
Solving Sokoban

Timo Virkkala <timo.virkkala@iki.�>

Helsinki April 12, 2011

Pro gradu -tutkielma � Master's Thesis

UNIVERSITY OF HELSINKI

Department of Computer Science



Faculty of Science Department of Computer Science

Timo Virkkala <timo.virkkala@iki.�>

Solving Sokoban

Computer Science

Pro gradu -tutkielma � Master's ThesisApril 12, 2011 64 pages + 12 appendix pages

sokoban, graph search, survey, pruning, single-agent, search

The game of Sokoban is an intriguing platform for algorithm and AI research. While the rules

are quite simple, the problem itself is not. The domain has been proven NP-Hard and PSPACE-

complete and even simple puzzles require a large amount of computation to solve. This di�culty is

caused by long solution depths, a large branching factor and the existence of deadlocks. However,

bypassing these complications and �nding e�cient algorithms for solving Sokoban can have useful

implications for real-life scenarios as well as other problem domains in computer science.

In this thesis we present an overview of the techniques that have been applied to the domain of

Sokoban. We also explore some of these in more detail and run experiments to see how they perform

when applied to di�erent search strategies. Furthermore, by adding a simple modi�cation we are

able to signi�cantly improve the results achieved by a previous study.

ACM Computing Classi�cation System (CCS):

A.1 [Introductory and Survey],

I.2.1 [Games],

I.2.8 [Graph and tree search strategies],

Tiedekunta � Fakultet � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 1

2 The Game of Sokoban 2

3 A Review of Graph Search Algorithms 6

3.1 Uninformed Search: Breadth-First and Depth-First Search . . . . . . 7

3.2 Informed Search: A* . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Depth-Limited Search and Iterative Deepening . . . . . . . . . . . . . 13

3.4 Iterative Deepening A* (IDA*) . . . . . . . . . . . . . . . . . . . . . 14

3.5 Bidirectional Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Tools for Solving Sokoban 15

4.1 Path�nding in Game Space . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Path�nding in State Space . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Transposition Tables . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Lower bound estimation . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Move ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.4 Macro moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.5 Reversed and Bidirectional Solving . . . . . . . . . . . . . . . 23

4.3 Static Analysis of Puzzle Features . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Dead Positions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Rooms, Tunnels and Chambers . . . . . . . . . . . . . . . . . 26

4.4 Dynamic Analysis of Game State . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Zones, Barriers and Corrals . . . . . . . . . . . . . . . . . . . 28

4.4.2 Doors and One-way Passages . . . . . . . . . . . . . . . . . . 30

4.4.3 Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Multi-Agent Search and the Van Lishout Subclass . . . . . . . . . . . 34



iii

4.6 Abstraction and Planning . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Evolved Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Experiments 39

5.1 Breadth-First vs. Depth-First . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Forward, Reverse and Bidirectional Solving . . . . . . . . . . . . . . . 41

5.3 PI-corral Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Van Lishout Solving Method . . . . . . . . . . . . . . . . . . . . . . . 42

6 Implementation Details 43

6.1 BFS and IDDFS Implementations . . . . . . . . . . . . . . . . . . . . 43

6.2 Simple Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Goal Packing Order Algorithm . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Inertia Move Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Results and Discussion 46

7.1 Breadth-First vs. Depth-First . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Forward, Reverse and Bidirectional Solving . . . . . . . . . . . . . . . 52

7.3 PI-corral Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Van Lishout Solving Method . . . . . . . . . . . . . . . . . . . . . . . 57

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusion 60

References 62

Appendices

1 Result Tables



1 Introduction

Figure 1: Puzzle #1 of the 90-puzzle test set [Mye01]

Sokoban is a game in which the player tries to push all the stones in a maze onto

goal squares. Any stone can be placed on any goal square. The stones are moved

by pushing them one square at a time by the player character. The player cannot

move through walls or stones and can only push the stones along the four cardinal

directions, not diagonally. Also, stones cannot go through walls or each other, and

only one stone can be pushed at a time. The objective is to place all stones on the

goal squares with a minimum number of pushes.

The game of Sokoban is an intriguing platform for algorithm and AI research. While

the rules are quite simple, the problem is most de�nitely not so. As it is NP-

Hard [DZ99] and PSPACE-complete [Cul97], even simple levels require quite an

amount of computation to solve. This di�culty is caused by the long solution

depths (frequently in the hundreds), by the branching factor, which can at times

reach values over 100 [JS01], and by the existence of unsolvable positions, deadlocks.

However, as Sokoban can be seen as a simpli�cation of a robot tending storage units

in a warehouse, bypassing these complications and �nding e�cient algorithms for

solving Sokoban can have useful implications for real-life scenarios as well as other

problem domains in computer science.

There have been many studies on Sokoban presented in the scienti�c literature.

Various research groups have tried various strategies for creating a Sokoban solver

algorithm. So far, none of them have been so successful as to be able to solve



2

any given Sokoban puzzle. The most successful solver presented in scienti�c studies,

Rolling Stone [JS01], is only able to solve two thirds of a challenging 90-puzzle prob-

lem set. To be able to achieve better results, one must �rst know what approaches

have already been explored, and what were the results, so as not to be doomed to

repeat history.

In this thesis we present an overview of the techniques that have been applied to

the domain of Sokoban. We also explore some of these in more detail and run

experiments to see how they perform when applied to di�erent search strategies.

Furthermore, by adding a simple modi�cation we are able to signi�cantly improve

the results achieved by one study.

The rest of this thesis is structured as follows. In section 2 we present an overview

on the game of Sokoban, its rules and its challenges as a problem domain. In section

3 we provide an overview of standard, domain-independent graph search techniques

and in section 4 we present a survey of Sokoban-speci�c search enhancements avail-

able in the scienti�c literature. In section 5 we describe a number of experiments to

determine the performance of some of those enhancements, in section 6 we discuss

some of the details of our implementation and �nally in section 7 we provide and

discuss the results of those experiments.

2 The Game of Sokoban

A Sokoban game and playing �eld consist of a player character, a number of

stones1, an equal number of goal positions and a maze of �oor positions bounded

by walls. Figure 1 shows an example of a Sokoban puzzle. The player is at position

Li, the elements at Fc, Hd, Fe, He, Ch and Fh are stones and the elements at Qg,

Rg, Qh, Rh, Qi and Ri are goals2.

1Varying terms and metaphors for the pushed objects are used by the many Sokoban imple-

mentations and articles out there. Besides the term stone used in this thesis, at least box, crate,

ball, boulder and money bag have been used. Considering that the word sokoban means warehouse

keeper in Japanese, boxes or crates would probably be closest to the original. Regardless of the

chosen metaphor, the gameplay remains the same.
2The notation Li means column 11 (L is the 11th letter in the English alphabet) and row 8.

This notation is the same as the one used by e.g. [JS01], and was chosen over others (e.g. the one



3

The rules of the game are simple: the player can move north, south, east and west

freely in the �oor area of the maze. The player cannot move through walls or stones.

If the player tries to move into a position occupied by a stone, that stone is pushed

along into the next position � provided that the next position is unoccupied, i.e. it

is a �oor square and does not contain a stone. The player cannot therefore push

more than one stone at a time, nor can he move the stones sideways or pull them.

Figure 2 illustrates the various stages of solving a trivially easy Sokoban puzzle.

(a) Starting

position

(b) 1 push (c) Still 1

push � player

moved

(d) 2 pushes (e) 3 pushes �

�nished

Figure 2: Solving a trivial 1-stone puzzle

The purpose of the game is to push all the stones into the goal positions. There

are always an equal number of stones and goals and any stone can (in principle) be

placed on any goal. Scoring can be done by counting either the number of player

moves or the number of stone pushes required to reach the goal state (i.e. all the

stones are in the goal positions). The total length of the solution in the previous

example is 3 pushes � the two player moves from 2(b) to 2(c) do not "cost" anything

� if scoring by pushes. If scoring by man moves the solution length is 5 moves (4 of

which are shown in the pictures).

There are multiple implementations and puzzle sets of Sokoban. The game was

originally created in 1981 by Hiroyuki Imabayashi and published in 1982 by Thinking

Rabbit [Lis06]. The original game contained only 20 puzzles. After that, several

sequels with more puzzles were published, as were several clones with both copied

in [Lis06], where it would be l8 ) because it permits us to use two-character notation for all but

the largest puzzles (and if extended into, say, the Greek alphabet, even longer), whereas notations

that require decimal numbers quickly need a third character. Sequences of stone pushes will be

notated Aa-Ab-Ac Ba-Ca, which means that the stone on Aa was �rst pushed to Ab and then to

Ac, and after that the stone on Ba was pushed to Ca.



4

and original puzzles. Nowadays a quasi-standard puzzle set for Sokoban research

is the one provided with the XSokoban implementation [Mye01]. It contains 90

puzzles, all of which are relatively challenging both for human and computer players.

One source of easier puzzles are the Microban sets created by David Skinner [Ski00].

Microban1 contains 155 small puzzles which have been designed to illustrate a single

game concept each.

As mentioned earlier, Sokoban is made di�cult by the large branching factor and

solution depth. In the XSokoban puzzle set the largest encountered branching factor

is 136 and the average is 12, while the solution depth ranges from 97 to 674 [JS01].

The puzzle sizes are usually (and always in the XSokoban set) smaller than 20× 20,

with walls surrounding the perimeter (so the actual playing area is 18× 18), which

would make the search space of all Sokoban problems roughly 1098 states [Jun99],

although the search space of a single Sokoban puzzle is much smaller than that. The

median search space size in the XSokoban set is roughly 1018 [Jun99] states.

Figure 3: Some examples of deadlock situations

Besides the branching factor and solution length, Sokoban is also made di�cult by

the existence of deadlocks. A deadlock is a situation from which the game can no

longer be solved. An obvious deadlock situation is one where a stone is pushed into a

corner � as the player cannot pull the stones, there is no way of getting the stone out

of the corner and therefore the stone can never reach a goal. Some deadlocks, such

as this one, are trivial to detect, but others can be more subtle. In extreme cases

determining whether a deadlock exists may require actually determining if all stones

can in fact be pushed to the goals and thus solving the puzzle. Figure 3 provides

some examples of deadlocks. The stone on Bb clearly cannot be pushed anywhere.

The stone on Eb can be pushed, but only along the north wall. The stones in the



5

four stone cluster prevent each other from being pushed, as do the stones on Bd and

Be, and while the stone on Jc can move in many directions, it can never leave the

room it is in. There are many more possible deadlock con�gurations. Methods for

detecting these are discussed in section 4.4.3.

(a) Initial state

(b) Parking lot full

Figure 4: Microban1 puzzle #98 � A good example of a problem that requires pushing

all the stones into a parking area

Another di�culty in Sokoban is that in most cases the puzzle cannot be solved

by pushing one stone at a time to the goal squares. Most puzzles are constructed

in such a way that an initial tangle has to be unraveled before the puzzle becomes

straightforward to solve. In some cases the stones have to be actually pushed through

the goal area into a parking area, from where they can then be pushed to their �nal

positions in the goal. This makes solving such puzzles quite hard (see the results



6

in section 7.1). Figure 4 shows an example of such a situation, while puzzle #50 of

the XSokoban set is another, notorious example.

For the purpose of solving Sokoban computationally, the game can be seen as a

series of transitions from one state to another. Again, a transition can be either

a player move or a stone push. When viewed this way, the game forms a directed

cyclic graph of states (i.e. transitions from a state to its successor states may be

irreversible and there may be transitions that lead to an already encountered state)

and the task becomes one of path�nding, i.e. trying to �nd a path from the initial

state to the goal state.

In addition to path�nding in this state space, we can of course also use path�nding

algorithms in the game space itself, i.e. in the actual maze. Operating in the

game space is more useful for �nding routes for the player and a single stone, while

operating in the state space provides access to solving the whole level. Both of these

approaches are discussed in more detail later on. Section 4.1 deals with path�nding

in the game space, while section 4.2 discusses path�nding in the state space.

3 A Review of Graph Search Algorithms

Before going into the details of Sokoban solver techniques and algorithms, a brief

review of graph search is in order to allow the reader to understand terms such as

breadth-�rst and depth-�rst search and iterative deepening, which are used often

in the following sections. The state space of Sokoban and other single-player games

can be seen as a graph, with moves in the game as transitions from state to state.

Thus, solving the game usually means searching the graph for a route, preferably

an optimal one, from the starting state to the goal state � or a goal state if there

are more than one.

In general, there are two variants of search algorithms: tree search and graph

search [RN09]. The di�erence between these is that tree search algorithms assume

that the searched tree or graph does not contain cycles or multiple routes to any

state. Since some states in Sokoban can be reached via multiple routes and a se-

quence of pushes can lead to back to a state already explored, the search space

of Sokoban is clearly a graph instead of a tree. Therefore, we will mostly concern



7

ourselves with graph search algorithms. All of the algorithms below can be either

tree search or graph search algorithms depending on how they are implemented.

3.1 Uninformed Search: Breadth-First and Depth-First

Search

The most basic way of searching for something in a graph (such as a state with

certain properties, e.g. a state with all the stones on goal squares in Sokoban) is

to check every node until the required node has been found. The most obvious

algorithms for this are Breadth-First Search (BFS) and Depth-First Search (DFS)

[RN09].

Breadth-First Search searches through the graph by �rst visiting the root node,

then all the direct successors of the root node, then all the direct successors of those

etc. The search visits all the nodes at a given depth before any deeper nodes. To

avoid processing the same node more than once (as we are dealing with graphs,

not trees, and possibly even cyclical ones) each explored node is stored and for all

new nodes a check is performed against this storage. The time complexity of the

algorithm is O(bd), where b is the branching factor of the graph (the number of

successors each node has) and d is the depth of the solution. This requires that the

nodes are tested for the termination criteria (i.e. whether the node is the one we are

looking for) when generated rather than when expanded ; in that case the complexity

would be O(bd+1) [RN09]. Figure 5 gives an example of how BFS progresses in a

graph, while algorithm 1 gives the pseudocode of the algorithm.

Breadth-First Search is complete and optimal - that is, it is guaranteed to �nd

the solution (given enough time and memory and assuming the solution depth and

branching factor are �nite) and the solution it �nds is the lowest-cost one (if the cost

of a path is a non-decreasing function of the solution depth, i.e. all the arcs in the

graph have a non-negative cost associated with them). However, for many interesting

problems the assumption about enough time and memory is not reasonable. With

today's fast processors the main problem is memory - as the search needs to keep

every generated node in memory (to check for duplicates and to be able to provide

a path to the goal node), at any time there will be O(bd−1) nodes in the explored set

and O(bd) nodes in the open (waiting to be explored) set, also known as the search



8

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: Breadth-First Search searching for a route from node a to node l. The white

circles are unexplored nodes, the red circles are in the frontier and the grey

rectangles have already been explored. In sub�gure (h) the route, shown in

bold lines, has been found.

frontier. Thus, with most interesting problems the search will run out of memory

long before processing time becomes an issue.

An algorithm that avoids this memory bottleneck isDepth-First Search. Instead

of progressing all the way through each search depth before moving on to the next,

DFS always follows the successors to the maximum depth before moving on to the

next successor. So, from the root node it will generate the �rst successor, then the

�rst successor of that one etc. until it reaches a node which has no successors; a

leaf node. From there it will backtrack to the deepest node that still has unexplored

successors and explore the next successor of that, and so on [RN09]. Figure 6 shows



9

1 problem � An instance of the graph

2 node � A node with State =problem.InitialState, PathCost =0

3 if problem.IsGoalState?(node.State) then

4 return Solution(node)

5 frontier � A FIFO queue with node as the only element

6 explored � An empty set

7 while not frontier.IsEmpty?() do

8 node := frontier.Pop()/* Returns the shallowest node in frontier */

9 explored.Add(node)

10 foreach action in problem.Actions(node.State) do

11 child := ChildNode(problem, node, action)

12 if not (child.State in explored or child.State in frontier)) then

13 if problem.IsGoalState?(child.State) then

14 return Solution(child)

15 frontier.Insert(child)

16 return failure

Algorithm 1: Breadth-First Search algorithm [RN09]

how DFS progresses through the same example graph.

As DFS searches everything in a given subtree before moving on to the next, at

any time it only needs to keep the current path in memory. This makes it O(bm)

in space, b being the branching factor and m the maximum depth. However, while

DFS avoids the memory limitations associated with BFS, it also has a number of

drawbacks. In �nite search spaces DFS is complete, if implemented in a way that it

checks if a node already exists in the current path, thus avoiding cycles. It, however,

is not optimal. As it explores nodes depth-�rst, it is quite possible to �nd longer

than optimal paths simply because it might encounter that branch of the path �rst.

If the search space is in�nite, the search might not �nd a solution at all, even if the

solution actually exists at a low depth in the graph. The time complexity of DFS

is O(bm), where b is, again, the branching factor and m is the maximum depth of

the search space. This is clearly higher - and can be signi�cantly higher - than the

O(bd) of BFS. Even worse, if the search space is a true graph with many possible



10

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: Depth-First Search searching for a route from node a to node l. In this graph

the route is found in the same number of iterations as with Breadth-First Search

(�gure 5), but this is not always the case. The frontier and explored sets are

however di�erent, as is the order in which nodes are explored.

routes to a given state, the search will end up searching the same subgraphs over

and over again leading to immense duplicated e�ort. The way to avoid this is to

use a transposition table, which holds information about already visited nodes

and can aid detection of duplicated nodes. This, however, leads quickly to the same

memory limitations that BFS su�ers from, making DFS an even worse candidate.



11

1 problem � An instance of the graph

2 node � A node with State =problem.InitialState, PathCost =0

3 if problem.IsGoalState?(node.State) then

4 return Solution(node)

5 frontier � A LIFO queue with node as the only element

6 explored � An empty set

7 while not frontier.IsEmpty?() do

8 node := frontier.Pop()/* Returns the node inserted last */

9 explored.Add(node)

10 foreach action in problem.Actions(node.State) do

11 child := ChildNode(problem, node, action)

12 if not (child.State in explored or child.State in frontier)) then

13 if problem.IsGoalState?(child.State) then

14 return Solution(child)

15 frontier.Insert(child)

16 return failure

Algorithm 2: Depth-First Search algorithm

3.2 Informed Search: A*

If the search could be guided to seek out the right branch toward the goal node

right away, the possibly-never-terminating nature of Depth-First Search would not

be nearly as bad a problem. With informed or heuristic search we have a way to

do just that. Of course, being able to always guide the search down the right path

would mean we would have to know the path beforehand, but that does not mean

that we cannot make educated guesses.

One way to do guide the search is to make a heuristic estimate about the remaining

path to the goal along the chosen route. This is precisely what the A* algorithm

is about. For each generated node it computes both the path length so far and

an estimate of the remaining path length3 and then proceeds to the node with the

3Note that when speaking about path lengths, we assume that each arc in the graph has the

same cost, and thus cost and length are the same thing. Path length is easier to grasp intuitively

than path cost and makes more sense in the context of Sokoban; thus the choice of term.



12

lowest total estimated path length.

(a) (b) (c)

(d)

Figure 7: A* searching for a route from node a to node l, assuming a perfect heuristic

(one that always returns the correct remaining path length). Here the frontier

and explored nodes are shown with a record shape, with the middle value being

the path length so far and the rightmost value being the path length remaining

(i.e. the heuristic).

The properties of A* depend heavily on the heuristic function used. If the chosen

heuristic function is admissible (i.e. it never overestimates) and consistent (the

estimate for node n is never greater than the cost of reaching n's successor n′ from n

plus the estimate for node n′) then the algorithm is both complete and optimal. For

Sokoban, one such possible heuristic would be the sum of the Manhattan distances

(distance along the X axis plus distance along the Y axis, disregarding walls and

other obstacles) of each stone to some goal - either the nearest goal or, with some

more computational e�ort, an assigned goal for each stone. Another, more accurate

heuristic for Sokoban is presented in section 4.2.2.

Furthermore, A* has been proven optimally e�cient in its category - that is, within

the class of search algorithms that search for solutions extending from the root and

use the same heuristic information [RN09]. This means that A* is guaranteed to

expand at most the same amount of nodes as any other such algorithm. The time

and space complexity of A* depend on the heuristic function.



13

1 problem � An instance of the graph

2 node � A node with State =problem.InitialState, PathCost =0

3 node.TotalCost := node.PathCost + Heuristic(node)

4 frontier � A priority queue ordered by TotalCost, with node as the only element

5 explored � An empty set

6 while not frontier.IsEmpty?() do

7 node := frontier.Pop()/* Returns the lowest-cost node */

8 if problem.IsGoalState?(node.State) then

9 return Solution(node)

10 explored.Add(node)

11 foreach action in problem.Actions(node.State) do

12 child := ChildNode(problem, node, action)

13 child.TotalCost = child.PathCost + Heuristic(node)

14 if not (child.State in explored or child.State in frontier) then

15 frontier.Insert(child)

16 else if child.State in frontier with higher TotalCost then

17 frontier.Replace(child)/* Replace the higher-cost state */

18 return failure

Algorithm 3: A* algorithm [RN09]

3.3 Depth-Limited Search and Iterative Deepening

Another way to avoid ending up in an in�nitely deepening search branch with Depth-

First Search is to limit the search depth. This is unsurprisingly called Depth-

Limited Search. It works exactly like DFS, except the search is only allowed to

expand nodes up to a given depth. If the depth of a node exceeds the limit, it is

treated exactly like a leaf node.

The depth limit brings with it an obvious problem: if the solution is deeper than the

limit, the search will never �nd it. The answer is to start with a conservative limit

and, if the search ends without �nding a solution, to increase the limit and try again.

This is called Iterative Deepening. If the search is started with a depth limit

of 0 and increased in increments of 1, the search is guaranteed to be complete (with



14

the same assumptions as with BFS). The memory requirement is low, only O(bd) (d

being the depth limit; as with DFS, this of course excludes the transposition table,

resulting in wasted computation), but the time complexity su�ers from having to

generate the lower depth nodes multiple times.

3.4 Iterative Deepening A* (IDA*)

The ideas of informed search and iterative deepening can of course be combined.

The result is Iterative Deepening A* or IDA*, which has so far been the most

successful search algorithm for Sokoban (albeit with a number of enhancements; see

section 4.2). The biggest change from Iterative Deepening Depth-First Search is

that rather than using the path length so far as the comparison for the depth limit

we rather use the estimated total path length, that is, the path length so far plus

the heuristic estimate. In addition, the generated moves are sorted by the estimated

total path length and the shortest ones are tried �rst. This achieves the guiding

e�ect which makes IDA* a guided search algorithm and a relative of A*.

3.5 Bidirectional Search

While all the discussion on search algorithms so far has assumed that the root node

of the search is the initial state of the game, this does not have to be the case.

We can indeed reverse the search by starting from the goal state and trying to

then locate the initial state. All that needs to be changed is the way we generate

successors. Depending on the properties of the search space this can lead to better

or worse performance. For Sokoban the implications of reverse search are discussed

in section 4.2.5. In the context of Sokoban, in reverse search the successor states

are generated by pulling stones from the goal state towards the initial state.

The change from forward to reverse search soon leads to the idea of bidirectional

searching. Instead of searching just from the initial state or the goal state and trying

to �nd the other, we can initiate the search from both and try to �nd the point where

the search fronts meet. The rationale for this is that as each depth of the search

tends to have more nodes than the preceding depth, combining two shallower search

frontiers would result in less wasted search e�ort. For instance, in a graph with a



15

Figure 8: Bidirectional search meeting in the middle

branching factor of b = 4 and the goal at depth 10, depth 1 would have 4 nodes,

depth 2 would have 16 nodes and so on, �nally having 410 = 1048576 nodes at depth

10. This will mean generating a maximum of
∑d

k=0 b
k =

∑10
k=0 4

k = 1398101 nodes

in the worst case, or O(bd). But if we search from both directions at the same time,

we will only have to search a maximum of
∑d/2

k=0 b
k nodes from both directions,

giving a total of 2
∑5

k=0 4
k = 2 × 1365 = 2730 nodes, or O(bd/2). So, in theory,

bidirectional search can give enormous savings. The practical bene�ts will of course

be dependent on the true attributes of the graph.

4 Tools for Solving Sokoban

Several di�erent approaches to solving Sokoban have been attempted and docu-

mented in the scienti�c literature. Perhaps the most thoroughly documented is Uni-

versity of Alberta's Sokoban solver Rolling Stone [JS97, JS98a, JS98b, JS98c,

JS98d, JS99, Jun99, JS01], which is able to solve 59 of the 90 puzzles in the XSokoban

set. While it is based on Iterative Deepening A* search, it contains a number of

both domain-independent and Sokoban-speci�c search enhancements and heuristics,

which allow it to perform quite admirably. Many of these are discussed in the fol-

lowing sections. Rolling Stone builds on the success of other search-based solvers

[Jun99], but unfortunately little has been published about these earlier e�orts.

While the makers of Rolling Stone discovered that a general-purpose planning

approach is infeasible for Sokoban [JS01], another team has succesfully applied plan-

ning to Sokoban by adding abstraction layers. Their solver Power Plan [BMS02]



16

is able to solve 10 puzzles4. Their approach is to treat a Sokoban puzzle as a graph

of rooms and tunnels instead of individual positions and thus decompose the initial

problem into several simpler sub-problems. This approach is discussed further in

section 4.6.

An interesting multi-agent search approach (see section 4.5) was used in the Talk-

ing Stones solver, �rst introduced in [Lis06] and further discussed in [DLG08].

Their solver is able to solve 54 problems (61 with a little manual help), nearly ri-

valing the performance of Rolling Stone. While their multi-agent approach is a

refreshing contrast to the single-agent search method of the above solvers, perhaps

it is their discovery of an easily-solvable subclass of Sokoban puzzles and/or game

states that will prove to be more useful for future Sokoban solver developers. See

section 4.5 for details.

Other solvers have been implemented, many with similar techniques, but

have not been discussed in scienti�c literature. The Sokoban Wiki

(http://www.sokobano.de/wiki/) provides statistics for many such solvers as well

as a description of some of the algorithms used by one of them, the YASS solver

(Yet Another Sokoban Solver) [Dam10].

Regardless of the chosen basic solving method, a number of Sokoban-speci�c issues

need to be addressed. The rest of this section provides discussion about the various

components of a successful Sokoban solver.

4.1 Path�nding in Game Space

The �rst step in trying to �nd a solution to a Sokoban puzzle is to be able to

determine if a given stone can reach a given position. A simple way to do this is to

adapt a generic path�nding algorithm, such as A* [HNR68] to be able to account

for pushability, i.e. to �nd routes such that the player is always in a position to

push the stone in the right direction. This is easily accomplished by giving the

algorithm a third dimension to work with: the side of the stone the player is on. So,

in addition to the x and y dimensions of the Sokoban puzzle the search space also

has four layers in a third dimension � one for each of the four cardinal directions.

4While they claim this to be only a preliminary result, no further results appear to have been

published.



17

Whereas the cost of moving the stone in the x and y dimensions is always non-

zero (as it always requires stone pushes), the cost of moving in the third dimension

is zero provided the positions around the stone are reachable, i.e. the player can

move around the stone without needing to push any stones. Figure 9 illustrates

the concept. For the heuristic function A* needs to estimate the length of the

remaining path, something as simple as Manhattan distance from the stone to the

target position can be used � or even no heuristic at all, which degenerates the A*

algorithm into Dijkstra's algorithm [RN09]. One possible approach for the heuristic

is to precalculate walking distances, disregarding pushability, between each pair of

points in the maze and then use those as the estimates in later calculations involving

pushability and perhaps other stones as obstacles.

In some situations also the player's path from position to position might need to

be solved. In most cases the length of the path does not matter (especially when

trying to optimize for stone pushes, not player moves) and as the levels are small, it

is su�cient to just run a �ood �ll of all the accessible positions from the player's

current location when encountering a new game state and then allow the player to

teleport to all accessible locations without worrying about the exact path taken. If

however an exact path is needed, a standard A* algorithm will provide just that. Of

course, doing both will result in wasted e�ort, as the �ood �ll would also be able to

provide a shortest path with slight modi�cations, but in practice these two pieces

of information (which positions are accessible and what is to shortest path to reach

a position) will rarely be needed at the same time. As both algorithms are quite

simple, having both in the solver's arsenal should provide useful.

4.2 Path�nding in State Space

If instead of considering pushing the stones in the game space we consider the game

as a graph of states and transitions, searching becomes conceptually much clearer.

Also, we are much more easily able to search for solutions involving several pushed

stones, not just one. Therefore, to search for actual solutions for the puzzle it is

more advantageous to operate in the state space.

Any algorithm presented in the section 3 can be used � provided they are the graph

search versions. When Sokoban is treated as a state graph it is directed and cyclic



18

Figure 9: The layers of the pushable A* algorithm. The topmost layer shows moves

directed south, the next one east, the third north and the fourth layer shows

moves west. The cost of all moves from one layer to another are zero when the

new player position is accessible.

with multiple possible routes to a given state and thus even simple puzzles become

intractable if we choose a tree search algorithm. Unfortunately, this means that

we can all but forget about only using a linear amount of memory, as we could

do with algorithms like Depth-First Search when operating in an acyclic tree-like

environment. After all, Sokoban (when played on an unrestricted-size board) has

been proven PSPACE-complete [Cul97], which implies that in most cases the amount

of memory required will in fact be polynomial.

As searching in Sokoban is hard, we must �nd ways of directing the search so that

we consider moves leading to the solution as early as possible. Naturally, even



19

considering the inclusion of heuristics leads us to choose an informed algorithm

such as A* or its memory bounded variant IDA*. This is precisely what the most

successful solver so far, Rolling Stone, uses [JS01]. It contains a number of

enhancements to the basic search, most of which are introduced in the following

sections.

4.2.1 Transposition Tables

As the search algorithm needs to be a graph search, we need a way to detect if a

given state has already been explored. This is the explored set in algorithms 2 and

3. A common way to implement it is to use a large hash table. In Sokoban the state

(from the point of view of transpositions) obviously consists of the positions of the

stones and the position of the player. But as the common approach is to optimize for

stone pushes, not player moves, storing such a naive representation of state in the

transposition table would in fact miss quite a lot of transpositions. After all, moving

the player without pushing any stones does not a�ect the path length and therefore

should not a�ect game state. Therefore two states should be considered equivalent

if the stones are at the same positions and the player positions are connected by a

legal player path. Thus it is better to consider the state as consisting of the stone

positions and the reachable area of the player. Since the reachable area is easy to

compute, a good way to implement this is to store a normalized player position, e.g.

the topmost, leftmost reachable position instead of the actual position of the player.

The size of the transposition table can be also limited. This makes the search

algorithm a kind of hybrid between tree search and graph search. The advantage

is of course the ability to search for solutions to larger puzzles without running out

of memory, while an obvious disadvantage is that it may lead to duplicated search

e�ort. Thus, we run into the usual tradeo� between space and time.

4.2.2 Lower bound estimation

To be able to use Depth-Limited or Iterative Deepening Search one must be able to

estimate the solution depth or waste too much time in an exhaustive search of the

lower depths of the search graph. In addition, the ability to estimate a lower bound

on the solution is useful for the heuristic function used in a guided search like A*.



20

The developers of Rolling Stone have presented two alternatives for lower bound esti-

mation [JS01]: Simple Lower Bound andMinimum Matching Lower Bound.

The �rst one, Simple Lower Bound, calculates the sum of the Manhattan distances

of each stone to its closest goal. While this can be useful in some situations, in

practice it underestimates grossly in most cases. The main reason for this is simple:

in Sokoban, only one stone can occupy each goal! By choosing the closest goal for

each stone we are clearly overlooking this simple fact.

(a) (b)

Bb Ic If

Cc 2 6 9

Hb 6 ∞ ∞
Id ∞ 1 2

(c)

Figure 10: Minimum matching example [JS01]. In this case, the minimum-matching

algorithm determines that while stone Cc is closest to goal Bb, stone Hb can

never reach any other goals than Bb. Similarly, stone Id can never reach

goal Bb. Thus, the algorithm assigns Cc to Ic, Hb to Bb and Id to If and

determines the lower bound to be 6 + 6 + 2 = 14.

The Minimum Matching Lower Bound algorithm [JS01] fares much better. It gen-

erates a minimum-cost, perfect bipartite matching of the stones and goals. Each

stone is assigned to a goal so that the total sum of distances (along actual, pushable

paths, albeit in an empty maze) is minimized. The actual algorithm used is the

Hungarian method [Kuh55], which is O(N3), where N is the number of stones.

Clearly, this is an expensive calculation, even with the many possible optimizations

[Jun99]. However, it produces much more accurate results than the simple lower

bound, and it also provides the parity of the �nal solution � i.e., if the value re-

turned by the algorithm is even, then the number of pushes in the �nal solution

is also even. This makes it possible to skip every other iteration in the iterative

deepening search. In some cases the minimum matching algorithm can also detect

a deadlock � if the stones were positioned in such a way that some goals were over-



21

committed, some stones would be left without goal assignments and so the state

would be in deadlock.

4.2.3 Move ordering

While the search e�ort in informed search methods such as A* is directed toward the

solution by estimating the remaining path length, there are still numerous alterna-

tives that have the same estimate. Further direction can be obtained by ordering the

available moves by some criteria. When analyzing solutions to Sokoban puzzles the

creators of the Rolling Stone solver discovered that the solution paths contain long

sequences of pushes targeting a single stone. Therefore, the move ordering scheme

used in Rolling Stone is based on inertia, i.e. moves which push the stone that was

pushed last are tried �rst [JS01]. Then all the moves that decrease the lower bound,

i.e. optimal moves, are tried. The moves are sorted by distance of the pushed stone

to its assigned goal. If those prove unsuccessful as well, then the search moves on to

the rest of the moves, sorted similarly. In Rolling Stone, this move ordering scheme

has proved to be extremely e�ective � after reaching about 20% of the depth of the

search tree the move ordering becomes near perfect [JS01].

4.2.4 Macro moves

Because searching in Sokoban is heavily memory-bound, all possible options for

reducing the size of the search tree should be exploited. One such option is the uti-

lization of macro moves, i.e. collapsing sequences of moves into one move. Obviously

the cost of such a macro move is identical to the length of the collapsed subtree.

One possibility for such macro moves are tunnel macros. When a stone is pushed

into a one-way tunnel (see section 4.3.2), it has to come out from the other end of

that tunnel before any other stone can enter that tunnel or before the player can

ever reach the other end of it. Therefore the moves that push the stone through the

tunnel can be executed right away and no other moves even need to be considered.

Thus all other possible moves are discarded and the move sequence is e�ectively

collapsed into a macro move.



22

(a) No macros (b) Tunnel macro (c)

Goal

macro

Figure 11: The e�ects of a-b-c as a tunnel macro and a goal macro [JS01]

Another macro possibility are goal macros. In many Sokoban mazes the goals are

grouped in one or more goal rooms with usually only one or a few entrances. If a

stone is pushed onto such an entrance it can, and should, usually be pushed right

through to its �nal destination. Thus, the move sequence from the entrance to the

goal can be replaced with a macro move. In Rolling Stone, no other moves are even

considered when a goal macro is present. This is in contrast to tunnel macros � while

moves onto a tunnel entrance are substituted with a tunnel macro when they are

generated, other moves are still considered alongside that tunnel macro, but when

a goal macro is available, all other moves are eliminated. This provides a dramatic

reduction in the size of the search space.

Goal macros are only applied when a stone is pushed to the entrance of a goal

room. But if a stone elsewhere in the maze can be pushed to its �nal destination

it probably should be pushed there right away. This is the idea behind goal cuts,

another enhancement in Rolling Stone. It e�ectively extends goal macros further up

the search tree, resulting in even larger reductions in search space.



23

4.2.5 Reversed and Bidirectional Solving

As discussed in section 3.5, starting the search from the initial state and trying to

�nd the goal state does not have to be the only option. As most Sokoban puzzles are

designed to provide ample opportunities for deadlocks when pushing, searching for

solutions via pulling the stones starting from the goal state may be a good technique

for avoiding these. Indeed, pulling stones away from the goal state guarantees that

we cannot end up in a deadlock in the usual sense. After all, if we can pull stones

from the goal state to a given state, we are guaranteed to be able to push the stones

to the goal states from that state again. However, when pulling from the goal state

we uncover another kind of deadlock. It is possible to end up in a state from where

we can no longer reach the initial state � that is, we may not be able to pull the

stones to their starting positions or if we do, the player may not be able to reach his

starting position. However, initial �ndings suggest that such pull-deadlocked states

are rarer than push-deadlocked ones.

Frank Takes has examined reversed solving of Sokoban in his bachelor thesis [Tak08].

While noting that solving by pulling avoids the usual deadlock states that solving

by pushing often runs into, he fails to recognize that solving by pulling creates its

own kind of deadlock, although as stated previously this does not seem to be nearly

as big a problem as push-deadlocks. In most cases, a pull-deadlock is caused by

the player pulling himself into a corral (see section 4.4.1) from which it is no longer

possible to exit. In such cases the available moves will "dry up" quickly and the

deadlock will not cause much lost search e�ort.

The algorithm used by Takes is simple. It uses two conditions, X and Y to guide the

search. While condition X is not satis�ed, the stone under consideration is pulled

to all unvisited positions. Then, the focus switches to another stone as chosen by

condition Y . The possible criteria for condition X, i.e. when to stop moving a stone,

are as follows:

X1 � After each step

X2(n) � After n steps, for some value of n

X3 � When a stone is at a �nal position (i.e. one of positions of the stones in the

initial state of the maze)



24

X4(n) � When a stone is k steps away from a �nal position, with k ranging from 0

to n for some value of n

X5 � After a random number of moves

The possible criteria for condition Y , i.e. which stone to consider next, are as follows:

Y1 � Every stone. This includes stones that have already been placed.

Y2 � Every unplaced stone.

Y3 � The next stone in lexicographical order, meaning an order determined by

some numbering given to the stones in advance

Y4 � The next stone as sorted by e.g. each stone's sum of distances to each �nal

position

Y5 � The stone that is currently closest to some �nal position

Y6 � A random stone

By choosing a di�erent combination of these conditions (and di�erent values for n in

X2 andX4) di�erent search behaviors emerge. For instance, choosingX1Y1 results in

a brute-force breadth-�rst search, examining each possible state and guaranteeing

completeness and optimality but gaining little in e�ciency, while choosing X3Y2

e�ciently solves puzzles in the Van Lishout subclass (see section 4.5) and choosing

X4Y2 with a su�cient value for n solves puzzles which are nearly in the subclass

(note that X3 is the same as X4 with n = 0).

Junghanns mentions both reversed and bidirectional approaches in the Failed Ideas

section of his thesis [Jun99]. He remarks that while the ideas of backwards and bidi-

rectional search both sound good on paper, and would probably result in a smaller

number of nodes searched before �nding the solution, they have their problems. For

backwards search one large problem is that while in forward search the goals are

usually grouped together in just one or two goal areas, in backwards search the

"goals", i.e. the starting positions of the stones, are scattered around the maze.

This makes it hard to determine the order in which the stones should be positioned.

This makes the use of techniques such as goal macros impossible. Another di�culty



25

is presented by deadlocks. While most of the pull-deadlocks result in a situation

where the player compresses his own space and soon runs out of available moves,

there are also situations where the player can escape the compressed space to work

in other areas of the maze, but the stones are in a deadlocked state. This can be

hard to detect, especially because pull-deadlocks are harder for humans to visualize

and comprehend and are therefore harder to cater for in programming. Junghanns

suggests that a deadlock database should be used, similar to what Rolling Stone

uses in its forward search but with di�erent patterns for reverse search.

Assuming the problems with reverse search can be solved, for bidirectional search

the main problem Junghanns points out is memory consumption[Jun99], speci�cally

that of the search frontiers. In bidirectional search at least one of the search frontiers

must be completely maintained in memory so that the search from the other direction

can check for matches. This consumes quite a lot of memory. While the concern

is still valid, one must take into account that this was written 12 years ago and

the available memory in computer systems has grown considerably since then. It is

therefore a good idea to investigate if the amount of memory in current computers

is su�cient to keep even a large search frontier in memory. In section 5.2 we present

an experiment with forward, reverse and bidirectional search where all generated

nodes are maintained in memory.

4.3 Static Analysis of Puzzle Features

Before even considering any game states, a static analysis of features can reveal

crucial information about a Sokoban puzzle. By spending some time on such analysis

a large amount of wasted search e�ort can be avoided. This section introduces a

few of such analysis tools.

4.3.1 Dead Positions

A position in a Sokoban puzzle is called dead if a stone pushed into it can never

reach any goal. Such positions can be discovered by a simple algorithm which tries

to �nd a pushable route from all the positions in the puzzle to all the goals. If a

stone from that position can be pushed to any goal the position is not dead. For



26

Figure 12: The puzzle from �gure 1 annotated with some static and dynamic features.

The reddish-brown squares show dead positions, green dots show the area

accessible to the player at the moment, bright stones are pushable right now

and the small arrows on them show the available push directions

reverse solving purposes a position can be also considered dead if a stone at that

position could never be pulled to any of the starting positions, i.e. a stone from any

of the starting position in the initial state of the puzzle could never be pushed to

that position. Figure 12 shows the puzzle in �gure 1 annotated with dead positions

(the reddish-brown squares) as well as other, dynamic (state-speci�c) annotations

about the available moves. All of the corner positions such as Fb are forward-dead

(can never reach any goal), while Gc and Gd are examples of reverse-dead (cannot

be reached from the initial state) positions.

While computing dead positions for even a complicated puzzle is a very cheap oper-

ation the rewards gained are substantial. On almost any level, in almost any state,

knowledge of dead positions allows a number of available moves to be pruned with

only a simple lookup.

4.3.2 Rooms, Tunnels and Chambers

The algorithms solving Sokoban do not necessarily have to operate only on the level

of individual squares; we can also raise the abstraction level. One way to do that is

to decompose the puzzle into a graph of rooms and tunnels. A tunnel is de�ned as

a part of the maze where the maneuverability of the player is restricted to a width



27

Figure 13: Various tunnel types [BMS02]

of one [JS01]. Conversely, a room is an area where the player can move more freely.

Two points belong to the same room if and only if there is a connection between

them that does not cross any tunnel [BMS02]. Figure 13 illustrates various tunnel

types, while �gure 14 shows a maze decomposed into rooms and tunnels.

Figure 14: Puzzle #1 as a room and tunnel graph. The green, solid-line tunnels are stone

tunnels, while the red dashed-line tunnels are only for the player. Note tunnel

T6, which is a one-ended tunnel.

A square which, if replaced by a wall, would break the maze into two completely

disconnected parts is called an articulation square. If a tunnel contains such a

square it is a one-way tunnel [JS01]. These can be used to e.g. decompose a problem

into sub-problems or to implement tunnel macros (see section 4.2.4).

Another way to abstract a Sokoban problem is to decompose it into a graph of

chambers � areas where each position is stone-reachable from each other, i.e. areas

where a stone can be pushed from one position to any other position [Sch05]. They

can be used for a number of things, such as determining the packing order for



28

goal squares and detecting structural deadlocks : chambers that don't have an exit

and have less goals than stones. Unfortunately, the only study that discusses them

[Sch05] only provides an algorithm for computing them and mentions their potential

a few times, but does not actually use them for much.

4.4 Dynamic Analysis of Game State

While static analysis is based on the features of the maze created by the walls alone,

we can also analyze features created by the stones in the maze. Such analysis is

by de�nition dynamic, since it depends on the positions of the stones in the maze.

Analyzing the features of the current game state can reveal crucial information for

guiding the search.

4.4.1 Zones, Barriers and Corrals

In section 4.1 we already discussed accessibility � the area of the maze where the

player can move without pushing any stones. This thought can be generalized into

zones. A zone is an area of the maze �oor bounded by stones. The area surrounding

the player is the accessible zone while all other zones are by de�nition inaccessible.

A group of stones separating a zone from another is called a barrier. Each stone

push reshapes one or more zones and may merge or split them. A possible subgoal

in some kind of planning-based Sokoban solver could be to join more zones into the

accessible zone. This is often a Sokoban player's aim in the beginning stages of a

puzzle, though often it is also necessary to push stones in ways that break o� zones

from the accessible zone.

The YASS solver contains a technique that hasn't yet been documented in scienti�c

literature [Dam10]. They call a zone that the player cannot access a corral. If all

the stones on the barrier can only be pushed into the zone, the corral is an I-corral.

Furthermore, if the player can reach all the stones on the barrier and perform the

legal pushes inwards the corral is a PI-corral.

Now, the key insight with PI-corrals is that if one exists, the player will have to deal

with it eventually. This is due to the fact that as the stones on its barrier can only

be pushed inwards, one of them will indeed have to be pushed there before any of



29

(a) (b) (c)

(d) (e) (f)

Figure 15: Examples of corral situations. Figures (a) and (b) have a PI-corral to the left

of the stones, while �gures (d) to (f) do not. Neither of the corrals in �gure

(c) is alone a PI-corral, but together they do form a combined PI-corral.

the stones in the corral can be pushed elsewhere. So, if the corral has to be dealt

with eventually, it is best to deal with it right away and all other moves can be

eliminated from consideration. This is called PI-corral pruning.

The reason that this works, and that it only applies to PI-corrals and not other corral

types is due to stone in�uence. In a PI-corral no other stone can be in�uenced by

the fact that a stone is pushed into the corral, because any stones outside the corral

are by de�nition either accessible or inaccessible regardless of whether the player

can walk in the area of the corral, while stones completely inside the corral (not on

the boundary) are by de�nition inaccessible to the player and could not be pushed

before the corral is dealt with.

YASS also contains an algorithm for detecting combined corrals. When two corrals

are separated from each other by stones that are not directly accessible to the



30

player, the stones on their mutual barrier can be considered interior stones and the

corrals can be combined. This enables many corrals which would otherwise not be

considered PI-corrals to be considered as such, while still preserving the key insight

about PI-corrals: that the player has to do something about it eventually, so it's best

to resolve the situation right away. Figure 15(c) depicts such a situation. While it

is quite rare that a game state contains a PI-corral, combined corrals that together

form a PI-corral are quite common. Detecting them should therefore allow PI-corral

pruning to achieve impressive savings in the size of the search space. Section 5.3

presents an experiment to determine their usefulness in practice.

4.4.2 Doors and One-way Passages

If a stone is positioned in or next to a tunnel in such a way that there is no space to

move it away before its surroundings are cleared of stones, it forms a door. Doors

can be used to form one-way passages in puzzles, which restrict the movement of

the player to certain areas. Puzzle #29 of the XSokoban set, shown in �gure 16 is

a good example of a maze which contains multiple doors5, while �gure 17 displays

examples of one-way passages.

While no-one has presented a Sokoban solver that uses knowledge of features such

as doors to its advantage, Schaul explores the possibility of evolving solver agents

that learn such features or concepts [Sch05] (see section 4.7 for details). While the

reason that doors and other features are rarely used in Solvers might be due to the

fact that such features are relatively rare, possibly hard to detect and might just

not be useful, it might still be interesting to explore the possibility.

4.4.3 Deadlock Detection

Avoiding deadlocks is crucial when trying to solve a Sokoban puzzle. The easiest way

to produce a deadlock � and therefore the �rst one to be avoided � is to push a stone

onto a dead square (see section 4.3.1). In addition to detecting and avoiding these,

other deadlocks produced by the interactions of the stones need to be detected.

5Incidentally, it is also a great example of a puzzle where the order in which the goal squares

should be �lled is crucial and extremely hard to determine � and almost certainly requires multiple

attempts from a human player.



31

Figure 16: Puzzle #29 of the XSokoban set. The stones on Cc, Qf and Qj each form a

door, as do all the stones on the k row. Also, both of the passages starting

from Cc and Qf and ending at Nk are one-way passages for most of the

time (until their stones are �nally pushed away). Note that contrary to initial

impression the stone on Cj does not form a door, since it can easily be pushed

out of the way to Cg.

(a) (b)

Figure 17: Two examples of one-way tunnels. In �gure (b) the player can only pass

through once; after that the stones cannot be placed in a way that would

allow the player to pass through again.

As mentioned earlier in section 2, in some cases detecting if a position contains

a deadlock can mean having to actually solve a puzzle. This does not mean that

deadlocks cannot be detected � some common types of deadlocks (such as the 4-

stone cluster and the two stones on the west wall in �gure 3 on page 4) can be

detected with a few trivial lookups, while others take some more computation. This

section describes some ways to detect deadlocks.



32

An obvious way is to hand-code a number of tests for common deadlock positions.

However, as Junghanns et al. discovered this quickly proves unwieldy and still

misses many deadlock positions [JS97]. They instead implemented deadlock tables �

precomputed tables of all possible stone, goal, wall and player positions in a certain

area, with a simple search performed to determine if the area contains a deadlock

or not.

Figure 18: Constructing a deadlock pattern database with a 3 × 3-sized pattern [JS01].

Note the deadlock at the lower right corner.

The deadlock tables in Rolling Stone were constructed using an o�ine search for

each possible pattern of stones, walls and empty squares in a 5 × 4 submaze. The

search is started with the simplest possible scenario, consisting of only the player

and one stone. Since these patterns are designed to be used directly after each push,

the �rst stone is always directly in front of the player (the actual side doesn't matter

� the patterns are oriented along the push). Then, three successors for that simple

state are generated: one for a stone added behind the �rst stone, one for a wall and

one for an empty space. Next come the successors for those, with the next element

placed at the �rst stone's side. This process, illustrated in �gure 18, is continued

with a speci�c order of new squares until all the possible patterns are generated.

For each pattern, a search is performed to see whether all the stones in the pattern

can be pushed out of the pattern. Various enhancements are used, such as detecting

stones on dead squares as immediate deadlocks.



33

After the deadlock database is computed it is stored and can then be used in all

subsequent searches. When a move is considered, the 5× 4 frame is oriented along

the push and overlaid on the maze, as shown in �gure 19. Also mirrored and rotated

positions of the frame are considered. The deadlock database is then queried for the

pattern of walls, stones and �oor squares under the frame. If the state is discovered

to be a deadlock, the move is pruned from consideration.

Figure 19: An example of applying the deadlock patterns frame in one possible

orientation[Jun99]

While Rolling Stone uses precomputed, level-independent deadlock tables, an-

other option is to compute level-speci�c deadlock patterns, as explored by Cazenave

et al. [CJ10]. Their approach is to use retrograde analysis to compute deadlocks.

First, all trivial one- and two-stone deadlock patterns are generated � stones in cor-

ners, stones on walls between two corners and two adjacent stones on a wall. Then,

all possible three-stone con�gurations for a speci�c puzzle are generated. In a �rst

pass, for each con�guration the algorithm checks for already known deadlocks and

then tries all available moves and checks if they all lead to a known deadlock. If this

is the case, the con�guration is added to the known deadlocks. In subsequent passes

the algorithm generates all possible previous states for all known deadlock states.

For each generated state all available moves are again checked. When all three-

stone con�gurations have been processed the algorithm can move on to four-stone

con�gurations etc.



34

4.5 Multi-Agent Search and the Van Lishout Subclass

As a game, Sokoban is undeniably a single-player game. However, while the articles

on Rolling Stone ([JS97, JS98a, JS98b, JS98c, JS98d, JS99, Jun99, JS01]) exclusively

discuss single-agent search methods, the game does not necessarily have to be treated

as a single-agent search problem. If the stones are chosen as the active agents and

the player is just a tool to be used by them, then the problem becomes a multi-agent

search problem. Van Lishout et al. have studied Sokoban as such [Lis06]. They allow

each stone to consider its own available moves and to call the player character to

position himself accordingly. Thus, each stone can be seen as a semi-independent

agent in a group of agents working together to �nd a solution.

In their study of Sokoban as a multi-agent search problem, Van Lishout et al. discov-

ered a subclass of Sokoban puzzles which is almost trivial to solve [Lis06]. A puzzle

can be solved stone-by-stone, i.e. moving one stone at a time to the goal squares

without moving any other stones in between, if it satis�es the following conditions:

1. Goal-ordering-criterium � it must be possible to determine the order (or an

order, as there are usually many possible orders for a given puzzle) in which

the goal squares should be �lled, regardless of the positions of the stones and

the player.

2. Solvable-stone-existence � it must be possible to push at least one stone to the

�rst unoccupied goal square without having to move any other stone

3. Recursive-condition � for each stone that satis�es the previous condition, the

maze obtained by moving that stone to the corresponding goal must also con-

tain at least one stone that satis�es the previous condition

In practice, it is quite rare for a puzzle to be in the Van Lishout subclass in its

starting arrangement. In the XSokoban puzzle set only two6 of the puzzles (puzzles

#53 and #78) are in the subclass, while the Microban1 set has four (puzzles #44,

#126, #154 and #155 � three of these have only one stone, while puzzle #126 has 7).

However, having puzzles be in the subclass after relatively few moves is surprisingly

6Van Lishout mentions only one, #78, but with a slightly better goal packing order algorithm

another, #53, can be found. See sections 6.3 and 7.4 for details.



35

(a) XSokoban #1 after two pushes

(b) XSokoban #78

Figure 20: Two puzzles that are solvable stone-by-stone. Note that the state of puzzle

#1 is after three pushes, not the initial state (as shown in �gure 1).

common. One of the strengths of human players of Sokoban, when compared to

computational approaches, is the ability to recognize early in the solution process

that they can reach a state where the maze is solvable stone-by-stone [Lis06]. This

can be mimicked by running a search algorithm such as Breadth-First Search for the

solution and examining if each encountered node contains a stone that can be pushed

to the goal or not. When such a node is discovered, it can be further examined to

see if the recursive condition also applies. If not, the search is continued.

It has been noted [Lis06] that while the move ordering scheme of Rolling Stone

generates solutions similar to the multi-agent modeling technique of Talking Stones,

it wastes quite a lot of processing time doing so. For each node generated by the

IDA* search in Rolling Stone a lower bound is computed, all the possible child nodes



36

and their lower bounds are also computed, deadlock patterns are matched etc. and

only then the search proceeds to the most promising child, which is usually the

one leading the last pushed stone towards the chosen goal. Using the Van Lishout

multi-agent modeling algorithm most of the alternative moves will never even have

been considered.

One aspect not discussed by Van Lishout et al. is that their method is even more

closely matched by the goal cut technique of Rolling Stone. Indeed, if a stone is

pushable to the next goal in the sequence, then Rolling Stone will try that �rst

and its search will proceed much in the same way as the Talking Stones method.

However, if the recursive condition does not apply all the way, i.e. if state is not in

fact solvable stone-by-stone but only some stones are pushable to their respective

goals, then the algorithm used in Rolling Stone will use the goal cuts as far as it

can and continue the search from that state, while the one used in Talking Stones

will return to continue the search from the original state from where it �rst tried to

apply the stone-by-stone method. This can be a good or a bad thing, depending on

the puzzle.

One can also argue that discussing Sokoban as a multi-agent problem brings nothing

new to the table. While considering the game as a sequence of player moves with

a maximum branching factor of 4 (north, east, south and west) is clearly a single-

agent search problem, one can argue that the mere fact of optimizing for stone

pushes instead of player moves and considering the search in terms of stone pushes

(with each accessible stone having up to 4 pushable directions) already brings the

discussion to the realm of multi-agent search, whether stated explicitly or not. Or

rather, if one takes the position that multi-agent operation implies the capability of

parallel actions, then Van Lishout's method becomes single-agent as well.

4.6 Abstraction and Planning

While the search e�ort of Rolling Stone operates on the level of individual stone

pushes (except in the case of macro moves), the Power Plan solver by Botea et al.

raises the abstraction level and introduces a planning approach. They present two

possible abstraction levels: tunnel Sokoban and Abstract Sokoban. The �rst one,

tunnel Sokoban, is a partial abstraction where the solver still operates mainly on



37

the level of individual pushes, but where the tunnels (as described in section 4.3.2)

present on the level are detected and collapsed into abstract representations with just

a few possible states, much like the tunnel macros of Rolling Stone. The other one,

Abstract Sokoban, takes the abstraction further and also treats the rooms present

in the puzzle as individual entities. The search e�ort then operates on two levels:

on the global graph, which consists of transitions from room to tunnel and tunnel to

room, and on individual rooms where the processing operates on individual pushes.

The algorithm used by Power Plan decomposes the Sokoban maze into a graph of

rooms and tunnels, where the graph nodes are rooms and the edges are tunnels.

This is then used to divide the problem into many local problems (the rooms) as

well as the global problem (the whole maze). For each room a local move graph

is computed. First, the empty state of the room is marked as legal, then all 1-

stone con�gurations are processed, followed by all 2-stone con�gurations etc. When

all the n-stone con�gurations have been marked either as legal or deadlocked, all

(n+ 1)-stone con�gurations are processed. If a path can be found from the current

(n + 1)-stone con�guration to a previously known legal combination, the current

combination is also marked as legal. Otherwise it is marked as deadlocked. After

all the combinations are processed, the graph is analyzed and all strongly connected

components are combined into abstract states. All deadlocked combinations become

one abstract deadlocked state. For each of the abstract states the values for all

predicates (e.g. "can push one more stone inside the room through entrance X")

are computed, as well as the resulting states if the corresponding actions would be

taken.

For each tunnel, between 1 and 3 abstract states are recognized, depending on the

type of the tunnel. A zero-length tunnel cannot have a stone parked inside it and

can therefore have only one abstract state: empty. A straight tunnel can either be

empty or contain a stone. The same goes for the 4-ended tunnel shown in �gure 13.

A tunnel having a corner in it can be empty, have a stone parked in its north/west

end or have a stone parked in its south/east end7 (having both would be a deadlock).

In both cases the stone can only exit through the entrance it was pushed in from.

The global problem of the whole maze is simpli�ed by mapping it into a graph of the

7The original article uses the terms left end and right end, which leaves the obvious question of

tunnels that have both ends at the same X coordinate.



38

local problems, i.e. the rooms, connected by tunnels. The global problem is solved

by planning, with actions referring to moving a stone from one room or tunnel to

another. When an action is taken, the rooms and tunnels involved change their

abstract states. To be able to complete actions, stones in the rooms involved in the

action may have to be rearranged; this is done by using the local move graphs. To

minimize the risk of organizing the stones in such a way that the way to the solution

is blocked, the local changes are chosen to minimize the number of local changes

and to maximize the number of open entrances.

4.7 Evolved Agents

All the solver algorithms and techniques so far have been programmed by hand.

A completely di�erent approach is attempted by Schaul [Sch05], who applies an

evolutionary system similar to Genetic Programming to Sokoban and thus evolves

solver agents, who participate in a virtual economy by bidding on moves they want

to perform. The idea is to evolve agents who recognize and learn to handle di�erent

concepts and then bid on the moves that are their own specialty. Examples of such

concepts include the doors and one-way passages described in section 4.4.2.

The solvers are evolved by training them on simple training puzzles which illustrate

a single concept (much like the puzzles of the Microban1 set). Initially, a population

of randomly generated agents is created. Each agent consists of a program tree which

determines its actions. All the agents start out with an initial amount of money.

For each game state, a virtual auction is held where the population of agents is

asked to bid for a move (or a combination of moves) available from the current

state. The highest bidder wins the right to perform its move. When the level is

eventually solved, the agents that participated in the solution are rewarded by the

system. That way the agents can eventually earn more money. This leads irrational

agents to go bankrupt (and new, randomly generated agents to take their place) and

rational, co-operational agents to stay in the economy.

While the idea of evolving solvers is promising, it has its problems. They include

choosing the set of instructions from which the agents are formed and determining

the rewards and penalties for good and bad moves respectively. While the system

is able to learn to solve simple and medium levels quite quickly, it is only able to



39

solve one puzzle (#1) of the XSokoban puzzle set. This shows that much more

work is still required before a hard problem like Sokoban becomes easy to solve by

automatic programming.

4.8 Other Approaches

In addition to the techniques presented earlier in this section, Rolling Stone also

uses further enhancements such as pattern searches, relevance cuts, overestimation

and rapid random restarts. The details on these can be found in the numerous

publications by Junghanns et al. (e.g. [JS01]).

In addition to the enhancements actually used in Rolling Stone, Junghanns also

discusses a number of failed ideas [Jun99] that seemed good on paper, but were

discarded for some reason. Some of them did decrease the size of the search space

but were too costly, while others were only useful on a small number of puzzles and

might have harmed performance on others.

5 Experiments

As we have seen in the previous section, there is a plethora of possible enhancements

available for Sokoban solver algorithms. However, judging their merits and demerits

on description alone is di�cult and leaves the programmer at a loss for which ones

to choose. In this section we aim to ease that task by providing experimental data

for the e�ects of some of the enhancements discussed in the previous section.

5.1 Breadth-First vs. Depth-First

While being quite successful, one large problem with the design of the Rolling Stone

solver is that a large amount of its running time is spent on maintaining the lower

bound [JS01]. As Rolling Stone uses IDA* as its base algorithm, at each node

it needs to evaluate the remaining length of the path to the solution. This in

fact dominates the algorithm's running time. Therefore, it is an obvious place

to begin investigating for improvements, and the best way to minimize the time

consumption of an operation is to take it out completely. In this section, we evaluate



40

the performance of two algorithms that don't require lower bound estimation at each

node: Breadth-First Search and Depth-First Search.

As noted in earlier sections, using DFS without a depth limit means possibly running

o� to an in�nite branch of the search tree, while determining an upper bound for

the solution length in Sokoban is nearly impossible. We therefore chose Iterative

Deepening Depth-First Search (IDDFS) as our DFS variant. Note that while it

does require a lower-bound estimate at start (to avoid starting at depth limit 1 and

e�ectively degenerating into a badly implemented Breadth-First Search), it does

not require one being calculated at each node. For IDDFS, we use the Minimum-

Matching Lower Bound described in section 4.2.2.

Before even running the test the �rst time, we present a hypothesis: as the lower-

bound estimate for most puzzles will be lower than the actual solution depth, the

IDDFS solver will be disadvantaged by having to regenerate the lower search levels

multiple times. Therefore, an enchancement is added to the IDDFS solver: it is

allowed to maintain as many nodes as it can in memory and store the over-the-

depth-limit nodes in a postponed list, from where they will then be moved into the

search frontier when the depth limit is increased. Naturally, the comparison will be

performed both with and without this enhancement, indicated by PP in the results

in section 7.

Another factor a�ecting the performance of the IDDFS solver is the move ordering.

While the BFS solver will search all the direct successors of a node before moving on,

the IDDFS solver's performance will vary greatly depending on which child node the

solver expands �rst. Therefore another enhancement will be added to the IDDFS

solver: move ordering by inertia. As discussed in section 4.2.3, Sokoban solutions

often contain long runs of pushes to the same stone. Therefore the IDDFS solver

will �rst expand all the child nodes that target the stone that was pushed last before

moving on to other child nodes. As with the previous enhancement, the comparison

will also be performed with and without the move ordering enhancement, shown as

IMO in the results.

The performance of the algorithms is measured by memory consumption (how many

nodes are explored and therefore stored in memory), processing speed (nodes per

second) and solution time. As the solution time will vary from computer to computer



41

Figure 21: Puzzle #3 of the XSokoban set

it should be only regarded as a comparison measure. The test will be run on all

of the levels of the Microban1 puzzle set and, to evaluate performance on slightly

more complex levels, puzzles #1, #3 and #78 (�gures 1, 21 and 20(b), respectively)

of the XSokoban set (since these seem simple enough that they might be solved by

such naive algorithms8). All of the tests will have a 300-second time limit to keep

the total running time of the whole test set in a reasonable time frame.

5.2 Forward, Reverse and Bidirectional Solving

While Junghanns mentions in the Failed Ideas section of his thesis that backward

search and bidirectional search have been tried and found to be challenging [Jun99],

and Takes has brie�y explored backwards search in his bachelor's thesis [Tak08],

no-one has published good comparative results for forwards, backwards and bidirec-

tional search in Sokoban. This section aims to do precisely that.

To determine if reverse and bidirectional solving actually do decrease the search

space size, and by how much, they are used to solve the same puzzle set as in the

previous experiment (all of Microban1 and puzzles #1, #3 and #78 of XSokoban),

recording the same measurements: the number of nodes searched, processing speed

and solution time. Both Breadth-First Search and Depth-First Search are be used,

as well as combinations of the two9. For the IDDFS-based solvers the enhancements

that provide the best performance in the previous experiment are used.

8An assumption that proved to be false.
9Bidirectional Depth-First Search was not used, as the nature of DFS makes it improbable for

the two search frontiers to meet in any useful way.



42

5.3 PI-corral Pruning

The PI-corral pruning technique presented in section 4.4.1 promises to o�er large

savings in the size of the search space. After all, if a PI-corral exist on the board,

it is always a potential deadlock and, as it by de�nition cannot a�ect any stones

outside of it, should be dealt with immediately. This excludes all the other stones

from consideration, which can possibly have a large pruning e�ect on the size of the

search tree.

In this section we aim to determine just how much of an e�ect the PI-corral pruning

technique has. To do this, we apply it to both Breadth-First Search and Depth-First

Search (enhanced with the best-performing enhancements from the �rst experiment)

on the same puzzle set as in the previous experiments. As before, the e�ects are

evaluated on the number of nodes, processing speed and solution time. Again, the

time limit is set at 300 seconds. The PI-corral pruning enhancement is shown as PI

in the results.

5.4 Van Lishout Solving Method

As described in section 4.5, a certain subclass of Sokoban puzzles is almost trivial to

solve. Only three things are needed: a predetermined order for goal square packing,

a stone that can be pushed to the �rst goal in that order and, from the resulting

state, another stone that can be pushed to the next one. While this is not the initial

state of most puzzles, in many cases such a state can be found at a relatively shallow

depth in the search tree.

While Van Lishout et al. already reported results for their algorithm, claiming to

solve 9 problems of the XSokoban puzzle set (#1, #2, #3, #5, #6, #51, #54, #78

and #82), they use an extremely simple method for determining the goal packing

order. Because our implementation (described in section 6.3) can generate the goal

packing algorithm for more puzzles, we can already detect one more puzzle (#53)

that is directly solvable.

To be able to analyze the performance of the Van Lishout stone-by-stone solving

enhancement (indicated by VL in the results) on hard problems and to be able to

compare results with the original study, the problem set for this fourth experiment



43

is di�erent. Rather than test on the Microban1 set as in the previous experiments,

most puzzles of which are easily solvable by trivial algorithms, we are more interested

in the performance on hard problems. Therefore the test set for this experiment is

the 90-puzzle XSokoban set. We enhance our BFS and IDDFS solvers with the

Van Lishout Subclass Detection algorithm, which tries to solve each explored state

stone-by-stone. The objective is to determine how many levels can be solved under

the usual 300-second time limit, and how much does the VL enhancement slow down

the processing.

6 Implementation Details

Besides the algorithms themselves, the performance of algorithms depend heavily on

the details of their implementation. The search algorithms discussed in section 3 as

well as the enhancements presented in section 4 can all be implemented in multiple

ways which all have an in�uence on their performance. In this section we discuss

some of the details of our implementation.

The implementation used for all the experiments in this thesis was written in Java.

The code is relatively unoptimized with focus on rapid prototyping and development,

clarity and ease of modi�cation. Thus, the performance may be severely lacking

when compared to solvers that have been in development for several months or years

and are usually heavily streamlined and optimized. Nevertheless, the code is fast

and robust enough to provide reliable results for comparing the relative performance

of various algorithms and enhancements.

6.1 BFS and IDDFS Implementations

The implementations for the Breadth-First Search and Iterative Deepening Depth-

First Search were written in an obvious way, translating quite directly from the

pseudocode descriptions of the algorithms. The BFS implementation uses a linked

list for the search frontier and a hash set for the explored set. The IDDFS does

not explicitly maintain a data structure for the frontier but instead uses recursive

function calls to expand nodes and thus maintains the search frontier in the call

stack.



44

For the reverse and bidirectional searches, various methods were used. The reverse

and bidirectional BFS variants (RBFS and BBFS) were implemented as separate

algorithms with the BBFS alternating ticks in the forward and reverse direction

internally, a tick meaning the expansion of one node. The reverse IDDFS (RIDDFS)

was similarly implemented as a separate algorithm. For the bidirectional algorithm

combinations, IDDFS/RBFS and BFS/RIDDFS, the solvers are given references

to one another. The IDDFS or RIDDFS algorithm always asks the accompanying

opposite-direction algorithm (RBFS or BFS, respectively) to run one tick of its

search and then runs its own. This is done at the beginning of each node expansion,

so the end e�ect is the same as with the BBFS implementation: both search fronts

alternate advancing one node at a time. If the IDDFS or RIDDFS algorithm is

used in a bidirectional setting, it only allows its search to proceed to the estimated

solution depth minus the current opposite-direction search depth.

As the reverse search may start from many di�erent states with a di�erent player

position, all the reverse algorithms try such states one after the other if one leads

to a dead end. States are considered to be already tried if the player accessible area

is identical, disregarding the actual exact player position.

6.2 Simple Deadlock Detection

When the move generator generates the moves to successor states from a given

state, each of the moves is checked for simple deadlocks. All the deadlock situations

shown in �gure 22 (as well as other variations of these patterns) are recognized in all

orientations. This is done with simple if-structures, actually checking most positions

with an isEmpty?() check to detect either a wall or a stone (in positions where it

does not matter which one it is), and all the necessary checks are implemented as

O(1) operations, so the routine is quite fast.

In addition to these patterns, the move generator also recognizes dead squares (com-

puted when the puzzle is loaded) and never even considers moves that would lead a

stone onto one of them. While these checks provide far less coverage than the dead-

lock pattern database of Rolling Stone, they still prune the search space enough for

the purposes of these experiments.



45

Figure 22: Deadlock patterns recognized by the move generator

6.3 Goal Packing Order Algorithm

As mentioned in section 4.5, the goal packing order used by Talking Stones, the solver

by Van Lishout et al., is extremely simple [Lis06]. They order the goal squares by the

number of the walls surrounding the square. The �rst squares are those which are

surrounded on three sides. Next, these are replaced with walls and the surrounding

walls are recalculated for all goal squares. When no more goal squares can be found

which are surrounded on three sides, then the search �lls the squares which are

surrounded on two adjacent sides and the search continues.

In our implementation we use this same algorithm as a preprocessing step. After that

we identify entrances to the goal area: �oor squares that are directly outside the goal

room (see section 4.3.2). If multiple entrances are found, the current implementation

uses the �rst one found. A better implementation could try to assign entrances to

goals using some heuristic. Then we run a search which tries each goal in order (using

the ordering made in the preordering step) and checks whether a stone placed on the

entrance can be pushed to that goal. If it can, that goal is replaced by a wall and

the next goal is tried. If a stone cannot be pushed to any goal the search backtracks.



46

This method allows us to �nd a goal order for 48 of the 90 levels in the XSokoban

set under a �ve second time limit, most actually in just a few tenths of a second.

Unfortunately, many of these are erroneous in practice, mainly because the levels

often require parking stones inside the goal area before moving them to their �nal

locations or pushing stones into the goal area from a di�erent entrance than the one

chosen by our simplistic design. Nevertheless, with this algorithm we were able to

considerably improve the results achieved by Van Lishout et al.

6.4 Inertia Move Ordering

While the whole move ordering scheme used in Rolling Stones is called inertia [JS01],

the actual inertia scheme is only a part of their whole scheme. In this context,

inertia means that the move ordering prefers moves that target the stone that was

pushed last. The rest of their move ordering uses their minimum-matching lower

bound algorithm to determine which moves decrease the estimated lower bound and

arranges those after the inertia moves, sorted by the distance of the chosen stone to

its targeted goal, closest �rst.

We use a simpler scheme, in which only the inertia moves are preferred. The rest of

the moves are tried in the order in which they are generated, bypassing the expensive

lower bound and stone distance calculations.

7 Results and Discussion

The four experiments described in section 5 were executed on a typical home com-

puter with an Intel Core 2 CPU running at 2.13GHz, with 2 gigabytes of memory. In

this section, we present and discuss the results of those experiments. The complete

result tables of the experiments are included in Appendix 1.

7.1 Breadth-First vs. Depth-First

In the �rst experiment, we evaluated the relative performance of Breadth-First and

Iterative-Deepening Depth-First Search. The solvers were tested on all the puz-

zles of the Microban1 set and puzzles #1, #3 and #78 of the XSokoban set, with



47

BFS IDDFS IDDFS+PP IDDFS+IMO IDDFS+PP+IMO

Solved (# of puzzles) 151 136 147 136 147

Solved optimally (# of puzzles) 151 136 147 136 147

Failed (# of puzzles) 7 22 11 22 11

Processing speed mean (1000 nodes/second) 31.6 25.4 18.5 17.9 17.2

Processing speed std.dev. (1000 nodes/second) 19.6 15.0 8.8 9.6 8.0

Processing speed median (1000 nodes/second) 27.6 23.1 17.3 15.9 16.0

Less nodes than BFS (# of puzzles) − 13 13 12 12

Less nodes than IDDFS (# of puzzles) 144 − 127 110 145

Less nodes than IDDFS+PP+IMO (# of puzzles) 132 7 40 8 −
Faster than BFS (# of puzzles) − 20 9 19 10

Faster than IDDFS (# of puzzles) 120 − 107 16 108

Faster than IDDFS+PP+IMO (# of puzzles) 130 24 73 16 −

Table 1: Summary of the results of Experiment #1

IDDFS being tested both with and without the Inertia Move Ordering (IMO) and

Postponing (PP) enhancements. With these settings the solvers always solve puzzles

optimally if they are able to solve them before the time limit. However, the ability

to do so, i.e. the processing speed and the order of nodes searched, does vary.

Figure 23: Explored nodes for Experiment #1, sorted by the performance of BFS. The

Y-axis shows the number of nodes explored. The X-axis indicates puzzles in

the test set.



48

Figure 24: Processing speeds for Experiment #1, sorted by BFS. The Y-axis shows the

number of nodes processed per second.

The amounts of nodes explored by each of the solvers are plotted10 in �gure 23, the

processing speeds in �gure 24 and the processing times in �gure 25. The most suc-

cessful of these solvers was BFS, which was able to solve 151 of the 158 tried puzzles.

IDDFS with the Postponing enhancement solved 147 puzzles, as did IDDFS with

both enhancements, while the IDDFS version with only the Inertia Move Ordering

enhancement or without either enhancements only managed 136 puzzles.

An interesting pick in these results is the puzzle M36 (i.e. #36 of the Microban1

set), shown in �gure 26. It is quite a simple puzzle with only 5 stones, but it tends

to trap naive depth-�rst solvers. While the puzzle is only a simple room, it actually

involves pushing most of the stones through the goal area to the parking area on the

bottom right before being able to place the leftmost goal stone and thus the others.

10All of the charts for the results in this section have the puzzles of the test set as their X-axis.

For clarity and ease of comparison the results are sorted by the performance of the BFS solver,

with the puzzle having the lowest value (explored nodes, speed or time, depending on the chart) on

the left. As the purpose is to compare the relative performance of the solvers, the exact ordering of

the X-axis is irrelevant and has therefore been hidden. If needed, the exact data for each individual

puzzle is available in the result tables in Appendix 1.



49

Figure 25: Processing times (in seconds) for Experiment #1, sorted by BFS

Figure 26: Level #36 of the Microban1 set

This situation of having to push stones through the goal is a case in which the

Minimum-Matching Lower Bound algorithm fares poorly. Thus, the IDDFS solvers

are forced to fully explore the lower depths before determining that the solution

is longer than the current lower bound. Indeed, the initial depth limit set by the

MMLB algorithm is 35, while the actual solution length is 59 pushes. The IDDFS

solver without any enhancements takes 121 seconds to solve this, exploring 2631727

game states � most of them in the lower depths of the search tree examined over and

over again. The Postponing enhancement allows it to remember the nodes in the

lower depths and only examine the next search depth, which decreases the solution

time to 6 seconds and 97372 examined nodes. Inertia Move Ordering still decreases

the amount of examined nodes, but the additional move ordering actually causes a



50

slight increase in solution time11. Puzzles M98 and M99 is are further examples of

a similar situation, where the stones must be pushed through the goal area into a

parking area. Only the Postponing enhancement allows the IDDFS solver to solve

them under the time limit. In fact, most of the puzzles that are unsolved by some

or all of the IDDFS solvers contain at least some stones that must be �rst pushed

through their goals and parked before placing at their �nal destination.

Figure 27: Puzzle M93, i.e. #93 of the Microban1 set

Puzzles such as M93 show that a low number of stones � 8 in this case � does not

mean that a puzzle is easy. The large amount of moves available at all times (i.e.

the branching factor; even the opening state has 8 moves available, and some of the

states have up to 20) and the number of potential deadlocks in this puzzle make it

extremely hard for automatic solvers. And as a matter of fact, M93 is surprisingly

hard for human players too. Some kind of symmetry-detecting algorithm could

possibly alleviate the situation considerably. If the solver was able to detect that

the puzzle is perfectly symmetrical in both the X and Y axes, it could compare the

mirrored and rotated versions of each new state to the transposition table and thus

prune the search space considerably. Also, better deadlock detection would surely

help here. Levels M144, M145 and M146 su�er from exactly the same symmetry

problem and thus are unsolved by all of these solvers.

A di�erent problem a�ects puzzle M153, shown in �gure 28. While in many puzzles

there are multiple ways of arriving at the same solution (i.e. di�erent ways to inter-

11This could actually be avoided by improving the implementation. As we already know that

we want the moves targeting the last pushed stone �rst, the move generator could generate those

�rst and thus the need for an additional sorting step would be removed.



51

Figure 28: Puzzle #153 of the Microban1 set

leave the same pushes or push sequences), in this one the narrow corridors and the

relatively large number of stones create a situation where the exact order of pushes

is important. An ill-placed stone can result in a state which causes a deadlock to

manifest itself much deeper in a search tree. In fact, with this puzzle it takes 90

pushes to reach a state from which the puzzle is easy to solve stone by stone (de-

termined by solving the puzzle by hand). Until this state is reached there is little

room for variation within the sequence of pushes and long sequences of pushes to the

same stone are rare, making the Inertia Move Ordering scheme actually harmful here

(although it would be immensely helpful after this point). To solve such puzzles,

deadlock detection is not su�cient. A solver would also needs the ability to analyze

the deadlock and to backtrack all the way to a state where the preconditions for

that deadlock do not exist. Otherwise a depth-�rst solver will waste precious time

and memory in an unfruitful search of a practically deadlocked subtree. While the

breadth-�rst solver does not su�er from this same problem, the number of stones

and available moves are again simply too high to solve the puzzle under the time

limit.

Overall, these results reveal that in nearly all cases the naive, brute-force Breadth-

First Search algorithm will solve puzzles faster and with less memory than a similarly

naive Depth-First Search. In many cases, the number of explored nodes with the

BFS solver is a full order of magnitude lower than with the IDDFS solver with

both enhancements. While this does support the �ndings of Junghanns et al. that

domain-dependent search enhancements are needed to solve Sokoban [JS97], it does

raise the question that perhaps with better enhancements, a breadth-�rst approach

would be as good or even better than the iterative deepening depth-�rst approach



52

chosen for Rolling Stone (although Rolling Stone uses an IDA* algorithm as its

basis, not the IDDFS used here, the increase in processing speed when leaving out

the search-directing heuristic may compensate for the di�erence). While choosing

a breadth-�rst algorithm as the basis of the search does make it much harder to

take advantage of enhancements such as move ordering and macro moves, many

pruning-type enhancements are still applicable. Indeed, the other experiments in

this section illustrate just that. Furthermore, switching from a depth-�rst strategy

to a breadth-�rst one might also reveal possibilities for new enhancements which

would not be relevant to a depth-�rst solver.

7.2 Forward, Reverse and Bidirectional Solving

Figure 29: Explored nodes for Experiment #2

The results for the second experiment, evaluating reverse and bidirectional solving,

reveal a surprise: the solutions found are no longer always optimal. While all

puzzles solved by the Reverse and Bidirectional Breadth-First Search solvers (RBFS

and BBFS, respectively) solver are always optimal, using Depth-First Search in a

bidirectional setting clearly causes the search frontiers to miss each other and thus

often produces longer-than-optimal solutions. However, using reverse search does



53

RBFS BBFS RIDDFS+PP+IMO IDDFS/RBFS+PP+IMO BFS/RIDDFS+PP+IMO

Solved 151 154 148 148 149

Solved optimally 151 154 145 106 96

Failed 7 4 10 10 9

Processing speed mean 29.0 20.6 37.1 44.6 43.7

Processing speed std.dev. 13.9 8.8 20.6 27.3 27.4

Processing speed median 28.0 19.0 34.7 42.2 43.1

Less nodes than BFS 115 150 48 92 87

Less nodes than IDDFS 143 153 140 147 148

Less nodes than IDDFS+PP+IMO 126 149 95 109 94

Faster than BFS 88 98 48 96 94

Faster than IDDFS 117 119 119 125 121

Faster than IDDFS+PP+IMO 125 132 129 131 128

Table 2: Summary of the results of Experiment #2

allow many puzzles to be solved considerably faster. For instance, puzzle M36 is

solved by all of these solvers, even the iterative-deepening ones, in less time than

by any of the forward solvers. Even the forward BFS, which did solve it in under

a second, did worse than any of the reverse and bidirectional solvers, and when

compared to the forward-searching IDDFS variants the di�erence in performance is

staggering.

While in the forward-solving scenario the BFS solver explored less nodes than the

IDDFS solvers on nearly every puzzle, the reverse and bidirectional solvers frequently

solve puzzles with a smaller amount of nodes than the forward solvers (�gure 29),

as expected. Only the RIDDFS solver explores more nodes on average than BFS,

but even that one manages to outperform BFS on some puzzles. In addition, the

processing speeds and therefore solution times (�gures 30 and 31, respectively) are

better than with the forward BFS.

As an implementation-speci�c note, some solvers on some puzzles also ended up

running into a memory limit, such as the RIDDFS solver on puzzles M145 and

M146. This was to be expected, as there was no limit on the size of the transposition

table but all the solvers stored every generated node in memory. Practical solver

implementations should of course handle such scenarios gracefully in some way,

such as limiting the size of the transposition table or clearing out known deadlocked

branches when memory is getting low.



54

Figure 30: Processing speeds for Experiment #2

Figure 31: Processing times for Experiment #2



55

7.3 PI-corral Pruning

BFS+PI IDDFS+PI+PP+IMO

Solved (# of puzzles) 151 148

Solved optimally (# of puzzles) 151 148

Failed (# of puzzles) 7 10

Processing speed mean (1000 nodes/second) 21.7 28.4

Processing speed std.dev. (1000 nodes/second) 10.0 7.7

Processing speed median (1000 nodes/second) 20.9 17.7

Less nodes than BFS (# of puzzles) 125 43

Less nodes than IDDFS (# of puzzles) 144 142

Less nodes than IDDFS+PP+IMO (# of puzzles) 137 121

Faster than BFS (# of puzzles) 41 11

Faster than IDDFS (# of puzzles) 115 111

Faster than IDDFS+PP+IMO (# of puzzles) 121 107

Table 3: Summary of the results of Experiment #3

Figure 32: Explored nodes for Experiment #3

For the third experiment we studied the e�ects of PI-corral pruning, i.e. excluding

all other moves from consideration when a PI-corral is present. The main focus of

this experiment is on the pruning e�ect itself; to determine how much the pruning

does decrease the size of the search space. This is illustrated in �gure 32. Of course,

adding such an enhancement also has an e�ect on processing speed and time. These

are shown in �gures 33 and 34, respectively.



56

Figure 33: Processing speeds for Experiment #3

Figure 34: Processing times for Experiment #3



57

As expected, the amount of nodes explored by the PI-corral-pruning-enhanced ver-

sion of BFS solver is always smaller than that of the unenhanced one. Unfortunately,

adding the enhancement slows down the processing speed in nearly every case (puz-

zles M4, M40, M90, M93, and M146 being the exceptions) and thus increases the

solution time. Nevertheless, the BFS+PI solver still solves a third of the puzzles

faster than the plain BFS solver.

While the IDDFS solver enhanced with the PI-corral pruning enhancement is much

slower than the BFS solvers, it does surprisingly outperform the IDDFS+PP+IMO

solver, which does not have the PI-corral pruning enhancement, on the majority of

the puzzles. This does indicate that it might be a good addition to an iterative-

deepening-based solver such as Rolling Stone.

7.4 Van Lishout Solving Method

BFS+VL IDDFS+VL+PP+IMO

Solved (# of puzzles) 24 4

Solved optimally (# of puzzles) 4 1

Failed (# of puzzles) 66 86

Processing speed mean (1000 nodes/second) 2.7 2.7

Processing speed std.dev. (1000 nodes/second) 2.8 2.5

Processing speed median (1000 nodes/second) 1.2 1.5

Table 4: Summary of the results of Experiment #4

With the method for determining the goal packing order used by Van Lishout et al.

[Lis06], only 9 puzzles of the XSokoban set could be solved with the stone-by-stone

solving method. Using a better method for determining the goal packing order

improves this result considerably, as can be seen from the results in this section

(table 4 and �gures 35 and 36). With our goal packing method described in section

6.3 and the stone-by-stone method added to our BFS solver, we were able to solve 24

of the 90 puzzles under the 300 second time limit. In addition, with our method we

found another puzzle (X53) that was solvable stone-by-stone right from the initial

state.



58

Figure 35: Explored nodes for Experiment #4

Figure 36: Processing speeds for Experiment #4



59

However, one has to note that of the 24 solved puzzles, only four were solved op-

timally. This is due to the fact that while a puzzle can be solved stone-by-stone,

usually moving some stones slightly out of the way of others can allow the stones to

travel via shorter paths and thus achieve a shorter total solution length.

Another fact to note is that when the stone-by-stone solving enhancement was added

to the IDDFS+PP+IMO solver, the results were much less impressive. While the

processing speeds were slightly higher than with the BFS solver, the amount of

puzzles solved was only four. The reason for this is the nature of Depth-First Search:

the search is designed to go deep into a search branch and explore that fully before

trying other ones. If the state where the puzzle is solvable stone-by-stone is not

in that branch, the search will spend too much time before arriving at that state.

Clearly, most of the puzzles in the XSokoban set o�er too many search branches to

make IDDFS and VL a good combination.

Note that while the result graphs for the other experiments were sorted by the

performance of the BFS solver, the graphs for this experiment show the results

ordered by the puzzle number. Furthermore, as the puzzle set is di�erent than in

the other experiments, we are unable to compare the performance �gures to the

other solvers. However, comparing the processing speeds of these two solvers to the

performance of the other solvers on similarly-sized puzzles in the Microban1 set,

such as puzzles M144, M145 and M146, which were unsolved by most of the solvers,

we can see that the processing speeds here are slightly lower. Only the bidirectional

solvers show similarly low processing speeds than these.

7.5 Summary

The results in the previous sections show that while it is not easy to achieve results

as impressive as those achieved by Rolling Stone and its heavily enhanced IDA*

algorithm, the standard Breadth-First Algorithm might also provide a good basis

for a Sokoban solver program. In addition, we have shown that with simple en-

hancements to particular subproblem algorithms (such as the goal packing order

algorithm), the performance of existing algorithms can be greatly improved.



60

8 Conclusion

In the previous sections, we have presented an overview of the game of Sokoban,

a review of standard graph search algorithms, a survey of ways in which those al-

gorithms have been enhanced to perform better in Sokoban and tested the e�ects

of various enhancements on those algorithms. We have discovered that it is quite

possible to solve 24 puzzles of the XSokoban set without the need for the time-

consuming lower-bound estimation algorithm that consumes most of the running

time of Rolling Stone, albeit at the cost of having to employ another equally time

consuming algorithm to do that, namely the Van Lishout stone-by-stone solving

algorithm. Nevertheless, we have proven that besides IDA*, other search algorithms

such as BFS may also provide a good platform for a Sokoban solver program. Fur-

thermore, employing a breadth-�rst search strategy instead of a depth-�rst one may

make it possible to develop other enhancements and heuristics that would not be

applicable to a depth-�rst solver.

Despite these �ndings, based almost purely on intuition and familiarity with the

domain, we think that the strategy of creating a solver based on a single search

algorithm with various enhancements might not be the best approach for solving

Sokoban. If we observe the ways in which a human player tries to solve Sokoban

puzzles we can see that they employ di�erent strategies to di�erent puzzles. On some

puzzles the player tries to �nd a stone-by-stone solvable state as quickly as possible,

on others the puzzle is decomposed into smaller subproblems which are then solved,

while on still others the player tries to identify hazards such as doors and one-way

tunnels and adapts their strategy to take those into account. A similarly adaptive

strategy might be advantageous to a Sokoban solver. It may be that the multi-

layered abstraction approach taken by Botea et al. [BMS02] and the evolutionary

learning approach of Schaul [Sch05] might indeed be good ways to start.

Whatever the approach, it is clear that there is room for more research on Sokoban.

One good way to proceed would be to try to �nd a better algorithm for solving the

goal packing order subproblem in Sokoban. As we have already discovered, a better

algorithm for doing that can improve the results achievable by the Van Lishout

algorithm considerably. Similarly, developing algorithms for other subproblems in

Sokoban would provide progress with other types of Sokoban puzzles. While Sokoban



61

is a game, it is not just a game but a hard computer science problem as well.

Therefore, such algorithms could also be applicable to other, more practically useful

domains.



62

References

BMS02 Botea, A., Müller, M. and Schae�er, J., Using abstraction for plan-

ning in sokoban. Proceedings of the 3rd International Conference on

Computers and Games. Springer, 2002, pages 360�375.

CJ10 Cazenave, T. and Jouandeau, N., Towards deadlock free sokoban. Board

Games Studies Colloquium, Paris, France, 2010, page 12.

Cul97 Culberson, J. C., Sokoban is PSPACE-complete. Technical Report,

Univ of Alberta, 1997.

Dam10 Damgaard, B., Sokoban solver "scribbles"about the YASS solver, 2010.

URL http://www.sokobano.de/wiki/index.php?title=Sokoban_

solver_%22scribbles%22_by_Brian_Damgaard_about_the_YASS_

solver.

DLG08 Demaret, J., Lishout, F. V. and Gribomont, P., Hierarchical plan-

ning and learning for automatic solving of sokoban problems. 20th

Belgium-Netherlands Conference on Arti�cial Intelligence, Enschede,

The Netherlands, 2008, URL http://hdl.handle.net/2268/5895.

DZ99 Dor, D. and Zwick, U., SOKOBAN and other motion planning prob-

lems. Computational Geometry, 13,4(1999), pages 215�228. URL

http://dx.doi.org/10.1016/s0925-7721(99)00017-6.

HNR68 Hart, P., Nilsson, N. and Raphael, B., A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems

Science and Cybernetics, 4,2(1968), pages 100�107. URL http://dx.

doi.org/10.1109/TSSC.1968.300136.

JS97 Junghanns, A. and Schae�er, J., Sokoban: A challenging Single-Agent

search problem. In IJCAI Workshop on Using Games as an Experi-

mental Testbed for AI Reasearch, (1997), pages 27�36.

JS98a Junghanns, A. and Schae�er, J., Relevance cuts: Localizing the search.

In The First International Conference on Computers and Games,

1(1998), pages 1�13.



63

JS98b Junghanns, A. and Schae�er, J., Single-Agent search in the presence of

deadlocks. IN AAAI, (1998), pages 419�424.

JS98c Junghanns, A. and Schae�er, J., Sokoban: Evaluating standard Single-

Agent search techniques in the presence of deadlock. Advances in Ar-

ti�cial Intelligence, 1998, pages 1�15.

JS98d Junghanns, A. and Schae�er, J., Sokoban: Improving the search with

relevance cuts. Journal of Theoretical Computing Science, 252(1998),

pages 1�2.

JS99 Junghanns, A. and Schae�er, J., Domain-Dependent Single-Agent

search enhancements. IN IJCAI-99, (1999), pages 570�575.

JS01 Junghanns, A. and Schae�er, J., Sokoban: Enhancing general single-

agent search methods using domain knowledge. Arti�cial Intelligence,

129,1-2(2001), pages 219�251.

Jun99 Junghanns, A., Pushing the Limits: New Developments in Single-

Agent Search. Doctoral dissertation, University of Alberta, Edmon-

ton, Alberta, Canada, 1999. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.46.947.

Kuh55 Kuhn, H. W., The hungarian method for the assignment prob-

lem. Naval Research Logistics Quarterly, 2,1-2(1955), pages 83�

97. URL http://onlinelibrary.wiley.com/doi/10.1002/nav.

3800020109/abstract.

Lis06 Lishout, F. V., Single-player games: introduction to a new solving

method. DEA en sciences appliquées, University of Liège, Liège, France,

2006. URL http://orbi.ulg.ac.be/handle/2268/28467.

Mye01 Myers, A., XSokoban home page, 2001. URL http://www.cs.

cornell.edu/andru/xsokoban.html.

RN09 Russell, S. and Norvig, P., Arti�cial Intelligence: A Modern Approach

(3rd Edition), volume 3. Prentice Hall, 2009.



64

Sch05 Schaul, T., Evolving a compact, concept-based Sokoban solver. Master's

thesis, École Polytechnique Fédérale de Lausanne, May 2005. URL

http://www.whatisthought.com/schaulthesis.pdf.

Ski00 Skinner, D. W., Microban levels, 2000. URL http://users.

bentonrea.com/~sasquatch/sokoban/.

Tak08 Takes, F., Sokoban: Reversed Solving. Bachelor's thesis, Leiden Insti-

tute of Advanced Computer Science, January 2008.



I

Appendix 1. Result Tables

This section contains the complete result tables of the experiments descibed in sec-

tion 5. Discussion and summaries of these results can be found in section 7. For

each puzzle, the results for each combination of solver and enhancements are shown.

The following abbreviations are used:

BFS Breadth-First Search

RBFS Reverse Breadth-First Search

BBFS Bidirectional Breadth-First Search

IDDFS Iterative-Deepening Depth-First Search

RIDDFS Reverse IDDFS

SD Simple Deadlock Detection enhancement

PP Postponing enhancement

IMO Inertia Move Ordering enhancement

PI PI-corral Pruning enchancement

VL Van Lishout Solving enhancement

The name of the puzzle in each table contains the name of the puzzle set (M for

Microban 1, X for XSokoban) and the puzzle number in that set. After the puzzle

name the number of stones in that puzzle is shown. For each puzzle and solver, the

length of the solution (Path), number of explored nodes (Nodes), processing speed

(Speed) and solution time (Time) are shown. A checkmark symbol (X) next to

the path length means that the level was solved optimally. The processing speed is

shown as thousands of nodes, i.e. a 2.5 means that the solver processed an average

of 2500 nodes each second.



II

BFS IDDFS IDDFS+PP IDDFS+IMO IDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M1 (2) X8 19 10.5 0.002 X8 50 33.8 0.001 X8 22 27.6 0.001 X8 48 3.3 0.015 X8 22 31.1 0.001

M2 (3) X3 5 11.1 0.000 X3 7 25.0 0.000 X3 7 23.1 0.000 X3 7 15.1 0.000 X3 7 19.9 0.000

M3 (2) X13 74 11.4 0.007 X13 78 30.6 0.003 X13 78 28.9 0.003 X13 77 13.7 0.006 X13 77 35.3 0.002

M4 (3) X7 44 7.6 0.006 X7 153 17.6 0.009 X7 45 15.0 0.003 X7 150 10.8 0.014 X7 45 14.3 0.003

M5 (4) X6 220 8.6 0.026 X6 515 10.9 0.047 X6 307 8.9 0.035 X6 544 8.5 0.064 X6 338 9.4 0.036

M6 (3) X29 409 22.1 0.019 X29 3145 26.9 0.117 X29 1667 18.5 0.090 X29 3017 17.6 0.172 X29 1614 18.1 0.089

M7 (6) X6 651 12.5 0.052 X6 390 12.4 0.032 X6 390 8.9 0.044 X6 390 8.7 0.045 X6 390 8.7 0.045

M8 (2) X32 118 42.9 0.003 X32 736 51.4 0.014 X32 118 29.3 0.004 X32 975 33.0 0.030 X32 121 35.4 0.003

M9 (2) X10 16 65.2 0.000 X10 36 79.4 0.000 X10 16 50.9 0.000 X10 40 56.0 0.001 X10 16 34.9 0.000

M10 (3) X21 117 35.7 0.003 X21 1280 32.1 0.040 X21 219 24.5 0.009 X21 781 25.4 0.031 X21 178 19.2 0.009

M11 (2) X16 83 36.9 0.002 X16 313 34.8 0.009 X16 162 25.4 0.006 X16 333 22.8 0.015 X16 174 17.2 0.010

M12 (2) X11 22 72.2 0.000 X11 20 61.9 0.000 X11 20 36.9 0.001 X11 26 40.3 0.001 X11 26 31.9 0.001

M13 (3) X21 313 37.7 0.008 X21 2325 33.5 0.069 X21 474 18.9 0.025 X21 1903 24.1 0.079 X21 476 22.1 0.022

M14 (2) X10 15 66.3 0.000 X10 46 56.2 0.001 X10 15 28.8 0.001 X10 45 38.7 0.001 X10 15 27.1 0.001

M15 (2) X12 29 71.8 0.000 X12 82 53.1 0.002 X12 29 35.1 0.001 X12 81 42.6 0.002 X12 29 32.3 0.001

M16 (3) X39 1363 26.8 0.051 X39 5998 24.5 0.245 X39 5998 18.0 0.333 X39 5110 16.1 0.317 X39 5110 16.1 0.317

M17 (3) X9 32 42.0 0.001 X9 74 41.9 0.002 X9 32 22.1 0.001 X9 68 31.5 0.002 X9 32 20.1 0.002

M18 (2) X13 67 37.1 0.002 X13 176 33.1 0.005 X13 100 26.6 0.004 X13 120 25.0 0.005 X13 88 23.7 0.004

M19 (2) X20 68 59.6 0.001 X20 768 51.9 0.015 X20 102 34.4 0.003 X20 303 38.9 0.008 X20 68 38.6 0.002

M20 (2) X16 71 47.3 0.002 X16 583 42.2 0.014 X16 71 25.6 0.003 X16 397 24.7 0.016 X16 71 23.7 0.003

M21 (2) X5 10 67.1 0.000 X5 17 52.4 0.000 X5 10 36.7 0.000 X5 17 37.3 0.000 X5 10 26.8 0.000

M22 (2) X15 70 31.7 0.002 X15 486 25.7 0.019 X15 137 15.2 0.009 X15 347 19.1 0.018 X15 134 14.7 0.009

M23 (2) X10 21 45.5 0.000 X10 70 44.1 0.002 X10 27 23.7 0.001 X10 65 24.9 0.003 X10 27 30.4 0.001

M24 (2) X9 50 56.3 0.001 X9 55 49.3 0.001 X9 55 30.9 0.002 X9 54 36.4 0.001 X9 54 27.3 0.002

M25 (3) X7 35 41.7 0.001 X7 29 36.8 0.001 X7 29 23.8 0.001 X7 30 21.6 0.001 X7 30 20.9 0.001

M26 (3) X10 91 54.1 0.002 X10 254 51.8 0.005 X10 104 30.5 0.003 X10 237 27.2 0.009 X10 102 25.9 0.004

M27 (2) X10 42 42.8 0.001 X10 147 40.7 0.004 X10 56 24.2 0.002 X10 159 26.4 0.006 X10 52 21.4 0.002

M28 (2) X9 21 49.0 0.000 X9 72 44.5 0.002 X9 21 31.7 0.001 X9 65 34.5 0.002 X9 21 16.1 0.001

M29 (2) X22 81 34.2 0.002 X22 672 27.4 0.025 X22 191 16.1 0.012 X22 561 19.3 0.029 X22 158 16.3 0.010

M30 (3) X5 25 35.5 0.001 X5 32 30.4 0.001 X5 32 17.8 0.002 X5 32 20.4 0.002 X5 32 15.9 0.002

M31 (3) X6 40 38.0 0.001 X6 48 37.3 0.001 X6 41 23.7 0.002 X6 60 23.2 0.003 X6 47 22.6 0.002

M32 (3) X9 39 58.6 0.001 X9 149 56.5 0.003 X9 40 31.2 0.001 X9 145 29.7 0.005 X9 40 29.0 0.001

M33 (3) X10 243 30.5 0.008 X10 75 31.8 0.002 X10 75 20.0 0.004 X10 60 19.1 0.003 X10 60 16.9 0.004

M34 (4) X8 166 20.9 0.008 X8 609 20.6 0.030 X8 182 12.6 0.014 X8 606 14.6 0.041 X8 181 14.8 0.012

M35 (5) X31 5440 21.8 0.249 X31 164233 19.9 8.240 X31 12905 15.2 0.848 X31 161445 12.9 12.486 X31 12887 13.7 0.939

M36 (5) X59 20133 26.2 0.769 X59 2631727 21.7 121.449 X59 97372 16.4 5.942 X59 2438114 13.8 176.302 X59 90368 14.8 6.086

M37 (3) X23 266 38.5 0.007 X23 2402 32.8 0.073 X23 727 23.0 0.032 X23 1620 22.4 0.072 X23 557 17.7 0.031

M38 (3) X8 23 24.6 0.001 X8 28 25.1 0.001 X8 28 15.0 0.002 X8 27 15.4 0.002 X8 27 15.7 0.002

M39 (2) X27 107 52.9 0.002 X27 883 50.9 0.017 X27 107 40.4 0.003 X27 709 36.6 0.019 X27 107 27.7 0.004

M40 (3) X7 68 28.4 0.002 X7 159 41.7 0.004 X7 68 24.1 0.003 X7 161 29.4 0.005 X7 70 21.7 0.003

M41 (3) X13 52 36.9 0.001 X13 154 33.8 0.005 X13 64 21.1 0.003 X13 139 18.8 0.007 X13 62 19.5 0.003

M42 (3) X15 157 40.2 0.004 X15 1747 38.6 0.045 X15 172 23.3 0.007 X15 1474 25.1 0.059 X15 169 26.6 0.006

M43 (3) X22 336 30.5 0.011 X22 4224 25.3 0.167 X22 591 17.3 0.034 X22 4381 17.0 0.258 X22 607 18.3 0.033

M44 (1) X1 2 190.9 0.000 X1 2 13.1 0.000 X1 2 25.8 0.000 X1 2 28.3 0.000 X1 2 28.4 0.000

M45 (3) X11 116 49.7 0.002 X11 202 49.4 0.004 X11 140 29.0 0.005 X11 152 34.2 0.004 X11 136 33.2 0.004

M46 (2) X8 19 48.1 0.000 X8 55 47.2 0.001 X8 19 24.8 0.001 X8 54 24.8 0.002 X8 19 17.3 0.001

M47 (2) X22 92 43.8 0.002 X22 909 37.5 0.024 X22 182 21.3 0.009 X22 442 26.0 0.017 X22 127 28.9 0.004

M48 (3) X14 176 31.9 0.006 X14 1360 28.7 0.047 X14 242 18.2 0.013 X14 1356 20.1 0.067 X14 241 16.4 0.015

M49 (3) X21 210 44.0 0.005 X21 1690 37.1 0.046 X21 505 28.7 0.018 X21 1528 22.5 0.068 X21 489 20.4 0.024

M50 (2) X17 64 29.2 0.002 X17 486 25.7 0.019 X17 86 20.4 0.004 X17 491 18.7 0.026 X17 86 19.7 0.004

M51 (2) X8 28 49.1 0.001 X8 55 46.3 0.001 X8 28 25.2 0.001 X8 55 32.4 0.002 X8 28 22.9 0.001

M52 (4) X8 414 26.5 0.016 X8 1094 25.4 0.043 X8 431 19.9 0.022 X8 1088 15.1 0.072 X8 430 16.0 0.027

M53 (4) X12 149 47.3 0.003 X12 736 42.7 0.017 X12 156 29.8 0.005 X12 727 29.1 0.025 X12 156 28.6 0.005

M54 (4) X30 3473 26.3 0.132 X30 66382 20.8 3.184 X30 13468 15.2 0.889 X30 58208 13.4 4.352 X30 12682 13.4 0.948

M55 (2) X27 103 48.3 0.002 X27 59 45.9 0.001 X27 59 28.3 0.002 X27 110 33.8 0.003 X27 110 26.4 0.004

M56 (2) X6 12 49.5 0.000 X6 26 45.1 0.001 X6 14 21.7 0.001 X6 26 24.0 0.001 X6 14 19.6 0.001

M57 (2) X23 88 54.1 0.002 X23 640 53.2 0.012 X23 89 29.2 0.003 X23 634 29.5 0.021 X23 89 33.9 0.003

M58 (3) X11 52 52.5 0.001 X11 123 50.3 0.002 X11 54 37.2 0.001 X11 125 35.0 0.004 X11 55 32.9 0.002

M59 (3) X50 1972 15.7 0.125 X50 102020 12.2 8.378 X50 9868 8.6 1.143 X50 100644 8.1 12.392 X50 9751 8.5 1.145

M60 (4) X44 2181 42.6 0.051 X44 82760 32.9 2.513 X44 4856 25.2 0.193 X44 68738 21.7 3.166 X44 4902 21.2 0.232

Table 5: Results of experiment 1 (part 1)



III

BFS IDDFS IDDFS+PP IDDFS+IMO IDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M61 (4) X21 266 26.9 0.010 X21 2398 23.5 0.102 X21 492 19.1 0.026 X21 2035 17.1 0.119 X21 425 18.0 0.024

M62 (4) X30 704 29.2 0.024 X30 7539 29.5 0.256 X30 708 17.4 0.041 X30 7248 18.9 0.383 X30 708 20.5 0.035

M63 (2) X50 223 60.4 0.004 X50 2910 51.7 0.056 X50 223 40.9 0.005 X50 2397 38.9 0.062 X50 223 28.7 0.008

M64 (4) X30 379 42.0 0.009 X30 8175 35.8 0.228 X30 502 15.2 0.033 X30 5348 21.9 0.245 X30 464 24.8 0.019

M65 (4) X41 4520 22.8 0.198 X41 118735 19.1 6.213 X41 37049 13.7 2.698 X41 110368 12.5 8.855 X41 36866 12.9 2.868

M66 (3) X15 489 15.6 0.031 X15 2640 14.5 0.182 X15 544 11.6 0.047 X15 2337 9.5 0.245 X15 493 9.9 0.050

M67 (3) X8 35 54.6 0.001 X8 100 49.6 0.002 X8 38 30.1 0.001 X8 94 34.2 0.003 X8 39 35.6 0.001

M68 (3) X28 394 39.7 0.010 X28 5271 34.4 0.153 X28 601 26.7 0.023 X28 5688 22.6 0.252 X28 589 19.8 0.030

M69 (3) X37 1958 25.6 0.077 X37 59041 20.6 2.869 X37 6552 14.6 0.448 X37 54972 13.6 4.032 X37 6257 14.0 0.448

M70 (4) X26 2364 26.9 0.088 X26 23106 27.3 0.845 X26 4303 17.8 0.241 X26 20587 17.9 1.152 X26 3861 18.4 0.210

M71 (2) X21 114 27.9 0.004 X21 375 20.7 0.018 X21 375 16.0 0.023 X21 160 17.6 0.009 X21 160 17.7 0.009

M72 (3) X40 1104 42.6 0.026 X40 19311 36.2 0.534 X40 1268 28.6 0.044 X40 22759 23.0 0.991 X40 1461 25.0 0.058

M73 (3) X25 986 25.8 0.038 X25 2669 23.3 0.114 X25 2669 17.9 0.149 X25 323 13.5 0.024 X25 323 14.9 0.022

M74 (4) X34 2905 28.5 0.102 X34 14182 23.7 0.598 X34 6004 17.2 0.350 X34 13172 15.9 0.828 X34 5713 14.6 0.393

M75 (4) X34 1323 31.0 0.043 X34 18163 27.6 0.659 X34 3779 19.3 0.196 X34 17157 17.2 0.998 X34 3522 18.0 0.195

M76 (3) X56 1820 26.6 0.068 X56 18784 20.7 0.907 X56 18784 15.0 1.248 X56 9732 11.6 0.839 X56 9732 11.7 0.835

M77 (4) X55 4179 31.7 0.132 X55 126600 24.1 5.246 X55 39988 17.4 2.303 X55 134813 15.7 8.577 X55 42878 16.1 2.666

M78 (5) X33 10617 15.6 0.679 X33 234657 14.5 16.187 X33 78138 10.5 7.459 X33 216230 9.5 22.713 X33 74604 9.6 7.756

M79 (3) X18 159 33.9 0.005 X18 567 34.7 0.016 X18 159 19.1 0.008 X18 625 25.0 0.025 X18 160 20.4 0.008

M80 (4) X38 1775 30.2 0.059 X38 61588 24.8 2.488 X38 6889 18.0 0.382 X38 53812 16.1 3.346 X38 6463 16.5 0.392

M81 (3) X12 116 44.2 0.003 X12 438 41.7 0.011 X12 120 31.4 0.004 X12 509 28.5 0.018 X12 135 27.7 0.005

M82 (3) X14 36 55.4 0.001 X14 112 46.1 0.002 X14 39 27.0 0.001 X14 108 25.1 0.004 X14 36 24.8 0.001

M83 (4) X47 6219 19.9 0.312 X47 498640 15.9 31.435 X47 19154 12.2 1.566 X47 496625 10.4 47.529 X47 19163 11.6 1.659

M84 (3) X68 3524 29.9 0.118 X68 111321 20.8 5.339 X68 55363 14.8 3.730 X68 94132 14.1 6.660 X68 47453 14.2 3.352

M85 (3) X51 5016 19.1 0.262 X51 128701 17.0 7.590 X51 40299 12.1 3.320 X51 113012 11.4 9.901 X51 35485 11.4 3.106

M86 (4) X25 1115 27.5 0.041 X25 15480 24.6 0.629 X25 4386 17.2 0.255 X25 14863 16.1 0.924 X25 4319 16.9 0.256

M87 (4) X53 7980 27.0 0.295 X53 214447 19.7 10.891 X53 52500 14.0 3.737 X53 189033 12.8 14.814 X53 52184 12.7 4.100

M88 (3) X63 2803 21.8 0.129 X63 43258 16.2 2.674 X63 43258 11.4 3.802 X63 39181 10.7 3.668 X63 39181 10.6 3.685

M89 (4) X35 5677 28.2 0.201 X35 40744 23.4 1.741 X35 40744 16.4 2.490 X35 40599 15.0 2.699 X35 40599 15.4 2.630

M90 (4) X16 2978 17.6 0.169 X16 23369 21.5 1.088 X16 4360 13.6 0.322 X16 22981 14.1 1.628 X16 4318 14.3 0.302

M91 (4) X14 410 47.9 0.009 X14 1933 45.1 0.043 X14 555 25.8 0.022 X14 1885 31.1 0.061 X14 553 25.3 0.022

M92 (3) X48 1436 40.3 0.036 X48 35661 33.8 1.056 X48 1854 25.3 0.073 X48 39681 21.7 1.831 X48 1617 22.9 0.071

M93 (8) − 2215888 7.4 − − 1258376 4.2 − − 1196007 3.9 − − 1179131 3.9 − − 1190688 3.9 −
M94 (3) X29 464 57.1 0.008 X29 7183 47.5 0.151 X29 466 31.4 0.015 X29 6198 29.3 0.212 X29 466 28.5 0.016

M95 (8) X8 3191 10.4 0.306 X8 3216 9.8 0.328 X8 3216 7.0 0.460 X8 4043 6.4 0.631 X8 4043 6.6 0.615

M96 (3) X37 1162 43.0 0.027 X37 29549 33.4 0.884 X37 1247 22.9 0.054 X37 31752 21.1 1.504 X37 1240 25.1 0.049

M97 (5) X41 9555 21.5 0.444 X41 109055 18.1 6.021 X41 48731 12.8 3.815 X41 171016 11.1 15.410 X41 56343 11.2 5.023

M98 (5) X110 91208 21.7 4.196 − 4628281 15.4 − X110 251723 11.9 21.229 − 3060061 10.2 − X110 234094 11.1 21.105

M99 (4) X131 147878 20.6 7.170 − 4035368 13.5 − X131 1984661 9.5 209.076 − 2744506 9.1 − X131 1896584 9.2 206.149

M100 (4) X52 2262 38.5 0.059 X52 120683 30.0 4.021 X52 8366 22.4 0.373 X52 128134 19.7 6.513 X52 8716 19.9 0.439

M101 (5) X15 937 12.2 0.077 X15 9140 11.2 0.816 X15 1220 8.5 0.144 X15 9105 7.6 1.191 X15 1203 7.9 0.152

M102 (4) X44 5222 20.0 0.261 X44 129328 14.8 8.736 X44 27273 10.5 2.606 X44 121248 9.9 12.298 X44 26429 9.9 2.682

M103 (4) X12 956 28.9 0.033 X12 5777 26.8 0.215 X12 1069 20.9 0.051 X12 5761 17.3 0.334 X12 1067 18.9 0.057

M104 (3) X27 373 27.8 0.013 X27 5648 24.3 0.233 X27 411 15.5 0.026 X27 5919 15.8 0.375 X27 403 14.2 0.028

M105 (8) X24 436579 16.8 25.912 X24 2613388 14.5 180.068 X24 444714 10.3 43.159 X24 2558259 9.4 270.746 X24 444747 9.6 46.560

M106 (5) X50 11347 22.6 0.501 X50 243876 18.9 12.911 X50 122038 13.4 9.076 X50 227074 12.4 18.254 X50 115990 12.3 9.417

M107 (11) X10 1108 20.1 0.055 X10 2937 19.3 0.152 X10 1339 11.3 0.119 X10 2887 11.9 0.242 X10 1327 10.9 0.122

M108 (4) X68 33235 16.1 2.062 − 2551819 8.5 − X68 330996 8.8 37.497 − 2547979 8.5 − X68 329067 8.5 38.586

M109 (5) X42 60730 18.8 3.231 − 3140865 10.5 − X42 294699 11.1 26.611 − 3085209 10.3 − X42 292367 10.4 28.196

M110 (4) X14 2038 51.4 0.040 X14 7226 33.4 0.217 X14 2151 30.4 0.071 X14 7210 25.5 0.283 X14 2210 29.2 0.076

M111 (6) X61 327238 15.9 20.566 − 2246474 7.5 − X61 1511888 7.8 192.800 − 2204238 7.3 − X61 1507651 7.4 204.505

M112 (5) X94 221577 17.0 13.066 − 2260546 7.5 − − 2376893 7.9 − − 2345133 7.8 − − 2345006 7.8 −
M113 (4) X51 26751 16.7 1.603 X51 1789598 8.1 219.982 X51 71042 9.2 7.749 X51 1784328 8.0 224.393 X51 71110 8.5 8.339

M114 (6) X60 51733 24.7 2.093 X60 2703820 12.5 215.813 X60 615087 13.4 45.798 X60 2709746 12.1 223.339 X60 614915 12.2 50.335

M115 (5) X29 20549 19.4 1.062 X29 150496 11.1 13.581 X29 45566 11.6 3.913 X29 148522 10.6 14.053 X29 45053 10.8 4.171

M116 (5) X14 2029 30.4 0.067 X14 7417 19.4 0.383 X14 2919 19.6 0.149 X14 7451 17.8 0.419 X14 2828 19.1 0.148

M117 (5) X47 131805 12.8 10.318 − 2125024 7.1 − X47 569288 7.6 74.517 − 2091505 7.0 − X47 569843 7.0 80.933

M118 (4) X44 7522 19.6 0.384 X44 310713 10.6 29.234 X44 49571 11.8 4.207 X44 316722 10.6 29.922 X44 50240 10.7 4.699

M119 (3) X18 264 23.7 0.011 X18 1755 14.0 0.125 X18 829 14.6 0.057 X18 1546 9.2 0.168 X18 820 13.0 0.063

M120 (4) X64 4675 42.6 0.110 X64 28633 23.4 1.225 X64 10631 23.6 0.450 X64 47978 20.8 2.304 X64 16388 20.6 0.795

Table 6: Results of experiment 1 (part 2)



IV

BFS IDDFS IDDFS+PP IDDFS+IMO IDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M121 (5) X47 11340 32.3 0.351 X47 652936 16.9 38.578 X47 29345 20.0 1.466 X47 367330 17.4 21.100 X47 21371 18.7 1.141

M122 (5) X90 147440 17.5 8.444 − 2285519 7.6 − X90 1767347 8.1 217.268 − 2295136 7.7 − X90 1747889 7.7 226.929

M123 (5) X101 447578 14.5 30.952 − 1938926 6.5 − − 2008320 6.7 − − 1916955 6.4 − − 1911401 6.4 −
M124 (3) X39 2199 28.2 0.078 X39 40222 15.1 2.661 X39 7819 14.6 0.535 X39 37163 14.3 2.597 X39 7293 13.7 0.533

M125 (4) X38 6578 26.3 0.250 X38 46520 14.3 3.256 X38 46520 14.9 3.119 X38 14234 13.2 1.078 X38 14234 13.4 1.066

M126 (7) X23 137431 22.1 6.221 X23 1504857 12.5 120.171 X23 169283 13.6 12.434 X23 1454611 11.6 125.226 X23 166664 12.5 13.365

M127 (4) X32 1761 34.9 0.050 X32 20140 20.1 1.003 X32 1857 23.0 0.081 X32 26769 20.2 1.325 X32 1853 21.1 0.088

M128 (4) X19 1280 38.0 0.034 X19 9244 22.9 0.404 X19 1408 27.7 0.051 X19 8125 22.1 0.368 X19 1409 21.2 0.066

M129 (5) X22 3055 36.5 0.084 X22 26985 20.6 1.308 X22 3264 25.2 0.130 X22 24286 20.7 1.174 X22 3323 23.1 0.144

M130 (4) X36 6544 23.2 0.283 X36 170915 13.1 13.075 X36 19509 14.1 1.385 X36 174352 12.3 14.231 X36 18783 13.0 1.448

M131 (4) X31 3859 26.1 0.148 X31 84340 14.4 5.860 X31 8733 15.8 0.552 X31 85219 13.7 6.209 X31 8690 14.2 0.612

M132 (4) X37 1596 32.1 0.050 X37 34421 19.2 1.795 X37 2919 19.7 0.148 X37 33570 18.2 1.847 X37 2802 14.9 0.188

M133 (5) X39 24133 19.2 1.259 X39 395237 10.5 37.602 X39 194016 11.0 17.643 X39 395084 9.9 39.833 X39 194143 10.2 19.075

M134 (4) X76 29065 14.9 1.957 − 2334974 7.8 − X76 323385 8.2 39.388 − 2185009 7.3 − X76 293720 7.6 38.636

M135 (4) X36 2949 22.8 0.130 X36 56221 12.5 4.492 X36 17390 13.0 1.335 X36 55048 12.2 4.505 X36 16968 12.1 1.405

M136 (4) X25 1903 23.9 0.080 X25 17745 14.1 1.259 X25 8766 14.4 0.609 X25 18061 12.8 1.411 X25 8903 13.5 0.660

M137 (4) X46 19753 15.5 1.271 X46 1061641 8.0 132.029 X46 76056 8.8 8.640 X46 1074538 7.8 137.204 X46 77069 8.3 9.329

M138 (5) X54 84769 16.0 5.307 − 2396382 8.0 − X54 382205 8.6 44.319 − 2307280 7.7 − X54 384666 7.9 48.747

M139 (6) X106 2263798 15.1 149.494 − 2360259 7.9 − − 2442854 8.1 − − 2278839 7.6 − − 2285731 7.6 −
M140 (4) X80 20706 16.8 1.230 X80 2116445 8.7 243.683 X80 207027 9.2 22.550 X80 2101278 8.4 251.319 X80 200482 8.5 23.513

M141 (6) X52 17865 41.0 0.436 X52 857228 21.1 40.694 X52 18974 25.6 0.741 X52 999642 19.5 51.315 X52 19301 23.2 0.832

M142 (4) X20 2287 24.5 0.093 X20 45344 15.5 2.924 X20 2323 17.3 0.134 X20 44310 14.5 3.065 X20 2326 14.9 0.156

M143 (6) X65 111182 24.0 4.623 − 3836075 12.8 − X65 121688 14.2 8.570 − 3624073 12.1 − X65 123078 13.2 9.351

M144 (16) − 2644328 8.8 − − 1674304 5.5 − − 1681647 5.5 − − 2243823 7.4 − − 2257824 7.5 −
M145 (12) − 2138993 7.1 − − 875699 2.9 − − 876024 2.9 − − 731175 2.4 − − 731382 2.4 −
M146 (12) − 1144297 3.8 − − 495639 1.6 − − 495809 1.6 − − 495157 1.6 − − 495440 1.6 −
M147 (3) X50 2557 26.7 0.096 X50 134060 14.2 9.419 X50 12186 15.2 0.800 X50 130209 13.8 9.436 X50 12713 14.0 0.906

M148 (4) X49 3031 22.5 0.135 X49 122690 12.1 10.168 X49 22916 12.5 1.840 X49 111095 12.1 9.184 X49 21109 12.0 1.757

M149 (4) X35 962 44.0 0.022 X35 5497 26.3 0.209 X35 965 29.6 0.033 X35 7255 26.0 0.279 X35 1158 27.2 0.043

M150 (5) X43 153953 16.8 9.173 − 2646043 8.8 − X43 1128222 9.2 122.737 − 2626001 8.8 − X43 1104320 8.8 125.072

M151 (4) X50 15657 18.3 0.857 X50 886327 9.4 93.908 X50 61307 10.3 5.955 X50 700155 9.6 73.225 X50 57221 10.0 5.748

M152 (4) X35 4685 11.7 0.400 X35 176120 7.0 25.086 X35 8199 8.1 1.018 X35 166122 7.2 23.165 X35 8228 7.9 1.045

M153 (10) − 5302141 17.7 − − 2605291 8.7 − − 2695954 9.0 − − 1998455 6.7 − − 2010842 6.7 −
M154 (1) X2 4 11.4 0.000 X2 5 6.1 0.001 X2 5 4.7 0.001 X2 5 6.0 0.001 X2 5 6.0 0.001

M155 (11) X175 199 20.5 0.010 X175 190 13.0 0.015 X175 190 11.3 0.017 X175 190 12.8 0.015 X175 190 11.5 0.017

X1 (6) X97 997833 14.6 68.534 − 1905752 6.4 − − 1988150 6.6 − − 1984535 6.6 − − 1983284 6.6 −
X3 (11) − 3852051 12.8 − − 2337432 7.8 − − 2460857 8.2 − − 2013045 6.7 − − 2018672 6.7 −
X78 (8) − 2435883 8.1 − − 1179439 3.9 − − 1222628 4.1 − − 1152209 3.8 − − 1154789 3.8 −

Table 7: Results of experiment 1 (part 3)



V

RBFS BBFS RIDDFS+PP+IMO IDDFS/RBFS+PP+IMO BFS/RIDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M1 (2) X8 37 28.2 0.001 X8 19 14.8 0.001 X8 39 0.5 0.085 X8 42 54.6 0.001 X8 32 50.9 0.001

M2 (3) X3 4 20.2 0.000 X3 3 12.7 0.000 X3 6 15.2 0.000 X3 9 24.7 0.000 X3 11 29.8 0.000

M3 (2) X13 32 22.1 0.001 X13 32 25.0 0.001 X13 34 38.8 0.001 15 48 65.4 0.001 X13 50 53.5 0.001

M4 (3) X7 16 10.5 0.002 X7 14 9.0 0.002 X7 22 16.7 0.001 X7 47 44.7 0.001 X7 23 3.7 0.006

M5 (4) X6 85 6.7 0.013 X6 9 6.2 0.001 X6 146 8.6 0.017 X6 21 30.4 0.001 X6 35 19.1 0.002

M6 (3) X29 377 20.2 0.019 X29 237 17.5 0.014 X29 1443 25.5 0.057 31 291 38.1 0.008 31 254 47.2 0.005

M7 (6) X6 172 10.8 0.016 X6 35 6.4 0.005 X6 27 8.5 0.003 X6 48 14.5 0.003 X6 17 5.0 0.003

M8 (2) X32 113 35.0 0.003 X32 121 34.2 0.004 X32 130 58.1 0.002 34 225 81.6 0.003 34 257 77.1 0.003

M9 (2) X10 31 78.9 0.000 X10 18 23.5 0.001 X10 36 87.1 0.000 X10 54 117.2 0.000 X10 35 7.5 0.005

M10 (3) X21 125 42.2 0.003 X21 115 27.2 0.004 X21 236 52.2 0.005 X21 261 59.9 0.004 X21 188 65.0 0.003

M11 (2) X16 84 35.1 0.002 X16 53 24.9 0.002 X16 156 39.7 0.004 18 81 46.0 0.002 X16 110 59.3 0.002

M12 (2) X11 31 34.4 0.001 X11 17 43.6 0.000 X11 51 56.6 0.001 X11 30 84.8 0.000 X11 35 86.9 0.000

M13 (3) X21 334 43.1 0.008 X21 154 26.2 0.006 X21 618 51.0 0.012 X21 279 59.3 0.005 X21 284 66.0 0.004

M14 (2) X10 15 38.0 0.000 X10 13 31.3 0.000 X10 16 44.7 0.000 X10 36 73.8 0.000 X10 43 60.1 0.001

M15 (2) X12 42 71.8 0.001 X12 25 41.6 0.001 X12 42 97.5 0.000 X12 69 109.2 0.001 X12 62 84.8 0.001

M16 (3) X39 688 24.4 0.028 X39 607 17.7 0.034 X39 1607 26.4 0.061 45 672 32.8 0.021 41 242 38.9 0.006

M17 (3) X9 70 28.8 0.002 X9 23 18.9 0.001 X9 71 45.8 0.002 X9 60 70.7 0.001 X9 62 63.1 0.001

M18 (2) X13 48 24.9 0.002 X13 36 17.8 0.002 X13 91 40.3 0.002 X13 66 52.7 0.001 X13 56 52.2 0.001

M19 (2) X20 52 49.7 0.001 X20 64 44.2 0.001 X20 71 66.1 0.001 X20 120 96.4 0.001 X20 89 86.7 0.001

M20 (2) X16 44 38.5 0.001 X16 29 24.6 0.001 X16 49 54.3 0.001 X16 63 78.0 0.001 X16 71 76.8 0.001

M21 (2) X5 6 19.7 0.000 X5 6 27.4 0.000 X5 7 40.9 0.000 X5 15 83.8 0.000 X5 17 75.5 0.000

M22 (2) X15 54 27.6 0.002 X15 35 16.7 0.002 X15 70 35.2 0.002 X15 54 50.7 0.001 X15 56 48.9 0.001

M23 (2) X10 40 35.2 0.001 X10 27 34.0 0.001 X10 49 57.1 0.001 X10 63 69.8 0.001 X10 59 62.7 0.001

M24 (2) X9 20 43.4 0.000 X9 22 42.4 0.001 X9 27 74.8 0.000 X9 39 83.9 0.000 X9 47 93.4 0.001

M25 (3) X7 64 33.7 0.002 X7 24 31.2 0.001 X7 90 52.9 0.002 X7 36 68.1 0.001 X7 53 64.4 0.001

M26 (3) X10 50 49.0 0.001 X10 42 38.9 0.001 X10 58 79.1 0.001 X10 108 88.5 0.001 X10 152 97.9 0.002

M27 (2) X10 31 35.6 0.001 X10 35 32.8 0.001 X10 39 63.8 0.001 X10 81 84.2 0.001 X10 80 78.3 0.001

M28 (2) X9 16 33.0 0.000 X9 14 34.2 0.000 X9 22 51.0 0.000 X9 39 103.4 0.000 X9 41 65.6 0.001

M29 (2) X22 75 21.3 0.004 X22 48 16.1 0.003 X22 102 34.8 0.003 X22 102 48.5 0.002 X22 128 56.0 0.002

M30 (3) X5 49 25.2 0.002 X5 13 18.7 0.001 X5 85 42.1 0.002 X5 39 50.5 0.001 X5 41 49.4 0.001

M31 (3) X6 35 45.8 0.001 X6 12 23.3 0.001 X6 51 49.5 0.001 X6 27 71.7 0.000 X6 26 45.6 0.001

M32 (3) X9 63 53.1 0.001 X9 46 32.1 0.001 X9 71 79.3 0.001 X9 120 98.6 0.001 X9 115 94.8 0.001

M33 (3) X10 114 42.4 0.003 X10 35 21.9 0.002 X10 73 46.2 0.002 X10 36 61.1 0.001 X10 41 45.4 0.001

M34 (4) X8 78 20.2 0.004 X8 46 12.6 0.004 X8 100 26.6 0.004 10 123 30.9 0.004 X8 92 34.6 0.003

M35 (5) X31 6691 30.6 0.218 X31 5041 19.5 0.259 X31 21069 32.8 0.641 X31 6585 32.2 0.204 X31 7352 19.8 0.372

M36 (5) X59 11919 38.0 0.314 X59 9652 23.2 0.415 X59 20891 33.0 0.634 X59 10599 35.0 0.302 79 15368 38.8 0.396

M37 (3) X23 249 30.1 0.008 X23 131 28.2 0.005 X23 612 42.9 0.014 X23 237 57.6 0.004 X23 296 59.4 0.005

M38 (3) X8 42 24.0 0.002 X8 22 18.4 0.001 X8 48 29.3 0.002 X8 51 40.7 0.001 10 38 30.3 0.001

M39 (2) X27 102 44.4 0.002 X27 97 33.5 0.003 X27 103 62.1 0.002 X27 213 82.9 0.003 X27 233 78.5 0.003

M40 (3) X7 84 41.3 0.002 X7 29 28.9 0.001 X7 88 65.1 0.001 X7 72 75.2 0.001 X7 77 71.3 0.001

M41 (3) X13 60 29.0 0.002 X13 34 19.8 0.002 X13 95 43.9 0.002 X13 60 56.4 0.001 X13 62 48.6 0.001

M42 (3) X15 110 43.0 0.003 X15 133 25.7 0.005 X15 118 60.8 0.002 17 249 86.7 0.003 17 224 71.9 0.003

M43 (3) X22 324 31.7 0.010 X22 142 22.6 0.006 X22 379 39.2 0.010 24 315 55.7 0.006 X22 242 49.9 0.005

M44 (1) X1 1 100.1 0.000 X1 1 49.0 0.000 X1 2 128.4 0.000 X1 2 77.8 0.000 X1 4 167.5 0.000

M45 (3) X11 110 47.9 0.002 X11 47 26.1 0.002 X11 134 63.7 0.002 X11 96 68.0 0.001 X11 71 80.8 0.001

M46 (2) X8 15 33.2 0.000 X8 19 33.2 0.001 X8 16 47.3 0.000 X8 33 57.0 0.001 X8 50 64.1 0.001

M47 (2) X22 102 37.5 0.003 X22 77 27.2 0.003 26 139 48.5 0.003 X22 132 62.6 0.002 26 182 69.3 0.003

M48 (3) X14 100 19.8 0.005 X14 59 17.7 0.003 X14 129 33.8 0.004 X14 96 45.2 0.002 X14 179 49.3 0.004

M49 (3) X21 101 25.5 0.004 X21 82 21.2 0.004 X21 172 41.6 0.004 X21 141 53.2 0.003 X21 170 61.7 0.003

M50 (2) X17 67 23.7 0.003 X17 38 22.9 0.002 X17 96 40.1 0.002 X17 84 51.6 0.002 X17 104 56.9 0.002

M51 (2) X8 26 29.6 0.001 X8 15 22.2 0.001 X8 28 49.2 0.001 X8 30 71.5 0.000 X8 35 61.7 0.001

M52 (4) X8 227 35.3 0.006 X8 50 18.5 0.003 X8 215 43.5 0.005 X8 150 48.8 0.003 X8 137 45.4 0.003

M53 (4) X12 255 39.6 0.006 X12 86 23.2 0.004 X12 274 63.5 0.004 14 117 64.7 0.002 X12 152 80.3 0.002

M54 (4) X30 2046 25.6 0.080 X30 1219 17.7 0.069 X30 6508 26.8 0.243 X30 1254 32.6 0.038 32 2684 38.3 0.070

M55 (2) X27 91 48.9 0.002 X27 85 37.4 0.002 X27 120 63.2 0.002 X27 120 77.0 0.002 X27 110 83.7 0.001

M56 (2) X6 12 21.0 0.001 X6 7 25.6 0.000 X6 15 46.2 0.000 X6 21 87.4 0.000 X6 20 63.7 0.000

M57 (2) X23 43 52.6 0.001 X23 50 30.8 0.002 X23 44 60.5 0.001 X23 105 103.5 0.001 X23 221 84.5 0.003

M58 (3) X11 89 40.4 0.002 X11 26 24.7 0.001 X11 101 67.6 0.001 X11 75 77.2 0.001 X11 80 83.9 0.001

M59 (3) X50 1907 13.0 0.147 X50 1314 11.0 0.120 X50 11650 15.0 0.774 54 2349 21.5 0.109 52 1457 24.2 0.060

M60 (4) X44 2465 41.2 0.060 X44 984 28.3 0.035 X44 4291 47.0 0.091 X44 1164 63.2 0.018 X44 1835 56.3 0.033

Table 8: Results of experiment 2 (part 1)



VI

RBFS BBFS RIDDFS+PP+IMO IDDFS/RBFS+PP+IMO BFS/RIDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M61 (4) X21 1184 29.7 0.040 X21 302 18.2 0.017 X21 3033 22.8 0.133 X21 1083 33.3 0.032 X21 503 23.1 0.022

M62 (4) X30 551 39.0 0.014 X30 269 28.5 0.009 X30 589 50.5 0.012 X30 552 64.3 0.009 X30 404 65.7 0.006

M63 (2) X50 262 39.9 0.007 X50 170 28.3 0.006 X50 260 67.0 0.004 X50 570 86.3 0.007 X50 425 89.7 0.005

M64 (4) X30 274 33.4 0.008 X30 390 33.9 0.012 X30 384 49.4 0.008 X30 675 61.8 0.011 36 854 61.5 0.014

M65 (4) X41 3851 26.3 0.147 X41 2689 16.9 0.159 X41 26367 25.8 1.021 X41 4389 26.0 0.169 45 2066 27.7 0.075

M66 (3) X15 770 15.9 0.048 X15 224 9.2 0.024 X15 953 21.0 0.045 X15 486 25.5 0.019 X15 422 28.6 0.015

M67 (3) X8 55 35.5 0.002 X8 30 14.6 0.002 X8 64 54.5 0.001 X8 48 64.5 0.001 X8 65 62.8 0.001

M68 (3) X28 252 25.7 0.010 X28 169 15.9 0.011 X28 376 54.5 0.007 X28 252 59.6 0.004 30 608 62.2 0.010

M69 (3) X37 1031 20.5 0.050 X37 739 16.7 0.044 X37 2650 24.7 0.107 X37 1341 35.0 0.038 X37 1739 37.1 0.047

M70 (4) X26 1887 32.3 0.058 X26 762 24.5 0.031 X26 5138 41.0 0.125 34 3405 31.6 0.108 X26 1322 50.7 0.026

M71 (2) X21 92 21.6 0.004 X21 69 17.1 0.004 X21 252 27.9 0.009 X21 57 32.0 0.002 X21 140 42.8 0.003

M72 (3) X40 996 35.6 0.028 X40 908 28.5 0.032 X40 1058 43.0 0.025 X40 1362 57.0 0.024 X40 962 62.3 0.015

M73 (3) X25 439 31.5 0.014 X25 294 21.7 0.014 X25 1333 19.0 0.070 X25 246 41.1 0.006 X25 632 44.7 0.014

M74 (4) X34 1880 36.9 0.051 X34 986 21.3 0.046 X34 8041 37.7 0.213 X34 1308 42.7 0.031 36 2144 41.7 0.051

M75 (4) X34 1166 29.0 0.040 X34 667 22.7 0.029 X34 3746 33.4 0.112 X34 564 37.8 0.015 X34 1328 44.8 0.030

M76 (3) X56 889 19.3 0.046 X56 848 18.9 0.045 X56 5963 20.4 0.292 58 1047 28.9 0.036 68 1469 24.0 0.061

M77 (4) X55 2067 42.8 0.048 X55 1308 22.6 0.058 X55 10403 35.1 0.296 61 2121 41.0 0.052 63 2177 39.3 0.055

M78 (5) X33 10758 20.2 0.531 X33 5708 12.3 0.465 X33 46981 20.4 2.303 X33 7359 18.3 0.401 X33 15419 14.0 1.103

M79 (3) X18 237 34.5 0.007 X18 126 27.9 0.005 X18 245 44.6 0.005 X18 204 57.9 0.004 X18 200 67.8 0.003

M80 (4) X38 977 29.2 0.033 X38 622 21.7 0.029 X38 2213 31.7 0.070 X38 1089 44.2 0.025 X38 1445 36.5 0.040

M81 (3) X12 113 34.1 0.003 X12 57 27.3 0.002 X12 116 51.4 0.002 14 120 73.6 0.002 X12 74 67.5 0.001

M82 (3) X14 119 51.4 0.002 X14 29 33.1 0.001 X14 138 66.9 0.002 X14 78 70.6 0.001 X14 56 81.3 0.001

M83 (4) X47 4207 25.2 0.167 X47 2830 16.6 0.171 X47 7388 28.7 0.258 75 6174 32.5 0.190 X47 3578 33.6 0.107

M84 (3) X68 1991 23.6 0.084 X68 1739 19.8 0.088 X68 16332 26.2 0.624 74 2265 34.1 0.066 80 4340 34.2 0.127

M85 (3) X51 2804 17.2 0.163 X51 2434 15.3 0.159 X51 22727 19.1 1.191 53 3684 20.2 0.182 55 3701 25.4 0.146

M86 (4) X25 1181 31.7 0.037 X25 709 19.1 0.037 X25 3740 32.8 0.114 X25 1377 39.2 0.035 X25 1508 39.8 0.038

M87 (4) X53 3466 26.9 0.129 X53 1857 17.7 0.105 X53 21262 29.1 0.731 X53 3711 31.1 0.119 59 3686 29.3 0.126

M88 (3) X63 869 19.0 0.046 X63 830 13.8 0.060 X63 4339 18.9 0.230 67 1026 32.0 0.032 67 647 27.2 0.024

M89 (4) X35 1714 28.5 0.060 X35 1807 21.3 0.085 X35 8444 30.4 0.277 39 3300 40.2 0.082 X35 6350 29.9 0.212

M90 (4) X16 2160 25.4 0.085 X16 562 19.2 0.029 X16 2411 36.2 0.067 X16 1041 45.1 0.023 X16 1037 40.3 0.026

M91 (4) X14 129 41.5 0.003 X14 124 34.3 0.004 X14 171 67.4 0.003 X14 201 90.9 0.002 X14 200 84.2 0.002

M92 (3) X48 1318 30.0 0.044 X48 909 24.1 0.038 X48 1723 38.5 0.045 X48 1221 56.6 0.022 X48 1838 60.4 0.030

M93 (8) − 2706616 9.0 − X34 872784 6.0 144.853 − 2027953 6.7 − − 217820 0.7 − − 267073 0.9 −
M94 (3) X29 281 46.3 0.006 X29 164 33.4 0.005 X29 289 77.4 0.004 X29 711 103.2 0.007 X29 227 103.3 0.002

M95 (8) X8 5848 7.0 0.839 X8 262 4.6 0.058 X8 4476 9.9 0.450 X8 441 11.7 0.038 X8 353 13.2 0.027

M96 (3) X37 776 29.5 0.026 X37 451 25.1 0.018 X37 779 46.4 0.017 X37 924 60.8 0.015 39 914 60.4 0.015

M97 (5) X41 14097 30.4 0.464 X41 4097 16.6 0.247 X41 49560 29.2 1.698 X41 8724 29.0 0.301 45 10319 18.0 0.573

M98 (5) X110 52224 22.1 2.362 X110 39298 16.3 2.414 X110 56176 22.6 2.486 112 73608 7.8 9.389 114 46298 21.4 2.167

M99 (4) X131 80393 15.4 5.237 X131 75113 11.9 6.310 X131 104666 16.3 6.411 149 146022 4.3 33.789 X131 238805 3.0 78.799

M100 (4) X52 1100 48.1 0.023 X52 1142 24.4 0.047 X52 3345 45.3 0.074 62 2988 59.4 0.050 X52 2585 49.2 0.053

M101 (5) X15 1150 11.9 0.097 X15 777 8.7 0.089 X15 1614 14.8 0.109 17 1791 20.0 0.090 19 1373 20.4 0.067

M102 (4) X44 1565 17.1 0.091 X44 1732 14.1 0.123 X44 9206 21.5 0.428 X44 3066 27.5 0.112 X44 6368 26.1 0.244

M103 (4) X12 479 26.1 0.018 X12 276 17.7 0.016 X12 561 45.5 0.012 X12 543 53.0 0.010 X12 341 50.6 0.007

M104 (3) X27 560 29.7 0.019 X27 243 22.2 0.011 X27 751 38.1 0.020 X27 627 45.1 0.014 X27 338 51.0 0.007

M105 (8) X24 74795 27.1 2.758 X24 22285 14.5 1.540 26 73010 34.7 2.104 36 115356 4.2 27.685 38 65465 11.1 5.872

M106 (5) X50 8283 25.8 0.321 X50 6050 18.7 0.323 X50 83554 27.9 2.993 56 14472 25.1 0.576 X50 20216 16.3 1.242

M107 (11) X10 480 21.6 0.022 X10 264 16.5 0.016 X10 577 26.1 0.022 X10 537 38.5 0.014 X10 527 34.4 0.015

M108 (4) X68 18144 16.1 1.124 X68 13752 12.4 1.112 X68 124699 16.2 7.689 X68 27483 13.6 2.022 70 25877 15.5 1.665

M109 (5) X42 22175 22.6 0.979 X42 14182 14.7 0.965 X42 29427 28.1 1.048 X42 66524 19.3 3.450 46 22262 22.8 0.975

M110 (4) X14 965 52.7 0.018 X14 377 21.2 0.018 X14 950 72.8 0.013 X14 717 71.8 0.010 16 656 74.9 0.009

M111 (6) X61 167347 13.9 12.034 X61 125722 10.6 11.874 X61 649790 14.2 45.767 63 184290 4.3 42.627 69 150620 7.9 19.075

M112 (5) X94 93008 15.5 6.007 X94 76908 11.5 6.705 X94 536460 13.9 38.707 X94 229029 8.2 27.929 X94 154883 6.6 23.487

M113 (4) X51 16674 15.0 1.110 X51 11514 10.4 1.105 X51 49392 17.8 2.775 X51 15471 18.8 0.823 53 20474 19.8 1.037

M114 (6) X60 41191 38.0 1.084 X60 35657 20.4 1.747 X60 406120 33.8 12.002 X60 89862 5.0 17.890 X60 105632 8.6 12.329

M115 (5) X29 18779 25.0 0.750 X29 2812 15.3 0.184 X29 83925 27.2 3.080 X29 6405 24.4 0.262 X29 5777 26.9 0.215

M116 (5) X14 1185 43.1 0.027 X14 490 21.1 0.023 X14 1543 53.2 0.029 X14 987 50.3 0.020 X14 1487 54.2 0.027

M117 (5) X47 94431 15.8 5.983 X47 40084 10.5 3.810 X47 317224 17.4 18.190 63 89055 7.8 11.373 55 97391 9.5 10.293

M118 (4) X44 8722 19.0 0.460 X44 5002 16.9 0.297 X44 50448 23.3 2.163 X44 10455 21.3 0.491 48 10940 24.9 0.440

M119 (3) X18 218 16.1 0.014 X18 121 15.4 0.008 X18 585 22.1 0.026 X18 240 32.9 0.007 X18 260 34.1 0.008

M120 (4) X64 2769 29.7 0.093 X64 2080 28.9 0.072 X64 18077 36.3 0.498 66 2829 47.7 0.059 78 2900 43.3 0.067

Table 9: Results of experiment 2 (part 2)



VII

RBFS BBFS RIDDFS+PP+IMO IDDFS/RBFS+PP+IMO BFS/RIDDFS+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s moves 1000/s s

M121 (5) X47 2087 35.4 0.059 X47 2236 24.8 0.090 X47 2345 38.7 0.061 X47 6258 54.8 0.114 X47 6833 44.9 0.152

M122 (5) X90 43023 16.5 2.608 X90 41434 12.6 3.286 X90 305844 16.9 18.124 94 124287 9.7 12.856 98 77117 16.2 4.773

M123 (5) X101 353856 13.2 26.825 X101 312742 10.4 30.010 − 3511938 11.7 − − 267989 0.9 − − 363313 1.2 −
M124 (3) X39 580 19.0 0.031 X39 496 15.6 0.032 X39 3026 22.3 0.135 41 1569 38.2 0.041 55 2468 40.3 0.061

M125 (4) X38 2825 29.1 0.097 X38 1301 21.7 0.060 X38 14877 31.1 0.478 X38 1521 36.8 0.041 40 3527 33.2 0.106

M126 (7) X23 119036 28.4 4.192 X23 21033 15.1 1.393 X23 143666 33.5 4.290 27 35538 12.3 2.882 25 31550 16.8 1.882

M127 (4) X32 1993 39.7 0.050 X32 1080 28.0 0.039 X32 2045 49.8 0.041 X32 2514 56.7 0.044 38 1559 65.8 0.024

M128 (4) X19 915 37.5 0.024 X19 394 30.3 0.013 21 1062 62.9 0.017 X19 1581 64.8 0.024 23 887 66.1 0.013

M129 (5) X22 1667 45.5 0.037 X22 795 21.1 0.038 X22 1707 58.7 0.029 X22 2562 57.9 0.044 X22 1091 56.5 0.019

M130 (4) X36 5146 20.0 0.258 X36 2441 17.0 0.143 X36 13801 23.2 0.594 40 6537 35.5 0.184 38 3941 32.8 0.120

M131 (4) X31 3778 25.6 0.148 X31 2306 18.2 0.126 X31 11030 30.8 0.358 X31 5139 39.5 0.130 33 3563 34.9 0.102

M132 (4) X37 2031 39.2 0.052 X37 1413 26.4 0.054 X37 4731 43.6 0.109 39 3162 54.9 0.058 47 3533 57.2 0.062

M133 (5) X39 8454 27.9 0.303 X39 5954 15.9 0.375 X39 52127 29.8 1.752 41 10395 20.1 0.516 41 9287 18.5 0.503

M134 (4) X76 26459 15.9 1.664 X76 21488 11.0 1.949 X76 312910 14.9 20.972 82 50733 12.9 3.918 102 47342 6.1 7.819

M135 (4) X36 3132 30.1 0.104 X36 2110 17.2 0.122 X36 14749 34.4 0.428 X36 5409 29.6 0.183 38 4469 36.8 0.121

M136 (4) X25 1095 24.4 0.045 X25 713 20.8 0.034 X25 3804 36.2 0.105 X25 1509 41.6 0.036 27 1070 45.7 0.023

M137 (4) X46 13091 14.3 0.918 X46 7627 10.9 0.697 X46 45446 17.0 2.675 52 13890 18.8 0.737 54 16895 20.8 0.814

M138 (5) X54 43973 14.5 3.026 X54 28668 11.5 2.489 X54 128030 18.4 6.945 56 43851 12.1 3.611 56 54830 14.0 3.912

M139 (6) X106 1182247 15.0 78.594 X106 930534 10.9 85.358 − 3924707 13.1 − − 417092 1.4 − − 345967 1.2 −
M140 (4) X80 10410 15.8 0.660 X80 4232 14.0 0.302 X80 71814 16.2 4.439 X80 8721 29.2 0.299 X80 15914 27.8 0.572

M141 (6) X52 11285 38.4 0.294 X52 8888 29.0 0.306 X52 12080 46.7 0.259 54 12675 53.8 0.235 54 5993 62.7 0.096

M142 (4) X20 2101 23.9 0.088 X20 1227 20.7 0.059 X20 2114 45.5 0.046 24 2115 45.5 0.047 26 1127 45.8 0.025

M143 (6) X65 84377 31.3 2.694 X65 103662 18.5 5.613 X65 96442 34.6 2.787 81 250485 2.8 89.821 73 73784 22.6 3.270

M144 (16) − 2860221 9.3 − − 2358661 7.9 − − 2462593 8.0 − − 146465 0.5 − − 216358 0.7 −
M145 (12) − 1688897 5.6 − X18 256187 5.9 43.722 − 991280 3.7 264.507 − 123629 0.4 − − 184120 0.6 −
M146 (12) − 1762037 5.7 − X14 188724 3.6 52.040 − 917818 3.3 274.823 − 73418 0.2 − − 122887 0.4 −
M147 (3) X50 1727 18.5 0.093 X50 1512 17.2 0.088 X50 4539 26.1 0.174 52 2238 31.3 0.072 X50 3806 42.6 0.089

M148 (4) X49 1538 20.6 0.075 X49 1696 14.0 0.121 X49 8903 25.3 0.352 X49 2850 27.4 0.104 X49 5042 29.8 0.169

M149 (4) X35 488 58.8 0.008 X35 522 34.3 0.015 X35 1058 72.6 0.015 X35 1320 72.7 0.018 X35 977 73.3 0.013

M150 (5) X43 90817 18.6 4.874 X43 32159 13.1 2.463 X43 420441 19.1 21.997 X43 66159 6.9 9.642 X43 115727 4.2 27.507

M151 (4) X50 9319 19.9 0.469 X50 5123 14.2 0.362 X50 34494 22.8 1.515 X50 7572 26.5 0.286 52 8162 27.4 0.298

M152 (4) X35 7969 12.6 0.630 X35 3344 9.0 0.373 X35 12763 16.8 0.760 37 11154 18.7 0.596 43 12080 18.6 0.649

M153 (10) − 4270841 14.2 − − 4378037 14.5 − − 1931712 6.4 − − 1653554 5.5 − − 221338 0.7 −
M154 (1) X2 2 10.1 0.000 X2 2 4.8 0.000 X2 3 11.2 0.000 X2 5 11.8 0.000 X2 8 16.4 0.000

M155 (11) X175 186 13.0 0.014 X175 188 11.9 0.016 X175 184 18.8 0.010 X175 276 20.5 0.013 X175 284 29.8 0.010

X1 (6) X97 859364 19.5 43.976 X97 727504 14.5 50.171 − 3495467 11.7 − − 259370 0.9 − 99 92540 1.1 85.040

X3 (11) − 3630364 12.1 − − 3450373 11.4 − − 1985701 6.6 − − 1138976 3.8 − − 157207 0.5 −
X78 (8) − 1867255 6.2 − − 1914264 6.4 − − 837196 2.8 − − 1213442 4.0 − − 136516 0.5 −

Table 10: Results of experiment 2 (part 3)



VIII

BFS+PI IDDFS+PI+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s

M1 (2) X8 19 3.8 0.005 X8 22 1.3 0.017

M2 (3) X3 5 9.2 0.001 X3 7 15.8 0.000

M3 (2) X13 69 8.5 0.008 X13 70 18.5 0.004

M4 (3) X7 44 10.1 0.004 X7 45 11.4 0.004

M5 (4) X6 220 8.0 0.028 X6 338 6.5 0.052

M6 (3) X29 342 18.0 0.019 X29 1331 14.8 0.090

M7 (6) X6 651 11.8 0.055 X6 390 8.7 0.045

M8 (2) X32 85 27.1 0.003 X32 88 27.5 0.003

M9 (2) X10 16 38.3 0.000 X10 16 38.6 0.000

M10 (3) X21 99 22.3 0.004 X21 120 18.8 0.006

M11 (2) X16 83 21.4 0.004 X16 174 21.3 0.008

M12 (2) X11 22 31.4 0.001 X11 26 31.9 0.001

M13 (3) X21 287 25.6 0.011 X21 428 23.3 0.018

M14 (2) X10 15 45.4 0.000 X10 15 31.5 0.000

M15 (2) X12 25 38.5 0.001 X12 25 33.5 0.001

M16 (3) X39 1036 23.4 0.044 X39 3693 19.5 0.189

M17 (3) X9 32 30.4 0.001 X9 32 25.4 0.001

M18 (2) X13 67 27.1 0.002 X13 88 23.6 0.004

M19 (2) X20 58 39.3 0.001 X20 58 32.2 0.002

M20 (2) X16 71 29.6 0.002 X16 71 25.9 0.003

M21 (2) X5 10 46.3 0.000 X5 10 29.7 0.000

M22 (2) X15 70 25.1 0.003 X15 134 20.2 0.007

M23 (2) X10 21 34.0 0.001 X10 27 29.1 0.001

M24 (2) X9 49 40.4 0.001 X9 47 31.4 0.001

M25 (3) X7 34 32.4 0.001 X7 29 27.3 0.001

M26 (3) X10 69 38.3 0.002 X10 76 33.0 0.002

M27 (2) X10 42 32.1 0.001 X10 52 28.5 0.002

M28 (2) X9 21 34.6 0.001 X9 21 27.3 0.001

M29 (2) X22 79 23.5 0.003 X22 155 20.2 0.008

M30 (3) X5 25 28.3 0.001 X5 32 22.9 0.001

M31 (3) X6 38 29.1 0.001 X6 45 26.6 0.002

M32 (3) X9 38 38.3 0.001 X9 39 32.8 0.001

M33 (3) X10 238 26.2 0.009 X10 60 22.7 0.003

M34 (4) X8 166 18.5 0.009 X8 181 16.1 0.011

M35 (5) X31 5207 19.0 0.275 X31 11147 17.4 0.640

M36 (5) X59 13252 24.3 0.544 X59 51262 20.7 2.473

M37 (3) X23 219 29.0 0.008 X23 437 24.2 0.018

M38 (3) X8 23 21.7 0.001 X8 27 21.8 0.001

M39 (2) X27 79 29.1 0.003 X27 79 27.1 0.003

M40 (3) X7 68 32.4 0.002 X7 70 28.4 0.002

M41 (3) X13 51 29.9 0.002 X13 61 26.8 0.002

M42 (3) X15 154 30.3 0.005 X15 165 26.0 0.006

M43 (3) X22 282 24.1 0.012 X22 490 20.7 0.024

M44 (1) X1 2 80.9 0.000 X1 2 13.5 0.000

M45 (3) X11 111 35.4 0.003 X11 129 31.6 0.004

M46 (2) X8 19 34.7 0.001 X8 19 26.1 0.001

M47 (2) X22 90 28.5 0.003 X22 123 25.5 0.005

M48 (3) X14 170 23.5 0.007 X14 215 21.1 0.010

M49 (3) X21 141 28.5 0.005 X21 328 23.6 0.014

M50 (2) X17 64 22.4 0.003 X17 86 19.9 0.004

M51 (2) X8 28 33.6 0.001 X8 28 27.2 0.001

M52 (4) X8 396 22.8 0.017 X8 424 21.2 0.020

M53 (4) X12 120 28.9 0.004 X12 127 26.3 0.005

M54 (4) X30 2332 20.9 0.112 X30 9175 17.0 0.538

M55 (2) X27 97 31.7 0.003 X27 106 26.7 0.004

M56 (2) X6 12 37.8 0.000 X6 14 27.0 0.001

M57 (2) X23 78 33.2 0.002 X23 81 31.1 0.003

M58 (3) X11 51 32.8 0.002 X11 54 29.1 0.002

M59 (3) X50 1900 13.1 0.144 X50 9575 10.3 0.927

M60 (4) X44 1744 22.6 0.077 X44 3717 19.8 0.188

Table 11: Results of experiment 3 (part 1)



IX

BFS+PI IDDFS+PI+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s

M61 (4) X21 255 19.3 0.013 X21 411 17.7 0.023

M62 (4) X30 501 23.2 0.022 X30 501 21.0 0.024

M63 (2) X50 127 29.8 0.004 X50 127 25.9 0.005

M64 (4) X30 312 24.3 0.013 X30 339 21.6 0.016

M65 (4) X41 4038 19.2 0.210 X41 31899 15.8 2.014

M66 (3) X15 456 12.2 0.037 X15 456 11.5 0.040

M67 (3) X8 32 33.8 0.001 X8 36 29.9 0.001

M68 (3) X28 338 28.4 0.012 X28 479 24.2 0.020

M69 (3) X37 1670 19.5 0.086 X37 5455 16.1 0.338

M70 (4) X26 1596 23.6 0.068 X26 2675 20.9 0.128

M71 (2) X21 114 18.5 0.006 X21 160 15.8 0.010

M72 (3) X40 571 23.4 0.024 X40 639 21.1 0.030

M73 (3) X25 918 21.0 0.044 X25 315 15.3 0.021

M74 (4) X34 2117 22.3 0.095 X34 4451 16.1 0.276

M75 (4) X34 1143 23.7 0.048 X34 2950 20.2 0.146

M76 (3) X56 1346 17.8 0.075 X56 9591 13.2 0.725

M77 (4) X55 2972 23.3 0.128 X55 31001 16.6 1.867

M78 (5) X33 10242 14.4 0.713 X33 73764 11.7 6.295

M79 (3) X18 135 24.9 0.005 X18 134 22.5 0.006

M80 (4) X38 934 20.6 0.045 X38 2997 17.3 0.173

M81 (3) X12 111 31.9 0.003 X12 131 27.8 0.005

M82 (3) X14 36 31.7 0.001 X14 36 28.5 0.001

M83 (4) X47 6035 16.5 0.367 X47 17873 13.7 1.309

M84 (3) X68 2470 18.9 0.130 X68 33441 15.0 2.224

M85 (3) X51 3921 17.3 0.227 X51 30154 12.9 2.338

M86 (4) X25 1026 22.4 0.046 X25 4093 18.7 0.219

M87 (4) X53 5282 20.7 0.256 X53 38207 14.8 2.577

M88 (3) X63 2420 16.9 0.143 X63 33391 12.9 2.582

M89 (4) X35 4344 21.6 0.201 X35 31598 17.7 1.783

M90 (4) X16 2786 20.7 0.134 X16 4059 17.7 0.230

M91 (4) X14 301 36.4 0.008 X14 424 33.2 0.013

M92 (3) X48 686 21.8 0.031 X48 772 19.6 0.039

M93 (8) − 2404906 8.0 − − 921403 3.1 −
M94 (3) X29 454 22.6 0.020 X29 456 27.9 0.016

M95 (8) X8 3191 7.1 0.448 X8 4042 8.1 0.502

M96 (3) X37 646 22.8 0.028 X37 672 20.9 0.032

M97 (5) X41 8876 13.7 0.647 X41 46450 11.4 4.083

M98 (5) X110 33183 15.1 2.201 X110 78671 13.1 6.003

M99 (4) X131 69149 13.1 5.260 X131 944352 10.0 94.062

M100 (4) X52 1106 28.7 0.038 X52 4155 24.3 0.171

M101 (5) X15 936 10.1 0.092 X15 1130 9.3 0.121

M102 (4) X44 4402 16.9 0.261 X44 22624 12.5 1.809

M103 (4) X12 921 23.2 0.040 X12 1033 20.9 0.049

M104 (3) X27 363 15.5 0.023 X27 389 18.3 0.021

M105 (8) X24 49822 15.1 3.295 X24 50385 13.8 3.639

M106 (5) X50 8432 19.0 0.444 X50 77994 15.5 5.038

M107 (11) X10 1058 14.6 0.073 X10 1271 13.5 0.094

M108 (4) X68 28714 13.3 2.153 X68 275499 10.6 26.107

M109 (5) X42 47698 14.7 3.239 X42 218966 12.1 18.028

M110 (4) X14 1301 26.4 0.049 X14 1421 26.8 0.053

M111 (6) X61 223970 13.4 16.722 X61 1136649 10.0 113.471

M112 (5) X94 116624 12.9 9.053 X94 1414171 10.4 136.283

M113 (4) X51 20967 10.9 1.917 X51 57753 9.5 6.103

M114 (6) X60 20694 17.2 1.205 X60 193454 14.3 13.569

M115 (5) X29 17281 14.7 1.175 X29 38990 12.7 3.071

M116 (5) X14 1331 23.2 0.057 X14 1618 21.9 0.074

M117 (5) X47 123684 10.8 11.445 X47 528661 8.9 59.491

M118 (4) X44 7133 15.1 0.473 X44 46027 12.3 3.734

M119 (3) X18 258 17.7 0.015 X18 809 14.6 0.055

M120 (4) X64 2401 19.7 0.122 X64 9720 16.6 0.587

Table 12: Results of experiment 3 (part 2)



X

BFS+PI IDDFS+PI+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s

M121 (5) X47 2056 21.1 0.097 X47 3184 18.5 0.172

M122 (5) X90 91700 13.4 6.851 X90 1150064 9.2 124.536

M123 (5) X101 289557 11.2 25.817 − 2348142 7.8 −
M124 (3) X39 1905 18.4 0.104 X39 6295 14.9 0.424

M125 (4) X38 4951 20.5 0.242 X38 10663 16.4 0.650

M126 (7) X23 84210 17.6 4.772 X23 100007 14.5 6.880

M127 (4) X32 1380 11.6 0.119 X32 1457 19.5 0.075

M128 (4) X19 942 22.2 0.042 X19 1070 21.5 0.050

M129 (5) X22 1683 22.8 0.074 X22 1853 21.1 0.088

M130 (4) X36 5308 19.8 0.268 X36 14320 16.5 0.867

M131 (4) X31 3325 19.9 0.167 X31 6964 17.3 0.404

M132 (4) X37 1341 22.8 0.059 X37 2057 20.3 0.101

M133 (5) X39 21166 16.1 1.312 X39 171492 12.8 13.372

M134 (4) X76 23424 13.2 1.768 X76 231417 10.6 21.792

M135 (4) X36 2697 17.2 0.157 X36 15565 15.2 1.026

M136 (4) X25 1866 19.0 0.098 X25 8699 16.0 0.543

M137 (4) X46 17646 12.4 1.428 X46 72090 9.6 7.532

M138 (5) X54 62789 12.8 4.909 X54 290066 9.6 30.079

M139 (6) X106 1199460 10.8 111.527 − 2476347 8.3 −
M140 (4) X80 15084 13.8 1.097 X80 143238 10.7 13.399

M141 (6) X52 8726 22.5 0.389 X52 9226 20.3 0.455

M142 (4) X20 2170 20.1 0.108 X20 2200 18.1 0.122

M143 (6) X65 40629 16.8 2.424 X65 46919 14.4 3.259

M144 (16) − 2076256 6.9 − − 1435313 4.7 −
M145 (12) − 2106661 7.0 − − 641497 2.1 −
M146 (12) − 1167216 3.9 − − 423009 1.6 260.774

M147 (3) X50 1925 14.3 0.134 X50 9881 15.2 0.649

M148 (4) X49 2556 13.8 0.185 X49 19013 13.6 1.399

M149 (4) X35 487 22.9 0.021 X35 500 21.1 0.024

M150 (5) X43 115591 14.7 7.869 X43 825377 11.6 71.316

M151 (4) X50 13366 15.6 0.859 X50 45217 12.7 3.555

M152 (4) X35 3943 11.4 0.346 X35 6070 10.9 0.558

M153 (10) − 4033426 13.4 − − 2880753 9.6 −
M154 (1) X2 4 7.5 0.001 X2 5 5.9 0.001

M155 (11) X175 199 8.6 0.023 X175 190 7.8 0.024

X1 (6) X97 468316 10.8 43.344 − 2471062 8.2 −
X3 (11) − 2887739 9.6 − − 2910080 9.7 −
X78 (8) − 2007114 6.7 − − 1841518 6.1 −

Table 13: Results of experiment 3 (part 3)



XI

BFS+VL IDDFS+VL+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s

X1 (6) X97 13 0.2 0.082 X97 7 0.9 0.007

X2 (10) 133 120 1.6 0.073 − 221457 0.7 −
X3 (11) 148 26 0.7 0.037 152 388 2.2 0.180

X4 (20) 357 2330 1.0 2.417 − 431309 1.4 −
X5 (12) X143 10 0.3 0.030 − 253830 0.8 −
X6 (10) X110 66 0.4 0.156 − 224920 0.7 −
X7 (11) 106 234778 1.1 213.472 − 389755 1.3 −
X8 (18) 280 7988 0.2 45.313 − 94078 0.3 −
X9 (14) 239 30045 0.3 110.093 − 173381 0.6 −
X10 (32) − 27303 0.1 − − 173304 0.6 −
X11 (14) − 191167 0.6 − − 282623 0.9 −
X12 (15) − 757441 2.5 − − 998349 3.3 −
X13 (16) − 1476974 4.9 − − 1100406 3.7 −
X14 (18) − 1739252 5.8 − − 1992512 6.6 −
X15 (15) − 1387719 4.6 − − 1208609 4.0 −
X16 (15) − 412637 1.4 − − 280793 0.9 −
X17 (6) 217 8073 0.5 15.806 − 217762 0.7 −
X18 (11) − 86822 0.3 − − 142594 0.5 −
X19 (15) − 1986260 6.6 − − 1367107 4.6 −
X20 (18) − 1043626 3.5 − − 1792506 6.0 −
X21 (13) − 2015739 6.7 − − 1734084 5.8 −
X22 (27) − 1040950 3.5 − − 1273951 4.2 −
X23 (18) − 181666 0.6 − − 192127 0.6 −
X24 (22) − 193095 0.6 − − 280814 0.9 −
X25 (19) − 151960 0.5 − − 98666 0.3 −
X26 (13) − 318782 1.1 − − 359926 1.2 −
X27 (20) − 306165 1.0 − − 184517 0.6 −
X28 (20) − 2143441 7.1 − − 1384314 4.6 −
X29 (16) − 713988 2.4 − − 891901 3.0 −
X30 (18) − 328379 1.1 − − 529960 1.8 −
X31 (20) − 1835309 6.1 − − 2070293 6.9 −
X32 (15) − 139313 0.5 − − 161368 0.5 −
X33 (15) − 2414175 8.0 − − 2533338 8.4 −
X34 (14) − 152206 0.5 − − 158227 0.5 −
X35 (17) − 1124631 3.7 − − 1545186 5.2 −
X36 (21) − 147653 0.5 − − 261154 0.9 −
X37 (20) − 1139744 3.8 − − 1153789 3.8 −
X38 (8) − 459433 1.5 − − 344254 1.1 −
X39 (25) − 2733235 9.1 − − 1063199 3.5 −
X40 (16) − 100584 0.3 − − 188692 0.6 −
X41 (15) − 1881674 6.3 − − 2606860 8.7 −
X42 (24) − 1004244 3.3 − − 957301 3.2 −
X43 (9) 148 3478 0.8 4.340 − 473279 1.6 −
X44 (9) − 2610985 8.7 − − 2180320 7.3 −
X45 (17) − 275603 0.9 − − 273820 0.9 −
X46 (14) − 1918194 6.4 − − 1321142 4.4 −
X47 (16) − 2170530 7.2 − − 2001872 6.7 −
X48 (34) − 853768 2.8 − − 1366267 4.6 −
X49 (12) − 2735698 9.1 − − 2823506 9.4 −
X50 (16) − 1656835 5.5 − − 1529224 5.1 −
X51 (14) − 2389962 8.0 − − 1945015 6.5 −
X52 (18) − 186449 0.6 − − 151754 0.5 −
X53 (15) 210 2 0.0 0.061 210 2 0.0 0.061

X54 (16) 267 61 0.2 0.401 − 188847 0.6 −
X55 (12) − 623972 2.1 − − 1194927 4.0 −
X56 (16) 237 36477 0.2 176.581 − 146741 0.5 −
X57 (16) − 1318644 4.4 − − 1961935 6.5 −
X58 (15) − 1071200 3.6 − − 1353109 4.5 −
X59 (16) 316 2629 0.2 14.248 − 90505 0.3 −
X60 (13) − 924951 3.1 − − 1277411 4.3 −

Table 14: Results of experiment 4 (part 1)



XII

BFS+VL IDDFS+VL+PP+IMO

Puzzle Path Nodes Speed Time Path Nodes Speed Time

(stones) moves 1000/s s moves 1000/s s

X61 (20) − 1019117 3.4 − − 1743255 5.8 −
X62 (16) − 68039 0.2 − − 118133 0.4 −
X63 (17) − 798570 2.7 − − 725545 2.4 −
X64 (16) 411 9001 0.2 48.024 − 218724 0.7 −
X65 (15) − 202961 0.7 − − 166683 0.6 −
X66 (18) − 1149154 3.8 − − 795184 2.7 −
X67 (20) − 2222865 7.4 − − 1397815 4.7 −
X68 (15) − 109113 0.4 − − 204017 0.7 −
X69 (18) − 1260995 4.2 − − 913531 3.0 −
X70 (18) 349 10519 0.5 20.977 − 232413 0.8 −
X71 (18) − 1571387 5.2 − − 1860561 6.2 −
X72 (16) − 53591 0.2 − − 68433 0.2 −
X73 (14) − 1995395 6.7 − − 2219136 7.4 −
X74 (16) − 2694280 9.0 − − 1706684 5.7 −
X75 (17) − 496840 1.7 − − 172763 0.6 −
X76 (17) − 138139 0.5 − − 116434 0.4 −
X77 (14) − 124413 0.4 − − 437872 1.5 −
X78 (8) 142 2 0.1 0.017 142 2 0.1 0.017

X79 (12) 176 949 0.3 2.875 − 282913 0.9 −
X80 (12) 233 1399 1.0 1.369 − 112270 0.4 −
X81 (12) 191 1057 1.0 1.072 − 328673 1.1 −
X82 (12) 173 15 0.7 0.022 − 142682 0.5 −
X83 (10) X194 568 0.7 0.817 − 293527 1.0 −
X84 (12) 161 17852 0.1 132.219 − 81050 0.3 −
X85 (15) − 544450 1.8 − − 838530 2.8 −
X86 (10) − 2992175 9.9 − − 2230896 7.4 −
X87 (12) − 1567963 5.2 − − 1387214 4.6 −
X88 (23) − 949355 3.2 − − 1327185 4.4 −
X89 (21) − 1189487 4.0 − − 1322462 4.4 −
X90 (25) − 42000 0.1 − − 166924 0.6 −

Table 15: Results of experiment 4 (part 2)


