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Overview 

 Wireless Power Transfer History: A Brief History 

 Fundamentals of WPT 

 Development at U.o.A. 

 Development of Track Magnetics 

 Achieving Greater freedom 

 Development of Lumped Charging Applications 

 Charging Pads for EVs 

 Non-polarised Couplers 

 Polarised Couplers 

 The Future? 
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Wireless Power Transfer (WPT) 

 The transfer of electrical power from one system to 
another, without wires.   

 Reliable  

 Tolerant of water, chemicals, and dirt.   

 But regarded as impossible for 200 years 

V

I

H

Ampère’s Law

Faraday’s Law

su oc scP V I 
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WPT HISTORY 

4 of 100 



 1894 Hutin & Le Blanc (proposed power to rail conductors) 

 1890s-1920s Tesla (CPT and WPT tuned resonant coils) 

 1960-70s Biomedical Applications with resonant coupling 

 1974-75: Otto (NZ), Bolger (US) propose roadway power 

 1980s: Bio-implants, Guided Roadway projects (Santa Barbara 
project), aircraft entertainment 

 uncontrolled or detuning controllers 

 1990s: Industrial applications in materials handling, Robotics 
and People mover systems (including buses) 

 fully independent decoupling controllers 

 2000s: Planar electronics, Cellular phone applications, heart 
pumps, Commercial bus systems 

 2010s: Private electric vehicle stationary charging trials, light 
rail and buses powering on the move 

Brief Historical Overview of Near field WPT 
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“Transformer System for Electric Railways” 

 Proposed inductive moving railway vehicles on rail 
conductors 

 1-2kHz track frequency 

 Capacitive compensation of pick-up 

 Multiple pick-ups used for various power ratings 

 Could only transmit signals 

 

1894 - Hutin and LeBlanc US patent 527857 

Wireless Power Transfer History 
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Wireless Power Transfer History 

  

 

  Nikola Tesla    
 
A "world system" for "the transmission of electrical energy 
without wires"  

Teslas Capacitive Power Transfer (CPT) demo in 1891 [1] 
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A Sceptical Background: 

 “Inductive Power Transfer cannot be done” 
(Jervis Webb): 

 Signals:   Yes 

 Tooth-brushes:  Yes 

 Real Power:   No! 

 

 But made possible because of 

 power electronics,  

 resonant circuits,  

 electromagnetics 

 innovations 

 Control and stability (protection from bifurcation) 

 Highly efficient systems (electronics and magnetics) 
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US Patent 3914562 “Supplying Power to Vehicles” 

 

 

 

 

 

 

 Pickup mechanically raised and lowered 

 First system technically feasible 

1975 - Bolger 

Wireless Power Transfer History 
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Santa Barbra Project 

 Roadway Powered Electric Bus (1980~1996) 

 Low efficiency, gaps 5-7cm 

 Secondary 1mx4.3m, 7.5kg, variable tuning 

 High construction cost : 0.74 ~ 1.22 M$/km 
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WPT FUNDAMENTALS 
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 The two observables in the coupled coil cannot be 
observed at the same time 
 

 The Open Circuit voltage: 
 

 The Short Circuit Current:  
 

 Un-tuned VA Coupled into the secondary coil L2: 

1MIjVOC 

21 LMIISC 

Fundamentals of WPT 

2
2

1

2

su oc sc

M
P V I I

L
 

V

I

H

Ampère’s Law

Faraday’s Law

su oc scP V I 

M is the mutual inductance between the track and the 
secondary coil 
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jωMI1

RLV2C
L2

I2

jωMI1

RLV2
L2

I2C

 To increase the power 

 Tune at the track frequency 

      

Parallel Tuned 
Acts like a current source 

Series Tuned 
Acts like a voltage source 

  CL20 1

Why Secondary Tuning? 
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Under ideal perfectly tuned secondary 
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 Tuning boosts power by circuit Q2: 
 

 But secondary VA also increases: 

 

 And circuit bandwidth decreases: 
 

 Reflected impedance onto the primary is: 

 Load dependant 

 Tuning dependant 
 

2o suP P Q

0 2
BW Q

2

2 2suVA PQ P Q 

Tuning Summary 
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The Tuned Output Power 

Dependent on:          

 Frequency 

 Track current 

 Magnetic Coupling 

 Secondary Circuit Loaded Tuning Factor 

2
2 2

2 1 2 1 1 2

2

oc sc

M
P V I Q I Q V I k Q

L
       
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DEVELOPMENT AT UOA 
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Motivation 

Wires are messy & insecure  
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3  

Input 

Primary     

I 

Switched 

Mode 

Controller 

DC Secondary 

Compensation 

Secondary 

Power 

Power Supply 

+ Output  

Compensation 

Litz Wire 

Power Electronic Switches and Capacitors 

Modern Microprocessor Controllers 

Modern Ferrites 

Reliant on Latest Technologies 
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Our Vision 

 WPT which is controllable, safe and efficient 

 Field shaping methods operable over a wide frequency 
range and applications 
 

 Systems with low leakage 
 

 Highly efficient  

 High quality factor components 

 Operating quality factors that ensure they are less sensitive to 
the environment 
 

 Controlled operation under highly resonant conditions 
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Moving platforms – a first step 

Motivation 

 Galvanic isolation 

 Unaffected by dirt, water, chemicals 

 Particularly clean – producing no residues 

 No trailing wires 

 No sliding brushes 

 Maintenance free 
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1990: A first WPT System at the UoA. 

2mm Operating air-gap 

 Alignment non critical 
 No power regulation 
 Maximum 1 trolley/track 
 Large pick-up coil 
 Low efficiency 
 But it worked!!! 

100 pair telephone cables 

Brushless DC Driving Motor 
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Daifuku wanted: 

 Power rating/secondary > 200 Watts each, all independent 

 System Efficiency  > 75% 

 Delivery   < 4 Months 

 Special terms  Payment on completion 

   Assistance with components 
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We had: 

 15 month old toy system 

 No appreciation of the inherent difficulties 

 No idea how to achieve independent secondary controllers 

 4 months to produce a working 3-trolley system! 
25 of 100 



Pick-up & Controller: Mounted on Monorail 

 Required New Secondary Magnetic Design 

 New Approach to Control - Decoupling 
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Pick-up development:  

Wood and ferrite rods Cut Toroid's 

ETD-49 development 
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Final magnetic development   

 Custom Ferrite system assembled 
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Early Load Resonant Supply 

 Current sourced push-pull 

 Supply frequency varies with changes in: 

 Tuning capacitor C1 

 Track inductance L1  
 29 of 100 
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Frequency Stability Problem  

 At heavy load there are two stable operating points. 

 To avoid bifurcation total secondary VA < the track VA. 

      

Light Load Heavy Load 
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The First Decoupling Controller 

 Enabled  

 independent load control using switch duty cycle (0D1) 

 Control of loaded Q2 
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Other Decoupling Controllers 

 Series tuned 
 
 
 
 
 

 Unity Power Factor (LCL) 
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Prototype Comparison 

        Original System        Daifuku Prototype 
 

Power rating 1W    400 W 

Efficiency  <10%    85% 

# of Carriers 1    3 

Load   75 kg    250 kg 

Speed  0.1 m/s    1 m/s 

Track current 80A    80A 

Track length 3 m    25 m 

Air-gap  2 mm    4 mm 
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Aluminum Monorail 

 

Pick-up Coil 

Ferrite E 

Core 

Track Wires 
 Allowed movement  

 Tolerant of misalignment. 

 Unaffected by the environment 

Prototype Operation 
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Fixed Frequency Supplies 

 Single Phase LCL Topologies 

 Low energy bus 
 
 

 

 

 

 

 UPF input stage 

VLF 

Inverter 

Bridge

Isolation 

Transformer

Primary Track Inductor 

(L1)

ZL C1

Effective Inductor with isolation 

(Lp=L1)

load coupled to 

track

Ø

N

E

Mains Line Filter

Fuse220V, 

50Hz, 

2 KW

Input
Cdc C1

L1

Zload

A Ip

B

LbCb

LP=L1

UPF
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DEVELOPMENT OF TRACK 
MAGNETICS 
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Track Systems 1990s 

 Stationary and moving systems  
 

 Guided mechanically on monorails  
(Materials Handling) 
 

 Guided electronically above buried tracks (AGVs) 
 

 History of trailing wires, brushed or mechanical chain 
and pulley 
 

 Connections were a major problem 
 

 Environments were very dirty or ultra clean. 
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Individual k very low < 0.05 

Primary recessed in floor: flat pick-ups 

Rail mounted systems: E-core 

System Operation 

 Loosely coupled: k  0.05 

 Supply Current sourced 
 Independent secondaries 

 Efficiency high under load (0 no load) 

 Often no primary core 

 Secondary may move 

3 Input 

Power  
Supply 

 
track conductor inductance = L1 

I1 

Switched- 
Mode 
Controller 

L2 

DC 
power 

 
Tuned 
Pickup 

Pickup 
Inductance 
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Metrics for Multiple Secondary's 

M

L1

L2

Load
Secondary

Compen-

sation

Secondary

Power

Control

VLF

Power

Supply

Utility

Supply

Primary

Compen-

sation

leakage

Elongated Track

leakage

21LL

M
k 

 k is a system co-efficient 

 Doesn’t fairly represent how good the magnetics are 

 Kappa looks at the coupling without leakage 
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Problem: Flux Cancellation in E-Pick-up 

ФB-A

Track 

Conductor A

(excited)

Track 

Conductor B

(not excited)

ФL2-A

ФlA

Track 

Conductor A

(excited)

Track 

Conductor B

(excited)

ФL2-A

ФlA

ФL2-B

ФlB
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ICCF


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
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Improving the Magnetic Design 
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Magnetic redesign: E to S Core 

Solution: remove the flux cancellation path 
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Pickup design: S Core  
no cancelation path but more difficult to use 

S-pickup on ICPT track 
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S Core 

 

E Core 

Voc (rms) 35.7 V 20.1 V 

Isc (rms) 4.4 A 4.0 A 

Su 158.5 VA 80.8 VA 

FEM Analysis: 

 Uncompensated power comparison 

 Identical material usage 

 Complex assembly 
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Factory Automation 

Daifuku: Materials Handling 
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Electronic Factory Automation 

Daifuku: Clean Room Systems 45 of 100 



Traffic Control & Lighting: 

3i Innovation: Road Studs with Flat Pick-ups 

Installation: 
• Saw cut (10mm x 60mm) 
• backfill epoxy/bitumen 
• Glue stud into recess 
• Active node/spacer placed beneath 
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3i Innovations: Roadway Lighting 

Roadway Lighting 

Tunnel (Wellington NZ) 

Double left turn (Illinois USA) 

Tunnel (Sydney Australia) 
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 Disney project 

 Single phase track 

 Multiple Pickups 

 Wide tolerance 
1994 Disney Imagineering 

Amusement Rides 
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Conductix-Wampfler: IPT Track 

Automotive Materials Handling 
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ACHIEVING GREATER 
FREEDOM 
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AGV Systems Early 2000s 

 Redesigns to enable freedom of movement (Tolerance) 
  

 Multiphase track options 
 

 Multiphase Secondary options in a single secondary 
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AGV’s and Robots 

Precision alignment required for power transfer 
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Three phase tracks 

Multi-phase tracks 
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Multiphase systems 
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Three Phase Open Delta

Single Phase

 New 3-phase design provides: 

 Excellent lateral tolerance 

 Higher power 
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Independent Multi-coil Pick-ups 

HORIZONTAL  FLUX 
VERTICAL  FLUX 

VERTICAL  FLUX 

Uncompensated Power for Horizontal Coil
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Adds significant lateral tolerance 
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Multiphase Tracks and Multi-coil Pads 

Single coil Multi-coil 

 Combined multi-coil 

 Flatter power profile 

 25-50% more power 
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DEVELOPMENT OF LUMPED 

CHARGING APPLICATIONS 
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People Moving (Mid-late 1990s) 

Whakarewarewa 
Rotorua Charging Bay 

Conductix-Wampfler: 20kW Charging stations 

• 5 buses with trailer 
• 3 x 10 batteries of 12 V  
• Charging: 7min /15-20 min 
• Charging power: 20 kW 
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People moving (early 2000s) 

Conductix-Wampfler: 30kW Charging Pick-ups 

Genoa, Porto Antico 

• 3 buses each with 56 x 6V Batteries 
• Charging 60kW for 10 minutes/hour 
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50W Robotic Charging 

Gripper Arm 

 

Camera 

 

Laser 

 

 

 

 

 

Sonar 

 

Bumpers 

 

 ID 
Marker 

IPT 
Power 
Supply 

IPT 
Power 
Pad 

Pressure 
Pad 

Wireless Charging as required 

ID marker identifies  
charger position 
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200W Shopping Basket Chargers 

Charging Mat in Walmart USA 
IPT powered shopping baskets 

Power pad sited under trolley 

Charging Station 
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Low Power Applications 

 Millar research  

 Heart pumps 

 Biomedical sensors 

 Power by Proxi 

 Home applications 

 Inductive Slip-rings 

 

Battery

Converter

Primary Coil

Pick-up Coil

Power Buffer

LVAD
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IPT street Conductive charge street 

Safe and Durable 

Aesthetically pleasing 

Easy to use 

A New Vision mid 2000s 
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CHARGING PADS FOR 

ELECTRIC VEHICLES 
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 Secondary: robust, thin and light 
 

 Primary: Robust is critical 
 

 Cost effective & efficient 
 

 Excellent coupling with low leakage 

 meets ICNIRP 
 

 Scalable for cars, trucks or buses 

 Ground clearance is vehicle dependent and varies with 
suspension, loading … 

 Horizontal tolerance aids unassisted parking 

 

Design Metrics 
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2

1 1 2outP V I k Q

Operating Methodologies 

 Power output:  
V1  regulated for safety 

       I1  increases power (but also losses) 

 

 Operating Q of the primary (ground) pad 

 

 Operating Q of the secondary (vehicle pad) 

 

 Losses in any pad as function of Pad quality 
 

 Control Options 
 Primary side control only:    Only Q1 varied 

 Secondary side control only:   Only Q2 varied  

 Primary & secondary side control:  Both Q1 and Q2varied.  
Achieves lowest loss 
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Coupling Variations 

 Typical coupling factor: 0.1< k < 0.4 

 Impacted by height variation 

 Impacted by relative alignment 

 Desirable range  0.1-0.25 

 

 Typical pad quality factors  QL  500-700 

 

 Power impacted by k2 

 If k2 = 0.1 the VA in the primary or secondary (or a 
combination) must be 10x greater than Po 
 

 If k2 = 0.01 the VA in the primary or secondary (or a 
combination) must be 100x greater than Po 

2

1 1 2outP V I k Q
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Effect of Coupling 

Magnetic loss concepts (assume pads with similar QL ~500) 

 

Pout 

3.3kW 0.316 0.10 33kVA 10 1 ~3.3kVA 

3.3kW 0.316 0.10 10KVA 3.16 3.16 ~10kVA 

3.3kW 0.316 0.10 3.3kVA 1 10 ~33kVA 

              

3.3kW 0.10 0.01 330KVA 100 1 ~3.3KVA 

3.3kW 0.10 0.01 100KVA 31.6 3.16 ~10kVA 

3.3kW 0.10 0.01 33KVA 10 10 ~33kVA 

~ Loss in  

primary pad 

~ Loss in 

Secondary 

pad 

Total Pad 

Losses 

500 0.10 10 2% 1 0.2% 2.2% 

500 0.10 3.16 0.63% 3.16 0.80% 1.4% 

500 0.10 1 0.2% 10 2.5% 2.5% 
              

500 0.01 100 20% 1 0.2% 20% 

500 0.01 31.6 6.3% 3.16 0.63% 6.9% 

500 0.01 10 2% 10 2 % 4% 
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NON-POLARISED COUPLERS 
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Plastic Cover

Coil 

(Litz Wire)

Coil Former

Aluminium 

Ring

Aluminium 

Backing Plate

Ferrites

Circular Pad 

High QL (~ 300 at 20kHz) 72 of 100 
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Performance of Circular Pad 
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Circular Coupler Shielding 

 Installation - EV chassis modification 
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Charger: 2kW single phase supply 

Pick-up: 2-5kW Power Pad 

220mm airgap 

Vehicle 

controller 

2kW IPT Charger at EVS24 

A Demonstration System 
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0 5 mT

160mmTx. Pad Ferrite

Rx. Pad 

Coil 

Al

Coil 

Circular Coupler Limitation 

 Power null in all directions (around 40% pad diameter) 

 Limited to Stationary Applications 
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POLARISED COUPLERS 
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Intra-pad flux

Pole face

Ferrite

Flux Pipe

Leakage

Flux pipe:  
• encourages pole separation 
• flux path has greater height 

Polarized Designs: Solenoid 
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Front

Back

Flux 

out of 

end

0 A/m2 106

Shielding with aluminium creates large losses 
  

I1 = 23A/coil at 20kHz 
• QL without shielding is 260  
• QL with shielding is 86   

Solenoid Coupler 

 LLosses QQPad /
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Ferrite strips:  
• Reduce material and inductance 
 

Coil winding: 
• Creates a flux pipe (minimised winding length) 
• Has single sided flux paths with height ~ pole seperation /2 

 
Has QL ~400 at 20kHz 
Single Sided polarized flux paths 

Polarized DD & Single Sided Fields 

Winding 

direction

Flux path 

height hz

0  mT

3.5

Φ1a

Φlt

Φlb

ΦM

Coils

Ferrite

Shield

Flux linkage 

around return 

portions

x

z

Fl
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Polarised DD 
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Performance Comparisons 

 Similar Areas and Inductances of Pads 
 

 Similar Driving VA and Frequency 
 

 Similar Secondary VA 
 

 7kW output at 125mm 
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Non-polarized vs. Polarized 

Polarized on Polarized Circular on Circular 

7kW zone 
7kW zone 

Charging Area  
Circular < 2x Polarised 

Transfer height d/2  Transfer height d/4  

Winding 

direction

Flux path 

height hz
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MULTICOIL COUPLERS 
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Multi-coil DDQ Secondary 

A second coil added to DD 

• Spatial quadrature coil  

• Improves lateral tolerance 

DD Coils Q Coil

Ferrite
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Multi-coil on Various Primaries 

Charging area 3 x greater 

Polarised Primary Non-Polarized Primary 
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Bipolar Option 

 Independent coils with 25-30% less copper 

 Power transfer < 10% difference 
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Multi-coil Controllers 

Secondary side coils are independent: 
• High coil quality factors (QL)   
• Packaged within the same magnetic design 
• Have independent coupling coefficients (k) which 

• vary with position 
• complement each other 

 
 
The operational Q can be kept low 
• Use either or both coils if k is high 
• Can reduce losses by turning off a coil if its k is low 
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Affixed vehicle pad & 
Transmitter pad 

3.5kW & 7.5kW Chargers >90% 

HaloIPT Evaluations 

Rolls Royce Phantom 102Ex with HaloIPT wireless charger  
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Allows lower battery weight but Gaps 20-40cm 

The Future:Dynamic Highway Power 
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Conclusions 

 WPT Development 

 Imagined 1890s, and showcased  

 Rediscovered in mid-late 90s 

 Commercially practical late 90s in niche markets 

 Impacting our home market today 
 

 Opportunities & Challenges 

 Broad set of applications 

 Costs are reducing but need to be lower 

 Robust design while meeting emission restrictions 

 EV solutions are already being adopted 
 

 Roadway powered EV’s are part of the future 

 Challenge is to make them robust & economic 

92 of 100 



Questions? 
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