Autonomous control systems are designed
to perform well under significant uncertainties
in the system and environment for extended
periods of time, and they must be able to
compensate for significant system failures
without external intervention. Intelligent
autonomous control systems use techniques
from the field of artificial intelligence (AI) to
achieve this autonomy. Such control systems
evolve from conventional control systems by
adding intelligent components, and their
development requires interdisciplinary re-
search. Here, we provide an introduction to the
area of intelligent autonomous control. The
fundamental issues in autonomous control
system modeling and analysis are discussed,
with emphasis on mathematical modeling.
Some recent results in relevant research areas
are summarized.

Introduction

Autonomous means having the power for
self government. Autonomous controllers
have the power and ability for self governance
in the performance of control functions. They
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are composed of a collection of hardware and
software, which can perform the necessary
control functions, without external interven-
tion, over extended time periods. There are
several degrees of autonomy. A fully
autonomous controller should perhaps have
the ability to even perform hardware repair, if
one of its components fails. Note that conven-
tional fixed controllers can be considered to
have a low degree of autonomy since they can
only tolerate a restricted class of plant
parameter variations and disturbances. To
achieve a high degree of autonomy, the con-
troller must be able to perform a number of
functions in addition to the conventional con-
trol functions such as tracking and regulation.
These additional functions, which include the
ability to accommodate for drastic system
failures, are discussed in this article. This ar-
ticle is based on the developments in [1]-[3].
Autonomous controllers can of course be
used in a variety of systems from manufac-
turing to unmanned space, atmospheric,
ground, and underwater exploratory vehicles
(for a description of several applications see
[4]). This introduction to autonomous control
will be developed around a space vehicle ap-
plication so that a) concrete examples for the
various control functions, and fundamental
characteristics of autonomous control can be
given, and b) so that the development addres-
ses relatively well defined control needs rather
than abstract requirements. Furthermore, the
autonomous control of space vehicles is high-
ly demanding; consequently the developed
architecture is general enough to encompass
all related autonomy issues. It should be
stressed that all the results presented here
apply to any autonomous control system. In
other classes of applications, the architecture,
or parts of it, can be used directly and the same
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fundamental concepts and characteristics
identified here are valid.

We begin by describing the architecture
of the autonomous controller necessary for
the operation of future advanced space
vehicles that was developed in {2],[3]. The
concepts and methods needed to successfully
design such an autonomous controller are in-
troduced and discussed. A hierarchical func-
tional autonomous controller architecture is
described; it is designed to ensure the
autonomous operation of the control system
and it allows interaction with the pilot/ground
station and the systems on board the
autonomous vehicle. A command by the pilot
or the ground station is executed by dividing
it into appropriate subtasks which are then
performed by the controller. The controller
can deal with unexpected situations, new con-
trol tasks, and failures within limits. To
achieve this, high level decision making tech-
niques for reasoning under uncertainty and
taking actions must be utilized. These techni-
ques, if used by humans, are attributed to
intelligent behavior. Hence, one way to
achieve autonomy, for some applications, is to
utilize high level decision making techniques,
“intelligent” methods, in the autonomous con-
troller. Autonomy is the objective, and “intel-
ligent” controllers are one way to achieve it.
The fields of artificial intelligence (AI) [5],[6]
and operations research offer some of the tools
to add the higher level decision making
abilities.

Autonomous Control Functions

Autonomous control systems must per-
form well under significant uncertainties in
the plant and the environment for extended
periods of time and they must be able to com-



pensate for system failures without external
intervention. Such autonomous behavior is a
very desirable characteristic of advanced sys-
tems. An autonomous controller provides high
level adaptation to changes in the plant and
environment. To achieve autonomy the
methods used for control system design
should utilize both a) algorithmic-numeric
methods, based on the state-of-the-art conven-
tional control, identification, estimation, and
communication theory, and b) decision
making-symbolic methods, such as the ones
developed in computer science (e.g., automata
theory), and specifically in the field of Al In
addition to supervising and tuning the control
algorithms, the autonomous controller must
also provide a high degree of tolerance to
failures. To ensure system reliability, failures
must first be detected, isolated, and identified
(and if possible contained), and subsequently
a new control law must be designed if it is
deemed necessary. The autonomous controller
must be capable of planning the necessary
sequence of control actions to be taken to
accomplish a complicated task. It must be able
to interface to other systems as well as with
the operator, and it may need learning
capabilities to enhance its performance while
in operation. It is for these reasons that ad-
vanced planning, learning, and expert sys-
tems, among others, must work together with
conventional control systems in order to
achieve autonomy.

The need for quantitative methods to
model and analyze the dynamical behavior of
such autonomous systems presents significant
challenges well beyond current capabilities. It
is clear that the development of autonomous
controllers requires significant interdis-
ciplinary research effort as it integrates con-
cepts and methods from areas such as control,
identification, estimation, and communication
theory, computer science, artificial intel-
ligence, and operations research. It is also
important to note that autonomous controllers
are evolutionary and not revolutionary. They
evolve from existing controllers in a natural
way fueled by actual needs, as is now dis-
cussed.

Design Methodology - History

Conventional control systems are designed
using mathematical models of physical sys-
tems. A mathematical model which captures
the dynamical behavior of interest is chosen
and then control design techniques are ap-
plied, aided by CAD packages, to design the
mathematical model of an appropriate control-
ler. The controller is then realized via
hardware or software and it is used to control

the physical system. The procedure may take

several iterations. The mathematical model of

the system must be “simple enough” so that it
can be analyzed with available mathematical
techniques, and “accurate enough” to describe
the important aspects of the relevant dynami-
cal behavior. It approximates the behavior of
a plant in the neighborhood of an operating
point.

The first mathematical model to describe
plant behavior for control purposes is at-
tributed to J.C. Maxwell who in 1868 used
differential equations to explain instability
problems encountered with James Watt’s
flyball governor; the governor was introduced
in 1769 to regulate the speed of steam engine
vehicles. Control theory made significant
strides in the past 120 years, with the use of
frequency domain methods and Laplace trans-
forms in the 1930s and 1940s and the intro-
duction of the state space analysis in the
1960s. Optimal control in the 1950s and
1960s, stochastic, robust and adaptive control
methods in the 1960s to today, have made it
possible to control more accurately signifi-
cantly more complex dynamical systems than
the original flyball governor.

The control methods and the underlying
mathematical theory were developed to meet
the ever increasing control needs of our tech-
nology. The evolution in the control area was
fueled by three major needs:

a) The need to deal with increasingly com-
plex dynamical systems.

b) The need to accomplish increasingly
demanding design requirements.

c) The need to attain these design require-
ments with less precise advanced knowledge
of the plant and its environment, that is, the
need to control under increased uncertainty.

The need to achieve the demanding control
specifications for increasingly complex
dynamical systems has been addressed by
using more complex mathematical models
such as nonlinear and stochastic ones, and by
developing more sophisticated design algo-
rithms for, say, optimal control. The use of
highly complex mathematical models how-
ever, can seriously inhibit our ability to
develop control algorithms. Fortunately,
simpler plant models, for example linear
models, can be used in the control design; this
is possible because of the feedback used in
control which can tolerate significant model
uncertainties. Controllers can then be
designed to meet the specifications around an
operating point, where the linear model is
valid and then via a scheduler a controller
emerges which can accomplish the control
objectives over the whole operating range.
This is, for example, the method typically used

for aircraft flight control. In autonomous con-
trol systems we need to significantly increase
the operating range. We must be able to deal
effectively with significant uncertainties in
models of increasingly complex dynamical
systems in addition to increasing the validity
range of our control methods. This will in-
volve the use of intelligent decision making
processes to generate control actions so that a
performance level is maintained even though
there are drastic changes in the operating
conditions.

There are needs today that cannot be suc-
cessfully addresséd with the existing conven-
tional control theory. They mainly pertain to
the area of uncertainty. Heuristic methods may
be needed to tune the parameters of an adap-
tive control law. New control laws to perform
novel control functions should be designed
while the system is in operation. Learning
from past experience and planning control
actions may be necessary. Failure detection
and identification is needed. These functions
have been performed in the past by human
operators. To increase the speed of response,
to relieve the pilot from mundane tasks, to
protect operators from hazards, autonomy is
desired. It should be pointed out that several
functions proposed in later sections, to be part
of the autonomous controller, have been per-
formed in the past by separate systems; ex-
amples include fault trees in chemical process
control for failure diagnosis and hazard
analysis, and control system design via expert
systems.

Summary

In the next section the functions, character-
istics, and benefits of autonomous control are
outlined. Next it is explained that plant com-
plexity and design requirements dictate how
sophisticated a controller must be. From this
it can be seen that often it is appropriate to use
methods from operations research or com-
puter science to achieve autonomy. Such
methods are studied in intelligent control
theory. An overview of some relevantresearch
literature in the field of intelligent and
autonomous control is given together with
references that outline research directions. An
autonomous control functional architecture
for future space vehicles is then presented,
which incorporates the concepts and charac-
teristics described earlier. The controller is
hierarchical, with three levels, the execution
level (lowest level), the coordination level
(middle level), and the management and or-
ganization level (highest level). The general
characteristics of the overall architecture, in-
cluding those of the three levels are explained,
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and an example to illustrate their functions is
given.

In the following section the fundamental
issues and attributes of intelligent autonomous
systems are described. Then we discuss math-
ematical models for autonomous systems in-
cluding “logical” discrete event system
models. An approach to the quantitative, sys-
tematic modeling, analysis, and design of
autonomous controllers is also discussed. It is
a “hybrid” approach since it is proposed to use
both conventional analysis techniques based
on difference and differential equations,
together with new techniques for the analysis
of systems described with a symbolic for-
malism such as finite automata. The more
global, macroscopic, view of dynamical sys-
tems taken in the development of autonomous
controllers, suggests the use of a model with a
hybrid or nonuniform structure, which in turn
requires the use of a hybrid analysis. Finally,
several major relevant research areas are indi-
cated. In particular, some interesting recent
results from the areas of planning and expert
systems, machine learning, artificial neural
networks and the area of restructurable con-
trols are briefly outlined. The last section
provides some concluding remarks.

Functional Architecture of an
Autonomous Controller

Intelligent Autonomous Control

Motivation: Sophistication and Com-
plexity in Conrtrol: The complexity of a
dynamical system model and the increasingly
demanding closed loop system performance
requirements, necessitate the use of more
complex and sophisticated controllers. For ex-
ample, highly nonlinear systems normally re-
quire the use of more complex controllers than
low order linear ones when goals beyond
stability are to be met. The increase in uncer-
tainty, which corresponds to the decrease in
how well the problem is structured or how
well the control problem is formulated, and the
necessity to allow human intervention in con-
trol, also necessitate the use of increasingly
sophisticated controllers. Controller com-
plexity and sophistication is then directly
proportional to both the complexities of the
plant model and of the control design require-
ments.

Based on these ideas, the authors in [ 7} and
[8] suggest a hierarchical ranking of increas-
ing controller sophistication on the path to
intelligent controls. At the lowest level, deter-
ministic feedback control based on conven-
tional control theory is utilized for simple
linear plants. As plant complexity increases,
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such controllers will need for instance, state
estimators. When process noise is significant,
Kalman or other filters may be needed. Also,
if it is required to complete a control task in
minimum time or with minimum energy, op-
timal control techniques are utilized. When
there are many quantifiable, stochastic char-
acteristics in the plant, stochastic control
theory is used. If there are significant varia-
tions of plant parameters, to the extent that
linear robust control theory is inappropriate,
adaptive control techniques are employed. For
still more complex plants, self-organizing or
learning control may be necessary. At the
highest level in their hierarchical ranking,
plant complexity is so high, and performance
specifications so demanding, that intelligent
control techniques are used.

In the hierarchical ranking of increasingly
sophisticated controllers described above, the
decision to choose more sophisticated control
techniques is made by studying the control
problem using a controller of a certain com-
plexity belonging to a certain class. When it is
determined that the class of controllers being
studied (e.g., adaptive controllers) is inade-
quate to meet the required objectives, a more
sophisticated class of controllers (e.g., intel-
ligent controllers) is chosen. That is, if it is
found that certain higher level decision
making processes are needed for the adaptive
controller to meet the performance require-
ments, then these processes can be incor-
porated via the study of intelligent control
theory. These intelligent autonomous control-
lers are the next level up in sophistication.
They are enhanced adaptive controllers, in the
sense that they can adapt to more significant
global changes in the plant and its environ-
ment than conventional adaptive controllers,
while meeting more stringent performance
requirements.

One turns to more sophisticated controllers
only if simpler ones cannot meet the required
objectives. The need to use intelligent
autonomous control stems from the need for
an increased level of autonomous decision
making abilities in achieving complex control
tasks. In the next section a number of intel-
ligent and autonomous control research
results which have appeared in the literature
are outlined.

A Literature Overview: In [2],[3] the
authors provided a relatively complete list of
references for the field of autonomous control.
Here we provide references which we feel will
provide the reader with an introduction to
autonomous control. First, there are several
relevant books: Hierarchical systems are
treated in [9],[10]. In [11] the authors explain
how a wide variety of Al techniques will be

useful in enhancing space station autonomy,
capability, safety, etc. Aerospace applications
are also discussed in [12]. For a book on Al
and autonomous systems see [ 13], and for one
on cybernetics and intelligent systems see
[14]. For a book on intelligent manufacturing
systems see [15].

Journals with papers relevant to the area of
intelligent autonomous control are The Jour-
nal of Intelligent and Robotic Systems, IEEE
Transactions on Systems, Man, and Cybernet-
ics, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Journal of Applied
Artificial Intelligence, and the standard Al and
control theoretic journals. The reader should
also consult some of the recent conference
proceedings: Proceedings of the 1985 IEEE
Workshop on Intelligent Control, Proceedings
of the 1986 Intelligent Autonomous Systems
Conference, Proceedings of the Space
Telerobotics Workshop, and the Proceedings
of the IEEE International Symposium on In-
telligent Control in 1987, 1988, 1989, and
1990.

In [2],[3] the authors introduce an intelli-
gent autonomous controller and discuss in
detail the fundamental characteristics of
autonomous control. In [16] the author offers
a decentralized control-theoretic view on in-
telligent control. Functional and structural
hierarchies are studied in [17]. Fundamentals
of intelligent systems such as the principle of
increasing intelligence with decreasing
precision, are discussed in [18],[19], and [20].
The work in [18].[19] and [21]-[26] probably
represents the most complete mathematical
approach to the analysis of intelligent
machines. In [27] and the references therein
the authors study distributed intelligent sys-
tems. In [28] the author introduces a theory of
intelligent control that has received consider-
able attention since then. There have been
numerous studies on the use of expert systems
to control various processes; in [29] expert
systems have been used in chemical process
control. There are interesting relationships be-
tween the type of problems examined in intel-
ligent autonomous control, “fuzzy control”
[30], and “automated reasoning” [31].
Simulation of autonomous systems and re-
lated issues has been studied extensively in
[321,[33] and the references therein.

An Intelligent Autonomous Control
Architecture For Future Space Vehicles

Here, a functional architecture of an
autonomous controller for future space
vehicles is introduced and discussed. This
hierarchical architecture has three levels, the
execution level, the coordination level, and the



management and organization level. The ar-
chitecture exhibits certain characteristics, as
discussed below, which have been shown in
the literature to be necessary and desirable in
autonomous systems. Based on this architec-
ture we identify the important fundamental

middle level, called the coordination level,
provides the link between the execution level
and the management level. Note that we fol-
low the somewhat standard viewpoint that
there are three major levels in the hierarchy. /¢
must be stressed that the system may have
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Fig. 1. Autonomous controller functional architecture.

issues and concepts that are needed for an
autonomous control theory.

Architecture Overview: Structure and
Characteristics: The overall functional ar-
chitecture for an autonomous controller is
given by the architectural schematic of Fig. 1;
for more detailed description see [2],[3]. This
is a functional architecture rather than a
hardware processing one, therefore it does not
specify the arrangement and duties of the
hardware used to implement the functions
described. Note that the processing architec-
ture also depends on the characteristics of the
current processing technology; centralized or
distributed processing may be chosen for
function implementation depending on avail-
able computer technology.

The architecture in Fig. 1 has three levels.
At the lowest level, the execution level, there
is the interface to the vehicle and its environ-
ment via the sensors and actuators. At the
highest level, the management and organiza-
tion level, there is the interface to the pilot and
crew, ground station, or onboard systems. The

more or fewer than three levels. For instance,
see the architecture developed in [34]. Some
characteristics of the system which dictate the
number of levels are the extent to which the
operator can intervene in the system’s opera-
tions, the degree of autonomy or level of intel-
ligence in the various subsystems, the
dexterity of the subsystems, the hierarchical
characteristics of the plant. Note however that
the three levels shown here in Fig. 1 are ap-
plicable to most architectures of autonomous
controllers, by grouping together sublevels of
the architecture if necessary. Notice that as it
is indicated in the figure, the lowest, execution
level involves conventional control algo-
rithms, while the highest, management and
organization level involves only higher level,
intelligent, decision making methods. The
middle, coordination level is the level which
provides the interface between the actions of
the other two levels and it uses a combination
of conventional and intelligent decision
making methods.

The sensors and actuators are implemented
mainly with hardware. They are the connec-

tion between the physical system and the con-
troller. Software and perhaps hardware are
used to implement the execution level. Mainly
software is used for both the coordination and
management levels. There are multiple copies
of the control functions at each level, more at
the lower and fewer at the higher levels. For
example, there may be one control manager
which directs a number of different adaptive
control algorithms to control the flexible
modes of the vehicle via appropriate sensors
and actuators. Another control manager is
responsible for the control functions of a robot
arm for satellite repair. The control executive
issues commands to the managers and coor-
dinates their actions.

Note that the autonomous controller is
only one of the autonomous systems on the
vehicle. It is responsible for all the functions
related to the control of the physical system
and allows for continuous online development
of the autonomous controller and to provide
for various phases of mission operations. The
tier structure of the architecture allows us to
build on existing advanced control theory.
Development progresses, creating each time,
higher level adaptation and a new system
which can be operated and tested inde-
pendently. The autonomous controller per-
forms many of the functions currently
performed by the pilot, crew, or ground sta-
tion. The pilot and crew are thus relieved from
mundane tasks and some of the ground station
functions are brought aboard the vehicle. In
this way the degree of autonomy of the vehicle
is increased.

Functional Operation: Commands are is-
sued by higher levels to lower levels and
response data flows from lower levels up-
wards. Parameters of subsystems can be al-
tered by systems one level above them in the
hierarchy. There is a delegation and distribu-
tion of tasks from higher to lower levels and a
layered distribution of decision making
authority. At each level, some preprocessing
occurs before information is sent to higher
levels. If requested, data can be passed from
the lowest subsystem to the highest, e.g., for
display. All subsystems provide status and
health information to higher levels. Human
intervention is allowed even at the control
implementation supervisor level, with the
commands however passed down from the
upper levels of the hierarchy.

The specific functions at each level are
described in detail in [2],[3]. Here we present
a simple illustrative example to clarify the
overall operation of the autonomous control-
ler. Suppose that the pilot desires to repair a
satellite. After dialogue with the control ex-
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ecutive, the task is refined to “repair satellite
using robot A”. This is arrived at using the
capability assessing, performance monitoring,
and planning functions of the control execu-
tive. The control executive decides if the
repair is possible under the current perfor-
mance level of the system, and in view of near
term planned functions. The control execu-
tive, using its planning capabilities, sends a
sequence of subtasks sufficient to achieve the
repair to the control manager. This sequence
could be to order robot A to: “go to satellite at
coordinates xyz”, “open repair hatch”,
“repair”. The control manager, using its plan-
ner, divides say the first subtask, “go to satel-
lite at coordinates xyz”, into smaller subtasks:
“go from start to x;y,2;,” then “maneuver
around obstacle,” “move to x;y,2,,”..., “arrive
at the repair site and wait.” The other subtasks
are divided in a similar manner. This informa-
tion is passed to the control implementation
supervisor, which recognizes the task, and
uses stored control laws to accomplish the
objective. The subtask “go from start to
xyz,” can for example, be implemented
using stored control algorithms to first,
proceed forward 10 m, to the right 15°, etc.
These control algorithms are executed in the
controller at the execution level utilizing sen-
sor information; the control actions are imple-
mented via the actuators.

Some Design Guidelines for Autonomous
Controllers

There are certain functions, characteristics,
and behaviors that autonomous systems
should possess [10],{34]. These are outlined
below. Some of the important characteristics
of autonomous controllers are that they relieve
humans from time consuming mundane tasks
thus increasing efficiency, enhance reliability
since they monitor health of the system, en-
hance performance, protect the system from
internally induced faults, and they have con-
sistent performance in accomplishing com-
plex tasks.

There are autonomy guidelines and goals
that should be followed and sought after in the
development of an autonomous system.
Autonomy should reduce the work load re-
quirements of the operator or, in the space
vehicle case discussed here, of the pilot/crew-
/ground station, for the performance of routine
functions, since the gains due to autonomy
would be superficial if the maintenance and
operation of the autonomous controller taxed
the operators. Autonomy should enhance the
functional capability of the system. Since the
autonomous controller. will be performing the
simpler routine tasks, persons will be able to
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dedicate themselves to even more complex
tasks.

There are certain autonomous system ar-
chitectural characteristics that should be
sought after in the design process. The
autonomous control architecture should be
amenable to evolving future needs and up-
dates in the state of the art. The autonomous
control architecture should be functionally
hierarchical; for lower level subsystems to
take some actions, they have to clear it with a
higher level authority. The system must, how-
ever, be able to have lower level subsystems,
that are monitoring and reconfiguring for
failures, act autonomously to certain extent to
enhance system safety. There are also certain
operational characteristics of autonomous
controllers. Persons should have ultimate su-
pervisory override control of autonomy func-
tions. Autonomous activities should be highly
visible, “transparent”, to the operator the max-
imum extent possible.

Finally, there must be certain features in-
herent in the autonomous system design.
Autonomous design features should prevent
failures that would jeopardize the overall sys-
tem mission goals or safety. These features
should enhance safety, and avoid false alarms
and unnecessary hardware reconfiguration.
This implies that the controller should have
self-test capability. Autonomous design fea-
tures should also be tolerant of transient errors,
they should not degrade the reliability or
operational lifetime of functional elements,
they should include adjustable fault detection
thresholds, avoid irreversible state changes,
and provide protection from erroneous or in-
valid external commands.

Characteristics of Autonomous
Control Systems

Based on the architecture described above
we identify the important fundamental con-
cepts and characteristics that are needed for an
autonomous control theory. Note that several
of these have been discussed in the literature
as outlined above. Here, these characteristics
are brought together for completeness. Fur-
thermore, the fundamental issues which must
be addressed for a quantitative theory of intel-
ligent autonomous control are introduced and
discussed.

There is a successive delegation of duties
from the higher to lower levels; consequently
the number of distinct tasks increases as we go
down the hierarchy. Higher levels are con-
cerned with slower aspects of the system’s
behavior and with its larger portions, or
broader aspects. There is then a smaller con-
textual horizon at lower levels, i.e. the control

decisions are made by considering less infor-
mation. Also notice that higher levels are con-
cerned with longer time horizons than lower
levels. Due to the fact that there is the need for
high level decision making abilities at the
higher levels in the hierarchy, there is increas-
ing intelligence as one moves from the lower
to the higher levels. This is reflected in the use
of fewer conventional numeric-algorithmic
methods at higher levels as well as the use of
more symbolic-decision making methods.
This is the “principle of increasing intel-
ligence with decreasing precision” described
in [23]. The decreasing precision is reflected
by a decrease in rime scale density, decrease
in bandwidth or system rate, and a decrease in
the decision (control action) rate. (These
properties have been studied for a class of
hierarchical systems in [35],{36].) All these
characteristics lead to a decrease in granular-
ity of models used, or equivalently, to an in-
crease in model abstractness. Model
granularity also depends on the dexteriry of the
autonomous controller as discussed in {2],{3].
The execution level of a highly dexterous
controller is very sophisticated and it can ac-
complish complex control tasks. The control
implementation supervisor can issue high
level commands to a dexterous controller, or
it can completely dictate each command in a
less dexterous one. The simplicity, and level
of abstractness of macro commands in an
autonomous controller depends on its dex-
terity. The more sophisticated the execution
level is, the simpler are the commands that the
control implementation supervisor needs to
issue. Notice that a very dexterous robot arm
may itself have anumber of autonomous func-
tions. If two such dexterous arms were used to
complete a task which required the coordina-
tion of their actions then the arms would be
considered to be two dexterous actuators and
a new supervisory autonomous controller
would be placed on top for the supervision and
coordination task. In general, this can happen
recursively, adding more intelligent autono-
mous controllers as the lower level tasks, ac-
complished by autonomous systems, need to
be supervised.

There is an ongoing evolution of the intel-
ligent functions of an autonomous controller
and this is now discussed. It was pointed out
above that complex control problems required
a controller sophistication that involved the
use of Al methodologies. It is interesting to
observe the following [37]: Although there are
characteristics which separate intelligent from
non-intelligent systems, as intelligent systems
evolve, the distinction becomes less clear.
Systems which were originally considered in-
telligent evolve to gain more character of what



are considered to be non-intelligent, numeric-
algorithmic systems. An example is a route
planner. Although there are Al route planning
systems, as problems like route planning be-
come better understood, more conventional
numeric-algorithmic solutions are developed.
The Al methods which are used in intelligent
systems, help us to understand complex
problems so we can organize and synthesize
new approaches to problem solving, in addi-
tion to being problem solving techniques
themselves. Al techniques can be viewed as
research vehicles for solving very complex
problems. As the problem solution develops,
purely algorithmic approaches, which have
desirable implementation characteristics, sub-
stitute Al techniques and play a greater role in
the solution of the problem. It is for this reason
that we concentrate on achieving autonomy
and not on whether the underlying system can
be considered “intelligent”. ‘

Mathematical Models for
Autonomous Systems

For autonomous control problems, nor-
mally the plant is so complex that it is either
impossible or inappropriate to describe it with
conventional system models such as differen-
tial or difference equations. Even though it
might be possible to accurately describe some
system with highly complex nonlinear dif-
ferential equations, it may be inappropriate if
this description makes subsequent analysis
too difficult to be useful. The complexity of
the plant model needed in design depends on
both the complexity of the physical system
and on how demanding the design specifica-
tions are. There is a tradeoff between model
complexity and our ability to perform analysis
on the system via the model. However, if the
control performance specifications are not too
demanding, a more abstract, higher level,
model can be utilized, which will make sub-
sequent analysis simpler. This model inten-
tionally ignores some of the system
characteristics, specifically those that need not
be considered in attempting to meet the par-
ticular performance specifications. For ex-
ample, a simple temperature controller could
ignore almost all dynamics of the house or the
office and consider only a temperature
threshold model of the system to switch the
furnace off or on.

Logical discrete event system (DES)
models such as those used in the Ramadge-
Wonham framework (e.g., {38]) or such as
Petri nets [39] are quite useful for modeling
the higher level decision making processes in
the intelligent autonomous controller. It was
shown in {40],[41] that DES-theoretic models

can be used to represent Al planning systems
which are an important component of the in-
telligent autonomous controller. Also, it was
shown in [42] that Petri nets can be used as
knowledge representation tools in Al In par-
ticular the authors showed that knowledge that
can be represented with semantic networks,
scripts, and production rules in an expert sys-
tem can also be clearly represented with Petri
net models. The “timed” or “performance”
models from DES-theoretic research will also
prove useful in modeling components of the
higher levels in the intelligent autonomous
controller. For instance, queuing network
models, Markov chains, etc. will be useful.
The choice of whether to use such models will,
of course, depend on what properties of the
autonomous system need to be studied.

The quantitative, systematic techniques for
modeling, analysis, and design of control sys-
tems are of central and utmost practical impor-
tance in conventional control theory. Similar
techniques for intelligent autonomous con-
trollers do not exist. This is of course because
of their novelty, but for the most part, it is due
to the “hybrid” structure (nonuniform, non-
homogeneous nature) of the dynamical sys-
tems under consideration. The systems are
hybrid since in order to examine autonomy
issues, a more global, macroscopic view of a
dynamical system must be taken than in con-
ventional control theory. Modeling techniques
for intelligent autonomous systems must be
able to support this macroscopic view of the
dynamical system, hence it is necessary to
represent both numeric and symbolic informa-
tion. We need modeling methods that can
gather all information necessary for analysis
and design. For example, we need to model
the dynamical system to be controlled (e.g., a
space platform), we need models of the
failures that might occur in the system, of the
conventional adaptive controller, and of the
high level decision making processes at the
management and organization level of the in-
telligent autonomous controller (e.g., an Al
planning system performing actions that were
once the responsibility of the ground station).
The nonuniform components of the intelligent
controller all take part in the generation of the
low level control inputs to the dynamical sys-
tem, therefore they all must be considered in
a complete analysis. For an extended discus-
sion on the modeling of hybrid systems con-
sult [43].

It is our viewpoint that research should
begin by using different models for different
components of the intelligent autonomous
controller. Full hybrid models that can repre-
sent large portions or even the whole
autonomous system should be examined but

much can be attained by using the best avail-
able models for the various components of the
architecture and joining them via some ap-
propriate interconnecting structure. For in-
stance, research in the area of systems that are
modeled with a logical DES model at the
higher levels and a difference equation at the
lower level should be examined. In any case,
our modeling philosophy requires the ex-
amination of hierarchical models. Much work
needs to be done on hierarchical DES model-
ing, analysis, and design, let alone the full
study of hybrid hierarchical dynamical sys-
tems. Some research has begun to address
hierarchical DES [38].

A practical but very important issue is the
simulation of hybrid systems. This requires
simulation of both conventional differential
equations and symbolic decision making
processes or DES. Normally, numeric-algor-
ithmic processing is done with languages like
FORTRAN and symbolic decision making
can be implemented with LISP or PROLOG
while DES are often simulated with SLAM.
Sometimes several types of processing are
done on computers with quite different ar-
chitectures. There is then the problem of com-
bining symbolic and numeric processing on
one computer. If the computing is done on
separate computers, the communication link
normally presents a serious bottleneck. Com-
bining AI, DES, and conventional numeric
processing is currently being addressed by
many researchers and some promising results
have been reported. Some very promising
results have been reported in [32],{33] and the
references therein.

Planning and Expert Systems,
Learning and Neural Networks,
Restructurable Control

In this section we will discuss results ob-
tained on the analysis and design of several
components of the intelligent autonomous
controller architecture. One can roughly
categorize research in the area of intelligent
autonomous control into two areas: conven-
tional control theoretic research, addressing
the control functions at the execution and
coordination levels, and the modeling,
analysis, and design of higher level decision
making systems found in the management and
organization level, and the coordination level.
Below we provide only a sampling of the
results to introduce the reader to these research
areas.

To determine how to utilize Al techniques
it is productive to study the relationships be-
tween Al and conventional control methods.
In this way one can determine what Al techni-
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ques have to offer over conventional control
methods. For instance, the authors in [40] have
provided a systems and control theoretic
perspective on Al planning (and expert) sys-
tems. In this work, the authors explain how Al
planning systems are in fact control systems
where the input and output variables are sym-
bols rather than numbers. It is shown that the
techniques used in the implementation of Al
planning systems are actually generalized
open and closed loop control, state estimation,
system identification, and adaptive control.

It is also important to study how to use
conventional control techniques in conjunc-
tion with AI techniques to perform autono-
mous control functions. For instance, in
[44],[45] the authors introduce a fault detec-
tion and identification (FDI) system that is
composed of Al decision making mechanisms
and conventional FDI algorithms. The
“hybrid” algorithmic-decision making FDI
system detects and identifies failures for an
intelligent restructurable controller on board
an advanced aircraft.

Some control theoretic techniques offer
modeling, analysis, and design techniques for
the higher level decision making mechanisms
in the intelligent autonomous controller. For
instance, in [41),[46],[47] the authors show
that AI planning problems can be studied in a
discrete event system (DES) theoretic
framework by utilizing the A’ algorithm.
Moreover, there are many recent results
developed in a DES-theoretic framework that
can be used for the study of components of the
intelligent autonomous controller (e.g., results
from the Ramadge-Wonham formulation for
the study of “logical” DES models).

Itis important to note that in order to obtain
a high degree of autonomy it is absolutely
necessary to, in some way, adapt or learn [48].
Although the literature on higher level learn-
ing performed in conjunction with low level
adaptation is limited, in [49]-[51] the authors
show how an expert learning system can be
used to tune the parameters of an adaptive
controller for a large flexible space antenna so
as to optimize its performance and then also
enhance the operating range of the system by
storing this information for future use. Neural
networks also appear to offer methodologies
to perform learning functions in the intelligent
autonomous controller (see for instance, the
April issues of the IEEE Control Systems
Magazine in 1987, 1988 and the Special Issue
of April 1989 [52] ; also the new IEEE Trans.
on Neural Networks). Neural networks can
also be used to implement certain components
of the intelligent autonomous controller. For
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instance, the authors in [53],[54] investigate
how to implement the match phase of expert
systems with a “multi-layer perceptron”.

We stress that in autonomous control we
seek only to significantly widen the operating
range of the system so that significant failures
and environmental changes can occur and per-
formance will still be maintained. All of the
conventional control techniques are useful in
the development of autonomous controllers
and they are relevant to the study of
autonomous control. It is the case however,
that certain techniques are more suitable for
interfacing to the autonomous controller and
for compensating for significant system
failures. For instance the area of “restruc-
turable” or “reconfigurable” control systems
[45],[55] studies techniques to reconfigure
controllers when significant failures occur.
Recently there have been advances in the
theory of restructurable controls [56],[57]
where the authors develop stability bounds on
the allowable parameter variations, induced
by system failures.

It is our viewpoint that conventional
modeling, analysis, and design methods
should be used whenever they are applicable
for the components of the intelligent
autonomous controller. For instance, they
should be used at the execution level of many
autonomous controllers. We propose to aug-
ment and enhance existing theories rather than
develop a completely new theory for the
hybrid systems described above; we wish to
build upon existing, well understood and
proven conventional methods. The symbolic/-
numeric interface is a very important issue;
consequently it should be included in any
analysis. There is a need for systematically
generating less detailed, more abstract
models from differential/difference equa-
tion models to be used in higher levels of the
autonomous controller (coordination level).
There is also a need for systematically ex-
tracting the necessary information from
lower level symbolic models to generate
higher level symbolic models to be used in
the hierarchy where appropriate. Tools for
the implementation of this information ex-
traction also need to be developed (see for
instance [58]). In this way conventional
analysis can be used in conjunction with the
developed analysis methods to obtain an
overall quantitative, systematic analysis
paradigm for intelligent autonomous con-
trol systems. In short, we propose to use
hybrid modeling, analysis, and design tech-
niques for nonuniform systems. This ap-
proach is not unlike the approaches used in

the study of any complex phenomena by the
scientific and engineering communities.

Concluding Remarks

The fundamental issues in autonomous
control system modeling and analysis were
identified and briefly discussed, thus provid-
ing an introduction to the research problems
in the area. A hierarchical functional
autonomous controller architecture was also
presented. It was proposed to utilize a hybrid
approach to modeling and analysis of
autonomous systems. This will incorporate
conventional control methods based on dif-
ferential equations and new techniques for the
analysis of systems described with a symbolic
formalism. In this way, the well developed
theory of conventional control can be fully
utilized. It should be stressed that autonomy is
the design requirement and intelligent control
methods appear, at present, to offer some of
the necessary tools to achieve autonomy for
some classes of applications. A conventional
approach may evolve and replace some or all
of the “intelligent” functions. Note that this
paper is based on the development in [2],[3].
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