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1. Introduction 

The motivation for this effort is low-cost, effective navigation of gun-launched projectiles.  

Navigation is essential to delivering lethal payloads via precision munitions on a complex, 

modern battlefield, which can feature challenging terrain and target characteristics as well as 

poor network connectivity and situational awareness.  Indeed, navigation errors are the driver in 

delivery accuracy of precision munitions (1).  While technologies have been developed in the 

past (2–4), there is currently only one type classified gun-launched precision munition available 

to the U.S. Soldier (5). 

The global positioning system (GPS) has been used to great effect recently for indirect fire 

applications (1, 5–8).  Absolute referencing enables precision point-targeting; however, higher 

update rates would prove useful.  Additionally, pushing ephemeris data across the battlefield and 

hot starting the receiver post-launch is non-trivial.  More work can be done to optimize GPS for 

gun-launched projectiles (e.g., by using projectile flight dynamics in the process model).  GPS 

has known threats and complex terrain reduces satellite availability. 

Strap-down inertial sensors offer higher update rates but suffer from drift due to accumulating 

error during integration from acceleration to position (9).  Many efforts outside of the gun-

launched research community have addressed coupling GPS and inertial measurements to 

increase overall navigation performance (10–12).   

Navigation in the unique gun-launched environment is especially challenging.  First, gun-launched 

munitions, unlike manned or unmanned aircraft, are throwaway items that are often used at high 

volumes.  This factor implies that the system must be low cost and easy to use with limited 

infrastructure by Soldiers in conflicts around the world. 

Measurements both on- and off-board the projectile have limited observability of the information 

pertinent to estimating states required to guide to target.  For example, accelerometers and 

gyroscopes located off the center of gravity of the rigid body can be compensated for in order to 

obtain acceleration (and ultimately position), but information concerning the angular acceleration 

and gravity force orientation must be inferred elsewhere. 

High launch loads are imparted to the projectile at launch, which limits packaging options to 

enable survivability.  Significant efforts have addressed survivability and performance of 

components such as electronics and inertial sensors (13–19) during gun launch.  Moreover, 

sensor calibrations (especially of micro-electromechanical [MEMs] devices) may not hold after 

the gun launch event.  Timekeeping is essential to GPS; however, the associated jerk 

encountered at launch by the projectile causes clock drift. 
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Projectiles feature relatively short flight times.  Indirect fire projectiles often remain aloft for 

over a minute.  Small- and medium-caliber direct fire munitions can fly for 1 s or less.  Short 

time of flight limits filter settling time, in-flight calibration, and GPS acquisition. 

The flight dynamics of ballistic and maneuvering projectiles is well understood (20–23).  Spin 

rates of large-caliber, gyroscopically stabilized projectiles can be around 300 Hz, which 

introduces significant coupling in the dynamics at high frequencies.  Indirect fire is a reasonably 

accurate ballistic delivery system with circular error probable (CEP) on the order of hundreds of 

meters at ranges of 20 km.  Thus, navigation to within less than ~100 m would likely improve 

the system accuracy.  Control authority does not need to be large to correct for this magnitude of 

miss distance, which is fortuitous because tube launch limits volume available for a maneuver 

system (1, 8, 24).  Minor corrections to the ballistic flight to remove ballistic dispersion errors, 

such as launch velocity or wind disturbances, is called ballistic nudging in the gun-launched 

community (25). 

The goal of this work was to develop a position estimator for the unique gun-launched 

environment using low-cost measurement devices and projectile flight dynamics.  An extended 

Kalman filter (EKF) was developed to blend accelerometer, gyroscope, and GPS measurements 

with a dynamic model (point-mass with control [PMC]) of maneuvering projectile flight.  GPS, 

if available, was used in a loosely coupled algorithm.  An innovative flight dynamic heuristic 

was proposed, which greatly reduced the position errors.  Aiding an inertial navigation system 

(INS) with dynamics was examined by Koifman and Bar-Itzhack (26) in aircraft and by Burchett 

(27) in projectiles.  The approach in this report is novel in leveraging heuristic information about 

the known and minimally varying projectile flight characteristics to significantly improve 

position estimates. 

This report is organized as follows:  the EKF algorithm is provided along with the cascaded 

filtering of both the flight dynamic heuristic parameters and loosely coupled GPS/INS 

parameters.  Experimental results from gun-launched guided flights are presented, which 

demonstrate that position errors are sufficient to reduce the system CEP of guided projectiles 

with the present algorithm.  Simulations were also conducted that illustrate the algorithm 

performance over a wider array of conditions. 

2. Algorithm 

2.1 Overview 

An EKF was used to combine dynamic modeling with measurements and parameter identification 

to obtain the state estimate.  A block diagram of the algorithm is shown in figure 1.  In-flight 

input to the algorithm includes inertial measurement units (IMU) composed of triaxial 

accelerometers and triaxial gyroscopes, attitude and GPS.  The algorithm incorporates the effect 
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of multiple IMUs (or arrays) composed of low-cost MEMs devices to assess the cost-benefit.  

Attitude is provided using separate techniques.  Recent work has demonstrated reasonably 

accurate attitude using low-cost magnetometers and/or thermopiles, even in the presence of 

significant disturbances (28–31).  GPS data are used in the estimator when available.  A goal of 

this study is to assess the navigation performance if GPS were inaccessible or if the cost could be 

reduced by excluding a gun-hard GPS receiver and antenna from the system. 

 

Figure 1.  Algorithm block diagram. 

A measurement model was formulated to process the raw input.  The EKF and moving average 

filter (MAF) used the PMC flight dynamic model.  To accommodate low-cost sensors without 

prohibitive pre-launch calibration, measurement parameters are estimated in flight with a MAF 

using flight dynamic heuristics and GPS/INS loose coupling (when the GPS is available).  The 

resulting states estimated by the EKF are inertial position and velocity. 

The reference frames of interest are illustrated in figure 2.  The standard aerospace sequence for 

Euler angles relates the body and inertial frames.  Gun target line coordinates are used 

throughout for the inertial frame where the origin is at the gun and the x-axis is along the line 

between the gun and target, the z-axis is down, and the y-axis completes a right-hand system. 
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Figure 2.  Inertial (x-y-z) and body (I-J-K) reference frames. 

2.2 Flight Dynamic Model 

The guided projectile concept used for this investigation was a canard-controlled, rolling, fin-

stabilized airframe.  The point-mass dynamic model represents ballistic projectile flight well 

(25).  Maneuvering flight dynamics can be modeled through a control force.  For this application, 

lift of the combined body-fin and roll-averaged lift of the canards is present.  These lift terms 

were added along with the drag and gravity forces typically included in the point-mass dynamic 

model.  Attitude is necessary to resolve the control force components into the inertial frame.  

Canard direction and magnitude come from onboard guidance calculations (1). 

The components of acceleration from the nonlinear PMC flight dynamic model are provided in 

equations 1–3. 
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The lift expressions are given in equations 4 and 5.  Average angle-of-attack is a function of the 
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2.3 Measurement Model 

A strap-down IMU senses body angular velocity and body acceleration without gravity.  In order 

to get inertial position and velocity, the raw accelerometer and gyroscope output must be 

expressed as acceleration at the center of gravity (CG) (9).  The position from the CG to the 

accelerometer and the body angular acceleration are also required, as shown in equation 6. 
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/////  
(6) 

The body acceleration of the CG is transformed into the inertial frame and the force of gravity is 

added as shown in equation 7. 
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If arrays of IMUs are used, then the resulting inertial acceleration of each IMU is averaged to 

form a composite inertial acceleration. 

Simple Euler integration is applied to obtain velocity and position from the acceleration, as 

shown in equations 8 and 9. 
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As a result of this integration, velocity and position error accumulate over time, and this error is 

known as INS drift.  INS drift can be so large for strap-down MEMs sensors that measurements 

are quickly not useful for state estimation.  This work greatly mitigates the drift problem by 

estimating error parameters. 

2.4 Heuristic Parameter Estimation 

MEMs sensors are low cost but suffer from large bias, scale factor, misalignment, and 

misposition errors.  Careful calibration reduces these errors but at an increased cost.   

Projectiles launched from guns have well-understood ballistic characteristics.  For example, a 

100-lb round launched at Mach 2.5 does not deviate much from a known trajectory in the 

absence of any control maneuvers (especially in the first few seconds).  This knowledge of the 

flight dynamics is incorporated in this work to form an innovative heuristic that mitigates the 

measurement error and greatly improves states estimates. 

Nominal mass properties, aerodynamics, and launch conditions can be used to estimate 

components of the body acceleration of the CG without gravity, as shown in equation 10.  It is 

assumed that the only significant force is drag acting along the axial direction.
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Prediction of the body acceleration of the CG without gravity is compared to the measurement 

calculations to form a measurement bias error, as shown in equation 11.  Bias error is the largest 

source of accelerometer error in this application.  Consequently, it is directly modeled in this 

method.  However, this heuristic-based bias error estimate includes all error sources (e.g., flight 

dynamic modeling, wind, physical tolerances, bias, and scale factor and misalignment of 

accelerometer and gyroscope).  This modeling approach assumes that a bias-type error accounts 

for all these different error sources, which the results will bear out. 

heurICG
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A simple moving average filter was used to smooth the heuristic bias, as demonstrated in 

equation 12.  Heuristic bias is primarily estimated during the predictable, ballistic beginning 

portion of flight and is then used to correct the body acceleration throughout flight. 
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2.5 GPS/INS Loose-coupling Parameter Estimation 

If GPS is available, it is used as a measurement update in the EKF (32).  Additionally, an 

acceleration bias can be calculated to further correct the INS by comparing the INS and GPS 

acceleration values.  This is done by first calculating the GPS acceleration by numerically 

differentiating the current and previous GPS velocities, as shown in equation 13. 
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The GPS/INS bias parameter is then calculated by transforming the GPS-derived acceleration 

and subtracting from the estimated body acceleration without gravity as shown in equation 14.  

Calculating the GPS/INS bias parameter in the body frame provides a fairly constant value for 

smoothing and enables this parameter to be used even after GPS is lost. 
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The GPS/INS bias parameter is smoothed using a moving average filter, as shown in equation 

15. 
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2.6 Extended Kalman Filter 

A sequential EKF was used to combine the modeling, measurements, and parameter estimation.  

The sequential EKF requires the measurement noise to be modeled as uncorrelated, but a matrix 

inverse is not required.  Furthermore, this approach adapts according to what measurements are 

available, which is useful when measurements have a varying update rate or drop out during 

flight. 

The EKF propagates the dynamic model at each update.  Analytical expressions for the state 

transition matrix were obtained by linearization of the PMC dynamic model.  This matrix was 

recalculated at each update of the algorithm for propagation of the states and covariance (33).  

The steps for the sequential EKF algorithm are as follows. First, the state is updated, as shown in 

equation 16.   

11  kkk XAX  (16) 

Then, the covariance is propagated forward in time, as demonstrated in equation 17.   

1111   kkkkk QAPAP  (17) 

When measurements from the IMU or GPS are available, the Kalman gain, state estimate, and 

covariance are updated, as shown in equations 18–20.  Each measurement is used to update the 

state one at a time.  When GPS is available, the INS drift is mitigated by weighting the IMU less 

and the GPS more as flight time increases.  This tuning takes place by adjusting the measurement 

noise matrix, R during flight.  For each available measurement i = 1, ..., r, where r is the total 

number of measurements, the following steps are performed.   
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(20) 

The measurement matrix for this problem is the identity matrix.  GPS directly provides the 

inertial velocity and position.  The nonlinear computations from sensed acceleration and angular 

rate to inertial velocity and position are performed.  The compensated body acceleration of the 

CG without gravity that eventually gets used as the measurement is compensated depending on 

whether heuristics and/or GPS/INS loose coupling are used, as shown in equation 21.  The 

process noise and measurement noise were tuned to optimize estimator performance. 
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3. Results 

3.1 Experimental Setup 

The performance of this algorithm was assessed with experimental data from guided flights of a 

canard-controlled 120-mm mortar.  The firing range (figure 3) featured the launcher and gun 

crew as well as state-of-the-art instrumentation such as high-speed photography, tracking radar, 

differential GPS survey, telemetry data receivers, and transducers for monitoring tube pressure 

during gun launch. 

 

Figure 3.  Experimental firing range setup (top) and projectile (bottom).
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The projectile (shown in figure 3) was instrumented with triaxial accelerometers, triaxial angular 

rate sensors and a GPS receiver equipped with upfinding capability for projectile roll angle 

estimation.  The accelerometers were not calibrated pre-flight, and the angular rate sensors were 

calibrated prior to the flights for bias, scale factor, and misalignment.   

The control action (canard amplitude and direction) began 14 s into flight and was obtained from 

onboard measurements and fed into the algorithm.  Attitude was estimated using GPS, which 

was available starting at ~8 s time of flight.  Comparing the radar- and GPS-derived pitch and 

yaw attitude in figure 4 illustrates the typical error associated with using the real-time GPS data 

for attitude.   

 

Figure 4.  Experimental pitch and yaw angles from radar and GPS. 

Tracking radar was used as the truth measure of position and velocity to enable assessment of 

algorithm performance.  The uncertainty in the radar data may be quantified by comparing the 

impact location from survey and radar.  The projectile impacted ~4 km from the gun.  Radar 

impact agreed to within 15.55 m of the surveyed impact location.  The survey location using 

differential GPS has ~0.01-m error.  Radar position accuracy degrades with distance since the 

signal-to-noise ratio of the radar typically decreases with distance and assuming constant 

azimuth and elevation angle errors of the radar tracking antenna result in a larger position error 

with distance. 
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The radar-derived position of the projectile is given in figure 5.  The z-axis has been flipped from 

the definition in figure 2 to view the data in a more reasonable manner.  The round flew almost 

4 km and reached over 1.5 km in altitude in about 40 s time of flight.  Examination of the  

y-position shows that the projectile drifted over 20 m off the gun-target line prior to maneuvering 

to the target. 

 

Figure 5.  Experimental trajectory from radar. 

3.2 Experimental Results 

The estimator was evaluated with the experimental data for a few different cases.  Raw IMU data 

were put through the measurement equations (i.e., no filtering) to evaluate the feasibility of 

applying pure dead reckoning using low-cost sensors to the high dynamic projectile 

environment.  The next case was the EKF algorithm performed on the IMU data without the 

heuristic or loose coupling options enabled.  Estimation was then undertaken using the heuristics.  

Finally, both the heuristics and the loose coupling were turned on.  None of the cases shown for 

the experiments used GPS directly in the state estimation.  GPS was only used to estimate 

attitude and IMU parameters. 

The root-sum-square (RSS) error between the estimator and the radar was used as the metric to 

infer algorithm performance.  RSS position error for the different cases is presented in figure 6.  

Recall that GPS data required for attitude are unavailable until almost 8 s into flight; therefore, 

estimation begins at this time and continues until target impact. 
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Figure 6.  Position errors from experiments. 

Direct integration of the raw IMU output is clearly useless in this application.  The position error 

grows to over 100,000 m by impact.  Blending the measurements with the flight dynamic model 

in the EKF improves position estimates over the measurement-only case.  Ballistic CEP of these 

weapon systems, however, is often better than the ~800-m error of the EKF case at impact.  

Enabling the heuristic parameter in the EKF algorithm drastically reduces position error to less 

than 40 m at the end of the experimental flight.  Using flight dynamic theory to compensate the 

IMU signal post-launch improves navigation performance.  Indeed, loose coupling does not 

benefit the position solution much over the EKF with the heuristic parameter as the final position 

is only 5 m closer to the truth value. 

The manner in which the heuristic algorithm improves the position estimate is illustrated in 

figures 7 and 8.  Components of the body acceleration without gravity are presented across the 

top of figure 7.  The bottom portion of the figure is a zoomed in view of the axial component.
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Figure 7.  Body acceleration components from experiments (EKF with heuristics). 

 

Figure 8.  Inertial acceleration components from experiments (EKF with heuristics).
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The raw IMU data (obtained through equations 6 and 7) demonstrates a bias error of ~20–30 Gs 

depending on the axis.  While clouded by errors, the pertinent information is included in the 

measurement.  The zoomed in portion of the figure shows the axial component of the flight 

dynamic predictions of the IMU signal varying 1‒2 Gs over the course of the flight.  Comparing 

the measurement with the prediction and smoothing, the difference produces the heuristic 

parameter magnitude in the figure.  Raw measurements are close to the heuristic parameter.  The 

compensated values in the figure result from subtracting the raw measurement from the heuristic 

parameter.  Note how closely the compensated values match the flight dynamic prediction in the 

zoomed in view of the axial component.   

The effect of the heuristic parameter on the inertial acceleration is given in figure 8.  Large bias 

values in the raw measurement body accelerations of figure 7 produce widely varying inertial 

acceleration components over the course of the flight due to the transformation matrix.  The 

inertial acceleration compensated with the heuristic algorithm produce reasonable, smoothly 

varying values, which also agree with the smoothed GPS estimates.  Differentiating the GPS 

velocity to yield acceleration amplifies the noise content. 

Limited experimental results suggest that, for time of flights of interest to the gun-launched 

guided projectile community, the EKF algorithm using heuristics with low-cost sensors provides 

useful navigation information. 

3.3 Simulation Setup 

In order to evaluate the algorithm under a stochastically significant scenario, models of the 

system were developed and simulations were performed.  A 6DOF model was built of the 

experimental guided system along with models of the uncertainty in the flight (mass properties, 

aerodynamics, launch conditions, control mechanism, and atmosphere) and measurements 

(sensors and attitude estimates).  States of the 6DOF were used as truth to quantify algorithm 

performance.  Conditions of the simulation were similar to the experiments.  Monte Carlo 

analysis was undertaken with 500 repetitions of each case.   

3.4 Sensor Models 

Output of the 6DOF was used to form sensor signals.  Truth states of body acceleration, attitude, 

body angular velocity, and body angular acceleration were corrupted with bias, scale factor, 

misalignment, and misposition errors for the accelerometers as shown in equation 22.  For both 

accelerometers and gyroscopes, the turn-on bias is initialized at the beginning of each flight 

using a turn-on standard deviation and norm of zero.  The drift is also initialized at the beginning 

of each flight, and it is additive so that each time step is the previous drift plus the newly 

calculated drift parameter.
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(22) 

Bias, scale factor, and misalignment were added to the 6DOF body angular rate for the 

gyroscopes, as given in equation 23.  The bias error for the accelerometers and gyroscopes 

includes turn-on and in-run terms. 

 )1,0()1,0(1,,/,//// NσNσωωωTSω g

noise

g

driftkdriftIBonturnIBIBGB

g

IB  


 

(23) 

3.5 Simulation Parameters 

The error budget for the uncertainty in flight and measurements used in the Monte Carlo 

simulations is given in table 1.  These error budgets are based on laboratory measurements and 

gun firings of instrumented projectiles.  The low-cost MEMs sensors have large error 

magnitudes. 

Table 1.  Simulation error budget. 

 Parameter Error (1σ) 

Accelerometer 

ACGr 


 0.5 mm 

aS


 
1% full scale value 

ABT /


 

0.5° 

a

onturnσ   16,000 mG 

driftσ  4 mG 

a

noiseσ  26 mG 

Gyroscope 

gS


 
2.1% full scale value 

GBT /


 0.5° 

g

onturnσ   44,685°/h 

g

driftσ  
22°/h 

g

noiseσ  2.2°/h 

Flight 

m  0.001 kg 

D
C  1% 

B

L
C


,

C

L
C


 

5% 

d  0.001 m 
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3.6 Simulation Results 

Simulations were conducted to validate modeling and simulation and examine the effect of 

attitude uncertainty, the number of IMU arrays, heuristics, and GPS availability on the state 

estimation algorithm.  The nominal error budget was used unless otherwise stated.  The nominal 

attitude error was 5° 1σ bias error and 10° 1σ random error (both errors normally distributed).  

The magnitude of these attitude errors is reasonable using previously developed algorithms 

which employ low-cost, gun-hardened sensors (28–31). 

3.7 Validation With Raw Measurements 

In order to validate the sensor model and error budget, simulated raw IMU data were put through 

the measurement equations (i.e., no filtering).  Position errors from these Monte Carlo 

simulations are on the same order of magnitude as the experimental result as shown in figure 9, 

which indicates that sensor modeling and the error budget are reasonable. 

 

Figure 9.  Position errors from simulation (with 95% confidence interval error 

bars) and experiment with raw IMU measurements. 

3.8 Attitude Uncertainty 

The effect of attitude uncertainty on the algorithm was assessed by varying the attitude errors in 

the Monte Carlo simulations.  The 1σ bias error was adjusted from 0°–10° and the 1σ random 

error was adjusted from 0°–20° (both errors normally distributed).  The resulting position error 

using the EKF algorithm with heuristics is shown in figure 10.  Using heuristics, the algorithm is 

tolerant to attitude error due to the manner in which the flight dynamics are heavily weighted in 

the estimate.
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Figure 10.  Position errors from simulation varying attitude error (EKF with heuristics). 

3.9 Number of IMU Arrays 

As previously demonstrated, a MEMs IMU has significant error sources.  Bias is an important 

error source, which often cannot be observed for the purpose of compensation (28–31).  One way 

to compensate for sensor biases is to use multiple IMU arrays and to average them.  By 

averaging multiple IMU arrays, biases and other sources of errors may be mitigated. 

Simulations were conducted to assess the relationship between the number of MEMs IMU arrays 

and the position error.  Figure 11 shows position errors for the EKF algorithm without heuristics 

or loose coupling from the Monte Carlo simulations with the number of arrays varying from 1 to 

100.  These results suggest that increasing the number of arrays has a large effect on the position 

estimate if heuristics and loose coupling are not included in the algorithm.  With 1 array, the 

final position error is at 126 m.  Final position error falls by 61% (48 m) with 10 arrays and 

subsequently drops to 75% (31 m) if 100 arrays are used.  Although large arrays may not be 

feasible especially in small-caliber projectiles, MEMs devices continue to decrease in size (e.g., 

multiple sensors on a chip) and cost and increase in performance.  Additionally, future precision 

guided munition concepts could distribute sensors and electronics throughout the body as an 

integrated part of subsystems such as the warhead.
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Figure 11.  Position errors from simulation varying the number of IMU arrays. 

3.10 Heuristics 

Experiments indicated that using flight dynamic heuristics in the EKF improved the position 

estimates by over an order of magnitude.  Monte Carlo simulations further support this finding.  

Figure 12 shows the position errors from the simulation for the EKF without and with the 

heuristics enabled.  Using heuristics to compensate the raw measurements decreases the position 

error by 66%.  Position errors of the algorithm with heuristics are similar in magnitude to GPS 

for about 10 s and the error growth is such that after 10 s the navigation solution of this 

algorithm would likely improve the ballistic system CEP.
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Figure 12.  Position errors from simulation considering the effect of heuristics. 

3.11 Loosely coupled GPS/INS 

GPS can contribute to the state estimate by calibrating the IMU post-launch; however, GPS may 

be lost in flight due to terrain or jamming.  The effect of GPS availability on the GPS/INS 

parameter and ultimately the position error was evaluated in simulation.  Cases were run where 

the GPS was always present, lost at 10, 20, and 30 s.  Monte Carlo simulation of the EKF 

algorithm with GPS/INS (no heuristics) was executed for these cases and the results are given in 

figure 13.  Compensating the IMU measurement with the GPS/INS parameter improved the 

position errors over the EKF or EKF with heuristics.  Moreover, the algorithm was insensitive to 

the amount of time for which GPS data were available before apogee.  There is only about a  

35-m difference in the final position error between losing GPS at 10 s and having GPS 

throughout the entire flight.  The increase in error when GPS is lost at 20 s is due to maneuvers.  

Trading off between estimator smoothness and accuracy was performed by tuning the 

measurement covariance matrix as a function of flight time to rely more on GPS later in the 

flight.
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Figure 13.  Position errors from simulation considering the effect of loose coupling without heuristics. 

4. Conclusions 

Improving the precision of gun-launched munitions is an active area of research for the U.S. 

Army.  Affordability, survivability, and fast dynamics are among the technical barriers to 

achieving precision munitions.  Ballistic launch and flight is inherently effective at delivering 

lethal payloads.  Often, projectile guidance systems need only nudge the projectile trajectory to 

ensure that the target is within the lethal area of the warhead. 

Navigating the projectile in space is a critical element of any guided system.  This report is 

unique in examining the minimal navigation technologies for decreasing the system CEP at low 

cost.  Projectile flight dynamics are used in a novel manner in the state and heuristic parameter 

estimation to meet these goals.   

The algorithm for estimating position and velocity was shown.  The PMC flight dynamic model 

was built into an EKF, which used IMU and attitude (and GPS if available) data.  MAFs for 

heuristic and GPS/INS bias parameters were applied to compensate for measurement errors. 
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Experimental flights of a guided mortar system were used to evaluate the algorithm performance.  

Comparing ground-truth radar data with algorithm output revealed many interesting findings.  

Uncompensated dead reckoning with the raw measurements produces very large position errors 

due to high MEMs device error sources.  Blending these measurements with the PMC dynamic 

model in the EKF improves the position errors by orders of magnitude.  Including the unique 

flight dynamic heuristic in the algorithm improved the position errors to less than 40 m by the 

end of the flight.  Assuming GPS availability and augmenting the algorithm with the GPS/INS 

parameter enhances results over the EKF with heuristic case.  The limited experimental results 

suggest the algorithm can improve system CEP with low cost and computational throughput. 

Monte Carlo simulations support the experiments.  The heuristic parameter provides tactically 

useful navigation errors by compensating the measurements with known flight dynamic 

information.  The algorithm was intolerant to the error in attitude estimates.  A 10-array IMU 

decreases position errors by about a factor of two over a single array; adding up to 100 arrays 

does not noticeably improve accuracy over the 10-array case.  The duration of GPS availability 

was important when maneuvering as GPS data were necessary for the MAF to satisfactorily 

determine the GPS/INS bias parameter.  These results demonstrate the value in using known 

flight dynamic characteristics in the position estimation algorithm to mitigate errors in low-cost 

sensors to meet threshold objectives in system accuracy.
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List of Symbols, Abbreviations, and Acronyms 

6DOF six degree-of-freedom  

CEP circular error probable  

CG center of gravity  

EKF extended Kalman filter  

GPS global positioning system  

IMU inertial measurement units  

INS inertial navigation system  

MAF moving average filter  

MEMS micro-electromechanical  

PMC point-mass with control  

RSS root-sum-square  

GPSICG

I a ,/


 acceleration at CG with respect to inertial frame according to GPS 

ICG

Ba /


 acceleration at CG with respect to inertial frame in body coordinates 

ICG

I a /


 acceleration at CG with respect to inertial frame in inertial coordinates 

BA

Ba /


 acceleration at point A with respect to body in body coordinates 

IA

B a /


 acceleration at point a with respect to inertial frame in body coordinates 

g


 acceleration due to gravity in inertial frame 

/CG Iv

t




 acceleration of the CG with respect to inertial frame in body coordinates 

1, kdrift

B a


 accelerometer drift bias at time k-1 

a

driftσ  accelerometer drift bias standard deviation 

ABT /


 accelerometer misalignment transformation 

onturn

B a 


 accelerometer turn-on bias 
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onturnσ   accelerometer turn-on bias standard deviation 

a

noiseσ  accelerometer white noise standard deviation 

D
C  aerodynamic drag coefficient 

ρ  air density 

zzz ,,  altitude position, velocity and acceleration in inertial coordinates 

IBα /


 angular acceleration of body with respect to inertial frame 

IBω /


 angular velocity of body with respect to inertial frame 

BL  body lift force 

L
BC  body lift force coefficient 

δ  canard deflection amplitude 

CAN
  canard deflection roll orientation 

CANL  canard lift force 

L
CC  canard lift force coefficient 

compICG

B a ,/


 compensated acceleration of CG with respect to I in body frame 

yyy ,,  crossrange position, velocity and acceleration in inertial coordinates 

xxx ,,  downrange position, velocity and acceleration in inertial coordinates 

kP  error covariance at time k 

GPSdt  GPS update rate 

kGPSIbias

B a ,,


 

GPS/INS loosely coupled acceleration bias at time step k 

GPSIbias

B a ,


 GPS/INS loosely coupled acceleration bias, smoothed 

1,,/ kdriftIBω


 gyroscope drift bias at time k-1 

g

driftσ  gyroscope drift bias standard deviation 

GBT /


 gyroscope misalignment transformation 

onturnIBω ,/


 gyroscope turn-on bias 
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g

onturnσ   gyroscope turn-on bias standard deviation 

g

noiseσ  gyroscope white noise standard deviation 

kheurbias

B a ,,


 

heuristic acceleration bias at time step k 

heurbias

B a ,


 heuristic acceleration bias, smoothed 

heurICG

Ba ,/


 heuristic acceleration estimate 

heurρ  heuristic fading memory coefficient 

dt  INS update rate 

ikK  Kalman gain of measurement i at time k 

GPSIρ  loosely coupled GPS/INS fading memory coefficient 

ikR  measurement covariance of measurement i at time k 

yik measurement i at time k 

1kQ  model covariance at time k-1 

ACGr 


 moment arm from center of gravity to INS location 

)1,0(N  normally distributed random number, 0 mean, 1 standard deviation 

k

I x


 position in inertial frame at time k 

α  projectile angle-of-attack 

d  projectile diameter 

m  projectile mass 

 ,,  projectile roll, pitch and yaw attitude 

ga SS


,  scale factor for accelerometer, gyroscope 

kX  state at time k 

1kA  system dynamics matrix at time k-1 

V  total air velocity 

BIIB TT // ,


 transformation matrix from body to inertial, inertial to body coordinates 

kGPS

I v ,


 

velocity from GPS at time k 
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k

I v


 velocity in inertial frame at time k 

I identity matrix 
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  L STEELMAN 

  G33 

  6210 TISDALE RD STE 223 

  DAHLGREN VA 22448-5114 

 

 1 ALLIANT TECHSYSTEMS INC 

  ALLEGANY BALLISTICS LAB 

  S OWENS 

  MS WV01 08 BLDG 300 RM 180 

  210 STATE RTE 956 

  ROCKET CTR WV 26726-3548 

 1 SAIC 

  J NORTHRUP 

  8500 NORMANDALE LAKE BLVD 

  STE 1610 

  BLOOMINGTON MN 55437-3828 

 

 1 SAIC 

  D HALL 

  1150 FIRST AVE STE 400 

  KING OF PRUSSIA PA 19406 

 

 1 GEN DYNAMICS ST MARKS 

  H RAINES 

  PO BOX 222 

  SAINT MARKS FL 32355-0222 

 

 1 GEN DYNAMICS ARM SYS 

  J TALLEY 

  128 LAKESIDE AVE 

  BURLINGTON VT 05401 

 

 3 GOODRICH SENS AND INERTIAL SYS 

  T KELLY 

  P FRANZ 

  S ROUEN 

  100 PANTON RD 

  VERGENNES, VT 05491 

 

 4 BAE ARM SYS DIV 

  T MELODY 

  J DYVIK 

  B GOODELL 

  O QUORTRUP 

  4800 E RIVER RD 

  MINNEAPOLIS MN 55421-1498 

 

 1 US ARMY YUMA PROVING GROUND 

  TEDT YPY MW 

  M BARRON 

  301 C STREET 

  YUMA AZ 85365-9498 

 

 1 TRAX INTRNTL CORP 

  R GIVEN 

  US ARMY YUMA PROVING GROUND 

  BLDG 2333 

  YUMA AZ 85365 

 

 1 ARROW TECH ASSOC 

  W HATHAWAY 

  1233 SHELBURNE RD 

  STE D-8 

  SOUTH BULINGTON VT 05403 

 



 

 

NO. OF NO. OF 

COPIES ORGANIZATION COPIES ORGANIZATION 

 

 31 

 1 GEORGIA INST OF TECHLGY 

  SCHOOL OF AEROSPACE ENG 

  M COSTELLO 

  ATLANTA GA 30332 

 

 1 TEXAS A&M 

  SCHOOL OF AEROSPACE ENG 

  J ROGERS 

  COLLEGE STATION, TX 77843 

 

ABERDEEN PROVING GROUND 

 

 5 COMMANDER 

  US ARMY TACOM ARDEC 

  AMSRD AR AEF D 

  J MATTS 

  A SOWA 

  J FONNER 

  M ANDRIOLO 

  B NARIZZANO 

  BLDG 305 

  APG MD 21005 

 

 52 DIR USARL 

  RDRL WM 

   P PLOSTINS 

  RDRL WML 

   J NEWILL 

   M ZOLTOSKI 

  RDRL WML A 

   W OBERLE 

   R PEARSON 

   L STROHM 

  RDRL WML D 

   M NUSCA 

   J SCHMIDT 

  RDRL WML E 

   V BHAGWANDIN 

   I CELMINS 

   G COOPER 

   J DESPIRITO 

   L FAIRFAX (5 CPS) 

   F FRESCONI (5 CPS) 

   J GARNER 

   B GUIDOS 

   K HEAVY 

   G OBERLIN 

   J SAHU 

   S SILTON 

   P WEINACHT 

  RDRL WML F 

   B ALLIK 

   F BRANDON 

   T BROWN 

   B DAVIS 

   T HARKINS 

   D HEPNER 

   M ILG 

   G KATULKA 

   D LYON 

   J MALEY 

   R MCGEE 

   C MILLER 

   P MULLER 

   P PEREGINO 

   D PETRICK 

   B TOPPER 

  RDRL WML G 

   J BENDER 

   W DRYSDALE 

   M MINNICINO 

  RDRL WML H 

   M FERMER-COKER 

   R SUMMERS 

  RDRL WMP F 

   R BITTING 

   N GNIAZDOWSKI 

  



 

 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 

 


