
Temporal Difference Learning of
Position Evaluation in the Game of Go�

Nicol N. Schraudolph Peter Dayan Terrence J. Sejnowski
schraudo@salk.edu dayan@salk.edu terry@salk.edu

Computational Neurobiology Laboratory
The Salk Institute for Biological Studies

San Diego, CA 92186-5800

Abstract

The game of Go has a high branching factor that defeats the tree
search approach used in computer chess, and long-range spa-
tiotemporal interactions that make position evaluation extremely
difficult. Development of conventional Go programs is hampered
by their knowledge-intensive nature. We demonstrate a viable
alternative by training networks to evaluate Go positions via tem-
poral difference (TD) learning.
Our approach is based on network architectures that reflect the
spatial organization of both input and reinforcement signals on
the Go board, and training protocols that provide exposure to
competent (though unlabelled) play. These techniques yield far
better performance than undifferentiated networks trained by self-
play alone. A network with less than 500 weights learned within
3,000 games of 9x9 Go a position evaluation function that enables
a primitive one-ply search to defeat a commercial Go program at
a low playing level.

1 INTRODUCTION

Go was developed three to four millenia ago in China; it is the oldest and one of the
most popular board games in the world. Like chess, it is a deterministic, perfect
information, zero-sum game of strategy between two players. They alternate in
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placing black and white stones on the intersections of a 19x19 grid (smaller for
beginners) with the objective of surrounding more board area (territory) with their
stones than the opponent. Adjacent stones of the same color form groups; an empty
intersection adjacent to a group is called a liberty of that group. A group is captured
and removed from the board when its last liberty is occupied by the opponent. To
prevent loops, it is illegal to make a move which recreates a prior board position. A
player may pass at any time; the game ends when both players pass in succession.

Unlike most other games of strategy, Go has remained an elusive skill for computers
to acquire — indeed it has been recognized as a “grand challenge” of Artificial
Intelligence (Rivest, 1993). The game tree search approach used extensively in
computer chess is infeasible: the game tree of Go has an average branching factor
of around 200, but even beginners may routinely look ahead up to 60 plies in
some situations. Humans appear to rely mostly on static evaluation of board
positions, aided by highly selective yet deep local lookahead. Conventional Go
programs are carefully (and protractedly) tuned expert systems (Fotland, 1993).
They are fundamentally limited by their need for human assistance in compiling
and integrating domain knowledge, and still play barely above the level of a
human beginner — a machine learning approach may thus offer considerable
advantages. (Brügmann, 1993) has shown that a knowledge-free optimization
approach to Go can work in principle: he obtained respectable (though inefficient)
play by selecting moves through simulated annealing (Kirkpatrick et al., 1983) over
possible continuations of the game.

The pattern recognition component inherent in Go is amenable to connectionist
methods. Supervised backpropagation networks have been applied to the game
(Stoutamire, 1991; Enderton, 1991) but face a bottleneck in the scarcity of hand-
labelled training data. We propose an alternative approach based on the TD(�)
predictive learning algorithm (Sutton, 1984; Sutton, 1988; Barto et al., 1983), which
has been successfully applied to the game of backgammon by (Tesauro, 1992).
His TD-Gammon program uses a backpropagation network to map preselected
features of the board position to an output reflecting the probability that the player
to move would win. It was trained by TD(0) while playing only itself, yet learned
an evaluation function that — coupled with a full two-ply lookahead to pick the
estimated best move — made it competitive with the best human players in the
world (Robertie, 1992; Tesauro, 1994).

In an early experiment we investigated a straightforward adaptation of Tesauro’s
approach to the Go domain. We trained a fully connected 82-40-1 backpropagation
network by randomized1 self-play on a 9x9 Go board (a standard didactic size for
humans). The output learned to predict the margin of victory or defeat for black.
This undifferentiated network did learn to squeak past Wally, a weak public domain
program (Newman, 1988), but it took 659,000 games of training to do so. We have
found that the efficiency of learning can be vastly improved through appropriately
structured network architectures and training strategies, and these are the focus of
the next two sections.

1Unlike backgammon, Go is a deterministic game, so we had to generate moves stochas-
tically to ensure sufficient exploration of the state space. This was done by Gibbs sam-
pling (Geman and Geman, 1984) over values obtained from single-ply search, annealing the
temperature parameter from random towards best-predicted play.
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Figure 1: A modular network architecture that takes advantage of board symme-
tries, translation invariance and localized reinforcement to evaluate Go positions.
Also shown is the planned connectivity prediction mechanism (see Discussion).

2 NETWORK ARCHITECTURE

One of the particular advantages of Go for predictive learning is that there is much
richer information available at the end of the game than just who won. Unlike
chess, checkers or backgammon, in which pieces are taken away from the board
until there are few or none left, Go stones generally remain where they are placed.
This makes the final state of the board richly informative with respect to the course
of play; indeed the game is scored by summing contributions from each point on
the board. We make this spatial credit assignment accessible to the network by
having it predict the fate of every point on the board rather than just the overall
score, and evaluate whole positions accordingly. This bears some similarity with
the Successor Representation (Dayan, 1993) which also integrates over vector rather
than scalar destinies.2

Given the knowledge-based approach of existing Go programs, there is an embar-
rassment of input features that one might adopt for Go: Wally already uses about
30 of them, stronger programs disproportionately more. In order to demonstrate
reinforcement learning as a viable alternative to the conventional approach, how-
ever, we require our networks to learn whatever set of features they might need.
The complexity of this task can be significantly reduced by exploiting a number

2Sharing information within the network across multiple outputs restricts us to � = 0

for efficient implementation of TD(�). Note that although (Tesauro, 1992) did not have this
constraint, he nevertheless found � = 0 to be optimal.



of constraints that hold a priori in this domain. Specifically, patterns of Go stones
retain their properties under color reversal, reflection and rotation of the board,
and — modulo the considerable influence of the board edges — translation. Each
of these invariances is reflected in our network architecture:

Color reversal invariance implies that changing the color of every stone in a Go
position, and the player whose turn it is to move, yields an equivalent position from
the other player’s perspective. We build this constraint directly into our networks
by using antisymmetric input values (+1 for black, -1 for white) and squashing
functions throughout, and negating the bias input when it is white’s turn to move.

Go positions are also invariant with respect to the eightfold (reflection� rotation)
symmetry of the square. We provided mechanisms for constraining the network
to obey this invariance by appropriate weight sharing and summing of derivatives
(Le Cun et al., 1989). Although this is clearly beneficial during the evaluation of
the network against its opponents, it appears to impede the course of learning. 3

To account for translation invariance we use convolution with a weight kernel
rather than multiplication by a weight matrix as the basic mapping operation in
our network, whose layers are thus feature maps produced by scanning a fixed
receptive field across the input. One particular advantage of this technique is the
easy transfer of learned weight kernels to different Go board sizes.

It must be noted, however, thatGo is not translation-invariant: the edge of the board
not only affects local play but modulates other aspects of the game, and indeed
forms the basis of opening strategy. We currently account for this by allowing each
node in our network to have its own bias weight, giving it one degree of freedom
from its neighbors. This enables the network to encode absolute position at a
modest increse in the number of adjustable parameters. Furthermore, we provide
additional redundancy around the board edges by selective use of convolution
kernels twice as wide as the input.

Figure 1 illustrates the modular architecture suggested by these deliberations. In
the experiments described below we implement all the features shown except for
the connectivity map and lateral constraint satisfaction, which are the subject of
future work.

3 TRAINING STRATEGIES

Temporal difference learning teaches the network to predict the consequences of
following particular strategies on the basis of the play they produce. The question
arises as to which strategies should be used to generate the large number of Go
games needed for training. We have identified three criteria by which we compare
alternative training strategies:

� the computational efficiency of move generation,

� the quality of generated play, and

� reasonable coverage of plausible Go positions.

3We are investigating possible causes and cures for this phenomenon.



Tesauro trained TD-Gammon by self-play — ie. the network’s own position eval-
uation was used in training to pick both players’ moves. This technique does not
require any external source of expertise beyond the rules of the game: the network
is its own teacher. Since Go is a deterministic game, we cannot always pick the
estimated best move when training by self-play without running the risk of trap-
ping the network in some suboptimal fixed state. Theoretically, this should not
happen — the network playing white would be able to predict the idiosyncrasies
of the network playing black, take advantage of them thus changing the outcome,
and forcing black’s predictions to change commensurately — but in practice it is a
concern. We therefore pick moves stochastically by Gibbs sampling (Geman and
Geman, 1984), in which the probability of a given move is exponentially related to
the predicted value of the position it leads to through a “temperature” parameter
that controls the degree of randomness.

We found self-play alone to be rather cumbersome for two reasons: firstly, the
single-ply search used to evaluate all legal moves is computationally intensive —
and although we are investigating faster ways to accomplish it, we expect move
evaluation to remain a computational burden. Secondly, learning from self-play is
sluggish as the network must bootstrapitself out of ignorance without the benefit of
exposure to skilled opponents. However, there is nothing to keep us from training
the network on moves that are not based on its own predictions — for instance, it
can learn by playing against a conventional Go program, or even by just observing
games between human players.

We use three computer opponents to train our networks: a random move generator,
the public-domain program Wally (Newman, 1988), and the commercial program
The Many Faces of Go (Fotland, 1993). The random move generator naturally doesn’t
play Go very well4, but it does have the advantages of high speed and ergodicity
— a few thousand games of random Go proved an effective way to prime our
networks at the start of training. The two conventional Go programs, by contrast,
are rather slow and deterministic, and thus not suitable generators of training data
when playing among themselves. However, they do make good opponents for the
network, which can provide the required variety of play through its Gibbs sampler.
When training on games played between such dissimilar players, we must match
their strength so as to prevent trivial predictions of the outcome. Against Many Faces
we use standard Go handicaps for this purpose;Wally we modified to intersperse its
play with random moves. The proportion of random moves is reduced adaptively
as the network improves, providing us with an on-line performance measure.

Since, in all cases, the strategies of both players are intimately intertwined in the
predictions, one would never expect them to be correct overall when the network
is playing a real opponent. This is a particular problem when the strategy for
choosing moves during learning is different from the policy adopted for ‘optimal’
network play. (Samuel, 1959) found it inadvisable to let his checker program
learn from games which it won against an opponent, since its predictions might
otherwise reflect poor as well as good play. This is a particularly pernicious form
of over-fitting — the network can learn to predict one strategy in exquisite detail,
without being able to play well in general.

4In order to ensure a minimum of stability in the endgame, it does refuse to fill in its own
eyes — a particular, locally recognizable type of suicidal move.
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Figure 2: A small network that learned to play 9x9 Go. Boxes in the architecture
panel represent 9x9 layers of units, except for turn which is a single bias unit.
Arrows indicate convolutions with the corresponding weight kernels. Black disks
represent excitatory, white ones inhibitory weights; within each matrix, disk area
is proportional to weight magnitude.

4 RESULTS

In exploring this domain, we trained many networks by a variety of methods.
A small sample network that learned to beat Many Faces (at low playing level)
in 9x9 Go within 3,000 games of training is shown in Figure 2. This network
was grown during training by adding hidden layers one at a time; although it
was trained without the (reflection� rotation) symmetry constraint, many of the
weight kernels learned approximately symmetric features. The direct projection
from board to reinforcement layer has an interesting structure: the negative central
weight within a positive surround stems from the fact that a placed stone occupies
(thus loses) a point of territory even while securing nearby areas. Note that the wide
17x17 projections from the hidden layers have considerable fringes — ostensibly a
trick the network uses to incorporate edge effects, which are also prominent in the
bias projections from the turn unit.

We compared training this architecture by self-play versus play against Wally. The
initial rate of learning is similar, but soon the latter starts to outperform the former
(measured against both Wally and Many Faces), demonstrating the advantage of
having a skilled opponent. After about 2000 games, however, it starts to overfit to
Wally and consequently worsens against Many Faces. Switching training partner
to Many Faces at this point produced (after a further 1,000 games) a network that
could reliably beat this opponent. Although less capable, the self-play network did
manage to edge past Wally after 3,000 games; this compares very favorably with



the undifferentiated network described in the Introduction. Furthermore, we have
verified that weights learned from 9x9 Go offer a suitable basis for further training
on the full-size (19x19) board.

5 DISCUSSION

In general our networks appear more competent in the opening than further into
the game. This suggests that although reinforcement information is indeed propa-
gating all the way back from the final position, it is hard for the network to capture
the multiplicity of mid-game situations and the complex combinatorics character-
istic of the endgame. These strengths and weaknesses partially complement those
of symbolic systems, suggesting that hybrid approaches might be rewarding. We
plan to further improve network performance in a number of ways:

It is possible to augment the input representation of the network in such a way
that its task becomes fully translation-invariant. We intend to do this by adding an
extra input layer whose nodes are active when the corresponding points on the Go
board are empty, and inactive when they are occupied (regardless of color). Such
an explicit representation of liberties makes the three possible states of a point on
the board (black stone, white stone, or empty) linearly separable to the network,
and eliminates the need for special treatment of the board edges.

The use of limited receptive field sizes raises the problem of how to account for
long-ranging spatial interactions on the board. In Go, the distance at which groups
of stones interact is a function of their arrangement in context; an important sub-
problem of position evaluation is therefore to compute the connectivity of groups
of stones. We intend to model connectivity explicitly by training the network to
predict the correlation pattern of local reinforcement from a given position. This
information can then be used to control the lateral propagation of local features in
the hidden layer through a constraint satisfaction mechanism.

Finally, we can train networks on recorded games between human players, which
the Internet Go Server provides in steady quantities and machine-readable format.
We are only beginning to explore this promising supply of instantaneous (since
prerecorded), high-quality Go play for training. The main obstacle encountered so
far has been the human practice of abandoning the game once both players agree on
the outcome — typically well before a position that could be scored mechanically is
reached. We address this issue by eliminating early resignations from our training
set, and using Wally to bring the remaining games to completion.

We have shown that with sufficient attention to network architecture and training
procedures, a connectionist system trained by temporal difference learning alone
can achieve significant levels of performance in this knowledge-intensive domain.
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