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Kennard’s 1927 demonstration of the uncertainty relation, cited by Heisenberg as the earliest
derivation using the formalism of quantum theory, invokes a trial function that severely limits the
class of wave functions for which the uncertainty relation is shown to be valid. © 2008 American
Association of Physics Teachers.
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I. HISTORICAL BACKGROUND

Heisenberg proposed his famous uncertainty relation 80
years ago in the form !q!p%h and asserted, but did not
demonstrate, that it could be derived directly from the math-
ematics of the new matrix mechanics, then all of 18 months
old.1 The quantities !q and !p are uncertainty measures of
the position q and momentum p, and h is Planck’s constant.
A derivation appeared immediately thereafter in a fascinating
paper by Kennard, which Heisenberg cited in connection
with his own proof in his 1929 University of Chicago
lectures.3,4 At about the same time Weyl sketched a proof
based on the Schwarz inequality in his book on applications
of group theory in quantum mechanics, citing a remark by
Pauli.5 Historians credit Kennard with the first proof.6 How-
ever, Kennard’s proof is flawed, and we must look to one of
the other actors for the first unambiguously correct demon-
stration of this famous inequality.

Bohr appears to have been the first to point out the path to
a proper derivation by linking it !in his 1927 Como lecture"
to a theorem of physical optics.7 But he gave no details and
in any case his method of derivation was not what Heisen-
berg had in mind when he said the relation followed directly
from quantum theory. By juxtaposing the uncertainty relation
with the commutator qp−pq= i!h /2""I Heisenberg gave the
clear impression that the latter directly implies the former.
Here q and p are matrices representing position and momen-
tum and I is the identity matrix. The general link between
commutators and uncertainty products like !q!p was estab-
lished by Robertson in 1929 and extended by Schrödinger
the following year,8,9 but most derivations for the position-
momentum uncertainty product do not explicitly invoke the
commutator. One of these is Kennard’s.

Kennard’s paper consists of two long parts—an overview
of the new quantum mechanical formalism, and several ap-
plications to “simple motions,” between which the uncer-
tainty principle derivation appears beginning on p. 337 of
Ref. 3. The paper has not been translated into English or
included in any of the useful compilations of historical pa-
pers from this period,2,10,11 but Nieto has remarked that Ken-
nard’s result for the motion of harmonic oscillator wave
packets was a discovery of “squeezed states” that was “too
far ahead of #its$ time.”12 Bohr also cited Kennard’s work on
the motion of wave packets in some simple cases.7 The dif-
ficulty with Kennard’s approach to the uncertainty relation
seems to have passed undetected for eight decades.

The uncertainty measure in these early papers often differs
by &2 from the now-conventional root-mean-square devia-

tion from the mean. This factor multiplies the right-hand side
of the relations by a factor of two so, for example, Eq. !14" in
Heisenberg’s Chicago lectures,4

#p#q $
h

2"
, !1"

is correct using the definition

!#q"2 = 2' !q − qm"2(%!q"(2dq , !2"

where qm is the expected value of q with the distribution (%(2.
Kennard set qi=#q, pi=#p, and I will use this notation and
also set the means qm, pm to zero, which amounts to resetting
the origins of the coordinate and momentum frames. I also
reserve !q and !p for the conventional root-mean-square
deviations, that is, omitting the factor of two on the right of
Eq. !2", and replace h /2" everywhere with &. In the follow-
ing %!q" is the probability amplitude !wave function" in the
position representation and '!p" is its corresponding mo-
mentum space representation.

II. KENNARD’S DERIVATION

Kennard begins by examining a wave function that has a
Gaussian amplitude and a quadratic term in its phase. The
position and momentum space forms !in our notation",

%!q" = C exp)−
q2

2qi
2 + ib2q2* , !3a"

'!p" = C1 exp)−
p2

2pi
2 + ib1

2p2* , !3b"

are related by a Fourier transform, which leads to the rela-
tions C2=1 /&"qi, C1

2=1 /&"pi, b1
2=b2qi

2 /&2!1+4b4qi
4", and

pi
2 =

&2

qi
2 !1 + 4b4qi

4" . !4"

Here qi and b are arbitrary parameters. For this particular
class of functions

qipi $ & for Gaussian wave packets with quadratic phase,

!5"

and the minimum uncertainty product for these functions
is achieved when the quadratic part of the phase vanishes:
b=0.
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To establish the lower bound generally, it is necessary to
consider an arbitrary wave packet, which Kennard repre-
sented as

%!q" = f!q"%0!q" = f!q"C0 exp)−
q2

2qi
2* . !6"

Here C0 is a real normalization factor and %!q" is an arbitrary
normalizable wave function whose uncertainty measure is qi
determined from Eq. !2" with #q=qi. The function f!q" is
defined by this relation. Kennard substituted this form into
the definition of pi

2, which he wrote in the position represen-
tation in the form !after an integration by parts"

pi
2 = 2' %*!q"+&

i

"

"q
,2

%!q"dq = 2&2' %*!!q"%!!q"dq .

!7"

Primes here denote differentiation with respect to q; the
reader will recognize !& / i"!" /"q" as the momentum operator
in the position representation. After simple manipulations the
reader may verify using Eq. !6" that Eq. !7" can be expressed
as

pi
2 =

&2

qi
2)1 + 2qi

2' f*!f!%0
*!q"%0!q"dq* . !8"

Compare Eq. !8" with Eq. !4". In Kennard’s words “since the
integral on the right cannot be negative, #Eq. !5"$ holds in all
generality” !“gilt ganz allgemein”".

III. ANALYSIS OF KENNARD’S TRIAL FUNCTION

This argument, however, is circular. Equation !8" is an
identity contrived to look like Eq. !4" by the particular choice
of trial function in Eq. !6". Kennard’s derivation can be ex-
ecuted with any trial function represented by an amplitude
f!q" times a factor %0!q" whose second derivative is propor-
tional to itself, with the coefficient of proportionality at most
quadratic in q !a linear term is excluded by our convention
qm=0". Thus we let

d2%0!y"
dy2 = !( + )y2"%0!y" , !9"

where y=q /qi and ( and ) are arbitrary real constants. We
evaluate the derivatives in Eq. !7" with %0!q" satisfying Eq.
!9" and find

pi
2 =

&2

qi
2)− !2( + )" + 2qi

2' f*!f!%0
*!q"%0!q"dq* . !10"

Because ( and ) are arbitrary, the lower limit achieved by
setting the non-negative integral on the right to zero can be
adjusted at will. For Kennard’s %0!q" of Eq. !6", (=−1 and
)=1. But why choose these values? Replacing qi in Eq. !6"
by qi /*, for example, gives (=−*2 and )=*4. Choosing
*2=1 /2 would then suggest a minimum uncertainty product
of 3& /4. Other forms for %0!q" that satisfy Eq. !9", such as
cos!*q /qi" permit similar flexibility in choosing the lower
limit. The point is that this reasoning does not establish a
definite lower limit for the uncertainty product, nor tell us
which function will achieve it. Kennard’s trial function
“stacks the deck” in favor of the Gaussian wave function.
The arbitrariness of %!q" is irrelevant because the expression

that adds to the non-negative integral in Eq. !10" depends
entirely on Eq. !9" for %0!q". We know from the proofs based
on the Schwarz inequality that Eq. !5" is generally valid, and
the minimum is achieved by a Gaussian wave packet. But
Kennard’s derivation is incapable of giving this information.

Is there a way to save this proof? Rather than defining f!q"
in terms of the arbitrary function %!q", which makes Eq. !8"
an identity, we can imagine choosing f!q" freely and defining
%!q" through Eq. !6". Then the parameters C0 and qi would
have to be determined self-consistently from the normaliza-
tion condition and Eq. !2". The same mathematical steps
would be valid, but now f!q" would be an independent arbi-
trary function. Unfortunately, the class of functions for which
this approach can be made to work is limited.

The problem appears when we attempt to determine the
parameter qi. We insert Eq. !6" for %!q" into Eq. !2" with
qm=0, and find

qi
2 = 2' q2C0

2(f!q"(2e−q2/qi
2
dq . !11"

The normalization condition may be used to evaluate C0
2

whose inverse is a function G!qi" of qi:

' (f!q"(2e−q2/qi
2
dq =

1

C0
2 - G!qi" . !12"

We next rewrite Eq. !11" in terms of G!qi" to find

qi
2G = 2qi

4 dG

d!qi
2"

!13"

or

dG

dqi
=

G

qi
. !14"

Equation !14" is not a differential equation for G!qi", but
an implicit equation for qi. Solutions occur whenever a ray
from the origin G=qi=0 is tangent to the !everywhere posi-
tive" graph of G!qi". Unfortunately, it does not possess physi-
cally meaningful solutions for arbitrary choices of f!q". It is
a nonlinear eigenvalue equation that serves not only to de-
termine qi, but also to restrict the class of amplitudes (f ( that
permit real, positive, nonzero values of qi. For example, if
(f!q"(2 remains finite and smooth for small q, then G!qi" for
small qi becomes

G!qi" →
qismall

&"qi(f!0"(2. !15"

Although G!qi" automatically satisfies Eq. !14", it leads to a
trial function % proportional to a Dirac delta function with a
vanishing coefficient:

%!q" =
1

&G!qi"
f!q" exp)−

q2

2qi
2*

→
qismall

!2&""1/2&qie
i+!q"#!q" , !16"

where + is the phase of f . For these functions well-behaved
near zero, Eq. !14" may possess solutions other than qi=0 for
some f!q", but that is not necessary. For example, if f is a
simple Gaussian with an arbitrary width qf,
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f!q" = exp)−
q2

2qf
2* , !17"

we find

G!qi" =
&"qi

&1 + qi
2/qf

2
, !18"

for which qi=0 is the only solution of Eq. !14". The same is
true for f =cos!kq". The function whose squared amplitude is
q sinh!kq" leads to the imaginary solution qi=2i /k. All these
functional forms are excluded from the class of wave func-
tions for which this approach to Kennard’s derivation can be
implemented.

Note that a nonzero solution of Eq. !14" can occur only if
G!qi" possesses an inflection point. As the width qi of the
Gaussian factor in the integral of Eq. !12" increases, spread-
ing like an umbrella over the amplitude factor (f!q"(2, the
integral can increase abruptly as the Gaussian overlaps a
peak in the amplitude. Thus, a function f!q" whose squared
amplitude has peaks displaced from the origin can possess
real, positive, nonzero values of qi. It is precisely among
wave functions that do possess a single central peak, how-
ever, that we might expect to find one that reduces the un-
certainty product below the lower limit already found in Eq.
!5" for a Gaussian, and a correct proof needs to consider
these functions.

IV. CONCLUSION

No equation in Kennard’s proof is incorrect, only the
statement that the proof is general, or that the minimum un-
certainty product has been demonstrated. Depending on
whether %!q" or f!q" in Eq. !6" is regarded as the given
arbitrary function, the argument is either a tautology or en-
tails a condition that restricts the range of functions for
which the proof is valid.

This conclusion raises the question of who deserves prior-
ity for a rigorous demonstration of the correct mathematical
uncertainty relation. Many renowned physicists and math-
ematicians were active during this period, and it is difficult to
know from their published work who first conceived the
proof that Heisenberg used in his Chicago lectures.4 My fa-
vorite statement of the proof that is close to the modern
version appears in Fock’s 1931 text.13 Fock cites Weyl,
whose derivation is rigorous if not elegant, and Weyl ac-
knowledges Pauli, with whom Heisenberg had shared his
manuscript for Ref. 1 even before he showed it to Bohr.
Pauli’s derivation in his lectures is very similar to

Heisenberg’s.14 Perhaps Pauli was the ultimate source of in-
spiration for the first rigorous derivation of this important
consequence of quantum theory.
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