
Boolean Reasoning

Boolean Reasoning

The Logic of Boolean Equations

by

Frank Markham Brown
Air Force Institute of Technology

.....
" Springer Science+Business Media, LLC

Conndtin, EdItor: JOlUlthtm Allm

Ubrary of CoDlreIS eaUloaml-ID-PDbIkatloD Da ..

Brown, Frank Markham, 1930-
Boolean reasoning / by Frank Markham Brown.

p. cm.
Includes bibliographical references (p. 247-264).
Includes index.
ISBN 978-1-4757-2080-8 ISBN 978-1-4757-2078-5 (eBook)
DOI 10.10071978-1-4757-2078-5
1. Algebra, Boolean. I. Title.

QAI0.3.B76 1990
511.3 , 24-dc20 90-4714

CIP

Copyrlpt © 1990 by Springer Sciem:e+Business MediaNew YOIk

Originally pubHshed by Kluwer Academic Publisbers in 1990
Sotb:over n:print of1he hardcover 1st edition 1990

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher, Springer Scicnce+-Business Media, Il.C

Contents

Preface
Two Logical Languages
Boolean Reasoning
Boolean Algebra and Switching Theory
An Approach to Boolean Problem-Solving.
Boolean Reasoning vs. Predicate Logic .
Outline
Acknowledgments.

1 Fundamental Concepts
1.1 Formulas
1.2 Propositions and Predicates
1.3 Sets
1.4 Operations on Sets
1.5 Partitions
1.6 Relations
1. 7 Functions
1.8 Operations and Algebraic Systems

2 Boolean Algebras
2.1 Postulates for a Boolean Algebra
2.2 Examples of Boolean Algebras

2.2.1 The Algebra of Classes (Subsets of a Set)
2.2.2 The Algebra of Propositional Functions
2.2.3 Arithmetic Boolean Algebras
2.2.4 The Two-Element Boolean Algebra.
2.2.5 Summary of Examples

2.3 The Stone Representation Theorem.

v

xi
xi

xii
xiii
xiv
xv

xvi
xviii

1
1
2
5
9

11
11
16
18

23
23
24
24
25
26
26
26
27

vi

2.4 The Inclusion-Relation.
2.4.1 Intervals

2.5 Some Useful Properties
2.6 n-Variable Boolean Formulas
2.7 n-Variable Boolean Functions
2.8 Boole's Expansion Theorem.
2.9 The Minterm Canonical Form.

2.9.1 Truth-tables
2.9.2 Maps

2.10 The Lowenheim-Miiller Verification Theorem
2.11 Switching Functions
2.12 Incompletely-Specified Boolean Functions
2.13 Boolean Algebras of Boolean Functions

2.13.1 Free Boolean Algebras ..
2.14 Orthonormal Expansions

2.14.1 Lowenheim's Expansions.
2.15 Boolean Quotient
2.16 The Boolean Derivative
2.17 Recursive Definition of Boolean Functions
2.18 What Good are "Big" Boolean Algebras?

CONTENTS

28
30
30
33
34
36
39
41
42
44
45
45
47
48
48
50
53
56
58
60

3 The Blake Canonical Form 71
3.1 Definitions and Terminology. 72
3.2 Syllogistic & Blake Canonical Formulas 73
3.3 Generation of Be F(J) . . 75
3.4 Exhaustion of Implicants . 76
3.5 Iterated Consensus 77

3.5.1 Quine's method. . 78
3.5.2 Successive extraction . 80

3.6 Multiplication......... 80
3.6.1 Recursive multiplication 81
3.6.2 Combining multiplication and iterated consensus 83
3.6.3 Unwanted syllogistic formulas. 85

CONTENTS vii

4 Boolean Analysis 87
4.1 Review of Elementary Properties 87
4.2 Boolean Systems . 88

4.2.1 Antecedent, Consequent, and Equivalent Systems. 89
4.2.2 Solutions 89

4.3 Reduction............... 89
4.4 The Extended Verification Theorem 91
4.5 Poretsky's Law of Forms. 92
4.6 Boolean Constraints 93
4.7 Elimination 95
4.8 Eliminants....... 100
4.9 Rudundant Variables . 107
4.10 Substitution. 113
4.11 The Tautology Problem 115

4.11.1 Testing for Tautology 115
4.11.2 The Sum-to-One Theorem. 116
4.11.3 Nearly-Minimal SOP Formulas 117

5 Syllogistic Reasoning 123
5.1 The Principle of Assertion. 124
5.2 Deduction by Consensus 126
5.3 Syllogistic Formulas 127
5.4 Clausal Form 129
5.5 Producing and Verifying Consequents 132

5.5.1 Producing Consequents 132
5.5.2 Verifying Consequents . 133
5.5.3 Comparison of Clauses . 134

5.6 Class-Logic 134
5.7 Selective Deduction. 136
5.8 Functional Relations 138
5.9 Dependent Sets of Functions 140
5.10 Sum-to-One Subsets . 143
5.11 Irredundant Formulas 145

viii CONTENTS

6 Solution of Boolean Equations 153
6.1 Particular Solutions and Consistency . 154
6.2 General Solutions 156
6.3 Subsumptive General Solutions 158

6.3.1 Successive Elimination. 159
6.3.2 Deriving Eliminants from Maps . 161
6.3.3 Recurrent Covers and Subsumptive Solutions 162
6.3.4 Simplified Subsumptive Solutions 166
6.3.5 Simplification via Marquand Diagrams . 167

6.4 Parametric General Solutions 167
6.4.1 Successive Elimination. 169
6.4.2 Parametric Solutions based on Recurrent Covers 172
6.4.3 Lowenheim's Formula 175

7 Functional Deduction 181
7.1 Functionally Deducible Arguments 182
7.2 Eliminable and Determining Subsets 187

7.2.1 u-Eliminable Subsets. 187
7.2.2 u-Determining Subsets. . . . 189
7.2.3 Calculation of Minimal u-Determining Subsets 190

8 Boolean Identification 193
8.1 Parametric and Diagnostic Models 195

8.1.1 Parametric Models. 195
8.1.2 The Diagnostic Axiom . . . 197
8.1.3 Diagnostic Equations and Functions 197
8.1.4 Augmentation 199

8.2 Adaptive Identification 201
8.2.1 Initial and Terminal Specifications 201
8.2.2 Updating the Model 204
8.2.3 Effective Inputs . 205
8.2.4 Test-Procedure... 208

CONTENTS

9 Recursive Realizations of Combinational Circuits
9.1 The Design-Process
9.2 Specifications

9.2.1 Specification-Formats ..
9.2.2 Consistent Specifications.

9.3 Tabular Specifications
9.4 Strongly Combinational Solutions.
9.5 Least-Cost Recursive Solutions .
9.6 Constructing Recursive Solutions .

9.6.1 The Procedure
9.6.2 An Implementation using BORIS .

A Syllogistic Formulas
A.l Absorptive Formulas
A.2 Syllogistic Formulas
A.3 Prime Implicants ..
A.4 The Blake Canonical Form

Bibliography

Index

ix

211
212
213
214
218
219
223
224
229
232
234

239
240
240
244
245

247

265

Preface

This book is about the logic of Boolean equations. Such equations were
central in the "algebra of logic" created in 1847 by Boole [12, 13] and devel
oped by others, notably Schroder [178], in the remainder of the nineteenth
century. Boolean equations are also the language by which digital circuits
are described today.

Logicians in the twentieth century have abandoned Boole's equation
based logic in favor of the more powerful predicate calculus. As a result,
digital engineers-and others who use Boole's language routinely-remain
largely unaware of its utility as a medium for reasoning. The aim of this
book, accordingly, is to is to present a systematic outline of the logic of
Boolean equations, in the hope that Boole's methods may prove useful in
solving present-day problems.

Two Logical Languages

Logic seeks to reduce reasoning to calculation. Two main languages have
been developed to achieve that object: Boole's "algebra of logic" and the
predicate calculus. Boole's approach was to represent classes (e.g., happy
creatures, things productive of pleasure) by symbols and to represent logical
statements as equations to be solved. His formulation proved inadequate,
however, to represent ordinary discourse. A number of nineteenth-century
logicians, including Jevons [94], Poretsky [159], Schroder [178], Venn [210],
and Whitehead [212, 213], sought an improved formulation based on ex
tensions or modifications of Boole's algebra. These efforts met with only
limited success. A different approach was taken in 1879 by Frege [60], whose
system was the ancestor of the predicate calculus. The latter language has
superseded Boolean algebra as a medium for general symbolic reasoning.

xi

xii Preface

The elementary units of discourse in the predicate calculus are the pred
icates, or atomic formulas. These are statements such as "X likes Mary,"
and "X > Y + 2," which, for any allowed values of their variables, are
either true or false. The variables in a predicate may be quantified, by
the symbols V ("for all") or 3 ("there exists"), to form statements such
as VX(X likes Mary) or 3X(X likes Mary); these statements mean, respec
tively, "everyone likes Mary" and "someone likes Mary." Predicates may
be assembled into more complex structures, called well-formed formulas, by
means of logical connectives such as conjunction (AND), disjunction (OR),
and negation (NOT).

Boolean Reasoning

Boolean reasoning builds on the Boole-Schroder algebra of logic, which is
based on Boolean equations, rather than on the predicate calculus. Al
though Boolean equations are predicates-statements that are either true
or false for any values of their arguments-almost none of the apparatus of
predicate logic is employed in Boolean reasoning. Neither the disjunction of
two Boolean equations nor the negation of a Boolean equation is a Boolean
equation; thus neither of these operations is generally allowed in Boolean
reasoning (see Rudeanu [172, Chapt. 10] for results concerning disjunc
tion and negation of Boolean equations). As shown by Boole, however, the
conjunction of two or more Boolean equations is a Boolean equation. The
conjunction of a system of equations is therefore expressed by its equivalent
single equation, rather than by a symbolic conjunction of equations. Thus
the only well-formed formulas of interest in Boolean reasoning are Boolean
equations.

Boole and other nineteenth-century logicians based symbolic reasoning
on an equation of the O-normal form, i.e.,

(1)

derived from, and equivalent to, a given system of Boolean equations (the
equivalent I-normal form, i.e., f'(xt, ... , xn) = 1, may also be used). A
dissertation published in 1937 by A. Blake [10] showed that the consequents
of (1) are readily derived from the prime implicants of f. The concept of a
prime implicant was re-discovered (and named) in 1952 by W.V.O. Quine,
who investigated the problem of minimizing the complexity of Boolean for
mulas. Quine established the theoretical foundations of minimization-theory

Preface xiii

in a series of papers [161, 162, 163, 164] in the 1950s. The theory of prime
implicants has thus arisen independently to serve two quite different ends,
viz., Boolean reasoning (Blake) and formula-minimization (Quine).

The approach to Boolean reasoning outlined in this book owes much
to Blake's work. Blake's formulation (outlined in Appendix A) anticipates,
within the domain of Boolean algebra, the widely-applied resolution principle
in predicate logic, given in 1965 by Robinson [168]. Blake's "syllogistic
result," for example, corresponds to Robinson's "resolvent."

Boolean Algebra and Switching Theory

Although Boole's algebra did not succeed in expressing, as he had intended,
"those operations of the mind by which reasoning is performed" [13, p. 1],
it remains in daily use to deal with the simpler mentality of switching cir
cuits. The. possibility of applying Boolean algebra to the design of switching
systems was first suggested in 1910 by the physicist P. Ehrenfest [54], who
proposed in a review of a text by Couturat [41] that Boolean algebra. be used
in the design of automatic telephone exchanges. Ehrenfest did not, however,
supply details as to how it might be done. Papers providing such details ap
peared independently between 1936 and 1938 in Japan, the United States,
and the Soviet Union (it seems that only the results published in the Soviet
Union, by Shestakov [185], were based on Ehrenfest's suggestion). The most
influential of these papers was Shannon's "Symbolic Analysis of Relay and
Switching Circuits" [183], based on his M.S. thesis at the Massachusetts In
stitute of Technology. Shannon formulated a "calculus of switching circuits,"
which he showed to be analogous to the calculus of propositions. In a paper
published in Japan in 1937, Nakasima [146] identified the same switching
calculus with the algebra of sets. Nakasima's paper, the earliest to apply
Boolean algebra to switching theory, discussed methods of solving Boolean
equations, with the aim of finding an unknown component switching-path
when the composite path is known. Nakasima's work seems to have been
little noticed in the United States; in the 1950s, however, a number of papers
appeared in the U.S. which applied Boolean equation-solving to the design
of switching systems [2, 4, 113, 155].

Motivated by problems arising in the design of switching circuits, A.
Svoboda [191] proposed construction of a "Boolean Analyzer," a hardware
adjunct to a general-purpose computer, specialized to solve Boolean equa
tions. The applications of such a unit, and of APL programs for solving

xiv Preface

Boolean equations, are described in Svoboda and White [193].
Klir and Marin [103] have stated that "The most powerful tool of the

modern methodology of switching circuits seems to be the Boolean equa
tions. Their importance for switching theory reminds one of the application
of differential equations in electric circuit theory." There remains a curi
ous difference, however, between the way differential equations and Boolean
equations are typically applied: Boolean equations are rarely solved. They
are manipulated in form but are seldom the basis for systematic reasoning.
Contemporary research on Boolean methods in switching tends instead to
emphasize formula-minimization. Many writers on applications of Boolean
methods believe in fact that the only useful thing to do with Boolean for
mulas is to simplify them. A widely-used text [84, p. 60] announces that
"Almost every problem in Boolean algebra will be found to be some variation
of the following statement: 'Given one of the 22" functions of n variables,
determine from the large number of equivalent expressions of this function
one which satisfies some criteria for simplicity.'" Boole would doubtless
deem that to be less than full employment for the algebra he designed as an
instrument for reasoning.

Although the processes of Boolean reasoning should for practical rea
sons keep their internal representations relatively simple, minimization is
a topic essentially distinct from reasoning. Minimization is therefore not
emphasized in this book, notwithstanding its importance both theoretically
and in practice. See Brayton, et al., [18] for an an excellent contemporary
treatment of minimization and its applications in the design of VLSI (Very
Large-Scale Integration) circuits.

An Approach to Boolean Problem-Solving

The central idea in Boolean reasoning, first given by Boole, is to reduce a
given system of logical equations to a single equivalent equation of standard
ized form (e.g., 1= 0), and then to carry out the desired reasoning on that
equation. This preliminary abstraction enables the processes of reasoning to
be independent of the form of the original equations.

The primary tactic employed by Boole and later nineteenth-century lo
gicians was to solve I(x, y, . ..) = 0 for certain of its arguments in terms of
others. A solution of an equation is a particular kind of antecedent, however,
and not necessarily a consequent, of the equation. An important advance
was made in 1937 by Blake [10], who showed that the consequents of f = 0

Preface xv

are represented economically in the disjunction of the prime implicants of
I. We call this disjunction the Blake canonicallorm for I and denote it by
BCF(f).

The task of solving a problem based on a collection of Boolean equations
may thus be carried out in three major steps:

1. Reduction. Condense the equations into a single Boolean equation
of the form I = o.

2. Development. Construct the Blake canonical form for I, i.e., gener
ate the prime implicants of I.

3. Reasoning. Apply a sequence of reasoning-operations, beginning with
the Blake form, to solve the problem.

Steps 1 and 2 are independent of the problem to be solved and are readily
automated. The sequence of operations to be applied in Step 3, on the
other hand, is dependent upon the problem. To employ Boolean reasoning,
therefore, the principal task is to select an appropriate sequence of operations
to apply to the formula BCF(f). The operational (i.e., functional) basis of
Boolean reasoning differentiates it from from the predicate calculus, whose
basis is relational. Other differences between the two languages are discussed
below.

Boolean Reasoning vs. Predicate Logic

The need to incorporate systematic reasoning into the design of switch
ing systems has attracted the attention of engineers to the theorem-proving
methods of the predicate calculus. Design based on these methods is sum
marized by Kabat and Wojcik [95] as follows: "The basic philosophy of the
design approach using theorem proving is to represent the elements of the
design process as a set of axioms in a formal system (a theory), state the
problem of realizability of the target function as a theorem, and prove it in
the context of the theory. Once the theorem is proved, an automatic proce
dure for the recovery of the logic circuit is to be executed to complete the
design."

Boolean reasoning differs from the theorem-proving methodology ofpred
icate logic in a number of important ways. Predicates (propositional func
tions) and propositions are two-valued. Boolean functions, on the other
hand, take on values over an underlying set, the carrier of the associated

xvi Preface

Boolean algebra; the number of elements in the carrier may be 2 or any
higher power of 2. The following properties-valid in propositional logic
do not hold in other than two-valued Boolean algebras:

=>
=>

F = 1 or G = 1
F=O.

Applying propositional calculation-rules to Boolean problems can there
fore lead to incorrect results. The denial of a biconditional in propositional
logic, for example, can be expressed as a biconditional; thus ...,(a +--+ b) is
equivalent to a +--+ ...,b. The denial of a Boolean equation, however, cannot
in general be expressed as a Boolean equation; denying the Boolean equation
a = b is not the same as asserting the equation a = b'.

The principal problem-solving technique in predicate logic is theorem
proving via refutation, i.e., reductio ad absurdum. This technique entails
the denial of the theorem to be proved. As noted above, however, the denial
of a Boolean equation is not a Boolean equation, and thus refutation-based
reasoning is not possible in Boolean algebras having other than two values.

Problem-solving in predicate logic entails assigning values to variables
over some domain. Any set, e.g., {5, John,", cat,*}, may be the domain for
a problem in predicate logic. The domain in a Boolean problem, however,
is an ordered structure-the carrier of a Boolean algebra. Consequently,
the information produced by Boolean reasoning is typically expressed by
intervals (cf. Section 2.4.1).

Outline

Chapters 1 through 4 of this book outline the mathematical basis for Boolean
reasoning. Chapter 1, included to make the book self-contained, is a brief
survey of fundamental concepts such as propositions, predicates, sets, rela
tions, functions and algebraic systems. Chapter 2 treats the classical Boole
Schroder algebra of logic via Huntington's postulates. Several examples
of Boolean algebras are discussed, and important theorems are presented;
among the latter are the Stone representation theorem, Boole's expansion
theorem, and the Lowenheim-Miiller verification theorem. Boolean formulas
and Boolean functions are defined and the distinction between these two
concepts is emphasized. Orthonormal expansions are defined and their util
ity is examined. The utility of "big" Boolean algebras (those comprising
more than two elements) is discussed. Chapter 3 outlines Blake's theory of

Preface xvii

canonical formulas [10], and the employment of such formulas in deriving and
verifying consequents of Boolean equations. Several methods are presented
for constructing the Blake canonical form. The Blake form is employed fre
quently in the remainder of the book; a number of theorems concerning this
form, based on Blake's dissertation [10], are given in Appendix A. Chapter
4 introduces the basic operations from which reasoning procedures may be
composed. Among such operations are reduction, elimination, expansion,
division, and substitution.

Chapters 5 through 7 treat two categories of Boolean reasoning: syllo
gistic (Chapter 5) and functional (Chapters 6 and 7). Syllogistic reasoning,
a direct approach to the solution of problems in propositional logic, is based
on constructing a simplified representation of the consequents of the Boolean
equation 1 = o. Functional reasoning, on the other hand, produces func
tional equations, i.e., statements of the form x = g(y, z, .. .), related to the
equation 1(x, y, z, ...) = o. Functional antecedents, solutions of 1 = 0,
were investigated by Boole and have been the object of much study since;
see Rudeanu [172] for an authoritative survey and a complete bibliography.
Functional consequents, on the other hand, seem to have received little at
tention; we discuss the theory of such consequents as well as a number of
their applications.

The last two chapters present applications of Boolean reasoning in dig
ital technology. Chapter 8 discusses the identification of a Boolean "black
box" by means of an input-output experiment. Chapter 9 concerns multiple
output combinational switching circuits. Emphasis is placed on the problem
of specification; the design-problem is formulated as one of solving the speci
fication. A particular class of solutions, which we call recursive, corresponds
to loop-free circuits which may employ output-signals to help in generating
other output-signals.

Proofs are supplied for new results; a proof is given for an established
result, however, only if it is particularly instructive. The Boolean calcu
lations entailed in the examples-and those underlying the new results
were carried out using a set of software-tools which the author calls BORIS
(Boolean Reasoning In Scheme); these tools are programmed in PC Scheme,
a microcomputer-based dialect of Lisp available from Texas Instruments,
Inc. BORIS has been invaluable in the exploration and testing of conjec
tures, building confidence in good conjectures and rudely puncturing bad
ones.

xviii Preface

Acknowledgments

The author's interest in Boolean methods owes much to the example and
assistance of Professor Sergiu Rudeanu of the Faculty of Mathematics, Uni
versity of Bucharest, Romania. I am indebted to Professor Rudeanu for his
careful reading of a preliminary version of this book; full many a logical rock
and mathematical shoal was avoided thanks to his comments. I am indebted
also to Captain James J. Kainec, U.S. Army, for reading several generations
of this book and supplying a large number of helpful comments. Several
chapters were read by Dr. Albert W. Small, who made useful suggestions
and corrections.

I wish finally to acknowledge a debt beyond measure-to my dear wife,
Roberta. Her steadfast support and encouragement made this book possible.

Boolean Reasoning

Chapter 1

Fundamental Concepts

This chapter surveys basic mathematical ideas and language needed in the
remainder of the book. The material in this chapter is provided for readers
having little experience with the concepts and terminology of modern alge
bra; other readers may wish to proceed directly to the next chapter. The
discussion is informal and only those topics directly applicable to Boolean
reasoning are considered. The reader unacquainted with set-theory is cau
tioned that the sets discussed in this chapter are restricted to be finite, i. e.,
to comprise only a finite number of elements. A text such as that by Hal
mos [77) should be consulted to gain a balanced understanding of the theory
of sets.

1.1 Formulas

If we put a sheet of paper into a typewriter and strike some keys, we produce
a formula or expression. If we strike only the parenthesis-keys, some of the
formulas we might type are the following:

()

)()
(() (()))
((((()))

(1.1)

(1.2)

(1.3)

(1.4)

Formulas may be discussed in terms of two attributes. The first is syntax,
which is concerned with the way the symbols in a formula are arranged;
the second is semantics, which is concerned with what the symbols mean.

1

2 CHAPTER 1. FUNDAMENTAL CONCEPTS

An important question of syntax is whether a formula in a given class is
well-formed, i.e., grammatical or legal according to the rules governing that
class. We will discuss the syntax of well-formed parenthesis-strings later in
this chapter; our experience with parentheses should tell us, however, that
formulas (1.1) and (1.3) are well-formed, whereas (1.2) and (1.4) are not.

Let us venture beyond the parenthesis-keys, to type more elaborate for
mulas:

3S;2

2 is a prime number.

140 IF C=40 THEN 120

140 IF 120 THEN C=40

QxRPch

x++5«

('Vx)[x E 0 ===} x E {1,2}]

There is life beyond our galaxy.

This statement is false.

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

The formulas above belong to several syntactic classes. The legality of (1.7)
and (1.8), for example, must be judged by the rules for BASIC statements,
whereas (1.9) is to be judged by the rules of chess-notation [87]. It is nev
ertheless fairly obvious that (1.8) and (1.10) are not well-formed, and that
the other formulas are well-formed.

One isn't much interested in formulas that are not well-formed; from now
on, therefore, "formula" will mean "well-formed formula." An important
semantic issue concerning such a formula is whether it can be assigned a
truth-value (true or false). We now examine that issue.

1.2 Propositions and Predicates

A proposition is a formula that is necessarily true or false, but cannot be
both. We do not attribute truth or falsehood to parenthesis-strings; hence
formulas (1.1) through (1.4) are not propositions. Formulas (1.5), (1.6), and
(1.11), however, are propositions; they are false, true, and true, respectively.
Formula (1.12) is a proposition, but determining its truth-value requires
more information than we now possess. Formula (1.13) is not a proposition:
if we assume it to be true, then its content implies that it is false; if we
assume it to be false, then its content implies that it is true.

1.2. PROPOSITIONS AND PREDICATES 3

Predicates. The formula

is not a proposition. It becomes a proposition, however, if any particular pair
of numbers is substituted for x and y. Such a formula is called a predicate
(or propositional form).

More precisely, suppose P(Xl, ••• ,Xn) represents a formula involving vari
ables Xl, .•• ,Xn , and suppose that each of the variables can take on values
within a certain domain. The domain of Xl might be certain numbers, that of
X2 might be animals that chew their cud, that of X3 might be certain propo
sitions, and so on. We say that the formula represented by P(Xl, ••• ,xn) is
an n-variable predicate if it becomes a proposition for each allowable sub
stitution of values for Xl, ••• , xn • A proposition is therefore a O-variable
predicate.

For notational convenience we write P(X) for P(Xl,"" xn) and we refer
to the domains of the variables Xl, .•• ,Xn collectively as the domain of X.

Quantifiers. Given a predicate P(X), where X is assigned values on
some domain D, we may wish to announce something about the number of
values of X for which P(X) is true. Two statements of this kind, namely

For every X in D, P(X) is true (1.14)

and
For at least one X in D, P(X) is true, (1.15)

are particularly useful. We use the shorthand (VX) to mean "for every X
in D" (the domain D being understood) and (3X) to mean "for at least
one X in D." The symbol V is called the universal quantifier; the symbol
3 is called the existential quantifier. Using these quantifiers, we represent
formula (1.14) by

(VX)P(X)

and we represent (1.15) by
(3X)P(X) .

The formula P(X) is not in general a proposition, because its truth
value may depend on the value assigned to X. The formulas (VX)P(X) and
(3X)P(X), however, are propositions. Suppose, for example, that P(x,y)
is the predicate

4 CHAPTER 1. FUNDAMENTAL CONCEPTS

and D is the set ofreal numbers. Then the formula (Vx)(Vy)P(x, y) is a false
proposition while ("Ix)(3y)P(x, y) is a true proposition. The latter form may
be read "for all x there exists a y such that P(x, y)," indicating a dependence
of the possible values of y upon the value of x. This form therefore has a
meaning different from that of (3y)(Vx)P(x, y)," read "there is a y such that,
for all x, P(x, y).

Implication. A predicate P(X) is said to imply a predicate Q(X),
written

P(X) ~ Q(X), (1.16)

in case, for every X in its domain, Q(X) is true if P(X) is true. Put another
(and frequently more useful) way, P(X) implies Q(X) if it cannot happen,
for any X, that P(X) is true and Q(X) is false. Formula (1.16) is called an
implication. P(X) is called the antecedent of the implication; Q(X) is called
the consequent.

Here are some examples of implications:

x is a real number ~ x 2 ~ 0

There is life beyond our galaxy ~ 5 is odd

3 :5 2 ~ It is raining

(1.17)

(1.18)

(1.19)

Formula (1.17) accords with our customary understanding of the word "im
plies"; there is a logical connection, that is, enabling us to deduce the conse
quent Q from the antecedent P. In neither (1.18) nor (1.19), however, does
such a connection exist. Each of these formulas nevertheless satisfies the
definition of an implication. It cannot happen in (1.18) that P is true and
Q is false, because Q is true; similarly, it cannot happen in (1.19) that Pis
true and Q is false, because P is false.

Implications in which the antecedent and consequent have no apparent
connection are not as removed from everyday reasoning as one might sup
pose. We often hear statements of the form, "If the Cubs win the pennant
this year, then I'm Sigmund Freud."

Suppose P(X) and Q(X) are predicates. Then each of the following
formulas conveys the same information:

P(X) ~ Q(X) (1.20)

[not Q(X)] ~ [not P(X)] (1.21)

1.3. SETS 5

('v'X)[[P(X) and not Q(X)] is false] (1.22)

('v'X)[[[not P(X)] or Q(X)] is true] (1.23)

If we wish to prove a theorem of the form (1.20), it may be convenient
instead to prove the equivalent statement (1.21). Such an approach is called
proof by contraposition, or contrapositive proof,

Equivalence. Two predicates P(X) and Q(X) are said to be equivalent,
written

P(X) ¢:::} Q(X), (1.24)

provided P(X) and Q(X) are either both true or both false for each X in the
domain. Formula (1.24) is called an equivalence. The formula

x 2 = -1 ¢:::} x = i or x = -i ,

for example, is an equivalence over the domain of complex numbers.
Comparing the definition of equivalence with that of implication, we see

that P(X) and Q(X) are equivalent in case the condition

[P(X) ==? Q(X)] and [Q(X) ==? P(X)] (1.25)

is satisfied.

1.3 Sets

A set is a collection of objects; the objects in the collection are called its ele
ments. Having said that, in order to affirm the view of a set doubtless shared
by the reader, we back away and declare the words "set" and "element" to
be primitive. They can be described but not defined, being analogous in
this respect to the words "line" and "point" in geometry. Our intent there
fore is not to say what sets are but to discuss a few of the things that may
done with them legally, inasmuch as they provide us with great notational
convenience.

An important caution: we consider only finite sets, i.e., sets possessing
a finite number of elements, in this book. The assumed finiteness of sets

6 CHAPTER 1. FUNDAMENTAL CONCEPTS

pervades the discussion in this and subsequent chapters, enabling us to think
about sets in ways that might not be applicable were the sets infinite.

We write
xEA

to signify that x is an element (or member) of a set named A.

Ways of describing sets. A set may be described by enumemtion,
i.e., by an explicit listing of its elements, written within curly braces. Thus
the Jones family may be specified by the formula

{Mrs. Jones, Mr. Jones, Emily Jones, Fido}.

A second way to describe a set is by means of a membership-property.
To specify a set S in this way, we write

S = {xIP(xH

where P(x) is a predicate that is true if and only if XES. The set E of even
numbers is thus described by

E = { x I x is a number divisible by 2 } .

Some sets are described conveniently either by enumeration or by a
membership-property; the choice between the two equivalent specifications

S = {I, -1, i, -i}

and
S = {xlx4 = I},

for example, is clearly a matter of taste. The set {s, Fido, $}, on the other
hand, would be difficult to describe by means of a membership-property that
does not amount to enumeration.

A third way to describe a set is by means of a recursive rule. Consider
the set

0 0 0
0 0 1

B~{[n·[! ~l·
0 1 0
0 1 1 , ... }
1 0 0
1 0 1
1 1 0
1 1 1

1.3. SETS

of binary codes. This set is described by the following statements:

1. [~] is an element of B.

o
x

1
2. If [Xl is an element of B, then so is

o

X
1

3. Nothing else is an element of B.

7

The first statement in the foregoing definition is called the base of the
definition; it puts certain objects (in this case just one) explicitly in the set.
The second statement, called the recursion, is a construction-rule, telling
us how to manufacture members of the set from other members of the set.
The third statement (which is often omitted, being understood) is called the
restriction; it allows membership in the set only to those objects appointed
either by the base or by the recursion. Any of the foregoing parts of a
recursive definition may itself have several parts.

Let us consider again the well-formed parenthesis-strings discussed ear
lier in this chapter. The set of such strings (let us call it P) is described
recursively by the statements that follow:

BASE: () is an element of P.
RECURSION: If X and Yare elements of P,

then so are (X) and XY.
RESTRICTION: Nothing else is an element of P.

Suppose we want to show that some property holds for every member of
a set S. We can do so, if S is described recursively, in two steps:

Step 1. Show that the property holds for all of the members of S
specified by the base.

Step 2. Show that if the property holds for all the members of an
arbitrary subset of S, then it must hold for all additional
members generated from that subset by recursion.

Abstractness of sets. The elements of a set may be concrete or ab
stract. A set, however, is always abstract; the only quality a set S possesses

8 CHAPTER 1. FUNDAMENTAL CONCEPTS

is its ability to attach membership-tags to objects. It is important not to
confuse properties of a set with properties of the objects it comprises. The
set {2}, for example, is not a number and the set {Fido} cannot bark.

Sets vs. sequences. A sequence (Xl, X2,"" xn) is an ordered col-
lection of objects that are not necessarily distinct. Sequences are some
times called ordered sets, n-tuples, arrays, or vectors; the delimiters [...] or
< ... > are sometimes used instead of (...). In a sequence, unlike a set,
the order of enumeration of elements is important. Thus (a, b,c) f; (b, c,a),
whereas {a, b, c} = {b, c, a}. Another difference between sets and sequences
is that the elements in a set, unlike those in a sequence, must be dis
tinct; thus {Fido, $, Fido, 5} is an illegal representation for a set, whereas
(Fido, $, Fido, 5) is a legal sequence.

Inclusion. If a set S consists entirely of elements that are also members
of a set T, then we say that S is included in (or is a subset of) T and we
write

Sc;;,T.

More formally, we define the relation c;;, by the equivalence

[S c;;, T] ~ ('v'x)[x E S ==> X E T]. (1.26)

Unlike the membership-relation E, which relates elements to sets, the
inclusion-relation ~ relates sets to sets.

Equality. Two sets Sand T are equal, written S = T, provided each
comprises exactly the same elements. Equality of sets is therefore defined
by the statement

[S = T] ~ [S c;;, T and T c;;, S].

We say that S is properly included in T in case S is included in T but Sis
not equal to T.

Cardinality. The number of elements in a finite set S is called the
cardinality of S and is denoted by # S (the notations lSI, n(S), and card(S)
are also used). Thus #{Fido, I} = 2.

The concept of cardinali ty (or cardinal number) is defined also for infini te
sets (see, e.g., Halmos [77]), but clearly entails a generalization of "number
of elements." Our concern in this book, however, is exclusively with finite
sets.

1.4. OPERATIONS ON SETS 9

The empty set. A useful concept is that of the empty (or null) set,
denoted by 0. This is the set comprising no elements at alIi thus 0 is defined
by the statement

#0=0.
The empty set is included in every set, i.e., 0 ~ T for any set T. To prove
that this is the case, based on the definition (1.26) ofthe relation ~, we must
show that the proposition

(V'x)[x E 0 ==> x E T]

is true for any set T. The left side of the implication in (1.3), i.e., x E 0, is
false for all Xi hence the implication is true for all x-and we conclude that
o is a subset of any set. Thus, for example,

{ x I x is a flying elephant} ~ {Fido,l}

is a valid inclusion.
We speak of "the" empty set because 0 is unique (the proof is assigned

as homework). Thus

{x I x is a flying elephant} = {x I x is an even integral divisor of 5}

is a valid statement.

1.4 Operations on Sets

We now discuss some useful ways to make sets out of other sets.

Cartesian product. The cartesian (direct, cross) product of sets S
and T, written S X T, is the set defined by

S X T = {{x, y)lx E S and YET}. (1.27)

Thus

{a,b} X {a,b,c} = {{a, a), (a,b),(a,c), (b,a),(b,b),(b,c)} . (1.28)

The cartesian product is not commutative, i.e., S X T '" T X S except
for special S, T pairs. The cardinality of S X T is related to that of the
individual sets S and T by

#(S X T) = (#S)· (#T). (1.29)

10 CHAPTER 1. FUNDAMENTAL CONCEPTS

Thus the sets S X T and T X S have the same cardinality. In (1.28), for
example, #S = 2, #T = 3, and #(S X T) = #(T X S) = 6.

The cartesian product is a set of ordered pairs. We define a three-fold
cartesian product as a set of ordered triples, i.e.,

R X S X T = {(x,y,z)lx E R,y E S,Z E T}. (1.30)

Higher-order cartesian products are defined by obvious extension. We write
sn to signify the n-fold cartesian product of S with itself, i.e.,

n times ..
sn=SxSx···xs'. (1.31)

Power set. The power set of a set S, written 28 , is the set of subsets
of S, i.e.,

28 = {RIR ~ S}. (1.32)

Thus
2{a,b} = {0,{a},{b},{a,b}}. (1.33)

The notation 28 serves to remind us that the cardinality of 28 is deter
mined from the cardinality of S by the relation

(1.34)

An alternative notation for the power set is P(S).

Union, intersection, and complement. Let Sand T be sets. Then
the union of Sand T, written S U T, is defined by

Su T = {xix E S or x E Torboth}. (1.35)

Thus {a,b,c} U {a,b,d} = {a,b,c,d}.
The intersection of Sand T, written S n T, is defined by

S n T = {xix E S and x E T}. (1.36)

Thus {a, b, c} n {a, b, d} = {a, b}. Two sets Sand T are said to be disjoint
if S n T = 0, i.e., if they have no elements in common.

The relative complement of T with respect to S, written S - Tor S \ T,
is defined by

S - T = {xix E S and x ¢ T} . (1.37)

1.5. PARTITIONS 11

Thus {a, b, c} - {a, b, d} = {c}. In many situations it is natural to think of
a universal set, U, such that every set of interest is a subset of U; in such
situations we define the absolute complement of T, written T, by

T = U - T = {xix E U and x fI T}. (1.38)

The statement "x E U" is redundant, however, in the given context; thus
we may define T by the simpler statement

T = {xix fiT}.

1.5 Partitions

A partition 'Ir of a nonempty set S is a set

of nonempty subsets of S, called blocks, such that the conditions

(i) BinBj =0 (il=i)
(ii) Uf=l Bi = S

(1.39)

(1.40)

are satisfied. Thus every element of S is a member of exactly one block of
'Ir.

Suppose that 'irA = {At, A2, ••• } and 'lrB = {Bt, B2, ••• } are two parti
tions of a set S. Then we say that 'irA is a refinement of 'lrB, written

(1.41)

in case each block of 'irA is a subset of some block of 'lrB. Equivalently,
(1.41) holds in case every block of 'lrB is a union of blocks of 'irA. Suppose
for example that S = {a,b,c,d,e}, 'irA = {{a,c},{b},{d,e}} and 'lrB =
{{ a, b, c}, {d, e}}. Then 'irA ~ 'lrB.

1.6 Relations

Given two sets Sand T, a relation R from S into Tis a subset of S X T. We
define a predicate xRy, read "x has the relation R to y," by the formula

xRy ¢:::::} (x, y) E R . (1.42)

12 CHAPTER 1. FUNDAMENTAL CONCEPTS

Example 1.6.1 Let S = {O, 3, 5} and let T = {1, 4, 7}. If R means "less
than", then R S; S X T is enumerated as follows:

R = {(O, 1), (0,4), (0,7), (3,4), (3, 7), (5, 7)} .

If R means "equal to" , then
R=0.

We define a relation on a set S to be a subset of S X S.
The relations discussed above are called binary because they involve two

sets. It is sometimes useful to extend the concept of relation to three or
more sets. Thus a subset of R X S X T is a ternary relation on the triple
(R,S,T).

Equivalence-relations. A relation R on a set S is called an equivalence
relation in case, for all x, y, z E S, R is

(i) reflexive: (x,x) E R
(ii) symmetric: (x,y) E R ===? (y,x) E R

(iii) transitive: [(x, y) E Rand (y, z) E R] ===? (x, z) E R.

Consider for example the set S = {a, b, c, d, e, f} and the relation

R = {(a,a),(b,b),(c,c),(d,d),(e,e),(j,j),(a,b),
(b,a),(a,c),(c,a),(b,c),(c,b),(d,e),(e,d)} (1.43)

on S. It is readily verified that R is an equivalence-relation on S, i.e., that
it is reflexive, symmetric, and transitive.

If R is an equivalence-relation on S, then the equivalence-class containing
an element y, denoted by [y], is the set of all members of S that are R-related
(i.e., equivalent) to y. That is,

[y] = {xl(x,y) E R}.

The equivalence-classes defined by the relation (1.43) are

[a] = [b] = [c] = {a,b,c}
[d] = [e] = {d,e}

[I] = {f}.

(1.44)

The set of all equivalence-classes associated with an equivalence-relation
on a set S constitutes a partition of Sj conversely, any partition of S is the set

1.6. RELATIONS 13

of equivalence-classes of an equivalence-relation on S. Thus the equivalence
relations on S are in one-to-one correspondence with the partitions of S. The
partition of {a, b, c, d, e, J} corresponding to the equivalence-relation (1.43),
for example, is

{{a,b,c},{d,e},{J}} = {[a], [d],[f]} .

The elements a, d, and f in the latter set are called "representatives" of
their equivalence-classes; any element of an equivalence-class may be chosen,
clearly, to be the representative of its class.

Equivalence is a generalization of equality. We say that two things be
longing to a set S are equivalent, even if they aren't equal, if they belong to
the same block of a partition of S generated by some classification-scheme.
Suppose that S is the set of all people in the world. Then we might say that
two people are equivalent if they are of the same sex (thereby partitioning
S into two equivalence-classes). Under other schemes of classification, we
might say that two people are equivalent if they have the same nationality
or are of the same age. As another example, suppose S to be the set of
all arithmetic formulas. The elements x2 - y2 and (x + y)(x - y) of S are
clearly not equal (as formulas). They produce the same numerical result,
however, if specific numbers are substituted for x and y; hence, we call the
two formulas equivalent.

Suppose, as a further example, that S is the set of integers, i.e., S =
{ ... , -2, -1, 0,1,2, ... } and that a relation R is defined on S by the formula

(x, y) E R ~ x - y is divisible by 3. (1.45)

The relation R is reflexive, symmetric and transitive (the proof is assigned
as homework); hence R is an equivalence-relation. This relation has three
equi valence-classes, namely,

[0] = { ... , -6, -3,0,3,6, ... }

[1] = { ... , -5, -2, 1,4, 7, ... }

[2] = { ... ,-4,-1,2,5,8, ... } .

The associated partition of S is {[OJ, [1], [2]}.
The typical symbol for an equivalence-relation is ==; we write x == y, that

is, in case (x, y) is a member of the set == of ordered pairs. Another way to
say this is that x == y if and only if [x] = [y] with respect to the relation

14 CHAPTER 1. FUNDAMENTAL CONCEPTS

_. Referring to the foregoing example, we write -6 == 3, 4 == 7, etc. In this
example, the relation == is called congruence modulo 3.

Partial-order relations. Just as an equivalence-relation is a gener
alization of the relation "equals," a partial order is a generalization of the
relation "is less than or equal to." We say that a relation R on a set S is a
partial order on S in case, for all x, y, z E S, the relation is

(i) reflexive: (x,x) E R
(ii) anti-symmetric: [(x,y) E R and (y,x) E R] ~ x = Y

(iii) transitive: [(x, y) E R and (y, z) E R] ~ (x, z) E R.

The following are some examples of partial-order relations:

• The relation ~ on the set of real numbers is a partial order of a special
kind: for any pair x, y of real numbers, either x ~ y or y ~ x holds.
Because of this property, ~ is called a total order on the set of real
numbers.

• If P is the set of partitions on a set S, then the relation of refinement
is a partial order on P.

• It S is any set, then the inclusion-relation ~ is a partial order on the
set 25.

• If S is the set {I, 2, 3, ... } of natural numbers, then the relation "is a
divisor of" is a partial order on S.

Partially-ordered sets and Hasse diagrams. A set S, together with
a partial order ~ on S, is an entity called a partially-ordered set, designated
by the ordered pair (S, ~). (We use the symbol ~ as a generic representation
for a partial-order relation.) In the third of the relations listed above, for
example, the pair (25,~) is a partially-ordered set.

A convenient representation for a partially-ordered set (S,~) is a Hasse
diagram. Each element of S is represented as a point in the diagram; the
points are connected by lines in such a way that one may trace continuously
upward from a point x to another point y if and only if x ~ y. To achieve
this result with the fewest possible lines, a line is drawn directly upward
from x to y if and only if

• x ~ y and
• there is no third point z such that x ~ z ~ y.

Figure 1.1 shows Hasse diagrams for several partially-ordered sets.

1.6. RELATIONS

{{a,b,c}} 3

/1" I
{{a,b},{c}} {{a,c},{b}} {{a},{b,c}} 2

,,1/
{{ a},{b },{ c}} 1

(a) (b)

{a,b,c} 30

/1"" /1""
{a,b} {a,c} {b,c} 6 10 15

IXXI IXXI
{a} {b} {c} 2 3 5

""1/ ""1/ o 1

(c) (d)

(a) ({11" I 11" is a partition of {a, b, c}}, "is a refinement of")
(b) ({I, 2, 3}, "less than or equal to")
(c) (2{a,b,c}, ~)

(d) ({1,2,3,5,6,10,15,30}, "is a divisor of")

Figure 1.1: Hasse diagrams.

15

16 CHAPTER 1. FUNDAMENTAL CONCEPTS

1. 7 Functions

A function f from a set S into a set T, written

f:S--+T, (1.46)

assigns to every element XES an element f(x) E T called the image of x.
The set S is called the domain of f; the set T is called the co-domain of f.
The range of f is the set of images of elements of Sunder f. The range of
f is clearly a subset of its co-domain; if the range of f is equal to T, we say
that the function (1.46) is onto T.

A function is a specialized relation. We recall that a relation from S
to T is a subset of S x T, i.e., a collection of ordered pairs each of which
takes its first element from S and its second element from T. Accordingly,
we define a function f from S into T as a relation from S to T having the
property that each element of S appears as a first element in exactly one of
the ordered pairs in f. Thus the formulas "f(x) = y" and "(x,y) E f" are
equivalent predicates.

Example 1.7.1 Suppose S = {a,b,c}, T = {a,c,d}, and define a function
f from S into T by the statements

f(a) a

f(b) d (1.47)

f(c) = a.

Then f is the relation

f = {(a,a),(b,d),(c,a)}. (1.48)

An alternative way to specify a function-one that is sometimes more con
venient than either of the tabulations (1.47) or (1.48)-is by means of a
function-table. Such a table for the present example is shown in Table 1.1.

n-variable functions. A function

f: Sn --+ T (1.49)

is called an n-variable function from S into T. Thus the temperature-values
in a 10' X 10' X 10' room are described by a 3-variable function from S =
{xix is a real number between 0 and 10} into T = {xix is a real number}.

1.7. FUNCTIONS 17

x f(x)
a a
b d
c a

Table 1.1: A function-table.

Propositional functions. A function whose co-domain is {true, false}
is called a propositional function. Every predicate, e.g.,

(1.50)

represents a propositional function, inasmuch as a predicate becomes a propo
sition for any allowable substitution of values for its arguments. The formula
(1.50) represents a function

f: S1 X S2 --+ {true, false} ,

where S1 and S2 are sets of numbers. For simplicity, let us take S1 = S2 =
{O, 1, 2}. The corresponding propositional function f is a relation comprising
nine ordered pairs, namely,

f = {((0,0), true), «0, 1), true), «0, 2), true),

«1,0), true), «1,1), true), «1, 2), false),

«2,0), true), «2, 1), false), «2,2), false)} .

Functions vs. formulas. A formula such as

is clearly simpler to work with than is the set of ordered pairs defining the
functionf. The convenience of using formulas to represent functions may
lead us to ignore the distinction between these two entities. The distinction
is important, however, in the applications of Boolean reasoning. The desired
behavior of a digital system, for example, is specified by a Boolean function
f, whereas the structure of the system is specified by an associated Boolean
formula. There are typically many equivalent formulas that represent a
given function; correspondingly there are typically many circuit-structures
that produce a given specified behavior.

18 CHAPTER 1. FUNDAMENTAL CONCEPTS

1.8 Operations and Algebraic Systems

An operation, 0, on a set 8 = {81, 82,"'} is a function from 8 X 8 into 8,
i.e.,

0:8x8-8. (1.51)

To each ordered pair (a, b) E 8 X 8, the operation 0 assigns an element
a 0 bE 8. We may specify an operation 0 by an operation-table having the
following form:

81 81 0 81 81 0 82

82 82 0 81 82 0 82

The pair (8,0) is called an algebraic 8Y8tem. An example is ([0,1],.),
the set of real numbers on the closed interval from ° to 1, together with the
operation of multiplication. An algebraic system may have more than one
operation. We are familiar, for example, with the complex field (K, +",0,1);
here K is the set of complex numbers and + and . are addition and multi
plication, respectively, of complex numbers. In labelling an algebraic system
it is sometimes convenient to name parts of the system in addition to its set
and its operations. A Boolean algebra 8 (to be discussed in Chapter 3), for
example, is labelled by the quintuple

(B,+,·,O,l) . (1.52)

The first element in the foregoing specification is a set, the next two elements
are operations, and the last two elements are special members of B. The
quintuple (1.52) provides five "slots" into which particular sets, operations,
and special members may be inserted to form particular Boolean algebras.
The algebraic system (25 , U, n, 0, 8), for example, is the Boolean algebra of
subsets of the set 8.

EXERCISES 19

Exercises

1. Assuming the domain of x to be the set of real numbers, which of the
following is a valid implication?

(a) x2 =-2 ==? x=5
(b) x$3 ==? x2 ~ 0
(c) x=4 ==? x$1
(d) x+l=2 ==? x$3

2. Give a recursive definition of the set

0 0 0
0 0 1

B={[n,[~ IJ.
0 1 1
0 1 0 , ... }
1 1 0
1 1 1
1 0 1
1 0 0

of reflected Gray codes.

3. Let 0 denote the empty set.

(a) For an arbitrary set S, which of the following is true?

(b) Exhibit the following sets explicitly and state the cardinality of
each.

4. Given S = {0, {I, 2}}, exhibit 28.

20 CHAPTER 1. FUNDAMENTAL CONCEPTS

5. Let S = {0,2,{4,5},4}. Decide the truth of each of the following
statements:

(a) {4,5} ~ S
(b) {4,5} E S
(c) {2,4} ~ S
(d) {2,4} E S
(e) 0 ~ S
(f) 0 E S
(g) {0} ~ S
(h) {0} E S
(i) {{4,5}} ~ S
(j) 2 ~ S
(k) 2 E S
(1) {2} ~ S
(m) {2} E S

6. Given that S is any non-empty set, decide the truth of each of the
following statements. Explain your reasoning in each case.

(a) S E 2S
(b) S ~ 2S
(c) is} E 2S
(d) is} ~ 2S

7. Using the fact that 0 ~ T for any set T, if0 is an empty set, show that
there is only one empty set.

8. Prove or disprove the following statements:

(a) For all sets S, S X 0 = 0 X S.
(b) If S and T are non-empty sets, then

SxT=TxS <==> S=T.

9. How many relations are there from an m-element set to an n-element
set?

10. Given sets D and R, define a set F as follows:

F = {II! : D --+ R} .

F is the set of functions, that is, that map D into R. Express # F in
terms of # D and # R.

EXERCISES 21

11. Let S be a set comprising k elements, and let n be a positive integer.

(a) How many elements are there in sn?

(b) How many n-variable functions are there from S into S?

12. Decide, for each of the following sets of ordered pairs, whether the set
is a function.

(a) {(x, y) I x and y are people and x is the mother of y}
(b) {(x, y) I x and yare people and y is the mother of x}
(c) {(x, y) I x and yare real numbers and x2 + y2 = I}
(d) {(x, y) I [x = 1 and y = 2] or [x = -1 and y = 2]}

Chapter 2

Boolean Algebras

We outline in this chapter the ideas concerning Boolean algebras that we
shall need in the remaining chapters. For a formal and complete treatment,
see Halmos [78], Mendelson [137], Rudeanu [172], or Sikorski [187]. For
an informal approach and a discussion of applications, see Arnold [3], Car
vallo [35], Hohn [86], Kuntzmann [110], Svoboda & White [193], or White
sitt [214]. Rudeanu's text [172] is unique as a complete and modern treat
ment of Boolean functions and the solution of Boolean equations.

We begin by stating a set of postulates for a Boolean algebra, adapted
from those given by Huntington [92].

2.1 Postulates for a Boolean Algebra

Consider a quintuple
(B, +, ·,0, 1) (2.1)

in which B is a set, called the carrierj + and . are binary operations on Bj
and ° and 1 are distinct members of B. The algebraic system so defined is
a Boolean algebra provided the following postulates are satisfied:

1. Commutative Laws. For all a, bin B,

a+b = b+a

a·b = b·a

2. Distributive Laws. For all a, b, c in B,

a+(b·c) = (a+b).(a+c)

a·(b+c) = (a.b)+(a.c)

23

(2.2)

(2.3)

(2.4)

(2.5)

24 CHAPTER 2. BOOLEAN ALGEBRAS

3. Identities. For all a in B,

O+a = a

l'a = a

(2.6)

(2.7)

4. Complements. To any element a in B there corresponds an element a'
in B such that

a + a' = 1

a· a' = 0

(It is readily shown that the element a' is unique.)

(2.8)
(2.9)

We shall be concerned in this book only with finite Boolean algebras, i.e.,
Boolean algebras whose carrier, B, is a finite set; thus "Boolean algebra"
should be taken invariably to mean "finite Boolean algebra." Although a
Boolean algebra is a quintuple, it is customary to speak of "the Boolean
algebra B," i.e., to refer to a Boolean algebra by its carrier.

As in ordinary algebra, we may omit the symbol "." in forming Boolean
products, except where emphasis is desired. Also, we may reduce the number
of parentheses in a Boolean expression by assuming that multiplications are
performed before additions. Thus the formula (a . b) + c may be expressed
more simply as ab + c.

2.2 Examples of Boolean Algebras

2.2.1 The Algebra of Classes (Subsets of a Set)

Suppose in a given situation that every set of interest is a subset of a fixed
nonempty set S. Then we call S a universal set and we call its subsets the
classes of S. If S = {a, b}, for example, then the classes of S are 0, {a}, {b},
and {a,b}.

The algebra of classes consists of the set 25 (the set of subsets of S),
together with two operations on 25 , namely, U (set-union) and n (set
intersection). This algebra satisfies the postulates for a Boolean algebra,
provided the substitutions

2.2. EXAMPLES OF BOOLEAN ALGEBRAS 25

B +---+ 28

+ +---+ U

+---+ n
0 +---+ ° 1 +---+ S

are carried out, i.e., the system

(28,U,n,0,S)

is a Boolean algebra. The "algebra of logic" of Boole [13], Carroll [34],
Venn [210], and other nineteenth-century logicians was formulated in terms
of classes. Carroll's problems, involving classes such as "my poultry," "things
able to manage a crocodile," and "persons who are despised," remain popular
today as logical puzzles.

2.2.2 The Algebra of Propositional Functions

A proposition is a statement that is necessarily true or false, but which can
not be both. Propositions are elementary units of reasoning; they may be
operated upon, and assembled in various patterns, by a system of calcula
tion called the algebra of propositions, or the propositional calculus. Let P
and Q be propositions. The conjunction of P and Q, read "P and Q" and
symbolized P /I. Q, is a proposition that is true if and only if both P and
Q are true. The disjunction of P and Q, read "P or Q" and symbolized by
P V Q, is a proposition that is false if and only if both P and Q are false.
The negation of P, read "not P" and symbolized by ..,P, is a proposition that
is true if P is false and false if P is true. The conditional with antecedent
P and consequent Q, read "if P then Q" and symbolized by P -+ Q, is de
fined to have the same truth-value, for all truth-values of P and Q, as the
propositional function ..,P V Q.

Let P be the set of propositional functions of n given variables, let 0 be
the formula that is always false (contradiction), and let _ be the formula
that is always true (tautology). Then the system

(P, V, /I., 0,_)

is a Boolean algebra (see Arnold [3] Goodstein [72] or Hohn [86] for a fuller
discussion) .

26 CHAPTER 2. BOOLEAN ALGEBRAS

2.2.3 Arithmetic Boolean Algebras

Let n be the product of distinct relatively prime numbers, let Dn be the set
of all divisors of n, and let lem and ged denote the operations "least common
multiple" and "greatest common divisor," respectively. Then the system

(Dn,lem,ged,l,n)

is a Boolean algebra, a fact first pointed out, apparently, by Bunitskiy [31].
The symbol 1 denotes the integer 1; it is necessary to distinguish the integer
1 from the Boolean I-element because the integer 1 is the O-element of an
arithmetic Boolean algebra.

Example 2.2.1 The arithmetic Boolean algebra for n = 30 is

({l, 2, 3,5,6, 10, 15,30}, lem,ged, l, 30),

giving rise to operations such as the following:

o

6 + 15 = 30

6 ·15 = 3.

2.2.4 The Two-Element Boolean Algebra

The system

({O, I}, +,·,0,1)

is a Boolean algebra provided + and· are defined by the following operation
tables:

+ 0 1
0 0 1
1 1 1

2.2.5 Summary of Examples

ffiBJo 1
o 0 0
101

A summary of the foregoing examples of Boolean algebras is given in Ta
ble 2.1.

2.3. THE STONE REPRESENTATION THEOREM 27

II Algebra B + o 1

Subsets
of S 28 U n 0 S

(Classes)
n-Variable

Propositions Propositional V A 0 •
Functions

Arithmetic Divisors
Boolean of lcm gcd 1 n
Algebra n

Two-element + 0 1 0 1
Boolean {0,1} 0 0 1 0 0 0 0 1
Algebra 1 1 1 1 0 1

Table 2.1: Examples of Boolean Algebras.

2.3 The Stone Representation Theorem

The following theorem, first proved by Stone [190], establishes the important
result that any finite Boolean algebra (i.e., one whose carrier is of finite size)
has the same structure as a class-algebra.

Theorem 2.3.1 Every finite Boolean algebra is isomorphic to the Boolean
algebra of subsets of some finite set S.

Stone proved that an infinite Boolean algebra is also isomorphic to a set
algebra, though not necessarily to the simple algebra of subsets of a universal
set (see Mendelson [137, Chapter 5] or Rosenbloom [170, Chapter 1]).

Some Boolean algebras have exclusive properties, i.e., properties that do
not hold for all Boolean algebras. The properties

x + y = 1 iff x = 1 or y = 1

x . y = 0 iff x = 0 or y = 0 ,

(2.10)

(2.11)

for example, hold only in two-element algebras. The Stone Representation
Theorem tells us that finite class-algebras, however, are not specialized; we
may reason, with no lack of generality, in terms of the specific and easily
visualized concepts of union, intersection, 0, and S (where S is the "univer
sal set") rather than in terms of the abstract concepts +, ., 0, and 1. In

II

28 CHAPTER 2. BOOLEAN ALGEBRAS

particular, we are always justified in using the intuitive properties of class
algebras, rather than going back to the postulates, to prove properties valid
for all finite Boolean algebras.

2.4 The Inclusion-Relation

We define the relation ~ on a Boolean algebra as follows:

a ~ b if and only if ab' = 0 .

This relation is is a partial order, i.e., it is

(a) reflexive: a ~ a
(b) antisymmetric: a ~ b and b ~ a ==> a = b
(c) transitive: a ~ b and b ~ c ==> a ~ c

A property analogous to (2.12), viz.,

A ~ B if and only if A n B' = 0 ,

(2.12)

holds in the algebra of subsets of a set. A and B are arbitrary classes, i.e.,
subsets of a universal set S. The relation An B' = 0 is easily visualized by
means of an Euler diagram, as shown in Figure 2.1.

Because the relation ~ in a Boolean algebra B corresponds to the relation
!; in the subset-algebra isomorphic to B, we call :S the inclusion-relation.

It is useful in practice to recognize the equivalence of the following state
ments:

a ~ b (2.13)

ab' = 0 (2.14)

a' + b = 1 (2.15)

b' ~ a' (2.16)

a+b = b (2.17)

ab = a. (2.18)

The equivalence of (2.13) and (2.14) is announced by definition in (2.12);
the equivalence of the remaining pairs is readily verified.

In Table 2.2 we tabulate several relations, defined in specific Boolean
algebras, that correspond to the general inclusion-relation ~.

2.4. THE INCLUSION-RELATION 29

S

Figure 2.1: Euler diagram illustrating the relation An B' = 0.

Boolean Algebra Relation Corresponding to <
Subset-Algebra ~
Arithmetic Boolean Algebra "divides"
Algebra of Propositions --+

Two-element Algebra {(O,O),(O,I),(I,I)}

Table 2.2: The inclusion-relation in several Boolean algebras.

30 CHAPTER 2. BOOLEAN ALGEBRAS

2.4.1 Intervals

The solutions to many kinds of Boolean problems occur in sets defined by
upper and lower bounds. Let a and b be members of a Boolean algebra
B, and suppose that a ~ b. The interval (or segment) [a, b] is the set of
elements of B lying between a and b, i.e.,

[a, b] = {x I x E B and a ~ x ~ b} .

Example 2.4.1 Let B = {I, 2, 3, 5, 6,10,15, 3D} be the 8-element arith
metic Boolean algebra of Example 2.2.1. The inclusion-relation in this alge
bra is arithmetic divisibility; thus [3,30] is the interval

[3,30] = {3, 6,15, 3D} .

o

If (B, +,·,0,1) is a Boolean algebra and a and b are distinct elements of
B such that a ~ b, then the system

([a, b], +,', a, b)

is a Boolean algebra.

2.5 Some Useful Properties

We list below some properties-valid for arbitrary elements a, b, e in a
Boolean algebra-that are useful in manipulating Boolean expressions.

Property 1 (Associativity):

a+(b+e) (a+b)+e (2.19)

a(be) (ab)e (2.20)

Property 2 (Idempotence):

a+a = a (2.21)

aa = a (2.22)

Property 3:

a+l = 1 (2.23)

a·O = 0 (2.24)

2.5. SOME USEFUL PROPERTIES

Property 4 (Absorption):

Property 5 (Involution):

a + (ab)

a(a + b)

a
a

(a')' = a

Property 6 (De Morgan's Laws):

Property 7:

(a + b)'

(ab)' =

a + a'b

a(a' + b)

a'b'

a' + b'

a+b

ab

Property 8 (Consensus):

Property 9:

ab + a'e + be =
(a + b)(a' + e)(b + e)

ab + a'e

(a + b)(a' + e)

a < a+b

ab ~ a

31

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Property 10 (The principle of duality): Every identity deducible from
the postulates of a Boolean algebra is transformed into another identity if

(i) the operations + and "
(ii) the left and right members of inclusions, and

(iii) the identity-elements 0 and 1

are interchanged throughout.
The postulates themselves, together with the foregoing properties, pro

vide good examples of the duality-principle. Because of that principle, only
one of each of the statement-pairs above need be established; the other mem
ber of the pair follows by duality.

32 CHAPTER 2. BOOLEAN ALGEBRAS

Proposition 2.5.1 Let a and b be members of a Boolean algebra. Then

a = 0 and b = 0 iff a + b = 0 (2.36)

a = 1 and b = 1 iff ab = 1 . (2.37)

Proof. We prove (2.36)j the proof of (2.37) follows by dual statements.
If a = 0 and b = 0, then it follows from additive idempotence (2.21) that
a+b = 0+0 = o. Conversely, suppose that a+b = o. Multiplying both sides
by a and applying distributivity (2.4), multiplicative idempotence (2.22), and
property (2.24), we obtain a + ab = 0, from which the result a = 0 follows
by absorption (2.25). We deduce similarly that b = o. 0

Proposition 2.5.2 Let a and b be members of a Boolean algebra. Then

a = b iff a'b + ab' = 0 . (2.38)

Proof. Suppose a = b. Then a'b + ab' = a' a + aa' = 0 + 0 = o. Suppose on
the other hand that a'b+ab' = o. If a is added to both sides, the result, after
simplification, is a + b = aj if instead b is added to both sides, the simplified
result is a + b = b. Thus a = b. 0

Proposition 2.5.2 enables an arbitrary Boolean equation to be recast
equivalently in the standard form f = o. We will make frequent use of this
form. Proposition 2.5.2 also provides a direct means of verifying Boolean
identities of the form a = bj it is more convenient in many cases to evaluate
a'b + ab' than it is to manipulate one side of an identity until it becomes the
same as the other.

Example 2.5.1 Let us verify identity (2.30), which has the form u = v,
where u = a + a'b and v = a + b. Thus

u'v + uv' = (a + a'b)'(a + b) + (a + a'b)(a + b)' .

The latter expression is readily evaluated to be the O-elementj hence, (2.30)
is valid. 0

Exclusive OR and Exclusive NOR. The formula a'b + ab' in (2.38)
occurs often enough to justify our giving it a special name. It is called the
"exclusive OR" (or modulo-2 sum) of a and b and is denoted by a $ b. This
was the sum-operator employed by Boole [13], who denoted it by +j the
operation we denote by + (the "inclusive OR") was introduced by Jevons
[94], who modified Boole's essentially arithmetic algebra to create the more
"logical" semantics of modern Boolean algebra. The complement of a $ b is
called the "exclusive NOR" of a and b, and is denoted by a 0 b.

2.6. N -VARIABLE BOOLEAN FORMULAS 33

2.6 n-Variable Boolean Formulas

We shall be concerned throughout this book with two kinds of objects: for
mulas (strings of symbols) and functions. A Boolean function is a mapping
that can be described by a Boolean formula; we therefore need to character
ize Boolean formulas before discussing Boolean functions.

Given a Boolean algebra B, the set of Boolean formu.las on the n symbols
Xl, X2, ••• ,Xn is defined by the following rules:

1. The elements of B are Boolean formulas.

2. The symbols Xl, X2, • •. , Xn are Boolean formulas.

3. If 9 and h are Boolean formulas, then so are

(a) (g) + (h)

(b) (g)(h)

(c) (g)' .

4. A string is a Boolean formula if and only if its being so follows from
finitely many applications of rules 1, 2, and 3.

We refer to the strings defined above as n-variable Boolean formu.las.
The number of such formulas is clearly infinite. Given the Boolean algebra
B = {a, l,a',a}, the strings

a
(a) +
(a) +
(a) +

(a)
«a) + (a»
«a) + «a) + (a») , ...

for example, are all distinct n-variable Boolean formulas for any value of n.
Our definition rejects as Boolean formulas such reasonable-looking strings

as b + X2 and aXI because they lack the parentheses demanded by our rules.
We therefore relax our definition by calling a string a Boolean formula if it
can be derived from a Boolean formula by removing, without introducing
ambiguity, a parenthesis-pair (...). Thus, the Boolean formula (b) + (X2)
yields, by removal of a parenthesis-pair, the Boolean formula (b) + X2; the
latter, by another removal, yields the Boolean formula b + X2.

We are accustomed to thinking of the formulas (g) + (h) and (g)(h) as
representing operations (addition and multiplication) in a Boolean algebra.

34 CHAPTER 2. BOOLEAN ALGEBRAS

In the present discussion, however, we are concerned only with syntax, i.e.,
rules for the formation of strings of symbols. We shall shortly need to view
the same formulas as representing functions. In cases where it is necessary
to distinguish Boolean formulas from Boolean functions, we indicate that
(g) + (h) is a formula by calling it a disjunction (rather than a sum) and
that (g) (h) is a formula by calling it a conjunction (rather than a product).
We denote formulas in such situations by upper-case symbols and functions
by lower-case. Thus 9 + h is a function (the sum of functions g and h),
whereas G + H is a formula (the disjunction of formulas G and H).

2.7 n-Variable Boolean Functions

An n-variable function f: Bn~ B is called a Boolean function if and only
if it can be expressed by a Boolean formula. To make this definition precise
we must associate a function with each n-variable Boolean formula on B.
The set of such formulas is defined recursively by rules given in Section 2.6;
we therefore define the n-variable Boolean functions on B by a parallel set
of rules:

1. For any element b E B, the constant function, defined by

is an n-variable Boolean function.

2. For any symbol Xi in the set {Xl, X2, ... , xn}, the projection-function,
defined, for any fixed i E {1,2, ... ,n}, by

is an n-variable Boolean function.

3. If 9 and hare n-variable Boolean functions, then the functions 9 + h,
gh and g', defined by

(a)
(b)
(c)

(g + h)(XI, X2, ... , xn)
(gh)(Xb X2,"" xn)
(g')(XI,X2," .,xn)

= g(XI, X2, ... , xn) + h(Xll X2, ... , xn)
= 9(Xb X2,···, xn) . h(XI, X2, ... , xn)

(g(xt, X2,···, xn))' ,

for all (Xl, X2, ... , Xn) E Bn, are also n-variable Boolean functions.
These functions are said to be defined pointwise on the mnge.

2.7. N -VARIABLE BOOLEAN FUNCTIONS 35

4. Nothing is an n-variable Boolean function unless its being so follows
from finitely many applications of rules 1, 2, and 3 above.

Example 2.7.1 Given B = {O, 1,a',a}, let us construct the function-table
for the two-variable Boolean function I: B2 ---7 B corresponding to the
Boolean formula a'x + ay'. We observe that the domain,

B X B = {(O,O),(O,l), ... ,(a,a)},

has 16 elements; hence, the function-table has 16 rows, as shown in Table 2.3.
o

Formula
a'x + ay'

Function - Table
x y I(x, y)

° ° a
0 1 0
0 a' a
0 a 0
1 0 1
1 1 a'
1 a' 1
1 a a'
a' 0 1
a' 1 a'
a' a' 1
a' a a'
a 0 a
a 1 0
a a' a
a a 0

Table 2.3: Function-table for a' x + ay' over {O, 1, a'a}.

The rules defining the set of Boolean functions translate each n-variable
Boolean formula into a corresponding n-variable Boolean function (which is
said to be represented by the formula), and every n-variable Boolean function
is produced by such a translation.

36 CHAPTER 2. BOOLEAN ALGEBRAS

The number of n-variable Boolean formulas over a finite Boolean alge
bra B is infinite; however, the number of n-variable function-tables over B,
of which Table 2.3 is an example, is clearly finite. Thus, the relationship
between Boolean formulas and Boolean functions is not one-to-one. The
distinct Boolean formulas

a+z
az' +z
a + a'z

a+a+z
(a + z)a + a' z ,

for example, all represent the same Boolean function.
An important task in many applications of Boolean algebra is to select

a good formula-given some definition of "good"-to represent a Boolean
function.

The range of a Boolean function. The range (cf. Section 1.7) of a
Boolean function f: Bn __ B is the set of images of elements of Bn under
f. It was shown by Schroder [178, Vol. 1, Sect. 19] that the range of f is
the interval

[II f(A) , Ef(A)]. (2.39)
Ae{o,l}n Ae{O,l}n

A proof for this result is given by Rudeanu [172, Theorem 2.4].

2.8 Boole's Expansion Theorem

The basis for computation with Boolean functions is the expansion theo
rem given below. Called "the fundamental theorem of Boolean algebra"
by Rosenbloom [170], it was discussed in Chapter V of Boole's Laws of
Thought [13] and was widely applied by Boole and other nineteenth-century
logicians. It is frequently attributed to Shannon [184], however, in texts on
computer design and switching theory.

Theorem 2.8.1 If f: Bn __ B is a Boolean function, then

f(zlt Z2,· .. , zn) = z~ . f(O, Z2,· .. , zn) + Zl • f(l, Z2, ••• , zn)

for all (Zit Z2, ••• ,zn) in Bn.

(2.40)

2.8. BOOLE'S EXPANSION THEOREM 37

Proof. We show that (2.40) holds for every n-variable Boolean function.
For notational convenience, we write f(xI, .. .), f(O, . .•), and f(l, . ..), the
arguments X2, ••• , Xn being understood.

1. Suppose f is a constant junction, defined by f(X) = b for all X E Bn,
where b is a fixed element of B. Then

thus f satisfies (2.40).

2. Suppose f is a projection-function, defined by f(X) = Xi for all X E Bn,
where i E {I, ... , n}. If i = 1, then

x~f(O, . ..) + xt/(l, ...) = x~ ·0+ Xl ·1 = Xl = f(X) .

If i :/:1, then

Thus f satisfies (2.40).

3. Suppose (2.40) to hold for n-variable Boolean functions 9 and h, i.e.,
suppose the conditions

g(X1" ..) = x~g(O, ...) + x1g(1, ...)

h(X1"") = x~h(O, ...) + x1h(1, ...)

38 CHAPTER 2. BOOLEAN ALGEBRAS

to be satisfied for all (Xl, ...) E Bn. We show that (2.40) then holds
for the n-variable functions 9 + h, gh, and g'.

(a) (g + h)(x!, ...)

= g(x!, ...) + h(x!, ...)

= (xig(O, ...) + xIg(l, ...)) + (xih(O, ...) + xlh(l, .. .))

= xi(g(O, ...) + h(O, ...)) + xI(g(l, ...) + h(l, .. .))

= xi[(g + h)(O, .. .)] + XI[(g + h)(l, .. .)].

(b) (gh)(Xb . ..)

= (g(x!, ...))(h(Xb .. .))

= (xig(O, ...) + xIg(l, ...)). (xih(O, ...) + xlh(l, .. .))

= xi (g(O, ...)h(O, .. .)) + xI(g(l, .. .)h(l, ...))

= xi[(gh)(O, .. .)] + xI[(gh)(l, .. .)]

(c) (g')(x!, ...)

= (g(XI' .. .))'

= (xig(O, ...) + xIg(l, ...))'

= (Xl + (g(O, ...)),)(xi + (g(l, ...))')

= xi[(g')(O, .. .)] + xl[(g')(1, .. .)] + [(g')(O, ...)][(g')(1, .. .)]

= xi[(g')(O, .. .)] + xI[(g')(l, ...)].

The final step above is justified by (2.32), the rule of consensus. 0

Corollary 2.8.1 If f is an n-variable Boolean function, then

f(xt.x2, ...) = [xi + f(1,x2, . ..)]. [Xl + f(0,X2, .. .)]. (2.41)

If f: B n ---+ B is an n-variable Boolean function and if a is an element of
B, then the (n - I)-variable function g: Bn-l---+B defined by

is also a Boolean function (the proof is left as an exercise). Thus the func
tions f(O, X2, ... , xn) and f(l, X2, . .. , xn) appearing in Theorem 2.8.1 and
its corollary are Boolean.

2.9. THE MINTERM CANONICAL FORM 39

2.9 The Minterm Canonical Form

A Boolean function may be represented by an infinite number of Boolean for
mulas. It is often useful, however, to work with a restricted class of Boolean
formulas, one in which any Boolean function is represented by exactly one
formula. A formula in such a class is called a canonical form. An important
canonical form for Boolean reasoning was given by Blake [10]; we discuss
Blake's canonical form in Chapter 3. A canonical form due to Zhegalkin
[223], known in the U.S. as the Reed-Muller form [165, 141], is based on
the Boolean ring (see Rudeanu [172, Chapt. 1, Sect. 3]). We now consider
the minterm canonical form, first discussed in Boole's Laws of Thought [13,
Chapt. V].

Let us develop a 3-variable Boolean function f by repeated application
of Boole's expansion theorem (Theorem 2.8.1):

f(x,y,z) x'f(O,y,z)+xf(l,y,z)
x'[y' f(O, 0, z) + yf(O, 1, z)] + x[y' f(l, 0, z) + yf(l, 1, z)]

= x'y'z' f(O, 0, 0) + x'y'zf(O, 0,1)
+x'yz' f(O, 1, 0) + x'yzf(O, 1, 1)

+xy' z' f(l, 0, 0) + xy'zf(l, 0,1)
+xyz' f(l, 1, 0) + xyzf(l, 1, 1) .

By obvious extension, an arbitrary n-variable Boolean function f may
be expanded as

f(Xl, .•. , X n-l, xn) = f(O, ... ,0, 0) x~ ... x~_l x~
+ f(O, ... ,0, 1) x~ .. ·X~_lXn

(2.42)

+ f(l, ... , 1, 1) Xl ••• Xn-lXn •

The values

f(O, ... , 0, 0), f(O, ... , 0,1), ... , f(l, ... ,l,l)

are elements of B called the discriminants of the function f; the elementary
products

are called the minterms of X = (Xl, ••• , xn). (Boole called these prod
ucts the constituents of X.) The discriminants carry all of the information

40 CHAPTER 2. BOOLEAN ALGEBRAS

concerning the nature of fj the minterms, which are independent of f, are
standardized functional building-blocks. We call the expansion (2.42) the
minterm canonical form of f and denote it by MCF(j).

For convenience in expressing expansions such as (2.42), we introduce
the following notation: for x E B and a E {O, I}, we define X4 by

(2.43)

This notation is extended to vectors as follows: for X = (Xl, X2, • •• , xn) E Bn
and A = (at,a2, ... ,an) E {o,l}n, we define XA by

X A _ ... 41 ... 42 ... 4n
-""1 ""2 •• ·""n . (2.44)

Let A = (at,a2, ... ,an) and B = (b1,b2, ... ,bn) be members of {o,l}n.
Then

AB = { 1 if A = B
o otherwise.

(2.45)

The notation defined above enables us to give the following concise char
acterization of Boolean functions.

Theorem 2.9.1 A function f: Bn----+ B is Boolean if and only if it can be
expressed in the min term canonical form

f(X) = E f(A)XA. (2.46)
Ae{O,l}n

Proof. Suppose that f is Boolean. We have deduced by repeated
application of Theorem 2.8.1 (Boole's expansion theorem) that f can then
be expressed by the minterm form (2.42), which is written equivalently as
(2.46). Suppose on the other hand that f can be expressed in the form
(2.46). It is clear that (2.46) satisfies the rules given in Section 2.6 for a
Boolean formulaj thus (2.46) represents a Boolean function. 0

Constructing M C F(j) consists in determining the discriminants of f.
If f is specified by a function-table, then its discriminants are exhibited
explicitly. If f is specified by a Boolean formula, its discriminants may
be found by repeated substitutions of Os and Is into that formula. Other
methods for transforming a Boolean formula into its minterm canonical form
are given in texts on logical design and switching theory [106, 122, 136, 218].

2.9. THE MINTERM CANONICAL FORM 41

Example 2.9.1 Suppose, as in Example 2.7.1, that a two-variable Boolean
function I: B2--+B is defined over B = {O, 1, a', a} by the formula a'x +ay'.
The corresponding 16-row function-table is shown in Table 2.3. The four
discriminants of I are obtained from that table as follows:

1(0,0) = a

1(0,1) = ° 1(1,0) = 1

1(1,1) = a' .

Thus
MCF(J) = ax'y' + xy' + a'xy. (2.47)

o

2.9.1 Truth-tables

If B has k elements, then the number of rows in the function-table for an
n-variable function is (#Domain)fI = kfl. Theorem 2.9.1 implies, however,
that a Boolean lunction is completely defined by the 0,1 assignments 01 its
arguments. More precisely, an n-variable Boolean function is defined by the
2f1 rows of its function-table for which each argument is either ° or Ii the
sub-table thus specified is called a truth-table. The 2-variable function lof
Examples 2.7.1 and 2.9.1 is known to be Boolean, inasmuch as it is repre
sented by a Boolean formula. Hence the 4-row truth-table shown in Table 2.4
completely specifies Ii the remaining 12 entries in the full function-table
(Table 2.3) are determined by the minterm canonical form (2.47), whose
coefficients are the entries in Table 2.4.

x y I(x, y)

° ° a

° 1 ° 1 ° 1
1 1 a'

Table 2.4: Truth-table for a'x + ay' over {O, 1, a', a}.

42 CHAPTER 2. BOOLEAN ALGEBRAS

Example 2.9.2 Given B = {O, 1, a', a}, let a I-variable function 1 be de
fined by the function-table shown below. Is 1 Boolean?

x I(x)
0 a
1 1
a' a'
a 1

The function 1 is Boolean if and only if the values of I(x) listed in the table
agree, for all x E B, with the values of I(x) produced by substitution in
the minterm canonical form, i.e., I(x) = x'· 1(0) + X· 1(1) = x' . a + X· 1.
Substituting the trial-value x = a yields I(a) = a' ·a+a·l; thus, I(a) = a if 1
is a Boolean function. The function-table, however, specifies that I(a) = 1;
thus 1 is not a Boolean function. 0

2.9.2 Maps

A truth-table for a Boolean function I, e.g., Table 2.4, is a one-dimensional
display of the discriminants of I. The same information displayed in two
dimensional form is called a map, chart or diagram. The display proposed
by Karnaugh [99], called a map, is widely used by logical designers, and is
discussed at length in virtually any text on switching theory or logical de
sign. Karnaugh maps are practical and effective instruments for simplifying
Boolean formulas; formula-simplification is a secondary question in Boolean
reasoning, however, and a proper discussion of the use of maps would take
us afield. We therefore discuss maps only as another way to display the
discriminants of a Boolean function. If B is the two-element algebra {O, I},
then the displays we discuss are the ones customarily treated in engineering
texts; if B is larger, the displays are those usually called "variable-entered"
[32, 39, 57, 93, 173, 179].

The ancestor of the Karnaugh map was the "logical diagram" proposed
by Marquand [131] in 1881. Marquand's diagram was re-discovered by
Veitch [208] in 1952; Veitch called it a "chart" and discussed its utility in
the design of switching circuits.

Let us develop a Marquand-Veitch diagram for the Boolean function

I(x,y,z) = a'z' + ay'z + xz + bx'y' , (2.48)

2.9. THE MINTERM CANONICAL FORM 43

defined over the free Boolean algebra B = FB(a,b) (c/. Section 2.12). In
minterm canonical form,

f(x, y, z) (a' + b)x'y'z' + (a + b)x'y'z + (a')x'yz' + (O)x'yz +
(l)xy'z' + (a)xy'z + (l)xyz' + (O)xyz.

The corresponding Marquand-Veitch diagram, shown in Table 2.5, displays
the discriminants f(O, 0, O),J(O, 0,1), ... , f(l, 1,1) in a 2 X 4 array according
to the natural binary ordering of the arguments in {O, 1 p. The discriminants
of a four-variable function would be displayed in a 4 X 4 array, those of a
five-variable function in a 4 X 8 array, and so on. An 8 X 8 Marquand diagram
is shown in Venn's book on symbolic logic [210, p. 140]. Comparing it with
his own diagram, Venn said of Marquand's that "there is not the help for
the eye here, afforded by keeping all the subdivisions of a single class within
one boundary." This visual disadvantage was largely overcome through a
modification suggested by Karnaugh in 1953. Karnaugh's map orders the
arguments of the discriminants according to the reflected binary code, also
called the Gray code [74]. In a Karnaugh map of four or less arguments,
the cells for which a given variable is assigned the value 1 form a contiguous
band. For maps of more than four variables, not all variables are associated
with such bands, but as much help as possible (within the limits of two
dimensional topology) is provided for the eye. A Karnaugh map for the
function (2.48) is shown in Table 2.6; the bands for the variables x, y, and
z are indicated by lines adjacent to the map.

yz
00 01 10

a'

1

11
o
o

Table 2.5: Marquand-Veitch diagram for /(x, y, z) = a'z' + ay'z + xz+ bx'y'.

Marquand, Veitch, and Karnaugh discussed only 0 and 1 as possible cell
entries. The generalization to larger Boolean algebras is immediate, however,
if their displays are defined simply as arrays of discriminant-values.

44 CHAPTER 2. BOOLEAN ALGEBRAS

z
00 01 11

o
o

y

10
a'
1

Table 2.6: Karnaugh map for f(x, y, z) = a'z' + ay'z + xz + bx'y'.

2.10 The Lowenheim-Miiller Verification Theorem

We define an identity in a Boolean algebra B to be a statement involving
constants (elements of B) and arguments Xt, X2, ••• , Xn that is valid for all
argument-substitutions on Bn (Boolean identities are discussed further in
Section 4.6).

Suppose we wish to verify that an identity, e.g.,

xy ~ x, (2.49)

is valid in all Boolean algebras, and to do so without going back to the
postulates. We cannot substitute all possible values for the variables x and
y, because no limit has been specified for the size of the carrier, B. We
have seen, however, that a Boolean function is completely defined by the 0,1
assignments of its arguments. Thus 0,1-substitutions are adequate to verify
a Boolean identity. This result, called the Lowenheim-Miiller Verification
Theorem [124, 142], may be stated as follows:

Theorem 2.10.1 An identity expressed by Boolean formu.las is valid in an
arbitrary Boolean algebra if and only if it is valid in the two-element Boolean
algebra.

The Verification Theorem applies only to identities, and not to other
kinds of properties. Thus the properties (2.10) and (2.11), which are not
identities, are valid in the two-element algebra, but not in larger Boolean
algebras.

To verify that an identity on n variables is valid for all Boolean algebras,
then, it suffices to employ a truth-table, which enables us systematically
to make all substitutions on {0,1}n. Table 2.7 illustrates the process for
identity (2.49); the identity is valid inasmuch as the asserted relationship
(inclusion) holds between xy and x for all argument-substitutions.

2.11. SWITCHING FUNCTIONS 45

x y xy x
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Table 2.7: Truth-table verifying xy ::; x.

2.11 Switching Functions

An n-variable switching function is a mapping of the form

f: {O, l}n __ {O, I}. (2.50)

The domain of (2.50) has 2n elements and the co-domain has 2 elements;
hence, there are 22n n-variable switching functions.

A truth-table, as we have noted, is a sub-table of a function-table. If B
is the two-element Boolean algebra {O, I}, however, a truth-table is identical
to the function-table from which it is derived, which leads to the following
result.

Proposition 2.11.1 Every switching function is a Boolean function.

The term "switching function" may convey the impression that the two
element Boolean algebra suffices to design switching systems. We discuss
the utility of larger Boolean algebras for such design in Section 2.18.

Rudeanu [172, p. 17] defines a useful class of functions, the simple
Boolean functions, that lie between the switching functions and general
Boolean functions. A function f: Bn __ B, B being an arbitrary Boolean
algebra, is a simple Boolean function if f can be represented by a formula
built from variables by superposition of the basic operations. Constants,
except 0 and 1, are not allowed.

2.12 Incompletely-Specified Boolean Functions

Reasoning in a Boolean algebra B frequently entails working with a nonempty
interval of Boolean functions, i.e., a set :F defined by

:F = { f I g(X) ::; f(X) ::; heX) 'IX E Bn} , (2.51)

46 CHAPTER 2. BOOLEAN ALGEBRAS

where g: Bn---+ Band h: Bn---+ B are Boolean functions such that g(X) ::;
heX) for all X E Bn. Inasmuch as 9 and h are completely defined by their
truth-tables, i.e., by their values for argument-assignments on {O,l}n, the
definition (2.51) for the set :F may be stated equivalently as follows:

:F = { f I g(X)::; f(X) ::; heX) "IX E {O, l}n} . (2.52)

Let S be the set of intervals on Bj that is,

S = { [a, b]1 a E B, bE B, a::; b} . (2.53)

Then we may represent the set :F by a single mapping f: Bn -- S, defined
as follows:

f(X) = [g(X), heX)] "IX E {O, l}n . (2.54)

A mapping associated in this way with an interval [g, h] is called an incompletely
specified Boolean function.

Example 2.12.1 Let B = {O,a',a,l} and let 2-variable Boolean functions
9 and h be defined by the formulas

g(x, y) = ax' + a'xy
h(x,y) = ax' + a'x + y' .

(2.55)

Then the 2-variable incompletely-specified function defined by the interval
[g,h] is given by the truth-table shown in Table 2.8.

x y f(x,y)

° ° [a, 1] = {a,l}

° 1 [a, a] = {a}
1 ° [0,1] = {O,a',a,l}
1 1 [a', a1 = {a'}

Table 2.8: Truth-table for an incompletely-specified function.

o
Incompletely-specified Boolean functions are most often employed in sit

uations where B is the two-element Boolean algebra {O, 1}, in which case
9 and h are switching functions, and the elements [O,O],[O,l],and [1,1] of S
are renamed 0, X, and 1, respectively. The "value" X (sometimes denoted
by the symbol d) indicates a choice between ° and 1j it is referred to as a
"don't-care" value.

2.13. BOOLEAN ALGEBRAS OF BOOLEAN FUNCTIONS 47

Example 2.12.2 Let B = {O, 1} and let 2-variable Boolean functions 9 and
h be defined by the formulas

g(x, y) = x'y + xy'
hex, y) = x + y .

(2.56)

Then the 2-variable incompletely-specified function defined by the interval
[g, h] is given by the truth-table shown in Table 2.9.

x y f(x,y)

° 0 0

° 1 1
1 ° 1
1 1 X

Table 2.9: Truth-table for an incompletely-specified switching function.

o

2.13 Boolean Algebras of Boolean Functions

Let B be a Boolean algebra comprising k elements and let Fn(B) be the set
of n-variable Boolean functions on B. Then the algebraic system

(Fn(B), +, ',0, 1)

is a Boolean algebra in which

+ signifies addition of functions;
signifies multiplication of functions; ° signifies the zero-function; and

1 signifies the one-function.

Example 2.13.1 Suppose B = {0,1}. Then Fl(B) comprises 4 functions,
denoted by 0,1, x', and x. The corresponding truth-tables are shown below.

x ° 1 x' x

° ° 1 1 0
1 ° 1 ° 1

o

48 CHAPTER 2. BOOLEAN ALGEBRAS

2.13.1 Free Boolean Algebras

The elements of Fn(B) are mappings-abstractions for which formulas in
volving symbols Xl, X2, .•• , Xn are merely representations; the symbols them
selves are arbitrary. In many applications, however, the symbols Xl, X2, ... ,Xn
have concrete interpretations. The symbols may in such cases be used to con
struct a 22n -element Boolean algebra as follows: each element of the algebra
is the disjunction of a subset of the 2n minterms built from Xl, X2, ... , Xn.
The null disjunction is the O-element of the Boolean algebra; the disjunc
tion of all of the minterms is the I-element of the algebra. The resulting
structure is called the free Boolean algebra on the n generators Xl, X2, ... , Xn
and is denoted by F B(xt, X2, .. . , xn). It is shown by Nelson [148, p. 39]
that F B(Xl, X2, ... ,xn) is isomorphic to the Boolean algebra of switching
functions of n variables.

Example 2.13.2 The carrier of the free Boolean algebra F B(Xl, X2) is the
16-element set of disjunctions of subsets of the set {x~x~, X~X2' XlX~, XlX2}.
Each of these formulas is the representative of an equivalence-class of formu
las; thus the disjunction x~ x~ + x~ X2 of minterms is equivalent, by the rules
of Boolean algebra, to the formula x~. 0

2.14 Orthonormal Expansions

A set {l/J1, l/J2, ... , l/J,,} of n-variable Boolean functions is called orthonormal
provided the conditions

l/J,l/Jj =
" El/J, =

,=1

0

1

(i 1= j) (2.57)

(2.58)

are satisfied. A set satisfying (2.57) is called orthogonal; a set satisfying
(2.58) is called normal. An example of an orthonormal set is the set of
minterms on Xl, X2, ... , Xn.

Given a Boolean function f, an orthonormal expansion of f is an expres
sion of the form

" f(X) = E a,(X)l/J,(X) , (2.59)
,=1

where at, a2, ... , a" are n-variable Boolean functions and {l/J1,"" l/J,,} is
an orthonormal set. The expansion (2.59) is said to be with respect to the set

2.14. ORTHONORMAL EXPANSIONS 49

{4>1, ... , 4>k}. The connection between that set and the coefficients a1, ... , ak
is given by the following result.

Proposition 2.14.1 Let {4>1,4>2," .,4>k} be an orthonormal set and let I
be a Boolean lunction. Then I is given by the expansion (2.59) il and only
il

ai(X)4>i(X) = I(X)4>i(X) ('Vi E {l, ... ,k}). (2.60)

Proof. Suppose the expansion (2.59) to be valid. Then, for any element
4>j of{ 4>1,4>2, ... , 4>k},

k

I(X) . 4>j(X) = L ai(X)4>i{X)4>j{X) .
i=1

The set {4>1, 4>2, ... , 4>d satisfies the orthogonality-condition (2.57); hence

verifying condition (2.60). Suppose on the other hand that condition (2.60)
holds. Then

k k

L ai{X)4>i{X) L I{X)4>i(X)
i=1 i=1

k

I{X)· L 4>i{X)
i=1

= I{X),

where we have invoked normality-condition (2.58). 0

Using equation-solving techniques discussed in Chapter 6, it can be
shown that the set of solutions of equation (2.60) for the coefficient ai is
expressed by

ai E [!. 4>i,1 + 4>il·
An obvious (if uninteresting) solution, therefore, is ai = I. Typically, how
ever, coefficients are arrived at directly by expansion of I, as shown in the
following example.

Example 2.14.1 Let a 3-variable Boolean function I{x, y, z) be expressed
by the formula a' xy' + bx' z {the Boolean algebra B is not specified, but

50 CHAPTER 2. BOOLEAN ALGEBRAS

includes the symbols a and b), and suppose we choose the orthonormal set
{xy',xy,x'}. Then an orthonormal expansion of I is

I(x, y, z) = a'(xy') + O(xy) + bz(x') j

that is,
a1 a' <P1 = xy'
a2 = 0 <P2 = xy
a3 = bz <P3 = x' .

An expansion of the same function with respect to the orthonormal set
{x', x} is

I(x,y,z) = (bz)x' + (a'y')x j

that is,
a1 = bz <P1 = x'
a2 = a'y' <P2 = x .

0

2.14.1 Lowenheim's Expansions

Suppose that 9 and h are Boolean functions expressed by expansions with
respect to a common orthonormal set {<P1,"" <Pk}, i.e.,

k

9 = Eg;<p; (2.61)
;=1

k

h = E h;<p; . (2.62)
;=1

It was shown by Lowenheim [124] that orthonormal expansions of the func
tions 9 + h, gh, and g' are given by

k
g+h = E(g; + h;)<p; (2.63)

;=1
k

gh = E(g;h;)<p; (2.64)
;=1
k

g' = E(gi)<p; . (2.65)
;=1

2.14. ORTHONORMAL EXPANSIONS 51

The foregoing expansions are useful in manipulating Boolean expressions, as
the following example illustrates.

Example 2.14.2 Suppose that a Boolean function 9 is expressed by the
formula

9 = vx' y + wxz' (2.66)

and that a formula for g' is desired. A direct application of De Morgan's
Laws yields

g' = (v'+x+y')(w'+x'+z)

= v'w' + v'x' + v'z + w'x + xz + w'y' + x'y' + y'z . (2.67)

The complement is easier to calculate, however, and the result has simpler
form, if (2.65) is applied. To do so, we seek a simple orthonormal set involv
ing arguments that appear relatively frequently in the formula (2.66). Let
us choose the set {x', x}. An orthonormal expansion of 9 with respect to
this set is

9 = (vy)x' + (wz')x ,

whence, applying (2.65), the complement of 9 is given by

g' = (vy)'x' + (wz')'x

= (v' + y')x' + (w' + z)x

= v'x'+x'y'+w'x+xz. (2.68)

Formula (2.68) has simpler form, and is obtained more easily (albeit with
more planning), than is (2.67). 0

Theorem 2.14.1 Let g: Bn ---+ Band h: Bn ---+ B be Boolean func
tions expressed by expansions with respect to a common orthonormal set
{4>1o" ., 4>k}, i.e.,

i=l

i=l
Let f be a two-variable Boolean function. Then f(g, h) is expressed by the
expansion

k

f(g,h) = 'Ef(gi,hi)4>i. (2.69)
i=l

52 CHAPTER 2. BOOLEAN ALGEBRAS

Proof. We begin by applying Theorem 2.8.1 to expand I(g, h):

I(g, h) = g'h'I(O, 0) + g'hl(O, 1) + gh'I(1, 0) + ghl(1, 1).

We then apply the relations (2.63) through (2.65) to produce the further
expansion

I(g, h) = (Egih~<Pi)' 1(0,0) + (Egihi<Pi)' 1(0, 1) +
i i

+(E9ih~<Pi)' 1(1,0) + (Egihi<Pi)' 1(1, 1)
i i

= E [gihi!(O, 0) + gihd(O, 1) + gihi!(1, 0) + gihd(1, 1)] <Pi

= E I(gi, hi)<Pi ,

which is the desired result. 0

Relations (2.63) through (2.65) express three particular "functions of
functions" as orthonormal expansions. Theorem 2.14.1 extends these rela
tions to arbitrary two-argument functions; this extension generalizes readily
to more than two arguments.

Example 2.14.3 Define 1 by the formula

1 = 9 $ h' ,

where 9 and h are given by

9 = a'x' + bxy' + aby

h = bxy + a' x' .

The orthonormal set {x', xy', xy}, for example, leads to the following expan
sions of 9 and h:

9 = (a' + by)x' + (b)xy' + (ab)xy
h = (a')x' + (O)xy' + (b)xy

Thus

1 = [(a' + by) $ (a')']x' + [b $ (O)']xy' + lab $ (b)']xy
= [a'(1 $ 0) + a(by $1)]x' + [b $1]xy' + [b'(O $1) + b(a $ O)]xy
= [a' + a(b' + y')]x' + [b']xy' + [b' + ba]xy

2.15. BOOLEAN QUOTIENT 53

To simplify computation and avoid error, the coefficients of z' and zy have
been been calculated by further expansion, with respect to a and h, respec
tively. After simplification:

I = h' + azy + a' z' + z' y' .

The utility of orthonormal expansion for hand-computation may be gauged
by re-doing the foregoing calculation, applying De Morgan's laws and the
definition of Exclusive-OR directly. Orthonormal expansions are advanta
geous also for machine-computation. 0

2.15 Boolean Quotient

Let us define a letter in a Boolean formula to be a constant or a variable,
and a liteml to be a letter or its complement. We define a term or product
to be either 1, a single literal, or a conjunction of literals in which no letter
appears more than once.

Given a function I and a term t, we define the quotient 01 I with respect
to t, denoted by I It, to be the function formed from I by imposing the
constraint t = 1 explicitly (fIt is called a mtio by Ghazala [70)).

Example 2.15.1 Let a Boolean function I be given by

I(w,z,y,z) = w'zz + zy'z' + wz'z.

The quotient of I with respect to wy' is

o

Ilwy' = 1(I,z,O,z)
= zz' + z'z.

It is clear that the function I It can be represented by a formula that does
not involve any variable appearing in the term t. The quotient 110 does not
exist, because 0 is not a term (the constraint 0 = 1, moreover, cannot be
satisfied); the quotient I II, on the other hand, is simply I itself, i.e.,

I II = I ,
because the constraint 1 = 1 is a satisfied identically. Given terms s and t
such that st 'f; 0, the quotient I I st may be calculated as follows:

lIst = (fls)/t = (flt)ls.

54 CHAPTER 2. BOOLEAN ALGEBRAS

Theorem 2.15.1 Let t}, t2,"" tk: Bn~ B be terms and suppose the set
T = {t1' t2, ... , tk} to be orthonormal. Let f: Bn~ B be a Boolean function.
Then f is given by the expansions

k
f(X) "LU Iti)(X) . ti(X) . (2.70)

;=1
k

f(X) = IJ[u Iti)(X) + ti(X)] . (2.71)
;=1

Proof. To prove that expansion (2.70) is valid, we make use of Theo
rem 2.10.1, the Lowenheim-Miiller verification theorem, i.e., we substitute
values for X only on {o,l}n. Let X = A be such a substitution. There is
exactly one member ofT, call it tj, such that tj(A) = 1 (for i '" j, ti(A) = 0).
Thus (2.70) becomes

f(A) = U Itj)(A) (tj(A) = 1)

which is a valid identity. To verify expansion (2.71), we use the Lowenheim
expansion (2.81) to represent f'(X), beginning with the expansion (2.70),
yielding

k

f'(X) = EU Iti)'(X) . ti(X) ,
i=l

from which (2.71) follows by De Morgan's laws. 0

Proposition 2.15.1 Let f and 9 be n-vanable Boolean functions and let t
be an m-variable term (m ~ n). Then

f~g =} f/t~glt. (2.72)

Proof. The statement f ~ 9 means that f(Xl, ••• , Xn) ~ g(X}, ••• , xn) for
any choice of the variables x}, • •• , X n , in particular for any choice satisfying
the constraint t = 1. 0

Proposition 2.15.2 Let f be a Boolean function and let t be a term. Then

f'lt = U It)'. (2.73)

2.15. BOOLEAN QUOTIENT 55

Proof. (By induction on n, the number of arguments appearing in t).
Suppose n = 1, i.e., t = x, where x is a literal. Then

f'(x,y,· ..)lx = f'(I,y, ...) = (f(I,y, ...)), = (fIx)',

where f is evaluated pointwise on the range, i.e., f'(a, b, . ..) = (f(a, b, . ..))'.
Suppose now that the proposition holds for n = p, and let s be a term having
p arguments, whence the augmented term xs has p + 1 arguments. Then

J'(x, y, .. ·)Ixs f'(I, y, . . .)1 s

(f(I,y, .. ·)ls)'
(f(x, y, .. ·)Ixs)' .

Thus the proposition holds for n = p + 1. 0

Proposition 2.15.3 Let I be a Boolean lunction and let t be a term. Then

t . I = t· (fIt)

t' + I t' + (fIt) .

(2.74)

(2.75)

Proof. By Theorem 2.10.1 (the Lowenheim-Miiller verification theorem),
identities (2.74) and (2.75) need only be verified for X E {o,l}n. For any
such value of X, t(X) E {0,1}. Suppose t(X) = OJ then (2.74) becomes
the identity 0 = O. Suppose on the other hand that t(X) = Ij then (2.74)
becomes I(X) = (f It)(X), which is an identity for t(X) = 1 in view of the
definition of (fIt). Identity (2.75) is verified by similar steps. 0

Proposition 2.15.4 Let f be a Boolean function and let t be a term. Then

t . I ::; I It ::; t' + I . (2.76)

Proof. Equation (2.74) is expressed equivalently as (t· f) EB (t· lit) = 0,
which is equivalent in turn, after expansion with respect to I It, to

(f It)'[t . Il + (f It)[t . J'l = 0 .

The latter equation is equivalent to the system

(f It)'[t . Il = 0

(f It)[t . J'l = 0,

from which (2.76) follows directly. 0

56 CHAPTER 2. BOOLEAN ALGEBRAS

Proposition 2.15.5 Let p, q, and r be terms such that pq :f: O. Then

pq ~ r => q ~ rip.

Proof. Form a term q from q by deleting any literals in q that are also in
p (if every literal in q is also a literal in p, then q = 1). Then pq = pq and

pq ~ r => pq ~ r (2.77)

=> pqr' = 0 (2.78)

=> q~p'+r (2.79)

=> q~p'+(rlp) (2.80)

=> q ~ rip (2.81)

=> q ~ rip (2.82)

We invoke Proposition 2.15.3 to produce consequent (2.80). Consequent
(2.81) follows from (2.80) because (a) the letters in p, and thus those in p',
are distinct from the letters in q and (b) the letters in p' are distinct from
those in rip. Finally, (2.82) follows from (2.81) because q ~ q. 0

Proposition 2.15.6 Let I and 9 be Boolean lunctions and let t be a term.
Then

9 ~ I It => t . 9 ~ I . (2.83)

Proof. We evaluate (t. g). I':

(t·g)·I' = g. (t . I')

= g. t· (f'lt) (Proposition 2.15.3)

= g. t· (fIt)' (Proposition 2.15.2)

= t . (g . (fIt)')

If the left member of (2.83) is true then (g. (fIt)') = OJ hence (t. g) . f' = 0,
verifying the right member of (2.83). 0

2.16 The Boolean Derivative

Let I be a Boolean function and let x be an argument. We define 011 ox, the
Boolean derivative of I with respect to x, in terms of the Boolean quotient
as follows:

01 I' I ax = I x €a I x . (2.84)

2.16. THE BOOLEAN DERIVATIVE 57

The concept of such a derivative was introduced by Reed [165] in a discus
sion of error-correcting codes. Huffman [89] employed the same concept in
connection with the solution of Boolean equations and the characterization
of information-Iossless circuits. Akers [2] called (2.84) the Boolean differ
ence. Inasmuch as the term "difference" has another meaning in set-theory
and Boolean algebra, we prefer Huffman's term, "derivative." A compre
hensive study of Boolean derivatives and their generalizations is to be found
the monograph [46] by Davio, Deschamps, and Thayse.

Let us briefly consider an important application of the Boolean deriva
tive, viz., the detection of faults in logical circuits. Suppose that such a
circuit has input-signals x, y, . .. and a single output-signal whose value is
specified to be f(x, y, . ..) for a given function f. Suppose further that the
circuit has a logical fault, i.e., a condition causing the output to realize a
function, g, which differs from f. A test for the fault is an input-vector A
for which g(A) is different from f(A); thus a vector (x, y, ...) is a test for
the fault provided it is a solution of the Boolean equation

g(x,y, ...) = J'(x,y, ...). (2.85)

Many faults arising in practice cause the output to behave as if one of
the input-lines, say x, is "stuck" at logical value k (either 0 or 1), so that 9
is given by

g(x,y, ...) = f(k,y, ...).

In such a case, a test is a solution of the equation

f(k, y, ...) = J'(x, y, ...) ,

which is equivalent, as we show below, to the system

x

of
ox

k'

= 1.

(2.86)

(2.87)

(2.88)

(2.89)

Thus a vector (x, y, ...) is a test for x stuck-at-k if and only if x satisfies
(2.88) and the vector (y, ...) satisfies (2.89).

Example 2.16.1 Suppose that a circuit is designed to produce the function

f = xy + z.

58 CHAPTER 2. BOOLEAN ALGEBRAS

Applying (2.88) and (2.89), a vector (x, y, z) is a test for x stuck-at-k if and
only if it is a solution of the system

x = k'

yz' = 1.

Thus a test for x stuck-at-O is (1,1,0) and a test for x stuck-at-1 is (0,1,0).
Tests for y stuck-at-k and z stuck-at-k are similarly derived. 0

It remains to show that (2.87) is equivalent to the system (2.88), (2.89).
We first observe that (2.87) is equivalent by Proposition 2.5.2 to the equation

f(k, y, ...) (fJ f'(x, y, ...) = 0 . (2.90)

Expanding the left side of (2.90) with respect to k and x yields the
equation

(f(O, y, . ..) (fJ f(l, y, ...)]' + [x (fJ k'] = 0 , (2.91)

which is equivalent, in view of definition (2.84), idempotence, and Proposi
tion 2.5.2, to the system composed of (2.88) and (2.89).

The Boolean derivative has been the foundation for research on Boolean
calculus [11, 202, 203]. The Boolean integral [112, 194, 199], for example,
has proven to be a useful concept.

2.17 Recursive Definition of Boolean Functions

Suppose that Boolean functions 9 and h are expressed by expansions with
respect to a common orthonormal set {<PI. . .. , <Pk}, i. e.,

k

9 = Lgi<Pi
i=l

i=l
Let It and h be Boolean functions of one and two variables, respectively.
The expansions

k
It(g) = LIt(9i)<Pi

i=l
k

h(g,h) = L h(gi, hi)<Pi
i=l

2.17. RECURSIVE DEFINITION OF BOOLEAN FUNCTIONS 59

follow from Theorem 2.14.1. If the orthonormal set is {x',x}, then the
foregoing expansions take the form

ft(g) == ft(giJx')· x' + ft(giJx)· x

h(g,h) == h(giJx' , hi/X') . x' + h(gi/x, hi/X) . x

(2.92)

(2.93)

These expansions (and their obvious extensions to functions of 3, 4, or more
variables) are recursive; thus they provide a convenient basis for defining
Boolean functions and for calculating with functions of functions.

Let us put the expansions (2.92) and (2.93) in more concrete terms.
Suppose F to be a Boolean formula and x to be an argument explicit in
F. Assume that the quotient-formula F/x is expressed so as not to involve
x explicitly. A recursive definition for a one-variable Boolean function FCN
may then be organized as follows:

BASE-CASES:

RECURSION:

FCN(O)
FCN(1)
FCN(F)

== special definition
== special definition
== FCN(F/x')· x' + FCN(F/x) . x

The Boolean complement, for example, is defined recursively by the rules

COHPLEHENT(O) == 1
COHPLEHENT(1) == 0
COHPLEHENT(F) COHPLEHENT(F/x') . x' + COHPLEHENT(F/x) . x

Multi-variable functions are similarly defined. The conjunction, CONJ (F • G),
for example, is defined by the rules

CONJ(O.G) = 0
CONJ(F.O) = 0
CONJ(1.G) = G
CONJ(F.1) = F
CONJ(F.G) = CONJ(F/x' .G/x') . x' + CONJ(F/x.G/x) . x

Such definitions are programmed naturally in non-procedural languages
such as Lisp and Prolog, and have been shown by Brayton, et al., [18] to
provide an efficient basis for procedural programming.

60 CHAPTER 2. BOOLEAN ALGEBRAS

2.18 What Good are "Big" Boolean Algebras?

We have seen (Section 2.3) that the carrier, B, of a finite Boolean algebra
may be any set isomorphic to the set of subsets of some finite set. We have
also seen that an n-variable Boolean function / is defined by its discrimi
nants, /(0, ... ,0,0),/(0, ... ,0,1), ... ,/(1, ... ,1,1). Although the discrim
inants are found by assigning values on {O,I}n to the argument-vector of
/, the value of a discriminant may be any element of B; these values are
displayed equivalently by a minterm-expansion, a truth-table, or a map.

The specialized two-valued Boolean algebra, B = {O, I}, has properties
not shared by its larger cousins; the implication

xy = ° ==} x = 0 or y = 0 ,

for example, holds only in the two-valued algebra. Thus two-valued thinking
does not always translate safely to larger Boolean algebras.

"Big" Boolean algebras (those whose carriers have more than two el
ements) are needed for the reasoning-techniques discussed in subsequent
chapters. In this section, however, we consider the utility of such algebras
in everyday applications of Boolean methods, particularly in the design and
analysis of switching systems.

The two-valued assumption. The word "Boolean" is often taken in
computer science and engineering to mean "two-valued." This interpretation
is standard in programming languages; a typical language-manual [14, p.
39] states that "Boolean expressions have one of two possible values: True
or False." A term such as "propositional" or "logical" would be better
than "Boolean"; however, the expressions defined as Boolean in a procedural
programming language are clearly two-valued and are not manipulated as
expressions; hence the issue is one simply of terminology. Although the
signals in a switching system are also two-valued, the issue in the design of
such systems involves more than terminology.

Some writers of texts on logical design define Boolean algebras in a gen
eral way but conclude that only the two-valued Boolean algebra is of practical
use:

This algebra is useful for digital switching circuits when [the carrier]
is restricted to contain exactly two elements. [61, p. 16].

The two-valued Boolean algebra (called simply Boolean algebra
further on) suffices for our purposes [104, p. 67].

2.18. WHAT GOOD ARE "BIG" BOOLEAN ALGEBRAS?

Among all the Boolean algebras, the two-element Boolean algebra
B2 ... , known as switching algebra, is the most useful. It is the mathe
matical foundation of the analysis and design of switching circuits that
make up digital systems. [121, p. 6].

61

Other-typically older-texts on switching systems [33, 55, 82, 106, 109,
136] work from the outset within an explicitly two-valued switching algebra,
following Shannon's [183] propositional formulation of switching theory. We
argue however that big algebras play a part in logical design that is both
unavoidable (in a certain sense) and useful.

Big algebras can't be avoided. The use of big Boolean algebras in
the analysis and design of switching systems is unavoidable, even if unrec
ognized. Consider for -example a digital circuit whose inputs are labelled x,
y, and z and whose output, I, is related to its inputs as follows:

1= xy + xz' + x'z . (2.94)

One may view equation (2.94) as specifying the value of I in two ways. At
any time, the values of the inputs x, y, and z are either 0 or 1; hence, when
these values are given, the value of I is determined to be either 0 or 1.
An alternative view is that the value of I is a member of the 256-element
Boolean algebra of Boolean functions mapping {O, 1P into {O, I}. The latter
view of the value of I is necessary in digital design, but is often unconscious.
Dietmeyer [50, p. 80] notes in this connection that "many practicing logic
designers are unaware that other Boolean algebras exist, even when they use
them." 1

Big algebras are useful. Given a Boolean algebra with carrier B,
let us recall from Theorem 2.9.1 that a function I mapping Bn into B is
Boolean if and only if it can be expressed in the minterm canonical form

I(X) = L I(A)X A , (2.95)
Ae{o,l}n

where each discriminant, I(A), is an element of B. The minterm expansion
(2.95) of I, like a truth-table or Karnaugh map, is a way to display the dis
criminants of I. If B = {O, I}, therefore, the standard representation-forms

IThe situation is analogous to that of M. Jourdain in Moliere's Le Bourgeois Gentil
homme, who was astonished to discover that he had been speaking prose for more than
forty years.

62 CHAPTER 2. BOOLEAN ALGEBRAS

(expansions, truth-tables, or maps) all display Os and Is, fostering the idea
that these are the only useful (or even possible) discriminant-values. The
practical utility of larger Boolean algebras has nevertheless manifested itself
in specialized bendings of the 0-1 assumption. An example is the "variable
entered" Karnaugh map [32, 39, 93, 173, 179], whose entries are allowed to
be other than 0 or 1. On p. 157 of his text on digital design, Fletcher
[57] writes, "You will find that VEM [Variable-Entered Map] will be one of
the most useful design aids discussed and its use permeates the rest of this
text in a wide variety of applications." Such maps (and the corresponding
minterm-expansions and truth-tables) arise naturally if switching theory is
placed on a general Boolean footing.

Example 2.18.1 Let us consider again the Boolean function defined by
equation (2.94). Viewed as a three-variable function II over B = {O, I}, this
function has the min term-expansion

II = (O)x'y'z' + (l)x'y'z + (O)x'yz' + (l)x'yz +
(l)xy'z' + (O)xy'z + (l)xyz' + (l)xyz.

The corresponding eight-row truth-table is shown on the left in Figure 2.2.
An alternative view (one of several possible) is that equation (2.94) defines a
two-variable function fz over B = {O, 1, x', x}; this function has the minterm
expansion

fz = (x)y'z' + (x')y'z + (x)yz' + (l)yz.

The four-row truth-table for fz is shown on the right in Figure 2.2. 0

A Boolean function II (x}, ... , xm, ... , xn) may thus be treated, for 0 ~
m ~ n, as a Boolean function fz(x}, ... , x m) over the free Boolean algebra
FB(xm+l,"" x n).

Example 2.18.2 An n-variable Boolean function f may be realized by a
2n-to-1 multiplexer or data-selector [201], which acts as an electronic rotary
switch. A minterm-expansion or truth-table for f translates directly to
circuit-connections to the multiplexer. The 2n discriminants define signals
connected to "data" inputs Do, D1 , ... , D 2n_l. The n arguments of f de
fine signals connected to "select" inputs Sn-l, ... , So; the bit-pattern of the
select-inputs defines a number, in binary code, which determines which of
the data-inputs is transmitted to the output. Multiplexer-realizations for the

2.18. WHAT GOOD ARE "BIG" BOOLEAN ALGEBRAS? 63

x y z h(x,y,z)

° 0 0 0
0 0 1 1 y z h(y, z)
0 1 0 0 0 0 x
0 1 1 1 0 1 x'
1 0 0 1 1 0 x
1 0 1 0 1 1 1
1 1 0 1
1 1 1 1 B = {O,x',x,1}

B = {O,1}

Figure 2.2: Truth-tables for h and h.

equivalent functions hand h of Example 2.18.1 are shown in Figure 2.3.
If the cost of an inverter (to generate x') plus the cost of the 4-to-1 multi
plexer is less than the cost ofthe 8-to-1 multiplexer, then the "big" Boolean
algebra {O,x',x, I} results in a more economical realization than does the
two-valued algebra. 0

Example 2.18.3 Consider the problem of describing the behavior of a JK
flip-flop. The inputs exciting the flip-flop are labelled J and K; the flip-flop's
present state is labelled Q. The value of the next state, Q+ , may be expressed
in many ways, depending on the choice of the carrier B. The left-hand truth
table in Figure 2.2 expresses Q+ as a three-variable function over B = {O,1};
the right-hand truth-table expresses Q+ as a two-variable function over B =
{O,Q',Q,1}. The four-row table based on B = {O,Q',Q, 1} expresses the
flip-flop's behavior in a more intuitive (and obviously more compact) way
than does the eight-row table based on B = {O, I}. 0

Conclusion. Variable-assignments other than 0 or 1 (e.g., those to the
data-inputs of a multiplexer) are carried out routinely by logical designers.
What is sometimes missing is a unified Boolean foundation for such assign
ments. That foundation is provided by Huntington's postulates and the
recognition that (a) the discriminants of a Boolean function may be taken
from an arbitrary Boolean algebra, and (b) truth-tables, minterm-expansions
and maps serve as equivalent displays of those discriminants.

64 CHAPTER 2. BOOLEAN ALGEBRAS

0 DO
1 D1

0 D2 z DO

1 D3 z' D1
1 D4 h(z,y,z) h(y,z)

z D2
0 D5
1 D6 1 D3

1 D7 Sl SO

S2 Sl SO
y z

z y z

Figure 2.3: Two multiplexer-realizations of f = XY + xz' + x' z.

J K Q Q+(J,K,Q)
0 0 0 0
0 0 1 1 J K Q+(J,K)
0 1 0 0 0 0 Q
0 1 1 0 0 1 0
1 0 0 1 1 0 1
1 0 1 1 1 1 Q'
1 1 0 1
1 1 1 0 B = {O,Q',Q,l}

B = {O,l}

Figure 2.4: Truth-tables for the JK flip-flop.

EXERCISES 65

Exercises

1. The relation ~ in a Boolean algebra is defined by

iff ab' = 0.

Prove that the following properties hold for all a, b, e:

(a) ab~a~a+e
(b) a=b {:::::> a ~ band b ~ a
(c) a~b {:::::> ae ~ be (Ve E B)
(d) a~O {:::::> a=O
(e) l~a {:::::> a=1

(I) a~b { ae ~ be } ==> a+e < b+e

(g) g < ; i a ~ be
~

==>

(h) ~ ==> a+b~e
~

2. Prove or disprove each of the following, assuming that a, b, and care
elements of a Boolean algebra.

(a) a+b=a+e ==> b=e
(b) ab=ac ==> b=e

(c) {a +a! : :e+ e} ==> b = e

3. Given B = {O, 1, a', a}, let I be a 2-variable Boolean function for which

1(0,0) = ° 1(0,1) 1

1(1,0) = a'

1(1,1) = a.

Find f(a,I).

66 CHAPTER 2. BOOLEAN ALGEBRAS

4. Let B = {O, l,a',a}. Which ofthe functions f, g, h specified below is
a Boolean function?

x f(x) g(x) hex)

° a a' a'
1 a 1 1
a a' 1 a'
a' a' a' 1

5. Given the 256-element free Boolean algebra B = FB(a,b,c), let f:
B3--+B be a Boolean function for which

f(O,O,O) = f(O,O,I) = a
f(O, 1,0) = a+b
f(O,I,I) = f(I,O,I) = f(I,I,I)
f(I,O,O) = a + c'
f(l, 1,0) = b+ c'

(a) Display f by means of a truth-table.

(b) Write the minterm canonical form for f.
(c) Write a simplified formula for f.

= 1

(d) Determine f(a',c,b) in as simple a form as you can.

6. Let B = {O,I,a',a}. Find a relation between f(O) and f(l) that is
necessary and sufficient for the condition f(J(x)) = f(x) to hold on
a Boolean function f: Bn--+ B. Make use of the relation to find all
Boolean functions satisfying the given condition. Express each such
function by a simplified Boolean formula.

7. (McColl [135, 1877-80], cited in Rudeanu [172, Chapter 1]) Show that
a function f: Bn--+ B is Boolean if and only if

8. Given that f is a Boolean function of one variable, prove the following:

(a) f(x + y) + f(xy) = f(x) + fey)

(b) f(J(O)) = f(O)· f(l) ::; f(x) ::; f(O) + f(l) = f(J(I))

(c) If x ::; y, then f(J(x)) ::; f(J(y)).

EXERCISES 67

9. (Poretsky [158], Couturat [41]) Prove the equivalence

a ::; x ::; b <===:> x = ax' + bx

10. (a) Prove or disprove: for any Boolean function f of one variable, if
x::; y, then f(x) ::; fey).

(b) If the assertion (a) is not true for all Boolean functions, give a
precise characterization of the Boolean functions for which it is
true.

11. (a) How many n-variable functions f: Bn __ B (Boolean or not) are
there if the set B has k elements?

(b) How many of them are Boolean functions?

(c) How many 3-variable functions are there on B = {O, 1, a', a}?

(d) What fraction of them are Boolean?

12. Let f: Bn -- B be an n-variable Boolean function, and let a be an
element ofB. Define an (n-I)-variable function g: Bn-l __ B by the
prescription

g(X2, ... ,Xn) = f(a,x2, ... ,Xn).

Show that 9 is a Boolean function.

13. Let f, g, and h be Boolean functions expressed as

where the fi, gi, and hi are Boolean functions and {4>1. 4>2, ... , 4>k} is
an orthonormal set of Boolean functions. Let us consider the expanded
functions

f = a'(x'y') + b(x'Y) + O(x)
9 = (a + b)(x'y') + I(x'y) + ab'(x)
h = ab'(x'y') + a(x'Y) + b'(x)

for which the orthonormal set is {x'y',x'y,x}. Suppose that a is a
3-variable Boolean function whose arguments are f, g, and h. Then
an orthonormal expansion for a is given as follows in terms of the
corresponding expansions for f, g, and h:

k

aU, g, h) = L aUi, gi, hi) . 4>i .
i=1

68 CHAPTER 2. BOOLEAN ALGEBRAS

Use this expansion-form to calculate the following functions:

(a) I'
(b) 1+ g'
(c) al+gh.

14. Use Boole's expansion theorem to prove the following:

(a)
(b)
(c)
(d)

ul(u,v,w)
u'/(u,v,w)

u + I(u,v,w)
u' + I(u,v,w)

=
=
=
=

ul(l,v,w)
u'/(O, v, w)
u + I(O,v,w)
u'+/(I,v,w).

15. If (B, +",0,1) is a Boolean algebra and a and b are distinct elements
of B such that a :::; b, then the system

([a,b],+,·,a,b)

is a Boolean algebra. Denote by x* the complement of an element x
in this Boolean algebra. Show that

x* = a + bx'

where x' is calculated in B.

16. Given

I A' C' D' + A' B' E + A' D' E' + ABC'D' + AC D + B' D E

9 A'BCE + AC'D + A'C'D' + BC'DE' + ABC'E'

(a) Expand I and 9 with respect to Band D, simplifying the dis
criminants.

(b) Use the expanded forms to calculate

. I' 1.

ii. 1+ g'
iii. fg

iv. feg

EXERCISES

17. Let B be the set {O, l,a',a} and let

f:B-+B

be Boolean functions. Given

f(O) = a

f(l) = a'

g(x, y) = f(x + y) + (J(xy))' ,

express 9 by a simplified Boolean formula in terms of a, x, and y.

69

18. For any Boolean algebra B, the Boolean functions f: B -+ B in a
certain set satisfy the identity

f(J(x)) = (J(x»'

for all elements x E B. Describe this set of functions in simple terms.
Explain your method clearly.

19. Let B = {O, 1, a', a}. List the Boolean functions f: B -+ B that satisfy
both of the conditions

(a) f(J(x)) = f(x)
(b) f(O) = a'.

("Ix E B)

Express each such function by a simplified Boolean formula. Em
ploy systematic reasoning rather than exhaustive trials. Explain your
method clearly.

20. Let B be the set {O, l,a',a}. How many Boolean functions f: B2-+B
are there that satisfy the condition

xy $ f(x, y) $ x' + y

for all (x, y) E B2? Do not determine the functions explicitly.

21. Given the set B = {O, l,a',a}, how many two-variable functions f:
B2-+ B are there? How many of these are Boolean functions?

22. Let 9 and h be single-variable Boolean functions. For each of the
following cases, express f(O) and f(l) as simplified formulas involving
g(O), g(I), h(O), and h(I).

(a) f(x) = g(h(x»
(b) f(x) = g(g'(x»

Chapter 3

The Blake Canonical Form

Boole's object in inventing an "algebra of logic" [12, 13] was to reduce the
processes of reasoning to those of calculation. He showed that a system of
logical equations, unlike a system of ordinary equations, can be reduced to a
single equivalent equation (we consider the reduction-process in Chapter 4).
He chose the standard reduced form 1 = 0, where 1 is a Boolean function.
Reasoning is carried out in Boole's formulation by solving that equation for
certain of its arguments in terms of others.

In spite of the efforts of a number of nineteenth-century logicians to
extend and generalize Boole's algebra, it proved incapable of representing
ordinary discourse. Modern symbolic logic is therefore based on a differ
ent system, the predicate calculus, which grew out of the work of Frege [60].
Boole's approach is specialized, moreover, even within the domain of Boolean
problems. His system of reasoning, i.e., equation-solving, does not produce
logical consequents of 1 = OJ instead, it produces specialized logical an
tecedents. Boolean equation-solving, which we discuss in Chapter 6, never
theless has many useful applications,

The first general treatment of both antecedent and consequent Boolean
reasoning was that of Poretsky [159] in 1898. Poretsky's system was based
on exhaustive tables of antecedents and consequents. The growth of these
tables with the number of variables is so rapid, however, as to make them
useless for applications.

A more practical approach to Boolean reasoning was developed by Blake
[10] in 1937. Blake showed that all of the consequents of 1 = 0, i.e., all
Boolean equations 9 = 0 such that the implication

1=0 =? 9=0

71

72 CHAPTER 3. THE BLAKE CANONICAL FORM

holds, can easily be generated if f is expressed in a certain canonical form.
This form turns out to be the disjunction of all of the prime implicants of
f. The term"prime implicant," as well as the theory of systematic formula
minimization in terms of prime implicants, comes from a series of papers by
V. W. Quine [161, 162, 163, 164] published between 1952 and 1959. Quine
demonstrated that a simplified sum-of-products (SOP) formula for f is nec
essarily a disjunction of prime implicants of f. He also presented methods for
generating all of the prime implicants of f and gave a tabular procedure for
selecting a subset of the prime implicants whose disjunction is a simplified
SOP formula for f.

While Quine's objective was Boolean minimization, i.e., the discovery
of simplified formulas representing a given Boolean function f, Blake's ob
jective was Boolean inference, i.e., the extraction of conclusions from a col
lection of Boolean data. The theory of prime implicants has thus arisen
independently for two quite different applications.

The approach to Boolean inference developed in this book is grounded in
Blake's theory of syllogistic formulas. We outline that theory in Appendix
A, which is adapted from Chapter II of Blake's dissertation. We discuss rea
soning based on syllogistic formulas in Chapter 5; our object in this chapter
is to define Blake's canonical form (a specialized syllogistic formula) and to
describe several methods for its construction.

3.1 Definitions and Terminology

The concept of a Boolean formula on the symbols Xl, X2, ••• ,Xn was defined
in Section 2.6, principally as a stepping-stone to the concept of a Boolean
function on the same symbols. Our investigation now focuses on Boolean
formulas; hence further definitions are required.

A Boolean function f: Bn __ B may be expressed by a variety of formu
las. These are built up from letters, i.e., constants at, a2, . •• , ak (elements of
B) and variables Xl, X2, ••• ,Xn , together with the notations of complemen
tation, conjunction, and disjunction. A literal is a letter or its complement.
A term or product is either 1, a single literal, or a conjunction of literals
in which no letter appears more than once; an alterm is either 0, a single
literal, or a disjunction of literals in which no letter appears more than once.
A sum-of-products (SOP) formula is either 0, a single term, or a disjunction
of terms; a product of sums (POS) formula is either 1, a single alterm, or a
conjunction of alterms.

3.2. SYLLOGISTIC & BLAKE CANONICAL FORMULAS 73

We assume in this chapter, unless stated otherwise, that Boolean func
tions are expressed by SOP formulas. A Boolean function will be denoted
by a lower-case letter (e.g., f) and an SOP formula expressing that func
tion by the corresponding upper-case letter (F). Terms, viewed either as
formulas or functions, will be represented by the lower-case letters p, q, r,
Given an m-term SOP formula F and an n-term SOP formula G, F + G is
an (m + n)-term formula containing all of the terms of F together with all
those of G.

Two SOP formulas will be called equivalent (=) in case they represent the
same Boolean function, i.e., in case one can be transformed into the other,
in a finite number of steps, by application of the rules of Boolean algebra.
Following Blake, we call two SOP formulas congruent (,g,) in case one can be
transformed into the other using only the commutative rule. Thus congruent
SOP formulas may differ only in the order of enumeration of their terms and
in the order of the literals in any term.

Given two Boolean functions g and h, we say that g is included in h,
written g :s; h , in case the identity gh' = 0 is satisfied. When applied to
formulas (e.g., G:S; H), the relation :s; is inherited from the functions those
formulas represent.

An implicant of a Boolean function f is a term p such that p :s; f . Any
term of an SOP formula for f is clearly an implicant of f. A prime implicant
of f is an implicant of f that ceases to be so if any of its literals is removed.
It is shown in Appendix A that an implicant p of f is a prime implicant of
f in case, for any term q,

p:S;q:S;f => p=q.

An SOP formula F will be called absorptive in case no term in F is
absorbed by any other term in F. If F is not absorptive, then an equivalent
absorptive formula, which we call ABS(F), may be obtained from F by
successive deletion of terms absorbed by other terms in F. It is shown in
Appendix A that, for any SOP formula F, the formula ABS(F) is unique
to within congruence.

3.2 Syllogistic & Blake Canonical Formulas

Let F and G be SOP formulas. We say that G is formally included in F,
written G ~ F, in case each term of G is included in some term of F. We
write G <j;:. F if G is not formally included in F. Formal inclusion clearly

74 CHAPTER 3. THE BLAKE CANONICAL FORM

implies inclusion, i.e., G <: F ===? G ~ F for any F, G pair. The converse
does not hold, however, as the following example illustrates.

Example 3.2.1 Let SOP formulas Fh G, and H be defined as follows:

FI = wy' + w'z + w'x'y + wx'yz'

G = w'y' z + w'x'y

H = xy'z + x'yz' .

(3.1)

(3.2)

(3.3)

The relations G ~ FI and H ~ FI hold for the foregoing formulas. Each
term of G is included in a term of FI ; hence G <: Fl. Such is not the case,
however, for H, i.e., H -t. Fl.

A Formula F will be called syllogistic in case, for every SOP formula G,

G~F===?G<:F.

Thus F is syllogistic if and only if every implicant of F is included in some
term of F.

Example 3.2.2 The formula

F2 = wy' + w'z + w'x'y + x'yz' + y'z + wx'z' (3.4)

is a syllogistic formula equivalent to the formula FI in Example 3.2.1 (we
discuss the construction of such formulas in the remainder of this chapter).
Every SOP formula included in F2 (or, equivalently, included in FI) is there
fore formally included in F2 • In particular, as the reader should verify, the
formulas G and H in Example 3.2.1 are formally included in F2 •

Given SOP formulas F and G, we define F X G to be the SOP formula
produced by multiplying out the conjunction FG, using the distributive laws.
If F = Ei Si and G = Ej tj, then

F X G = E Z::Si . tj ,
. i j

where repeated literals are dropped in each product Si ·tj of terms, Si·1 = Si,

and 1· tj = 1. A product is dropped if it contains a complementary pair of
literals. Thus, for exam!lle,

(x'y + xz) X (wx + y + z) = x'y + x'yz + wxz + xyz + xz .

3.3. GENERATION OF BCF(F) 75

Let a be any letter. Two terms will be said to have an opposition in
case one term contains the literal a and the other the literal a'. (If the
symbol x stands for the literal a', then we shall understand x' to stand for
a.) The terms x'yz and wy'z, for example, have a single opposition, in the
letter y. Suppose two terms r and s have exactly one opposition. Then
the consensus [161] of rand s, which we shall denote by c(r, s), is the term
obtained from the conjunction rs by deleting the two opposed literals as
well as any repeated literals. Thus c(x'yz, wy'z) = wx'z. The consensus
c(r, s) does not exist if the number of oppositions between r and s is other
than one. The consensus of two terms was called their "syllogistic result"
by Blake.

Let F be a syllogistic formula for a Boolean function I. We call the for
mula ABS(F) the Blake canonicallorm for I, and we denote it by BCF(J).
Blake showed that BC F(J) is minimal within the class of syllogistic formu
las for I, i.e., the set of terms in any syllogistic formula for I is a superset
of the set of terms in BCF(J).

The following results are proved in Appendix A:

1. If formulas F I , F2, ... ,Fk are syllogistic, then the formula FI X F2 X
••• X Fk is also syllogistic.

2. If an SOP formula F is not syllogistic, it contains terms p and q, having
exactly one opposition, such that c(p, q) is not formally included in F.

3. Let F be an SOP formula for a Boolean function f. Then F is syllogistic
if and only if every prime implicant of I is a term of F.

4. BCF(J) is the disjunction of all of the prime implicants of I.

3.3 Generation of Be F(f)

Quine's minimization theory [161, 162, 163, 164] has stimulated a large body
of research concerning the efficient generation of BC F(J). We outline in this
section the principal approaches; for more details see the survey by Reusch
and Detering [167].

BCF(J) is defined to be ABS(F), where F is a syllogistic formula for I;
therefore BC F(J) may be generated by the following two-step procedure:

Step 1.
Step 2.

Find a syllogistic formula for f.
Delete absorbed terms.

76 CHAPTER 3. THE BLAKE CANONICAL FORM

Blake discussed three approaches for carrying out Step 1; we categorize
these as exhaustion 0/ implicants, iterated consensus, and multiplication.
Each of the techniques in the extensive literature on the generation of prime
implicants appears to belong to one of these categories.

3.4 Exhaustion of Implicants

An obviously syllogistic formula for / is the disjunction of all of the impli
cants of / (i.e., all terms t such that t 5 f). This disjunction was called the
"complete canonical form" by Blake. A number of special-purpose logical
computers have been designed to perform Step 1 of the foregoing two-step
procedure by generating the complete canonical form. These machines em
ploy an n-digit ternary counter, each digit of which corresponds to a letter.
The three values of a digit correspond to the ways in which a letter may ap
pear in a term: uncomplemented, complemented, or not at all. The machines
designed by Svoboda [191, 192] (USA) and Florine [58, 59] (Belgium) gener
ate all possible terms on the given letters; the machine of Gomez-Gonzalez
[73] (Spain) stops generating terms when certain conditions are met. Step
2 (absorption) is typically incorporated by such machines into the process
of generating, testing, and storing terms as follows: the one-letter terms are
generated first, then the two-letter terms, and so on. A given term is stored
if and only if it is an implicant of / and is not an implicant of a term already
stored.

Although the foregoing method is simple in conception and readily pro
grammed (or implemented in hardware) for low values of n, the number of
candidate-terms that must be stored, and the time required for the requisite
scanning, rises exponentially with n. The number of terms on n letters is
3n - 1; for 20 letters, this number is about 3.5 billion. Also, many terms
are likely to be annihilated in Step 2 of the two-step procedure discussed
above. Much effort, beginning in the mid-1950s, has therefore been devoted
to finding more efficient ways to generate prime implicants. Two basic ap
proaches, iterated consensus and multiplying (both given in 1937 by Blake),
have emerged from this work. We discuss these approaches in the next two
sections.

3.5. ITERATED CONSENSUS 77

3.5 Iterated Consensus

Theorem A.2.3 guarantees that any SOP formula is transformed into a syl
logistic formula by repeated application of the following rule:

If the formula contains a pair r, s of terms whose consen
sus c(r,s) exists and is not included in any term of the
formula, then adjoin c(r, s) to the formula.

This method, usually called "iterated consensus," was presented in Blake's
dissertation. It was re-discovered by Samson and Mills [174], by Quine [163]
and by Bing [8, 9]. To apply it, we begin with an SOP formula F. At each
application of the rule cited above, we determine, for a pair r, s of terms in
F, whether c(r,s) exists, i.e., whether rand s are opposed in exactly one
variable. If so, and if c(r,s) is not included in any term in F, we modify F
by adjoining to it the term c(r, s). We persevere in this process until every
term-pair (involving adjoined terms as well as those originally in F) has been
considered. F is then syllogistic.

The process of iterated consensus terminates in a finite number of steps,
because

• if a pair r, s of terms meets the specified condition at a given step, it
cannot meet that condition at any subsequent step, and

• the number of pairs of terms to be considered is finite, inasmuch as
no more than 3n terms can be produced from n letters. (NB: Some
writers put this number at 3n - 1, excluding 1 as a term.)

We say that a consensus is applicable to the formula from which it is
derived if the consensus is not included in any term of that formula.

Example 3.5.1 Let us find BCF(J) for the function f expressed by the
formula

F = w'x'yz + xy'z + wy'z' + xyz' + wx'z' . (3.5)

An organized way to consider all pairs of terms is to compare each term with
all those that precede it, adjoining applicable consensus-terms to the end of
the formula. To help with bookkeeping, each term should be marked after
it has been compared with all preceding terms. The process ends when the
consensus of the last term with each of its predecessors either does not exist

78 CHAPTER 3. THE BLAKE CANONICAL FORM

or is not applicable. The first few stages in the evolution of F, using the
foregoing scheme, are shown below:

F = w'x'yz + xy'z + wy'z' + xyz' + wx'z'

F = w'x'yz + xy'z + wy'z' + xyz' + wx'z' + wxy'

F = w'x'yz + xy'z + wy'z' + xyz' + wx'z' + wxy' + wxz' .

The final formula is

F = w'x'yz + xy'z + wy'z' + xyz' + wx'z' + wxy' + wxz' + wyz' + wz' .

F is now in syllogistic form; hence,

BCF(J) = ABS(F) = w'x'yz + xy'z + xyz' + wxy' + wz'. (3.6)

It follows from Lemma A.2.1 that the set of formulas formally included
in an SOP formula F is not changed by removal from F of absorbed terms.
Thus the work of iterated consensus may be simplified at any stage by dele
tion of absorbed terms as they are noticed. It is not necessary in hand
calculation to be systematic; absorptions missed while generating consensus
terms may be carried out in a final absorption-step.

A variety of iterated-consensus procedures have been investigated, based
on specializations of

• the initial SOP formula or

• the interleaving of consensus-generation and absorption.

We now describe two of the more important of such procedures, viz., Quine's
method and successive extraction.

3.5.1 Quine's method

A procedure given by Quine [161] is a specialization of iterated consensus
in which stages of consensus-generation alternate in a fixed way with stages
of absorption. Let us consider again the function given in Example 3.5.1.
Quine's method is conveniently explained by organizing the work as shown
in Table 3.1. The minterms of j, each containing n literals, are written in
column 1. The consensus-terms derived from column 1 (containing n - 1
literals each) are written in column 2, after which the terms in column 1

3.5. ITERATED CONSENSUS 79

absorbed by terms in column 2 are checked, indicating deletion. This process
is carried out repeatedly, column 3 being derived from column 2, column 4
from column 3, and so on. Each column generates the succeeding column by
consensus and may suffer absorption of some of its terms by the succeeding
column. The terms surviving unchecked (i.e., unabsorbed) are the terms of
BCF(f).

wx'y'z' .j
w'x'yz wx'z' .j
w'xy'z .j wy'z' .j
w'xyz' .j
wx'yz' .j
wxy'z' .j
wxy'z .j xy'z wz'
wxyz' .j wxy'

xyz'
wyz' .j
wxz' .j

Table 3.1: Organization of work for Quine's method.

The operations in each pass are on terms of fixed length and all operations
(consensus and absorption) derive from the single rule x'p+xp = p, where x
is a single letter and p is a term. Thus the work involves simple operations
organized in convenient stages. Quine's method is made simpler by grouping
the minterms in column 1, as shown in Table 3.1, according to the number of
their complemented literals. The consensus-operation is then possible only
between terms in vertically adjacent groups; this property is inherited by all
subsequent columns, as shown in Table 3.1. Further simplification results
from introducing binary [134] or octal [6] notation.

The computational advantages of Quine's method are offset by the ne
cessity to begin with a listing of the minterms of j, and by the need therefore
to process a large number of terms.

80 CHAPTER 3. THE BLAKE CANONICAL FORM

3.5.2 Successive extraction

Blake [10] observed that iterated consensus can be carried out letter by let
ter. This method is called "successive extraction" in the Reusch & Detering
survey [167] and is commonly credited to Tison [204, 205]. Suppose an SOP
formula involves the letters a, b, c, To generate an equivalent syllogistic
formula by successive extraction, one first adjoins to the formula all applica
ble consensuses arising from pairs of terms opposed in the letter a, i.e., from
pairs of the form a'p and aq, where p and q are terms not involving a. Using
the resulting formula as a basis, one then adjoins all applicable consensuses
arising from terms opposed in the letter b. This process is repeated until all
letters are exhausted.

The method of successive extraction typically generates fewer consensus
terms than does the general method of iterated consensus; however successive
extraction (unlike the general method) may require that a given pair of terms
be compared more than once.

3.6 Multiplication

Step 1 of Blake's procedure for generating Be F(J) is to find a syllogistic
formula for f. The following procedure is guaranteed by Theorem A.2.1 to
produce such a formula:

Express f as a conjunction of syllogistic formulas and
then multiply out to obtain an SOP formula, using the
distributive laws and dropping duplicate literals.

An alterm (disjunction of literals) is clearly syllogistic; hence a syllogistic
formula may be produced by multiplying out a conjunction of alterms, i.e., a
POS formula. Blake states that the latter method was known to C.S. Peirce
[152] and his students. That technique is now frequently attributed to Nelson
[147]; Blake's more general technique of multiplying out a conjunction of
syllogistic formulas was re-discovered (specialized to a conjunction of Blake
canonical forms) by Samson and Mills [174] and by House and Rado [88].

Example 3.6.1 Let us find the prime implicants of the Boolean function f
expressed by

f = a'd + abc' + ac'd' . (3.7)

To apply the method of multiplying, we must first convert formula (3.7) to
a conjunction of syllogistic formulas. Let us adopt the specialized tactic of

3.6. MULTIPLICATION

converting (3.7) to a POS formula:

f = [a' + bc' + c'd'][a + d]
f = [a' + c'][a' + c + b + d'][a + d] .

81

(3.8)

(3.9)

The foregoing conversion is carried out by repeated application of Corollary
2.8.1 (the dual form of Boole's expansion theorem). Specifically, formula
(3.8) results from expanding (3.7) with respect to the argument a, i.e.,

f(a, b, c, d) = [a' + f(l, b, c, d)][a + f(O, b, c, d)] , (3.10)

while formula (3.9) is derived by expanding the first factor of (3.8) with
respect to the argument c. Multiplying out (3.9) produces the syllogistic
formula

F = a'd + a'cd + a'bd + a'c'd + abc' + bc'd + ac'd' . (3.11)

The terms in (3.11) surviving absorption are the prime implicants of fj thus

BCF(f) = ABS(F) = a'd + abc' + bc'd + ac'd' . (3.12)

The same result can be obtained by multiplying out (3.8) rather than (3.9),
because (as we now show) each of the two factors of (3.8) is syllogistic. By
Theorem A.2.3, an SOP formula that is not syllogistic must contain a pair
p, q of terms, having exactly one opposition, such that the consensus c(p, q) is
not formally included in the formula. Neither of the factors of (3.8) contains
such a pair of termsj hence, each factor is syllogistic.

3.6.1 Recursive multiplication

A Blake canonical form is syllogistic. Hence, it follows from Theorem A.2.1
that multiplying out a conjunction of Blake canonical forms produces a syl
logistic formula. If absorption is then carried out, the result is a Blake
canonical form. Thus BCF(f) may be generated recursively.

Theorem 3.6.1 Let f be a Boolean function and let x be one of its argu
ments. Then the Blake canonical form of f is given by

BCF(f) = ABS«x' + BCF(f/x» X (x + BCF(f/x'») , (3.13)

where X (cf. Section A.2) denotes the term-by-term product of SOP formu
las.

82 CHAPTER 3. THE BLAKE CANONICAL FORM

Proof. The set {x',x} is orthonormalj hence, by Theorem 2.15.1,
f = (x' + fix)· (x + fix'). Thus,

BCF(J) = ABS(BCF(x' + fix) X BCF(x + fix')). (3.14)

The non-vacuous arguments of fix are disjoint from Xj therefore

BCF(x' + fix) = BCF(x') + BCF(Jlx) = x' + BCF(Jlx) j

similarly,
BCF(x + fix') = x + BCF(J Ix') .

Equation (3.13) thus follows from (3.14). 0

Assuming that F is an SOP formula, BCF(F) is produced by the fol
lowing recursive procedure:

Rule 1. If the term 1 appears in F, then BCF(F) = 1.

Rule 2. If F = 0 or F has a single term, then BCF(F) = F.

Rule 3. Otherwise,

BCF(F) = ABS((x' + BCF(Flx)) X (x + BCF(Flx')))

where x is an argument explicit in F and FIx is expressed by a formula
not involving x.

The efficiency of the foregoing procedure may be improved by restrict
ing the scope of the operator ABS. Applying the distributive laws, equa
tion (3.13) may be expressed equivalently as

BCF(F) = ABS(G + H) (3.15)

where

G = (x' X BCF(Flx')) + (x X BCF(Flx)) (3.16)

H = BCF(Flx) X BCF(Flx') . (3.17)

It is not possible for any term in G to absorb any other term in Gj nor can
any term in G absorb a term in H. Thus the following absorptions suffice
in (3.15):

3.6. MULTIPLICATION 83

• absorptions within H j and
• absorptions of G-terms by H-terms.

Let us define a relative-absorption operator, ABSREL, on two SOP
formulas P and Q, as follows:

ABSREL(P, Q) = the formula constructed from P
by removing all terms
absorbed by terms of Q.

Then BCF(F) is expressed recursively by

BCF(F) = ABS(H) + ABSREL(G, ABS(H)) ,

where G and H are defined by (3.16) and (3.17).

(3.18)

A variation of the foregoing development replaces term-by-term mul
tiplication by Boolean multiplication of arbitrary form. Define SOP for
mula I to be the Blake canonical form of H as defined above. Then I =
BCF(BCF(F/x) X BCF(F/x')), whence I may be expressed by

1= BCF((F/x) * (F/x')) , (3.19)

where * refers to the product of Boolean functions, the form being irrelevant.
Equation (3.18) then takes the simplified form

BCF(F) = 1+ ABSREL(G,I). (3.20)

3.6.2 Combining multiplication and iterated consensus

We consider in this section a variant of recursive multiplication that is useful
for hand-computation. It is based on the observation that BCF(F) may be
computed rapidly by hand if the number of terms in F is relatively small.
Beginning with an SOP formula F,

Rule 1. If F is a relatively simple formula, calculate BCF(F) using
iterated consensus.

Rule 2. Otherwise,

BCF(F) = ABS((x' + BCF(F/x)) X (x + BCF(F/x'))) ,

where x is an argument appearing with relatively high frequency in F
and F/x is expressed by a formula not involving x.

84 CHAPTER 3. THE BLAKE CANONICAL FORM

The foregoing procedure is a guide to calculation rather than an algo
rithm, because Rule 1 requires a decision based on simplicity, a property
difficult to quantify. For hand-calculation, however, we have found this pro
cedure to be markedly faster and less conducive to error than any other
method, especially when applied to functions yielding large numbers of prime
implicants. An analysis of the efficiency of this method in comparison with
other methods is given in [25].

Example 3.6.2 Let us apply the foregoing procedure to calculate the Blake
canonical form of the formula

F = a'e'd' + abd'e' + b'ee + b'e'd'e + abe'd +

+b' e' de' + a'bed + aed' e' + be' de . (3.21)

We decide that it is not convenient to calculate BCF(F) using Rule 1, and
we note that no argument appears in more terms than does ej hence we
calculate BC F(F) using Rule 2:

BCF(F) = ABS((e' + BCF(F/e)) X (e + BCF(F/e'))) (3.22)

where

F/e = abd'e' + b'e + a'bd + ad'e'

F/e' = a'd' + abd'e' + b'd'e + abd + b'de' + bde .

We decide that the formula F/e is simple enough for application of Rule 1,
yielding

BCF(F/e) = b'e + a'bd + ad'e' + a'de + ab'd' .

We now decide that it is not convenient to calculate BCF(F/e') using Rule
1, and (noting that the variable d appears with maximal frequency in F/e')
we apply Rule 2, i.e.,

BCF(F/e') = ABS((d' + BCF«F/e')d)) X (d + BCF«F/e')d'))) ,

where
(F/e')/d = F/c'd = ab + b'e' + be
(F/e')/d' = F/c'd' = a' + abe' + b'e .

These formulas are relatively simple, hence, we calculate their Blake canon
ical forms using Rule 1, with the following results:

BCF(F/e'd) = ab + b'e' + be + ae'

BCF(F/e'd') = a' + b'e + be'

3.6. MULTIPLICATION

Thus BCF(F/e') is given by the formula

ABS«d' + ab + b'e' + be + ae') X (d + a' + b'e + be'»

which yields

BCF(F/e') = a'd' + b'd'e + bd'e' + abd + abe' +

+b'de' + a'b'e' + bde + a'be + ade' .

We now continue the computation (3.22):

BCF(F) = ABS«e' + b'e + a'bd + ad'e' + a'de + ab'd') X

(e + a'd' + b'd'e + bd'e' + abd + abe' +

+b'de' + a'b'e' + bde + a'be + ade'» .

The result,

BCF(J) = b'd'e + abe'd + b'e'de' + be'de + ae'de' + a'e'd' +

+a'b'e'e' + a'be'e + be'd'e' + abe'e' + b'ee +

+a'bed + a'bde + aed'e' + abd'e' + a'ede + ab'ed' ,

85

requires 31 "intelligent" multiplications and 3 deletions. By intelligent multi
plications, we mean those that make use of the identities (p+q)(p+r) = p+qr
and (ps + q)(p + r) = ps + pq + qr to minimize subsequent absorptions. The
more commonly-used multiplying technique, on the other hand, begins with
a transformation of (3.21) to POS form, a simple example of which is

f = (a+b+e'+e)(b+e+d'+e')(a'+b+e+d+e)

(a' + e' + d' + e)(a' + b' + d + e')(a + b' + e + d' + e)

(a + b' + e' + d)(a' + b' + e' + e') .

Performing the x-operation and absorption on this form (once again assum
ing intelligent multiplications) requires 117 multiplications and 44 deletions.

3.6.3 Unwanted syllogistic formulas

The fact that multiplying out a POS formula produces a syllogistic result
may sometimes be disadvantageous. Suppose that our object is to obtain
an SOP representation (not necessarily syllogistic) of the complement of f.
If we apply De Morgan's laws to an SOP formula for f, we obtain a POS

86 CHAPTER 3. THE BLAKE CANONICAL FORM

formula for I', which we may then multiply out to produce an SOP formula
for I'. Multiplying out a POS formula for I', however, produces a syllogistic
result, which may be a more complex formula than one wishes. Let us recall
Example 2.14.2. The complement of the formula 1= vx'y + wxz', obtained
by De Morgan's laws, was shown in that example to be

I' = v'w' + v'x' + v'z + w'x + xz + w'y' + x'y' + y'z .

This formula is in fact BCF(j'), inasmuch as it is the result of multiplying
out a POS formula and there are no terms in the formula that are absorbed
by other terms. The simpler formula I' = v'x' + x'y' + w'x + xz is obtained
by expansion-techniques discussed in Section 2.14.

Exercises

1. Express in Blake canonical form:

be'de + ab'c'd + aede + a'b'ee + ab'ed' + b'ede'+
+a'bde' + ae'de' + bed'e' + abee'

2. Express in Blake canonical form:

AE' F' + DEF + BDE' + A' B' E' F' + BCD' F+
+BDEF' + B'D'EF+ BD'E'F'

3. Express in Blake canonical form:

A' BD + AB' D' E + BCD' E + ABD E' + A' E' F +
+ AD E + A' BD' E' + A' B' E' F'

Chapter 4

Boolean Analysis

In this chapter we consider methods for analyzing systems of Boolean equa
tions. These methods are of central importance in Boolean reasoning. We
first consider ways in which systems of Boolean equations may be related. In
particular, we define consequents, antecedents, equivalents, and solutions of
Boolean systems. We also discuss several processes useful for Boolean rea
soning. Among such processes are the reduction of a system of equations to
a single equivalent equation, the elimination of a variable from an equation,
the detection of redundant variables in an interval, and the substitution of
an expression for a variable in a Boolean formula.

A problem that arises in diverse applications is to decide whether a given
SOP formula is equivalent to the I-formula. We consider how such a decision
may be made, and apply the results to the problem of finding a near-minimal
SOP formula for a given Boolean function.

4.1 Review of Elementary Properties

We repeat for convenient reference some equivalences developed in Chap
ter 2. For elements a, b, c in a Boolean algebra,

a~b <==> ab' = 0 (4.1)

a~b~e <==> ab' + be' = 0 (4.2)

a=b <==> aE]1b=O (4.3)

a = 0 and b = 0 <==> a+b=O (4.4)

a = 1 and b = 1 <==> ab = 1 (4.5)

87

88 CHAPTER 4. BOOLEAN ANALYSIS

Equivalences (4.4) and (4.5) extend readily to more than three variables;
thus

a = 0 and b = 0 and c = 0 $=} a + b + c = 0

is an obvious generalization of (4.4).

Boole's expansion theorem (Theorem 2.8.1), together with property (4.2),
establishes

Proposition 4.1.1 (Schroder [17S}) The statements

I(x,y, ...) = 0

and

1(0, y, ...) ~ x ~ 1'(1, y, .. .)

are equivalent.

4.2 Boolean Systems

An n-variable Boolean system on a Boolean algebra B is a collection

(4.6)

of simultaneously-asserted equations. The Pi and qi are n-variable Boolean
functions on B; X denotes the vector (Xl, X2,"', x n). We have defined a
Boolean system to consist entirely of equations; inclusions are readily trans
formed into equations, however, via the equivalence (4.1).

Given any substitution A E Bn for X, a truth-value is assigned to a
Boolean system S(X) as follows: S(A) is true in case each of its component
equations is an identity; otherwise S(A) is false. A Boolean system, and thus
a Boolean equation, is therefore a predicate (c/. the discussion in Section
1.2).

4.3. REDUCTION 89

4.2.1 Antecedent, Consequent, and Equivalent Systems

Let Sl(X) and S2(X) be two n-variable Boolean systems on B. We say
that Sl(X) is an antecedent of S2(X), written Sl(X) ==? S2(X), in case
every substitution for X that ca.uses Sl(X) to be true also causes S2(X)
to be true; we say in this case also that S2(X) is a consequent of Sl(X),
Two Boolean systems Sl(X) and S2(X) are said to be equivalent, written
Sl(X) ~ S2(X), if each is a consequent of the other.

4.2.2 Solutions

A system having the specialized form

(4.7)

where bI, b2,···, bn are elements of B, is called a solution of a system S(X)
provided (4.7) implies (i.e., is an antecedent of) S(X). Thus (4.7) is a
solution of S(X) in case the substitutions defined by (4.7) cause each ofthe
equa.tions in S(X) to become an identity; it is sometimes convenient to refer
to the vector (bI, b2, •• " bn) itself as a solution. A Boolean system is said
to be consistent if it has at least one solution; otherwise, it is said to be
inconsistent. Methods for constructing solutions are discussed in Chapter 7.

4.3 Reduction

Unlike a system of equations in "ordinary" algebra, a Boolean system may
be reduced to a single equivalent equation.

Theorem 4.3.1 (Boole [13], Chapter VIII) The Boolean system (4.6)
is equivalent to the single equation

f(X) = 0, (4.8)

where f is defined by
k

f = L(Pi EB qi) . (4.9)
i=l

90 CHAPTER 4. BOOLEAN ANALYSIS

Proof. System 4.8 is equivalent, by property (4.3), to the system

which is in turn equivalent, by property (4.4), to the single equation (4.8),
where f is the Boolean function defined by (4.9). 0

By similar reasoning, invoking (4.5) instead of (4.4), we arrive at

Corollary 4.3.1 The system (4.6) is equivalent to the single equation

F(X) = 1,

where F is a Boolean function defined by

k

F = II (Pi $ qi)'.
i=l

(4.10)

(4.11)

Any Boolean system can therefore be reduced to a single equivalent equa
tion whose right-hand side is either zero or one. More generally, as shown in
Theorem 4.5.1 (Poretsky's Law of Forms), the right-hand side may be any
preassigned Boolean function.

Example 4.3.1 The system

is equivalent to the system

ax = b+ y

ab < ax' + y'

ab'xy' + a'b + a'y + bx' + x'y 0

ab(a'y + xy) = 0

which is equivalent, in turn, to the single equation

ab'xy' + a'b + a'y + bx' + x'y + abxy = O.

o

4.4. THE EXTENDED VERIFICATION THEOREM 91

Example 4.3.2 Suppose an AND-gate to have inputs Xl and X2 and output
Zl' The behavior of the gate is described by any of the three equivalent
statements below.

o

4.4 The Extended Verification Theorem

(4.12)

(4.13)

(4.14)

We discuss in this section a result, due to Lowenheim [124] and Muller
[142], which enables an implication between two Boolean equations to be
transformed into an equivalent Boolean inclusion. The presentation in this
section is adapted from that of Rudeanu [172].

Let s be a single element of B and let V = (VI, V2,' .. , vn) be a vector on
B, i.e., s E B and V E Bn. Then sV and Vs are defined by

sV = Vs = (SVt.SV2,···,svn).

Lemma 4.4.1 Let f: Bn __ B be a Boolean function and let A be an element
ofBn such that f(A) = O. Then

f(Af(X) + X f'(X)) = 0

Proof. By Boole's expansion theorem (Theorem 2.8.1),

f(G(u)) = u'· f(G(O)) + u· f(G(1)) j

thus, setting G(u) = Au + Xu' and u = f(X),

f(Af(X) + X f'(X» = f'(X)f(X) + f(X)f(A) .

(4.15)

Each term on the right-hand side of the foregoing equation has the value
zero, for any X E Bn, verifying (4.15). 0

Theorem 4.4.1 (Extended Verification Theorem) Let f: Bn -- B
and g: Bn __ B be Boolean functions, and assume equation f(X) = 0
to be consistent. Then the following statements are equivalent:

(a)

(b)

(c)

f(X) = 0 ==> g(X) = 0

g(X)::;: f(X)

g(X)::;: f(X)

(VX E Bn)

(VX E Bn)

(VX E {O, 1}n) .

92 CHAPTER 4. BOOLEAN ANALYSIS

Proof.
(a) ~ (b): Let A E Bn be a solution of f(X) = 0, i.e., let f(A) = 0
be an identity. Then g(A) = 0 because of the assumed implication. By
Lemma 4.4.1, the equation f(X f'(X) + Af(X)) = 0 is satisfied for any
X E Bnj hence g(Xf'(X) + Af(X)) = 0 is also satisfied. Thus

J'(X)g(X) + f(X)g(A) = f'(X)g(X) = 0,

i.e., g(X) ~ f(X), proving (b).

(b) ~ (c): Immediate.

(c) ~ (a): The functions f and 9 are Boolean; hence they may be
written in minterm canonical form, i.e.,

f(X) = L f(K)X K and g(X) = L g(K)XK
KE{O,l}" KE{O,l}"

for all X E Bn. Assume (c), i.e., assume g(K) ~ f(K) for all K E {0,1}n,
and let A E Bn be a solution of f(X) = o. Then

f(X) = L f(K)AK = 0,
KE{O,l}"

which implies that J(K)AK = 0 for all K E {0,1}n, and therefore that
g(K)AK = ° for all K E {0,1}n. Thus g(A) = 0, proving (a). 0

Corollary 4.4.1 Let f: Bn __ Band g: Bn -- B be Boolean functions,
and assume the equation f(X) = 0 to be consistent. Then the following
statements are equivalent:

(a)

(b)
(c)

f(X) = 0 {:::::} g(X) = 0

g(X) = f(X)

g(X) = f(X)

(\IX E Bn)

(\IX E Bn)

(\IX E {O, 1}n).

Proof. Immediate from Theorem 4.4.1 and the definition of equivalent
systems. 0

4.5 Poretsky's Law of Forms

Theorem 4.3.1 and its corollary enable us to reduce a Boolean system to one
of the equivalent forms f(X) = 0 or F(X) = 1. Suppose, however, that we

4.6. BOOLEAN CONSTRAINTS 93

wish the right-hand side to be something other than ° or 1. Poretsky [159]
showed that once a Boolean system has been reduced to the form f(X) = 0,
it may be re-expressed equivalently in the form g(X) = heX), where his
any specified Boolean function. The function 9 associated with a given h is
determined uniquely by the following theorem.

Theorem 4.5.1 (Poretsky's Law of Forms) Let f,g,h: Bn --+ B be
Boolean functions and suppose the equation f(X) = ° to be consistent. Then
the equivalence

f(X) = 0 g(X) = heX) (4.16)

holds for all X E Bn if and only if

g=f(JJh. (4.17)

Proof. Equivalence (4.16) may be written in the form

f(X) = ° g(X) (JJ heX) = ° ,
which is equivalent by Corollary 4.4.1 to (4.17). 0

Example 4.5.1 Suppose a Boolean function, g, is sought having the prop
erty that the equation XIX~ + X3 = ° is equivalent to 9 = X2X3. The first
equation is consistent (a solution, for example, is (XbX2,X3) = (0,0,0»;
hence, 9 is determined uniquely by (4.17), i.e.,

o

9 = (XIX~ + X3) (JJ (X2 X3)

= X~(XI + X3).

4.6 Boolean Constraints

Given a Boolean algebra B, a constraint on a vector X = (x}, X2,· •• , xn)
is a statement confining X to lie within a subset of Bn. A constraint is
therefore a predicate that is true provided X is a member of the subset. The
operation of the AND-gate of Example 4.3.2, for instance is specified by the
constraint

(x}, X2, zt} E {(O, 0,0), (0, 1,0), (1, 0, 0), (1,1, In, (4.18)

94 CHAPTER 4. BOOLEAN ANALYSIS

where B = {a, I} and X = (x}, X2, zt).
Two constraint-statements on the vector X are equivalent if they are

equivalent as predicate!!, i.e., if they confine X to the same subset of Bn.
Thus statement (4.18) is equivalent to equation (4.12), as well as to equations
(4.13) and (4.14).

An identity on X = (Xl! X2,"', xn) is a constraint equivalent to the
statement

XEBn.

An identity, in other words, is a constraint that doesn't really do any con
straining. The constraints x + y = x + x'y and x'y ~ y, for example, are
both identities on (x, y).

A constraint on X = (Xl, X2, ... , Xn) will be called a Boolean constraint
if it is equivalent to a Boolean equation, i.e., if it can be expressed by the
equation

f(X) = 0, (4.19)

where f: Bn __ B is a Boolean function. IfB = {a, I}, then every constraint
on X is Boolean; if B is larger than {a, I}, however, then not all constraints
on X are Boolean.

Example 4.6.1 Suppose that B = {a, l,a',a}. Then the constraint

(X,y) E {(O,O),(a,O)} (4.20)

is Boolean because it is equivalent to the Boolean equation

a'x + y = 0, (4.21)

i.e., the set of solutions of (4.21) is {(O,O),(a,O)} for B = {O,I,a',a}. 0

Example 4.6.2 Suppose again that B = {O,I,a',a}. The constraint

(X,y) E {(O,O), (a, I)} , (4.22)

is not a Boolean constraint, i.e., it is not equivalent to a Boolean equation.
To show this, let us assume that there is a two-variable Boolean function f
whose solution-set is {(0, 0), (a, I)}. Then

x = ° and y = ° ==> f = °
x = a and y = 1 ==> f = ° ,

4.7. ELIMINATION

i.e.,

x+y=O ==> 1=0

ax' + a' x + y' = 0 ==> 1 = 0 .

95

By Theorem 4.4.1, the extended verification theorem, the latter implications
are equivalent to the inclusions

1 ~ x + y

1 < ax' + a' x + y' .

These inclusions are equivalent together to the single inclusion

1 ~ g,

where the Boolean function g is defined by

9 = (x+y).(ax'+a'x+y')

= a' x + xy' + ax' y .

(4.23)

Invoking the extended verification theorem again shows that the inclusion
(4.23) is equivalent to the implication

g(x, y) = 0 ==> I(x, y) = 0

thus every solution of g(x, y) = 0 is also a solution of I(x, y) = o. Try
ing all values for (x, y) in B2 shows that the solution-set of g(x, y) = 0 is
{(O,O),(O,a'),(a,a),(a,1)}. Thus the solution-set of I(x,y) = 0 must con
tain these four elements, contradicting the assumption that its solution-set
is {(O,O),(a,1)}. Hence (x,y) E {(O,O),(a,O)} is not a Boolean constraint.
o

4.7 Elimination

A fundamental process in Boolean reasoning is that of elimination. To
eliminate a variable x from a Boolean equation means to derive another
Boolean equation that expresses all that can be deduced from the original
equation without reference to x. The central fact concerning elimination was
announced by Boole [13, Chapt. VII, Proposition I] as follows:

96 CHAPTER 4. BOOLEAN ANALYSIS

If f(x) = 0 be any logical equation involving the class symbol
x, with or without other class symbols, then will the equation

f(1)f(0) = 0

be true, independently of the interpretation of Xj and it will
be the complete result of the elimination of x from the above
equation.

In other words, the elimination of x from any given equation,
f(x) = 0, will be effected by successively changing in that equa
tion x into 1, and x into 0, and multiplying the two resulting
equations together.

Similarly, the complete result of the elimination of any class
symbol, x, y, &c., from any equation of the form V = 0, will
be obtained by completely expanding the first member of that
equation in constituents of the given symbols, and multiplying
together all the coefficients of those constituents, and equating
the product to o.

Let X = (Xt,X2, ... ,Xm), let Y = (Yl,Y2, ... ,Yn), and let f: Bm+n--+B
be a Boolean function. Following Boole, we define the resultant of elimina
tion of X from the equation f(X, Y) = 0 to be the equation

II f(A,Y) = O. (4.24)
AE{o,l}m

It follows that the resultant of elimination of X from F(X, Y) = 1 is the
equation

E F(A,Y) = 1. (4.25)
AE{O,l}m

To demonstrate that the resultant of elimination is Boole's "complete re
sult," we must show that an equation heY) = 0 is a consequent of f(X, Y) =
o if and only if it is a consequent of the resultant (4.24).

Theorem 4.7.1 Let X = (Xt,X2, ... ,Xm) and Y = (Yt.Y2, ... ,Yn) be dis
joint argument-vectors, and let f: Bm+n --+ a be a Boolean function. For
any Boolean function h: Bn--+ B, the implications

f(X,Y) =0

II f(A,Y) = 0
AE{O,l}m

are equivalent.

heY) = 0

heY) = 0

(4.26)

(4.27)

4.7. ELIMINATION 97

Proof. If equation !(X, Y) = 0 is inconsistent, then (4.26) and (4.27) are
both true because their premises are false. Otherwise a repeated application
of the Verification Theorem and its variants yields successively the following
equivalent forms of (4.26):

h(Y) ~
h(Y) ~
h(Y) ~

!(X,Y)
!(A,Y)

TIAE{o,l}m!(A, Y)

The latter inclusion is equivalent to (4.27). 0

VXeB'"
VA e {O, I}'"

Example 4.7.1 The AND-gate of Example 4.3.2 is characterized by either
of the equations !(XItX2,ZI) = 0 or F(XI,X2,ZI) = 1, the functions! and
F being defined by

(4.28)

(4.29)

Let us eliminate X2. Applying the definitions (4.24) and (4.25), the resultant
of elimination of X2 is expressed by either of the equations g(XIt Zl) = 0 or
G(XI,Zt} = 1, where

9 = !(XI, 0, Zl)' !(Xl. 1, Zl) = (X~ZI + ZI)(X~ZI + xlzD

= X~ZI

G = F(xIt 0, Zl) + F(Xb 1, Zl) = (x~z~ + zD + (x~z~ + XIZI)

= Xl + z~.
All that is known concerning the AND-gate's input Xl and output Zl, in the
absence of knowledge concerning its input X2, is therefore expressed by any
of the following equivalent statements:

X~ZI = 0

Xl + z~ = 1

Zl ~ Xl

(Xl,ZI) e {(O, 0), (1, 0), (1,1)} .

If we eliminate the output-argument Zl from (4.13), the resultant is

98 CHAPTER 4. BOOLEAN ANALYSIS

i.e.,

0= O.

The latter constraint allows (z}, Z2) to be chosen freely on {O, 1p-confirming
our expectation that the inputs to a gate are unconstrained if nothing is
known concerning the value of the output. 0

C.1. Lewis [123, p. 155] has observed that "For purposes of application
of the algebra to ordinary reasoning, elimination is a process more impor
tant than solution, since most processes of reasoning take place. through the
elimination of 'middle' terms." Boole [13, p. 99] writes of such terms that it
"usually happens in common reasoning, and especially when we have more
than one premiss, that some of the elements [in the premiss] are not required
to appear in the conclusion. Such elements, or, as they are commonly called,
"middle terms," may be considered as introduced into the original proposi
tions only for the sake ofthat connexion which they assist to establish among
the other elements, which are alone designed to enter into the expression of
the conclusion."

The following example illustrates the process of reasoning by elimination
of such middle terms.

Example 4.7.2 Let us connect the output, Zt, of the AND-gate of Example
4.7.1 to the input of an OR-gate whose second input is labelled Z3 and whose
output is labelled Z2. The complete circuit is thus defined by the system

Zt = Zt Z 2

Z2 = Z3 + Zt •
(4.30)

The relationship between the circuit's overall output, Z2, and its inputs, Zb

Z2, and Z3 is expressed only implicitly by the foregoing equations. We deduce
an explicit relationship by eliminating the "middle term," Zt. To do so, we
first reduce the system (4.30) to a single equation, viz., I(z}, Z2, Z3, Zt, Z2) =
0, the Boolean function 1 being given by

The resultant of elimination of Zt from 1 = 0 is the equation

(4.31)

4.7. ELIMINATION

where 9 is given by (4.24) as follows:

9 =
=
=

!(XbX2,X3,0,Z2)· !(Xl,X2,X3, 1,Z2)

(XIX2 + X3Z~ + X~Z2)· (X~ + X~ + X3Z~ + Z~)
X3Z~ + XIX2Z~ + X~ X~Z2 + X~X~Z2 •

99

Proposition 4.1.1 enables us to express equation (4.31) equivalently in a form
which isolates Z2:

Thus

i.e.,
Z2 = X3 + XIX2 •

Suppose now that we wish to express what the system (4.30) tells us about
the value of X3, if we know only the values of X2 and Z2. To do so, we eliminate
Xl and Zl from !(XbX2,X3,ZbZ2) = 0 or, equivalently, we eliminate Xl from
9(Xb X2, X3, Z2) = O. The resultant of the latter elimination is

i.e.,
X3Z~ + X~X~Z2 = 0 ,

which is equivalent to the interval

This interval tells us the following about X3:

1. If X2 = 0 and Z2 = 1, then X3 = 1.

2. If Z2 = 0, then X3 = O.

A point of difference between Boolean and other algebras with reference
to elimination should be noted. As usual, Boole [13, p. 99] states the matter
best: "In the [common] algebraic system we are able to eliminate one symbol
from two equations, two symbols from three equations, and generally n - 1
symbols from n equations. There thus exists a definite connexion between

100 CHAPTER 4. BOOLEAN ANALYSIS

the number of independent equations given and the number of symbols of
quantity which it is possible to eliminate from them. But it is otherwise with
the system of Logic. No fixed connexion there prevails between the number
of equations given representing propositions or premises, and the number
of typical symbols of which the elimination can be effected. From a single
equation an indefinite number of such symbols may be eliminated."

4.8 Eliminants

As shown in Section 4.7, the resultant of elimination of variable Xl from
equation l(xI, X2, •••) = ° is equation 1(0, X2, •• .)-1(1, X2, •••) = 0; similarly,
the resultant of elimination of Xl from l(xI, X2, •••) = 1 is 1(0, X2, •••) +
1(1, X2, •••) = 1.

We call functions 1(0, X2, • ••)·/(1, X2, • ••) and 1(0, X2, •••) + 1(1, X2, •••),

and their generalizations to more than one eliminated variable, eliminants;
they are of central importance in Boolean reasoning. An eliminant (a func
tion) is often needed in situations where the corresponding resultant of elim
ination (an equation) is not needed; therefore it will prove useful to define
eliminants in a way that is independent of the process of elimination. A com
puter program performing tasks of Boolean reasoning will spend much of its
time computing eliminants; these functions therefore deserve close study.

Let I: Bn----+ B be a Boolean function expressed in terms of arguments
XI. X2, ••• , Xn , and let R, S, and T be subsets of {Xl, X2, ••• , x n }. We define
a Boolean function ECON(f, T) by the following rules:

(i) ECON(f, 0)
(ii) ECON(f, {Xl})
(iii) ECON(f,RUS)

=1
= 1(0, X2, ••• , Xn) • 1(1, X2, • •• , Xn)

= ECON(ECON(f,R),S)

We define another Boolean function, ED/S(f, T), by the rules

(i) ED/S(f, O)
(ii) ED/S(f, {xIl)
(iii) EDIS(f,RUS)

=1
= 1(0, X2, ••• , xn) + 1(1, X2, ••• , xn)
= EDIS(EDIS(f,R),S)

We call ECON(f, T) the conjunctive eliminant, and ED/S(f, T) the
disjunctive eliminant, of 1 with respect to the subset T. We note that if T
is a singleton, i. e., if T = {x}, then the eliminants of 1 are related to the

4.8. ELIMINANTS

quotients 1 lx' and 1 Ix (Section 2.15) as follows:

ECON(f,{x}) = flx'·flx

EDIS(f,{x}) = flx'+llx

101

(4.32)

(4.33)

Theorem 4.8.1 Let I: Bn -- B be a Boolean lunction and let T be an
m-element subset of its argument-set, X = {Xl, X2, ... , xn}. We assume
without loss of generality that T comprises the first m elements 01 X, i.e.,
that T = {Xl, ... , xm}. Then ECON(f, T) and EDIS(f, T) are determined
as lollows:

ECON(f,T) = II I(A,xm+h""Xn) (4.34)
AE{O,I}m

EDIS(f,T) = E I(A,xm+h' .. ,xn). (4.35)
AE{O,I}m

Proof. Equation (4.34) is verified for the case m = 1 by the definition
of the conjunctive eliminant. Suppose (4.34) to hold for m = k > 1, and
consider the case m = k + 1:

ECON(f(XI,'" ,Xk, Xk+1, Xk+2,"" xn), {Xl>" .,Xk,Xk+1})

ECON(ECON(f, {Xl,"" Xk}), {Xk+l})
= ECON(II/(A,Xk+1,Xk+2, ... ,xn),{Xk+I})

AE{O,I}lc

= II I(A, 0, Xk+2,' .. , Xn) . II I(A, 1, XkH,' .. , xn)
AE{O,I}lc AE{O,I}l'

= II I(A,xk+2,""Xn)
AE{O,I}lc+l

Equation (4.34) thus holds for m = k + 1, completing the verification of
(4.34). Equation (4.35) is verified by dual computations. 0

Example 4.8.1

o

ECON(f(w,x,y,z),{w,y}) =

I(O;x,O,z)'/(O,x,l,z)'/(l,x,O,z)'/(l,x,l,z)

EDIS(f(w,x,y,z),{w,y}) =

1(0, x, 0, z) + 1(0, x, 1, z) + 1(1, x, 0, z) + 1(1, x, 1, z).

102 CHAPTER 4. BOOLEAN ANALYSIS

Corollary 4.8.1 Let X = (X},X2,""Xm) andY = (Y1,Y2, ... ,Yn) be dis
joint argument-vectors, and let f: Bm+n_ B be a Boolean function. Then
the resultant of elimination of X from f(X, Y) = 0 is

EGON(j,X) = O.

The resultant of elimination of X from f(X, Y) = 1 is

EDIS(j,X) = 1.

(4.36)

(4.37)

Calculation of Eliminants. It is clear that either the conjunctive or
the disjunctive eliminant of a Boolean function f with respect to a subset T
may be expressed by a formula not involving any ofthe arguments appearing
in T. The calculation of such formulas is simplified by application of the
results which follow.

Proposition 4.8.1 (Schroder [178], Vol. I, Sect. 21). If a Boolean
function f is expressed as

f(x, y, ...) = x'p(y, ...) + xq(y, ...) + r(y, ...)

then the conjunctive eliminant EGO N (j, {x}) is given by

EGON(j, {x}) = pq + r.

Proof. EGON(j, {x}) = f(O, y, ...)f(1, y, ...) = [p + r][q + r] = pq + r .

Lemma 4.8.1 Let f: Bn_ B be a Boolean function expressed in terms of
arguments x, y, Then

BG F(EGO N (j, {x} » = E (terms of BG F(j) not involving x or x') .

Proof. The literals x and x' may be factored from the terms of BG F(j) in
such a way that f is expressed as

L M N

f = Ex'p; + Exq; + Er;,
;=1 ;=1 k=1

where P1, ... , PL, q17 ... , qM, , r17 ••• , rN are terms (products) not involving
the argument x. Thus EGON(j,{x}) = f(0,y, ...)f(1,y, ...) may be ex
pressed as

L N M N LM N

[Ep; + E rk] [Eq; + Erk] = EEp;qj + Erk.
;=1 k=1 ;=1 k=1 ;=1 ;=1 k=1

4.8. ELIMINANTS 103

Every consensus formed by terms of BC F(J) is absorbed by a term of
BCF(J). In particular, every consensus of the form Piqj is absorbed by
one of the T-terms; thus

L M

LLPiqj
i=l j=l

and we conclude that ECON(J,{x}) = Ef'=l Tk. Thus ECON(J, {x}) may
be expressed as the portion of BCF(J) that remains after each of its terms
that involves x or x' is deleted; let us call this portion G. It remains only
to show that G is in Blake canonical form. Suppose not. It is clear that G
is absorptive, since it is a fragment of a Blake canonical form; hence it must
not be syllogistic. By Theorem A.2.3, therefore, there must be terms sand t
in G such that the consensus c(s, t) exists and is not formally included in G.
Thus c(s,t), which does not contain x or x', is included in one of the terms
dropped from BCF(J) in the formation of G. But each such term contains
either x or x', which is a contradiction. 0

Theorem 4.8.2 Let f: Bn~ B be a Boolean function expressed in terms
of arguments x, y, ... and let T be a subset of {x, y, .. . }. Then

BC F(ECO N (J, T)) = L terms of BCF(fJ not involving

arguments in T J . (4.38)

Proof. By Lemma 4.8.1, (4.38) is valid if #T = 1, i.e., if T is a singleton
set. Suppose (4.38) to be valid if #T = k, and consider the case #T = k+ 1,
i.e., let T = R u {x}, where #R = k and x rt R. Then

BCF(ECON(J, T)) BCF(ECON(ECON(J, R), {x}))

L (terms of BCF(ECON(J, R))

not involving x or x')

L(terms of

[E (terms of BC F(J) not]
involving arguments in R)

not involving x or x')

Thus (4.38) is valid for T = R u {x}. 0

104 CHAPTER 4. BOOLEAN ANALYSIS

Conjunctive eliminants of a Boolean function are therefore found by sim
ple term-deletions, provided the function is expressed in Blake canonical
form. The resulting eliminants inherit the property of being in Blake canon
ical form.

Example 4.8.2 The Boolean function

f = wx'y + v'w'x' + xz + XV' + vx'y'

is expressed as follows in Blake canonical form:

BCF(f) = vy' + w'y' + XV' + xz + wx'y + wyz + v'yz +
+ v'x'y + v'w'x' + v'w'z + vwz + vwx' .

The conjunctive eliminants expressed below may therefore be constructed
by inspection of BC F(f), using Theorem 4.8.2.

o

BCF(ECON(f, {v}))
BCF(ECON(f, {v,z}))
BCF(ECON(f, {x, y}))
BCF(ECON(f, {x, y, z})) = o.

w'y' + XV' + xz + wx'y + wyz
= w'y' + XV' + wx'y
= v'w'z + vwz

Theorem 4.8.3 Let f: Bn---+ B be a Boolean function expressed in terms
of the arguments x, y, Then EDIS(f, {x}) is obtained from any sum
of-products (SOP) formula for f by replacing x and x', wherever they appear
in the formula, by 1.

Proof. As in Proposition 4.8.1, the terms in an SOP formula for f may be
segregated into those containing x', those containing x, and those containing
neither x' nor x. The literals x' and x may then be factored from the terms
in which they appear, to produce an expression of the form

f(x, y, ...) = x' P(y, ...) + xQ(y, ...) + R(y, ...) ,

where P, Q, and R are SOP formulas (some possibly null) not involving x.
Hence

f(O, y, ...) = P(y, . ..) + R(y, . ..)

and
f(l, y, ...) = Q(y, .. .) + R(y, . ..) .

4.8. ELIMINANTS 105

By definition,

EDIS(J(x, y, .. .), {x}) = 1(0, y, ...) + 1(1, y, ...) ;

hence

EDIS(J(x,y, .. .), {x}) = P(y, ...) + Q(y, ...) + R(y, ... }.

Thus EDIS(J(x,y, ...),{x}) is produced by replacing the literals x' and x
by 1 in the original SOP formula. 0

We refer to the foregoing procedure, apparently first given by Mitchell
[138], as the "replace-by-one trick."

Example 4.8.3 Let 1 be given, as in Example 4.8.2, by the formula

1 = wx'y + v'w'x' + xz + xy' + vx'y' .

Then
EDIS(J,{v}) = wx'y + w'x' + xz + xy' + x'y'

= x'+y'+z
EDIS(J, {w}) = x'y + v' x' + xz + xy' + vx'y'

= x' + y' + z
EDIS(J,{w,x}) = EDIS(EDIS(J, {w}), {x})

= l+y'+z=1.
o
Example 4.8.4 We use the following (correct) calculations to illustrate po
tential pitfalls in applying the replace-by-l trick:

(a) EDIS(u'+vw,{u}) = 1+vw= 1
(b) EDIS«u+ v)', {u}) = EDIS(u'v',{u}) = v'
(c) EDIS«u+v)(u'+w),{u}) = EDIS(uw+u'v+vw,{u})

= w+v.

Calculation (a) illustrates that EDIS(J,{u}) is not found simply by delet
ing u' and u (which would produce vw rather than 1 in this case), but by
replacing both u' and u by 1. Calculations (b) and (c) illustrate the need to
express 1 in sum-of-products form before the literals u' and u are replaced
by 1. If the replacements are made in the original formulas, the resulting
erroneous calculations are:

(b') EDIS«u+v)',{u}) = (1+v)'=0
(c') EDIS«u+v)(u'+w),{u}) = (1+v)(1+w)=1.

o

106 CHAPTER 4. BOOLEAN ANALYSIS

It is apparent from Theorems 4.8.2 and 4.8.3, and from the accompa
nying examples, that ECON(f, T) tends to be "smaller" than f and that
EDIS(f, T) tends to be "bigger" than f. We formalize this observation as
follows:

Theorem 4.8.4 Let f: B"-- B be a Boolean function expressed in terms
of arguments x, y, ... and let T be a subset of {x, y, .. . }. Then

ECON(f,T) ~ f ~ EDIS(f,T).

Proof. By Theorem 4.8.1, ECON(f,T) may be expressed by a formula
comprising only terms of BCF(f). Expressed in such form, ECON(f,T)
is formally included (Sect. A.2) in BCF(f)i thus ECON(f,T) ~ f. To
prove that f ~ EDIS(f,T), we express f in the SOP form f = EiPi,
whence EDIS(f,T) = EDIS(Eipi, T) = Ei EDIS(pi,T), the latter equal
ity following from Theorem 4.8.3. It also follows from Theorem 4.8.3 that
Pi ~ EDIS(pi, T) for all values of the index i. Hence

f = EPi ~ EEDIS(pi,T) = EDIS(f,T).

o

Theorem 4.8.5 Let f be an n-variable Boolean function, let U be a p
element subset of the argument-set {Xl, ... , x,,}, and let t be a q-argument
term whose arguments are disjoint from those in U. Then

(a) ECON(flt,U) = (ECON(f,U» I t
(b) EDIS(flt,U) = (EDIS(f,U» It

Proof. Let the arguments in {Xl, ... ,x,,} be ordered, without loss of gen
erality, into blocks X = {T, U, V} such that the term t comprises the argu
ments in T. Let K be the unique vector in {0,1}Q such that t = TK.Then
identity (a) is proved by direct calculation:

ECON(f It, U) = II f(K, A, V) = (II f(T, A, V» I t
Ae{o,l}p Ae{O,l}p

Identity (b) is proved by similar calculation, putting a Boolean sum in place
of the foregoing product. 0

4.9. REDUNDANT VARIABLES 107

Theorem 4.8.6 Let f: Bn_ B be a Boolean function ezpressed in terms
of arguments z}, Z2, ... ,Zn and let S be a subset of {z}, Z2, ... , zn}. Then

(ECON(f, S»' = EDIS(f', S)

(EDIS(f, S))' = ECON(f', S) .

(4.39)

(4.40)

Proof. We assume without loss of generality that S ::::; {z}, ... , zm}, and
define T = {zm+},"" zn}. Invoking Theorem 4.8.1 and De Morgan's laws,

(ECON(f(S, T), S»' = (IT f(A, T))'
Ae{o,1}m

= E f'(A,T)
Ae{o,1}m

= EDIS(f'(A, T), S) ,

verifying (4.39). Equation (4.40) is verified by dual computations. 0

Theorem 4.8.7 Let f: Bn_ B be a Boolean function whose first m argu
ments are denoted Z1, Z2, ... , Zm. If the condition

f(X,Y) = 0 (4.41)

is satisfied, then so is the condition

EDIS(f,X) = o. (4.42)

Proof. Condition (4.41) implies that f(A,Y) = 0 for all A in {O,l}m j

hence
E f(A,Y) = 0,

Ae{O,1}m

from which (4.42) follows by Theorem 4.8.1. 0

4.9 Redundant Variables

An important problem in the practical application of Boolean algebra is to
represent Boolean functions by formulas that are as simple as possible. One
approach to the simplification of a Boolean formula is to minimize the num
ber of variables appearing in it explicitly. This approach was investigated

108 CHAPTER 4. BOOLEAN ANALYSIS

in 1938 by Shannon [183], who noted that a Boolean function f does not
actually involve the variable Xk in case the condition

(4.43)

holds identically. We say in this case that the variable Xk is redundant in
f; the terms "vacuous" and "inessential" are also used to describe such a
variable.

The functions of interest in Boolean reasoning typically occur as inter
vals, (cf. Section 2.4), i.e., as sets of the form

[g,h] = {f I g ~ f ~ h}, (4.44)

where g,h: Bn~ B are Boolean functions. Interval (4.44) is non-empty
if and only if the condition g ~ h is satisfied. An "incompletely-specified"
function (cf. Section 2.12), for example, is an interval of Boolean functions;
as a further example, the set of solutions of a Boolean equation (Chapter 6)
may be expressed as a system of intervals.

Let X = {x}, . .. , xn} denote the set of arguments of g and h, and let S
be a subset of X. We say that S is a redundancy subset on an interval in case
there is a function belonging to that interval in which all of the arguments
in S are redundant. We say that S is a maximal redundancy subset on the
interval in case (a) it is a redundancy subset on the interval and (b) S is not
a proper subset of any redundancy subset on the interval.

The problem of finding maximal redundancy subsets has been investi
gated from a number of points of view: Hight [83] employs decomposition
charts [5]; Dietmeyer [50] applies array-operators; Kambayashi [98] reduces
the location of such subsets to a covering problem; Halatsis and Gaitanis [76]
generate a Boolean function whose prime implicants correspond to the max
imal redundancy subsets; and Grinshpon [75] carries out a search-process
aided by a numerical criterion. We approach the problem from yet another
point of view in this section, based on the elimination-operators discussed
in Section 4.8.

Theorem 4.9.1 Let g, h: Bn~B be Boolean functions expressed in terms
of arguments Xl, •.. , X n , and let S be a subset of those arguments.

1. If f is a Boolean function in the interval [g, h], and S is redundant in
f, then f belongs to the interval

[EDIS(g,S), ECON(h,S)]. (4.45)

4.9. REDUNDANT VARIABLES 109

o

2. If the interval (4.45) is non-empty, then there is a Boolean function in
[g, h] in which S is redundant.

Proof.

1. (By induction on the number of elements in S.) Suppose f to be a
member of [g, h], whence the conditions

g/Xk $ f/xk $ h/xk
9/Xk $ f/Xk $ h/xk

(4.46)

hold for any argument Xk in {x}, ... , xn }. If the argument Xk is re
dundant in f, then the constraint

(4.47)

follows from (4.43) and (4.46), inasmuch as the redundancy of Xl im
plies that f(X},X2, ...) = f(O,X2, ...) = f(1,x2, ...). Thus (4.45)
is verified for the case in which S has one member. Assume next
that the theorem holds if S has m members, i.e., that if the variables
x}, X2, ... , Xm are redundant in f, then f belongs to the interval (4.45),
where S = {Xl' X2, ... , xm}. If the variable Xm+1 is also redundant in
f, then f belongs by the induction hypothesis to the interval

[EDIS(EDIS(g, S), {xm+1}) EGON(EGON(h, S), {xm+1})] .
(4.48)

Recalling the definition of EDIS and EGON, however, we may ex
press interval (4.48) as follows:

[EDIS(g, S U {xm+1}), EGON(h, S U {xm+1})] . (4.49)

Thus the theorem holds if S has m + 1 members, proving Part 1 of the
theorem.

2. It follows from Theorem 4.8.4 that interval (4.45) is a subset of [g, h]. If
(4.45) is non-empty, then EDIS(g,S) is a function belonging to (g,h]
in which S is redundant, proving Part 2 of the theorem.

We define the resultant of removal of variable X from interval (p, q] to
be the interval [EDIS(p,{x}), EGON(q,{x})]. As noted in the proof of
Theorem 4.9.1, the resultant of removal of a variable from an interval is a

110 CHAPTER 4. BOOLEAN ANALYSIS

subset of that interval. It should be noted that the resultant of removal of x
from (p, q] is different from the resultant of elimination of x from (p, q] The
latter resultant takes the form [ECON(p, {x}), EDIS(q, {x})] (the proof is
assigned as an exercise), which is a superset of the interval (p, q].

Theorem 4.9.1 shows that the maximal redundancy subsets on an interval
[g, h] may be determined by a tree-search through a space of intervals derived
from [g, h]. The root of the tree is [g, h]i each child-node of a node (p, q] is
the resultant of removal of a variable not yet removed in the path leading to
(p, q]. A variable is removed from an interval (and thus the search proceeds
beyond the corresponding node) only if the resultant of removal of that
variable is non-empty, i.e., only ifthat variable is redundant on that interval.
If no variable is redundant on a given interval in the search-space, then the
variables removed in the path leading to that interval constitute a maximal
redundancy subset.

The efficiency of the search-process clearly depends on the efficiency with
which the redundancy of a given variable on a given interval can be decided.
It follows from Theorem 4.9.1 that variable x is redundant on (p, q] if and
only if the condition

EDIS(p,{x}) :5 ECON(q,{x}) (4.50)

is satisfied. If p is expressed in arbitrary sum-of-products form and q is
expressed in Blake canonical form, then

• EDIS(p, {x}) is found by deleting x and x' wherever they occur in a
term (if either x or x' appears alone as a term, then EDIS(p, {x}) = 1)i

• ECON(q, {x}) is found by deleting any term in q that contains either
x or x' (the result remains in Blake canonical form)i and

• condition (4.50) is satisfied if and only if each term of EDIS(p,{x})
is included in some term of ECON(q,{x}).

The termwise comparison described above suffices as a test for inclusion
because ECON(q, {x}) is expressed in Blake canonical form. A formula
whose included sum-of-products formulas may be tested by termwise com
parison is called syllogistic. Syllogistic formulas are discussed in Appendix
A, where it is demonstrated that a Blake canonical form is syllogistic.

We call a subset T of X a minimal determining subset on the interval
[g, h] provided T has the following properties:

4.9. REDUNDANT VARIABLES 111

1. the variables in T suffice to describe at least one function in [g, hl, and

2. no proper subset of T has property 1.

Each minimal determining subset, T, on [g,hl (and nothing else) is the
relative complement with respect to X of a maximal redundancy subset, S,
on [g,hl i.e., T = X - S.

Example 4.9.1 Let us determine the minimal determining subsets on the
interval [g, hl, where 9 and h are given by the formulas

9 = v'w'xy'z + vw'x'yz'

h = v' x + vx' + w' + y + z .

(4.51)

(4.52)

A depth-first search through the space of intervals derived from [g, hl by
variable-removals is indicated in Table 4.1. The maximal redundancy sub
sets found in this search are {v,w,x}, {v,x,y,z}, and {w,y,z}. The cor
responding minimal determining subsets are, respectively, {y, z}, {w}, and
{v, x}. The function-intervals associated with these subsets are shown in
Table 4.2. 0

Example 4.9.2 (Grinshpon [75]) An incompletely-specified switching
function I: {a, 1}6 __ {a, 1} is described by the statements

4>o(X) = 1 ==> I(X) = °
<l>1(X) = 1 ==> I(X) = 1 ,

(4.53)

the functions <1>0 and <1>1 being expressed as follows:

<1>0 = x~[x~x~x~ + x~(xi(x~ + x~ + x~) + x~x~)l
<1>1 = XIX2[X3X5X~ + X6(X~ + x~ + x~)l + X5X6(XIX~X4 + X~X3). (4.54)

Thus I is any function in the interval [g, hl, where

9 = <1>1

h = <I>~.
(4.55)

Repeating the search-process described in Example 4.9.1 to find the maximal
redundancy subsets, and computing complements of those subsets relative
to {x}, x2, x3, x4, x5, X6}, we derive the following minimal determining sub
sets: {Xl,X3,X6}, {X2,X3;X4}, {X2,X5,X6}, {X3,X5,X6}, {XI.X2,X3,X5}, and
{XbX2,X6}. 0

112 CHAPTER 4. BOOLEAN ANALYSIS

Subset Test Redundant?

0 v'w'xy' z + vw'x'yz' < v' x + vx' + w' + y + z yes
{v} w'xy'z + w'x'yz' ~ w' + y + z yes
{v,w} xy'z + x'yz' ~ y+z yes
{v,w,x} y'z+yz' < y+z yes
{v,w,x,y} z + z' < z no
{v,w,x,z} y' + y < y no
{v,x} w'y'z + w'yz' < w'+y+z yes
{v,x,y} w'z + w'z' < w' + z yes
{v,x,y,z} w' ~ w' yes
{w} v'xy'z + vx'yz' < v' x + vx' + y + z yes
{w,x} v'y'z + vyz' < y+z yes
{w,x,y} v'z+vz' ~ z no
{w,x,z} v'y' + vy < y no
{w,y} v'xz + vx'z' < v'x+vx'+z yes
{w,y,z} v'x + vx' < v'x + vx' yes

Table 4.1: Development of maximal redundancy subsets.

Minimal Determining Subset

{y,z}
{w}

{v,x}

Function-Interval

[y'z + yz', y + z]
[w', w']

[v'x + vx', v'x + vx']

Table 4.2: Minimal determining subsets and associated intervals.

4.10. SUBSTITUTION 113

4.10 Substitution

We have seen that a variable may be removed from a Boolean formula by
calculating one of the following with respect to that variable:

• its quotient,
• its conjunctive eliminant,
• its disjunctive eliminant, or
• its Boolean derivative.

Another way to remove a variable is by substitution. Suppose we are
given the formula

a'xy + bx'z

and we wish to remove x by the substitution

x = cy.

(4.56)

(4.57)

If we replace each appearance of x in the original formula by the formula cy,
and each appearance of x' by c' + y', the result after simplification is

a'cy + bc'z + by'z. (4.58)

Such direct replacement is natural for hand-calculation, but can be awk
ward to automate. A more readily-automated procedure is provided by the
following theorem.

Theorem 4.10.1 Let f and 9 be Boolean formulas on a common Boolean
algebra B, and let x be one of the variables appearing in the formula f.
The result of substituting g for x in the formula f is given by either of the
following formulas:

ECON(J + (x EB g), {x})

EDIS(J· (x' EB g), {x}).

(4.59)

(4.60)

Proof. The result of substituting x = 9 into the formula f(x, y, ...) is the
formula f(g, y, .. .), which has the expanded form

[1(0, y, . ..) + g] [f(1, y, . ..) + g'] .

The latter formula may be expressed equivalently as

ECON(x'(J(O, y, ...) + g) + x(J(l, y, ...) + g'), {x}),

which is equivalent in turn to (4.59). Similar calculations verify (4.60). 0

114 CHAPTER 4. BOOLEAN ANALYSIS

Example 4.10.1 Applying (4.59), the result of substituting x = cy in for
mula (4.56) is the formula

ECON(a'xy + bx'z + (x $ cy), {x}),

i.e.,
[bz + cy] [a'y + c' + y'] ,

which takes the form (4.58) when multiplied out and simplified. 0

Example 4.10.2 The circuit of Example 4.7.2 is described by the equations

Zl = XIX2

Z2 X3 + Zl •

The consequent

(4.61)

(4.62)

(4.63)

was obtained in that example by eliminating Xl. An alternative approach is
to perform the substitution (4.61) in the right-hand side of equation (4.62).
Applying (4.59), we write

Z2 = ECON(X3 + Zl + (Zl $ XIX2), {ztJ)

which yields (4.63). If we apply (4.60), viz.,

Z2 = EDIS({x3 + zd . (z~ $ XIX2), {ztJ) ,

we obtain the same result. 0

Example 4.10.3 Given a Boolean function f and a term t, the Boolean
quotient fit (Section 2.15) is the function that results when the substitution
t = 1 is carried out in f. Thus

fit = ECON(J + (t $1),T)

= ECON(J+t',T)

where T is the set of variables in the term t. Let us apply formal substitution
to evaluate the quotient f{x, y, z)lxy':

f(x,y,z)lxy' ECON(J + x' + y,{x,y})

= (J{O, 0, z) + 1)(J(0, 1, z) + 1)(J{1, 0, z) + 0)(J{1, 1, z) + 1)

= f(1,0,z).

Thus formal substitution produces the same result as do the methods of
Section 2.15. 0

4.11. THE TAUTOLOGY PROBLEM 115

4.11 The Tautology Problem

A basic problem in propositional logic and Boolean reasoning is to decide
whether the members of a given set of terms (products) sum to one. Specif
ically, the problem is to determine whether the relation

(4.64)

is an identity, where tl, ... , tm are products of variables (complemented or
uncomplemented) from the set X = {Xl, ... ,Xn }.

This problem arises in proving theorems in the propositional calculus [47,
51,53], in deciding the consistency (i.e., solvability) of a Boolean equation
[221] and in determining minimal formulas for switching functions [18, 37,
70, 175, 176]. See Galil [62] for a detailed study of the complexity of this
problem.

4.11.1 Testing for Tautology

A boolean formula is a tautology, clearly, if evaluating its Blake canonical
form produces the I-formula. More efficient tests [175,51,47,222] are based
on the fact that a Boolean formula F is a tautology if and only if its Boolean
quotients with respect to x' and x are tautologies, where x is anyone of its
arguments. Each such test employs an elaboration of the following rules:

1. If F is is empty (i.e., it contains no terms), then F is not a tautology.

2. If F contains the term 1, then F is a tautology.

3. Otherwise, F is a tautology if and only if Flu' is a tautology and Flu
is a tautology, where u is an argument of F.

Example 4.11.1 To improve efficiency in hand-calculation, we amend the
second of the foregoing rules to read as follows: "If F contains the term 1,
or a pair u and u' of single-letter terms, then F is a tautology." Let us apply
the amended rule-set to the formula

F = w'y'z + xy + yz + x'z' + w'x + wy' .

F does not satisfy Rule 1 or Rule 2; therefore we evaluate Fix' and Fix'
(variable x is chosen arbitrarily):

Fix' = w'y'z + yz + z' + wy'
Fix = w'y'z+y+yz+w'+wy'.

116 CHAPTER 4. BOOLEAN ANALYSIS

F is a tautology if and only if each of the foregoing quotients is a tau
tology. Neither quotient satisfies Rule 1 or Rule 2; therefore we divide each
by some letter and its complement:

(Fjx')jy'
(Fjx')jy =
(Fjx)jy' =
(Fjx)jy =

Fjx'y'
Fjx'y
Fjxy'
Fjxy

=
=
=
=

w'z+z'+w
z+ z'
w'z+w'+w
1+z+w'

The only one of the foregoing quotients not verified to be a tautology by
either Rule 1 or the amended Rule 2 is (Fjx')jy' = Fjx'y' = w'z + z' + w.
We therefore generate quotients with respect either to w or to Z; we choose
w:

(Fjx'y')jw' = Fjx'y'w' = z + z'
(Fjx'y')jw = Fjx'y'w = z' + 1

Every formula has thus been verified by one of the rules to be a tautology;
hence F is a tautology. 0

4.11.2 The Sum-to-One Theorem

It is frequently necessary in Boolean calculations to determine if a given term
is included in a given Boolean function. The following theorem, employed
by Samson & Mueller [175] and Ghazala [70] to simplify switching formulas,
transforms the problem of determining such inclusion into one of determining
the tautology of an associated function.

Theorem 4.11.1 Let f be a Boolean function and let t be a term. Then

t ~ f {:::::} f jt = 1 . (4.65)

Proof. The implication =::} follows from Proposition 2.15.1 for f ~ t
and 9 ~ f, while the converse implication follows from Proposition 2.15.4.
o

Example 4.11.2 Let f = xy' +x'z+yz' and let t = y'z. To decide ift ~ f,
we evaluate f jt:

(xy' + x'z + yz')jy'z = x + x' = 1 .

Thus y'z ~ xy' + x'z + yz'. 0

4.11. THE TAUTOLOGY PROBLEM 117

4.11.3 Nearly-Minimal SOP Formulas

A much-studied problem in switching theory is to find minimal SOP formulas
for Boolean functions. This problem has little direct importance in Boolean
reasoning; for computational efficiency, however, it is useful to be able to
represent a function by a nearly-minimal formula. The sum-to-one theorem
enables this to be done conveniently for a function expressed (as is usual in
reasoning-computations) in Blake canonical form.

It was shown by Quine [161] that the terms of a least-cost SOP formula
for a Boolean function I are necessarily prime implicants of I-provided that
the cost of a formula increases if the number of literals in a term increases.
We assume such a cost-measurej thus a simplified SOP formula for I is a
subformula of BCF(J). An irredundant formula for I is a disjunction of
prime implicants of I that (a) represents I and (b) ceases to represent I if
any of its terms is deleted. The search for simplified SOP formulas therefore
need only be over the irredundant formulas.

The following procedure converts BC F(J) into an irredundant formula
for I by a succession of term-deletions. The cost of an SOP formula is
assumed to be the total number of literals in the formula. The procedure
attempts to minimize this cost by considering the most expensive terms
(those comprising the most literals) first for deletion. This procedure does
not guarantee minimality, but typically produces minimal or near-minimal
costs.

Step 1. Sort the terms of BC F(J) according to the number of literals they
contain, putting those having the most literals first. Denote by F the
resulting formula.

Step 2. Let T be a term of F and let F - T denote the formula that results
when T is removed from F. Beginning with the first term in F, carry
out the following process until all terms T have been considered:

If (F - T)/T is a tautology, replace F with F - Tj otherwise
do nothing.

Return the resulting formula.

Step 1 generates all of the candidate-terms for an irredundant formula,
and arranges that the most costly terms (those having the largest number
of literals) will be considered first for removal. Step 2 makes use ofthe sum
to-one theorem (Theorem 4.11.1) to produce an irredundant representation
F for I; no term of F is included in the remainder of F.

118 CHAPTER 4. BOOLEAN ANALYSIS

Example 4.11.3 To produce a nearly-minimal formula corresponding to
the formula

f = ABE' + GD'E + AG'D'E' + ABDE + A'B'GD + AB'G + A'B'G'D' ,

we first carry out Step 1 of the foregoing procedure, i.e., we generate the
terms of BG F(J) and arrange them in descending order of the number of
literals they contain:

BGF(J) B'G'D'E' + A'B'D'E + A'B'G'D' + ABE' + AD'E' +

= +B'GE+GD'E+ABD+B'GD+AG.

The formula remaining after completion of Step 2 is

f = G D' E -+ ABD + B' G D + A' B' G' D' + AD' E' . (4.66)

It can be shown that there are four irredundant formulas for f; each has the
form

f = GD'E + ABD + B'GD+ < OTHER TERMS>

where < OTHER TERMS> may be one of the following:

A' B'G' D' + AD' E'
B'G'D'E' + A'B'D'E + AD'E'
B'G'D'E' + A'B'G'D' + ABE'
B'G'D'E' + A'B'D'E + ABE'

+ AG
+ AG

Thus 4.66 is a least-cost formula for the given function. 0

EXERCISES 119

Exercises

1. Prove or disprove: any two inconsistent Boolean systems are equiva
lent.

2. (Couturat [41, p. 36]) Prove the following equivalence:

{ a < bEflC} {a =
b ~ aEflc <==> b =
C ~ aEflb c =

bEflc }
aEflc
aEflb

3. Prove that the following implication is valid:

4. (Lowenheim [124], Rudeanu [172]). Let J, g, and h be Boolean func
tions and assume that J(X) = 0 is consistent. Show that

[J(X) = 0 => g(X) = h(X)] <==> [gJ' = hJ'] .

5. Let J, g, and h be Boolean functions. Show that

[J(X) = 0 => g(X) = 0] =>
[[g(X) = 0 => h(X) = 0] => [J(X) = 0 => h(X) = 0]]

6. (Rudeanu [172, p. 100]). Show that S => [T <==> U] is valid, where
S, T, and U are defined as follows:

s: x ~ a + b' and y ~ a' + b

T: b'x + ay' = a and bx' + a'y = b

U: x ~ ab' and y ~ a'b

7. The RS-Iatch, a basic component in digital circuits, is characterized
by the coupled equations

Q = S+X'
X = R+Q',

(4.67)

(4.68)

where R and S are the latch's inputs and Q and X are its outputs.
For proper operation, the inputs should be constrained to satisfy the

120 CHAPTER 4. BOOLEAN ANALYSIS

condition RS = 0, in which case we wish to verify that the outputs
will satisfy the condition X = Q'. The problem: show that the system
(4.67, 4.68) implies the condition

RS = ° ==> X = Q' .

8. In the earliest published work applying Boolean algebra to switching
circuits, Nakasima [146] lists rules, shown below, to assist in the solu
tion of Boolean equations. Verify each rule.

(a) If A + X = A, then X ~ A.

(b) If AX = A, then A ~ X.

(c) If A + X = B, then A' B ~ X ~ A + B.

(d) If AX = B, then AB ~ X ~ A' + B.

(e) If AX + B = C, then B' C ~ AX ~ B + C
and (A + B)C ~ B + X ~ A'B' + C.

(f) If (A + X)B = C, then BC ~ A + X ~ B' + C
and (A' + B')C ~ BX ~ AB + C.

(g) If A + X = B and A' + X = C, then X = BC.

(h) If AX = B and A' X = C, then X = B + C.

(i) If A + X = B and AX = C, then X = B(A' + C).

9. Assume that B = {O, 1, a', a}. It is asserted in the text that:

(a) the set of solutions of the equation a'x + y = ° is {(O,O),(a,O)};
and

(b) if f(x,y) = ° has solutions (0,0) and (a, 1) then it must also have
solutions (0, a') and (a,a).

Prove these assertions.

10. Given the Boolean system

awx' + bx = b'x'y'

by'+a ~ x+y,

(a) Reduce to a single equivalent equation of equals-zero form.

(b) Reduce to a single equivalent equation of equals-one form.

EXERCISES 121

(c) Eliminate x, expressing the resultant in equals-one form.

Express all resulting formulas in Blake canonical form.

11. Let B = {O, 1, a', a} and define a constraint on (x, y) as follows:

(x,y) E {(O,a),(l,a'),(a',On.

Decide whether this is a Boolean constraint, making your reasoning
explicit.

12. A constraint on the variables x, y, z is expressed by the Boolean equa
tion

ax'y + bz = a'yz + xz' .

Express the same constraint by an equation of the form

g(x,y,z)=a+z,

representing the function g in Blake canonical form.

13. The equation ab + x = b' is equivalent to the equation f(x) = ° and
also to the equation g = a + b. Express the functions f and g by
simplified formulas.

14. Given

f = AE' F' + DE F + B DE' + A' B' E' F' + BCD' F +
+BDEF' + B'D'EF+ BD'E'F',

(a) Express f in Blake canonical form.

(b) Assume the resultant of elimination of the variables Band C from
the equation f = ° to be the equation g = 0. Express the function
g in simplified form. Explain your method.

15. The system

ax + y xy

x' + y < a+ y

expresses a constraint on the variables x and y over the Boolean algebra
B = {O, 1, a', a}. Express the same constraint by the equation ax =
g(x, y), writing g(x, y) as a simplified formula.

122 CHAPTER 4. BOOLEAN ANALYSIS

16. Let B = {O, 1, a', a} and define constraints on (x, y) as follows:

(a) (x,y) E {(a, a), (1, I)}
(b) (x,y) E {(a, a), (a, 1),(1, I)}

Decide in each case whether the constraint is Boolean, making your
reasoning explicit.

17. Given

f = AE'F'+DEF+BDE'+A'B'E'F'+BCD'F+
+BDEF' + B'D'EF+ BD'E'F' ,

(a) Express f in Blake canonical form.

(b) Assume the resultant of elimination of the variables B and C from
the equation f = 0 to be the equation 9 = o. Express the function
9 in simplified form. Explain your method.

18. Let S be a subset of the arguments in formulas representing Boolean
functions 9 and h. Show that the resultant of elimination of the argu
ments in S from the interval

is the interval

ECON(g,S)::5 x::5 EDIS(h,S).

19. Show that the conditions

(4.69)

and
EDIS(f,Xl) = ECON(f,xt} (4.70)

are equivalent.

20. Derive the minimal determining subsets listed in Example 4.9.2 by
application of the search-procedure described in Section 4.9.

21. Devise a procedure to convert a given SOP formula into an equivalent
orthogonal SOP formula having the fewest possible terms (cf. Section
2.13).

Chapter 5

Syllogistic Reasoning

We outline in this chapter an approach, which we call "syllogistic," to the
solution oflogical problems. The essential features of the syllogistic approach
were formulated by Blake [10].

The examples we consider are expressed either in the algebra of propo
sitions or the algebra of classes; these algebras are discussed in Chapter 2.
The elementary units of reasoning in class-logic are classes, i.e., subsets of
a universal set. George Boole's "algebra of logic" [12, 13], for example, was
formulated in terms of classes. The elementary units in propositional logic,
on the other hand, are propositions, i.e., statements that are necessarily ei
ther true or false. Although the examples we present are in terms either of
propositions or classes, the methods we discuss are applicable in any Boolean
algebra.

Syllogistic reasoning makes use of just one rule of inference, rather than
the many rules conventionally employed. It proceeds by applying the opera
tion of consensus repeatedly to a formula I representing given logical data.
We have seen (Chapter 3) that such repeated consensus-generation produces
BCF(J), the Blake canonical form for I, together possibly with additional
terms that are absorbed by the terms in BC F(J). Syllogistic reasoning is
thus intimately associated with the Blake canonical form.

Syllogistic reasoning is related to the resolution-based techniques em
ployed in predicate logic. The terms of syllogistic formulas are the duals,
in the Boolean domain, of the clauses of predicate logic. The operation of
consensus is the Boolean dual of resolution. Syllogistic reasoning differs from
reasoning in predicate logic, however, in one important way. Resolution in
the predicate calculus is employed as part of a strategy of theorem-proving

123

124 CHAPTER 5. SYLLOGISTIC REASONING

by refutation; a problem is formulated as a theorem, which is proved (possi
bly assigning values to variables as aside-effect) by conjoining the theorem's
denial with the premises and deducing a contradiction. In syllogistic reason
ing, on the other hand, the strategy is to chain forward from the premises,
represented by an equation of the form f = 0, until all of the "prime" con
sequents are generated. A given consequent (theorem) can then be verified
from the prime consequents by simple term-by-term comparisons.

Forward chaining is not feasible in predicate logic because it is not guar
anteed to terminate. Even in the finite Boolean domain (where termination
is guaranteed), theorem-proving typically requires more computation by for
ward chaining than by refutation. In most applications, however, Boolean
problems are not formulated as theorems to be proved. Forward chaining is
typically the first step in the solution of such problems by Boolean reason
ing, after which appropriate operations of Boolean analysis (e.g., elimination,
division, substitution, solution) are performed.

Example 5.0.1 Suppose that our knowledge concerning the endeavors of a
certain college student is expressed by the following statements [97]:

1. If Alfred studies, then he receives good grades.

2. If Alfred doesn't study, then he enjoys college.

3. If Alfred doesn't receive good grades, then he doesn't enjoy college.

What may we conclude concerning Alfred's academic performance?

A correct (but probably not obvious!) conclusion is that Alfred receives
good grades. Our object in this chapter is to show how syllogistic reasoning
enables us to arrive at such a conclusion mechanically.

5.1 The Principle of Assertion

Information is conveyed in ordinary algebra by equations. Boole and other
nineteenth-century logicians therefore found it natural to write logical state
ments as equations. To analyze a collection of statements in Boole's algebra
of logic, the corresponding equations are reduced to a single equivalent equa
tion of the form

f(A,B,C, ...) = 0, (5.1)

5.1. THE PRINCIPLE OF ASSERTION 125

where f is a Boolean function and A, B, C, ... are symbols which, in Boole's
formulation, represent classes of objects.

All of the properties of Boolean equations remain valid if the symbols
A, B, C, ... in (5.1) are propositions, rather than classes, and if 0 and 1 repre
sent, respectively, the identically false and identically true propositions. Cer
tain statements not involving equations, however, are valid only for propo
sitions. These statements derive from an axiom peculiar to the calculus of
propositions, called the principle of assertion (see Couturat [41]), which may
be stated as follows:

[A = 1] = A. (5.2)

In Couturat's words, "To say that a proposition A is true is to state the
proposition itself." It is therefore possible in the calculus of propositions to
dispense entirely with equations. If f(A, B, C, ...) is a propositional (Le.,
two-valued) function, then equation (5.1) may be stated equivalently by the
proposition

i'(A,B,C, ...) . (5.3)

Modern logicians have abandoned equations in the formulation of propo
sitionallogic. We shall employ the classical equation-based approach, how
ever, in order to apply the techniques of Boolean analysis without modifica
tion to problems in propositional logic.

Let us convert the set of premises in Example 5.0.1, concerning Alfred's
collegiate endeavors, to a single equivalent equation of the form (5.1). We
begin by expressing the three given premises by the system

1. S --+ G
2. S' --+ E

3. G' --+ E'

of propositions, the symbols E, G, and S being defined as follows:

E =
G
S =

"Alfred enjoys college"
"Alfred gets good grades"
"Alfred studies".

(5.4)

The premises in (5.4) may be represented equivalently by the system

SG' =
S'E' =
G'E =

o
o
0,

(5.5)

126 CHAPTER 5. SYLLOGISTIC REASONING

of propositional equations. We thus arrive at a single equation equivalent to
the set of premises given in Example 5.0.1, i.e.,

SG' + S' E' + G' E = 0 . (5.6)

5.2 Ded uction by Consensus

In traditional logic, deduction is carried out by invoking a number of rules of
inference; these rules announce that certain conclusions follow from certain
sets of premises. Some logic-texts, e.g., [97], list hundreds of such rules.
A cardinal advantage of syllogistic reasoning is that it employs only one
rule of inference, that of hypothetical syllogism. This rule states that the
conclusion given below follows from its premises (we express the components
of this syllogism both as conditionals and as equations):

Major Premise
Minor Premise
Conclusion

Conditional
A~B

B~C

A~C

Equation
AB' = 0
BC' =0
AC' = 0

The two premises may be expressed by the single equation f = 0, where
f is given by

f = AB' +BC'. (5.7)

The conclusion is expressed by the equation 9 = 0, where

9 = AC'. (5.8)

The problem of deduction in this case is that of obtaining the term AC'
(representing the conclusion) from the terms AB' and BC' (representing
the premises). We note that AC' is the consensus of the terms AB' and
BC'; thus, reasoning by the rule of hypothetical syllogism is carried out by
producing the consensus (which Blake called the "syllogistic result") of the
terms representing the premises. The utility of the consensus-operation is not
confined, however, to simple syllogisms. The single operation of consensus
suffices to produce a simple representation of all conclusions to be inferred
from any set of premises in propositional logic. Repeated application of
consensus to an SOP formula f, followed by absorption, produces BCF(J),
i.e., the disjunction of all of the prime implicants of f. Thus, given a set of
premises reducible to an equation of the form (5.1) , the formula BCF(J)

5.3. SYLLOGISTIC FORMULAS 127

represents (in a way we shall subsequently make precise) all of the conclusions
that may be inferred from those premises.

Let us continue our study of Alfred's collegiate endeavors. Converting
the left side of (5.6) to Blake canonical form, we represent everything we
know about Alfred by the equation

S'E' + G' = O.

Equation (5.9) is equivalent to the system

S'E' 0

G' = 0,

whose components may be given the verbal interpretations

(a) "Alfred studies or Alfred enjoys college."
(b) "Alfred gets good grades."

(5.9)

(5.10)

(5.11)

Statement (a) is a re-phrasing of one of the original premises; statement
(b) is the not-very-obvious conclusion announced at the beginning of this
chapter.

5.3 Syllogistic Formulas

Let A, B, C, ... be Boolean variables and suppose that we are given a system
of statements (premises) reducible to the equation (5.1). Let us suppose
further that (5.1) is consistent. A consequent (or conclusion) of (5.1) is a
statement or system of statements reducible to the equation

g(A,B,C, ...) = 0 (5.12)

such that the implication

f=O ==> g=O (5.13)

is satisfied. Thus, by Theorem 4.4.1, (the Extended Verification Theorem),
equation (5.12) is a consequent of equation (5.1) if and only if the relation

g'S,f (5.14)

holds. Looking for consequents ofthe equation f = 0 is equivalent, therefore,
to looking for functions 9 included in f. Let p be a prime implicant of f.

128 CHAPTER 5. SYLLOGISTIC REASONING

Then we call the equation p = 0, which is clearly a consequent of f = 0, a
prime consequent of f = 0.

We assume henceforth that all Boolean functions are expressed by SOP
(sum-of-products) formulas. Deciding whether a given SOP formula is in
cluded in another is not in general an easy task. It is not obvious, for
example, that the function

9 = BC'D + AD' (5.15)

is included in the function

f = AC' + CD' + A'D. (5.16)

Comparing two SOP formulas for inclusion becomes much easier, however, if
we confine ourselves to formal inclusion. Recalling the the definition given
in Chapter 3, we say that 9 is formally included in f, written 9 ~ f, in case
each term of 9 is included in (Le., has all the literals of) some term in f. It
is clear that formal inclusion implies inclusion; that is,

(5.17)

for all SOP formulas f and g. We call an SOP formula f syllogistic in case
the converse of (5.17) also holds, Le., in case the implication

(5.18)

holds for all Boolean formulas g. Thus an SOP formula is syllogistic if and
only if every SOP formula that is included in it is also formally included in
it.

It is shown in Appendix A (Theorem A.3.1) that an SOP formula for
a Boolean function f is a syllogistic representation of f if and only if it
contains all the prime implicants of f. It follows directly that the simplest
syllogistic formula for f is BCF(J).

Suppose that a Boolean function f is expressed by a syllogistic formula,
e.g., by BC F(J). Then one may tell by inspection (or conveniently program
a computer to tell) if any given SOP formula is included in f. Consider for
example the function defined by (5.16); in Blake canonical form,

BCF(J) = AC' + CD' + A'D + AD' + C'D + A'C . (5.19)

Deciding whether the function 9 defined by (5.15) is included in (5.19),
unlike deciding whether 9 is included in the equivalent formula (5.16), is
a simple matter of inspection. The terms BC'D and AD' of (5.15) are
included, respectively, in the terms C'D and AD' of BCF(J); hence, 9 is
formally included in (5.19), and therefore included in (5.16).

5.4. CLAUSAL FORM 129

5.4 Clausal Form

Suppose a Boolean function f is expressed as an SOP formula, i.e.,

f = PI + P2 + ... + Pic, (5.20)

where PI, ... ,Pic are terms (products). Then the equation f = 0 is equivalent
to the system

Consider any term

PI = 0

P2 = 0

Pic = O.

Pi = al" .amb~ .. . b~

(5.21)

of (5.20). (If m = 0, i.e., if no a's are present, we consider Pi to have the
form 1 . b~ ... b~; if n = 0, we consider Pi to have the form al ... am ·0'.) The
equation Pi = 0 may be written in the equivalent form

al ... am . b~ ... b~ = 0 . (5.22)

We call a statement having the specialized form (5.22) a clause, and say
that it is in clausal form. A clause whose left-hand side is a prime implicant
of f will be called a prime clause of f = O. If the a's and b's are propositions,
then we may write the clause (5.22) equivalently as a conditional, i.e.,

(5.23)

which we also call a clause and which we read as

"IF al AND··· AND am, THEN bl OR··· OR bn". (5.24)

If m = 0, then (5.24) degenerates to 1 --+ bl + ... + bn , which may be read

"bl OR ... OR bn".

If n = 0, then (5.24) degenerates to al" ·am --+ 0, for which a direct (if
awkward) reading is

"IT IS NOT THE CASE THAT al AND· .. AND am".

130 CHAPTER 5. SYLLOGISTIC REASONING

Some examples of equations of the form Pi = 0, together with their
corresponding clauses, are tabulated below.

Equation
AB'CD'E' = 0

abx = 0
U'V'W' = 0

Clause
AC -- B+D+E
abx -- 0

1 -- U+V+W

Example 5.4.1 Alice, Ben, Charlie, and Diane are considering going to a
Halloween party. The social constraints governing their attendance are as
follows:

1. If Alice goes then Ben won't go and Charlie will.

2. If Ben and Diane go, then either Alice or Charlie (but not both) will
go.

3. If Charlie goes and Ben does not, then Diane will go but Alice will not.

Let us define A to be the proposition "Alice will go to the party" , B to be
"Ben will go to the party," etc. Then statements 1 through 3 above may be
translated as follows:

Conditional Equation

1. A -- B'C AB+AC' = 0
2. BD -- A'C + AC' BD(A'C' + AC) = 0
3. B'C -- A'D AB'C +B'CD' = 0

The given data are therefore equivalent to the propositional equation j = 0,
where j is given by

j = A(B + C') + BD(A'C' + AC) + B'C(A + D') . (5.25)

The Blake canonical form for j, Le.,

BCF(J) = BC'D + B'CD' + A, (5.26)

is found from (5.25) by multiplying out to obtain an SOP formula, applying
consensus repeatedly, and deleting absorbed terms. The prime clauses for

5.4. CLAUSAL FORM 131

the Halloween party are therefore the following:

BD ~ C "If Bill and Diane go to the party,
then Charlie will go."

C ~ B+D "If Charlie goes to the party,
then either Bill or Diane will go."

A ~ 0 "Alice will not go to the party."

We show in Section 5.5 that clauses derived in this way constitute a complete
and simplified representation of all conclusions that may be inferred from
the given premises.

Example 5.4.2 The RS flip-flop is defined by the equations

Y = S+yR'
o = RS

(characteristic equation)
(input constraint)

where R (Reset) and S (Set) are input-excitation signals and y and Yare
the present state and next states, respectively. The foregoing equations are
equivalent to the single equation f = 0, where BC F(J) is given as follows:

BCF(J) = RS + RY + SY' + R'yY' + S'y'Y .

The associated prime clauses, viz.,

1. RS ~ 0
2. RY ~ 0
3. S ~ Y
4. Y ~ R+Y
5. Y ~ S+y

may be interpreted as follows:

1. "Set and Reset cannot be high simultaneously."

2. "Reset and the next state cannot be high simultaneously."

3. "If Set is high, the next state will be high."

4. "If the present state is high, then Reset is high or the next state will
be high."

5. "If the next state will be high, then Set is high or the present state is
high."

132 CHAPTER 5. SYLLOGISTIC REASONING

These statements, though doubtless not as intuitive to a designer as are
the characteristic equation and input constraint, provide a standardized and
complete specification for the RS flip-flop. The specification is complete in
that any clause that can be inferred from the given premises is a superclause
of one of the prime clauses. Thus all simplified deduced clauses are present
among the prime clausesj clause 1 for example may be deduced from clauses
2 and 3.

5.5 Producing and Verifying Consequents

Let us consider two collections of logical data, one reducible to the equation
f = 0 and the other reducible to the equation 9 = O. We assume as before
that the functions f and 9 are expressed as SOP formulas. As we have seen,
the equation 9 = 0 is a consequent of f = 0 if and only if each term of 9
is included in some term of BCF(J). Given BCF(J), therefore, the task of
verifying consequents of f becomes a matter of term-by-term comparison.
The task of producing consequents may similarly be performed, as we now
demonstrate, on a termwise basis.

5.5.1 Producing Consequents

To illustrate the process of producing consequents systematically, let us
return to Example 5.0.1, concerning Alfred's collegiate endeavors. The
premises reduce to the equation f = 0, where

BCF(J) = E'S' + G' . (5.27)

An equation 9 = 0 is therefore an Alfred-consequent if and only if each term
of 9 is included in either E'S' or G'j we tabulate the possible terms of g, in
terms of propositions E, G, and S, in Table 5.l.

Every function 9 forming a consequent 9 = 0 of the Alfred- premises (and
nothing else) is assembled as the disjunction of a subset (possibly empty) of
the eleven distinct terms enumerated in Table 5.1 (the term E'G'S' appears
twice). Some of the consequents thus assembled are the following:

E'S' + E'G' + G'S = 0

EG'S = 0

E'GS' + EG'S = 0

0 = o.

5.5. PRODUCING AND VERIFYING CONSEQUENTS 133

Terms included in E'S' Terms included in G'
E'S' G'

E'G'S' E'G'
E'GS' EG'

G'S'
G'S

E'G'S'
E'G'S
EG'S'
EG'S

Table 5.1: Terms included in E'S' + G'.

There are 211 = 2048 SOP g-formulas, distinct to within congruence, in the
three letters E, G, and S that may be assembled in this way. The function
j, however, covers 5 minterms on E, G, and Sj thus there are only 25 = 32
distinct g-functions included in j. Although there is redundancy from a
functional standpoint, each of the 2048 g-formulas represents a distinct set
of clauses deducible from the premises. The third of the four consequents
above, for example, corresponds to the following set of clauses:

G --+ E+S

ES --+ G

"If Alfred gets good grades
then Alfred enjoys college
or Alfred studies."

"If Alfred enjoys college
and studies
then Alfred gets good grades."

5.5.2 Verifying Consequents

Let us decide whether the following proposition is a consequent of the Hal
loween-party premises of Example 5.4.1:

"If Alice and Ben both go to the party, or if neither of them goes,
then Diane will go or Charlie will not go."

As a symbolic conditional:

A' B' + AB --+ C' + D . (5.28)

134 CHAPTER 5. SYLLOGISTIC REASONING

As an equation:

A' B'CD' + ABCD' = 0 . (5.29)

To verify that (5.29) is a valid consequent of the Halloween-party premises,
we recall the Blake canonical form (5.26):

BCF(J) = BC'D + B'CD' + A .

The term A' B'CD' of (5.29) is included in the term B'CD' of BCF(J)j
likewise, the term ABCD' of (5.29) is included in the term A of BCF(J).
Hence, 9 <:: BCF(J) , and thus 9 ~ f. We conclude therefore that the
proposed consequent is valid.

5.5.3 Comparison of Clauses

The procedure we have just employed is to compare terms of 9 with terms
of Be F(J). We may also proceed by expressing a proposed consequent as
a system of clauses, each of which we compare with the prime clauses. Let
us suppose that terms p and q correspond, respectively, to clauses P and Q.
Then p is included in q if and only if P is a superclause of Q, i.e., if and only
if each letter appearing in the clause Q also appears, on the same side, in
the clause P. The relevant clauses for the Halloween party are listed below.

Prime Clauses

BD - C
C - B+D
A - 0

Clauses of Proposed Consequent

C - A+B+D
ABC - D

We observe that C -_ A + B + D is a superclause of the prime clause
C - B + D and that ABC - D is a superclause of the prime clause
A _ 0, verifying that the system of clauses shown on the right above is a
valid consequent of the system of prime clauses shown on the left.

5.6 Class-Logic

Our examples thus far have been propositional. Let us now consider a prob
lem in class-logic.

5.6. CLASS-LOGIC 135

Example 5.6.1 On p. 112 of his Symbolic Logic [34], Lewis Carroll asks
his readers to find conclusions deducible from the following premises:

(1) Babies are illogical.
(2) Nobody is despised who can manage a crocodile.
(3) Illogical persons are despised.

An appropriate universe is the set of human beings, among whose classes
are the following: B = babies; M = able to manage a crocodile; D = de
spised; and L = logical. We write the premises as inclusions and as equations:

Inclusions
(1) B ~ L'
(2) M ~ D'
(3) L' C D

Equations
BL 0
MD 0
L'D' = o.

(We have used the set-notation ~ for inclusion; the generic notation ~ for
inclusion in a Boolean algebra may also be used.)

The premises are equivalent to the single Boolean equation f = 0, where
f = B L + M D + L'D'. Converting f to Blake canonical form, we obtain

BCF(f) = BL + MD + L'D' + BD' + ML' + BM.

The prime consequents, in clausal form, are the following:

(a) BL C 0
(b) MD C 0
(c) 1 C L+D
(d) B C D
(e) M ~ L
(f) BM C O.

Prime consequents (a), (b), and (c) are the clausal forms, respectively, of
premises (1), (2), and (3). Prime consequents (d), (e), and (f) may be given
the following interpretations:

(d) Babies are despised.
(e) Anybody who can manage a crocodile is logical.
(f) No baby can manage a crocodile.

All of the premises survive as prime consequents because Carroll's ex
ample has a specialized logical form, called "sorites," which may be resolved
into a chain of simple inclusions. The inclusion-chain for this example is

BeL' CDC M'.

136 CHAPTER 5. SYLLOGISTIC REASONING

5.7 Selective Deduction

An important class of logical problems involves selective deduction from
given hypotheses. The following example is a. modification of one given by
Ledley [113].

Example 5.7.1 Enzyme biochemistry has two characteristic features. First,
it is usually difficult to isolate an enzyme in pure form, and thus the chemist
must deal with imprecise and indirect knowledge of the enzyme content of
the experimental ingredients. Second, usually more than one chemical reac
tion takes place at once, and even these are observed indirectly. Suppose a
chemist is studying enzymes A, B, and C in relation to reactions X, Y, and
Z. He has completed the following experiments:

1. In the first experiment, a solution containing neither A, B, nor C
produced reaction Y but neither X nor Z.

2. In the second experiment, the solution contained A and either B or C
or both (the chemist could not be sure); the reaction was neither Y
nor was it X and Z together.

3. In the third experiment, the solution had B but not A, or did not have
B but had C. Reactions X and Y occurred, or reaction X did not
occur but Z did.

4. In the fourth experiment, the chemist obtained a solution from a source
that had C, together with A or B or both, or else had neither A nor
C. Either reaction X did not take place, or both Y and Z did.

5. In the fifth experiment, a solution containing A but not B either failed
to produce reaction X or failed to produce reaction Z.

Having made the foregoing observations, the chemist seeks answers, in the
simplest possible form, to the following questions:

(a) What is known concerning the reactions X, Y, and Z, independent of
any knowledge of enzyme content?

(b) What is known concerning the enzymes A, B, and C, given each ofthe
following reactions?

5.7. SELECTIVE DEDUCTION

i) X occurred;
ii) X did not occur;

iii) Z occurred;
iv) Z did not occur.

137

Our approach will be to reduce the information provided by experiments
1 through 5 to a single equation f = 0, and then to express the function f
in Blake canonical form. This form enables the chemist to eliminate conve
niently the variables not of current interest.

The experimental information is expressed by the following system of
conditionals:

(1) A' B'C'
(2) A(B + C)
(3) A'B + B'C
(4) C(A + B) + A'C'
(5) AB'

---7

---7

---7

---7

---7

X'YZ'
Y'(X' + Z')
XY+X'Z
X'+YZ
X'+ Z'

This system is equivalent to the single equation f = 0, where f is expressed
by

f = A'B'C'(X+Y'+Z)+

+A(B + C)(Y + XZ) +
+(A' B + B'C)(XY' + X'Z') +

+(AC + BC + A'C')X(Y' + Z') +
+AB'XZ.

In Blake canonical form:

BCF(J) = ACX + AXZ + ACY + AB'CZ' + ABY + A'XY' + CXY' +
+Xy'Z + A'y'Z' + B'CY'Z' + A'CX'Z' + CX'YZ' +

+B'CX'Z' + A'B'C'X + B'C'XZ + A'B'C'y' + A'B'C'Z +

+A'BZ' + BCXZ' + BYZ' + A'C'XZ' .

To answer question (a) posed by the chemist, we eliminate A, B, and C
from the equation f = O. This may be done simply by deleting from the
equation BCF(f) = 0 every term involving A, B, or C (cf. Theorem 4.8.2).
The result,

Xy'Z = 0,

138 CHAPTER 5. SYLLOGISTIC REASONING

takes the clausal form
XZ--+Y.

Thus the following is known, independent of any knowledge of enzyme con
tent: if reactions X and Z occur together, then reaction Y occurs also. To
answer the first and second parts of question (b), we eliminate Y and Z from
BC FU) = 0; to answer the third and fourth parts of (b), we eliminate X
and Y. The resultants of elimination are:

Eliminating Y and Z: A' B' C' X + AC X = 0
Eliminating X and Y: AB' C Z' + A' B' C' Z + A' B Z' = 0

The foregoing equations enable us to answer the chemist's question (b), in
clausal form, as follows:

i) AC --+ 0
1 --+ A+B+C

ii) NO INFORMATION
iii) 1 --+ A + B + C
iv) AC --+ B

B --+ A

5.8 Functional Relations

Suppose we wish to look for relations among a collection ft, 12, .. ·, 1m
Bn --+ B of Boolean functions. Let the functions in such a collection be
represented, respectively, by formulas Ft , F2 , ••• , Fm on the argument-vector
X = (Xl! ... ,xn). The system

At = Ft(X)

A2 = F2(X) (5.30)

associates the symbols in the vector A = (At. ... , Am) with the correspond
ing formulas. All of the relations implied among the original functions are
therefore encoded economically in those prime consequents of (5.30) which
do not involve any of the X -arguments; let us call these the A-consequents
of (5.30). Such consequents are equations whose right-hand sides are zero;
let us call their left-hand sides the A-consequent terms.

5.8. FUNCTIONAL RELATIONS 139

The label-and-eliminate procedure. The A-consequent terms of
(5.30) are generated by reducing (5.30) to a single equivalent equation of
the form g(A,X) = 0, expanding g(A,X) into Blake canonical form, and
selecting those terms not involving X -variables. Computational efficiency is
improved if the X -variables are eliminated prior to the Blake-expansion. In
detail:

Step 1. Reduce (5.30) to the single equivalent equation

g(A,X) = o. (5.31)

Step 2. Eliminate X from (5.31), yielding the resultant

ECON(g(A,X),X) = o. (5.32)

Step 3. Express the left side of (5.32) in Blake canonical form, i.e.,

BCF(ECON(g(A,X),X)) = o. (5.33)

Example 5.8.1 Consider the Boolean functions labelled by the system

Al = Xl + X2

A2 = Xl (5.34)

A3 Xl X2

A4 = x' 2

The output of a program to derive the A-consequent terms from (5.34)
is listed below:

Al A2'A4
A2'A3
A2 A3'A4'
Al' A2
Al'A3
A3 A4
Al'A4'

140 CHAPTER 5. SYLLOGISTIC REASONING

The corresponding clauses, Le., the prime clauses of (5.34), are as follows:

Ai A4 ---) A2
A3 ---) A2
A2 ---) A3 + A4
A2 ---) Ai
A3 ---) Ai
A3 A4 ---) 0
1 ---) Ai + A4

These seven clauses, corresponding to the terms on the left side of (5.33),
constitute a simplified and complete representation of the relations holding
among the original functions. Typically only relations of specialized form
are sought; three such specializations are discussed in the following sections.

5.9 Dependent Sets of Functions

Questions concerning the dependence of collections of sets, propositions, or
Boolean functions have been widely investigated; see Marczewski [128] for
citations to early work. A set of k propositional or switching functions is
customarily said to be independent in case all 2k combinations of values are
possible. This interpretation of independence has been applied to the de
sign of switching circuits by Muller [141], Kjellberg [102], and Ledley [118].
Ledley has applied it also to problems in enzyme biochemistry [115]. Kuntz
mann [110] and Small [189] have employed this interpretation to arrive at
results concerning the decomposition of switching functions.

The foregoing interpretation is applicable to two-valued sets such as those
comprising axioms, propositions, or switching functions, but is inadequate
for sets of Boolean functions on an arbitrary Boolean algebra. Let B be
such a Boolean algebra, let T = {h, 12, ... , fm} be a set of Boolean func
tions mapping Bn into B, and let S = {h, 12, ... , fk} be a subset of T
(the first k elements of T are selected, without loss of generality). As in
Brown & Rudeanu [26, 29] (see also Marczewski [128]), we call the subset
S functionally dependent provided there is a non-constant Boolean function
h: Bk----+ B for which the identity

hChCX), ... , hCX)) = 0 (5.35)

is fulfilled; otherwise S will be called functionally independent.

5.9. DEPENDENT SETS OF FUNCTIONS 141

We consider two problems concerning the set T. The first is to establish
whether a given subset of T is dependent. The second is to produce an
economical representation for the family of all dependent subsets of T and
the complementary family of all independent subsets.

Every subset of of an independent set is independent; in particular, the
empty set is independent. Every superset of a dependent set is also depen
dent; if the family of dependent subsets is not empty, therefore, the entire
set T is dependent. An independent set is maximal in case there is no inde
pendent set strictly including it; a dependent set is minimal in case there is
no dependent set strictly included in it. A subset of T is dependent (inde
pendent), therefore, if and only if it includes a minimal dependent set (it is
included in a maximal independent set). Let us denote by 1M AX the class
of maximal independent subsets of T and by DMIN the class of minimal
dependent subsets of T.

It follows from our definition of functional dependence and from the dis
cussion in Section 5.8 that a subset S of T is dependent if and only if all of the
letters in an A-term derived from (5.30) belong to the set {AI, A2 , • •• , Ak}
ofletters associated with S.

To derive the maximal independent and minimal dependent subsets of T,
we construct a complement-free SOP formula W from (5.33) as follows. If
BGF(EGON(g(A,X),X)) is null, then W is defined to be null; otherwise,
the terms of Ware formed in one-to-one correspondence with the terms of
BGF(EGON(g(A, X), X)) by

(i) deleting all constants (elements of B), and
(ii) replacing either Ai or A~ by Ai (i = 1,2, ... , m).

Each term of the formula BG F(EGO N (g(A, X), X)) contains at least one
A-letter; hence step (i) cannot annihilate a term.

Let w: {O, 1}n --+ {0,1} be the Boolean function represented by the
formula W; we call w the dependency function associated with the system
(5.30). In the case of independence (Le., internal stability) of the vertices
of a graph, the complement w' of w is the Boolean function introduced by
Maghout [126, 127] and Weissman [211].

The following result is proved in Brown & Rudeanu [29]:

142 CHAPTER 5. SYLLOGISTIC REASONING

Theorem 5.9.1 Let T = {It, 12, ... , fm} be a set of Boolean functions, let
S = {It, ... , fk} be a subset of T, let S' = T - S be the set-complement of
S relative to T and let w be the function defined above. Then

(a) S is a minimal dependent subset ofT if and only if AI·· ·Ak is a term
of BCF(w).

(b) S' is a maximal independent subset of T if and only if A~ ... Ak is a
term of BCF(w').

Example 5.9.1 Let us find the maximal independent and minimal depen
dent subsets of the set T = {It, 12, h, f4} of Boolean functions specified by
the system

Al = bx + y

A2 = bx

A3 = X + biZ

A4 = Y

on the Boolean algebra B = {O, 1, b' , b}.
We first produce the set of A-terms:

Al A3'A4'
At A4'B'
At A2' A4'
Al'A4
A2'A3 B
A2 A3'
A2 B'
At'A2
Al'A3 B

Hence

BCF(w) = AIA3 + A2 + AIA4

BC F(Wi) = A;A;A~ + A~ A; .

We conclude from Theorem 5.9.1 that

DMIN = HIt,h},{h},{It,f4}}

IMAX = Hit}, {h,f4}} .

The family D MIN generates 11 dependent subsets of {It, 12, h, f4}; the
family 1M AX generates 5 independent subsets.

5.10. SUM-TO-ONE SUBSETS 143

5.10 Sum-to-One Subsets

The tautology problem is discussed in Section 4.11. An associated prob
lem arising in a number of applications is to find all minimal sum-to-one
subsets of a set T = {tI(X),t2(X), ... ,tm(X)} of terms (products). Such
subsets correspond to the A-terms implied by (5.30) consisting entirely of
complemented literals. In Example 5.8.1, therefore, there is only one min
imal sum-to-one subset, corresponding to the A-term AIA4 (if AIA4 = 0,
then Al + A4 = 1).

It is readily verified that the subset {iI, f4} sums to one and no other
subsets (save supersets of {iI, f4}) sum to one.

Although the process just discussed (searching for A-terms of (5.30) con
sisting entirely of complemented literals) generates minimal sum-to-one sub
sets, it is an unnecessarily complex way to do the job. A more direct ap
proach is based on the auxiliary summation

The utility of this formula is based on the following result:

Lemma 5.10.1 Let T = {tI(X), t2(X), ... , tm(X)} be a set of terms, where
X = (x}, ... , xn), and let AI, A2, ... , Am be Boolean variables. Let S =
{tI(X), t2(X), ... , tk(X)} (1::; k ::; m) be a subset ofT. Then the conditions

(a) tI(X) + t2(X) + ... + tk(X) = 1
(b) AIA2 .. ·Ak ::; AltI(X) + ... + Amtm(X)

are equivalent for all X E {O,l}n.

Proof. Condition (b) is equivalent to the equation

which may be expressed equivalently as

A~ + ... + Ale + tI(X) + ... + tk(X)+

+Ak+ltk+I(X) + ... + Amtm(X) = 1. (5.36)

Thus (a) implies (b). To show that (b) implies (a) for all X E {O, 1}n, let us
suppose that there is a member, K, of {O, 1}n such that (a) is false, i.e., for
which tI(K) + ... + tk(K) = 0. Then (5.36) becomes

A~ + ... + Ale + Ak+Itk+I(K) + ... + Amtm(K) = 1 ,

144 CHAPTER 5. SYLLOGISTIC REASONING

which is not an identity; thus (b) is false. Hence (b) implies (a). 0

Constructing Minimal sum-to-one subsets. Lemma 5.10.1 shows
that the problem of finding sum-to-one subsets of a set T of terms reduces to
that of finding A-products included in a summation associated with T. Any
superset of a sum-to-one subset is a sum-to-one subset; hence, the entire
collection of sum-to-one subsets is generated conveniently by the minimal
sum-to-one subsets. The task of finding such subsets is eased by the following
theorem:

Theorem 5.10.1 Let T = {tl(X),t2(X), ... ,tm(Xn be a set of terms,
where X = (xt, ... ,xn), and let A1,A2, ... ,Am be Boolean variables. Let
S = {tl(X),t2(X), ... ,tk(Xn (1 $ k $ m) be a subset ofT. Then S is a
minimal sum-to-one subset of T if and only if the product AIA2 ... All: is a
term of BCF(A1tl(X) + ... + Amtm(X».

Proof. Denote by G(A,X) the function Altl(X) + ... + Amtm(X).
The following statements are equivalent:

(i) S is a sum-to-one subset of T.
(ii) A I A2· .. Ak $ G(A,X).

(iii) A1A2·· ·Ak $ p, where p is a term of BCF(G(A,X».

The equivalence between (i) and (ii) follows from Lemma 5.10.1; that be
tween (ii) and (iii) from Lemma A.3.2. Thus S is a sum-to-one subset of T
if and only if a subproduct of A I A2·· ·Ak is a term of BCF(G(A,X». The
set S is therefore a minimal sum-to-one subset of T if and only if Al A2 ... Ak
is a term of BCF(A1tl(X) + ... + Amtm(X», 0

Example 5.10.1 Consider the collection of terms named in the system

tl = X

t2 = x'y

t3 = y'z'

t4 = Z

ts = x'y'

t6 = yz'

We derive from this system the formula

Alx + A2x'y + A3Y' z' + A4Z + Asx'y' + A6yz'

and generate the associated a-terms as follows:

5.11. IRREDUNDANT FORMULAS

Ai A2 A3 A4
Ai A2 A5
Ai A4 A5 A6
A3 A4 A6

145

The minimal sum-to-one subsets, corresponding to the foregoing A-terms,
are {It, 12, 13, /4}, {It, 12, Is}, {It, /4, 15, 16}, and {f3, /4, 16}.

5.11 Irredundant Formulas

The problem of minimizing the complexity of Boolean formulas is important
in technology, and has received extensive attention in the literature. We
show in this section that minimal sum-of-products (SOP) formulas for a
Boolean function may be generated via syllogistic reasoning.

Let us review, from Section 4.11, the major points concerning the prob
lem of finding a simplified SOP formula for a Boolean function I. Such a
formula is necessarily a subformula of BCF(f). An irredundant formula for
/ is a subformula of BCF(f) that (a) represents I and (b) ceases to repre
sent I if any of its terms is deleted. The search for simplified SOP formulas
therefore need only be over the irredundant formulas.

Quine [161] presented a tabular method for finding all of the irredundant
formulas for a given function. Algebraic alternatives have been suggested by
Samson & Mueller [175], Petrick [154], Ghazala [70], Mott [140], Cutler &
Muroga [43] and others.

Incompletely-specified functions. Associated with the foregoing
problem is the more general problem of finding simplified SOP formulas for
an incompletely specified Boolean function /. Such a function is defined by
an interval, i.e.,

g(X) ~ I ~ h(X) (5.37)

(c/. Section 2.4) in which 9 and h are given Boolean functions. Each function
in the interval (5.37) is represented by a set of irredundant SOP formulas;
call it the I-set for that function. We define a formula to be an irredundant
formula for the incompletely-specified function I provided (a) it belongs to
one of the I-sets associated with the interval (5.37) and (b) none of its proper
subformulas belongs to such an I-set.

It is a well-known result in switching theory that the irredundant formu
las for the incompletely-specified function (5.37) are the minimal subformu-

146 CHAPTER 5. SYLLOGISTIC REASONING

las of BCF(h) that cover gj therefore an SOP formula S is an irredundant
formula for (5.37) if and only if

(a) S is a subformula of BCF(h),
(b) 9 ~ S, and
(c) no proper subformula of S has property (b).

All of the formulas satisfying the foregoing conditions are readily found
by syllogistic reasoning, using a variation of the label-and-eliminate tech
nique described in Section 5.8.

Theorem 5.11.1 Let 9 and h be the Boolean functions specified by interval
(5.37), let PI, ... , Pm be the prime implicants of h, let <p = 0 be equivalent to
the system

u = g(X)

PI(X) = Al

Pm(X) = Am,

(5.38)

and let Aap ... , Aak be symbols in the set {AI. ... , Am}. Then the SOP
formula

Pal + ... + Pak (5.39)

is an irredundant formula for (5.37) if and only if

(5.40)

is a prime implicant of <p.

Proof. Formula (5.40) is a prime implicant of <p if and only if the relation
u ~ Aal + ... + Aak is a prime consequent of system (5.38), i.e., if and only
if the function 9 satisfies the conditions

(i) 9 :5 Pal + ... + Pak
(ii) 9 1: any proper subformula of Pal + ... + Pak ,

where Pal + ... + Pak is a subformula of BCF(f). 0

The process of deduction is simplified if the X-variables are eliminated
from (5.38) before the prime implicants are sought, i.e., if we follow the
label-and-eliminate procedure of Section 5.8.

5.11. IRREDUNDANT FORMULAS 147

Example 5.11.1 Let an incompletely-specified function f be defined by the
interval (5.37), where 9 and h are given by the formulas

g(x,y,z) x'yz + xy'

h(x,y,z) = x' z + xy' + yz' .

Thus (5.38) takes the form

u x'yz + xy'

x'z = Al

xy' A2

yz' A3 (5.41)

y'z A4

x'y As

xz' A6 .

System (5.41) is equivalent to an equation 4>(A I , ... , A6 , U, x, y, z) = 0 for
which the prime implicants of ECON(4), {x,y,z}) are

Ai A4'U' A2' AS U AS AS
Ai'A4 U' A3 U Ai A2
A2 U' Ai AS'U A2 A3
A3'AS U' Ai' AS U A2 AS
A3'AS U' Ai'A2'U A2 A4'AS'
Ai AS U' Ai AS A3 A4
Ai'A4'AS'U Ai A3 A4 A6
A4'AS'A6'U A2'A3'AS A4 AS
Ai A4 U Ai' A3' AS Ai'A2'A4
A2'A4 U A3 AS'A6' Ai A4'AS'
A2'AS'U

The prime implicants corresponding to irredundant formulas are those hav
ing the form A~l ... A~k u, viz., A~ A~A~u, A~A~A~u, A~A~u, and A~ A~u.
Thus the irredundant formulas in the given interval are

x'z + y'z + xz'
y'z + x'y + xz'
x'y' + x'y
x'z + x'y' .

148 CHAPTER 5. SYLLOGISTIC REASONING

Of the 31 prime implicants in the foregoing example, only four have the
form corresponding to an irredundant formula. A modification of system
(5.38) leads to more economical results:

Corollary 5.11.1 Let g, hand Pt, ... ,Pm be as defined in Theorem 5.11.1
and let 4> = 0 be the equation to which the system

U ~ g(X)

Pt(X) < At

Pm(X) < Am

(5.42)

reduces. Then the prime implicants of ECON(4), X) are in one-to-one cor
respondence, in the manner described in Theorem 5.11.1, to the irredundant
formulas in the interval (5.37).

Proof. The proof is left as an exercise.

Example 5.11.2 For the incomplete function f specified in Example 5.11.1,
system (5.42) takes the form

U <
x'z ~

xy' <
yz' <
y'z <
x'y <
xz' <

which is equivalent to 4> = 0, where

4> = ux'y' + ux' z' + UXll +

x'yz + xy'

At

A2

A3

A4
As

A6 ,

+A~x'z + A~xy' + A~yz' + A~y'z + A~x'y + A~xz' .
Hence, in Blake canonical form,

(5.43)

ECON(4), {x, y, z}) = A~A~u + A~A~A~u + A~A~u + A~A~A~u.
The prime implicants of ECON(4), {x, y, z}) are thus precisely those found
in Example 5.11.1 to correspond to irredundant formulas.

EXERCISES 149

Completely-specified functions. An ordinary (completely-specified)
function may be regarded as a one-element interval of the form (5.37), Le.,
one for which g(X) = heX). The procedure for generating the irredun
dant formulas for an ordinary function is therefore identical to that for an
incompletely-specified function.

Exercises

1. Five workers-V, W, X, Y, and Z-are available to perform a cer
tain task. In choosing a hiring-list, the following conditions must be
satisfied:

(a) Either X and Yare both hired, or neither is hired.

(b) At least one of V, X, or Z must be hired.

(c) If V is hired, then X or Y (or both) must be hired.

(d) If X and Yare hired, then Z must be hired.

(e) If Z is not hired, then W must be hired.

Express the prime consequents in clausal form.

2. The state of a mechanism under test is shown by 5 indicators, labelled
A, B, C, D, and E. After watching the indicators for a long time, an
observer characterizes the mechanism as follows:

(a.) If A or D is on (but not both), then C is on.

(b) Looking just at C, D, and E, the number of on-indicators is
alwa.ys odd.

(c) If E is off, then A and D are both off.

(d) If Band C are both on, then E is on.

(e) At least one of the following conditions always exists:

L A on.

ii. C off.

iii. Don.

Express the prime consequents in clausal form.

150 CHAPTER 5. SYLLOGISTIC REASONING

3. Test the validity of the following argument.

PREMISES CONCLUSION

PQ --+ (R + S)(R' + S') P --+ Q'
S --+ (QR + Q'R') + P'
QR --+ S

4. Let P, Q, R, and S be elements of a Boolean algebra and suppose we
are given the following premises:

.Q+R=l

• P' + Q = P'R' + PQ

• If PQ' = 1, then R' + S' = 1.

• QS=O
• If P = Q, then R = 1.

(1) List the prime consequents.

(2) Test the validity of each of the following proposed consequents of
the given premises.

(a) If Q = 1, then P = R'.
(b) P+Q = R
(c) If P = R, then P + Q = o.
(d) P'S'(QR + Q'R') = o.

5. (Keynes [101], Part IV) At a certain examination,

(a) all the candidates who were entered for Latin were also entered
for either French, German, or Spanish, but not for more than one
of these languages;

(b) all the candidates who were not entered for German were entered
for at least two of the other languages; and

(c) no candidate who was entered for both French and Spanish was
entered for German, but all candidates who were entered for nei
ther French nor Spanish were entered for Latin.

Show that each candidate was entered for exactly two of the four lan
guages.

EXERCISES 151

6. The following problem, given in Chapter IX of Boole's Laws of Thought,
was used as an example by Schroder [178], Venn [210], Peirce [151]'
Ladd [111], and other nineteenth-century logicians; Schroder called it
the "touchstone" for his work. It was also used by Blake [10] in the
first published example of the generation of prime implicants.

Suppose that an analysis of properties a, b, e, d, and
e of a particular class of substances leads to the following
statements:

(1) Whenever properties a and e are missing, then property
e is found, together with one of the properties band d,
but not both.

(2) Whenever the properties a and d are found while e is
missing, then both band e will either both be found or
both be missing.

(3) Whenever property a is found in conjunction with either
b or e, or both of them, then e or d will also be found,
but not both of them. Conversely, whenever e or d (but
not both) is found, then a will be found in conjunction
with either b or e or both of them.

(a) Reduce all of the foregoing data to a single Boolean equation of
the form f(a,b,e,d,e) = o.

(b) Construct BCF(f).

(c) What independent relations among b, e, and d may be inferred?
What among these three may be inferred if a = I?

(d) What independent relations among a, e, and d may be inferred?
What with the further hypothesis b = I?

(e) Which of the following is a valid consequent of the premises (1),
(2), (3)?

i. ad ---+ b' e' + e' e

ii. a' e' ---+ be

lll. a + be ---+ ee

iv. abc ---+ 0

152 CHAPTER 5. SYLLOGISTIC REASONING

7. Suppose that our knowledge of aardvarks (class A), creatures who kiss
babies (K), courteous creatures (C), and politicians (P) is expressed
by the following statements:

(a) Politicians who do not kiss babies are courteous.

(b) Courteous aardvarks are not politicians.

(c) Aardvarks who kiss babies are courteous politicians.

(d) All politicians either kiss babies, or are aardvarks, or both.

State all of the prime consequents, in clausal form, of the foregoing
data.

8. (Venn [210], Chapter XIII) There is a certain class ofthings from which
A picks out the X that is Z and the Y that is not Z, and B picks out
from the remainder the Z which is Y and the X that is not Y. It is
then found that what is left exactly comprises Z which is not X.

(a) State the implied constraint (if any) relating X, Y, and Z.

(b) Assuming the constraint to be satisfied, what can be determined
about the original class?

9. The RST flip-flop is defined by the equations

Y = S + yR'T' + y'T
0= RS+RT+ ST

(characteristic equation)
(input constraint)

where y and Yare the present state and next states, respectively, of
the flip-flop. List the prime consequents in clausal form. Each such
consequent represents a fundamental property of the RST flip-flop.

10. (Corollary 5.11.1) Let g, hand Pb'" ,Pm be as defined in Theo
rem 5.11.1 and let 1> = 0 be the equation to which the system

u ~ g(X)

PI(X) ~ Al

Pm(X) < Am

reduces. Show that the prime implicants of ECON(1), X) are in one
to-one correspondence, in the manner described in Theorem 5.11.1, to
the irredundant formulas in the interval (5.37).

Chapter 6

Solution of Boolean
Equations

Many problems in the application of Boolean algebra may be reduced to
that of solving a Boolean equation of the form

f(X) = 0, (6.1)

over a Boolean algebra B. The specifications for a digital circuit, for ex
ample, typically take the form of Boolean equations relating a collection
X = (X1,X2, ••• ,Xn) of output variables to a collection I = (ib i2 , ••. ,ir) of
input-symbols. These specifications may be reduced (by Theorem 4.3.1) to
a single equivalent equation of the form (6.1) over the free Boolean algebra
(cf. Section 2.13.1) generated by the input-symbols. The designer's task is
to construct a system

Xl = 91

(6.2)

Xn = 9n

of Boolean equations in which 91, ... , 9n are formulas in F B(i1 , ••• , ir) that
(a) specify circuit-structure and (b) accord with the original specifications.
To meet the latter condition, system (6.2) should imply equation (6.1), i.e.,
it should be an antecedent of (6.1) (cf. Section 4.2). An antecedent system
of the form (6.2) is a functional antecedent, i.e., a solution, of (6.1). The
latter term is more common and will be used henceforth.

153

154 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

Formal procedures for producing solutions of (6.1) were developed by
Boole himself as a way to treat problems of logical inference, and Boolean
equations have been studied extensively since Boole's initial work. See
Rudeanu [172] for a comprehensive modern treatment of Boolean equations
and a bibliography of nearly 400 sources; among the classical sources are
Schroder's three-volume text [178] and Couturat's brief and lucid mono
graph [41].

Boolean equation-solving as an approach to the design of relay-networks
was discussed by Nakasima [145, 146] as early as 1936, and later by Ashen
hurst [4], Semon [181], and Ledley [113]. Ledley considered applications to
the design of gate-networks (adders and squaring circuits); he also discussed
applications in medical diagnosis, enzyme biochemistry, and agricultural ex
periments. Applications in the design of digital computers were first sug
gested in the texts by Phister [155] and Ledley [118]; other work has been
done by Cerny and Marin [36] and by Svoboda and White [193].

Among the many fields to which Boolean equation-solving has been ap
plied systematically are biology, grammars, graph theory, chemistry, law,
medicine and spectroscopy. Klir and Marin [103] have noted of Boolean
equations that "their importance for switching theory reminds one of the
application of differential equations in electric circuit theory." Applications
in logical design include functional decomposition, fault-diagnosis, binary
codes, a variety of approaches to combinational synthesis, flip-flop design
and excitation, hazard-free synthesis, information-Iossless machines, and the
design of sequential circuits (the latter application has given rise to a special
ized field of investigation, viz., sequential Boolean equations). An extensive
survey of applications is given in Rudeanu [172].

6.1 Particular Solutions and Consistency

A particular solution (or, simply, a solution) of (6.1) is an element
A = (at. .. . ,an) of Bn such that f(A) = 0 is an identity. A Boolean
equation is consistent provided it has at least one solution.

The one-variable Boolean equation f(x) = 0 is an important special case,
whose consistency we now study. We recall from Sections 4.7 and 4.8 that
the resultant of elimination of x from the equation f(x) = 0 is the equation
ECON(J,{x}) = O.

6.1. PARTICULAR SOLUTIONS AND CONSISTENCY 155

Lemma 6.1.1 The Boolean equation f(x) = 0 is consistent if and only if
the condition

EGON(f, {x}) = 0 (6.3)

is satisfied.

Proof. Suppose a E B is a solution of f(x) = 0, i.e., suppose that
f(a) = O. Then a'f(O) + af(l) = 0, by Boole's expansion theorem, whence
a' f(O) + af(l) + f(O)f(l) = 0 by consensus. Thus f(O)f(l) = 0, i.e.,
EGON(f,{x}) = O. Suppose on the other hand that EGON(f,{x}) = O.
Then the element f(O) is a solution of f(x) = 0, for

f(f(O» = (f(O»'f(O) + f(O)f(l) = 0 + EGON(f(x), {x}) = 0 + 0 = o.
Thus f(x) = 0 is consistent, proving the theorem. 0

We call the equation EGO N (f, {x}) = 0 the consistency condition for
f(x) = o. The consistency condition for an n-variable Boolean equation is a
direct extension, as we now show, of that for a one-variable equation.

Theorem 6.1.1 The n-variable Boolean equation (6.1) is consistent if and
only if the condition

(6.4)

is satisfied.

Proof. Suppose (6.1) is consistent, i.e., f(A) = 0 for some n-tuple A
in Bn. Then (6.4) follows by Theorem 4.8.4. Conversely, suppose that
condition (6.4) is satisfied. We show by induction that (6.1) is consistent for
all n ;;:: 1. If n = 1, then (6.1) is consistent by Lemma 6.1.1. Suppose (6.1)
to be consistent if n = k (k > 1) and consider the (k + I)-variable equation
f(xll ... ,Xk,Xk+1) = O. Condition (6.4) then takes the form

EGON(f,RU {XHI}) = 0, (6.5)

where R = {X}, ... ,Xk}' Let us define g: Bk __ B by

g(XI, ... ,Xk) = f(XI, ... ,Xk,O)f(XI, ... ,Xk,I).

Condition (6.5) implies that EGON(EGON(f, {Xk+1}), R) = 0, which im
plies by the induction hypothesis that EGON(f, {XHI}) = 0 is consistent,
i.e., that g(a}, ... , ak) = 0 for some k-tuple (a}, ... , ak) in Bk. Therefore
f(all ... ,ak,O)f(a}, ... ,ak,l) = 0, whence by Lemma 6.1.1 the equation
f(all ... ,ak,xHd = 0 has a solution, call it ak+}' in B. Thus the equation
f(x}, . .. , Xk, XHI) = 0 is consistent. 0

156 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

6.2 General Solutions

A general solution of a Boolean equation is a representation of the set, S, of
its particular solutions. Although S may be represented by an explicit list,
such a representation may obscure regularities in the form of the solutions.
The number of solutions, moreover, may be so large that enumeration is
not feasible. Fortunately, the solutions of a Boolean equation are related
in such a way that condensed representations for S are readily constructed.
One such representation is an interval (or intervals) defined by lower and
upper bounds. Another representation is by means of a formula (or formu
las) involving arbitrary parameters. The following theorem specifies such
representations for the solutions of a single-variable Boolean equation.

Theorem 6.2.1 Let f: B--B be a Boolean function for which the equation
f(x) = 0 is consistent, and let S = {x I f(x) = O} be the set of its solutions.
Define subsets of B as follows:

Then 1= P = S .

(a) I = {x I f(O) ~ x ~ f'(l)}

(b) P = {f(0) + p!'(l) I p E B} .

Proof. For notational simplicity we write fo and ft, respectively, in place
of f(O) and f(l). The equivalence of fo ::; x ::; fl and f(x) = 0 (Proposition
4.1.1) implies that I = {x I f(x) = O} = S. To prove that P = S, we first
show that P ~ S :

f(fo + pfD = (fo + pfD'fo + (fo + pfDft = foft = ECON(f, {x}) = O.

Thus P ~ S. To verify that S ~ P, we show that for all a in B, the
implication [a E S ==> a E P] holds, i.e., that for any element a E B there
is an element p E B such that

f(a) = 0 ==> fo + p f~ = a .

Noting that f(a) has the expanded form a'fo+aft, applying Theorem 4.4.1
(the Extended Verification Theorem), and doing some computing, we reduce
the foregoing implication to an equivalent equation, viz.,

f~f~[PE£) a] = 0,

6.2. GENERAL SOL UTIONS 157

which is satisfied for p = a. Hence S ~ P. 0

Theorem 6.2.1 shows that the set of solutions of f(z) = 0, if not empty,
may be expressed either as an intenJal,

f(O) 5 x 5 f'(I) , (6.6)

or as a parametric formula,

z = f(O) + pf'(I) , (6.7)

where the symbol p represents an arbitrary parameter, i.e., a freely-chosen
member of B. Thus each of the two forms (6.6) and (6.7) is a general
solution of f(x) = O. These forms are condensed, relatively easy to produce,
and provide a basis for enumerating, if necessary, the entire set of solutions.
If the consistency-condition (6.4) is not satisfied identically, it should be
stated as part of the solution.

Example 6.2.1 Let us find a general solution, having the interval-based
form (6.6), ofthe equation

az = b, (6.8)

where a and b are fixed elements of a Boolean algebra B. Equation (6.8)
reduces to the equivalent equation

ab' x + a'b + bx' = 0 .

The general solution (6.6) therefore takes the form

a'b + b::; x ::; (ab' + a'b)' .

(6.9)

(6.10)

Interval (6.10) constitutes a general solution of (6.9) only if solutions exist,
i.e., only if (6.9) is consistent. To determine the consistency-condition, given
by equation (6.4), we calculate the conjunctive eliminant, ECON(f,{x}):

ECON(j,{x}) = f(O)f(I)

= (a'b + b)(ab' + a'b) .

Thus equation (6.8) is consistent if and only if the condition

a'b = 0

is satisfied; this condition should accompany (6.10) as a complete statement
of the general solution.

158 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

It often happens that the the consistency-condition can be used to sim
plify the form of a general solution. For example, the implication

a'b = 0 ==> a'b' + ab = a' + b

enables the general solution (6.10) to be written in the simpler form

a'b = 0

b ~ x ~ a' + b.

(6.11)

(6.12)

The system (6.11,6.12) is equivalent to the original equation, (6.8); however
(6.12) alone is not equivalent to (6.8). Thus the consistency-condition is
an essential part of the general solution (6.11, 6.12). The solution (6.10),
however, is equivalent to (6.8) and therefore implies its own consistency
condition, i.e., (6.8) =:} b ~ (a'b' +ab) ==> a'b = O. It is good practice in
any case to state the consistency-condition as an explicit part of a general
solution.

Example 6.2.2 Let us now construct a parametric general solution of equa
tion (6.8), making use of formula (6.7). From the equivalent equation (6.9)
we derive the discriminants 1(0) = band 1(1) = ab' + a'b; thus a general
solution of (6.8) is

x = b + p(a'b' + ab) ,

i.e.,
x = b+ pa' ,

with consistency-condition a'b = O.

6.3 Subsumptive General Solutions

In this section we extend the interval-based general solution (6.6) to apply to
Boolean equations having more than one unknown. We omit proofs, which
are given in Brown & Rudeanu [28]. Let us consider an n-variable Boolean
system of the form

80 < 0

81 < Xl < tl

82(Xt} ~ X2 < t2(Xt} (6.13)

83(Xl, X2) < X3 ~ t3(Xb X2)

8n (Xt, .•. , xn-t} < Xn < tn(Xb ••• , xn-d

6.3. SUBSUMPTIVE GENERAL SOL UTIONS 159

where So, SI, and tl are constants (elements of B) and the remaining Si and
ti are Boolean functions having the indicated number of arguments. We say
that the system (6.13) is a subsumptive general solution of the n-variable
Boolean equation

f(xt. X2, • •• , xn) = 0 (6.14)

if So ~ 0 (Le., So = 0) is the consistency-condition of (6.14) and if, pro
vided (6.14) is consistent, every particular solution (at. ... ,an) of (6.14),
and nothing else, is generated by the following procedure:

1) Select al in the range SI ~ x ~ tl
2) Select a2 in the range s2(at} ~ x ~ t2(at}

n) Select an in the range sn(ab ... ,an-t} ~ x ~ tn(al, ... ,an-t}.

This procedure enables all of the solutions of (6.14) to be enumerated
as a tree. The form of the tree (but not the set of particular solutions it
represents) depends on the sequence in which argument-values are gener
ated. The argument-sequence Xt. X2, • •• , xn , which is explicit in (6.13), will
henceforth be assumed.

Example 6.3.1 A subsumptive general solution of the Boolean equation

yz + a' x' + a' z' + xy = 0

is

0 = 0
a' < x < 1

0 ~ y ~ x'

a' ~ z ~ y' .

This general solution yields five particular solutions, which are listed in Ta
ble 6.1.

6.3.1 Successive Elimination

The classical method for producing a subsumptive general solution is by
successive elimination of variables. This technique is part of the folklore of
the subject; the first formal proof of its adequacy was apparently given by
Rudeanu [171].

160 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

x y z
a' 0 a'
a' 0 1
a' a a'
1 0 a'
1 0 1

Table 6.1: Particular solutions of yz + a/x' + a'z' + xy = o.

The idea behind successive elimination is to transform the problem of
solving a single n-variable equation into that of solving n single-variable
equations. The process begins with the elimination of Xn from (6.14). We call
the conjunctive eliminant fn-1; hence, the resultant is fn-1(X1, ... ,Xn-1) =
O. The variable Xn-1 is then eliminated from the latter equation, yielding
the equation fn-2(Xt. ... ,Xn-2) = 0, the resultant of elimination of Xn and
Xn-1 from (6.14). This process is continued until the resultants h(X1) and,
finally, fo are produced. The latter equation, the resultant of elimination of
all variables from (6.14), is the necessary and sufficient condition for (6.14)
to be consistent, i.e., solvable. If that condition is satisfied, then the single
variable equation h (Xl) = 0 is solved for Xl. For any solution Xl = a1,
the single-variable equation heat. X2) = 0 is solved for X2; for any solution
X2 = a2 of the latter equation, the single-variable equation h(at, a2, X3) = 0
is solved for X3; this process is continued, working back up the sequence of
resultants until a solution (a1, a2, . .. , an) of (6.14) is achieved. We formalize
this procedure in the following theorem.

Theorem 6.3.1 Given the Boolean function f: Bn __ B define n + 1 elimi

nants fo, h(X1), h(x1, X2)' ... ' fn(X1, ... , xn) of f by means of the recursion

(i) fn f
(ii) fi-1 = ECON(Ji, {Xi}) (i = n, n - 1, ... , 1) .

(6.15)

(6.16)

Then (6.13) is a subsumptive general solution of (6.14) provided the Boolean

functions so, St. ... , Sn, tt. ... , tn are defined by

So = fo (6.17)

Si(Xt. ... , xi-d fi(Xt. ... , Xi-t. 0) (i=1, ... ,n) (6.18)

ti(Xt. ... ,Xi-t) = f[(X1, ... , Xi-t. 1) (i=1, ... ,n). (6.19)

6.3. SUBSUMPTIVE GENERAL SOL UTIONS 161

Example 6.3.2 Let us apply the method of successive elimination to find
a general solution of the equation I(Xl, X2, X3) = 0, where I is represented
by the formula

(6.20)

The eliminants of I defined by the recursion (6.15,6.16) are represented as
follows:

h
h
It
10 =

Thus the system

foregoing formula for I
bXl + b'X~X2 + a'xlx; + a'x~x2 + a'bx;

bXl + a'bx~
a'b.

a'b = 0

a'b < Xl < b'

a'b + a'xl + bXl < X2 < b'Xl + abx~
(6.21)

a'x~ + bXl + b'X~X2 + a'x; < X3 < b' x~ X; + abx~ X2 + ab' X; + a'b' Xl X2

is a subsumptive general solution of I(Xl, X2, X3) = o. The SOP formulas
in (6.21) may be simplified, as shown below, by introducing the condition
a'b = 0 explicitly:

a'b 0

0 < Xl ::; b' (6.22)

a'xl + bXl < X2 ::; b'Xl + bx~
a'x~ + bXl + b'X~X2 + a'x; < X3 < b' " b' b" , Xlx2+ XlX2+ a x2+ axl x2·

6.3.2 Deriving Eliminants from Maps

The eliminants 10, It, ... , In are readily derived if I(Xl, ••• , Xn) is repre
sented by a 2n-row map, each row of which represents I(al, ... , an), where
(al, ... ,an) is one of the elements of {O, l}n. The recursion (6.15,6.16) im
plies that each row of the 2i - l -row map representing li-l is the result of
intersecting a pair of rows of the 2(row map representing Ii. The result is
particularly convenient if I is represented by a Karnaugh map [99], in which
the rows and columns are arranged according to a reflected Gray code, or

162 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

by a Marquand diagram [131], in which the rows and columns are arranged
in natural binary order. For either of these representations, the map rep
resenting li-l is constructed from the map representing Ii by intersecting
successive pairs of rows, beginning with the top pair. Karnaugh maps are
easier to construct and read than are Marquand diagrams; however, the
rules for using Marquand diagrams to solve Boolean equations are easier to
state than are those for using Karnaugh maps. We therefore specialize to
Marquand diagrams, inasmuch as the Marquand-rules are readily converted
in practice to Karnaugh-rules.

Example 6.3.3 The function given in Example 6.3.2 is represented in Fig
ure 6.1 as Marquand diagram h. Each row of diagram 12 is formed by
intersecting (element-by-element ANDing) a pair of rows of h; thus row 00
of diagram 12 is the intersection ofrows 000 and 001 of diagram h. Diagram
it is constructed in a similar way from diagram 12, and so on.

6.3.3 Recurrent Covers and Subsumptive Solutions

The general solution produced by successive elimination is only one among
many subsumptive general solutions typically possessed by a Boolean equa
tion. The eliminants 10, it, ... , In defined by (6.15, 6.16) may be used, how
ever, to generate the full class of subsumptive general solutions; knowing
that class, we may select a general solution best suited to our purposes.

We show in Theorem 6.3.4 that each subsumptive general solution of
the Boolean equation (6.14) is associated with a sequence (90,9b ... , 9n) of
Boolean functions. We say that such a sequence is recurrent in case 90 E B
and also that 9i: Bi--+ B is a Boolean function of the variables Xl, X2, ... , Xi
satisfying the condition

i-I

ECON(gi,{Xi}) ~ L9j(Xb ... ,Xj)
j=o

for i = 1,2, ... , n. The sequence (go,9}, ... ,9n) will be called a recurrent
cover of an n-variable Boolean function I in case the sequence is recurrent
and also

6.3. SUBSUMPTIVE GENERAL SOL UTIONS 163

ab
X1 X2X3 00 01 10 11

000 1 1 0 0
001 0 1 0 1

fa
010 = 011

1 1 1 0
1 1 1 0

100 1 1 0 1
101 1 1 0 1
110 0 1 0 1
111 0 1 1 1

X1 X2

00 0 1 0 0

h = 01 1 1 1 0
10 1 1 0 1
11 0 1 0 1

Xl

It = 0

I ~ I 1

I ~ I ~ I 1 1

fo = I 0 I 1 I 0 I 0 I

Figure 6.1: Marquand diagrams for the eliminants of (6.20).

164 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

Theorem 6.3.2 Let fo, It, ... , fn be the eliminants, defined by (6.15, 6.16),
of an n-variable function f. Then (gO, g}, ... , gn) is a recummt cover of f
if and only if the conditions

fo = go

f~1t ~ gl ~ It
ffh ~ g2 ~ h

f~-dn ~ gn ~ fn

are satisfied.

Corollary 6.3.1 The sequence (fo, It, ... , fn) of eliminants defined by the
system (6.15, 6.16) is a recurrent cover of f.

Given the eliminants fo, It, ... , fn of an n-variable Boolean function f,
Theorem 6.3.2 expresses the set of recurrent covers of f by a system of inter
va.ls, i.e., of "incompletely specified" functions. Thus well-known methods of
minimization may be used to find a recurrent cover expressed by the simplest
possible SOP formulas. The next theorem shows, however, that a recurrent
cover of f may be constructed directly from the prime implicants of f.

Theorem 6.3.3 Given an n-variable Boolean function f, a recurrent cover
(go, g}, ... , gn) of f is given by the prescriptions

go = L (prime implicants of f not involving

any of the arguments Xl, ••• , Xn)

gi = L (prime implicants of f involving Xi

but not involving any of Xi+!, ... , Xn)

(i = 1,2, ... ,n).

(6.23)

(6.24)

It is convenient in practice to produce the g-sequence specified by (6.23,
6.23) in reverse order, i.e., beginning with gn rather than with go. Let F be
the set of prime implicants of f, and denote by Gi the set of terms comprised
by gi(i = O, ••. ,n). Then the sets Gn,Gn-l, ... ,Go (which constitute a
partition of F) are generated by procedure shown in Figure 6.2, in which T
is a subset of F.

6.3. SUBSUMPTIVE GENERAL SOLUTIONS 165

1 begin
2 T:= F
3 for i = n dovnto 1 do
4 begin
5 Gi := {terms in T involving Xi}
6 T:= T-Gi
7 end
8 Go := T
9 end

Figure 6.2: Procedure to generate a recurrent cover of f from the prime
implicants of f.

Example 6.3.4 Let us apply the procedure of Figure 6.2 to produce a re
current cover of the Boolean function f discussed in Example 6.3.2. The
Blake canonical form of f, i.e., the disjunction of its prime implicants, is

BCF(f) = bXl + bX~X3 + b'X~X2 + a'x~x; + a'xlx~ + a'x~x2 +
ab'x2x3 + a'b + aXlx2x3 + a'x~x; .

The procedure of Figure 6.2 enables us to read off the components of a
recurrent cover by inspection of BCF(f):

93 = bX~X3 + a'x~x; + ab'x2x3 + aXlx2x3 + a'x~x;
92 = b'X~X2 + a'xlx~ + a'x~x2 (6.25)

91 bXl

90 = a'b.

The following theorem shows the intimate relation between recurrent
covers and subsumptive general solutions.

Theorem 6.3.4 The system (6.13) is a subsumptive general solution of
equation f(x1, X2, ... , xn) = 0 if and only if so, S1,.", 8n, tI, ... , tn are
Boolean functions 9iven by

So = 90

8i(X1,"" xi-d = 9i(X1," .,Xi-1, O) (i=1, ... ,n)

ti(Xl, ... , Xi-I) = 9Hxl,"" Xi-I, 1) (i=1, ... ,n)

166 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

where (gO, g}, ... , gn) is a recurrent cover of f.

Example 6.3.5 The method of successive elimination was applied in Ex
ample 6.3.2 to construct a general solution of the equation f(Xl, X2, X3) = 0,
the function f being specified by (6.20). Let us now apply Theorem 6.3.4
to construct another general solution of the same equation, based on the
recurrent cover (6.25).

a'b = 0

o $ Xl $ b' (6.26)

a' Xl $ X2 $ ab + Xl

a'xi + a'x~ < X3 < b'x~ + a'X2 + bxix2

The formulas in the general solution (6.26) are clearly simpler than those in
either (6.21) or (6.22);

6.3.4 Simplified Subsumptive Solutions

The method of successive eliminations tends to produce unnecessarily com
plex formulas for the Si and ti in a subsumptive general solution, even if
the consistency-condition fo = 0 is introduced, as in (6.22), for purposes of
simplification. Such complex formulas mask the nature of the solutions and
complicate the task of enumerating particular solutions.

We call subsumptive solution (6.13) simplified in case each of the func
tions so,s}, ... ,sn,h, ... ,tn is expressed as a simplified SOP formula. The
following theorem establishes that each of these functions (like each of the
gi in a recurrent cover of J) is defined by an interval based on the eliminants
fo, h,.··, fn. Thus we may apply standard procedures for minimizing the
complexity of SOP formulas.

Theorem 6.3.5 Let fo, h, ... , fn be the eliminants, defined by (6.15, 6.16),
of an n-variable Boolean function f. Then (6.13) is a subsumptive general
solution of f(xl, X2, ... , xn) = 0 if and only if

and the conditions

So = fo (6.27)

Ii(O)f[(l) $ Si $ fiCO)

f[(l) $ ti $ fiCO) + fHl)

(6.28)

(6.29)

are satisfied for i = 1,2, ... , n, where fiCO) and fi(1) denote, respectively,
fi(xlt ... ,xi-l,O) and fi(Xl, ... ,Xi-},I).

6.4. PARAMETRIC GENERAL SOLUTIONS 167

6.3.5 Simplification via Marquand Diagrams

If fo, iI, ... , fn are represented by Marquand diagrams, as in Example 6.3.3,
then diagrams representing all possible values of So, s}, . .. , Sn, tIl, .. , tn are
readily derived by use ofrelations (6.27, 6.28, 6.29). Each column ofthe dia
grams for Si(X}, ... , xi-d and ti(X1,"" Xi-1) is derived from the correspond
ing column of fi(Xt, ... , Xi). The element in row k (k = 0,1, ... , 2i- 1 - 1)
for any column of the Si and ti diagrams is related as shown in Table 6.2 to
the elements in rows 2k and 2k + 1 of the diagram for fi.

row 2k of fi 0 0 1 1
row 2k + 1 of fi 0 1 0 1
row k of Si 0 0 1 X
row k of ti 1 0 1 X

Table 6.2: Diagram-entries for Si and ti in terms of diagram-entries for k

Example 6.3.6 The eliminants offunction (6.20) are represented by Mar
quand diagrams in Example 6.3.3. Those diagrams, together with the corre
sponding diagrams for Si and ti, are exhibited in Figure 6.3. The Marquand
diagrams for Si and ti specify the set of all possible subsumptive general
solutions for the Boolean equation of Example 6.3.2. A simplified member
of that set is

a'b 0

0 < Xl ::; b'

a'X1 ::; X2 < b+ Xl

a'x~ < X3 ::; a' + b'x~ + bX2

The form of this general solution should be compared with that of the general
solutions produced in Examples 6.3.2 and 6.3.5.

6.4 Parametric General Solutions

Formula (6.7) expresses a parametric general solution of the single-variable
Boolean equation f(x) = O. We now consider parametric general solutions
of n-variable Boolean equations.

168 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

ab ab ab
XIX2X3 00 01 10 11 XIX2 00 01 10 11 XIX2 00 01 10 11

000
001
010
011
100
101
110
111

1 1 0 0
0 1 0 1
1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1
0 1 0 1
0 1 1 1

0 1 0 0
1 1 1 0
1 1 0 1
0 1 0 1

fo

101 1 I 0 101

00
01
10
11

1 X 0 0
X X X 0
X X 0 X
0 X 0 X

10 I X 10 101

So

101 1 I 0 101

00
01
10
11

1
X
X
1

Figure 6.3: Marquand diagrams associated with (6.20).

X 1 0
X X 1
X 1 X
X 0 X

6.4. PARAMETRIC GENERAL SOLUTIONS 169

Let X, G, and P denote, respectively, the vectors (Xl, . .. , xn), (g1, . .. ,gn),
and (pt, ... ,Pk), where gt, ... ,gn are k-variable Boolean functions and where
the symbols PI, ... , Pk designate arbitrary parameters, i.e., freely-chosen el
ements of B. Then a parametric general solution of the Boolean equation

f(X) = 0 (6.30)

is a system

0 = go (6.31)

X = G(P) (6.32)

such that the conditions

go = ECON(J,X) (6.33)

f(G(P)) = ECON(J,X) 'liP E Bk (6.34)

f(A) = ECON(J, X) ~ 3P E Bk such that G(P) = A (6.35)

are satisfied.
Condition (6.33) specifies that equation (6.31) is to be the consistency

condition for (6.30). Suppose condition (6.33) to be satisfied. Then condi
tion (6.34) demands that G(P) generate nothing but solutions of (6.30) for
all values of the parameter-vector Pj condition (6.35), on the other hand,
demands that G(P) generate all solutions of (6.30). If (6.30) is consistent,
therefore, conditions (6.34) and (6.35) taken together demand that the set of
all of its solutions-and nothing else-be generated by G(P) as P is assigned
values on Bk.

6.4.1 Successive Elimination

The method of successive elimination of variables, which we applied earlier
to find subsumptive general solutions, can also be used to find paramet
ric general solutions. To acquaint ourselves with the main features of the
procedure, let us solve the 3-variable equation

f(Xt,X2,X3) = O. (6.36)

We begin, as before, by calculating the eliminants fo, h, 12, 13:
h(xt, X2, X3) = ECON(J,0)

h(xl, X2) = ECON(h, {X3}) =
h(Xl) = ECON(h, {X2})

fo = ECON(h, {xd) =

f
ECON(J, {X3})
ECON(J, {X2' X3})
ECON(J, {Xl, X2, X3})

170 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

The consistency-condition for equation (6.36) is 0 = 90, where 90 = fo.
Equation !t(xd = 0 is the resultant of elimination of X2 and X3 from (6.36).
This is a single-variable equation stating all that is known about Xl in the
absence of knowledge concerning X2 and X3j hence, we may employ the
parametric formula (6.7) to express the set of allowable values of Xl, i.e.,

Xl = 91(pd = !teO) + pd~(l) . (6.37)

Equation h(xI, X2) = 0 is the resultant of elimination of X3 from (6.36)j
it therefore expresses all that is known about Xl and X2 in the absence of
knowledge concerning X3. We substitute 91(pd for Xl, re-expressing this re
sultant by the single-variable equation h(91(pd, X2) = OJ a general solution
of the latter equation is

X2 = 92(PI,P2)

= h(91(pd, 0) + P2!~(91(PI)' 1) . (6.38)

The final step in this process is to substitute 91(PI) and g2(Pl,P2) for Xl

and X2, respectively, in (6.36). The result, !J(91(pd,g2(Pl,P2), X3) = 0, is
a single-variable equation in X3 whose general solution is expressed by the
parametric formula

X3 = g3(PI,P2,P3)

= !J(gl(Pt), 92 (PI, P2), 0) + P3f~(gl(pt),g2(pI,p2)' 1). (6.39)

The system

0 = go

Xl = gl(PI)

X2 = g2(PI,P2)

X3 = g3(PI,P2,P3)

therefore constitutes a parametric general solution of (6.36), the functions
go, g1. g2, and g3 being defined by (6.37,6.38,6.39).

Example 6.4.1 The RST flip-flop is defined by the equations

Y S + yR'T' + y'T

o = RS + RT + ST ,

(6.40)

(6.41)

6.4. PARAMETRIC GENERAL SOLUTIONS 171

where y is the present state of the flip-flop, Y is its next state, and R, S,
and T are the "reset", "set", and "toggle" inputs to the flip-flop. Equation
(6.40) is the characteristic equation [155] of the flip-flop and (6.41) is an
input-constraint specifying that no more than one input may be at logical 1
at any time. To design input-logic for this flip-flop, it is necessary to solve
the system (6.40, 6.41) for R, S, and T (which we regard as variables) in
terms of y and Y (which we regard as elements of B). We begin by reducing
the system (6.40,6.41) to the single equivalent equation

I(R,S,T) = 0,

where I is defined by

I = Y'S + y'Y'T + yY'R'T' + y'Y S'T' + yY RS' + yY S'T
+RS+RT+ST.

(6.42)

Let us now employ successive elimination to form a parametric general solu
tion. To make direct use of the results given above concerning the formation
of such a solution, we re-name variables as follows: Xl = R, X2 = S, and
X3 = T. The RST flip-flop is therefore defined by I(x}, X2, X3) = 0, where I
is given by

I = Y'X2 + y'Y'x3 + yY'x~x~ + y'Yx~x~ + yYxlx~ + yYx~X3
+XIX2 + XIX3 + X2 X3 .

Accordingly, the eliminants are

h(x}, X2, X3) =
hex}, X2)

h(xI) =
10 =

f
ECON(h, {X3})
ECON(h,{x2})
ECON(h,{xIl)

= expression (6.43)
= YXI + Y'X2
= YXI
= o.

(6.43)

Substituting the foregoing results in the parametric expressions (6.37,6.38,
6.39) we arrive at the general solution

0 = 0

Xl = 0+ PlY'

X2 = 0+ P2Y

X3 = [P~yY' + p~y'Y] + P3[PIY' + P2Y + yY + y'Y'l' .

172 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

After replacement of Xl! X2, and X3, by R, S, and T, respectively, and
simplification of the result, the foregoing general solution takes the form

0 = 0

R = PlY' (6.44)

S = P2Y

T = p~yY' + p~y'Y .
The first equation in the system (6.44),0 = 0, signifies that the RST flip-flop
equation is unconditionally consistent; for any combination of present-state
and next-state, that is, the equation has a solution for R, S, and T. Partic
ular solutions are obtained from (6.44) by assignment of particular values in
the Boolean algebra B to the arbitrary parameters. The Boolean algebra B
is not specified in the foregoing example, but includes as a subalgebra the
free Boolean algebra F B(y, Y). Suppose we make the assignment PI = 1,
P2 = y. The corresponding particular solution is R = Y', S = yY, T = y'Y.

The method of successive elimination demonstrates that a parametric
general solution of an n-variable Boolean equation need involve no more
than n arbitrary parameters. In some cases, as shown by the foregoing
example, fewer than n parameters suffice.

6.4.2 Parametric Solutions based on Recurrent Covers

As we found in discussing subsumptive general solutions, the sequence
10, ft,···, In of eliminants of I is a special form of recurrent cover of I.
We also found that the eliminants of I constitute one of the more complex
recurrent covers of I, and that simpler recurrent covers may be constructed
in a systematic way; the procedure of Theorem 6.3.3, for example, develops
a relatively simple recurrent cover of I directly from its prime implicants.

The method of successive elimination may be generalized directly to em
ploy any recurrent cover of I as the basis for constructing a parametric gen
eral solution of I(X) = o. We now present several results, without proof,
concerning the use of recurrent covers for this purpose.

Our first observation is that if (go, gt, ... , gn) is a recurrent cover of
f: Bn---+ B, then the "triangular" system

6.4. PARAMETRIC GENERAL SOLUTIONS 173

° = 90
Xl = 9l(Pt}
X2 = 92(Pl,P2)

Xn = 9n(Pl,P2, ... ,Pn)

is a parametric general solution of the Boolean equation f(Xl, ... , Xn) = °
if the functions 90,91, ... , fin are given by the recursion

90 = 90
9l(Pt} = 91(0) + P19~(1)

9i(Pt,···,Pi) = 9i(9l(Pt},···,9i-l(Pt,···,Pi-t},0)+

(6.45)

(6.46)

+Pi9i(9l(Pt}, ... ,9i-l(Pb ... ,Pi-t}, 1) (6.47)

(i = 2,3, ... ,n).

We note further that the functions 90,fll(Pt},92(PbP2),···,9n(Pt, ... ,Pn)
are independent of the recurrent cover (90,91, ... , 9n) of f on which they are
based, provided f(X) = 0 is consistent [28]. Thus all recurrent covers lead
via the system (6.45, 6.46, 6.47) to the same general solution of a consistent
Boolean equation.

Example 6.4.2 Let us form a parametric general solution of the Boolean
equation

(6.48)

which is equivalent to the equation f(xt, X2) = 0, where f is given by

f ' b ' 'b' "b" " = ae Xl + e X2 + a e + a eX2 + eXl + eXl X2 .

The foregoing expression is in Blake canonical form; hence, we may form
a recurrent cover by inspection of its terms, using the procedure of Theo
rem 6.3.3:

90 a'b'e

9l(Xl) = ae'xl + b'ex~
() b ' " " 92 xl, X2 = e X2 + a eX2 + exl x2 .

174 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

Thus, applying the recursion (6.45,6.46,6.47),

90 = go

= a'b'c

9l(Pl) = b' c + PI [ac']'

= b'c + PI [a' + c] (6.49)

92(Pl,112) = a'c + cg~(Pl) + 112[bc']'

= a'c + p~bc + P2[b' + c] ,

from which we form the parametric general solution

o = a'b'c

Xl = b'c+Pl[a'+c]

X2 a' c + p~ bc + 112[b' + c] .

Example 6.4.3 The recurrent cover

b ' '" b' '" g3 = X2 X3 + a X2X3 + a X2X3 + aXlX2X3 + a X1X3

g2 = b'X~X2 + a'X1X~ + a'X~X2
gl = bXl

go = a'b

was developed in Example 6.3.4 for the function I given in Example 6.3.2.
Thus a parametric general solution of l(xl,x2,x3) = 0 is

0 = a'b

Xl = Plb'

X2 = a'b'Pl + 112[b'Pl + ab]

X3 = p~ a' + a'b + P3[P~ b' + 112b + a' + p~b'] .

We observe finally that if I(X) = 0 is consistent, the general solution
defined by the recursion (6.45, 6.46, 6.47) is reproductive; that is, the equiv
alence

I(X) = 0 ¢:::::? X = a(x) (6.50)

holds for all X in Bn. (See Rudeanu [172] for a full discussion of reproductive
general solutions.)

6.4. PARAMETRIC GENERAL SOL UTIONS 175

Example 6.4.4 To illustrate the equivalence (6.50), let us assume that
(6.48) is consistent and take at random one of its particular solutions:

Xl a'b' + b'c

X2 = be.

That this is a solution is verified by substituting in (6.48); the result,

a(a'b' + b'e) + b(be) = c,

becomes an identity provided that the consistency-condition, 0 = a'b'e, is an
identity. Thus the left side of (6.50) is satisfied. To verify the right side, we
make the substitutions PI = a'b' + b'e and P2 = be in (6.49):

fJ1(a'b' + b'c) = b'e + (a'b' + b'e)(a' + c)

a'b' + b'e

92(a'b' + b'e, be) = a'e + (a'b' + b'e)'be + be(b' + c)
a'e + be

= be (assuming consistency).

6.4.3 Lowenheim's Formula

In cases where it is inconvenient to construct a general solution of a Boolean
equation, it may be relatively simple to find a particular solution. The
following theorem enables us to form a parametric general solution in a
mechanical way from any particular solution.

Theorem 6.4.1 (Lowenheim [124]) Let U = (ut, ... , un) be a particular
solution of a consistent Boolean equation f(x) = 0, and let P = (PI, ... ,Pn)
be an n-tuple of arbitrary parameters. Then the system (6.31, 6.32) is a
parametric general solution provided the vector G(P) = (91 (P), ... , 9n(P))
is defined by

G(P) = U f(P) + P !,(P) . (6.51)

Proof. Condition (6.33) of the definition of a parametric general solution is
verified because f(X) = 0 is assumed to be consistent, i.e., ECON(f, X) = 0
identically. Condition (6.34) is verified, for k = n, by Lemma 5.4.1. To verify
(6.35), let us suppose that A E En is any particular solution of f(X) = o.
Choosing P = A,

G(P) = U f(A) + Af'(A) = U· 0 + A·1 = A.

o

176 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

Example 6.4.5 The RST flip-flop is characterized by the Boolean equation
feR, S, T) = 0, where f is given by (6.42). An easily-obtained particular
solution of the RST equation is

R = Y'
S = Y
T = O.

The value of n for this example is 3; thus, the parameter-vector P has three
components, which we call p,q,and r for simplicity. Formula (6.51) therefore
becomes

[~~~;j 1 = [~' 1 f(p,q,r)+ [: 1 j'(p,q,r)
93(P) 0 r

The resulting parametric general solution is found after some calculation to
be

0 0

R = (p + q + r'y + ry')Y'

S = (p+ q + ry + r'y')Y

T p'q'r(y'Y + yY') .

Lowenheim's formula generates an n-parameter solution of an n-variable
Boolean equation. As Example 6.4.1 shows, however, fewer than n parame
ters will often suffice. As a further example, a two-parameter general solution
of the RST flip-flop equation can be formed from the solution given in Ex
ample 6.4.5 by replacing the parameter-sum p + q by the single parameter
p, yielding

0 = 0

R (p + r'y + ry')Y'

S = (p + ry + r'y')Y

T p'r(y'Y + yY') .

It is possible, although the details will not be treated here, to generate
least-parameter general solutions in a systematic way [23]; the Boolean equa
tions characterizing all of the useful flip-flops (RS, JK, D, RST), for example,

EXERCISES 177

can be solved using no more than one parameter [24]. A one-parameter gen
eral solution of the RST flip-flop equation, for example, is

0 = 0

R = pY'

S = pY

T = p'(y'Y + yY') .

Exercises

1. Prove that f(x) = x is equivalent to f(O) ~ x ~ f(I).

2. Give necessary and sufficient conditions on f(O) and f(l) in order for
the equation f(x) = 0 to have a unique solution.

3. Let f be symmetrical with respect to x and x', i.e., let f(x) = f(x').
Discuss the solutions of f(x) = O.

4. Construct simplified general solutions of the following systems of equa
tions; state the consistency condition in each case.

(a) bx' + a = x
a'x + b' = b'x

(b) abx' + by + a' x = 1

(c) x + y' = 1
axy' + by = b'x'
xy = a

5. Consider the Boolean equation f(Xl, X2, X3) = 0, where

f ' +" " = a2xl + a2 x2x3 a2xl x2 + alx2x3

+al Xl x~ + al xi X2 + ai a~X2X3 .

(a) Find BCF(f).

(b) Construct a general solution using successive eliminations.

(c) Construct a general solution using BCF(f) directly.

(d) Construct a general solution using maps.

178 CHAPTER 6. SOLUTION OF BOOLEAN EQUATIONS

6. How may the number of solutions of the Boolean equation f(x) = 0
be determined from a Karnaugh map representing f?

7. The RST flip-flop is defined by the equations

Y = S + yR'T' + y'T

o = RS+RT+ST

(characteristic equation)

(input constraint)

where y and Yare the present state and next state, respectively, of
the flip-flop. The problem in the design of excitation-logic is to find
economical solutions for R, S, and T in terms of Y (a given function
of input and state variables) and y. Write a general solution for R, S,
and T in the form

o:(y, Y) 0

o:(y, Y) < R ~ (3(y, Y)

o:(y, Y, R) < S < (3(y, Y, R)

o:(y, Y, R, S) < T < (3(y, Y, R, S)

Simplify the o:'s and {3's.

8. The JK, SR, D and T flip-flops are defined by

JK: Y = y' J + yK'

SR: Y=S+yR' and SR=O

D: Y=D

T: Y = yEBT

Write general solutions and simplified particular solutions for

(a) Sand R in terms of J, K, and Yj

(b) D in terms of J, K, and Yj

(c) J and K in terms of T and Yj

(d) T in terms of S, R, and y.

9. Let the equation a'xI + a'x2 + ax~ = 1 be defined on the Boolean
algebra B = {O, 1, a', a}.

EXERCISES 179

(a) Display a general solution in the form

al ~ Xl ~ {31
a2(XI) ~ X2 ~ {32(Xt)

Express the a and {3 functions by simplified formulas.

(b) Use your general solution in a systematic way to enumerate all
particular solutions (Xl. X2)'

10. Given the Boolean algebra {O, 1, a, a'}, find the particular solutions of
the Boolean equation y' z' + a'y + ax' = O.

11. (a) We are given Boolean functions f: B-B and cf>: B-B. De
scribe the steps needed to prove that cf>(t) is a parametric general
solution of the Boolean equation

f(x) = 0 .

(b) Suppose that B = {O,a',a, I}. Show that the system

cf>l(t) = at

cf>2(t) = a't

is a parametric general solution of the Boolean equation

a' Xl + aX2 = 0 .

Your demonstration should not entail enumeration of all particu
lar solutions.

12. (Boole [13], Chapter IX) Let us assume wealth to be defined as follows:
"Wealth consists of things transferable, limited in supply, and either
productive of pleasure or preventive of pain." Thus wealth is defined
by the class-equation

w = st(p+ r),

where w stands for wealth, s for things limited in supply, t for things
transferable, p for things productive of pleasure, and r for things pre
ventive of pain. State a general solution for the things transferable and
productive of pleasure, i.e., the class pt, in terms of the classes r, s,
and w. State a condition on the latter three classes that is necessary
and sufficient for the existence of your solution.

Chapter 7

Functional Deduction

The central process of Boolean reasoning is the extraction of a derived system
from a given Boolean system (cf. Section 4.2). The derived system may be
categorized as

• functional (of the form X = F(Y» or general
(i. e., not necessarily functional).

• antecedent or consequent.

The primary reasoning tactic employed by Boole and later nineteenth
century logicians was to solve a logical equation for certain of its arguments
in terms of others. Boole's approach may thus be classified as functional and
antecedent. We discuss such reasoning in Chapter 6.

Methods of general Boolean reasoning, both antecedent and consequent,
were devised by Poretsky [159} at the end of the nineteenth century; these
methods, however, entail computation of impractical complexity. A practical
approach to general consequent reasoning in Boolean algebras was given by
Blake [10} in 1937. Blake's "syllogistic" approach, which we describe in
Chapter 5, is the Boolean precursor of Robinson's resolution principle [168}
in the predicate calculus.

The object of the present chapter is to discuss functional consequents of a
Boolean equation. Unlike functional antecedents (i.e., solutions), which have
been the object of much study since Boole's time, functional consequents
seem to have received little attention.

We proceed throughout this chapter from a given consistent Boolean
equation of the form

(7.1)

181

182 CHAPTER 7. FUNCTIONAL DEDUCTION

(The I-normal form (7.1) is chosen, in place of the O-normal form used
earlier in this book, for computational convenience.) Our objective is to find
consequents of (7.1) having the form

Xl = g(X2, .•. , xn) .

Such consequents were called "consequent solutions" by Ledley [115, 118],
who discussed their utility in circuit-design and proposed matrix methods
for their construction.

We present criteria in Section 7.1 for determining the variables that are
functionally deducible from equation (7.1). The associated functions are
defined as intervals, i.e., as incompletely-specified functions, enabling the
methods of switching theory to be employed for minimization. In Section 7.2
we consider the following problem: given that a variable, 1.£, is functionally
deducible from (7.1), what are the minimal sets of variables from which the
value of 1.£ may be computed?

7.1 Functionally Deducible Arguments

Assume as before that (7.1) is consistent, and consider a Boolean system
having the form

1.£1 = gl(V)

(7.2)

where U = (ut, ... , ur) and V = (VI, • .• , v_) are disjoint subvectors of X =
(Xl, •.. ,Xn) and where gt, .•. ,gr: B---B are Boolean functions. If (7.1)
=* (7.2), we say that (7.2) is afunctional consequent of (7.1), and that each
of the arguments 1.£1, ••• , ur is functionally deducible from (7.1).

We confine our study of functionally deducible arguments to the case
r = 1. Given a partition {{u},V} of {Xl, ... ,Xn }, therefore, we define 1.£

to be functionally deducible from (7.1) in case there is a Boolean function
g: Bn-l __ B such that the equation

1.£ = g(V) (7.3)

is a consequent of (7.1).

7.1. FUNCTIONALLY DEDUCIBLE ARGUMENTS

Theorem 7.1.1 The following statements are equivalent:

(i) u is functionally deducible from (7.1).
(ii) EDIS(J',{u}) = 1.

(iii) ECON(J,{u}) = 0.
(iv) u or u' appears in every term of BCF(f).

Proof.
(i) <==> (ii) <==> (iii)

183

The equivalence of the statements below follows from elementary prop
erties of Boolean analysis.

(a) (3g) (Vu, V) [J(u, V) = 1 ==} u = g(V)]

(b) (3g) (Vu, V) [J(u, V) ~ u' EB g(V)]

(c) (3g) (VV) [f(O, V) ~ g'(V)]
f(l, V) ~ g(V)

(d) (3g) (VV) [J(1, V) ~ g(V) ~ f'(O, V)]

(e) (VV) [J(1, V) ~ f'(O, V)]

(f) (VV) [J'(1, V) + f'(O, V) = 1] i.e., EDIS(f',{u}) = 1

(g) (VV) [f(l, V)f(O, V) = 0] i.e., ECON(f,{u}) = °
(iii) <==> (iv)

The equivalence of (iii) and (iv) follows directly from Lemma 5.8.1.
o

Statement (d) in the foregoing proof, together with Proposition 3.14.2,
leads to

Corollary 7.1.1 The Boolean equation u = g(V) is afunctional consequent
of (7.1) if and only if 9 lies in the interval

flu ~ 9 ~ (flu')'. (7.4)

The function 9 is thus "incompletely specified" in the terminology of
switching theory. The set of g-functions defined by (7.4) may be displayed

184 CHAPTER 7. FUNCTIONAL DEDUCTION

on a Karnaugh map whose arguments are those appearing explicitly in Ilu.
A "1" is marked in the cells corresponding to the function I I u, a "0" in
the cells corresponding to the function II u', and an "x" (don't-care) in the
remaining cells.

Example 7.1.1 The operation of the most significant stage of a binary
two's-complement adder is defined by the system

d = ab+ac+bc

s = abc (7.5)

u = abs' + a'b's

where a and b are the sign-bits of the addends, s is the sign-bit of the
sum, c and d are the input and output carries, respectively, and u is the
two's-complement overflow signal. (Non-standard variable-names have been
chosen to avoid subscripts.) System (7.5) is equivalent to an equation ofthe
form I = 1, where I is given by

I = a'b' c' d' s' u' + a'b' cd' su + a'bc' d'su' + a'bcds' u' +
ab'c'd'su' + ab'cds'u' + abc'ds'u + abcdsu' . (7.6)

Formula (7.6) is in Blake canonical form; hence, we may apply criterion
(iv) of Theorem 7.1.1 to determine the deducible variables. Each of the
variables a, b, c, d, s, u appears in each of the terms of Be F(f); hence, each
variable is functionally deducible from the equation I(a, b, c, d, s, u) = 1. Let
us investigate in particular the possible functions 9 such that the overflow
variable, u, is given by

u =g(a,b,c,d,s).

Applying Corollary 7.1.1, the set of g-functions is defined by the interval

fI u $ 9 $ (f I u')' ,

where flu and Ilu' are given as follows:

Ilu = a'b'cd's + abc'ds'
Ilu' = a'b'c'd's' + a'bc'd's + a'bcds'+

ab' c' d' s + ab' cds' + abcds .

(7.7)

(7.8)

There are 224 5-variable g-functions in the interval (7.7), one of which, nec
essarily, is specified by the third equation in (7.5). Another,

u=c$d, (7.9)

7.1. FUNCTIONALLY DEDUCIBLE ARGUMENTS 185

is found by inspection of a 5-variable Karnaugh map, using the mapping
rules cited earlier. Formula (7.9) is commonly employed in the design of
arithmetic circuits. 0

Example 7.1.2 (Bennett & Baylis [7], p. 218) What may one infer as
to the structure of A + BC from the simultaneous relations A ~ B + C,
B ~ A + C, and C ~ A + B?

Solution: We introduce a variable, X, to stand for A + BC. Thus the
given information is represented by the system

X = A+BC

A ~ B+C
B ~ A+C

C ~ A+B,

which reduces to f = 1, where f is given in Blake canonical form by

BCF(f) = A'B'C'X' + BCX + ACX + ABX .

The variable X, and no other, appears in every term of the foregoing formula.
Hence, by criterion (iv) of Theorem 7.1.1, the variable X, and no other, is
functionally deducible. Applying Corollary 7.1.1, the set of values of X is
specified by the interval

AB+AC+BC ~ X < A+B+C.

o

Example 7.1.3 A sequential digital circuit is one possessing memory; the
present output of such a circuit depends not only on the present input but
on the sequence of prior inputs. An asynchronous sequential circuit is a
sequential circuit whose operation is not timed by an external clock-signal.
Changes in the output and memory-state of an asynchronous circuit occur
only in response to changes in the input. The memory of an asynchronous
circuit is embodied in the values of one or more signal-lines, called state
variables, connected in closed feedback-loops. These variables "lock up" in
stable states in the intervals between input-changes.

186 CHAPTER 7. FUNCTIONAL DEDUCTION

Suppose that an engineer wishes to design an asynchronous circuit having
inputs al and ao and output z. The output is to have the value 1 if and only
if the present value of the pair alaO, viewed as a binary number, is greater
than the preceding value; otherwise the output is to be O. It is assumed that
al and ao cannot change simultaneously.

U sing standard techniques of asynchronous design, the engineer finds
that the circuit should realize the equations z = alaO + alY' + aoY' and
Y = alaO + alY + aoY, where Y is a state-variable. (Note the feedback of the
state-variable Y implied in the latter equation.) The engineer notes that if al,
ao and Y are connected to the 3 inputs of a full adder (a standard component),
one of the two outputs of the adder produces the desired y-function. The
adder's second output, which we label s, produces the function s = al €aao€ay.
The engineer decides to use the full adder to generate the y function; the
second adder-output, s, is "free," so he will use the information it provides,
if he can, to assist in generating the output z. He has now accumulated the
following set of Boolean equations characterizing the design:

z = alaO + alY' + aoy'

y = alaO + alY + aoy

s = al €a ao €a y .

(7.10)

This set of equations is equivalent to the single equation / = 1, where / is
given, in Blake canonical form, by

BCF(f) = a~a~s'y'z' + ala~sy'z + a~aOsy'z +
a~aos'yz' + ala~s'yz' + alaosyz .

The variable z appears in every term of the foregoing formula; by crite
rion (iv) of Theorem 7.1.1, therefore, z is functionally deducible. Applying
Corollary 7.1.1, the set of deducible z-values is the interval [/ / z, (f / z')'] ,
where

f/z

(f /z'),

, , +' , = al aosy al aosy + al aosy

= (a~a~s'y' + a~aos'y + ala~s'y)'
= s + alao + alY' + aoy' + a~a~y .

The foregoing formulas show that one member of [J / z, (f / z')'] is s; hence,

z = s,

7.2. ELIMINABLE AND DETERMINING SUBSETS 187

i.e.,

is deducible from the system (7.10). (The validity of this equality, in view
of the constraints imposed by (7.10), should be verified.) Happily for the
designer, the adder produces both y and Zj the design is complete. 0

7.2 Eliminable and Determining Subsets

In this section we consider the following problem: given that a variable u is
functionally deducible, what are the sets of variables from which the value
of u may be computed? We will call such sets u-determining subsets.

7.2.1 u-Eliminable Subsets

Let {{ u}, V, W} be a collection of subsets of {Xl..'.' xn}, the set of argu
ments of equation (7.1), having the property that each argument appears in
exactly one ofthe subsets. The subset W may be emptyj hence the collection
may not be a partition. We say that W is u-eliminable from (7.1) provided
an equation of the form

u = g(V)

is a consequent of (7.1). The empty set is trivially u-eliminable from (7.1)
if u is functionally deducible from (7.1).

Lemma 7.2.1 Let X = {Xl. ... ,Xn }, V = {Vl. ... ,Vs }, W = {Wl. ... ,Wt},
and let {V, W} be a partition of the argument-set X. Let p and q be Boolean
functions and let p(V, W) = 1 be consistent. Then the following implications
are equivalent for all V E BS and W E Bt:

p(V, W) = 1 ==> q(V) = 1

EDIS(p(V, W), W» = 1 ==> q(V) = 1

(7.11)

(7.12)

188 CHAPTER 7. FUNCTIONAL DEDUCTION

Proof. The following statements are equivalent for all V E BB and W E Bt:

(a) (7.11)

(b) p(V, W) :5 q(V)

(c) p(V, W) . q'(V) = 0

(d) EAEBt(P(V,A) . q'(V)) = 0

(e) EDIS(p(V, W), W)):5 q(V)

(f) (7.12)

The equivalence of (a) and (b), and of (e) and (f), follows from the Extended
Verification Theorem (Theorem 5.4.1). The pair (b) and (c) are equivalent
by the definition of inclusion, and the pair (c) and (d) because a property
true for all values of W is true for any particular value. Finally, the pair (d)
and (e) are equivalent by the definition of the disjunctive eliminant. 0

Theorem 7.2.1 The subset W is u-eliminable from equation (7.1) if and
only if u is deducible from the equation

EDIS(f, W) = 1. (7.13)

Proof. W is u-eliminable from (7.1) if and only if the implication

f(u, V, W) = 1 => u = g(V) (7.14)

holds. It follows from Lemma 7.2.1, however, that (7.14) is equivalent to the
implication

EDIS(f(u, V, W), W) = 1 => u = g(V) , (7.15)

which establishes the theorem. 0

Theorem 7.2.2 The following statements are equivalent:

(i) W is u-eliminable from (7.1).
(ii) EDIS(ECON(f', W),{u}) = 1.
(iii) ECON(EDIS(J, W),{u}) = O.
(iv) u or u' appears in every term of BCF(EDIS(f, W)).

Proof. Follows directly from Theorems 7.1.1 and 7.2.1. 0

7.2. ELIMINABLE AND DETERMINING SUBSETS 189

Example 7.2.1 System (7.5) in Example 7.1.1 was found to possess the
consequent u = c EB d. Thus a u-eliminable subset is {a, b, 8}. Let us employ
criterion (iv) of Theorem 7.2.2 to verify that {a, b, 8} is u-e1iminable:

BCF(EDIS(J,{a,b,s}» = BCF(c'd'u' + cd'u + c'd'u' + cdu' +
c'd' u' + cdu' + c'du + cdu')

= c'd'u' + cd'u + cdu' + c'du .

The variable u appears in each term of BCF(EDIS(J,{a,b,s}»i hence,
{ a, b, s} is u-eliminable. 0

Statement (iii) of Theorem 7.2.2, together with Theorem 5.8.6, leads to

Corollary 7.2.1 The argument-subset W is u-eliminable from (7.1) if and
only if the condition

EDIS(J lu', W)· EDIS(J lu, W) = 0 (7.16)

is satisfied identically.

7.2.2 u-Determining Subsets

Consider as before a collection { {u}, V, W} of subsets of the set {Xl, ... , xn}
of arguments of equation (7.1), having the property that each argument
appears in exactly one of the subsets. As before the subset W may be
empty. We say that V is a u-determining subset of the arguments of (7.1)
provided W is u-eliminable from (7.1).

The subset W is u-eliminable, by Corollary 7.2.1, if and only if con
dition (7.16) is satisfied. Let us assume that flu' and flu are expressed
as sum-of-products formulas. From Theorem 5.8.4, therefore, the disjunc
tive eliminants EDIS(Jlu', W) and EDIS(Jlu, W) are formed as sum-of
products formulas from flu' and flu, respectively, by deleting all literals
corresponding to letters in W (any term all of whose literals are thus deleted
is replaced by 1). Then W is u-eliminable if and only if the product of any
term of EDIS(Jlu',W) and any term of EDIS(Jlu,W) is zero. Such a
product is zero, however, if and only if at least one letter, call it X, appears
opposed in the two terms, i.e., if the literal X appears in one term and the
literal x' appears in the other.

The foregoing observations are the basis for a procedure, outlined be
low, which generates the minimal u-determining subsets. This procedure

190 CHAPTER 7. FUNCTIONAL DEDUCTION

employs Boolean calculations to arrive at a family of minimal sets; variants
of this approach have been used to find irredundant formulas [154], maximal
compatibles [129], and maximal independent subgraphs [126, 127, 156, 211].

7.2.3 Calculation of Minimal u-Determining Subsets

We assume that u is functionally deducible from (7.1). The following steps
produce a sum-of-products formula, Fu, each of whose terms corresponds to
a minimal u-determining subset.

1. Express flu and flu' as sum-of-products formulas, viz.,

M

flu = EPi
i=l
N

flu' = Eqj
;=1

where PI, ... ,PM and Q1, ••• ,qN are terms, i.e., products of literals.

2. Associate with each pair (Pi,Qj) a complement-free alterm (sum of
Ii terals) Sij defined by

Sij = E (letters that appear opposed in Pi and qj) .

3. Define a Boolean function Fu by the product-of-sums formula

M N

Fu = II II Si; .
i=l;=l

4. Multiply out, to form a complement-free sum-of-products formula for
Fu , and delete absorbed terms. With each term ofthe resulting formula
associate a set of arguments having the same letters; the resulting sets
are the minimal u-determining subsets.

7.2. ELIMINABLE AND DETERMINING SUBSETS 191

Example 7.2.2 Let us employ the foregoing procedure to find the minimal
u-determining subsets for the system (7.5) of Example 7.1.1. We carry out
step 1 by labeling the terms shown in (7.8):

PI = a'b'cd's ql = a'b'c'd's'

P2 = abc'ds' q2 = a'bc'd's
q3 = a'bcds'
q4 = ab'c'd's
q5 = ab'cds'
q6 = abcds

The resulting Sij (step 2) are as follows:

S11 = c+s S21 = a+b+d
S12 = b+c S22 = a+d+s
S13 = b+d+s S23 = a+c
S14 = a+c S24 = b+d+s
SIS = a+d+s S25 = b+c
S16 = a+b+d S26 = c+s

Carrying out step 3, and deleting repeated factors, we obtain

Fu = (c + s)(b + c)(b + d + s)(a + c)(a + d + s)(a + b + d) .

The result of multiplying out and deleting absorbed terms is

Fu = abc + cd + abs + bcs + acs ,

to which correspond the minimal u-determining subsets {a, b, c}, {c, d},
{a,b,s}, {b,c,s}, and {a,c,s}. The third subset is the one implied by
the third equation of (7.5); the second is the one arrived at via Karnaugh
mapping in Example 7.1.1. 0

It has come to the author's attention that the method given above for
calculating minimal u-determining subsets was given (in a different context)
by Halatsis and Gaitanis [761, who called such subsets minimal dependence
sets.

192 CHAPTER 7. FUNCTIONAL DEDUCTION

Exercises

1. (Halatsis & Gaitanis [76]) A switching circuit has inputs Xl, ••• , x6

and output z. The behavior of the circuit is specified in terms of an
orthogonal pair {4>0, 4>d of 6-variable switching functions as follows:

• If 4>O(Xl, ••• , X6) = 1, then z = o.
• If 4>l(Xt. ... , X6) = 1, then z = 1.

• Otherwise, z = 0 or z = 1.

Given that

4>0 x~ x2x~X4X5X6 + x~ x2X3X4XSX6 + XlX2X~X~X5X~
4>1 X~ X2X~X4XSX~ + X~ X2X3X~XSX6 + X~ X2X3X~XSX~+

XlX2X~X4XSX~ + XlX2X3X~XSX6 + XlX2X3X~XSX~ ,

show that the minimal z-determining subsets are {Xl, X2}, {X3, X4, xs},
and {X3,X4,X6}.

2. The clocked D-latch is a digital circuit whose excitation-logic is speci
fied by the equations

R = CD

S = CD'.

C is the clock-input, D is the excitation-input, and Sand R ("Set" and
"Reset") are output-signals.

(a) Which of the four variables C, D, R, S is functionally deducible
from the remaining three?

(b) For each of each of the variables identified in (a),

i. Express the set of deduced values of that variable as an in
terval involving the remaining variables.

ii. Find the minimal determining subsets for that variable.

Chapter 8

Boolean Identification

We have been concerned until now with techniques of Boolean reasoning. In
this chapter and the next, we apply those techniques to the solution of partic
ular kinds of problems. The problems are chosen to illustrate the techniques;
no attempt is made to catalogue the problem-areas to which Boolean rea
soning might usefully be applied. In the present chapter, we consider how a
Boolean "black box" may be identified by means of an adaptive input-output
experiment.

Let us suppose that each system or process (which we shall call a trans
ducer) in a certain class is equipped with a collection X = (Xl, X2, ••• ,xm) of
binary inputs, together with a single binary output, z. Each such transducer
is characterized by the relation

(8.1)

for some Boolean function f. The inputs can be manipulated by an experi
menter and the resulting output observed.

We assume that the transducers in the given class are described by a
Boolean model, i.e., a Boolean equation

4>(X, Y,z) = 0, (8.2)

where Y is a vector (Yl, Y2, ... , Yn) of binary parameters. For each parameter
setting, Y = A E {O,l}n, the model (8.2) implies equation (8.1) for some
Boolean function f. The mapping from parameter-setting to transducer
is typically not reversible; a given transducer may be described by more
than one parameter-setting. The transducers thus partition the parameter
settings into equivalence-classes.

193

194 CHAPTER 8. BOOLEAN IDENTIFICATION

We suppose an unidentified transducer in the given class to be presented
to an experimenter, who is presumed to have perfect powers of deduction.
The experimenter knows the function tP in equation (8.2); thus he knows how
to characterize the entire class parametrically. He does not, however, know
the function f in equation (8.1), which characterizes the transducer in his
possession. His task is to identify that transducer, i.e., to determine f and
the associated equivalence-class of Y-values, by means of an input-output
experiment.

This model may be employed in a variety of diagnostic applications. The
transducer-class might consist of patients undergoing medical diagnosis, in
which case equation (8.2) represents the body of knowledge linking a certain
category of diseases with the associated symptoms. Each of of the parame
ters Yl, ... , Yn is in this case a disease, which is either present (Yi = 1) or not
present (Yi = 0) in the patient. Each combination of x-values represents a
symptom (or test to elicit that symptom). The output z represents the pres
ence (z = 1) or absence (z = 0) of the symptom corresponding to the vector
X, in the presence of disease-pattern Y. This formulation of the problem of
medical diagnosis is a variation of that given by Ledley [116, 117, 119]; Led
ley advocated the systematic use of Boolean methods in diagnosis as early
as 1954 [113].

The problem of diagnosing multiple stuck-type faults in a combinational
logic-circuit was formulated as one of Boolean identification by Poage [157]
and by Bossen & Hong [15]. The class of possible circuits (faulty and
fault-free) is characterized by a system of equations reducible to the model
(8.2); the vector Y consists of parameters each of which indicates the stuck
condition (stuck at 1, stuck at 0, or normal) at a point in the circuit. Breuer,
Chang, and Su [22] proposed a method for solving the associated Boolean
equations, based on an input-output experiment. Kainec [96] has developed
a system (written in the Scheme language) which locates multiple faults in a
combinational circuit, using Poage's model and Bossen & Hong's checkpoint
concept, by means of adaptive experiment. Kainec's system accepts a de
scription of a combinational circuit, either by means of Boolean equations
or by a VHDL (VHSICI Hardware Description Language) specification; the
system then assigns internal check-points, suggests test-inputs to the exper
imenter, accepts the test-results, and provides a report at the end of the
experiment on the nature and location (to within an equivalence-class) of
faults in the circuit.

1 Very High-Speed Integrated Circuit

8.1. PARAMETRIC AND DIAGNOSTIC MODELS 195

The problem of identifying the parameters in a Boolean model for the
adrenal gland is discussed by Gann, Schoeffler, and Ostrander [63, 177]. In
discussing this model, they note that "two essential ingredients of physiolog
ical research are the formulation of hypotheses about the operation of the
system and the experimental testing of these hypotheses resulting in either
its verification (followed by further testing) or else a change in the hypothesis
to account for the latest observations. A problem arises when the amount
of data is large, for it becomes difficult to determine whether a hypothesis is
consistent with all of the observations. Moreover, there are so many possi
ble experiments to perform, it is not practical to choose the experiments at
random-rather it is necessary to select so-called critical experiments, the
most instructive experiments possible."

Our object in this chapter is to show how Boolean reasoning may be
employed to devise such instructive experiments.

8.1 Parametric and Diagnostic Models

Our experimenter employs (8.2) as a repository of knowledge and as a guide
to experimentation, modifying 4>(X, Y, z) as knowledge is acquired. The
parameters Yb Y2, • •• , Yn in (8.2) may serve only a "curve-fitting" purposej
alternatively, they may represent physical values, e.g., of switch-settings or
of binary voltage-levels. The two cases cannot be distinguished by experi
ment. Let us assume for concreteness that the parameters specify physical
properties of the transducer under examination.

The experimenter's tasks are

• to determine the function / relating the output to input, for the exist
ing fixed setting of the parameters, and

• to deduce as much as possible concerning the parameter-settings.

8.1.1 Parametric Models

To be useful for identification, equation (8.2) should imply the equation

z = j(X,Y) (8.3)

for some Boolean function jj equivalently, the variable z should be function
ally deducible (c/. Section 7.1) from (8.2). We say that (8.2) is a parametric

196 CHAPTER 8. BOOLEAN IDENTIFICATION

model if such is the case. If (8.2) is a parametric model, then it implies
an input-output relation of the form z = f(X) for any fixed setting of the
parameter-vector Y.

Theorem 8.1.1 Equation (8.2) is a parametric model if and only if the
condition

EDIS(4), {z}) = 1 (8.4)

is satisfied identically.

Proof. Follows directly from Theorem 7.1.1. 0

If (8.2) is a parametric model, then the function j in the implied relation
(8.3) is any member of the interval [4>'(X, Y, 1), 4>(X, Y, 0)] (cf. the proof of
Theorem 7.1.1).

Example 8.1.1 Let 4>(Xb Yb Y2, z) = 0 describe a class of Boolean trans
ducers, the function 4> being given by

Substituting z = 0 and z = 1 in turn, we derive

4>(X, Y, 0) = y~ + xy~
4>(X, Y, 1) = x'Yt + XY2 .

The functions 4>(X, Y, 0) and 4>(X, Y, 1) sum to 1 identically; hence equation
(8.4) is an identity. By Theorem 8.1.1, therefore, 4> = 0 is a parametric
model. Applying Corollary 7.1.1, this model implies the relation (8.3) pro
vided j is in the range

4>'(X, Y, 1) ~ j ~ 4>(X, Y, 0) ,

i.e.,

" '<f"<' , x Yt + xY2 _ _ Yt + xY2 .

8.1. PARAMETRIC AND DIAGNOSTIC MODELS 197

8.1.2 The Diagnostic Axiom

The resultant of elimination of z from the Boolean model (8.2) is

ECON(4)(X, Y,z), {z}) = o. (8.5)

This equation expresses the knowledge relating X and Y, in the absence of
knowledge concerning z, that is deducible from (8.2). We assume, however,
that X is freely manipulable; hence X is unconstrained if nothing is known
about the value of z. Equation (8.5) is therefore universally quantified in X,
i.e., (8.5) holds for all X in {o,l}m. When combined with Theorem 4.8.8,
these observations lead to what we shall call the diagnostic axiom:

If 4>(X, Y, z) = 0 represents a class of transd ucers, then
the parameter-vector Y is constrained by the equation

EDIS(ECON(4>(X, Y, z), {z}),X) = O. (8.6)

8.1.3 Diagnostic Equations and Functions

The diagnostic axiom is based on the "physics" ofthe identification-problem;
a parametric model may not itself constrain Y as announced by (8.6). We
call the model (8.2) a diagnostic equation, however, (and 4> a diagnostic
function), in case it is a parametric model that satisfies the diagnostic axiom,
i.e., in case it is a parametric model that implies (8.6). Thus (8.2) is a
diagnostic equation if and only if the conditions

EDIS(4), {z}) = 1

EDIS(ECON(4>, {z}),X) < 4>

are satisfied identically.

(8.7)

(8.8)

Theorem 8.1.2 The model (8.2) is a diagnostic equation if and only if it is
a parametric model and there are Boolean functions j and iJ for which (8.2)
is equivalent to the system

z

o
j(X, Y)

iJ(Y) .

(8.9)

(8.10)

Proof. Equation (8.2) is equivalent to the system (8.9, 8.10) if and only if
the equation

4>(X, Y, z) = (z EEl j(X, Y)) + g(Y) (8.11)

198 CHAPTER 8. BOOLEAN IDENTIFICATION

is an identity. Suppose (8.2) is a diagnostic equation, i.e., suppose that
conditions (8.7) and (8.8) hold. Then for the choices

j(X, Y) = 4>(X, Y,O)

D(Y) = 4>(X,Y,O)'4>(X,Y,I)

the following calculations verify (8.11):

(8.12)

(8.13)

(z EI1 j(X, Y» + D(Y) = (z EI14>(X, Y, 0» + (4)(X, Y,O)· 4>(X, Y, 1»

= z'(4>(X, Y, 0» + z(4>'(X, Y, 0) + 4>(X, Y, 1»

= z'· 4>(X, Y, 0) + z . 4>(X, Y, 1)

= 4>(X, Y, z) .

To obtain the third line from the line before, we impose condition (8.7),
in the form 4>'(X,Y, 0) . 4>'(X,Y,I) = 0. If (8.2) is a diagnostic equation,
therefore, there are Boolean functions j(X, Y) and D(Y) such that (8.2) is
equivalent to the system (8.9, 8.10). To prove the converse, let us set z = °
and z = 1 successively in (8.11), to deduce the system

Hence

4>(X, Y, 0) = j(X, Y) + D(Y)
4>(X, Y, 1) = j'(X, Y) + D(Y) .

EDIS(4),{z}) = 4>(X,Y,O) + 4>(X,Y,l) = 1
ECON(4), {z}) = 4>(X,Y,O) . 4>(X,Y,I) = D(Y).

The upper equation verifies condition (8.7). The lower equation shows that
ECO N (4), {z}) is independent of X; hence

EDIS(ECON(4>, {z}),X) = ECON(4), {z}).

By Theorem 4.8.4, therefore, condition (8.8) is verified. 0

It is left as an exercise to show that if (8.2) is diagnostic, then the function
j in equation (8.9) is any member of the interval

4>'(X, Y, 1) ~ j(X, Y) ~ 4>(X, Y, 0) ,

and that the function D in equation (8.10) is uniquely specified by

D(Y) = ECON(4), {z}) = 4>(X, Y,O)· 4>(X, Y, 1).

8.1. PARAMETRIC AND DIAGNOSTIC MODELS 199

8.1.4 Augmentation

A parametric model defining a class of transducers may fail to be diagnostic.
Any parametric model, 4>(X, Y,z) = 0, may be converted, however, to a
diagnolltic model, AUG(4))(X,Y,z) = 0, which specifies the same class of
transducers. The function AUG(4)) is defined as follows:

AUG(4)) = 4> + EDIS(ECON(4>, {z}),X). (8.14)

We call AUG(4)) the augmentation of 4>.
To show that AUG(4)) = 0 is diagnostic, we require a preliminary result:

Lemma 8.1.1 Let 4>(X, Y, z) be a Boolean function. Then

ECON(AUG(4»,{z}) = EDIS(ECON(4>,{z}),X). (8.15)

Proof. In the following development, denote by heY) the function
EDIS(ECON(4>, {z}),X):

ECON(AUG(4»,{z}) = ECON«4>(X,Y,z)+h(Y)),{z})

= [4>1 z' + hey)] . [4>1 z + heY)]

= (4)lz'. 4>Jz) + heY)

= ECON(4),{z})+ EDIS(ECON(4>,{z}),X)

= EDIS(ECON(4>,{z}),X).

The last line is deduced from the one preceding because a ~ EDI S(a, X) for
any Boolean function a (Theorem 4.8.4); the remaining calculations resort
only to elementary Boolean algebra. 0

Theorem 8.1.3 Let 4>(X, Y, z) = 0 be a parametric model defining a class
of transducers. Then AUG(4))(X,Y,z) = 0 is a diagnostic model defining
the same class of transducers.

Proof. The equation AU G(4»(X, Y, z) = 0 is equivalent to the system

4>(X, Y,z) = 0

EDIS(ECON(4>(X,Y,z),{z}),X) = 0;

hence it follows from the diagnostic axiom that AUG(4))(X,Y,z) = 0 de
fines the same class of transducers as does 4>(X, Y, z) = O. To show that

200 CHAPTER 8. BOOLEAN IDENTIFICATION

AU G(</»(X, Y, z) = 0 is a diagnostic model, we show that the following are
identities:

EDIS(AUG(</»,{z}) = 1 (8.16)

EDIS(ECON(AUG(</»,{z}),X) ~ AUG(</». (8.17)

It is known that EDIS(</>,{z}) = 1, inasmuch as </>(X,Y,z) = 0 is a para
metric model. Hence

EDIS(AUG(</»,{z})

= EDIS(</> + EDIS(ECON(</>,{z}),X),{z})

= EDIS(</>, {z}) + EDIS(EDIS(ECON(</>, {z}),X), {z})

= 1 + EDIS(EDIS(ECON(</>,{z}),X),{z})

= 1,

verifying (8.16). We begin the verification of (8.17) by expanding its left
member, invoking Lemma 8.1.1 and the identity EDIS(EDIS(a,X),X) =
EDIS(a,X):

EDIS(ECON(AUG(</», {z}),X) = EDIS(EDIS(ECON(</>, {z}),X),X)

= EDIS(ECON(</>,{z}),X).

We make use of definition (8.14) to complete the expansion of (8.17) as
follows:

EDIS(ECON(</>, {z}),X):S:; </> + EDIS(ECON(</>, {z}),X) .

This formula is clearly an identity; hence AUG(</»(X, Y, z) = 0 is diagnostic,
completing the proof. 0

Example 8.1.2 Let us consider again the parametric model discussed in
Example 8.1.1. The function EDIS(ECON(</>(X,Y,z),{z}),X) evaluates
in this case to yiY2, which is not included in </>, i.e., the condition (8.8) is
not satisfied. Thus </> is not diagnostic. The augmentation of </> is

AUG(</» = </>+ EDIS(ECON(</>,{z}),X)

= (Y~z' + XY2Z + xy~z' + X'YIZ) + (Y~Y2)
= y~z' + Y2Z + xy~z' + X'YIZ .

The model AUG(</» = 0 is diagnostic; hence, it is equivalent to the system
(8.16,8.17), where j and fJ are specified as follows:

xY~+YiY~ ~ j ~ xY~+Yi
fJ = YIY~·

8.2. ADAPTIVE IDENTIFICATION 201

8.2 Adaptive Identification

We assume that the experimenter supplies a sequence (At, A2 , •••) of X
values to the transducer under test and observes the corresponding sequence
(J(A1),f(A2), •••) of z-values. We call the X-values test-inputs and we call
the pair (Ai, f(Ai)) a test. A sequence of tests for which the test-inputs are
distinct will be called an experiment.

A given test (Ai, f(Ai)) may supply no new information; f(Ai) may be
deducible, that is, from tests earlier in the experiment and from information
supplied prior to the experiment. It is clear that there are situations, e.g.,
medical diagnosis, in which such superfluous tests should be avoided. In this
section we describe a procedure for conducting an adaptive experiment, i.e.,
one in which the selection of each test-input is based on the outcomes of
earlier tests. Each test in the resulting experiment is guaranteed to supply
information not deducible from earlier tests or from information supplied
prior to testing.

We call an experiment definitive if, upon its completion, the experimenter
has enough information to deduce the Boolean function f, i.e., if he can
specify f(Ai) for any test-input Ai in {O,l}m. An exhaustive experiment,
i.e., one which includes all 2m test-inputs in {O, l}m, is clearly definitive. Our
object, however, is to construct definitive experiments based on a subset
(preferably a small subset) of all possible inputs; those test-outcomes not
found by experiment can be found if needed by deduction.

8.2.1 Initial and Terminal Specifications

After test i, the experimenter's knowledge concerning the transducer is rep
resented by a diagnostic model, viz.,

</>i{X, Y, z) = 0 . (8.18)

The index i indicates the number of tests already conducted in the experi
ment. The transducer is thus characterized initially by the model <1>0 (X, Y, z) =
O. Because <1>0 is diagnostic, there are Boolean functions io and go such that
the initial model is equivalent to the system

z = io(X, Y)
o = go(Y).

(8.19)

(8.20)

We call the pair (8.19, 8.20) an initial specification of the system, and we
refer to io and go as initial functions.

202 CHAPTER 8. BOOLEAN IDENTIFICATION

Equations (8.19,8.20) express the information available at the beginning
of an experiment. Equation (8.20) specifies the y-constraints, and (8.19) the
dependence of z upon X and Y, known prior to testing. The function io
is not unique, but all allowable choices of io induce the same dependence
of z upon X and Y for values of Y satisfying (8.20). The constraint (8.20)
introduces "don't-care" conditions, in other words, into the specification of
io (cf. Example 8.1.2).

Theorem 8.2.1 Let a class of transducers be described in terms of initial
functions io and go. At the completion of a definitive experiment, the infor
mation concerning the transducer under test is expressed by the system

z = f(X)

° = g(Y),

(8.21)

(8.22)

where f and 9 are unique Boolean functions and where g is given in terms
of io, go, and f by the relation

g(Y) = go(Y) + EDIS«(J(X) E9 io(X, Y», X) . (8.23)

Proof. The information acquired by means of any definitive experiment is
the same as that acquired by means of an exhaustive experiment; the latter
information is expressed by the system

z = io(X, Y)

° go(Y)

f(O, ... ,O,O) = io(O, ... ,0,0, Y)

f(0, ... ,0,1) = io(O, ... ,0,1, Y) (8.24)

f(0, ... ,1,0) = io(O, ... ,1,0, Y)

f(1, ... ,1,1) = io(1, ... ,1,1,Y) .

The first two equations are the initial specifications. Each of the 2m remain
ing equations denotes the information supplied by a single test. In view of
the latter equations, and making use of minterm expansion (cf. Theorem
2.9.1), the first equation may be re-cast equivalently as follows:

8.2. ADAPTIVE IDENTIFICATION 203

z = io(x,Y)

= L: io(A, Y)X A
Ae{O,I}m

= L: f(A)XA
Ae{O,I}m

= f(X) .

By Theorem 4.3.1, the remaining 2m + 1 equations in system (8.24) are
equivalent to the single equation

90(Y) + L (f(A) Ef) io(A, Y» = 0 ,
Ae{o,l}m

which is re-written equivalently, in view of Theorem 4.8.1, as

90(Y) + EDIS«(f(X) Ef) io(X, Y», X) = 0 . (8.25)

The system (8.24) is thus equivalent to the system (8.21, 8.22), with g(Y)
expressed by the left side of (8.25). The uniqueness of f and 9 is guaranteed
by the disjointness ofthe arguments appearing in (8.21) from those in (8.22).
o

We call the pair (8.21,8.22) the terminal specification of the system, and
we refer to f and 9 as the terminal functions. Equation (8.21) expresses the
dependence of z upon X, for the existing fixed value of Y j equation (8.22)
specifies the parameter-vector Y to within an equivalence-class, namely, the
set of solutions of 0 = g(Y).

Example B.2.1 Let io, 90, and f be given by the formulas

io(X, Y) = XIY~ + X~Y2 + X~X~Y3
90(Y) = YIY3

f(X) = Xl + x~ .
Applying Theorem 8.2.1,

g(Y) YIY3 + EDIS([(XI + x~) Ef) (XIY~ + X~Y2 + X~X~Y3)],X)
YIY3 + EDIS«x~x~y~y~ + XIX2YI + XIYIY~)'X)

= YIY3 + (y~y~ + YI + YIY~)
= YI + y~y~ .

204 CHAPTER 8. BOOLEAN IDENTIFICATION

8.2.2 Updating the Model

The experimenter's knowledge after the test (Ai, I(Ai» is expressed by the
pair of equations

<Pi-t(X,Y,Z) = 0

<Pi-t(Ai, Y, I(Ai» = O.

(8.26)

(8.27)

The first equation expresses the experimenter's knowledge prior to the testj
the second expresses the new information supplied by the test. The new
state of affairs is therefore expressed by the model

<Pi(X, Y, z) = 0 , (8.28)

where <Pi, the updated model-function, is given by the recursion

(8.29)

If <Pi-1 = 0 is diagnostic and <Pi is defined by (8.29), then <Pi = 0 is also
diagnostic (the proof is left as an exercise).

Example 8.2.2 Assume again the initial functions 10 and 90, and the ter
minal function I, given in Example 8.2.1. The experimenter knows 10 and
90 (or, equivalently, the initial model-function, <Po), but does not know Ij
his object is to determine the terminal functions I and g. The initial model
function, <Po, is given by

<Po (z EB 10) + 90
, " " '" '" X2Y2 Z + Xl X2 Z + X2Y3 Z + X2Yt Z + Y1Y2 Z + X1Y1 Z + Xt Y2Y3 Z + Y1Y3 .

The experimenter applies the test-vector X = (0,0), chosen at random, and
observes that the resulting output-value is z = 1. The information supplied
by this test is expressed by equation (8.27), which in the present instance
takes the form

YtY3 + Y~Y~ = 0 . (8.30)

Applying the recursion (8.29) enables the experimenter to calculate <PI:

<PI <Po + Y1Y3 + Y~Y~
= x~z' + X2Y1Z + X~X2Z + X1Y~Z' + Y1Y3 + Y~Y~ .

8.2. ADAPTIVE IDENTIFICATION 205

8.2.3 Effective Inputs

The updated model tl>l(X, Y, z) = ° in Example 8.2.2, resulting from the test
((0,0),1) (i.e., X = (0,0) => z = 1), supplies strictly more information
concerning the transducer than does the initial model, t/>o(X, Y, z) = 0. If
the test-input had been chosen to be X = (0,1), however, the test would
have supplied no new information; the output (z = 0) is predictable from the
initial model. The updated model-function resulting from the test ((0,1),0),
is thus the same as the initial model-function, i.e.,

We wish to avoid such useless tests; hence we desire that the test-vector
X = Ai+l be chosen so that the resulting output is not predictable from
knowledge of the current model, tl>i = 0. Such a test-vector will be called
effective.

Input-equation. To assess the effectiveness of test-inputs, we associate
a Boolean input-equation,

tPi(X) = ° , (8.31)

with the model tl>i = 0. The input-function, tPi, is defined as follows:

tPi(X) = EDIS(ECON(tI>i, Y), {z}). (8.32)

The utility of the input-equation is indicated in the next theorem.

Theorem 8.2.2 Let the current state of knowledge concerning a class of
transducers be expressed by the diagnostic model tl>i(X, Y, z) = 0, and let the
Boolean function tP be defined by {8.32}. Then the effective inputs are the
solutions of the equation

tPi(X) = ° . (8.33)

Proof. The relation between X and z is found by eliminating Y from the
current model, tl>i = 0. The resultant is

ECON(tI>i,Y) = 0. (8.34)

The input-vector X = Ai+! supplied for the next test is effective in case the
output z is not functionally deducible from (8.34). By Theorem 8.1.1, z is
functionally deducible from (8.34) if and only if the condition

EDIS(ECON(tI>i,Y),{z}) = 1 (8.35)

206 CHAPTER 8. BOOLEAN IDENTIFICATION

is satisfied. The left side of (8.34), i.e., "pi(X), is a two-valued function; hence
the denial of (8.34) (the necessary and sufficient condition for an effective
input) is expressed by (8.33). 0

Example 8.2.3 Applying (8.32), the input-function "po corresponding to
the initial model given in Example 8.2.2 is

"po(X) = Z~Z2 .

Thus the effective test-inputs, i.e., the solutions of z~ Z2 = 0, are (0,0), (1,0),
and (1,1). The test-input employed in Example 8.2.2, X = (0,0), is thus
verified as effective. The information supplied by test «0,0),1) is employed
in Example 8.2.2 to derive an updated model, <PI = 0. The associated input
equation is "pl(X) = 0, where

"pI (X) = z~ + z~ .
Thus there is now just one effective test-input, viz., X = (1,1). The ex
perimenter determines that the response to that input is z = 1; hence the
updated model is <P2 = 0, where

<P2 = <Pl(X,Y,Z) + <Pl(I,I,YhY2,Y3,1)

= (z~z' + Z2YIZ + Z~Z2Z + ZIY~Z' + YIY3 + Y~Y~) + (Yl + Y~Y~)
= z l z' + Z2Z' + z~ Z2Z + Yl + Y2Y~ .

The input-equation is now"p2 = 0, where "p2 is determined by (8.32) to have
the value 1. The equation 1 = ° has no solutions; thus there are at this
point no effective inputs. The experiment «(0,0),1), «1,1),1» is therefore
definitive. The final model-function has the expansion

<P2 = (z EB (ZI + z~» + Yl + Y~Y~ ;
hence the terminal functions are

f(X) = ZI + z~
g(Y) = Yl + Y~Y~ .

The function f (unknown to the experimenter at the outset) agrees with
that given in Example 8.2.1. The equivalence-class of parameter-vectors is
the set of solutions of g(Y) = 0; for the transducer just identified, the class
is {(O, 0,1), (0, 1,0), (0, 1, 1 n.

8.2. ADAPTIVE IDENTIFICATION 207

Terminal model. The number of distinct test-inputs is finite and
no effective test-input repeats an earlier one. Thus if all test-inputs are
effective, there is some index, k ~ 2m (as shown in the foregoing example),
such that tP" = 1 is an identity. This indicates that no further effective test
inputs exist, i.e., that the k tests performed thus far constitute a definitive
experiment. Consequently we call 4>,,(X, Y, z) = ° a terminal model.

Theorem 8.2.3 Let 4>,,(X, Y,z) = ° be a terminal model Jor a tmnsducer
under test. Then the terminal Junctions J and 9 are given by

J(X) = ECON(4),,(X,Y,O),Y)
g(Y) = ECON(4),,(X,Y,z), {z}) .

(8.36)

(8.37)

Proof. By Theorem 8.2.1, the model 4>,,(X, Y,z) = ° is equivalent to the
system (8.21,8.22), from which' we conclude that

4>,,(X, Y, z) = (z Ea J(X» + g(Y) .

Thus

ECON(4),,,Y) = II «z Ea J(X» + g(A»
Ae{o,l}n

= (z Ea J(X» + II g(A)
Ae{O,l}n

= zEaJ(X).

The last line is derived from the assumption that the equivalence-class of
parameter-vectors, i.e., the set of solutions of (8.21), is not empty. Thus the
consistency-condition,

II g(A) = 0,
Ae{o,l}n

(cJ. Theorem 6.1.1) is satisfied. Hence,

ECON(4),,(X,Y,O),Y) = OEaJ(X)

= J(X) ,

verifying (8.36). The following computations verify (8.37):

o

ECON(4),,,{z}) = «OEaJ(X»+g(Y»·«IEaJ(X»+g(Y»
= (f(X) + g(Y» . (f'(X) + g(Y»

= g(Y).

208 CHAPTER 8. BOOLEAN IDENTIFICATION

8.2.4 Test-Procedure

Given the initial model, 4>o(X, Y, z) = 0, the experimenter's object is to
determine the terminal functions f(X) and g(Y) by carrying out a sequence
of effective tests.

The algorithm shown in Figure 8.1 enables the experimenter to choose an
effective test-input at each stage of an experiment. The algorithm is based
on a diagnostic model-function, 4>(X, Y, z), from which the input-function
t/J(X) is derived (subscripts are omitted). The test-input at each stage is
obtained by solving the input-equation, t/J(X) = 0; the resulting observed
output is used to re-calculate 4>(X, Y, z) and t/J(X), after which the process is
repeated. The test-inputs derived in this way are necessarily distinct; hence,
the updated model becomes equivalent ultimately to a terminal description;
this condition is signaled when t/J(X) becomes equal identically to 1.

1 t/J(X):= EDIS(ECON(4>,Y), {z})
2 while t/J(X) '" 1 do
3 begin
4 Select a solution, A, of t/J(X) = 0.
5 Apply X = A as a test-input.
6 Observe the corresponding output, z = f(A).
7 4>(X, Y, z):= 4>(X, Y,z) + 4>(A, Y, f(A»
8 t/J(X):=EDIS(ECON(4>,Y),{z})
9 end
10 end
11 Return the terminal functions
12 f(X) = ECON(4)(X,Y,O),Y)
13 g(Y) = ECON(4)(X,Y,z),{z})
14 end

Figure 8.1: Algorithm for a definitive experiment.

Example 8.2.4 Let us apply the foregoing procedure to identify a trans
ducer in the class characterized by the diagnostic equation 4>0 = 0, where 4>0
is given by

4>0 = Y2Y~ + X~Y2Z + x~y~z + xlx~y~z' + X~X2Y~Z + XIX3Y~Z +
XIX~X3Z + XIX3YIZ + X~X3Y2z' + X2X3Y~Y2Z' + x~x~Y~Y3Z' •

EXERCISES 209

The following steps (shown with arguments indexed) constitute a definitive
experiment:

1/;0 = X~X2X~ + XIX~X3
Al = (1,1,1)
!(Al) = ° CPl = tPo + Y2Y~ + Y{Y2

= Y2Y~ + yiY2 + XIX3Z + X~Y2Z + x~Y~z
+XlX~Y~Z' + X~X2Y~Z + X~X3Y2Z' + X~X~Y~Y3z'

1/;1 = X~ X2X~ + Xl X3
A2 = (0,0,0)
!(A2) = 1
CP2 = CPl+Y2+Y~

= Y2 + Y~ + XlX3Z + XlX~Z' + X~X2Z + X~X2Z'
1/;2 = 1
!(X) = ECON(tP2(X,Y,O),Y) = XlX~ + x~x~
g(Y) = ECON(cp2(X,Y,z),{z}) = Y2 + Y~

The test-vectors Al and A2 were selected arbitrarily from among the so
lutions, respectively, of 1/;0 = ° and 1/;1 = 0. The adaptive nature of this
process enables us to identify the transducer after only two tests; an exhaus
tive experiment would have required 23 = 8 tests.

Exercises

1. Show that if (8.2) is diagnostic, then the function j in equation (8.9)
is any member of the interval

cp'(X, Y, 1) ::; j(X, Y) ::; cp(X, Y,O),

and that the function 9 in equation (8.10) is uniquely specified by

g(Y) = ECON(cp,{z}).

2. Given that CPi-l(X, Y,z) = ° is a diagnostic equation and that the
Boolean function CPi is defined by

show that CPi = 0 is also diagnostic.

210 CHAPTER 8. BOOLEAN IDENTIFICATION

3. Line 7 of the algorithm shown in Figure 8.1 is the assignment

4>(X, Y, z) := 4>(X, Y, z) + 4>(A, Y, f(A)) .

Show that if 4> is diagnostic, then

4>(X, Y,z) + 4>(A, Y, f(A)) = AUG(4)(X, Y,z) + XAzfl(A}) ,

whence line 7 of the algorithm may be replaced by

4>(X, Y, z) := AUG(4)(X, Y,z) + XAzfl(A}) .

Chapter 9

Recursive Realizations of
Combinational Circuits

In this chapter we illustrate some applications of Boolean reasoning in the
design of multiple-output switching circuits. The stimulus applied to the
circuit shown in Figure 9.1 is an input-vector, X = (Xb X2, •.• , x m), of bi
nary signals; its response is an output-vector, Z = (Zb Z2, .•. , zn), of binary
signals. We assume the circuit to be combinational, by which we mean that
the value of Z at any time is a function of the value of X at that time. A
sequential circuit, on the other hand, is one for which the value of Z may
depend on past values of X as well as on its present value.

Xl ---+I
X2 ---+I

Xm---+I

Figure 9.1: Multiple-Output Circuit.

Boolean methods for combinational circuit-design have been investigated
for more than fifty years [145, 146, 183, 185]. The field nevertheless remains

211

212 CHAPTER 9. RECURSIVE REALIZATIONS

an area of active research; see Brand [16] and Brayton, et al. [18, 20] for
summaries of recent work.

It is not our intent to discuss the extensive and highly-developed theory
of digital circuit design. The presentation in this chapter is arranged instead
with the following objectives in mind:

• to formulate the problem of multiple-output combinational circuit
design within the framework of Boolean reasoning; and

• to show how this formulation may be applied to solve a particular
problem in circuit-design for which customary Boolean methods have
proved inadequate.

9.1 The Design-Process

Combinational circuit-design customarily proceeds by means of the following
steps:

1. Specification. Describe a class of circuits suitable to one's purpose
by stating a relation between X and Z. A common specification-format
is a truth-table.

2. Solution. Solve the specification, i.e., find a vector switching func
tion, F = (fl, 12, ... , In), such that the system

Z = F(X) (9.1)

implies the specification. The solution is chosen so that It, 12, ... , In
can be represented by simplified formulas.

3. Transformation. Transform the solution (9.1) into a system

Z = G(X,Y)
Y = H(X,Y)

(9.2)

such that the resultant of elimination of Y from (9.2) (cJ. Chapter 4) is
equivalent to the solution (9.1). The transformation from (9.1) to (9.2)
is carried out so as to optimize selected measures of cost and perfor
mance. The transformation-process, whether automated or manual, is
typically carried out by a sequence of local changes. The elements of
the vector Y = (Yb Y2,' .. , Yk) represent "internal" signals, introduced
as the transformation proceeds.

9.2 SPECIFICATIONS 213

The problem we consider is how best to use a circuit's output signals-in
addition to its inputs-to assist in the generation of its outputs. The ad
vantageous use of available signals-including outputs-is a part of skilled
manual design, but has thus far been automated only in limited ways. The
text Synthesis of Electronic Computing and Control Circuits, published in
1951 by the Staff of the Harvard Computation Laboratory [82] devotes a
chapter to this problem; further work has been reported by Ho [85], Kobrin
sky [105], Mithani [139], and Pratt [160].

The process of design outlined in this chapter differs in the following
respects from the three-step procedure outlined earlier:

• Specification-Format. The specification may be expressed ini-
tially in a number of ways, e.g., by an enumeration of (X, Z)-pairs,
by a truth-table, or by a system of Boolean equations. It is reduced,
however, to a single Boolean equation of the form

4>(X,Z) = 1. (9.3)

We call (9.3) the normal form for the specification. Reducing the spec
ification to a single equation enables global dependencies and "don't
care" conditions to be handled uniformly and systematically .

• Nature of the Transformed System. The transformed system
has the form

Z = F(X, Z) (9.4)

rather than that of (9.2). Thus the output-values may depend not only
on the values of inputs but also on those of outputs. The function
vector F in (9.4) is chosen to have the following properties:

- Stability. The feedback implied by the presence of Z as an
argument of F does not cause oscillation.

- Economy. The total cost of the formulas expressing the func
tions II, 12, ... , fk is as small as design-constraints will permit.

9.2 Specifications

Let I = {O,l}m and 0 = {o,l}n be the input-space and output-space,
respectively, of the combinational circuit shown in Fig. 9.1. A specification
for the circuit is a relation 'R from I to 0, i.e., a subset of I X 0 (cf. Section

214 CHAPTER 9. RECURSIVE REALIZATIONS

1.6). Thus an input-output pair (X, Z) is allowed by the specification if and
only if (X, Z) E 'R

Example 9.2.1 A 2-input AND-gate, for which X = (Xl,X2) and Z = Zl,

is specified by the subset

'R = {«O, 0), 0), «0,1),0), «1,0),0), «1, 1), I)} (9.5)

of {O, 1}2 X {O, I}. 0

A specification 'R will be called complete in case it defines a function
from I into 0, i.e., in case each member of I appears exactly once as a left
element of a pair in 'R. A specification will be called incomplete in case it is
not complete, i.e., in case one or both of the following conditions occurs:

(b) there is a vector A E I that appears in more than one pair in 'R
as a left element; or

(a) there is a vector A E I that fails to appear in any pair in 'R
as a left element.

These are referred to in circuit-design as "don't-care" conditions. If a vector
A E I appears more than once as a left member of a pair (A, Z) E 'R
(condition (a», then the circuit may be designed to produce whichever of
the corresponding Z-values best meets the designer's objectives. If a vector
A E I fails to appear as a left element of a pair in 'R (condition (b», then
X = A is a forbidden input. The circuit-designer cannot enforce a condition
of type (b), which is a constraint on the signal-source producing X.

Any actual m-input, n-output circuit is defined by a set :F E <fIxo of
ordered pairs denoting a function. The circuit will be said to realize a spec
ification 'R provided the condition

(X, Z) E :F ==? (X, Z) E 'R (9.6)

is satisfied if X appears as a left element of a pair in 'R.

9.2.1 Specification-Formats

A specification 'R may be represented in a number of ways, e.g., by an enu
meration of (X, Z)-pairs (as exhibited in Example 9.2.1), by verbal state
ments, by a predicate-calculus formula, by a truth-table, or by a system of

9.2 SPECIFICATIONS 215

Boolean equations. The explicit enumeration shown in (9.5), for example,
may be represented by the equivalent specification

(9.7)

For most purposes, clearly, the form (9.7) is to be preferred over the enu
merative form (9.5)

Example 9.2.2 The information needed to convert between the JK and
RST flip-flop types is expressed by the system

Q'J + QK'
o =

S + Q'T + QR'T'
RS+RT+ST

(9.8)

of Boolean equations. The first equation relates the next-state behavior of
the two flip-flops; the second equation is an excitation-constraint on the RST
flip-flop. If X = (J, K, Q) and Z = (R, S, T), then (9.8) specifies the logic to
convert from an RST to a JK flip-flop; if X = (Q, R, S, T) and Z = (J, K),
then (9.8) specifies the logic to convert from a JK to an RST flip-flop (the
directions of these conversions may seem at first glance to be reversed!). 0

Normal Form. A specification n, as defined above, is a Boolean
constraint (c/. Section 4.6). Hence any specification may be expressed as a
Boolean equation of the form

¢>(X,Z) = 1 . (9.9)

The function ¢> is defined in terms of the specification n as follows: for all
(A,B) E {O,I}m+n,

¢>(A, B) = 1 {:=> (A, B) En. (9.10)

The normal-form representation (9.9) is advantageous for a number of rea
sons. It provides a standardized representation on which to base analysis
and synthesis. The function ¢> corresponding to a given specification, n, is
unique; the function ¢>, as we shall show, is directly related to a truth-table
if expanded in minterms of X. Finally, the normal form provides a uniform
and convenient way to represent and deal with "don't-care" conditions.

Henceforth a specification will be assumed to be in normal form if not
announced to be otherwise.

216 CHAPTER 9. RECURSIVE REALIZATIONS

Example 9.2.3 The normal form of specification (9.8) is

</>(J,K,Q,R,S,T) = 1,

where </> is given by

o

</>(J, K, Q, R, S, T) = J'Q'S'T' + JQ' R' S'T + JQ'R'ST'
+K'QR'T' + KQRS'T' + KQR'S'T.

(9.11)

(9.12)

Theorem 9.2.1 Let a specification n ~ I X 0 be represented by the normal
form </>(X, Z) = 1. Then </> is given by the expansion

</>(X, Z) = L x P ZQ .
(P,Q)E'R

Proof. We show that, for all (A, B) E {O, 1 }m+n, the equivalence

(9.13)

L AP BQ = 1 ¢:::} (A, B) E n (9.14)
(P,Q)E'R

holds. Suppose for (A, B) E {O,l}m+n that the equation on the left side of
(9.14) is satisfied. Each term in the summation has a value of either ° or 1.
We therefore deduce from the relation

AP BQ = {I if A = -: and B = Q (9.15) ° otherwIse

that (A, B) E R. Let us suppose on the other hand that (A, B) E n. Then
(9.15) guarantees that one of the terms in the summation on the left of
(9.14), and therefore the summation itself, has the value 1. 0

Example 9.2.4 Let a specification be given by the following set of pairs:

n = («0,0,0),(1,0»,
«0,0,0), (1, 1»,
«0,1,0), (1, 1»,
«1,0,0),(0,0»,
«1,0,0), (1,0»,
«1,0,1), (0,0»,
«1,0,1), (0, 1»,
«1,1,0), (0, 1»,
«1,1,1), (0,0»,
«1,1,1), (0,0»,
«1,1,1), (0, 0»,
«1,1,1),(0,0»} .

(9.16)

9.2 SPECIFICATIONS 217

Applying Theorem 9.2.1, n is equivalent to the normal-form specification
¢ = 1, where ¢ is given by

o

¢ = x~X~X~ZIZ~ + x~X~X~ZIZ2 + X~X2X~ZIZ2 + xlx~x~ziz~+
XIX~X~ZIZ~ + XIX~X3Ziz~ + XIX~X3Ziz2 + XIX2X~ziz2+
XIX2X3Zi z~ + XIX2X3Zi Z2 + XIX2X3ZIZ~ + XIX2X3ZlZ2 •

(9.17)

Corollary 9.2.1 A specification (9.9) is complete if and only if the condi
tion

¢(A, Z) is a minterm on the Z-variables (9.18)

is satisfied.

Example 9.2.5 Suppose that X = (J,K,Q) and Z = (R,S,T). The speci
fication (9.8) is incomplete because ¢(O, 0, 0, R, S, T) = S'T' is not a minterm
on R,S,T. 0

Example 9.2.6 Consider the specification

Zl < X~X~
Xl + X~ ~ Z2 < Xl + Zl ,

(9.19)

for which X = (Xl, X2) and Z = (zt, Z2). The normal form for this specifica
tion is the equation

(9.20)

in which ¢ is given by

(9.21)

Thus
¢(O, 0, Zl, Z2) ZlZ2

¢(O, 1, Zl, Z2) = ziz~
¢(1, 0, Zl, Z2) = ZiZ2

(9.22)

¢(1, 1, Zt, Z2) Zi Z2.

Each of the foregoing is a Z-minterm; hence, the specification (9.19) is com
plete. 0

218 CHAPTER 9. RECURSIVE REALIZATIONS

9.2.2 Consistent Specifications

A specification is consistent (c/. Section 6.1) in case it can be solved for Z
in terms of X, i.e., in case there is a system

Z = G(X) , (9.23)

such that the result of substituting (9.23) into (9.9), i.e.,

<fJ(X, G(X» = 1 , (9.24)

is an identity. It is a direct consequence of Theorem 6.1.1 that (9.9) is
consistent if and only if the condition

e(X) = 1

is satisfied; the function e is defined by

e(X) = EDIS(<fJ(X, Z), Z).

In view of Theorem 9.2.1, equation (9.26) takes the form

e(X) = EDIS(L XPZQ,Z)
(P,Q)e'R.

= L X p •
(P,Q)e'R.

(9.25)

(9.26)

Thus specification n is consistent if and only if the input satisfies the con
straint

E x P = 1.
(p,Q)e'R.

(9.27)

A specification may be consistent identically, i.e., (9.27) may be an iden
tity. It may be also be consistent physically, i.e., the input-vector X may
be constrained in such a way that (9.27) is satisfied for all values of X that
are allowed physically to occur. The question of input-constraints, however,
is extrinsic to the specification. We therefore take it as an axiom of circuit
design that a given· specification is consistent, i.e., that the input-vector is
constrained so as to satisfy condition (9.27).

9.3 TABULAR SPECIFICATIONS 219

9.3 Thbular Specifications

To design a circuit realizing a specification 4>(X, Z) = 1 entails solving the
specification, implicitly or explicitly, for Z in terms of X. Applying the
methods discussed in Chapter 6, a general solution of 4>(X, Z) = 1, repre
senting the set of all particular solutions, may be expressed by a system of
recurrent subsumptions. Because of its recurrent nature (c/. Section 6.3)
such a general solution is not convenient for locating particular solutions
having desired properties. A more convenient form for a general solution is
a non-recurrent system

01(X) < ZI < fJl(X)
02(X) ::; Z2 < fJ2(X)
03(X) < Z3 < fJ3(X) (9.28)

on(X) < Zn ::; fJn(X) ,

in which the Zi are expressed by independent subsumptions. It is not possible
in the general case to express a general solution as a system of the form
(9.28). It is always possible, however, to express a general solution as a
collection of such systems. This possibility was first investigated by Davio
and Deschamps [45], and subsequently by Deschamps [49] and Brown [27].

We say that a specification is tabular in case it is equivalent to a system
of the form (9.28). A specification is tabular (as we shall show) if and only if
it can be expressed by a truth-table. Nearly all current approaches to digital
design are based therefore on tabular specifications.

To characterize tabular specifications, we note that (9.28) is equivalent
to the system

where

4>1 (X, ZI) = 1
4>2(X, Z2) = 1

4>i(X, Zi) = oi(X)zi + fJi(X)Zi

(9.29)

(9.30)

for i = 1,2, ... , n. Thus (9.28) is a general solution of the normal-form
specification 4>(X, Z) = 1, where 4> is related to the functions 4>1,4>2, ••. , 4>n
of (9.29) as follows:

(9.31)

220 CHAPTER 9. RECURSIVE REALIZATIONS

We conclude that a specification equivalent to 4>(X, Z) = 1 is tabular if and
only if there are switching functions 4>10 4>10 ... , 4>n: {O, l}m+1--+ {O, I} such
that the multiplicative expansion (9.31) holds.

Theorem 9.3.1 A specification equivalent to

(9.32)

is tabular if and only if, for each A E {O,l}m, the discriminant 4>(A, Z) is
either zero or reduces to a term on the z-variables.

Proof. Suppose that (9.32) is tabular, i.e., suppose 4>10 4>10 ... , 4>n
exist such that the expansion (9.31) holds. It is clear that the condition
4>i(A,Zi) E {O,Z:,Zi,l} holds; hence, for each A E {o,l}m, 4>(A,Z) is either
zero or is a Z-term.

Suppose conversely that, for all A E {o,l}m, the discriminant 4>(A, Z)
is either zero or reduces to a Z-term. Define Boolean functions 4>i(A, Zi)
for A E {O,l}m and i E {1,2, ... ,n} as follows: if 4>(A,Z) is zero, then
4>i(A, Zi) = 0; if 4>(A, Z) is a Z-term, then

If z: is present in the term 4>(A, Z), 4>i(A, Zi) = z: .
If Zi is present in the term 4>(A, Z), 4>i(A, Zi) = Zi .

If neither z: nor Zi is present, 4>i(A, Zi) = 1 .

We may thus express 4>(A, Z) as lli=l 4>i(A, Zi), enabling us to develop 4>(X, Z)
in X -maxterms as follows:

4>(X,Z) =
Ae{o,l}m

n

= II [[II 4>i(A, Zi)] + (XA)']
Ae{o,l}m i=l

n

= II II [4>i(A, Zi) + (XA)']
Ae{O,l}m i=l

n

= II II [4>i(A, Zi) + (XA)']
i=l Ae{o,l}m

n

= II 4>i(X, Zi) .
i=l

Thus (9.32) is tabular. 0

9.3 TABULAR SPECIFICATIONS 221

Example 9.3.1 Equation (9.12) is a tabular specification for J and K in
terms of Q, R, S, and T, because each ofthe discriminants 4>(J, K, 0, 0, 0, 0),
4>(J,K,O,O,O,l), ... , 4>(J,K,l,l,l,l) is either zero or reduces to a J,K
term. Equation (9.12) is not, however, a tabular specification for R, S, and
T in terms of J, K, and Qj the discriminant 4>(l,O,O,R,S,T), for example,
evaluates to R'S'T + R'ST', which does not reduce to a term on R,S,T. 0

Example 9.3.2 Let the function 4> in a normal-form specification be given
by

4>(X, Z) = x~ X~ZlZ2 + X1X2X3 + X1X2Z~ Z2+
+X~X~ZlZ~ + X1X~Z~ z~ + X1X3Z~ .

The discriminants of 4>(X, Z) with respect to X are

4>(0,0,0, Z) Zl
4>(0,0,1, Z) = ° 4>(0,1,0, Z) = ZlZ2
4>(0,1,1, Z) = ° 4>(1,0,0, Z) z~
4>(1,0,1, Z) Z' 1

4>(1,1,0, Z) Z~Z2
4>(1,1,1, Z) 1,

(9.33)

(9.34)

each of which is either ° or a term on Z. Thus the specification is tabular.
o

Given a tabular specification 4>(X, Z) = 1, the functions 4>1, 4>1, .•. , 4>n in
the expansion (9.31) are not unique. The set (9.28) of intervals derived from
these functions, however, and thus the set of particular solutions, is unique.
A convenient set of functions is the one constructed in the proof of Theorem
9.3.1. These are found by the following rule: for i E {I, 2, ... , n},

4>i(X,Zi) = EDIS(4)(X,Z),Z - {Zi}) ,

If Z = {Zl' Z2, Z3}, for example, the functions

4>1 (X, Zl) = EDIS(4)(X, Z), {Z2' Z3})
4>2(X,Z2) = EDIS(4)(X,Z),{Z1, Z3})
4>3(X,Z3) = EDIS(4)(X,Z),{ZI, Z2})

(9.35)

(9.36)

222 CHAPTER 9. RECURSIVE REALIZATIONS

Xl X2 X3 Zl Z2

0 0 0 1 X
0 1 0 1 1
1 0 0 X 0
1 0 1 0 X
1 1 0 0 1
1 1 1 X X

Table 9.1: Sample Truth-table.

are functions suitable for the expansion (9.31).

Tabular specifications are precisely those that can be represented by a
truth-table. To clarify the connection, let us examine Table 9.1.

We notice two kinds of don't-care specifications in Table 9.1. The first,
represented by an absent row, is a forbidden input-combination; the second
kind of don't-care, represented by an X in the table, denotes an output
variable (corresponding to an input-combination that may occur) that may
be freely assigned on {O, I}.

Let us reduce the specification expressed by Table 9.1 to normal form.
We begin by noting that the input-combinations forbidden by the table are
X = (0,0,1) and X = (0,1,1). These prohibitions are represented by the
system

XtX2X3 = 0
X~X2X3 = o.

The six rows of the table are expressed by the implications

XtX2X~ = 1 ~ Zl = 1
xlx2x~ = 1 ~ ZlZ2 = 1
Xlx2x~ = 1 ~ ~ = 1
Xlx2X3 = 1 ~ z~ = 1
XlX2X~ = 1 ~ Z~Z2 = 1
XlX2X3 = 1 ~ 1 = 1

(9.37)

(9.38)

9.4 STRONGLY COMBINATIONAL SOLUTIONS

which are equivalent collectively to the system

X~X~X~(Zl)' =
I I ()' X1X2X3 Zl Z2 =

X1X~X~(Z~)' =
I (')' X1 X2X3 Zl =

I (')' X1 X2X3 Zl Z2 =
X1 X2X3(1)' =

o
o
o
o
o
o

223

(9.39)

of equations. The system composed of (9.37) and (9.39) (and thus the orig
inal truth-table) is equivalent to the single equation

4>(X,Z) = 1.

The function 4> in (9.4b) is given by

4>(X, Z) = x~ X~X~Zl + x~ X2X~ZlZ2 + X1X~X~Z~+
Xl X~X3Z~ + Xl X2X~Z~ Z2 + Xl X2X3

(9.40)

(9.41)

in terms of the minterms of X j this is the same function as that shown in
(9.33). There is a direct connection between truth-table (Table 9.1) and
formula (above): each term of the formula specifies a row ofthe truth-table.
This direct relationship is an advantage of standardizing on the I-normal
form for a specification.

9.4 Strongly Combinational Solutions

A system of the form
Z=P(X,Z) (9.42)

will be called an implicit solution of a specification 'R in case (9.42) implies
'R. An implicit solution of'R having the specialized form

Z = F(X) (9.43)

will be called an explicit solution of 'R.
Iterates. Define the iterates p1, p2, . .. of P(X, Z) in (9.42) as follows:

P1(X, Z) = P(X, Z)
pk+1(X, Z) = P(X, pk(X, Z)) k = 1,2, ... (9.44)

If there is an integer k such that the iterate pk(X, Z) depends only on
X, then pi(X, Z) = pk(X, Z) for j > k. It can be shown that the least

224 CHAPTER 9. RECURSIVE REALIZATIONS

such integer, if one exists, is less than 2n. If no such integer exists, then the
sequence FI, F2, . .. ultimately becomes cyclic, all of its members depending
essentially on Z.

Example 9.4.1 The iterates of the system

Zl XIZ~
Z2 = Xl + Zl

(9.45)

are the following:

pO(X,Z) = [XIZ~]
Xl + Zl

FI(X,Z) = [Xl (Xl + Zl)']
[~l] Xl + (XIZ~)

(9.46)

Fi(X, Z) = FI(X, Z) j = 2,3, ...

o

Let us suppose that a circuit is characterized by the implicit solution
(9.42), and that Fk(X, Z) depends only on X for some integer k. Then
the circuit's outputs are guaranteed to stabilize, after the signal-waveform
traverses k "loops" within the circuit, to values depending uniquely on the
input-values. We thus define the implicit specification (9.42) to be strongly
combinational in case the iterate F2n-I(X, Z) is independent of Z.

Example 9.4.2 The sequence FI, F2, ... shown in Figure 9.2 is based on
the implicit specification Fl. This specification is strongly combinational
because pEl-and therefore all subsequent iterates-is dependent only on X.
o

9.5 Least-Cost Recursive Solutions

Given a consistent Boolean specification (9.9) for a multiple-output combi
national circuit, we seek to design a realization that achieves economy by
making use of outputs, as well as inputs, to produce outputs. Thus we seek

9.5 LEAST-COST RECURSIVE SOL UTIONS 225

F1: Zl = Z2 Z3'+ X Zl + X'Z3'
Z2 = X'+ Zl'Z3 + Z2 Z3'
Z3 = Z2'+ X Zl

F2: Zl = Z2 + X Zl
Z2 = X'+ Zl'
Z3 = X Z3'+ X Zl

F3: Zl = Z3 + Z2 + X'+ Zl
Z2 = X'+ Zl'Z3 + Zl'Z2'
Z3 = X Z2 + X Zl

F4: Zl = 1
Z2 = X'+ Zl'Z2'
Z3 = X Z3 + X Zl + X Z2

F5: Zl = 1
Z2 = X'+ Zl'Z2'Z3'
Z3 = X

F6: Zl = 1
Z2 = X'
Z3 = X

F7: Zl = 1
Z2 = X'
Z3 = X

Figure 9.2: An Iterate-Sequence.

226 CHAPTER 9. RECURSIVE REALIZATIONS

functions ft, h, ... , / n such that the system

Zl = ft(X, Z)
Z2 = h(X,Z)

Zn = /n(X,Z)

satisfies the following requirements:

• it implies the specification (9.9);

• it is strongly combinational; and

• it minimizes some reasonable measure of cost.

(9.47)

The first requirement ensures that the implemented circuit is a solution
of (i.e., does the job specified by) (9.9). The second requirement is needed
because a circuit corresponding to (9.47) may involve feedback-loops that
lead to physical paradoxes or oscillation. Some properly-operating combina
tional circuits do include feedback-loops [90, 100, 133, 186]; we adopt a safe
approach, however, by forbidding such loops.

A particular solution of the specification (9.9) is a system of the form
(9.1) that implies (9.9). The set of all particular solutions of (9.9) may be
represented by a general solution (c/. Chapter 6) expressed as a system

aleX) ::::; Ul ::::; f3l(X)
a2(X, Ul) ::::; U2 ~ f32(X, Ul)

a3(X, Ut, U2) ~ U3 ~ f33(X, Ut, U2) (9.48)

Qn(X,Ul,U2, ... ,Un-l) ~ Un ~ f3n(X, Ul, U2,' .. , un-d

of recurrent subsumptions, where (UI, U2, ... , un) is a permutation of the
output-vector (Zl' Z2, ... , zn). Although the set of particular solutions rep
resented by a general solution is unique, the form of a general solution (9.48)
may vary widely from one permutation of the output-variables to another.

Every particular solution

UI = <PI (X)
U2 = <P2(X)

Un = <Pn(X)

of (9.9) (and nothing else) is produced from (9.48) as follows:

(9.49)

9.5 LEAST-COST RECURSIVE SOL UTIONS 227

• choose <PI in the interval aleX) ~ <PI(X) ~ ,aleX);

• choose <P2 in the interval a2(X, <PI (X» ~ <P2(X) ~ ,a2(X, <PI(X»;

• etc.

From a general solution (9.48), we may construct solutions of the form

UI = heX)
U2 = h(X,uI)

(9.50)

Un = In(X, UI, U2,"" Un-I) ,

by independent selection of the functions h, 12, ... , In in the intervals dis
played in (9.48).

We call an implicit solution of the form (9.50) recursive. Such a solu
tion satisfies the first two of the requirements listed at the beginning of this
section. It implies the specification (9.9) because it is a solution of that
specification. It is physically realizable because its recursive structure corre
sponds to a circuit free offeedback-Ioops: output UI depends only on inputs;
output U2 depends only on inputs and UI; output U3 depends only on inputs,
UI and U2; etc.

The third of the requirements at the beginning of this section is that
the system (9.50) should minimize some reasonable measure of cost, i.e.,
a measure related to circuit-complexity. The measure chosen should also
be relatively easy to derive from the form of a solution. Solutions will be
expressed by means of SOP (sum-of-products) formulas; hence a reasonable
cost-measure is gate-input count, i.e., the number of inputs that would be
supplied to gates if the solution were implemented in a two-level AND-to-OR
circuit. (Input-signals and their complements are assigned zero cost.) Some
formulas and their associated gate-input costs are shown below.

a'bc + ab'
a + b'

a' + bcd'
abc'

Cost = 5 + 2 = 7
Cost = 0 + 2 = 2
Cost = 3 + 2 = 5
Cost = 3 + 0 = 3

Each cost is indicated as the sum of two numbers. The first number is the
total count of inputs to first-level AND-gates; the second number is the count
of inputs to the second-level OR-gate. A one-literal term does not require an
AND-gate; a one-term formula does not require an OR-gate. Although the

228 CHAPTER 9. RECURSIVE REALIZATIONS

gate-input cost is discussed in terms of gates, it is intended to measure the
complexity of a collection of Boolean formulas and does not imply a specific
implementation.

To clarify some of the foregoing ideas, let us consider an example.

Example 9.5.1 The system

, I
Zl = Xl + X2 X 3 + X2 X 3

Z2 = X~X2 + X~X3 (9.51)

Z3 = X~X2X3

has a gate-input cost of 7 + 6 + 3 = 16. This system is equivalent to
(and is also the unique explicit solution of) a specification of the form
I(Xl, X2, X3, Z}, Z2, Z3) = 1, where I is given by

(9.52)

Choosing the "natural" permutation (Ub U2, U3) = (z}, Z2, Z3) of the output
variables, a general solution of I = 1 is

Xl + x~x~ + X2X3 < Zl < Xl + x~x~ + X2X3

xi X~X3Z~ + xi X2X~Z~ + xi X2 X3 Z1 < Z2 < xi X2 + xi X3 + z~
xix2x3zlz2 < Z3 < Z~Z~+ZIZ2+X~X~Z~+XIZ~

X~ X2X3 + X~ X3Z1 + X~ X2Z1 •

(9.53)
A large number of recursive particular solutions, all reducible to the unique
explicit solution (9.51), can be derived from (9.53). Among the simplest of
these is

Zl = Xl + x~x; + X2X3

Z2 = X~X2 + z~
Z3 = ZIZ2,

for which the cost 7 + 4 + 2 = 13.

(9.54)

The permutation (UI' U2, U3) = (Z2' Z3, zd leads to a general solution for
which a simplified recursive solution is

Z2 = X~X2 + X~X3
Z3 = X~X2X3 (9.55)

Zl = z~ + Z3,

9.6 CONSTRUCTING RECURSIVE SOLUTIONS 229

with an associated cost of 6 + 3 + 2 = 11, a savings of 5 gate-inputs over the
original explicit solution (9.51). 0

9.6 Constructing Recursive Solutions

Our objective is to find a least-cost recursive solution of a specification

</I(X,Z) = 1. (9.56)

Let Zi be an argument in Z and denote the arguments in Z other than
Zi by Z-i, i.e.,

Z-i = Z - {zd ,

and let V be a subset of Z-i. Given the specification (9.56), we associate
three sets, n(Zi), S(Zi' V), and T(Zi), as follows with Zi and V:

n(Zi) = [(</Ilzi)', (</IIZi)]
S(Zi' V) = [(EDIS(</I, V)lzD', EDIS(</I, V)IZi]

T(Zi) = [(</Ilzi)'· (</IIZi), (</Ilzi)' + (</IIZi)] .

(9.57)

(9.58)

(9.59)

A subsumptive general solution of the specification, if produced by the
method of successive eliminations, defines the set of allowable Zi by

Zi E S(Zi' V) , (9.60)

the subset V being determined by the permutation of (ZI, Z2,' •• , zn) em
ployed in constructing the solution. Example 9.5.1 illustrates that the forms
(and therefore the costs) ofrecursive solutions are dependent upon that per
mutation. One approach to finding a least-cost recursive solution, therefore,
is to construct a general solution corresponding to each of the n! permu
tations of the output-variables, to determine a least-cost solution based on
each, and to select the best of such solutions. We describe an alternative
approach, based on T(Zi) rather than on S(Zi, V).

Lemma 9.6.1 If (9.56) is a tabular specification, Zi E Z, and V ~ Z-i,
then

(9.61)

Proof. It follows from the tabular property of (9.56) that there are
switching functions 9 and h such that

</I(X, Z) = g(X, Zi) . h(X, Z-i) , (9.62)

230 CHAPTER 9. RECURSIVE REALIZATIONS

whence

(4)/ Zi)

EDIS(4), V)/Zi
= g(X, 1)· heX, Z-i)

g(X, 1). EDIS(h(X, Z-i), V) .
(9.63)

(9.64)

Theorem 4.8.4 guarantees that heX, Z-i) ~ EDIS(h(X, Z-i), V)j thus

The relationship

(4)/ zD' + (4)/ Zi) = g'(X, 0) + g(X, 1) + h'(X, Z-i) (9.65)

follows from (9.62), and thus the inclusion

(9.66)

is verified on comparison of (9.64) and (9.65). We have thus verified the first
inclusion-pair of the system

(4)/Zi) ~ EDIS(4),V)/zi ~ (4)/zi)'+(4>/zi) (9.67)

(4)/zi)'· (4)/Zi) ~ (EDIS(4>, V)/zD' ~ (4)/zi)'. (9.68)

The second inclusion-pair, (9.68), is verified by similar reasoning. 0

Example 9.6.1 Given the tabular specification

(9.69)

the intervals R(zt) and T(zt} are given by

R(zt} = [Xl + X2 z2 , Xl X~Z2Z~ + xi X2Z~]
T(ZI) = [Xlx2z2Z~ , Xl + X2] .

The interval S(Zl, V), for various subsets V, is listed below:

S(Z},{Z2}) = [Xl , xlx2z~+xix21
S(Z},{Z3}) = [XI+X2Z2 , xlx2z2+xix2z~1

S(Zt,{Z2,Z3}) = [Xl , XIX2+xix2].

Comparisons among the foregoing intervals verify the inclusions in (9.61).
o

9.6 CONSTRUCTING RECURSIVE SOL UTIONS 231

Theorem 9.6.1 Let (9.56) be a tabular specification and let Zi be an argu
ment in Z. If the arguments in X U Z-i are constrained so that (9.56) can
be solved for Zi, then

(9.70)

Proof. Equation (9.56) can be solved for Zi if and only if the consistency-
condition

EDIS(¢,{zi}) = 1 (9.71)

holds. Assume that the arguments in XUZ_i are constrained so that (9.71),
i.e.,

(¢/zD + (¢/Zi) = 1 ,

is satisfied, whence the equations

(¢/zD'

(¢/ Zi)

become identities. The set-equality

(¢/zi)'· (¢/Zi)

(¢/zi)' + (¢/Zi)

therefore holds, whence (9.70) follows from Lemma 9.6.1. 0

(9.72)

(9.73)

(9.74)

(9.75)

Neither Lemma 9.6.1 nor Theorem 9.6.1 holds for a non-tabular specifi
cation, as the following example shows.

Example 9.6.2 The specification ¢(Xb Xz, Zb zz) = 1, where ¢ is given by

(9.76)

is non-tabular: ¢(O, 0, Zb zz), for example, evaluates to Zl + zz, which is not
reducible to a term on (Zl' zz). The interval S(Zb {zz}) is given by

[(EDI S(¢, {zz})/ zi)', EDI S(¢, {zz})/ Zi]

= [X~X2' x~] .

The interval T(Zi), on the other hand, is given by

(9.77)

The element X~X2 belongs to S(Zl' {Z2}) but not to T(Zi); hence S(Zl' {Z2})
is not a subset of T(Zi). 0

232 CHAPTER 9. RECURSIVE REALIZATIONS

9.6.1 The Procedure

The following procedure produces a least-cost recursive solution of a consis
tent tabular specification 4J(X, Z) = 1.

1. For each Zi E Z, calculate T(Zi) by use of the relation (9.59), and
determine the minimal determining subsets (c/. Section 4.9) on T(Zi).
A minimal determining subset, M, on T(Zi) is a subset of XUY having
the following properties:

(a) the arguments of M suffice to express at least one function in
T(Zi)j and

(b) none of the proper subsets of M has property (a).

2. Assign a cost, c(M), to each minimal determining subset M found in
Step 2. Examples of possible cost-measures are

• c(M) = the number of arguments comprised by M .

• c(M) = the cost of a formula, expressed by the arguments in M
and representing a function in the set T(Zi), that has least cost
over all functions in T(Zi).

3. Select a minimal determining subset, call it M(Zi), corresponding to
each Zi E Z. This selection should meet the following conditions:

(a) There is a permutation (Ub U2,"" un) of(zt, Z2, ••• , zn) such that

• M(Ul) ~ X, and
• M(Uk)~XU{Ul, ... ,Uk-d (lkn).

(b) The total cost, i.e.,

%iEZ

is minimized over all permutations (a).

This procedure avoids the construction of a general solution, and sub
sequent location of a least-cost recursive solution, for each permutation of
Z. Instead, the minimal determining subsets (and their associated costs)
are determined at the outset for each variable Zi. Only the contents and
costs of the minimal determining subsets are then required to complete the
procedure.

The procedure has a number of limiting characteristics, summarized as
follows:

9.6 CONSTRUCTING RECURSIVE SOL UTIONS 233

1. The specification must be tabular. The restriction to tabular
specifications is not as serious as it might appear. Essentially all exist
ing design-techniques assume a tabular specification; thus no novelty
in specification is introduced. A non-tabular specification can be han
dled by decomposing it into a collection of tabular specifications; a
solution of any of the component tabular specifications is a solution of
the original non-tabular specification. Methods for carrying out such
decomposition are discussed in [27].

2. Cost is measured by gate-inputs. The cost of a recursive solution
is defined (in the program whose operation is described in the next
subsection) to be gate-input count (c/. Section 9.5). This cost-function
measures the number of inputs to gates in a two-level (AND-to-OR
or NAND-to-NAND) realization of the formula, assuming that the
complemented input-signals x~, x2' ... , x~ are available. The cost of a
solution is the sum of the costs of its component formulas.

3. Feedback is excluded. The organization of a recursive solution
excludes closed loops, thereby guaranteeing that the corresponding cir
cuit is strongly combinational. Kautz [100] has shown that such loops
may be necessary to achieve minimal cost in a combinational circuit
design, and Pratt [160] has developed transformation-techniques that
produce strongly combinational designs incorporating closed loops.
Restricting ourselves to recursive solutions, however, greatly reduces
computational complexity. This reduction is gained, we believe, with
out significant increase in gate-input cost.

4. Redundant variables are excluded. The candidate argument-sets
to generate output Zi E Z, for any value of i, are the minimal determin
ing subsets of T(Zi). There are cases in which additional (and logically
superfluous) arguments are needed to attain minimal cost; such a case
is exhibited in Example 9.6.3. Such cases seem rare and the cost
advantage to be gained by introducing superfluous arguments seems
minor; the exclusive use of minimal determining subsets is therefore
justified by the drastic reduction it induces in the space of formulas to
be searched.

234 CHAPTER 9. RECURSIVE REALIZATIONS

Example 9.6.3 The following example-specification was given in an early
text [82, p. 90] on digital design:

Zl = X~X2X3 + XIX~X~ + XIX~X3 + XIX2X~
Z2 = x~ X2X3 + XIX~X3 + XIX2X~
Z3 = x~x~x~ + X~X2X3 + XIX~X3 + XIX2X~ •

The transformed system shown in [82] is

Zl = X~X2X3 + XIX~ + XIX~
Z2 = X2 Z1 + X3Z1

Z3 = x~x~x~ + Z2 ,

(9.78)

(9.79)

which has a gate-input cost of 21. The argument-set used to compute Z3,

viz., {Xt,X2,X3,Z2}, is not minimal; one of its proper subsets, {Xt,X2,X3},

clearly suffices to determine Z3. A least-cost system based solely on minimal
determining subsets is

Zl = X~X2X3 + XIX~ + XIX~
Z2 = ZlZ3

Z3 = X3Z1 + X2Z1 + x~x~z~ ,

which has a gate-input cost of 22. 0

9.6.2 An Implementation using BORIS

(9.80)

A program has been written using the reasoning-toolset BORIS (Boolean
Reasoning In Scheme) to construct a least-cost recursive solution for a tab
ular specification.

The program accepts a system of Boolean equations or a representation
of an incompletely-specified truth-table as input; either format is reduced by
the program to a specification of the form 4> = I, where 4> is a Boolean func
tion. After printing the terms of an SOP formvla for 4>, the program deter
mines and prints the minimal zi-determining subsets for each output-variable
Zi. These subsets are the basis for the subsequent search for an ordering of
the output-variables leading to a least-cost recursive solution. Partial per
mutations are built up during the search-process; the first output-variable in
such a partial permutation, Ut, must depend only on input-variables. The
next output-variable, U2, may depend on Ul as well as on inputs; U3 may
depend on Ul and and U2 as well as on inputs, and so on. The search-process

9.6 CONSTRUCTING RECURSIVE SOLUTIONS 235

is branch-and-bound, maintaining open and closed sets of partial permuta
tions, using gate-input count (discussed in Section 9.5) as a measure of cost.
In the example discussed below, the sequence of best partial permutations
generated during the search is

(8 (V 8 A CD»
(11 (W 11 ABC D»
(14 (V 8 A C D) (U 6 B V»
(15 (V 8 A C D) (W 7 A B V»
(15 (U 15 ABC D»

A partial permutation is represented, as shown above, by a list of the form

where "Cost" denotes total accumulated gate-input cost and each sublist
P(Uj) (j = 1, ... , k) has the form

(Uj c(M(uj» Ml(Uj) M2(Uj) ...).

The list

(14 (V 8 A C D) (U 6 B V»

represents a typical partial permutation. This shows that V is the first
output-variable in the permuted sequence, with functional dependence on
variables A, C, D, and gate-input cost 8. The second output-variable in the
sequence is U, with dependence on B and V, and cost 6. The total cost, 8
+ 6 = 14, is displayed first in the list.

Example 9.6.4 A circuit is to be designed in conformity with the 14-row
truth-table shown in Table 9.2. The inputs are a, b, c, and dj the outputs
are u, v, and w. Using standard design-techniques, taking advantage of the
"don't-care" entries in the table, a least-cost realization is

U = be + bd + a'cd + a'b'c'd'

v = a'cd + a'c'd'

w a + b' c + b'd + bc'd'

with costs for u, v, and w of 15, 8, and 11, respectively. Thus the least cost
using conventional techniques is 34.

236 CHAPTER 9. RECURSIVE REALIZATIONS

a b c d u v w
0 0 0 0 1 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 1 1 X
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 1 0 0
0 1 1 1 X X X
1 0 0 0 0 0 1
1 0 0 1 X X 1
1 0 1 0 X 0 1
1 0 1 1 0 0 X
1 1 0 0 X 0 X
1 1 0 1 1 0 1

Table 9.2: Truth-table for sample design.

Figure 9.3 shows the BORIS-output in designing a recursive realization
of the circuit. The Scheme-function DESIGN has two arguments: the first,
named SAMPLE in this case, denotes a specification, n (a truth-table in this
example); the second argument denotes the output-vector, Z. The result,

v a'cd + a'c'd'

u b'v + bv'

w = u + a' ,

has a gate-input cost of 16.

9.6 CONSTRUCTING RECURSIVE SOL UTIONS

[10] (DESIGN SAMPLE '(U V V»

Function:
A'B'C'D'U V V'
A'B'C'D U'V'V
A'B'C D'U'V'V
A'B'C D U V
A'B C'D'U'V V
A'B C'D U V'V'
A'B C D'U V'V'
A'B C D
A B'C'D'U'V'V
A B'C'D V
A B'C D'V'V
A B'C D U'V'
A B C'D'V'
A B C'D U V'V

Minimal Determining Subsets:
U «B V) (A BCD) (A C D V»
V «A B U) (A CD»
V «A U) (A B V) (A BCD»

(0)

(8 (V 8 A CD»
(11 (V 11 ABC D»
(14 (V 8 A C D) (U 6 B V»
(15 (V 8 A C D) (V 7 A B V»
(15 (U 15 ABC D»

(16 (V 8 A C D) (U 6 B V) (V 2 AU»
U = B'V + B V'
V = A'C D + A'C'D'
V = U'+ A

DONE

Figure 9.3: BORIS-output for sample design.

237

Appendix A

Syllogistic Formulas

Our approach to Boolean reasoning owes much to the work of A. Blake [10].
In this Appendix we outline Blake's theory of syllogistic Boolean formulas,
modifying his notation and some details of his proofs, but retaining insofar
as possible his point of view.

The reader is assumed to be familiar with the definitions given at the
beginning of Chapter 4 concerning Boolean formulas; some definitions, how
ever, are repeated for convenience. We assume that Boolean functions are
expressed by disjunctive normal (SOP) formulas; thus "formula" will invari
ably mean "disjunctive normal formula." A Boolean function will be denoted
by one of the lower-case letters f, g, h and a formula representing that func
tion by the corresponding upper-case letter (F, G, or H). A term (conjunct)
will be represented by one of the lower-case letters p, q, r, s, t; a term will be
treated either as a function or as a formula, depending on context. Literals
are denoted by x, y, or z.

Two formulas will be called equivalent (=) in case they represent the
same function, i.e., in case one can be transformed into the other, in a finite
number of steps, by application of the laws of Boolean algebra. Two formulas
will be called congruent (,g,) in case one can be transformed into the other
using only the commutative law. Thus congruent formulas may differ only
in the order of enumeration of their terms and in the order of the literals
comprised by any term.

Given two Boolean functions 9 and h, we say that 9 is included in h,
written 9 ::; h, in case the identity gh' = 0 is fulfilled. When applied to
formulas (e.g., G ::; H), the relation::; will refer to the functions those
formulas represent.

239

240 APPENDIX A. SYLLOGISTIC FORMULAS

A.1 Absorptive Formulas

An SOP formula F will be called absorptive in case no term in F is absorbed
by any other term in F. If F is not absorptive, then an equivalent absorptive
formula, which we call ABS(F), may be obtained from F by successive
deletion of terms absorbed by other terms in F.

Lemma A.I.1 The formula ABS(F) is unique to within congruence.

Proof. Suppose G1 and G2 are two absorptive formulas derived from F
by the deletion, in different order, of absorbed terms. Let p be a term of G1.

Then p is a term of F that is not absorbed by any other distinct term of Fj
hence, p must be a term of G2 • Similarly, any term of G2 must be a term of
G1 • Hence, G1 ~ G2 • 0

It is clear that ABS(F) is equivalent to F. There may be absorptive
formulas equivalent to F, however, that are not congruent to ABS(F). Let
F, for example, be the formula

ac' + b'c + a'b + a'b'c .

Then ABS(F) is the formula ac' + b'c + a'b. The absorptive formula

a'c + be' + ab'

is equivalent to F, but not congruent to ABS(F).

A.2 Syllogistic Formulas

Let F and G be SOP formulas. We say that G is formally included in F,
written G ~ F, in case each term of G is included in some term of F. We
write G ~ F if G is not formally included in F. Formal inclusion clearly
implies inclusion, i.e., G ~ F => G::; F for any F, G pair. Formula F will
be called syllogistic in case the converse also holds, i.e., in case, for every
SOP formula G,

G:::;F=>G~F.

Thus F is syllogistic if and only if every implicant of F is included in some
term of F.

Lemma A.2.1 Let F, G, and H be SOP formulas. If F ~ G + Hand
G ~ H, then F ~ H.

A.2. SYLLOGISTIC FORMULAS 241

Proof. Consider any term p of F, and suppose that p f::. H. Then there
is a term q of G such that p ::::; q. Since G <:: H, there is a term r of H such
that q ::::; r. Thus p ::::; r, whence p <:: H, a contradiction. Thus every term
of F is formally included in H. 0

Lemma A.2.2 Let F be an SOP formula. F is syllogistic if and only if
ABS(F) is syllogistic.

Proof. Suppose F is syllogistic and let p be an implicant of ABS(F). Then
p::::; F, whence p <:: F, Le., there is a term q of F such that p:5 q. Let r be
a maximal term of F (Le., a term made up of a minimal number of letters),
possibly q, such that q :5 r. Now p :5 rand r must be a term of ABS(F)j
therefore p :5 ABS(F) and we conclude that ABS(F) is syllogistic. Suppose,
conversely, that ABS(F) is syllogistic. Every term of ABS(F) is a term of
Fj hence F must also be syllogistic. 0

Lemma A.2.3 Let Fl and F2 be syllogistic. If Fl == F2 then ABS(Ft) ,g,
ABS(F2).

Proof. Suppose Fl and F2 to be equivalent syllogistic formulas. We deduce
from LemmaA.2.2 that ABS(F) <:: ABS(G) and that ABS(G) <:: ABS(F).
Let p be a term of ABS(F). There is a term q of ABS(G) such that p::::; qj
also, there is a term r of ABS(F) such that q :5 r. Thus p ::::; r, whence
p = r (because ABS(F) is absorptive) and therefore p = q. We conclude
that every term of ABS(F) is a term of ABS(G)j similarly, every term of
ABS(G) is a term of ABS(F). Hence, ABS(F) ,g, ABS(G). 0

Given SOP formulas F and G, we define F x G to be the SOP formula
produced by mUltiplying out the conjunction FG, using the distributive laws.
If F = L:i Si and G = L:j tj, then

F x G = E E Si • tj ,
i j

where repeated literals are dropped in each product Si· tj of terms, Si·1 = Si,

and 1 . tj = 1j also a product is dropped if it contains a complementary
pair of literals. The operation X is commutative and associativej hence,
Fl X F2 X ••• X Fk denotes without ambiguity the SOP formula produced by
multiplying out FlF2 ... Fk in the manner discussed above.

Theorem A.2.1 Let Fl , ... , Fk be syllogistic formulas. Then Fl X ••• X Fk
is syllogistic.

242 APPENDIX A. SYLLOGISTIC FORMULAS

Proof. Let t be an implicant of Fl X· ··X Fk. Then t ~ Fi for i = 1,2, ... , k;
further, t <: Fi, since the Fi are syllogistic. Thus each of the Fi contains a
term Pi such that t ~ Pi, and therefore t ~ n~=l Pi. But n~=l Pi is a term of
Fl X ••• X Fk; hence Fl X ••• X Fk is syllogistic. 0

Let a be any letter. Two terms will be said to have an opposition in case
one term contains the literal a and the other the literal a'. (If the symbol x
stands for the literal a', then we shall understand x' to stand for a.)

Lemma A.2.4 [fterms rand s have no oppositions, then r+s is syllogistic.

Proof. We assume that neither r nor s is the term 1, for which case the
lemma holds trivially. Suppose the lemma to be false, i.e., suppose that there
are terms rand s having no oppositions such that r + s is not syllogistic.
Then there is a term t such that t ~ r + s, t 1: r, and t 1: s. Thus each of the
terms r and s contains a literal not in t, i.e., r = XP and s = yq, where x and
yare literals not in t, p is a term not involving x, and q is a term not involving
y. Now t ~ r + s => tr's' = 0 => t(x' + P')(y' + q') = 0 => tx'y' = o.
Thus, either x'y' = 0 or one of the literals x or y appears in t. The former
is ruled out by the hypothesis that rand s have no oppositions, the latter
by explicit assumption; hence, we have arrived at a contradiction. 0

Theorem A.2.2 Let rand s be terms. The formula r + s is non-syllogistic
if and only if rand s have exactly one opposition.

Proof. Let k be the number of oppositions between r and s. If k = 0, then
r + s is syllogistic by Lemma A.2.4. Suppose k ~ 1, i.e., suppose r = x'p
and s = xq, where x is a literal and p and q are terms not involving x' or x
(if r = x', then p = 1; if s = x, then q = 1). Consider first k = 1, in which
case pq -I O. Let t be the term formed from pq by deleting duplicate literals.
Then t ~ r + s, since tr's' = pq(x + p')(x' + q') = O. However t 1: r, because
tr' = pq(x + p') = pqx -I o. It follows similarly that t 1: s. Thus r + s is not
syllogistic if k = 1. Consider now k > 1, in which case pq = 0, and let t be
any term such that t ~ r+s, so that tr's' = t(x+P')(x'+q') = txq'+tx'p' = o.
Then tx ~ q and tx' ~ p, from which we deduce that tx ~ qx = sand
tx' ~ px' = r. Either x or x' must appear in t, for suppose neither appears.
Then txq' + tx'p' = 0 => tq' + tp' = 0 => t ~ pq. But pq = 0 for k > 1;
hence t = 0, contradicting the assumption that t is a term. If x appears
in t, then tx = t and therefore t ~ s. If x' appears in t, then tx' = t and
therefore t ~ r. If k > 1, therefore, t ~ r + s implies that either t ~ r OJ

A.2. SYLLOGISTIC FORMULAS 243

t ::; s for every term t, Le., r + s is syllogistic. We conclude that r + s is
non-syllogistic if k = 1 and is syllogistic otherwise. 0

Suppose two terms rand s have exactly one opposition. Then the con
sensus [161] of rand s, which we shall denote by c(r, s), is the term obtained
from the conjunction rs by deleting the two opposed literals as well as any
repeated literals. The consensus c(r, s) does not exist if the number of op
positions between rand s is other than one. The consensus of two terms
was called their "syllogistic result" by Blake.

Lemma A.2.5 Let r + s be a non-syllogistic SOP formula. Then

(i) r+s+c(r,s)=r+s
(ii) r + s + c(r,s) is syllogistic.

Proof. Applying Theorem A.2.2, r + s is non-syllogistic if and only if
r = x'p and s = xq, where p and q are terms such that pq :f O. The
consensus c(r, s) is the term formed from pq by deleting duplicate literalsj
let pq henceforth denote that term. To prove (i), we re-express r + s + c(r, s)
as x'p + xq + pq, which is equivalent, by Property 8, Section 3.5, to x'p + xq.
To prove (ii), we show that if a term t is such that t ::; r + sand t ~ r + s,
then t ::; pq (recalling that c(r, s) = pq). The condition t ::; r + s holds if
and only if tr's' = txq' + tx' p' = O. Now t cannot involve x, for otherwise
txq' = 0 =} tx(q' + x') = 0 =} txs' = 0 =} ts' = 0 =} t ::; s. Similarly, t
cannot involve x'. Thus txq' +tx'p' = 0 =} tq' +tp' = t(pq)' = 0 =} t ::; pq.
o

Theorem A.2.3 If an SOP formula F is not syllogistic, it contains terms
p and q, having exactly one opposition, such that c(p, q) is not formally
included in F.

Proof. Let n be the number of distinct letters appearing in F and define R
to be the set of implicants of F that are not formally included in F. Define
the degree of any member of R to be the number of its literals. Let t be any
member of R of maximal degreej this degree is less than n because a term of
degree n (Le., a minterm) is formally included in any SOP formula in which it
is included. There is therefore some letter, x, that appears in F but is absent
from t. The terms tx' and tx are implicants of F whose degree is higher than
that of tj hence, tx' ~ F and tx ~ F, i.e., F contains terms p and q such
that tx' ::; p and tx ::; qj hence t ::; p + q. But t is not formally included in

244 APPENDIX A. SYLLOGISTIC FORMULAS

p + q and thus p + q is not syllogistic; from Theorem A.2.2, therefore, p and
q have exactly one opposition. From part (ii) of Lemma A.2.5, moreover,
t $ c(p, q). Suppose c(p, q) < F; then t < F. But t <t. F because t is a
member of R. Hence c(p,q) <t. F. 0

Corollary A.2.1 If an SOP formula F is not syllogistic, then ABS(F)
contains terms p and q, having exactly one opposition, such that c(p, q) <t.
ABS(F).

Proof. By Lemma A.2.3, if F is not syllogistic, then ABS(F) is not
syllogistic; hence Theorem A.2.3 is applicable to ABS(F). 0

A.3 Prime Implicants

An implicant of a Boolean function f is a term p such that p $ f. A prime
implicant of f is an implicant of f that ceases to be so if any of its literals
is removed. The concept of a prime implicant (due to Quine [161]) does not
appear in Blake's development; however, prime implicants are intimately
related, as we show, to syllogistic formulas.

Lemma A.3.1 An implicant p of a Boolean function f is a prime implicant
of f in case the implication

pqf ==? p=q (A.l)

holds for every term q.

Proof. Suppose that p is an implicant of f satisfying (A.l) and that
p is not a prime implicant of f. Then p is congruent to one of the forms
xr or x'r, where x is a literal and r is an implicant of f, i.e., r $ f. Thus
p $ r $ f and p :j:. r, and we conclude that p does not satisfy (A.l), which
is a contradiction; thus p is a prime implicant of f. Suppose on the other
hand that p is a prime implicant of f, i.e., that p $ f and that if r is a
proper sub product of p, then r 1: f. Suppose further that p $ q $ f for
some term q. The condition p $ q holds between terms if and only if either
p = q or q is a proper subproduct of p. The latter is ruled out because no
proper sub product of a prime implicant of f is an implicant of f, and we
have assumed that q $ f. Hence p = q, establishing condition (A.l). 0

A.4. THE BLAKE CANONICAL FORM 245

Lemma A.3.2 If r is an implicant of f, then there is a prime implicant p
of f such that r ~ p.

Proof. If r is a prime implicant of f, then p = r. If r is not a prime
implicant of f, then there is an implicant ql '" r of f such that t ~ ql ~ f.
If ql is not a prime implicant of f, then there is an implicant q2 '" ql of f
such that ql ~ q2 ~ f. This process must ultimately terminate, yielding a
prime implicant p of f such that t ~ p. 0

Theorem A.3.1 Let F be an SOP formula for a Boolean function f. Then
F is syllogistic if and only if every prime implicant of f is a term of F.

Proof. Suppose F is syllogistic and let p be a prime implicant of f. Then
p ~ f, whence p ~ F, i.e., p ~ q ~ F, where q is a term of F. Thus p = q
by the definition of a prime implicant, whence p is a term of F. Suppose
on the other hand that every prime implicant of f is a term of F. Let t be
a term such that t ~ Fj by Lemma A.3.2 there is a prime implicant p of f
(possibly t) such that t ~ p. But p is a term of F, and therefore t ~ F.
Thus F is syllogistic. 0

AA The Blake Canonical Form

Let F be a syllogistic formula for a Boolean function f. We call the formula
ABS(F) the Blake canonical form for f, and we denote it by BCF(f). The
function f determines the formula BCF(f), by Lemma A.2.2, to within
congruence. Blake called this formula the "simplified canonical form" and
showed that it is minimal within any class of syllogistic formulas for f, i.e.,
if F is syllogistic, then F == BCF(f) implies that every term of BCF(f) is
a term of F.

Theorem A.4.1 Let f be a Boolean function. Then BCF(f) is the dis
junction of all of the prime implicants of f.

Proof. BCF(f) is syllogistic (Lemma A.2.1)j hence, by Theorem A.3.1,
every prime implicant of f is a term of BCF(f). It only remains to show
that every term of BCF(f) is a prime implicant of f. Suppose the contrary,
i.e., suppose there is a term p of BCF(f) that is not a prime implicant of f.
From the relation p ~ BCF(f) it follows that there is a term q '" p such that
p ~ q ~ BCF(f). Since BCF(f) is syllogistic, q ~ BCF(f), i.e., BCF(f)
contains a term r such that q ~ r. Thus BC F(f) has distinct terms p and r
such that p ~ r, which is a contradiction because BCF(f) is absorptive. 0

Bibliography

[1] Adam, A., "An application of truth-functions in formalized diagnos
tics," Acta Cybernetica, vol. 2, pp. 291-298, 1976.

[2] Akers, S.B., "On a theory of Boolean functions," J. Soc. Indust. Appl.
Math., vol. 7, no. 4, pp. 487-498, Dec. 1959.

[3] Arnold, B.H., Logic and Boolean Algebra. Englewood Cliffs, N.J.:
Prentice-Hall, 1962.

[4] Ashenhurst, R.L., "Simultaneous equations in switching theory," Re
port BL-5, Harvard Computation Lab., Harvard University, 1954, pp.
1-8.

[5] Ashenhurst, R.L., "The decomposition of switching functions," Proc.
International Symposium on the Theory of Switching, April, 1957. Vol.
29 of Annals of the Computation Laboratory of Harvard University, pp.
74-116, 1959 (Included in [42] as an appendix).

[6] Beatson, T.J., "Minimization of components in electronic switching
circuits," Trans. A.I.E.E., Part I, Communications and Electronics,
vol. 77, pp. 283-291, 1958.

[7] Bennett, A.A. and C.A. Baylis, Formal Logic: A Modern Introduction.
New York: Prentice-Hall, 1939.

[8] Bing, K., "On simplifying propositional formulas" (abstract) Bull.
Amer. Math. Soc., vol. 61, p. 560, 1955.

[9] Bing, K., "On simplifying truth-functional formulas," J. Symbolic
Logic, vol. 21, pp. 253-254, 1956.

247

248 BIBLIOGRAPHY

[10] Blake, A., "Canonical expressions in Boolean algebra," Dissertation,
Dept. of Mathematics, Univ. of Chicago, 1937. Published by Univ. of
Chicago Libraries, 1938.

[11] Bochmann, D., "Boolean differential calculus. A survey," (in Russian),
Izv. Akad. Nauk SSSR Tech. Kibernet., no. 5, pp. 125-133, 1977. En
glish translation: Engrg. Cybernet., vol. 15, no. 5, pp. 68-75.

[12] Boole, George, The Mathematical Analysis of Logic. London: G. Bell,
1847 (Reprinted by Philosophical Library, New York, 1948).

[13] Boole, George, An Investigation of the Laws of Thought. London, Wal
ton, 1854 (Reprinted by Dover Books, New York, 1954).

[14] Borland International, Turbo Pascal Owner's Handbook, Scotts Valley,
CA,1987.

[15] Bossen, D.C. & S.J. Hong, "Cause-effect analysis for multiple fault
detection in combinational networks," IEEE Trans. on Computers,
vol. C-20, pp. 1252-1257, Nov. 1971.

[16] Brand, D., "Logic Synthesis," in Design Systems for VLSI Circuits,
ed. by G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti.
Boston: Martinus Nijhoff Publishers, 1987.

[17] Brayton, R.K. & C. McMullen, "The decomposition and factorization
of Boolean expressions," Proc. Int'l. Symp. on Circuits and Systems,
pp. 49-54, 1982.

[18] Brayton, R.K., G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Boston: Kluwer Academic Publishers, 1984.

[19] Brayton, R.K., "Factoring logic functions," IBM J. Res. Develop., vol.
31, no. 2, pp. 1877-198, March 1987.

[20] Brayton, R.K., "Algorithms for Multi-Level Logic Synthesis and Opti
mization," in Design Systems for VLSI Circuits, ed. by G. De Micheli,
A. Sangiovanni-Vincentelli, and P. Antognetti. Boston: Martinus Ni
jhoff Publishers, 1987.

[21] Bredeson, J.G. and P.T. Hulina, "Generation of prime implicants by
direct multiplication," IEEE Trans. on Computers, vol. C-20, pp. 475-
476, 1971.

BIBLIOGRAPHY 249

[22] Breuer, M.A., S.J. Chang, and S.Y.H. Su, "Identification of multiple
stuck-type faults in combinational networks," IEEE Transactions on
Computers, vol. C-25, no. 1, pp. 44-54, January 1976.

[23] Brown, F.M., "Reduced solutions of Boolean equations," IEEE Trans.
on Computers, vol. C-19, pp. 976-981, 1970.

[24] Brown, F.M., "Single-parameter solutions of flip-flop equations," IEEE
Trans. on Computers, vol. C-20, pp. 452-454, April, 1971.

[25] Brown, F.M., "On a convenient division of labor in the generation of
prime implicants," Computers and Electrical Engineering, vol. 6, pp.
267-271, 1979.

[26] Brown, F.M. and S. Rudeanu, "Consequences, consistency and inde
pendence in Boolean algebras," Notre Dame J. Formal Logic, vol. 22,
no. 1, pp. 45-62, 1981.

[27] Brown, F.M., "Segmental solutions of Boolean equations," Discrete
Applied Mathematics, vol. 4, pp. 87-96, 1982.

[28] Brown, F .M. and S. Rudeanu, "Recurrent covers and Boolean equa
tions," Proc. Colloq. on Lattice Theory, Szeged, Hungary, Aug. 1980.
Published in Colloquia Mathematica Societatis Janos Bolyai, North
Holland Pub. Co., vol. 33, pp. 55-86, 1983.

[29] Brown, F.M. and S. Rudeanu, "Prime implicants of dependency func
tions," Analele UniversitaJii Bucure§ti, vol. 37, no. 2, pp. 16-11, 1988.

[30] Brzozowski, J.A. and M. Yoeli, Digital Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1976.

[31] Bunitskiy, E., "Some applications of mathematical logic to the the
ory of the greatest common divisor and least common multiple" (in
Russian), Vestnik Opytnoy Jiziki i elem. mat., no. 274, 1899.

[32] Burgoon, R., "Improve your Karnaugh mapping skills," Electronic De
sign, 21 December 1972, pp. 54-56.

[33] Caldwell, S.H., Switching Circuits and Logical Design. New York: Wi
ley, 1958.

[34] Carroll, 1., Symbolic Logic. (Fourth Edition) London, 1896 (reprinted
by Dover Publications, 1958).

250 BIBLIOGRAPHY

[35] Carvallo, M., Principes et Applications de l'Analyse Booleenne. Paris:
Gauthier-Villars, 1965.

[36] Cerny, E. and M.A. Marin, "An approach to unified methodology of
combinational switching circuits," IEEE Trans. Comput., vol. C-26,
no. 8, pp. 745-756, August 1977.

[37] Chang, D.M.Y. and T.H. Mott, "Computing irredundant normal forms
from abbreviated presence functions," IEEE Trans. on Computers,
vol. EC-14, pp. 335-342, June, 1965.

[38] Chang, C.L. and R.C.T. Lee, Symbolic Logic and Mechanical Theorem
Proving. New York: Academic Press, 1973.

[39] Clare, C.R., Designing Logic Systems Using State Machines. New
York: McGraw-Hill, 1973.

[40] Clocksin, W.F. and C.S. Mellish, Programming in Prolog. New York:
Springer-Verlag, 1981.

[41] Couturat, L., L'algebre de la Logique. Paris: Scientia, 1905. English
translation (by Lydia G. Robinson): Open Court Pub. Co., Chicago
& London, 1914.

[42] Curtis, H.A., A New Approach to the Design of Switching Circuits.
Princeton, N.J.: Van Nostrand, 1962.

[43] Cutler, R.B. and S. Muroga, "Derivation of minimal sums for com
pletely specified functions," IEEE Trans. Comput., vol. C-36, no. 3,
pp. 277-292, March 1987.

[44] Darringer, J.A., Joyner, W., Berman, L. & Trevillyan, 1., "Logic syn
thesis through local transformations," IBM J. of R. and D., vol. 25,
pp. 272-280, July 1981.

[45] Davio, M. and J .-P. Deschamps, "Classes of solutions of Boolean equa
tions, Philips Research Reports, vol. 24, pp. 373-378, October 1969.

[46] Davio, M., J.-P. Deschamps and A. Thayse, Discrete and Switching
Functions. New York: McGraw-Hill, 1978.

[47] Davis, M. and H. Putnam, "A computing procedure for quantification
theory," J. Assoc. for Computing Machinery, vol. 7, pp. 201-215, 1960.

BIBLIOGRAPHY 251

[48] Delobel, C. and R.G. Casey, "Decomposition of a data base and the
theory of Boolean switching functions," IBM J. Res. (3 Develop., vol.
17, pp. 374-386, 1973.

[49] Deschamps, J.P., "Maximal classes of solutions of Boolean equations,"
Philips Research Reports, vol. 26, pp. 249-260, August 1971.

[50] Dietmeyer, D.L., Logic Design of Digital Systems, Second Edition.
Boston: Allyn & Bacon, 1978.

[51] Dunham, B., R. Fridshal, and G.L. Sward, "A nonheuristic program
for proving elementary logical theorems," Proc. Int'l. Conf. on Inf.
Processing (Paris: UNESCO), 1959, pp. 282-284.

[52] Dunham, B. and J.H. North, "Theorem testing by computer," Sym
posium on Mathematical Theory of Automata, Polytechnic lnst. of
Brooklyn, 1962.

[53] Dunham, B. and H. Wang, "Towards feasible solutions to the tautology
problem," Ann. Math. Logic, vol. 10, pp. 117-154, 1976.

[54] Ehrenfest, P., "Review of L. Couturat, 'The Algebra of Logic'," Journ.
Russian Phys. (3 Chem. Soc., sec. 2, vol. 42, no. 10, p. 382, 1910.

[55] Elgot, C.C., Lectures on Switching and Automata Theory, Technical
Report, University of Michigan, Ann Arbor, Mich., Jan. 1959.

[56] Ewing, A.C. et aI., "Algorithms for logical design," Comm. (3 Elec
tronics, no. 56, pp. 450-458, 1961.

[57] Fletcher, W.I., An Engineering Approach to Digital Design, Engle
wood Cliffs, NJ: Prentice-Hall, 1980.

[58] Florine, J., "Optimization of binary functions with a special-purpose
electronic computer," Automation and Remote Control, vol. 28, pp.
956-962, 1967.

[59] Florine, J., The Design of Logical Machines. New York: Crane, Russak
& Co., 1973.

[60] Frege, G., Begriffsschrift, Eine Der Arithmetischen Formalsprache Des
Reinen Denkens. Halle: Nebert, 1879 (Translated in [207]).

252 BIBLIOGRAPHY

[61] Friedman, A.D., Logical Design of Digital Systems. Woodland Hills,
CA: Computer Science Press, 1975.

[62] Galil, Z., "The complexity of resolution procedures for theorem prov
ing in the propositional calculus," Department of Computer Science,
Cornell University, TR 75-239, 1975.

[63] Gann, D., J.D. Schoeffler, and 1.E. Ostrander, "A finite-state model
for the control of adrenal cortical steroid secretion," in M.D. Mesarovic
(Ed.), Systems Theory and Biology. New York: Springer-Verlag, 1968.

[64] Gardner, M., Logic Machines and Diagrams. McGraw-Hill, 1958.

[65] Garey, M.R. and D.S. Johnson, Computers and Intractability. San
Francisco: W.H. Freeman, 1979.

[66] Gavrilov, M.A. and A.D. Zakrevskii (Ed's.), LYaPAS: A Programming
Language for Logic and Coding Algorithms. NY: Academic Press, 1969.

[67] Genesereth, M.R., "The role of design descriptions in automated diag
nosis," Artificial Intelligence, vol. 24, pp. 411-436, Dec. 1984.

[68] Genesereth, M.R. and M.L. Ginsberg, "Logic Programming," Com
munications of the ACM, vol. 28, no. 9, Sept. 1985.

[69] Genesereth, M.R. and N.J. Nilsson, Logical Foundations of Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann, 1987.

[70] Ghazala, M.J. "Irredundant disjunctive and conjunctive forms of a
Boolean function," I.B.M. Journal of Research and Development, vol.
1, pp. 171-176, April 1957.

[71] Givone, D.G., Introduction to Switching Circuit Theory. New York:
McGraw-Hill, 1970.

[72] Goodstein, R.L., Boolean Algebra. New York: Macmillan, 1963.

[73] G6mez-Gonza.J.ez, 1., Estudio teorico, concepcion y realizacion de un
sistema electronico para simplificar funciones logicas, Dissertation,
Dpto. Electricidad y Electronica, Facultad de Ciencias, Universidad
de Granada, Spain, 1977.

[74] Gray, F., "Pulse Code Communication," U.S. Patent 2,632,058, 17
Mar., 1953.

BIBLIOGRAPHY 253

[75] Grinshpon, M.S., "Selection criterion for a potentially inessential ar
gument to be eliminated from an incompletely-specified logical func
tion," Automatic Control and Computer Sciences vol. 9, no. 5, pp. 16-
18 (translated from Automatika i Vychislitel'naya Tekhnika, USSR),
1975.

[76] Halatsis, C. and N. Gaitanis, "Irredundant normal forms and minimal
dependence sets of a Boolean function," IEEE Trans. on Computers"
vol. C-27, no. 11, pp. 1064-1068, Nov. 1978.

[77] Halmos, P.R., Naive Set Theory. Princeton, N.J.: D. Van Nostrand
Co., 1960.

[78] Halmos, P.R., Lectures on Boolean Algebras. New York: Springer
Verlag, 1974.

[79] Hammer, P.L. and S. Rudeanu, Boolean Methods in Operations Re
search. New York: Springer-Verlag, 1968.

[80] Harrison, M.A., Introduction to Switching and Automata Theory. New
York: McGraw-Hill, 1965.

[81] Hartmanis, J., "Symbolic analysis of a decomposition of information
processing machines," Information and Control, vol. 3, no. 2, pp. 154-
178, June 1960.

[82] Harvard Computation Laboratory Staff, Synthesis of Electronic Com
puting and Control Circuits, Annals of the Computation Lab., vol.
27. Cambridge, Mass.: Harvard Univ. Press, 1951. Chapter VII,
"M ultiple-output circuits."

[83] Hight, S.L., "Minimal input solutions," IEEE Trans. on Computers"
vol. C-20, no. 8, pp. 923-925, Aug. 1971.

[84] Hill, F.J. and G.R. Peterson, Switching Theory and Logical Design,
Third Edition. New York: Wiley, 1981.

[85] Ho, B., "NAND synthesis of multiple-output combinational logic us
ing implicants containing output variables," Ph.D. Dissertation, U. of
Wisconsin, 1976.

[86] Hohn, F., Applied Boolean Algebra. Second Edition. New York & Lon
don: Macmillan, 1966.

254 BIBLIOGRAPHY

[87] Horowitz, LA., Chess for Beginners. Irvington-on-Hudson, N.Y.:
Capitol Publ. Co., 1950.

[88] House, R.W. and T. Rado, "A generalization of Nelson's algorithm for
obtaining prime implicants," J. Symb. Logic, vol. 30, pp. 8-12, 1965.

[89] Huffman, D.A., "Solvability criterion for simultaneous logical equa
tions," M.LT. Research Lab. of Electronics, Quarterly Progress Report
No. 48, AD 156-161,15 Jan. 1958.

[90] Huffman, D.A., "Combinational circuits with feedback," Chapter 2 of
Recent Developments in Switching Theory (ed. A. Mukhopadhyay), pp.
27-55, Academic Press, N.Y., 1971.

[91] Hulme, B.L. and R.B. Worrell, "A prime implicant algorithm with
factoring," IEEE Trans. on Computers, vol. C-24, pp. 1129-1131,1975.

[92] Huntington, E.V., "Sets of independent postulates for the algebra of
logic," Trans. Amer. Math. Soc., vol. 5, pp. 288-309, 1904.

[93] Jesse, J.E., "A more efficient use of Karnaugh Maps," Computer De
sign, February 1972, pp. 80-82.

[94] Jevons, W.S., Pure Logic, or the Logic of Quality Apart from Quantity.
London: Stanford, 1864.

[95] Kabat, W.C. and A.S. Wojcik, "Automated synthesis of combinational
logic using theorem-proving techniques," Proc. Twelfth Int'l. Symp. on
Multiple- Valued Logic, pp. 178-199, (May 1982); IEEE Trans. Com
puters, vol. C-34, no. 7, pp. 610-632, July 1985.

[96] Kainec, James J., "A diagnostic system using Boolean reasoning,"
M.S. Thesis, Air Force Institute of Technology, Wright-Patterson AFB,
Ohio, December 1988.

[97] Kalish, D. and R. Montague, Logic: Techniques of Formal Reasoning.
New York: Harcourt Brace Jovanovich, 1964.

[98] Kambayashi, Y., "Logic design of programmable logic arrays," IEEE
Trans. on Computers, vol. C-28, pp. 609-617, Sept. 1979.

[99] Karnaugh, M., "The map method for synthesis of combinational logic
circuits," AlEE Trans. on Comm. (3 Electronics, vol. 9, pp. 593-599,
1953.

BIBLIOGRAPHY 255

[100] Kautz, W.H., "The necessity of closed circuit loops in minimal com
binational circuits," IEEE Trans. on Computers, vol. C-19, no. 2, pp.
162-164, Feb. 1970.

[101] Keynes, J.N., Studies and Exercises in Formal Logic, Second Edition.
London: Macmillan, 1887.

[102] Kjellberg, G. "Logical and other kinds of independence," Proc. of an
Int'l. Symp. on the Theory of Switching, Annals of the Computer Lab.
of Harvard U., vol. 39, Part I, pp. 117-124, Harvard U. Press, 1959.

[103] Klir, G.J. and M.A. Marin, "New considerations in teaching switching
theory," IEEE Trans. on Education, vol. E-12, pp. 257-261, 1969.

[104] Klir, G.J., Introduction to the Methodology of Switching Circuits. New
York: D. Van Nostrand Co., 1972.

[105] Kobrinsky, N.E. & Trakhtenbrot, B.A., Introduction to the Theory of
Finite Automata. Amsterdam: North-Holland Publ. Co., 1965. Chap
ter VI, Section 3, "Synthesis of a multi-output logical net."

[106] Kohavi, Z., Switching and Finite Automata Theory. New York:
McGraw-Hill, 1970.

[107] Korfhage, R.R., Logic and Algorithms, With Applications to the Com
puter and Information Sciences. New York: Wiley, 1966.

[108] Kowalski, R., Logic for Problem Solving. Amsterdam, New York:
North-Holland, 1979.

[109] Krieger, M., Basic Switching Circuit Theory. New York: Macmillan,
1967.

[110] Kuntzmann, J., Algebre de Boole. Paris: Dunod, 1965.

[111] Ladd, Christine, "On the algebra of logic," in Studies in Logic, ed. by
C. S. Peirce. Boston: Little, Brown & Co., 1883, pp. 17-71.

[112] Lazarev, V.G. and E.!. Piil', "On the integration of potential-pulse
forms," Soviet Physics - Doklady, vol. 6, no. 7, 1962.

[113] Ledley, R.S., "A digitalization, systematization, and formulation ofthe
theory and methods of the propositional calculus," NBS Report 3363,

256 BIBLIOGRAPHY

Nat'l. Bureau of Standards, U.S. Dep't. of Commerce, (U.S. Gov't,
document no. AD56-412), 1 Feb. 1954.

[114] Ledley, R.S., "Mathematical foundations and computational methods
for a digital logic machine," J. Ops. Res. Soc. Amer., vol. 2, pp. 249-
274,1954.

[115] Ledley, R.S., "Digital computational methods in symbolic logic, with
examples in biochemistry," Proc. Nat 'I. Acad. Sci., vol. 41, pp. 498-
511, July 1955.

[116] Ledley, R.S., "Logical aid to systematic medical diagnosis (and oper
ational simulation in medicine)," J. Ops. Res. Soc. Amer., vol. 4, no.
3, p. 392, Aug. 1956.

[117] Ledley, R.S. and L.B. Lusted, "Reasoning foundations of medical di
agnosis," Science, vol. 130, no. 3366, pp. 9-21, 3 July, 1959.

[118] Ledley, R.S., Digital Computer and Control Engineering. New York:
McGraw-Hill Book Co, 1960.

[119] Ledley, R.S., Use of Computers in Biology and Medicine. New York:
McGraw-Hill Book Co, 1965. Chapter 12, "Medical diagnosis and med
ical record-keeping."

[120] Lee, R.C.T., "An algorithm to generate prime implicants and its ap
plication to the selection problem," Inf. Sciences, vol. 4, pp. 251-254,
July 1972.

[121] Lee, S.C., Digital Circuits and Logic Design. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

[122] Lee, S.C., Modern Switching Theory and Digital Design. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[123] Lewis, C.I., A Survey of Symbolic Logic. Berkeley: U. of Cal. Press,
1918. Reprinted by Dover Pub's., Inc., New York, 1960. Chapt. II,
"The Classic, or Boole-Schroder Algebra of Logic."

[124] Lowenheim, L., "Uber die Auflosung von Gleichungen im logischen
Gebietekalkul," Math. Ann, vol. 68, 1910, pp. 169-207. Translation:
"The solution of equations in the calculus of logic," AFCRL-69-0149,
Air Force Cambridge Research Laboratories, April, 1969.

BIBLIOGRAPHY 257

[125] Luckham, D., "The resolution principle in theorem-proving," in Ma
chine Intelligence 1 (N.L. Collins and D. Michie, ed's.), Edinburgh &
London: Oliver & Boyd, 1967.

[126] Maghout, K., "Determination des nombres de stabilite et du nombre
chromatique d'un graphe." C. R. Acad. Sci. Paris, vol. 248, pp. 3522-
23,1959.

[127] Maghout, K., "Applications de l'algebra de Boole a. la theorie des
graphes et aux programmes lineaires et quadratiques," Cahiers Centre
Edudes Rech. Oper., vol. 5, pp. 21-99, 1963.

[128] Marczewski, E., "Independence in algebras of sets and Boolean alge
bras," Fundamenta Mathematicae, vol. 48, pp. 135-145, 1960.

[129] Marcus, M.P., "Derivation of maximal compatibles using Boolean al
gebra," I.B.M. J. Res. (3 Devel., vol. 8, pp. 537-538, 1964.

[130] Marin, M.A., "Investigation of the field of problems for the Boolean
Analyzer," Report No. 68-28, Dep't. of Engineering, U. of Calif. at Los
Angeles, 1968.

[131] Marquand, A., "A logical diagram for n terms," Philosophical Maga
zine, vol. 12, pp. 266-270, 1881.

[132] May, A., "Adaptive location of multiple faults in combinational cir
cuits," M.S. thesis, Department of Electrical Engineering, University
of Kentucky, Lexington, KY, August, 1984.

[133] McCaw, C.R., "Loops in directed combinational switching circuits,"
Stanford Electronics Lab's., T.R. No. 6208-1, April 1963.

[134] McCluskey, E.J., "Minimization of Boolean functions," Bell Sys. Tech.
J., vol. 35, pp. 1417-1444,1956.

[135] McColl, H., "The calculus of equivalent statements," Proc. London
Math. Soc., vol. 9 (1877/78), pp. 9-20; vol. 10 (1878), pp. 16-28; vol.
11 (1879/80), pp. 113-121.

(136) McCluskey, E.J., Introduction to the Theory of Switching Circuits.
New York: McGraw-Hill, 1965.

[137] Mendelson, E., Boolean Algebra and Switching Circuits. New York:
McGraw-Hill (Schaum's Outline Series), 1970.

258 BIBLIOGRAPHY

[138] Mitchell, O.H., "On a new algebra of logic," in Studies in Logic, ed.
by C.S. Peirce. Boston: Little, Brown, & Co, 1883.

[139] Mithani, D., "Implementation of NAND synthesis using implicants
containing output variables," M.S. thesis, Dep't. of Electrical Engi
neering, Univ. of Wisconsin, 1977.

[140] Mott, T .H., "Determination of the irredundant normal forms of a truth
function by iterated consensus of the prime implicants," IRE Trans.
on Electronic Computers, vol. EC-9, pp. 245-252, June 1960.

[141] Muller, D.E., "Application of Boolean algebra to switching circuit de
sign and to error detection," Trans. IRE, vol. EC-3, pp. 6-12, Sept.
1954.

[142] Miiller, E., Abriss der Algebra der Logik, 1909-10. (Appendix to vol.
III of [178]).

[143] Muroga, S., Logic Design and Switching Theory. New York: Wiley
Interscience, 1979.

[144] Naito, S., "Algebraic analysis for asynchronous sequential circuits,"
NEC Research and Development, No. 34, pp. 80-89, July 1974.

[145] Nakasima, A., "The theory of equivalent transformation of simple par
tial paths in relay circuits" (in Japanese), J. Inst. Elec. Commun.
Engrs. Japan, no. 165, 167, Dec. 1936, Feb. 1937.

[146] Nakasima, A., "Algebraic expressions relative to simple partial paths
in the relay circuit" (in Japanese), J. Inst. Electrical Communication
Engineers of Japan, no. 173, August 1937 (condensed English transla
tion: Nippon Electrical Comm. Engineering, no. 12, pp. 310-314, Sept.
1938). Section V, "Solutions of acting impedance equations of simple
partial paths."

[147] Nelson, R.J., "Simplest normal truth functions," J. Symb. Logic, vol.
20, pp. 105-108,1955.

[148] Nelson, R.J., Introduction to Automata. New York: Wiley, 1968.

[149] Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence. New
York: McGraw-Hill, 1971. Chapter 6: "Theorem-Proving in the Pred
icate Calculus."

BIBLIOGRAPHY 259

[150] Nilsson, N.J., Principles of Artificial Intelligence. Palo Alto, Calif.:
Tioga Publ. Co., 1980.

[151] Peirce, C.S., "On the algebra of logic," Amer. J. of Math., vol. 3, pp.
15-57,1880.

[152] Peirce, C.S., ed., Studies in Logic. By Members of the Johns Hopkins
University. Boston: Little Brown & Co, 1883.

[153] Peirce, C.S., "Logical machines," Amer. J. Psychology, vol. 1, pp. 165-
170,1887.

[154] Petrick, S.R., "A direct determination of the irredundant forms of a
Boolean function from a set of prime implicants," A.F. Cambridge Res.
Center, Bedford, Mass., Report AFCRC-TR-56-110, 1956.

[155] Phister, M., Logical Design of Digital Computers. New York: John
Wiley, 1958.

[156] Pichat, E., "Algorithms for finding the maximal elements of a finite
universal algebra," Information Processing 68, Proc. IFIP Congress,
pp. 214-218, 1968.

[157] Poage, J.F., "Derivation of optimum tests to detect faults in combina
tional circuitry," Mathematical Theory of Automata, MRI Symposium
Series, Volume XII, Polytechnic Institute of Brooklyn, 1963

[158] Poretsky, P., "On methods for solving logical equations and on the
inverse method for mathematical logic" (in Russian), Bull. de la Soc.
Physico-Mathematique de Kasan, vol. 2, pp. 161-130, 1884.

[159] Poretsky, P., "Sept lois fondamentales de la theorie des egalites
logiques," Bull. de la Soc. Physico-Mathematique de Kasan, ser. 2,
vol. 8, pp. 33-103, 129-181, 183-216, 1898.

[160] Pratt, W.C., "Transformation of Boolean equations for the design
of multiple-output networks," Dissertation, Electrical Engrg. Depart
ment, University of Illinois, 1976.

[161] Quine, W.V., "The problem of simplifying truth functions," Am. Math.
Monthly, vol. 59, pp. 521-531, 1952.

[162] Quine, W.V., "Two theorems about truth functions," Bol. Soc. Math.
Mexicana, vol. 10, pp. 64-70, 1953.

260 BIBLIOGRAPHY

[163] Quine, W.V., "A way to simplify truth functions," Am. Math.
Monthly, vol. 62, pp. 627-631, 1955.

[164] Quine, W.V., "On cores and prime implicants oftruth functions," Am.
Math. Monthly, vol. 66, pp. 755-760, 1959.

[165] Reed, 1.S., "A class of multiple error-correcting codes and the decoding
scheme," IRE Trans. on Information Theory, vol. IT-4, pp. 38-49,
Sept. 1954.

[166] Reusch, B., "Generation of prime implicants from subfunctions and a
unifying approach to the covering problem," IEEE Trans. on Comput
ers, vol. C-24, no. 9, pp. 924-930, September 1975.

[167] Reusch, B. and L. Detering, "On the generation of prime implicants,"
Annales Societatis Mathematicae Polonae, Series IV: Fundamenta In
formaticae II, pp. 167-186, 1979.

[168] Robinson, J.A., "A machine oriented logic based on the resolution
principle," Journal of the Association for Computing Machinery, vol.
12, no. 1, pp. 23-41, January 1965.

[169] Rose, A., Computer Logic. New York: Wiley-Interscience, 1971.

[170] Rosenbloom, P., The Elements of Mathematical Logic. New York:
Dover Publications, 1950.

[171] Rudeanu, S., "Boolean equations and their applications to the study
of bridge circuits. I," Bull. Math. Soc. Math. Phys. R. P. Roumaine,
vol. 3, pp. 445-473, 1959.

[172] Rudeanu, S., Boolean Functions and Equations. Amsterdam-London
New York: North-Holland Publ. Co. & American Elsevier, 1974.

[173] Rushdi, A.M., "Improved variable-entered Karnaugh map proce
dures," Computers and Electrical Engineering, vol. 13, no. 1, pp. 41-52,
1987.

[174] Samson, E.W.-and B.E. Mills, "Circuit minimization: algebra and al
gorithms for new Boolean canonical expressions," Air Force Cambridge
Research Center, AFCRC TR 54-21, April, 1954.

BIBLIOGRAPHY 261

[175] Samson, E.W. and R.K. Mueller, "Circuit minimization: sum to one
process for irredundant sums," Air Force Cambridge Research Center,
Report AFCRC-TR-55-118, August 1955.

[176] Sasao, T., "HART: a hardware for logic minimization and verification,"
Internat'l. Conf. on Computer-Aided Design, ICCD-8S, pp. 713-718,
1985.

[177] Schoeffler, J.D., L.E. Ostrander, and D.S. Gann, "Identification of
Boolean mathematical models," in M.D. Mesarovic (Ed.), Systems
Theory and Biology. New York: Springer-Verlag, 1968.

[178] Schroder, E., Vorlesungen tiber die Algebra der Logik. Leipzig: Vol. 1,
1890; Vol. 2, 1891; Vol. 3, 1895; Vol. 2, Part 2, 1905. Reprint: Chelsea
Pub. Co., Bronx, N.Y., 1966.

[179] Schultz, G.W., "An algorithm for the synthesis of complex sequential
networks," Computer Design, March, 1969, pp. 49-55.

[180] Sellers, F.F., M.Y. Hsiao and L.W. Bearnson, "Analyzing errors with
the Boolean difference," IEEE Trans. Computers, vol. C-17. 7, pp. 676-
683, July 1968.

[181] Semon, W., "The application of matrix methods in the theory of
switching," Doctoral thesis, Compo Lab., Harvard Univ., Cambridge,
Mass., April 1954.

[182] Semon, W., "A class of Boolean equations," Report SRRC-RR-17,
Sperry Rand Research Center, Sudbury, Mass., 1962.

[183] Shannon, C.E., "A symbolic analysis of relay and switching circuits,"
Trans. Amer. Inst. Elec. Engrs., vol. 57, pp. 713-723, 1938.

[184] Shannon, C.E., "The synthesis of two-terminal switching circuits," Bell
System Tech. J., vol. 28, no. 1, pp. 59-98, 1949.

[185] Shestakov, V.I., "Some mathematical methods for construction and
simplification of two-terminal electrical networks of class A" (in Rus
sian), Dissertation, Lomonosov State University, Moscow, 1938.

[186] Short, R.A., "A theory of relations between sequential and combina
tional realizations of switching functions," Stanford Electronics Labo
ratories, T.R. No. 098-1, 12 Dec., 1960.

262 BIBLIOGRAPHY

[187] Sikorski, R., Boolean Algebms. New York: Springer-Verlag, 1969.

[188] Slagle, J .R., et al., "A new algorithm for generating prime implicants,"
IEEE Trans. on Computers, vol. C-19, pp. 304-310, 1970.

[189] Small, A.W., "A new approach to functional decomposition," Air Force
Cambridge Research Laboratories, Report AFCRL-71-001O, 28 Dec.,
1970.

[190] Stone, M.H., "The theory of representations for Boolean algebras,"
Trans. Amer. Math. Soc., vol. 40, pp. 37-111, 1936.

[191] Svoboda, A., "Boolean analyzer," Information Processing 68 (Proc.
IFIP Congress, Edinburgh). Amsterdam: North-Holland, pp. 824-830,
1969.

[192] Svoboda, A., "Parallel processing in Boolean algebra," IEEE Trans.
on Computers, vol. C-22, pp. 848-851, 1973.

[193] Svoboda, A. and D.E. White, Advanced Logical Circuit Design Tech
niques. New York: Garland STPM Press, 1979.

[194] Talantsev, A.D., "On the analysis and synthesis of certain electrical
circuits by means of special logical operators," Automation and Remote
Control, vol. 20, no. 9, pp. 874-883, 1959.

[195] Tapia, M.A., J.H. Tucker and A.W. Bennett, "Boolean integration,"
Proc. IEEE Southeast-Con, Clemson, SC, April 1976.

[196] Tapia, M.A., J.H. Tucker and A.W. Bennett, "Boolean differentiation
and integration using Karnaugh Map," Proc. IEEE Southeast-Con,
1977.

[197] Tapia, M.A., "Application of Boolean calculus to digital system de
sign," Proc. IEEE Southeast-Con, Nashville, Tenn., 14-16 April, 1980.

[198] Tapia, M.A. and J.H. Tucker, "Complete solution of Boolean equa
tions," IEEE Trans. on Comput., vol. C-29, no. 7, pp. 662-665, July
1980.

[199] Tapia, M.A. "Boolean integral calculus for digital systems," IEEE
Trans. on Comput., vol. C-34, no. 1, pp. 78-81, Jan. 1985.

BIBLIOGRAPHY 263

[200] Taylor, D.K., "Analyzing Relational Databases using Propositional
Logic," M.S. Thesis, Department of Electrical Engineering, University
of Kentucky, December, 1981.

[201] Texas Instruments, Inc., The TTL Data Book for Design Engineers,
1973.

[202] Thayse, A., "Boolean differential calculus," Philips Res. Rept's., vol.
26, pp. 229-246, 1971.

[203] Thayse, A. and M. Davio, "Boolean differential calculus and its ap
plications in switching theory," IEEE Trans. Comput., vol. C-22, pp.
409-420, 1973.

[204] Tison, P., Theorie des consensus, Dissertation, University of Grenoble,
France, 1965.

[205] Tison, P., "Generalization of consensus theory and application to the
minimization of Boolean functions," IEEE Trans. Electronic Comput
ers, vol. EC-16, pp. 446-456, 1967.

[206] Uehara, T. and N. Kawato, "Logic circuit synthesis using Prolog," New
Generation Computing, vol. 1, no. 2, 1983.

[207] van Heijenoort, J. (Ed.), From Frege To Gijdel: A Source Book Of
Mathematical Logic, 1897-1931. Cambridge, Mass.: Harvard Univer
sity Press, 1967.

[208] Veitch, E.W., "A chart method for simplifying truth functions," Proc.
ACM Conference, Pittsburgh, Pa., 2-3 May, 1952, pp. 127-133.

[209] Venn, J., "On the employment of geometrical diagrams for the sensible
representation of logical propositions," Proc. Cambridge Philosophical
Society, vol. 4, pp. 35-46, 1880.

[210] Venn, J., Symbolic Logic, 2nd edition. London, Macmillan, 1894.
(Reprinted by Chelsea Pub. Co., New York, 1971).

[211] Weissman, J., "Boolean algebra, map coloring and interconnections,"
Amer. Math. Monthly, vol. 69, pp. 606-613, 1962.

[212] Whitehead, A.N., A Treatise on Universal Algebra, with Applications.
Cambridge: The University Press, 1898.

264 BIBLIOGRAPHY

[213] Whitehead, A.N., "Memoir on the algebra of symbolic logic, Part I,"
Am. J. of Math., vol. 23, pp. 139-165,297-316, 1901.

[214] Whitesitt, J.E., Boolean Algebra and its Applications. Reading, MA:
Addison-Wesley, 1961.

[215] Wojciechowski, W.S. and A.S. Wojcik, "Multiple-valued logic design
by theorem proving," Proc. Ninth. lnt'l. Symp. on Multiple- Valued
Logic, Bath, England, 1979, pp. 196-199.

[216] Wojciechowski, W.S., Multiple-valued combinational logic design using
theorem proving. Dissertation, Ill. lnst. of Tech., 207 pp. University
Microfilms No. KRA80-2162, May 1980.

[217] Wojciechowski, W.S. and A.S. Wojcik, "Automated design of multiple
valued logic circuits by automated theorem-proving techniques," IEEE
Trans. on Computers, vol. C-32, pp. 785-798, Sept. 1983.

[218] Wood, P.E., Jr., Switching Theory. New York: McGraw-Hill, 1968.

[219] Wos, 1., R. o verbeek , E. Lusk & J. Boyle, Automated Reasoning:
Introduction And Applications. Englewood Cliffs, N.J.: Prentice-Hall,
1984.

[220] Yamada, K. and K. Yoshida, "An application of Boolean algebra in
practical situations," Hitotsubashi J. Arts (3 Sciences, vol. 5, pp. 41-57,
1965.

[221] Zakrevskii, A.D. and A.Yu. Kalmykova, "The solution of systems of
logical equations," in [66], pp. 193-206.

[222] Zakrevskii, A.D., "Testing for identities in Boolean algebra," in [66],
pp. 207-213.

[223] Zhegalkin, 1.1., "On the calculation of propositions in symbolic logic,"
(in Russian), Math. Sbornik, vol. 34, pp. 9-28, 1927.

Index

0-normal form xii
I-normal form xii, 213
A-consequent 138
ABS(f) 245
absorption 31
absorptive formula 240
adaptive identification 201
adder, two's-complement 184
adrenal gland 195
Akers, S.B. 57
algebra of logic xi
algebraic system 18
alterm 72
AND-gate, specification for 214
antecedent 4, 25, 71, 89

functional 153
arbitrary parameter 157
arithmetic Boolean algebras 26
Arnold, B.H. 23, 25
Ashenhurst, R.L. 154
associativity 30
atomic formula xi
augmentation 199
axiom, diagnostic 197

Baylis, C.A. 185
BCF(f) xiv, 245
Bennett, A.A. 185
Bing, K. 77
black box, Boolean 193

265

Blake, A. xii, xiv, 39, 71, 80, 126,
151, 181, 239

Blake canonical form xiv, 75, 117,
245

combined method 83
exhaustion of implicants 76
generation of 75
iterated consensus 77
multiplying method 80
of conjunctive eliminant 103
Quine's method 78
recursive multiplication 81
successive extraction 79

block 11
Boole, G. xi, xiii, 25, 32, 89, 95,

99,123,151,179
Boole's Expansion Theorem 36, 68
Boolean algebra, 23

big 60
examples 24

class-algebra 24
propositional algebra 25
subset-algebra 24
two-element algebra 26

free 48
of Boolean functions 47
postulates 23

Boolean Analyzer xiii
Boolean calculus 58
Boolean constraint 93
Boolean derivative 56

266

Boolean difference 57
Boolean equation 153

consistency of 155
general solution 156

parametric 167
reproductive 174
subsumptive 158

particular solution 154
sequential 154
solution of 153

Boolean equations, applications of
154

Boolean formula 32
Boolean function 34

incompletely-specified 45
range of 36
recursive definition 58
simple 45
switching function 45

Boolean functions
normal set 48
orthogonal set 48
orthonormal set 48

Boolean identification 193
Boolean integral 58
Boolean model 193
Boolean quotient 53

eliminant of 106
Boolean reasoning xii
Boolean ring 39
Boolean system 88

antecedent 89
as a predicate 88
consequent 89
consistent 89
reduction of 89
solution of 89

Boolean systems, equivalent 89
BORIS xvii, 234

Bossen, D.C. 194
Brand, D. 212

INDEX

Brayton, R.K. xiv, 59, 212
Breuer, M.A. 194
Brown, F.M. 140, 141, 158,219
Bunitskiy, E. 26

cardinality 8
carrier xv
Carroll, Lewis 25, 135
cartesian product 9
Carvallo, M. 23
Cerny, E. 154
Chang, S.J. 194
chart 42
checkpoints 194
circuit, combinational 211
circuit, multiple-output 211
circuit, sequential 211
class xi, 123
class-algebra 24
class-logic 134
classes, algebra of 25
clausal form 129
clause, prime 129
closed loop 224
combinational circuit 211
combinational solution 223
complement, of a set 10
completely-specified function 149
congruent formulas 73, 239
conjunction 25
consensus 31, 75, 243
consensus, deduction by 126
consequent 4, 25, 71, 89, 127

functional 181
prime 128

consequents, production of 132
consequents, verification of 133

INDEX

consistency condition 155
consistent specification 218
constituent 39
constraint 93
contradiction 25
cont;apositive proof 5
cost, gate-input 227,233
Couturat, L. 66, 118, 125, 154
Cutler, R.B. 145

D-Iatch 192
data-selector 62
Davio, M. 57, 219
De Morgan's Laws 31
deduction 126

by consensus 126
selective 136

definitive experiment 201
algorithm 208

dependency function 141
dependent functions 140
dependent set, minimal 141
derivative, Boolean 56
Deschamps, J.-P. 57,219
design-process 212
Detering, L. 75
determining subsets 189
deVelopment xv
diagnostic axiom 197
diagnostic equation 197
diagnostic function 197
Dietmeyer, D.L. 61, 108
difference, Boolean 57
digital design, two-valued assump-

tion in 60
discriminant 39
disjunction 25
don't-care 46, 214
don't-care specification 222

duality 31

effective input 205
Ehrenfest, P. xiii
eliminant 100

calculation of 102
conjunctive 100

267

of Blake canonical form 103
derived from maps 161
disjunctive 100

calculation of 104
replace-by-one trick 105

elimination 95
resultant of 96
vs. removal 110

empty set 9
enzyme biochemistry 136
equation, diagnostic 197
equation, input 205
equivalence 5
equivalence-class 12
equivalence-relation 12
equivalent formulas 73, 239
Euler diagram 28
Exclusive NOR 32
Exclusive OR 32
exhaustion of implicants 76
existential quantifier 3
expansion theorem 36
experiment 201

definitive 201
explicit solution 223
expression 1

fault 57
logical 57
stuck-at 57
test for 57

faults, stuck-type 194

268

feedback-loop 224, 226, 233
Fletcher, W.I. 62
flip-flop 176

conversion 215
characteristic equation 171

one-parameter solution 177
D 178
JK 178,215
RS 131, 178
RST 152, 170, 176, 178, 215
T 178

Florine, J. 76
form, clausal 129
form, zero-normal xii
formal inclusion 73, 128,240
formula 1

absorptive 240
Boolean 32
irredundant 117, 145
SOP 72
syllogistic 72,74,110,127,239,

240
well-formed xii, 2

formula-minimization xiv
formulas

congruent 73, 239
equivalent 73, 239
unwanted syllogistic 85

forward chaining 124
free Boolean algebra 48, 153

generator 48
Frege, G. xi, 71
full adder 186
function 16

as a relation 16
Boolean 34
co-domain 16
completely-specified 149
dependency 141

INDEX

dependent 140
diagnostic 197
domain 16
incompletely-specified 145
propositional 17
vs. formula 17

function-table 16
functional antecedent 153
functional consequents 181
functional relation 138
functionally deducible arguments 182

Gaitanis, N. 108,191, 192
Galil, Z. 115
Gann, J.D. 195
gate-input cost 227
general solution 156, 226

simplification via Marquand di-
agrams 167

generator 48
Ghazala, M.J. 53, 116, 145
Gomez-Gonzalez, L. 76
Goodstein, R.L. 25
graph, internal stability of vertices

141
Gray code 43
Grinshpon, M.S. 108, 111

Halatsis, C. 108, 191, 192
Halmos, P.R. 1,23
Harvard Computation Laboratory

213
Hasse diagram 14
Hight, S.L. 108
Ho, B. 213
Hohn, F. 23, 25
Hong, S.J. 194
House, R.W. 80
Huffman, D.A. 57

INDEX

Huntington's postulates 23
hypothetical syllogism 126

idempotence 30
identification, adaptive 201
implicant 73, 244
implication 4
implicit solution 223
inclusion 8

formal 73, 128, 240
of formulas 239

inclusion-relation 28
incompletely-specified function 45,

145
independent functions 140
independent set, maximal 141
inessential variable 108
inference, rule of 126
input, effective 205
input-equation 205
intersection 10
interval 28, 108
involution 31
irredundant formula 117, 145
iterate 223
iterated consensus 76

Jevons, W.S. xi, 32
JK flip-flop 63, 215

Kabat, W.C. xv
Kainec, J.J. xviii, 194
Kambayashi, Y. 108
Karnaugh map 42, 161
Kautz, W.H. 233
Keynes, J.N. 150
Kjellberg, G. 140
Klir, G.J. xiii, 154
Kobrinksy, N .E. 213
Kuntzmann, J. 23, 140

label-and-eliminate 139
Ladd, C. 151
latch, D 192
latch, RS 119
least-cost solution 224

269

Ledley, R.S. 136, 140, 154, 182,
194

letter 53
Lewis, C.l. 98
Lisp 59
literal 53, 72
logic, algebra of xi
logic, class 134
logical computers 76
Lowenheim, L. 44, 50, 119, 175
Lowenheim's expansions 50
Lowenheim's formula 175

Maghout, K. 141
map 42

Karnaugh 161
variable-entered 42

Marczewski, E. 140
Marin, M.A. xiii, 154
Marquand diagram 42, 162
maximal independent set 141
McColl, H. 66
Mendelson, E. 23, 27
middle term, elimination of 98
Mills, B.E. 77, 80
minimal dependent set 141
minimal determining subset 110,

232
minimization xiv
minterm canonical form 39
Mitchell, O.H. 105
Mithani, D. 213
model 193

Boolean 193

270

parametric 195
terminal 207

Mott, T .R. 145
Mueller, R.K. 116,145
Miiller, E. 39,44, 140
multiple-output circuit 211
multiplexer 62
Muroga 145

N akasima, A. xiii, 119, 154
Nelson, R.J. 48
non-tabular specification 233
normal form 215
null set 9

operation 18
operation-table 18
opposition 242
order, partial 14
order, total 14
orthogonal SOP formula 122
orthogonol set 48
orthonormal expansion 48
orthonormal set 48
Ostrander, L.E. 195

parameter, arbitrary 157
parametric general solution 167

based on recurrent covers 172
by successive elimination 169
Lowenheim's Formula 175

parametric model 195
partial order 14
partition 11

block of 11
refinement of 11

Peirce, C.S. 80, 151
Petrick, S.R. 145
Phister, M. 154
Poage, J.F. 194

INDEX

Poretsky, P. xi, 66, 71, 92, 181
Poretsky, Law of Forms 92
power set 10
Pratt, W.C. 213, 233
predicate xi, 3, 88
predicate calculus xi
predicate logic xv
prime clause 129
prime consequent 128
prime implicant xii, 72, 117, 244
Principle of Assertion 124
product, cartesian 9
Prolog 59
proposition 2
propositional logic 25

equations in 125
principle of assertion 125

propositions, algebra of 25

quantifier xii
existential 3
universal 3

Quine, W.V.O.xii, 72, 77,78,117,
244

quotient, Boolean 53

Rado, T. 80
reasoning, syllogistic 123
recurrent cover 162, 172

from prime implicants 164
recursion, base 7
recursive solution 224, 227
reduction xv, 89
redundancy subsets 108

maximal 108
computing by tree-search 110

redundant variables 107
Reed, I.S. 39, 57
refinement 11

INDEX

reflexive relation 12
refutation xvi, 124
relation 11

anti-symmetric 14
equivalence 12
functional 138
inclusion 28
partial-order 14
reflexive 12
symmetric 12
transitive 12

removal vs. elimination 110
replace-by-one trick 105
reproductive general solution 174
resolution 123
resultant of elimination 98
resultant of removal 109
Reusch, B. 75
Robinson, J .A. xiii, 181
Rosenbloom, P. 27, 36
RS flip-flop 131
RS latch 119
RST flip-flop 152, 170, 215
Rudeanu, S. xviii, 23, 36, 39, 45,

66,91,119,140,141,154,
158,159,174

rule of inference 126

Samson, E.W. 77, 80,116,145
Scheme xvii, 234
Schoeffler, J.D. 195
Schroder xi, 36, 88, 102, 151, 154
segment 28
selective deduction 136
semantics 1
Semon, W. 154
sequence 8
sequential circuit 185, 211

asynchronous 185

set 5
abstractness of 7
and sequence 8
cardinality 8
element 5
empty 9
enumeration 6
finite 5
inclusion 8
member 5
membership-property 6
partition of 11
power set 10
recursive definition 6
relation on 12
subset of 8
universal 11

sets, equality of 8
sets, operations on 9

cartesian product 10
complement 10
intersection 10
union 10

Shannon, C., xiii, 36, 61, 108
Shestakov, V.I. xiii
Sikorski, R. 23
simple Boolean function 45
Small, A.W. xviii, 140
solution 89, 153

explicit 223
general 156
implicit 223
least-cost 224
of design-specification 212
particular 154
recursi ve 224

271

strongly combinational 223
SOP formula 72, 117

absorptive 73

272

nearly-minimal 117
orthogonal 122

sorites 135
specification 201, 212, 213

complete 214, 217
consistent 218
don't-care in 222
incomplete 214
initial 201
non-tabular 233
tabular 219
terminal 201

stability 213
Stone Representation Theorem 27
strongly combinational solution 223
stuck-type faults 194
Su, S.Y.H. 194
subset 8
subset, sum-to-one 143
subset-algebra 24
subsets, determining 189
subsets, eliminable 187
substitution 113
subsumptive general solutions, sim

plified 166
successive elimination 159, 169
sum-to-one subsets 143

construction of 144
sum-to-one theorem 116
Svoboda, A. xiii, 23, 76, 154
switching function 45
switching theory xiii
syllogism, hypothetical 126
syllogistic formula 110, 127, 239,

240
syllogistic formulas, unwanted 85
syllogistic reasoning 123
syllogistic result 75, 126, 243
symmetric relation 12

syntax 1
system, algebraic 18

tabular specification 219
tautology 25, 115
tautology problem 115
tautology, testing for 115
term 53,72
term, A-consequent 138
terminal model 207
terms, opposition in 242
Thayse, A. 57
transducer 193

INDEX

transformation, of solution 212
transitive relation 12
truth-table 41
truth-value 2

union 10
universal quantifier 3

vacuous variable 108
variable

elimination of 97
functionally deducible 182
inessential 108
redundant 107
removal by substitution 113
removal of 109
resultant of removal of 109
vacuous 108

variable-entered map 42, 62
variables, successive elimination of

159
Veitch chart 42
Venn, J. xi, 25, 43, 151, 152
Verification Theorem 44, 91

extended 91
vertices, internal stability 141
VHDL 194

INDEX

VLSI xiv

Weissman, J. 141
well-formed formula xii
White, D.E. xiii, 23, 154
Whitehead, A.N. xi
Whitesitt, J .E. 23
Wojcik, A.S. xv

zero-normal form xii
Zhegalkin, 1.1. 39

273

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

