from combinatorics

and probability theory. The first analysis for a special type of belief propagation appeared in [6],

and was applied to hard decision decoding of LDPC codes in [7]. The analysis was vastly generalized

in [8] to belief propagation over a large class of channels.

The analysis starts by proving that if ` is fixed and n and r are large enough, then for random

bipartite graphs the neighborhood of depth ` of most of the message nodes is a tree. Therefore, for

` rounds the belief propagation algorithm on these nodes correctly computes the likelihood of the

node. Let us call these nodes the good nodes. We will worry about the other nodes later.

Next the expected behavior of belief propagation is calculated by analysing the algorithm on the

tree, and a martingale is used to show that the actual behavior of the algorithm is sharply concen-

trated around its expectation. This step of the analysis is rather standard, at least in Theoretical

Computer Science.

Altogether, the martingale arguments and the tree assumption (which holds for large graphs and

a fixed iteration number `) prove that a heuristic analysis of belief propagation on trees correctly

mirrors the actual behavior on the full graph for a fixed number of iterations. The probability of

error among the good message nodes in the graph can be calculated according to the behavior of

belief propagation. For appropriate degree distributions this shows that the error probability of the

good message nodes in the graph can be made arbitrarily small. What about the other (non-good)

message nodes? Since their fraction is smaller than a constant, they will contribute only a sub-

constant term to the error probability and their effect will disappear asymptotically, which means

that they are not relevant for an asymptotic analysis. Details can be found in the above mentioned
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literature.

The analysis of the expected behavior of belief propagation on trees leads to a recursion for

the density function of the messages passed along the edges. The general machinery shows that,

asymptotically, the actual density of the messages passed is very close to the expected density.

Tracking the expected density during the iterations thus gives a very good picture of the actual

behavior of the algorithm. This method, called density evolution [8, 9, 7], is one of the crown jewels

of the asymptotic theory of LDPC codes. In the following, I will briefly discuss this.

As a first remark note that if X1, . . . , Xd are i.i.d. random variables over some (additive) group

G, and if f is the common density of the Xi, then the density F of X1 + · · · + Xd equals the d-fold

convolutional power of f . (For any two integrable functions f and g defined over G the convolution

of f and g, denoted f ⊗ g, is defined as (f ⊗ g)(τ) =
∫

G f(σ)g(τ − σ) dG, where dG is the Haar

measure on G.) If G is the group of real numbers with respect to multiplication, then f ⊗ g is the

well-known convolution of real functions.

Let now gi denote the common density function of the messages m
(i)
cv sent from check nodes to

message nodes at round i of the algorithm, and let f denote the density of the messages mv, i.e., the

likelihood of the messages sent at round 0 of the algorithm. Then the update rule for the densities

in (3) implies that the common density fi+1 of the messages sent from message nodes to check nodes

at round i + 1 conditioned on the event that the degree of the node is d equals f ⊗ g
⊗(d−1)
i .

Next we assume that the graph is random such that each edge is connected to a message node of

degree d with probability λd, and each edge is connected to a check node of degree d with probability

ρd. Then the expected density of the messages sent from message nodes to check nodes at round i+1

is f ⊗λ(gi), where λ(gi) =
∑

d λdg
⊗(d−1)
i . (All this of course assumes the independence assumption.)

To assess the evolution of the densities at the check nodes, we need to use the operator γ

introduced above. For a random variable X on [−∞,∞] with density F let Γ(F ) denote the density

of the random variable γ(X). γ(X) is defined on the group G := F2 × [0,∞]. Therefore, the density

of γ(X) + γ(Y ) is the convolution (over G) of Γ(F ) and Γ(H), where H denotes the density of Y .

Following (5) and assuming independence via the independence assumption, we see that the common

density gi of the messages passed from check to message nodes at round i is Γ−1(ρ(Γ(fi))), where

ρ(h) =
∑

d ρdh
⊗(d−1). All in all, we obtain the following recursion for the densities fi:

fi+1 = f ⊗ λ(Γ−1(ρ(Γ(fi)))). (6)
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This recursion is called density evolution. The reason for the naming should be obvious.

I have not made the recursion very explicit. In fact, the operator Γ has not been derived at all.

For that I refer the reader to [8] and [9].

Density evolution can be used in conjunction with Fourier Transform techniques to obtain asymp-

totic thresholds below which belief propagation decodes the code successfully, and above which belief

propagation does not decode successfully ([8, 9]).

Density evolution is exact only as long the incoming messages are independent random variables.

For a finite graph this can be the case only for a small number of rounds.

7 Decoding on the BEC

Perhaps the most illustrative example of belief propagation is when it is applied to LDPC codes over

the BEC with erasure probability p. In fact, almost all the important and interesting features of the

belief propagation algorithm are already present on the BEC. A thorough analysis of this special

case seems thus to be a prerequisite for the general case.

It is sufficient to assume that the all-zero codeword was sent. The log-likelihood of the messages

at round 0, mv, is +∞ if the corresponding message bit is not erased, and it is 0 if the message bit is

erased. Moreover, consulting the update equations for the messages, we see that if v is not erased,

then the message passed from v to any of its incident check nodes is always +∞.

The update equations also imply that mcv is +∞ if and only if all the message nodes incident to

c except v are not erased. In all other cases mcv is zero.

If v is an erased message node, then mv = 0. The message mvc is +∞ if and only if there is some

check node incident to v other than c which was sending a message +∞ to v in the previous round.

Because of the binary feature of the messages, belief propagation on the erasure channel can be

described much easier in the following:

1. [Initialization] Initialize the values of all the check nodes to zero.

2. [Direct recovery] For all message nodes v, if the node is received, then add its value to the

values of all adjacent check nodes and remove v together with all edges emanating from it from

the graph.

3. [Substitution recovery] If there is a check node c of degree one, substitute its value into the
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value of its unique neighbor among the message nodes, add that value into the values of all

adjacent check nodes and remove the message nodes and all edges emanating from it from the

graph.

This algorithm was first proposed in [10] though connections to belief propagation were not realized

then. It is clear that the number of operations that this algorithm performs is proportional to the

number of edges in the graph. Hence, for sparse graphs the algorithm runs in time linear in the block

length of the code. However, there is no guarantee that the algorithm can decode all message nodes.

Whether or not this is the case depends on the graph structure.

The decoding algorithm can be analysed along the same lines as the full belief propagation. First,

we need to find the expected density of the messages passed at each round of the algorithm under the

independence assumption. In this case, the messages are binary (either +∞ or 0), hence we only need

to keep track of one parameter, namely the probability pi that the messages passed from message

nodes to check nodes at round i of the algorithm is 0. Let qi denote the probability that the message

passed from check nodes to message nodes at round i of the algorithm is 0. Then, conditioned on the

event that the message node is of degree d, we have pi+1 = p ·qd−1
i . Indeed, a message from a message

node v to a check node c is 0 iff v was erased and all the messages coming from the neighboring

check nodes other than c are 0, which is qd−1
i under the independence assumption. Conditioned on

the event that the check node has degree d we have qi = 1 − (1 − pi)
d−1: the check node c sends a

message +∞ to the message node v iff all the neighboring message nodes except for v send a message

+∞ to c in the previous round. Under the independence assumption that probability is (1− pi)
d−1,

which shows the identity.

These recursions are not in a usable form yet since they are conditioned on the degrees of the

message and the check nodes. To obtain a closed form we use again the numbers λd and ρd defined

above. Recall that λd is the probability that an edge is connected to a message node of degree d,

and ρd denotes the probability that an edge is conncted to a check node of degree d. Defining the

generating functions λ(x) =
∑

d λdx
d−1 and ρ(x) =

∑

d ρdx
d−1 we obtain the following recursion

using the formula for the total probability:

pi+1 = p · λ(1 − ρ(1 − pi)).

Under the independence assumption, and assuming that the underlying graph is random with edge

degree distributions given by λ(x) and ρ(x), decoding is successful if pi+1 < (1 − ε)pi for all i and
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some 0 < ε ≤ 1. This yields the condition

p · λ(1 − ρ(1 − x)) < x for x ∈ (0, p) (7)

for successful decoding which was first proved in [11] and later reproduced in [10]. It is a useful and

interesting exercise for the reader to show that (7) is identical to (6) in the case of the BEC.

Condition (7) was proved in [11] in a completely different way than explained here. A system of

differential equations was derived whose solutions tracked the expected fraction of nodes of various

degrees as the decoding process evolved. One of the solutions corresponds to the fraction of check

nodes of reduced degree one during the algorithm. By keeping this fraction above zero at all times,

it is guaranteed that in expectation there are always check nodes of degree one left to continue the

decoding process. To show that the actual values of the random variables are sharply concentrated

around their computed expectations, a large deviation result was derived which is not unsimilar to

Azuma’s inequality for martingales.

Condition (7) can be used to calculate the maximal fraction of erasures a random LDPC code

with given edge degree distributions can correct using the simple decoding algorithm. For example,

consider a random biregular graph in which each message node has degree 3 and each check node

has degree 6. (Such a graph is called a (3, 6)-biregular graph.) In this case λ(x) = x2 and ρ(x) = x5.

What is the maximum fraction of erasures p? (In fact, this value is a supremum.) You can simulate

the decoder on many such random graphs with a large number of message nodes. The simulations

will show that on average around 42.9% erasures can be recovered. What is this value? According

to (7) it is the supremum of all p such that p(1−(1−x)5)2 < x on (0, p). The minimum of the function

x/(1−(1−x)5)2 on (0, 1) is attained at the unique root of the polynomial 9x4−35x3 +50x2−30x+5

in the interval (0, 1), and this is the supremum value for p. This value can be computed exactly,

using formulas for the solution of the quartic [12].

As a side remark, I would like to mention an interesting result. First, it is not hard to see that

the ratio r/n between the message and the check nodes equals
∫ 1
0 ρ(x) dx/

∫ 1
0 λ(x) dx. The rate of

the code is at least 1− r/n, and since the capacity of the erasure channel with erasure probability p

is 1− p, (7) should imply that p ≤
∫ 1
0 ρ(x) dx/

∫ 1
0 λ(x) dx in a purely mechanical way (without using

the interpretations above). Can you see how to derive this? (See also [13].)
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8 Hard Decision Decoding on the BSC

The belief propagation algorithm is the best algorithm among message passing decoders, and the

accompanying density evolution provides a tool for analysing the algorithm. However, for practical

applications on channels other than the BEC the belief propagation algorithm is rather complicated,

and often leads to a decrease in the speed of the decoder. Therefore, often times a discretized version

of the belief propagation algorithm is used. The lowest level of discretization is achieved when the

messages passed are binary. In this case one often speaks of a hard decision decoder, as opposed to

a soft decision decoder which uses a larger range of values. In this section I will describe two hard

decision decoding algorithms on the BSC, both due to Gallager [4].

In both cases the messages passed between the message nodes and the check nodes consist of 0

and 1. Let me first describe the Gallager A algorithm: in round 0, the message nodes send their

received values to all their neighboring check nodes. From that point on at each round a check node

c sends to the neighboring message node v the addition (mod 2) of all the incoming messages from

incident message nodes other than v. A message node v sends the following message to the check

node c: if all the incoming messages from check nodes other than c are the same value b, then v

sends the value b to c; otherwise it sends its received value to c.

An exact analysis of this algorithm was first given in [7]. The analysis is similar to the case of the

BEC. We first find the expected density of the messages passed at each round. Again, we can assume

that the all-zero word was transmitted over the BSC with error probability p. Since the messages

are 0 and 1, we only need to track pi, the probability that the message sent from a message node to

a check node at round i is 1. Let qi denote the probability that the message sent from a check node

to a message node at round i is 1. Conditioned on the event that the message node is of degree d,

and under the independence assumption, we obtain pi+1 = (1− p)qd−1
i + p · (1 − (1− qi)

d−1). To see

this, observe that the message 1 is passed from message node v to check node c iff one of these two

cases occurs: (a) the message node was received in error (with probability p) and at least one of the

incoming messages is a 1 (with probability 1− (1− qi)
d−1), or (b) the message was received correctly

(probability 1 − p) and all incoming messages are 1 (probability qd−1
i ). To assess the evolution of

qi in terms of pi, note that a check node c sends a message 1 to message node v at round i iff the

addition mod 2 of the incoming messages from message nodes other than v in the previous round is

0. Each such message is 1 with probability pi, and the messages are independent. Conditioned on
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the event that the check node is of degree `, there are ` − 1 such messages. The probability that

their addition mod 2 is 1 is qi = (1 − (1 − 2pi)
`−1)/2 (why?).

These recursions are for the conditional probabilities, conditioned on the degrees of the nodes.

Introducing the generating functions λ(x) and ρ(x) as above, we obtain the following recursion for

the probabilities themselves:

pi+1 = (1 − p) · λ

(

1 − ρ(1 − 2pi)

2

)

+ p ·

(

1 − λ

(

1 + ρ(1 − 2pi)

2

))

. (8)

If λ(x), ρ(x), and p are such that pi is monotonically decreasing, then decoding will be successful

asymptotically with high probability, as long as the independence assumption is valid.

For example, consider a (3, 6)-biregular graph. In this case λ(x) = x2 and ρ(x) = x5, and the

condition becomes

(1 − p) ·

(

1 − (1 − 2x)5

2

)2

+ p ·

(

1 −

(

1 + (1 − 2x)5

2

)2
)

< x

for x ∈ (0, p). A numerical calculation shows that the best value for p is around 0.039.

By Shannon’s theorem the maximum error probability that a code of rate 1/2 can correct is the

maximum p such that 1+p log2(p)+(1−p) log2(1−p) = 0.5. A numerical approximation shows that

p is around 11%, which means that the Gallager A algorithm on the biregular (3, 6)-graph is very far

from achieving capacity. Bazzi et al. [12] show that for rate 1/2 the best graph for the Gallager A

algorithm is the biregular (4, 8)-graph for which the maximum tolerable error probability is roughly

0.0475—still very far from capacity. This shows that this algorithm, though simple, is very far from

using all the information that can be used.

Gallager’s algorithm B is slightly more powerful than algorithm A. In this algorithm, for each

degree j and each round i there is a threshold value bi,j (to be determined) such that at round i for

each message node v and each adjacent check node c, if at least bi,j neighbors of v excluding c sent

the same information in the previous round, then v sends that information to c; otherwise v sends

its received value to c. The rest of the algorithm is the same as in algorithm A.

It is clear that algorithm A is a special case of algorithm B, in which bi,j = j − 1 independent of

the round.

This algorithm can be analysed in the same manner as algorithm A, and a recursion can be

obtained for the probability pi that a message node is sending the incorrect information to a check
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node at round i:

pi+1 = p −
∑

j≥1

λj



p

j
∑

t=bi,j

(

j − 1

l

)[

1 + ρ(1 − 2pi)

2

]t [1 − ρ(1 − 2pi)

2

]j−1−t

+ (9)

(1 − p)

j−1
∑

t=bi,j

(

j − 1

t

)[

1 − ρ(1 − 2pi)

2

]t [1 + ρ(1 − 2pi)

2

]j−1−t


 ,

where the value of bi,j is the smallest integer that satisfies

1 − p

p
≤

[

1 + ρ(1 − 2pi)

1 − ρ(1 − 2pi)

]2bi,j−j+1

.

(See [7] for details of the analysis.)

For another hard decision decoder on the BSC (called “erasure decoder”), see [8].

The above one parameter recursions can be used to design codes that asymptotically perform

very well for a given amount of noise. The method of choice in these cases is linear programming.

For details I refer the reader to [10, 7].

9 Completing the Analysis: Expander Based Arguments

Density evolution and its instantiations are valid only as long as the incoming messages are inde-

pendent. The messages are independent for ` rounds only if the neighborhoods of depth ` around

the message nodes are trees. But this immediately puts an upper bound on ` (of the order log(n),

where n is the number of message nodes, see Section 11). But this number of rounds is usually not

sufficient to prove that the decoding process corrects all errors. A different analysis is needed to

complete the decoding.

One property of the graphs that guarantees successful decoding is expansion. A bipartite graph

with n message nodes is called an (α, β)-expander if for any subset S of the message nodes of size at

most αn the number of neighbors of S is at least β · aS · |S|, where aS is the average degree of the

nodes in S. In other words, if there are many edges going out of a subset of message nodes, then

there should be many neighbors.

Expansion arguments have been used by many researchers in the study of decoding codes obtained

from graphs [14, 15, 16, 17]. Later, [10, 7] used expander based arguments to show that the erasure

correction algorithm on the BEC and Gallager’s hard decision decoding algorithm will decode all the
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erasures/errors if the fraction of errors is small and the graph has sufficient expansion. Burshtein

and Miller [18] generalized these results to general message passing algorithms.

To give the reader an idea of how these methods are used, I will exemplify them in the case of

the BEC. Choose a graph with edge degree distributions given by λ(x) and ρ(x) at random. The

analysis of the belief propagation decoder for the BEC implies that if condition (7) is true, then for

any ε > 0 there is an n0 such that for all n ≥ n0 the erasure decoder reduces the number of erased

message nodes below εn. The algorithm may well decode all the erasures, but the point is that the

analysis does not guarantee that.

To complete the analysis of the decoder, we first note the following fact: if the random graph is

an (ε, 1/2)-expander, then the erasure decoding algorithm recovers any set of εn or fewer erasures.

Suppose that this were not the case and consider a minimal counterexample consisting of a nonempty

set S of erasures. Consider the subgraph induced by S, and denote by Γ(S) the set of neighbors of

S. No node in Γ(S) has degree 1, since this neighbor would recover one element in S and would

contradict the minimality of S. Hence, the total number of edges emanating from these nodes is

at least 2|Γ(S)|. On the other hand, the total number of edges emanating from S is aS · |S|, so

aS · |S| ≥ 2|Γ(S)| which implies |Γ(S)| ≤ aS · |S|/2 and contradicts the expansion property of the

graph.

In [10] it is shown that for a random bipartite graph without message nodes of degree one or two

there is a constant ε depending on the rate of the induced code and on the degrees of the message

nodes such that the graph is an (ε, 1/2)-expander with high probability. On random graphs without

message nodes of degrees one or two we see that the erasure decoding algorithm succeeds with high

probability provided condition (7) is satisfied.

10 Achieving Capacity

Recall Shannon’s theorem from Section 2 which states the existence of codes that come arbitrarily

close to the capacity of the channel when decoded with maximum likelihood decoding. LDPC codes

were designed to have decoding algorithms of low complexity, such as belief propagation and its

variants. But how close can we get to capacity using these algorithms?

There is no satisfactory answer to this question for arbitrary channels. What I mean by a

satisfactory answer is an answer to the question whether subclasses of LDPC codes, for example
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LDPC codes with an appropriate degree distribution, will provably come arbitrarily close to the

capacity of the channel. Optimization results for various channels, such as the Additive White

Gaussian Noise (AWGN) channel and the BSC have produced specific degree distributions such that

the corresponding codes come very close to capacity, see [9, 19].

We call an LDPC code ε-close for a channel C with respect to some message passing algorithm

if the rate of the code is at least Cap(C) − ε and if the message passing algorithm can correct errors

over that channel with high probability. We call a sequence of degree distributions (λ(n)(x), ρ(n)(x))

capacity-achieving over that channel with respect to the given algorithm if for any ε there is some n0

such that for all n ≥ n0 the LDPC code corresponding to the degree distribution (λ(n)(x), ρ(n)(x))

is ε-close to capacity. Using this notation, the following question is open:

Is there a nontrivial channel other than the BEC and a message passing algorithm for which there

exists a capacity-achieving sequence (λ(n)(x), ρ(n)(x))?

I believe that this question is one of the fundamental open questions in the asymptotic theory of

LDPC codes.

In [10] the authors describe capacity-achieving sequences for the BEC for any erasure probability

p. Let ε > 0 be given, let D := d1/εe, and set

λ(x) =
1

H(D)

D
∑

i=1

xi

i
, ρ(x) = eα(x−1),

where α = H(D)/p. (Technically, ρ(x) cannot define a degree distribution since it is a power series

and not a polynomial. But the series can be truncated to obtain a function that is arbitrarily close

to the exponential.) We now apply (7):

pλ(1 − ρ(1 − x)) < −
p

H(D)
ln(ρ(1 − x))

=
αp

H(D)
x

= x.

This shows that a corresponding code can decode a p-fraction of erasures with high probability. 2

2Actually, as was discussed before, (7) only shows that the fraction of erasures can be reduced to any constant

fraction of the number of message nodes. To show that the decoding is successful all the way to the end, we need

a different type of argument. Expansion arguments do not work for the corresponding graphs, since there are many

message nodes of degree 2. For a way to resolve these issues, see [10].
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What about the rate of these codes? Above, we mentioned that the rate of the code given by

the degree distributions λ(x) and ρ(x) is at least 1 −
∫ 1
0 ρ(x) dx/

∫ 1
0 λ(x) dx. In our case, this lower

bound equals 1 − p(1 + 1/D)(1 − e−α) which is larger than 1 − p(1 + ε).

The degree distribution above is called the Tornado degree distribution and the corresponding

codes are called Tornado codes. These codes have many applications in computer networking which

I will not mention here (see, e.g., [20]).

Tornado codes were the first class of codes that could provably achieve the capacity of the BEC

using belief propagation. Since then many other distributions have been discovered [13, 21]. The

latter paper also discusses general methodologies for constructing such degree distributions, and also

discusses optimal convergence speeds to capacity.

11 Graphs of Large Girth

As is clear from the previous discussions, if the smallest cycle in the bipartite graph underlying the

LDPC code is of length 2`, then independence assumption is valid for ` rounds of belief propagation.

In particular, density evolution describes the expected behavior of the density functions of these

messages exactly for this number of rounds.

The girth of a graph is defined as the length of the smallest cycle in the graph. For bipartite

graphs the girth is necessarily even, so the smallest possible girth is 4. It is easy to obtain an upper

bound for the girth of a biregular bipartite graph with n message nodes of degree d and r check

nodes of degree k: if the girth is 2`, then the neighborhood of depth ` − 1 of any message node is a

tree with a root of degree d, and in which all nodes of odd depth have degree k − 1, while all nodes

of even depth have degree d − 1 (we assume that the root of the tree has depth 0). The number of

nodes at even depths in the tree should be at most equal to the message nodes, while the number of

nodes at odd depths in the tree should be at least equal to the check nodes. The number of nodes at

even depths in the tree equals 1 for depth 0, d(k − 1) for depth 2, d(k − 1)D for depth 4, d(k − 1)D2

for depth 6, etc., where D = (d − 1)(k − 1). The total number of nodes at even depths is equal to

1 + d(k − 1)
Db `

2
c − 1

D − 1
.

This number has to be less than or equal to n, the number of message nodes. This yields an upper

bound on 2`, the girth of the graph. The bound has order logD(n). Similar bounds can be obtained

by considering nodes of odd depths in the tree.
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A similar bound as above can also be deduced for irregular graphs [22], but I will not discuss it

here.

As I said before, graphs of large girth are interesting because of the accuracy of belief propagation.

However, this is not interesting for practical purposes, since for obtaining accuracy for many rounds

the girth of the graph has to be large which means that the number of nodes in the graph has to be

very large.

There are other reasons to study graphs of large girth, however. From the point of view of

combinatorics graphs of large girth which satisfy (or come close to) the upper bound on the girth

are extremal objects. Therefore, to construct them, methods from extremal graph theory need to

be applied. From the point of view of coding theory eliminating small cycles is very similar to

eliminating words of small weight in the code. This is because a word of weight d leads to a cycle of

length 2d or less. (Why?)

How does one construct bipartite graphs of large girth? There are a number of known techniques

with origins in algebra and combinatorics. For example, it is very easy to construct optimal bipartite

graphs of girth 6. Below I will give such a construction. Let C be a Reed-Solomon code of dimension

2 and length n over the field Fq. By definition, this code has q2 codewords and the Hamming distance

between any two distinct codewords is at least n − 1. From C we construct a bipartite graph with

q2 message nodes and nq check nodes in the following way: The message nodes correspond to the

codewords in C. The check nodes are divided in groups of q nodes each; the nodes in each such group

corresponds to the elements of Fq. The connections in the graph are obtained as follows: A message

node corresponding to the codewords (x1, . . . , xn) is connected to the check nodes corresponding to

x1 in the first group, to x2 in the second group, . . ., to xn in the last group. Hence, all message nodes

have degree n, and all check nodes have degree q, and the graph has in total nq2 edges. Suppose

that this graph has a cycle of length 4. This means that there are two codewords (corresponding to

the two message nodes in the cycle) which coincide at two positions (corresponding to the two check

nodes in the cycle). This is impossible by the choice of the code C, which shows that the girth of the

graph is at least 6. To show the optimality of these graphs, we compare the number of check nodes

to the above bound. Let 2` denote the girth of the graph. If ` = 3, then 1 + n(q − 1) ≤ q2, which

shows that n ≤ q + 1. By choosing n = q + 1 we obtain optimal graphs of girth 6.

If n < q + 1, the graphs obtained may not be optimal, and their girth may be larger than 6. For

n 6= 2 it is easy to see that the girth of the graph is indeed 6. For n = 2 the girth is 8. (A cycle
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of length 6 in the graph corresponds to three codewords such that every two coincide in exactly one

position. This is possible for n > 2, and impossible for n = 2.)

There are many constructions of graphs without small cycles using finite geometries, but these

constructions are for the most part not optimal (except for cases where the girth is small, e.g., 4, or

cases where the message nodes are of degree 2).

The sub-discipline of combinatorics dealing with such questions is called extremal combinatorics.

One of the questions studied here is that of existence of graphs that do not contain a subgraph of

a special type (e.g., a cycle). I will not go deeper into these problems here and refer the reader to

appropriate literature (e.g., [23]).

A discussion of graphs of large girth is not complete without at least mentioning Ramanujan

graphs which have very large girth in an asymptotic sense. I will not discuss these graphs at all

in this note and refer the reader to [24, 25]. For interesting applications of these graphs in coding

theory I refer the reader to [26].

12 Encoding Algorithms

An encoding algorithm for a binary linear code of dimension k and block length n is an algorithm

that computes a codeword from k original bits x1, . . . , xk. To compare algorithms against each other,

it is important to introduce the concept of cost, or operations. For the purposes of this note the cost

of an algorithm is the number of arithmetic operations over F2 that the algorithm uses.

If a basis g1, . . . , gk for the linear code is known, then encoding can be done by computing

x1g1 + · · · + xkgk. If the straightforward algorithm is used to perform the computation (and it

is a-priori not clear what other types of algorithms one may use), then the number of operations

sufficient for performing the computation depends on the Hamming weights of the basis vectors. If

the vectors are dense, then the cost of the encoding is proportional to nk. For codes of constant

rate, this is proportional to n2, which may be too slow for some applications.

Unfortunately LDPC codes are given as the null space of a sparse matrix, rather than as the

space generated by the rows of that matrix. For a given LDPC code it is highly unlikely that there

exists a basis consisting of sparse vectors, so that the straightforward encoding algorithm uses a

number of operations that is proportional to n2. However, we would like to design algorithms for

which the encoding cost is proportional to n.
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y1 = x1 + x2 + x3 + x4 + x6 + x8 + x10

y2 = x1 + x3 + x4 + x7 + x8 + x9 + x10

y3 = x2 + x4 + x8

y4 = x1 + x5 + x7 + x8 + x9 + x10

y5 = x3 + x4 + x5 + x7 + x9
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x10

Figure 3: Construction with fast encoder

At this point there are at least two possible ways to go. One is to consider modifications of LDPC

codes which are automatically equipped with fast encoding algorithms. The other is to try to find

faster encoding algorithms for LDPC codes. I will discuss both these approaches here, and outline

some of the pro’s and con’s for each approach.

One simple way to obtain codes from sparse graphs with fast encoding is to modify the construc-

tion of LDPC codes in such a way that the check nodes have values, and the value of each check

node is the addition of the values of its adjacent message nodes. (In such a case, it would be more

appropriate to talk about redundant nodes, rather than check nodes, and of information nodes rather

than message nodes. But to avoid confusion, I will continue calling the right nodes check nodes and

the left nodes message nodes.) Figure 3 gives an example. The number of additions needed in this

construction is upper bounded by the number of edges. So, efficient encoding is possible if the graph

is sparse. The codwords in this code consist of the values of the message nodes, appended by the

values of the check nodes.

This construction leads to a linear time encoder, but it has a major problem with decoding. I

will exemplify the problem for the case of the BEC. First, it is not clear that the belief propagation

decoder on the BEC can decode all the erasures. This is because the check nodes can also be erased

(in contrast to the case of LDPC codes where check nodes do not have a value per-se, but only

keep track of the dependencies among the values of the message nodes). This problem is not an
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artifact of the non-optimal belief propagation decoder. Even the error probability of the maximum

likelihood decoder is lower bounded by a constant in this case. Let me elaborate. Suppose that a

codeword is transmitted over a BEC with erasure probability p. Then an expected p-fraction of the

message nodes and an expected p-fraction of the check nodes will be erased. Let Λd be the fraction

of message nodes of degree d. Because the graph is random, a message node of degree d will have

all its neighbors in the set of erased check nodes with probability pd. This probability is conditioned

on the event that the degree of the message node is d. So, the probability that a message node has

all its neighbors within the set of erased check nodes is
∑

d Λdp
d, which is a constant independent of

the length of the code. Therefore, no algorithm can recover the value of that message node.

In [17] and [7] the following idea is used the to overcome this difficulty: the redundant nodes will

be protected themselves with another graph layer to obtain a second set of redundant nodes; the

second set will be protected by a third set, etc. This way a cascade of graphs is obtained rather than

a single graph. At each stage the number of message and check nodes of the graphs decreases by a

constant fraction. After a logarithmic number of layers the number of check nodes is small enough so

the check nodes can be protected using a sophisticated binary code for which we are allowed to use

a high-complexity decoder. Details can be found in [10]. If any single graph in the cascade is such

that belief propagation can decode a p-fraction of errors, then the entire code will have the same

property, with high probability (provided the final code in the cascade has that property, but this

can be adjusted). All in all, this construction provides linear time encodable and decodable codes.

The idea of using a cascade, though appealing in theory, is rather cumbersome in practice. For

example, in the case of the BEC, the variance of the fraction of erasures per graph-layer will often be

too large to allow for decoding. Moreover, maintaining all the graphs is rather complicated and may

lead to deficiencies in the decoder. (For some ideas on how to decrease these deficiencies, see [10].)

Another class of codes obtained from sparse graphs and equipped with fast encoders are the

Repeat-Accumulate (RA) codes of Divsalar et al. [27]. The construction of these codes is somewhat

similar to the construction discussed above. However, instead of protecting the check nodes with

another layer of a sparse graph, the protection is done via a dense graph, and the check nodes of

the first graph are never transmitted. Dense graphs are in general not amenable to fast encoding.

However, the dense graph chosen in an RA code is of a special structure which makes its computation

easy.

More formally, the encoding process for RA codes is as follows. Consider an LDPC code whose
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Figure 4: An irregular RA code. The left nodes are the information symbols, and the rightmost

nodes are the redundant nodes. The squares in between are check nodes. Their values are computed

as the addition of the values of their neighbors among the information nodes. The values of the

redundant nodes are calculated so as to satisfy the relation that the values of the check nodes is

equal to the addition of the values of the neighboring redundant nodes.
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graph has n message nodes and r check nodes. The value of the r check nodes is computed using

the procedure introduced above, i.e., the value of each check node is the addition of the values of

its adjacent message nodes. Let (y1, . . . , yr) denote the values of these check nodes. The redundant

values (s1, . . . , sr) are now calculated as follows: s1 = y1, s2 = s1 + y2, . . . , sr = sr−1 + yr. (This

explains the phrase “accumulate.”) An example of an RA code is given in Figure 4.

The original RA codes used a (1, k)-biregular graph for some k as the graph defining the LDPC

code. (This explains the phrase “repeat.”) RA codes were generalized to encompass irregular RA

codes for which the underlying graph can be any bipartite graph [28]. The same paper introduces

degree distributions for which the corresponding RA codes achieve capacity of the BEC.

We conclude this section by mentioning the work of Richardson and Urbanke [29] which provides

an algorithm for encoding LDPC codes. They show that if the degree distribution (λ(x), ρ(x)) is such

that ρ(1−λ(x)) < x for x ∈ (0, 1), and such that λ2ρ
′(1) > 1, then the LDPC code can be encoded in

linear time. The condition λ2ρ
′(1) > 1 has the following interpretation: consider the graph generated

by the message nodes of degree 2. This graph induces a graph on the check nodes, by interpreting

the message nodes of degree 2 as edges in that graph (see Section 14). Then λ2ρ
′(1) > 1 implies that

this induced graph has a connected component whose number of vertices is a constant fraction of the

number of check nodes. This will be explained further in Section 14, where this condition is actually

used to devise a linear time encoding algorithm for a certain type of graphs. I will not discuss the

result of Richardson and Urbanke further, and will refer the reader to [29].

13 Finite-Length Analysis

Density evolution gives a somewhat satisfactory answer to the asymptotic performance of random

LDPC codes with a given degree distribution. It is possible to refine the analysis of density evolution

to obtain upper bounds on the error probability of the decoder in terms of the degree distributions,

and in terms of the number of message and check nodes. However, these bounds are very poor even

when the number of message nodes is several tens of thousands large. This is primarily due to two

reasons: density evolution is only valid as long as the neighborhood around message nodes is a tree.

For small graphs this corresponds to a very small number of iterations, which is usually too small to

reduce the fraction of errors in the graph to a reasonable amount. The second source of inaccuracy

for the error probability is the set of tools used, since the bounds obtained from the probabilistic
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Figure 5: Examples of graphs that are stopping sets

analysis are too weak for small lengths.

For these reasons it is important to develop other methods for analysing the performance of

message passing algorithms on small graphs. So far this has only started for the case of the BEC [30].

In this case the analysis is of a combinatorial flavor. Given a bipartite graph, its associated code,

and a set of erasures among the check nodes, consider the graph induced by the erased message

nodes. A stopping set in this graph is a set of message nodes such that the graph induced by

these message nodes has the property that no check node has degree one. The number of message

nodes in the stopping set is called its size. It should be clear that belief propagation for the BEC

stops prematurely (i.e., without recovering all the message nodes) if and only if this subgraph has a

stopping set. Figure 5 gives some examples of graphs that are themselves stopping sets. Since unions

of stopping sets are stopping sets, any finite graph contains a unique maximal stopping set (which

may be the empty set). For a random bipartite graph the probability that belief propagation on the

BEC has not recovered ` message nodes at the point of failure (` can be zero) is the probability that

the graph induced by the erased message nodes has a maximal stopping set of size `.

Besides [30] several papers discuss finite-length analysis of LDPC codes on the BEC [31, 32, 33].

I am not aware of similar analysis tools for channels other than the BEC. Generalizing the concept

of stopping sets to other channels would certainly be a worthwhile effort.

14 An Example

In this section I will exemplify most of the above concepts for a special type of LDPC codes. The codes

I will describe in this section certainly do not stand out because of their performance. However, it is
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rather easy to derive the main concepts for them and this warrants their discussion in the framework

of this note. Moreover, it seems that a thorough understanding of their behavior is very important

for understanding belief propagation for general LDPC codes. I will try to clarify this more at the

end of the section.

For given n and r Let P(n, r) denote the ensemble of bipartite graphs with n message nodes

and r check nodes for which each message node has degree 2 and its two neighbors among the check

nodes are chosen independently at random. The check node degrees in such a graph are binomially

distributed, and if n and r are large, then the distribution is very close to a Poisson distribution with

mean 2n/r. (This is a well-known fact, but the reader may try to prove it for herself.) It turns out

that the edge degree distribution of the graph is very close to eα(x−1) where α = 2n/r is the average

degree of the check nodes.

First, let us see how many erasures this code can correct. The maximum fraction of erasures

is 1 − R, where R is the rate, which is at least 1 − r/n. We should therefore not expect to be

able to correct more than an r/n-fraction of erasures, i.e., more than a 2/α-fraction. We now apply

Condition (7): p is the maximum fraction of correctable erasures iff p · (1 − e−αx) < x for x ∈ (0, p).

Replacing x by px, this condition becomes

1 − e−βx < x, β = pα. (10)

This latter condition has an interesting interpretation: the graph induced by the p-fraction of erasures

is a random graph in the ensemble P(e, r), where e is the number of erasures, the expected value

of which is en. For this graph the edge distribution from the point of view of the check nodes is

e−pα(x−1), and thus (7) implies (10).

Next, I will show that the maximum value of β for which Condition (10) holds is β = 1. For the

function 1 − e−βx − x to be less than 0 in (0, 1), it is necessary that the derivative of this function

be non-positive at 0. The derivative is βe−βx − 1, and its value at 0 is β − 1. Hence, β ≤ 1 is a

necessary condition for (10) to hold. On the other hand, if β = 1, then (10) is satisfied. Therefore,

the maximum fraction of correctable erasures for a code in the ensemble P(n, r) is r/(2n), i.e., the

performance of these codes is at half the capacity. So, the ensemble P(n, r) is not a very good

ensemble in terms of the performance of belief propagation on the BEC.

Before I go further in the discussion of codes in the ensemble P(n, r), let me give a different view

of these codes. A bipartite graph with n message nodes and r check nodes in which each message
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Figure 6: A graph with left degree 2 and its induced graph on the check nodes

node has degree 2 defines a (multi-)graph on the set of check nodes by regarding each message node

as an edge in the graph in the obvious way. Multi-graphs and bipartite graphs with message degree 2

are in one-to-one correspondence to each other. In the following we will call the graph formed on the

check nodes of a bipartite graph G with message degree 2 induced by G. Figure 6 gives an example.

For a graph in the ensemble P(n, r) the corresponding induced graph is a random graph of type

Gr,n, where Gm,E denotes the random graph on m vertices in which E edges are chosen randomly

and with replacement among all the possible
(

m
2

)

edges in the graph.

For a bipartite graph G with message degree 2 the stopping sets are precisely the edges of a

2-core. Let me define this notion: For any graph and any integer k the k-core of the graph is the

unique maximal subgraph of G in which each node has degree k. The k-core may of course be empty.

It is a well-known fact [34] that a giant 2-core exists with high probability in a random graph with

E edges in m nodes iff the average degree of a node is larger than 1, i.e., iff E ≥ m. (A giant 2-core in

the graph is a 2-core whose size is linear in the number of vertices of the graph.) Condition (10) is a

new proof for this fact, as it shows that if the average degree of the induced graph is smaller than 1,

then with high probability the graph does not contain a 2-core of linear size. It is also a well-known

fact that this is precisely the condition for the random graph to contain a giant component, i.e., a

component with linearly many nodes. Therefore, condition (10) can also be viewed as a condition

on the graph not having a large component. (This condition is even more precise, as it gives the

expected fraction of unrecovered message nodes at the time of failure of the decoder: it is p times

the unique root of the equation 1 − x − e−βx in the interval (0, 1); incidentally, this is exactly the
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expected size of the giant component in the graph, as is well-known in random graph theory [34].)

More generally, one can study graphs from the ensemble L(n, r, ρ(x)) denoting random graphs

with n message and r check nodes with edge degree distribution on the check side given by ρ(x) =
∑

d ρdx
d−1 (i.e., probability that an edge is connected to check node of degree d is ρd). The maximum

fraction of tolerable erasures in this case is the supremum of all p such that 1 − ρ(1 − px) − x < 0

for x ∈ (0, 1). This yields the stability condition pρ′(1) < 1. This condition is also sufficient, since it

implies that pρ′(1− px) < 1 on (0, 1), hence 1− ρ(1− px)−x is monotonically decreasing, and since

this function is 0 at x = 0, it is negative for x ∈ (0, 1).

The condition pρ′(1) < 1 is equivalent to the statement that the graph induced on the check

nodes by the bipartite graph has a giant component. This follows from results in [35]. According

to that paper, if a graph is chosen randomly on n nodes subject to the condition that for each d

the fraction of nodes of degree d is essentially Rd (see the paper for a precise definition), then the

graph has almost surely a giant component iff
∑

d d(d − 2)Rd > 0. Consider the graph obtained

from the restriction of the message nodes to a p-fraction, and consider the graph induced by this

smaller graph on the check nodes. Then, it is not hard to see that the degree distribution for this

graph is R(px + 1 − p), where R(x) = c
∫

ρ(x) d and c is the average degree of the check nodes in

the smaller bipartite graph. Therefore, the condition in [35] for the induced graph to have a giant

component equals pR′′(1) < c, where R′′(x) is the second derivative of R(x). This is precisely equal

to pρ′(1) < 1, i.e., the stability condition is equivalent to the statement that the induced graph has a

giant component. Incidentally, this is also equivalent to the condition that the graph does not have

a giant 2-core, since stopping sets are equivalent to 2-cores in this setting. The fraction of nodes in

the giant 2-core (if it exists) is equal to the unique solution of the equation 1 − ρ(1 − px) − x = 0

in (0, 1). (Compare this also to [36], which obtains formulas for the size of the giant component in a

random irregular graph.)

LDPC codes from graphs with left degree 2 play an important role. For example, consider

the stability condition proved in [9]. It states that small amounts of noise are correctable by be-

lief propagation for an LDPC code with degree distribution given by λ(x) and ρ(x) if and only if

λ2ρ
′(1) <

(

∫∞
−∞ f(x)e−x/2 dx

)−1
, where f(x) is the density of the log-likelihood of the channel. For

example, for the BEC with erasure probability p we obtain λ2ρ
′(1) < 1/p, and for the BSC with error

probability p we obtain λ2ρ
′(1) < 1/

√

p(1 − p). The stability condition is actually the condition that

belief propagation is successful on the subgraph induced by message nodes of degree 2. This is not
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surprising, since these message nodes are those that are corrected last in the algorithm. (I do not

give a proof of this, but this should sound reasonable, since message nodes of degree 2 receive very

few messages in each round of iteration, and hence get corrected only when all the incoming messages

are reasonably correct.)
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