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Preface

Ever since the history of science emerged as a discipline at the heart of the
Age of Enlightenment in the eighteenth century, Arabic science1—or at least
certain sectors of it—have constantly been cited by the philosophers and
historians of science. For the former, such as Condorcet, it was a guarantee
of the continued progress of enlightenment during a period dominated by
‘superstitions and darkness’; for the latter, notably Montucla, Arabic science
was necessary not for the sketching of a historical picture, but in order to
establish the facts of the history of the mathematical disciplines. But
philosophers and historians alike had received only the echoes of Arabic
science, which had reached them through ancient Latin translations. We
must, of course, beware of over-generalization or errors of perspective, and
bear in mind that the sciences do not all maintain the same connection with
their history; thus, of the mathematical sciences at least, astronomy is the one
most firmly linked with its history, if only on account of the values of the
observations that were recorded in books over the course of time and
consulted by successors. Consequently Arabic astronomy assumed a
privileged position, fairly rapidly attracting the attention of historians such as
Caussin de Perceval, Delambre and, above all, J.-J.Sédillot—to name but
French scholars—at the beginning of the nineteenth century.

Later in the course of the same century, the image of Arabic science began
to change and to become shrouded with nuance. German Romantic
philosophy, and the German school of philology which it engendered, had
given considerable impetus to the philological and historical disciplines. The
history of Arabic science gained from this rapid expansion, before becoming
its victim: the study of Greek or Latin scientific texts could no longer eschew
the Arabic works;2 but the snare of history through languages—which we
have stressed elsewhere3—enmeshed the history of Arabic science and bore



it into retreat. De jure, therefore, it lost its right to exist, while de facto it was
indispensable to historians, who referred to it increasingly.

This paradox, which is apparent not only in second-order studies but
permeates a major work like Le Système du Monde by Pierre Duhem, is in 
fact merely the expression of a profound necessity: the historian of classical
science, whatever his doctrinal views, cannot avoid Arabic science when he
reviews the facts of the discipline whose history he is retracing. Following in
the wake of the Western doctrine of classical science, he can view Arabic
science as a repository of Hellenic science, a belated Hellenic science as it
were: science as theory is Greek and as experimental method it was born in
the seventeenth century. According to this doctrine Arabic science
constitutes an excavation site, in which the historian is the archaeologist on
the track of Hellenism. This approach has frequently ended up
misrepresenting the results of Greek science as well as those of the seventeenth
century, a necessary distortion if one wishes to link the two ends of the chain
in a continuous history; on the other hand, and not without coincidence, it
has led to some famous blunders affecting not only interpretation but
comprehension too. These doctrinal views prevented Carra de Vaux (who
translated the astronomical treatise of Nasir al-Din al-Tusi) and the eminent
historian P.Tannery (who quotes it) from grasping the innovation that it
entailed and which Neugebauer was to emphasize much later. But the
historian of classical science has also managed to break away from this
doctrine: the other historical practice, contemporaneous with the former, came
into being with the work of Alexander von Humboldt, under whose influence
certain scholars became involved in the direct and innovative study of the
history of Arabic sciences: F.Woepcke and L.A.Sédillot, for example, whose
work was later followed up by Nallino, Wiedemann, Suter, Ruska,
Karpanski, Hirschberg, Kraus, Luckey, Nazif, etc., resulting in an
unprecedented acceleration of this line of research from the 1950s onwards.

Built up over the decades, this work opened the way to a better knowledge
of Arabic science and of its contribution to classical science; it also enabled
the understanding of one of its essential features, which had hitherto been
obscured. In Arabic science a potentiality of Hellenic science was realized:
the tendency beginning to germinate in the Greek scholars, to go beyond the
frontiers of an area, to break the bounds of a culture and its traditions, to take
on world-wide dimensions, was fulfilled in ‘a science developed around the
Mediterranean not as such but as a forum of exchange of all the civilizations
at the centre and at the periphery of the ancient world’ (Rashed 1984).

Arabic science was ‘international’, one can say today, as much on account
of its sources as through its developments and extensions. Even if the
majority of those sources were Hellenistic, they also comprised writings in
Syriac, Sanskrit and Persian. The weights of these different contributions
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were, of course, unequal, but this does not detract from the fact that their
multiplicity was essential to the evolution of Arabic science; and even in the
case of mathematics, which no one would deny to be the ‘heir’ of Greek 
science, it is essential to go back to other sources for a true understanding. We
can see, for example, in the chapter devoted to astronomy the importance of
Indian and Persian roots, not only in the development of an astronomy of
observation and of astronomical calculation, but also for the new
configuration of Ptolemaic astronomy.

Within this new framework, the transmission of findings mattered less
than the opportunity which occurred to bring together different scientific
traditions, henceforth united within the scope of Islamic civilization. The
novelty of this phenomenon was that it was not the fruit of chance meetings,
of the regular or unexpected passage of caravans or seafarers; it was the
deliberate result of a massive movement of scientific and philosophical
translation, undertaken by professionals—sometimes rivals —supported by
power and stimulated by the research itself. From this movement was born a
library on the scale of the world of its time. Thus traditions from different
origins and languages became elements of one civilization whose scientific
language was Arabic, and found ways of reacting together to bring about new
methods, and sometimes even initially unforeseen new disciplines—see, for
example, the chapter on algebra (volume II, chapter 11). The social study of
Arabic science will one day enlighten us about the role of Islamic society and
of Islamic cities in this historic movement; we may then understand how
previously independent scientific currents were able to meet and combine.

This characteristic of Arabic science, which was already marked in its
earliest phase, became even more pronounced later. The scholars of the
eleventh and twelfth centuries continued to discuss results obtained
elsewhere, extending them and integrating them into theoretical structures
often foreign to their area of origin. Seen in medicine, in pharmacology or in
alchemy, this phenomenon also affected the mathematical sciences, as shown
later in the works of al-Biruni or of al-Samaw’al on the Indian methods of
quadratic interpolation, or in the formulation by Ibn al-Haytham of the
theorem of the Chinese remainder.

With Arabic science it became possible to read in one language the
translations and the scientific work of the ancients, as well as the advanced
research of the moderns. The latter was produced in Arabic at Samarkand as
in Granada, by way of Baghdad, Damascus, Cairo or Palermo. Even when a
scholar wrote in his mother tongue, notably Persian—like al-Nasawi or Nasir
al-Din al-Tusi—he undertook to translate his own work into Arabic. In short,
from the ninth century onwards, the language of science was Arabic, and that
language had in turn acquired a universal dimension: it was no longer the
language of one people but of several; it was no longer the language of a single
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culture but of all learning. Thus previously inexistent channels opened up to
facilitate immediate communication between scientific centres from central
Asia to Andalusia and exchanges between scholars. Two practices then
underwent unprecedented expansion. First, scientific journeys as a means of
learning and teaching—ample evidence of which can be found in the
biographies of scholars bequeathed to us by the ancient bio-bibliographers—
such as those of Ibn al-Haytham between Basra and Cairo; of Maimonides
from Córdoba to Cairo; and of Sharaf al-Din al-Tusi going from Tus to
Damascus, through Hamadhan, Mosul and Aleppo. Second, scientific
correspondence, a new literary genre, with its usages and its standards,
became an instrument for collaboration and the diffusion of research. Arabic
science, then, commensurate with the world of its time was, as we see,
accompanied by a succession of changes: relations between the old traditions
were modified, the composition of the scientific library altered, and the
mobility of scholars and ideas was on a different scale.

It is surprising that such a fundamental and obvious feature of Arabic
science should have remained obscured and escaped the attention of
historians. One can, of course, relate this to the oblique viewpoint of an
historical ideology which views classical science as the achievement of
European humanity alone. But two considerations need to be added to that:
one pertaining to the history, and the other to the historiography, of science.
It is a question, first, of the privileged links that unite Arabic science with its
Latin extensions and, more generally, with the science developed in western
Europe up to the seventeenth century. In fact from the twelfth century
onward, Latin science could not be understood without Latin translations
from Arabic; nor could the most advanced research in Latin—such as that of
Fibonacci and of Jordan of Nemours in mathematics, that of Witelo or of
Theodoric of Freiberg in optics—be appreciated without reference to al-
Khwarizmi, Abu Kamil and Ibn al-Haytham. These close links captured the
attention of historians and overshadowed the connections which unite the
Arabic sciences with other parts of the world, notably India and China. The
historiographical fact is the pre-eminence of the science of the seventeenth
century. The latter, which is considered—wrongly moreover—to be all of a
piece and revolutionary throughout, was invested in the writings of historians
with an a-historic transcendence, becoming an absolute reference for
situating all previous science. Presented as a postulate, and in the absence of
authentic knowledge of the works of the school of Maragha and of its
predecessors in astronomy—of al-Khayyam and of Sharaf al-Din al-Tusi in
algebra and algebraic geometry, of the Arabic infinitesimalists from Ibn
Qurra to Ibn al-Haytham—this absolute pre-eminence has naturally created a
vacuum prior to the works of the seventeenth century, and has resulted in a
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model of Arabic science that flattens its most remarkable peaks of
achievement.

It is not that a good knowledge of Arabic science will detract from the
innovations of Kepler in astronomy, of Galileo in kinematics or of Fermat in
number theory; on the contrary it will enable us to situate them more exactly,
by seeking them where they are and not, as is often the case, where they are
not. The progress of this knowledge will lead us to a more profound and
more rigorous perception of the scientific activities of this great century and
of the preceding century. It will encourage us to revise certain
representations and certain historiographical methods, and will guard us
against ideas of doubtful validity, notably that of the scientific Renaissance,
whilst engaging us in the examination of others, like that of the scientific
Revolution. But Arabic science must, in turn, recover its cosmopolitan
character; this means following its Latin and Italian extensions, also those in
Hebrew, Sanskrit and Chinese, not to mention achievements in the languages
of Islamic civilization, notably Persian. Finally, for a satisfactory knowledge
of Arabic science, it is necessary to restore it to its context, to the society
which witnessed its birth, with its hospitals, its observatories, its mosques, its
schools…. How indeed can one understand certain of its developments if one
forgets the Islamic city and its institutions, the function that science fulfilled
there and the importance of the role that it could play? This necessary
reflection will not be slow to dispel the erroneous but still flourishing views
engendered by ignorance which confine science to an alleged marginality at
the outermost limits of the city, or detect an illusory scientific decadence
from the twelfth century onward as the effect of an imaginary theological
counter-revolution.

Only at this price will the history of Arabic science accomplish its two
principal tasks: to open the way to a genuine understanding of the history of
classical science from the ninth to the seventeenth century; and to contribute
to the knowledge of Islamic culture itself by according it a dimension which
has never ceased to be its own: that of scientific culture.

This book has been conceived and realized to make its contribution
towards a history of Arabic science that meets the demands outlined above.
It is in fact the first synthesis ever carried out in this area and in this spirit,
and if such a synthesis is possible today, it is thanks to the research
accumulated since the last century and stimulated from the 1950s onwards.
The specialists whom we have invited to contribute the different chapters of
this edition are writing for the knowledgeable layperson and not merely an
inner circle of colleagues, without however over-popularizing their subject;
our aim has been to produce a genuine work of reference. We have tried to
restore to Arabic science its true aspect and place by emphasizing the
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analysis of ancient sources and by devoting some chapters to its extensions in
Latin and Hebrew. Because of a lack of specialists, other areas of extension 
have been less favoured. The book as a whole covers the history of Arabic
science over about seven centuries.

But a synthesis, and particularly an initial synthesis, cannot precede
effective research. This is far from having achieved the same level in the
different sectors of science—whence the absence of certain areas of Arabic
science, notably the earth and life sciences. Faced with the constraints
imposed by the number of pages at our disposal, we have opted for work in
depth at the expense of some gaps, rather than producing a so-called
comprehensive, but necessarily superficial and insubstantial text. Throughout
the work, we have assured ourselves of every humanly possible guarantee:
each chapter has been submitted to two other specialists, members or not of
the group of co-authors. Among these I should like to thank, in addition to
the co-authors themselves, J.Vuillemin, G.Simon, H.Rouquette, E.Poulle, S.
Matton, C.Houzel and K.Chemla. My thanks go also to A.Auger.

Roshdi Rashed
Bourg-la-Reine, February 1993

NOTES

Between the time the manuscript was ready and the printing of this work,
five authors died: G.C.Anawati, H.Grosset-Grange, D.Hill, A.S.Saidan and A.
Youschkevitch. I would like to pay homage to these highly talented authors.

1 By this expression we mean science written in Arabic, in the sense that one speaks
of Greek science or Latin science.

2 See, for example, the work of G.Libri, B.Boncompagni, M.Curtze and J.L. Heiberg
later.

3 Rashed (1984).

The Editor expresses his gratitude to the Publishers, who generously
ordered and supervised the translation from French for a number of chapters.
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1
General survey of Arabic astronomy

RÉGIS MORELON

Interest in astronomy has been a constant feature of Arabic culture since the
end of the second century AH (eighth century AD), and it is the quantity of
study which strikes us first when we begin exploring this subject: the number
of scientists who have worked on theoretical astronomy, the number of
treatises which have been written in this field, the number of private or
public observatories which have been successively active and the number of
precise observations recorded there between the ninth and the fifteenth
centuries.

This chapter is exclusively concerned with astronomy as an exact science,
without considering the question of astrology. In fact, although the same
authors sometimes wrote treatises in both disciplines, they never mixed
purely astronomical reasoning and purely astrological reasoning in the same
book and in most cases the titles of the works indicate unambiguously
whether their contents relate to one discipline or the other.

The science of astronomy is chiefly defined by two terms: ‛ilm al-falak, or
‘science of the celestial orb’, and ‛ilm al-hay’a, or ‘science of the structure
(of the universe)’; the second term can be translated in many cases as
‘cosmography’. In addition, many astronomical works are identified by the
word zij, a term of Persian origin corresponding to the Greek kanôn; in its
proper sense it denotes collections of tables of motion for the stars,
introduced by explanatory diagrams which enable their compilation; but it is
also often used as a generic term for major astronomical treatises which
include tables.1

The astronomical term which is generally used to refer to the stars is
kawkab, kawakib, while a word of similar meaning, najm, nujum, has a more
astrological connotation, and astrology is described with the aid of
expressions based on the latter term: ‛ilm ahkam al-nujum, sina‛at al-nujum,



tanjim…;2 however, ‛ilm al-nujum, ‘the science of the stars’, can include both
astronomy and astrology, as two different approaches to the same reality.3

In the Arabian peninsula, as in all of the ancient Near East, traditions of
observing the heavens went back a very long way; one of these traditions is of
particular note, having become well-known through its revival in what Arab
astronomers called the Treatises on the Anwa’.

The term anwa’ is the plural of naw’; it describes a system of computation
associated with observation of the heliacal risings and acronycal settings of
certain groups of stars, permitting the division of the solar year into precise
periods. The appearance of stars on the horizon at a given time of year was
considered to be a sign of meteorological phenomena signalling a change of
weather, so much so that the term naw’ acquired the meaning of rain or storm.
A brief reminder of the heliacal risings and acronycal settings of the fixed stars
is contained in Figure 1.1, which shows a rough projection on the prime
vertical of the apparent trajectory of the sun. 

AB is the line of the horizon and O is the position of the sun under the
horizon before sunrise, so that a star at A, next to the ecliptic, is at the limit
of visibility when it rises, and a star at B is at the limit of visibility when it sets,
according to the luminosity of the sky on the horizon just before sunrise. This
situation shows the heliacal rising of star A and the acronycal setting of star
B. The next day, because of the ‘apparent movement of the sun’
(approximately one degree per day), the sun will be further away from the
horizon when A and B are in the same situation, and these two stars will be
more visible since the horizon will be less luminous. About six months later,
A and B will have exchanged their positions and B will be rising with A
setting.

Figure 1.1
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Originally the observation of these phenomena for definite groups of stars
allowed the solar year to be divided into fixed periods, probably twenty-eight
in number. After the eighth century, under the influence of Indian tradition,
this system of calculation became combined with that of the twenty-eight
‘lunar mansions’ (manazil al-qamar), groups of fixed stars close to the
ecliptic, delineating the zones of the sky in which the moon is found night by
night during the lunar month. The Treatises on the Anwa’ which have been
handed down—in written form from the ninth century— are like a series of
almanacs giving the solar calendar dates for the heliacal risings and
acronycal settings of stars which correspond to the lunar mansions, together
with the meteorological phenomena that are traditionally associated with
them. Under this system the year was divided into twenty-eight periods of
thirteen or fourteen days.4

This ancient tradition, empirical in origin, was revived as a scientific
procedure by Arab astronomers within the framework of their studies
concerning the appearance and disappearance of stars on the horizon at the
moment of the rising or setting of the sun, which were based in part on the
Phaseis by Ptolemy, discussed below.5

SOURCES OF ARABIC ASTRONOMY

The first scientific astronomical texts translated into Arabic in the eighth
century were of Indian and Persian origin, and in the ninth century, Greek
sources took precedence. We shall discuss them in chronological order,
starting with texts in Greek.

Greek sources

Greek texts were of two types: ‘physical’ astronomy, in the old sense of the
word, and ‘mathematical’ astronomy.

The aim of ‘physical’ astronomy was to arrive at a global physical
representation of the universe by means of purely qualitative thought; this
astronomy was dominated by the influence of Aristotle, with his coherent
organization of the world into concentric moving spheres, ranging from a
common centre, the earth, and stable at that point. The first celestial sphere was
that of the moon—the sub-lunar world being one of generation and
corruption, the supra-lunar world one of permanence and uniform circular
motion, the only motion that could befit the perfection of the celestial bodies
—while each star had its own sphere to move it, and so on out to the sphere
of the fixed stars which enclosed the universe.
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‘Mathematical’ astronomy sought a purely theoretical, geometrical
representation of the universe, based on precise numerical observations,
disregarding if necessary its compatibility with a coherent world of the
‘physical’ type: to find the geometrical parametric models capable of
accounting for measured celestial phenomena, enabling the calculation of the
position of the stars at a given moment and the compilation of tables of their
movements.

The history of ancient scientific astronomy is built in part on the tension
between these two approaches to the same science.

‘Mathematical’ astronomy developed within the framework of Hellenistic
astronomy—especially from the time of Hipparchus (fl. 160–126 BC),
adapting the work of Apollonius from the previous century —but it was the
work of Ptolemy in the second century AD which represented its crowning
achievement in the Greek language.

Ptolemy is the scientist whose works have been the most studied, revised,
commented on and criticized by later astronomers, until the seventeenth
century. His four works on astronomy, in the order of their composition, are
the Almagest, the Planetary Hypotheses, the Phaseis and the Handy Tables.
The first two are the most important.

The Almagest, or Great Mathematical Compendium, handed down in the
original Greek and in several Arabic translations, is regarded as the standard
manual, which has served astronomy in the same way as Euclid’s Elements
served mathematics. Suffice it to say that within this monumental work of
thirteen volumes Ptolemy synthesized the research of his predecessors,
modifying it according to his own observations, and refining the old
geometrical models or creating others. It was no accident that the word
‘mathematical’ was included in the title of the work, because Ptolemy made
little reference therein to the ‘physical’ situation of the universe, even though
he took this implicitly into account; he established and detailed the
geometrical procedures capable of accounting for observed phenomena, on
the basis of two postulates of ancient astronomy: the earth is stable at the
centre of the world, and all celestial motion must be explained by a
combination of uniform circular movements. He defined his method thus:

1 To collect the greatest possible number of precise observations
2 To identify anomalies in the movements thus observed in relation to

uniform circular motion
3 To determine experimentally the laws governing the periods and the

magnitudes of the anomalies
4 To combine uniform circular motions with the aid of concentric or

eccentric circles and epicycles to account for the observed phenomena 
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5 To calculate the parameters of these movements in order to compose
tables for calculating the positions of stars.

Ptolemy’s method was therefore defined very precisely, but his desire to ‘save
the phenomena’ led him in practice to infringe certain of his basic principles
and to allow empiricism to intrude on some of his demonstrations, as he states
himself in the last volume of his work: ‘Each of us must endeavour to make
the simplest hypotheses agree with the celestial movements as best he can,
but if this is not possible he must adopt the hypotheses which fit the facts’.

Figure 1.2

Ptolemy based the research for his geometrical models on work carried out
by Hipparchus—drawing in turn from Apollonius—when he had developed
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the system of epicycles and eccentrics. Let the earth be stationary at T, the
position of the observer. In the simple eccentric system (Figure 1.2(a)) a star
at M travels on the circle MAP in uniform circular motion about the centre O,
but the observer notices a different apparent speed when the star is at the
apogee A or the perigee P. This geometric model can be applied to account
for the apparent movement of the sun. In the simple epicycle system
(Figure 1.2(b)), we imagine the observer at T, the centre of a circle CDF (the
deferent), on which there travels a small circle with centre C (the epicycle),
on the circumference of which moves a star M, the two circular motions
being uniform and the angular speed of the centre C corresponding to the
mean motion of the planet. This epicycle system, like that of the eccentric,
can explain the difference in distance to the earth, but, above all, it can
account for the apparent retrograde motion of the planets in a much more
convincing way than a pure system of concentric physical spheres: when the
planet is at P and its apparent angular speed on the epicycle is greater than
that of C, it has an apparent retrograde motion; on the other hand, when it is
at A, the two speeds sum and, to the observer at T, it appears to move faster
than C.

This system of epicycles is very versatile and lends itself to a more
complex combination of the elements concerned: the deferent CDF can be
considered as eccentric with respect to the earth (Figure 1.2(c)), and makes in
its turn a circular movement around T. One can thus arrive at highly
complicated models, such as that of the moon or Mercury. For the larger
planets (Mars, Jupiter, Saturn), Ptolemy takes an eccentric deferent CDF,
with centre O, with the observer still situated at T, but he asserts that the
uniform motion of the centre C of the epicycle is not around O but around the
point E such that O is in the middle of TE; the point E is called the ‘equant
point’. This expedient leads to a better agreement between the theoretical
model and the observations but contradicts the basic principle of uniform
circular motion.6

It is thus possible to find the position of different planets in the heavens; it
only requires calculation, based on observations, of the different parameters
in each case: eccentricities, relative size of the radii, and angular velocities on
the different circles.

The Planetary Hypotheses has been preserved partly in Greek (a little less
than a quarter of the work) but there is a complete Arabic version.7 It is much
shorter than the Almagest, and its general tone is very different. First,
Ptolemy calculates the maximum and minimum distances of the stars in
terms of the data in the Almagest and thus divides the universe into
concentric zones, each corresponding to the area in which a given star could
move, placing the spheres of fire, air, water and earth under the sphere of the
moon, in accordance with Aristotle. Thereafter, his point of view becomes
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‘physical’ in the Aristotelian sense of the term rather than ‘mathematical’. He
seeks to describe the form of the physical bodies within which the circles
which account for the various movements can be conceived, as an expression
of the constitution of the real physical universe. He divides the ‘ether’ into
thick globes tangential to one another, recalling the Aristotelian system of
homocentric spheres; but Ptolemy also uses eccentric spheres and adds a
further arrangement of tori and discs. The result is a kind of highly complex
compromise between a purely geometrical system and a coherent physical
system such as that defined by Aristotle. Ptolemy had thus attempted to
embody his theory in a concrete ‘physical’ system, but the Planetary
Hypotheses was to have less influence than the Almagest, apart from his
calculations of the distances and sizes of stars which would be largely
accepted by later astronomers.

The Phaseis treats of the appearance and disappearance of fixed stars just
before sunrise or just after sunset (heliacal rising and acronycal setting). This
work is in two parts, only the second of which is preserved in Greek and
which contains a calendar of appearances and disappearances of stars on the
horizon in the course of the year. The contents of the first part, a purely
theoretical analysis of this particular phenomenon, is only known through an
Arabic text.8

The Handy Tables has been handed down in Greek in Theon of
Alexandria’s fourth-century Commentary on the Handy Tables. It represents
a rethinking in practical form of the theoretical results of the Almagest
through the creation of detailed tables, with modification of certain
parameters in accordance with the results in the Planetary Hypotheses and in
the Phaseis.

All these works are cited by Arab astronomers as far back as the ninth
century, together with the commentaries on the Almagest composed by
Pappus and by Theon of Alexandria, and also a series of Greek treatises
known as the ‘Small astronomy collection’ because it was regarded as an
introduction to the reading of the Almagest: the Data, the Optics, the
Catoptrica and the Phenomena of Euclid;9 the Spherics, On Habitations and
On Days and Nights of Theodosius;10 On the Moving Sphere and On Risings
and Settings by Autolycus;11 On the Sizes and Distances of the Sun and
Moon by Aristarchus of Samos;12 On the Ascensions of Stars of Hypsicles;13

and the Spherica by Menelaus.14

Indian and Persian sources

Three Indian astronomical texts are cited by the first generation of Arab
scientists: Aryabhatiya, written by Aryabhata in 499 and referred to by Arab

GENERAL SURVEY OF ARABIC ASTRONOMY 7



authors under the title al-arjabhar; Khandakhadyaka by Brahmagupta (d.
after 665), known in Arabic under the title zij al-arkand; and
Mahassidhanta, written towards the end of the seventh or at the beginning of
the eighth century, which passed into Arabic under the title Zij al-Sindhind.15

These texts are based on the yearly cycles corresponding to Indian
cosmology, and their scientific tradition is linked with an earlier period of
Hellenistic astronomy than that of Ptolemy; they thus preserve a certain
number of elements that can be traced back to the time of Hipparchus. They
contain few theoretical developments but methods of calculation for creating
tables and numerous parameters of the movement of stars. The major scientific
innovation of the Indian scientists in this field is the introduction of the sine
(half-chord of the double arc) in trigonometric calculations, which makes
these much less cumbersome than the chords of arcs used in Greek
astronomy since Hipparchus (see vol. II, chapter 15).

In Persia, under the Sasanids (AD 226–651), some activity in scientific
astronomy developed in the Pahlavi language, under both Indian and Greek
influence (Ptolemy’s Almagest was translated into Pahlavi in the third
century). This work seems to have been primarily oriented toward astrology,
and the only traces which remain are found in Arabic texts from the end of
the eighth century onward; these refer in particular to the ‘Royal tables’ (zij al-
Shah), several successive versions of which are reported: from 450, 556 and
630 or 640 (under Yazdegerd III). These tables depended principally on
Indian parameters.16

The chapters which follow detail how the Arab astronomers worked with
these different sources.

OBSERVATIONS AND OBSERVATORIES

Small portable instruments and sundials are described in Chapters 4 and 5.
Here we shall confine ourselves to a brief presentation of observatories and
their large-scale instruments.17

Ibn Yunus reports that astronomical observations were carried out at
Gundishapur at the end of the eighth century by al-Nihawandi (d. AH 174
(AD 790)), whose work has been lost.18 But the earliest precise observational
results to have come down to us were recorded first in the al-Shammasiyya
quarter in Baghdad, and then on Mount Qasiyun at Damascus, in the final
years of the reign of Caliph al-Ma’mun (813–33) and through his impetus.
They involved a precise programme dealing particularly with the sun and the
moon, and at Damascus there was a complete year of continuous observation
of the sun in AH 216–17 (AD 831–2). The work does not appear to have
continued at these two sites after the death of al-Ma’mun.
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Apart from the numerical results found in later texts, we know little about
these two observatories—their functioning, their size, etc.—except that
Yahya b. Abi Mansur, who was in charge of the observation work at
Baghdad, belonged to the famous ‘house of wisdom’ (bayt al-hikma), and
that the caliph himself had demanded that the instruments used should be the
most precise possible. There is no explicit mention of the type of instruments
used, but the form of the results and the kind of observations carried out are
the same as Ptolemy’s, which indicates that the instruments were similar to
those described in the Almagest, i.e. the equatorial or equinoctial armilla, the
meridian armilla, the equatorial quadrant (the plinth), the parallactic rods, the
large gnomons, the dioptra of Hipparchus for measuring apparent diameters,
and the armillary sphere (Singer et al. 1957: III, 586–601); these were the
classic instruments of ancient astronomy and were gradually improved by
Arab scientists, who sought in particular to construct larger and larger circles
to achieve greater precision.19

In the wake of the first series at Baghdad and Damascus, a number of
other observations were recorded during the course of the ninth century by
Habash al-Hasib, the Banu Musa, al-Mahani, Sinan b. Thabit, etc. In the
majority of cases only the place is mentioned (Baghdad, Damascus, Samarra
or Nishapur, for example) with no indication of the setting in which these
observations were made, which indicates that they were carried out from
private observatories, outside any collective structure.

All these accumulated observations had not yet been organized
systematically, but, by way of comparison, it should be noted that Ptolemy
based all the work in his Almagest on ninety-four observations made between
720 BC and AD 141, the oldest having been recorded in Babylon and the
latest (thirty-five in all) being due to Ptolemy himself (Pedersen 1974:408–
22). It is therefore evident that, from the ninth century, the Arabic
astronomers had at their disposal the results of a far greater number of recent
observations than those available to Ptolemy when creating his work.

At the turn of the ninth and tenth centuries, al-Battani emerged as one of
the major observers of the first period of the history of Arabic astronomy.
For a period of about thirty years he followed a systematic programme of
observations at Raqqa in the north of present-day Syria, and in the context of
locating the first crescent moon on the horizon, he made what appears to be
the first reference to ‘observation tubes’ in an astronomical treatise in the
Greco-Arabic tradition.20 These tubes, without lenses, enabled the observer
to focus on a part of the sky by eliminating light interference.21 Al-Battani
only mentions them, but the work of al-Biruni includes an exact description
of this type of apparatus, in a section that is also dedicated to verifying the
presence of the new crescent on the horizon:22
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This tube is fixed on a column and is capable of two movements: the
first is the movement of the column itself, enabling one to turn the tube
in all directions; the other is around an axis so that the tube moves in
the plane of the circle of elevation in which it lies. The tube must be
not less than five cubits in length and one cubit in section. The view is
concentrated and strengthened because of the shadow of the tube and
its darkness, augmented by its internal blackness. When the column is
placed at the centre of the Indian circle, it can be turned round until the
plumbline fixed at the end of the tube is in line with the azimuth of the
crescent; then the other movement is used until the tube makes an angle
with the surface of the earth equal to the height of the crescent; this is
simple with a quadrant divided into 90 degrees attached to the column
and turning with it parallel to the tube.

This observation tube, whose use is thus attested in the Arabic world from at
least the end of the ninth or the beginning of the tenth century, passed into
the medieval Latin West where it became a standard astronomical
instrument.23

Numerous other observations were recorded in the East in the course of
the tenth century. Let us briefly mention in particular the work carried out at
the end of that century by al-Quhi and Abu al-Wafa’ al-Buzjani from the
large observatory built in the gardens of the royal palace at Baghdad under
Sharaf al-Dawla (AH 372–9 (AD 982–9)); that of ‛Abd al-Rahman al-Sufi
(d. AH 376 (AD 986)), who systematically observed the fixed stars at
Isfahan, measured their position, and published as a result his famous
catalogue of stars, which was a complete revision of Ptolemy’s;24 and that of
Ibn Yunus at Cairo, at the turn of the tenth and eleventh centuries.25 But let
us look more closely at the observatory of Rayy.

It was at Rayy (12 km south of Teheran), in the reign of Fakhr al-Dawla
(AH 366–87 (AD 977–97)) who subsidized it, that al-Khujandi (d. c. AH 390
(AD 1000)) devised and built a very large sextant for solar observations,
based on the principle of the black box: a dark room with a small opening in
the roof (Bruin 1969).

The building was oriented north-south along the meridian; it was
composed of two parallel walls, 3.5 m apart, about 20 m in length and 10 m
high (see Figure 1.3); it was devoid of light, but a small opening was made in
the southern corner of the roof of the building. The ground was partially
excavated between the two walls so that a sextant of 20 m radius could be
drawn with the opening in the roof as its centre. The interior of the arc of the
sextant was covered in copper plate where the image of the sun formed when
it was at the meridian, and the markings permitted measurement of its height
above the horizon or its distance at the zenith. Each degree measured
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approximately 35 cm; it was divided into 360 parts of 10 seconds each, and
the image of the sun passing at the meridian formed a circle about 18 cm in
diameter; by finding the centre of the circle, a precise angle could be read off
the copper surface. In 994, al-Khujandi measured the obliquity of the ecliptic
as 23; 32, 19 and the latitude of Rayy as 35; 34, 39, but we have no other
point of reference to indicate for how long a period this sextant was used. 

There are several allusions to large-scale instruments in various earlier
observatories—for example, a construction of spherical shape, 12.5 m in
diameter, in the observatory of Sharaf al-Dawla at Baghdad, for following
the path of the sun—but the description of the great sextant at Rayy is the
first to be given in such precise detail about a large-scale structure within the
environment of a permanent observatory; most instruments of Hellenistic
design were portable or could be made in one place and transported to
another for ongoing use there, including large-sized copper circles or tubes
like those of al-Battani.

One other instrument of great size, cut into a permanent base of masonry,
is described by Ibn Sina (AH 370–428 (AD 980–1037)) in his treatise
Maqala fi al-alat al-rasadiyya.26 On the top of a circular wall about 7 m in
diameter lay a completely horizontal graduated circle. At the centre of the

Figure 1.3
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circle was a pillar bearing a double, vertically jointed rule, which could pivot
horizontally around the centre. The lower rule lay on the graduated circle and
allowed measurement of the azimuth; the upper rule carried a sighting system,
and the angle between the two rules gave the height of the object observed. This
construction was therefore based on a similar principle to that of the
‘observation tube’ described by al-Biruni. About two centuries later, at
Maragha, Ibn Sina’s instrument was further developed by the addition of a
second set of jointed rules—or by an analogous arrangement of two vertical
sighting devices pivoting independently around the centre of the large stone
circle—enabling simultaneous measurement of the height and azimuth of two
celestial objects.

The instrument described by Ibn Sina—and probably invented by him —is
of particular interest because its new sighting system was much more precise
than that of earlier instruments, giving independent readings of degrees and
minutes. The upper rule was equipped with two identical  movable sights,
each comprising two superposed aligning grooves (Figure 1.4(b)), A and B
on the first sight, and C and D on the second, so that AB=CD. Calling the
angle CAD a and the angle CBD b, we know these two angles by the
respective positions of the two sights, read from the upper rule. If we focus

Figure 1.4
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on a star through the two grooves A and C—or B and D—the required height
of the celestial object being observed will be the angle h, determined by the
position of the smaller rule R on the lower rule. If we observe the same object
through the two grooves A and D, the position of R will need to be altered to
give an angle at O of value h1 such that h=h1−a; if we sight through grooves
B and C, we must again modify the angle at O to a value h2 such that h=h2

+b. It is therefore possible in this way to bring the small rule R to a position
corresponding to the whole number of degrees that is closest—h1 greater or
h2 less—to the true height of the observed object, and then to manipulate the
position of the two sights to observe the star through A and D or B and C, so
that one only has to subtract an angle a or add an angle b, according to the
particular case, these angles being less than a degree and being accurately
determined on the upper rule. The position of the scale small rule R thus
gives the number of degrees, and the position of the sights AB and CD the
number of minutes. This procedure represented a major advance in the
precision of recorded measurements.

Around 1074, probably in the region of Isfahan, a large and highly
organized observatory was founded by Malikshah (AH 465–85 (AD 1072–
92)), counting al-Khayyam in particular among its scientists. Observations
there were planned to take place over thirty years, the period of one complete
revolution of Saturn, the planet then considered to be the most distant from
the earth (Sayili 1960:160–6). In fact it only operated for eighteen years,
until the death of its founder, but it was the first official observatory to have
had such long continuous activity backed by such a precisely planned
structure, and it was specifically in this tradition that the well-documented
Maragha observatory was constructed in the second half of the thirteenth
century, marking an important turning point in the history of Arabic
astronomy (Sayili 1960:188–223; Vardjavand 1980).

The observatory at Maragha (in northwest modern Iran) enabled the
creation of a new set of astronomical tables, known as the ‘Ilkhanian tables’
but above all it gave the scientists who worked there the opportunity of
producing better geometrical models than those of Ptolemy to account for the
movements of celestial bodies, thanks to the high quality of its instruments,
the rigorous organization of the work and the number of extremely high-
calibre researchers who were able to work there simultaneously. Nasir al-Din
al-Tusi (AH 597–672 (AD 1201–74)) had chief responsibility for the work,
and al-‛Urdi (d. AH 664 (AD 1266)) undertook the design of the instruments.
The building was financed by Hulagu Khan (d. AH 663 (AD 1265)), who
assigned the observatory large sums of revenue from a pro tected legacy
(waqf) for its maintenance. This is the first time, to our knowledge, that an
observatory was accorded this privilege, and it explains how work was able
to continue there following the death of its founder Hulagu, finances not
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having been abruptly terminated by the disappearance of the princely patron,
as had happened with the observatory of Malikshah, for example.

Building began at Maragha in AH 657 (AD 1259) and seems to have been
completed in AH 661 (AD 1263). The group of buildings was situated over
an area of 280 m×220 m; in addition to the various instruments, it included a
very important scientific library and a foundry for the construction of the
copper apparatus. The instruments designed by al-‛Urdi were those that were
already known, improved in size and precision, except for one which seems
to have been created for Maragha: the azimuthal circle equipped with two
quadrants, permitting the simultaneous measurement of the height of two
stars above the horizon.

A programme of continuous observations was intended by Nasir al-Din al-
Tusi to last for thirty years, as at the observatory of Malikshah and for the
same reason, but was reduced to twelve years, the period of rotation of Jupiter,
and the ‘Ilkhanian tables’ were in fact published after this period. A great
many scientists worked at Maragha—the most famous being Nasir al-Din al-
Tusi and Mu’ayyid al-Din al-‛Urdi themselves, and Muhyi al-Din al-Maghribi
and Qutb al-Din al-Shirazi, who will be covered in the following chapters—all
of whom participated in the task of extending the astronomy of Ptolemy. Thus
a veritable ‘school’ grew up around Maragha which would have an important
influence on all later developments in astronomy in the East.

Traces of activity at the observatory last until AH 715 (AD 1316), the date
of the death of its last known director, Asil al-Din, who was in charge from
AH 704 (AD 1304), but the buildings were in ruins by about 1350. We are
therefore sure that Maragha functioned for more than fifty years, although it
is not possible at present to date the ending of work at the site precisely.

This observatory had a marked influence, not only due to the importance
of the scientific work that it nurtured, which will be explained below, but
also because it acted as a model for the large observatories built later, of
which the most celebrated, because of the quality of their instruments, were
those at Samarkand and Istanbul. The observatory at Samarkand was founded
in AH 823 (AD 1420) by the sovereign Ulugh Beg, who was also a scientist
of high standing, and it remained active until nearly 1500 (Sédillot 1853).
The one at Istanbul was built by the astronomer Taqi al-Din from AH 982
(AD 1575) and only functioned for a few years (Sayili 1960: 259–305). The
last great observatories in the Maragha tradition were founded in India in the
eighteenth century by Jaï Singh, notably the one at Jaipur (1740), most of
whose instruments are still in place.

This brief survey has offered us some idea of the evolution of
observatories in the East. In the Muslin West, Andalusia and the Maghreb,
astronomical observation was far less developed; it did not form part of an
ongoing tradition and there is no trace of organized public observatories. The
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only precise observations that have survived were carried out from private
observatories, at the end of the fourth century AH (tenth century AD) by
Maslama al-Majriti and in the fifth century AH (eleventh century AD) by al-
Zarqallu, whose ‘Toledan tables’ had a marked influence in the medieval
Latin West.27

PROBLEMS OF PRACTICAL ASTRONOMY

From the end of the eighth century, with the development of the exact
sciences in the particular context of an organized Muslim society, scientists
from various disciplines were called upon to resolve a number of practical
questions relating to social or religious matters. It therefore fell to
astronomers, for example, to respond technically to the demands of the
astrologers, whose official social role was important; the astronomical tables
for calculating the position of the heavenly bodies were set up in part for this
purpose. But above all the astronomers were required to help solve practical
problems of calendars, time, or bearings on land or sea. This is illustrated by
Ibn Yunus at the start of his ‘Hakemite tables’ written at the beginning of the
eleventh century:

The observation of heavenly bodies is connected with religious law,
since it permits knowledge of the time of prayer, of the time of sunrise
which marks the prohibition of drinking and eating for him who fasts,
of the moment when daybreak finishes, of the time of sunset whose
ending marks the start of the evening meal and cessation of religious
obligations, and moreover knowledge of the moment of eclipses so that
the corresponding prayers can be made, and also knowledge of the
direction of the Ka‛ba (towards Mecca) for all those who pray, and
equally knowledge of the beginning of the months and of days
involving doubt, and knowledge of the time of sowing, of the
pollination of trees and the harvesting of fruit, and knowledge of the
direction of one place from another, and of how to find one’s way
without going astray.28

All these subjects gave rise to important theoretical developments which went
far beyond the bounds of the practical problems involved. They will be
discussed in detail in the following chapters on gnomonics and the science of
time, the question of the ‘qibla’ for determining the direction of Mecca from
a given place, calculation of the visibility of the crescent, mathematical
geography and the computation of the latitude and longitude of a place,
nautical science for navigating at sea, etc. Let us give some attention here to
the question of calendars.
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In the Arab world, the official calendar is lunar. Year one of the Muslim
era began on Friday 16 July AD 622, date of the Hijra (hence the European
custom of referring to Muslim years as AH), and the lunar year is made up of
twelve months of twenty-nine or thirty days; the change in date takes place at
sunset, and the passage to the following month occurs when the first crescent
moon is sighted on the horizon just after sunset. Ptolemy had passed on a
very accurate value for the average length of the lunar month at a little over
twenty-nine and a half days (by about forty-four minutes); a lunar year of
twelve months is therefore equal on average to 354.367 days. This value was
verified and re-adopted from the ninth century by Arab astronomers who
then introduced a cycle of thirty years to create an official calendar with
alternating months of twenty-nine and thirty days, eleven of the years in this
cycle having an additional day in the last month (which normally consisted
of twenty-nine days); these were the years 2, 5, 7, 10, 13, 16, 18, 21, 24, 26
and 29 of the cycle. The astronomic correspondence is thus closely respected
in the long term, but the visibility of the first crescent on the horizon on the
evening of the twenty-ninth day always brought in a change of month for the
place where this observation was made, so that there could be a difference of
one unit in the day of the month from one end of the Muslim world to the
other. Although actual visibility of the crescent was required in principle by
religious law, the question facing astronomers was how to calculate the
visibility of the lunar crescent in advance at a given place on the evening of
the twenty-ninth day of the month, whatever the reading on the official
calendar (which is what Ibn Yunus meant by ‘days involving doubt’ in the
earlier quotation). This is a difficult problem in view of the number of
parameters involved—celestial co-ordinates of the sun and the moon,
apparent relative speed of these ‘two luminaries’, latitude of the place,
brightness of the sky on the horizon, etc. —and numerous astronomers
studied the question, thereby producing important theoretical developments
concerning the visibility of heavenly bodies on the horizon just after sunset.

In Persia the solar calendar was always used in parallel with the lunar
calendar and corresponded at first to ‘the era of Yazdegerd’ which began on
16 June AD 632. As in the ‘Egyptian calendar’ used by Ptolemy in the
Almagest, the year was divided into twelve equal months of thirty days, and
five extra days—six every four years for leap years—were added at the end
of the year; these were called the ‘epagomenes days’ and allowed the legal
year to coincide with the astronomical solar year. This is the calendar which
was adopted from the beginning by the astronomers of Baghdad, because the
solar cycle is at the basis of astronomical measurements, and it was easier to
create tables of the movements of heavenly bodies for months that always
equalled thirty days. But the length of the solar year is a little less than 365.
25 days, and at the end of the eleventh century Jalal al-Dawla Malikshah—
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founder of the great observatory described above—asked the astronomers
whom he had appointed to review the composition of this calendar and make
the necessary corrections to avoid accumulating the slight discrepancy with
the apparent movement of the sun. Thus began ‘the era of Jalali’, instituted in
AH 467 (AD 1075) and comprising eight leap years in thirty-three years—
instead of the thirty-two years in the earlier computation—which
corresponded well with the astronomical calculations. This correction was of
the same order as the one which waited until 1582 in the West, when the
Julian calendar changed to the Gregorian calendar.29

But, apart from what we have called practical astronomy, the most
important contribution of Arab astronomers is found in the arena of pure
theoretical astronomy, which is not unrelated to the above.

GREAT PERIODS IN THE HISTORY OF ARABIC
ASTRONOMY

The history of Arabic astronomy can be broadly divided into two great
periods, the eleventh century being at the turning point between the two.

From the ninth to the eleventh century, the work was almost exclusively in
the area of geometrical models inherited from Ptolemy, reworked and
criticized on the basis of new observations, and in the eleventh century Ibn
al-Haytham (AH c. 354–430 (AD c. 965–1039)) made an evaluation of the
scientific papers accumulated for two centuries in his work al-Shukuk ‛ala
Batlamyus (‘Doubts concerning Ptolemy’).30 He drew up a catalogue of all
the still unresolved inconsistencies to be found in three of Ptolemy’s works,
the Almagest, the Planetary Hypotheses and the Optics—but without
proposing solutions.

This critical assessment led to a temporary impasse, since solutions could
only be found outside the framework in which astronomy had confined itself.
Solutions of two very different kinds were therefore sought, one in the
Muslim West and the other in the East.

In Andalusia there was a proposal to re-adopt Aristotelian principles by
abandoning epicycles and eccentrics and returning to homocentric spheres,
which would be much more consistent from a ‘physical’ astronomy point of
view. The most characteristic representative of this school was al-Bitruji (end
of the twelfth century), but his bases were almost entirely philosophical, and
it was impossible to make any calculations from his conclusions or to verify
them by numerical observations. This approach was therefore unproductive,
even though the underlying philosophical processes remain interesting.

In the East the response was scientific and gave rise to what we have
called the second great period of Arabic astronomy when the search took
place to account for the movement of heavenly bodies by means of new
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geometrical models of epicycles and eccentrics that were geocentric but non-
Ptolemaic. The essential part of that work was carried out by the team
connected with the Maragha observatory, described above.

The history of the development of theoretical astronomy in the Arab world
is therefore divided by the two following chapters in accordance with the two
great Eastern periods, and the work of the astronomers in the Muslim West is
described in the chapter on Arab science in Andalusia (chapter 7).

NOTES

1 For example, al-Battani’s important work, al-Zij al-Sabi, or al-Biruni’s AlQanun al-
Mas‛udi—where a transcription of the Greek term is retained—cited in the
bibliography; see also the following chapter.

2 See Rashed’s note on the term munajjim in Diophante (1984: vol. III, pp. 99–102).
3 See, for example, Abu ‛Abd Allah al-Khwarizmi, pp. 210ff.
4 For the Anwa’, cf. C.A.Nallino (1911:117–40, conferences 18 and 19) and The

Encyclopaedia of Islam, I, pp. 523–5. For the lunar mansions, cf. ‘Manazil’ in The
Encyclopaedia of Islam, VI, pp. 374–6.

5 In particular Sinan b. Thabit b. Qurra (d. 331 AH (943 AD)) reproduced part of the
second book of Phaseis in his Kitab al-Anwa’; see Neugebauer (1971).

6 For a short and precise description of the geometrical planetary models proposed
by Ptolemy in the Almagest, see Neugebauer (1957: appendix I, French translation,
pp. 239–55).

7 See Ptolemy, Planetary Hypotheses. I have personally undertaken the edition of the
Arabic version of this text (Morelon 1993).

8 The contents of this book were found described in a passage of the work by al-
Biruni, al-Qanun al-Mas‛udi; see Morelon (1981).

9 Euclid lived around 300 BC; his Data contains diverse definitions of the elements
involved in geometry; his Optics develops a theory of vision and of perspective; his
Catoptrica is a study on mirrors; his Phenomena contains a geometrical study of
the celestial sphere.

10 Theodosius lived in the second century BC; his Spherics concerns the geometry of
the spheres; in On Habitations he shows which portions of the celestial sphere are
visible according to the regions of the earth; in On Days and Nights he determines
the portions of the ecliptic traversed by the sun each day over the whole year.

11 Autolycus lived in the third century BC; in On the Moving Sphere he describes the
different circles of the celestial sphere and the modification of their respective
positions caused by the movement of the sphere; in On Risings and Settings he
describes the phenomena of the visibility of the stars on the horizon at their rising or
setting.

12 Aristarchus lived in the third century BC and is famous for having proposed a
short-lived heliocentric hypothesis; in his treatise On the Sizes and Distances of the
Sun and Moon he calculates their distance from the earth and their respective size
based on their position in quadrature and on eclipses.
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13 Hypsicles lived around 150 BC; in his Ascensions he determines the rising of the
different signs of the zodiac for a given place in terms of the relation between the
longest and shortest day at that place.

14 Menelaus lived in the first century AD; his book on the Spherica contains the
fundamental formulae of spherical trigonometry used by Ptolemy in the Almagest,
introducing equal proportions between the chords of arcs on a complete spherical
quadrilateral (see the chapter on trigonometry in vol. II).

15 See al-Hashimi, Book of the Reasons, pp. 201–11.
16 See ‘Astrology and Astronomy in Iran’ in Encyclopedia Iranica (1987: vol. II, pp.

858–71) and Kennedy (1958).
17 On the question of observatories, see Sayili (1960).
18 See Ibn Yunus, Le Livre, pp. 140–1.
19 In particular at Baghdad and Damascus, from the time of the first observations.
20 See al-Battani, Al-Battani, vol. 3, pp. 137–8; vol. 1, pp. 91 and 272.
21 See Eisler (1949), ‘The polar sighting tube’. These ‘observation tubes’ are not

mentioned explicitly in any of the texts of Hellenistic astronomy that have come
down to us, but they have been known in China since the sixth century; see
Needham and Wang Ling (1959:332–4).

22 Al-Biruni, Al-Qanun, p. 964, treatise 8, chapter 14, 2nd section.
23 See Eisler (1949), ‘The polar sighting tube’.
24 See al-Sufi, Kitab suwar al-kawakib.
25 See Ibn Yunus, Le Livre.
26 Arabic text edited and translated into German with notes by Wiedemann-Juynboll.

The following two figures are taken from this publication; the drawing of the
instrument was made by J.Frank from data in the text and from the author’s
knowledge of the instruments of the observatory of Maragha.

27 See the entries for these two scientists in the Dictionary of Scientific Biography.
28 Ibn Yunus, Le Livre, pp. 60–1.
29 See ‘Djalali’ in The Encyclopaedia of Islam, II, pp. 397–9.
30 Ibn al-Haytham, Shukuk.

GENERAL SURVEY OF ARABIC ASTRONOMY 19



20



2
Eastern Arabic astronomy between the eighth

and the eleventh centuries
RÉGIS MORELON

Al-Qifti notes that the first Arab scientist to be interested in astronomy was
Muhammad b. Ibrahim al-Fazari in the second half of the eighth century, at
the beginning of the reign of the Abbasids.1 His name is connected with a
famous tradition according to which an Indian delegation with an astronomer
in its ranks was received in Baghdad by Caliph al-Mansur around the year
770; the name of this astronomer is not known but the tradition reports that
he had with him at least one astronomy text, written in Sanskrit, which was
translated into Arabic under the title Indian Astronomical Table (Zij al-
Sindhind)2 by al-Fazari and Ya‛qub b. Tariq3 under the supervision and
direction of this Indian astronomer. Whatever the historic value of this
tradition as far as its details are concerned, the two mentioned authors have
been presented by all their successors as the men who introduced scientific
astronomy into the Arab world from its origins in India.

The works of al-Fazari and Ya‛qub b. Tariq are lost but a certain number
of fragments survive in the work of later authors.4 It is known that al-Fazari
wrote The Great Indian Table (Zij al-Sindhind al-kabir), and later quotations
from this text show that he mixed Indian parameters with elements of Persian
origin from The Royal Table (Zij al-Shah). We have traces of three works by
Ya‛qub b. Tariq: Table Solved in India Degree by Degree (Zij mahlul fi-l-
Sindhind li-daraja daraja), The Composition of Orbs (Tarkib al-aflak) and
The Book of Causes (Kitab al-‛ilal); the basis of his reasoning in these is
clearly the same as that of his contemporary. These two authors had the great
merit of introducing scientific astronomy into the Arab world but their
works, to judge from what remains of them, appear to be a compilation of
elements which they had at their disposal, unverified by observation and
without any attempt at proper internal coherence.

The first work of Arabic astronomy to have reached us in its entirety is
that of Muhammad b. Musa al-Khwarizmi (c. 800–c. 850) and is also called



Indian Astronomical Table (Zij al-Sindhind); it is in keeping with the
preceding tradition but with the addition of elements from Ptolemaic
astronomy. The Arabic text is lost and the work has been transmitted through
a Latin translation made in the twelfth century by Adelard of Bath from a
revision made in Andalusia by al-Majriti (d. AH 398 (AD 1007–8)).5

Al-Khwarizmi is equally renowned as a mathematician for his work in
algebra. His treatise on astronomy was written under al-Ma’mun (813–33)
and does not include any theoretical elements: it is a set of tables concerning
the movements of the sun, the moon and the five known planets, introduced
by an explanation of its practical use. Most of the parameters adopted are of
Indian origin, and so are the methods of calculation described, including in
particular the use of the sine. But some elements are taken from Ptolemy’s
Handy Tables (Neugebauer 1962a:101–8), without any attempt by the author
to achieve coherence between the differing results drawn from the Indians
and from Ptolemy. Here we have the same problem as with al-Fazari and
Ya‛qub b. Tariq in their simultaneous use of Indian and Persian sources.

During the ninth century, the Arab astronomers of Baghdad fairly rapidly
assigned the Indian tradition, which comprised only methods of calculation
and sets of parameters for the composition of tables, to second place in favour
of Ptolemaic astronomy, which was well endowed with theoretical reasoning
and therefore enabled the development of astronomy as an exact science. But
the Indian tradition continued to have an influence of some significance in
the compilation of astronomy tables in the Muslim West (Andalusia and
Maghreb) (Kennedy and King 1982).

The introduction of Greek astronomy

The eleven short treatises in Greek listed in the preceding chapter, considered
to be a preparation for the reading of Ptolemy and grouped under the title
‘Small astronomy collection’, were all translated during the ninth century by
confirmed scientists with a sound knowledge of both Greek and Arabic:
Hunayn b. Ishaq (d. 877), his son Ishaq b. Hunayn (d. 911), Thabit b. Qurra
(d. 901) and Qusta b. Luqa (d. c. 900).6

The four works of astronomy by Ptolemy mentioned in Chapter 1 were
also translated into Arabic in the ninth century. The Almagest is the most
important because of the influence it exerted.7 Several successive trans lations
were made, as noted by twelfth-century author Ibn al-Salah:

There were five versions of Almagest in different languages and
translations: a Syriac version which had been translated from the Greek,
a second version translated from Greek to Arabic by al-Hasan b.
Quraysh, for al-Ma’mun, a third version translated from Greek to
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Arabic by al-Hajjaj b. Yusuf b. Matar and Halya b. Sarjun, also for al-
Ma’mun, a fourth version translated from Greek to Arabic by Ishaq b.
Hunayn for Abu al-Saqr b. Bulbul—we have Ishaq’s original in his
own hand—and a fifth version revised by Thabit b. Qurra from the
translation of Ishaq b. Hunayn.8

Three of these versions have been lost: the first, an anonymous Syriac
version; the second, the Arabic version of al-Hasan b. Quraysh, of which
traces remain, particularly in the work of al-Battani in the tenth century
(Kunitzsch 1974:60–4); and the fourth, the version of Ishaq b. Hunayn before
its revision by Thabit. At present we do have the third and the fifth versions,
in manuscript form:9 the translation made by al-Hajjaj at the behest of al-
Ma’mun around 827–8 and that of Ishaq b. Hunayn revised by Thabit b.
Qurra around 892, both translated from Greek to Arabic. Another revision, or
in fact a re-writing, of the Almagest should be added to the list drawn up by
Ibn al Salah: it was produced after that author’s time, in the middle of the
thirteenth century, using the Ishaq-Thabit version, by Nasir al-Din al-Tusi; it
became widely known among Arabic-speaking astronomers from this period
onwards.

Let us compare the two versions that we have from the ninth century. That
of al-Hajjaj is very close to the Greek text, and the sentence structure of the
original Greek is largely preserved; the scientific vocabulary used in the
Arabic is sometimes vague, making it necessary in certain cases to return to
the original text in order to understand the reasoning properly even though it
is expressed in Arabic. These deficiencies in the translation of such a
fundamental text led to the Ishaq-Thabit version, made towards the end of the
ninth century, after more than fifty years of work in scientific astronomy in
the Hellenistic tradition. This version removes all need to refer to the Greek
text: its language and vocabulary are perfectly clear and devoid of
ambiguity. We thus have two precise points of reference from which to
conclude that an Arabic scientific language was developed for astronomy
between 827 and 892.

We do not have such precise information about the translation of the three
other works of Ptolemy. The Planetary Hypotheses is cited in Arabic from at
least the middle of the ninth century, under the title Kitab al-iqtisas, or Kitab
al-manshurat (especially by al-Biruni). A complete but hitherto unpublished
translation preserves the last three-quarters of the work which have been lost
in the original Greek (see pp. 6–7). The name of the translator has not been
passed on but one of the two complete manuscripts containing the work
states that the text was corrected by Thabit b. Qurra.10

The Book concerning the Appearance of the Fixed Stars, or Phaseis, is
quoted by Thabit b. Qurra under the title Kitab fi zuhur al-kawakib al-thabita.
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Thabit knew Greek and this reference is not enough to confirm that the text had
been translated. But the Arabic translation is quoted by al-Mas‛udi (d. c. AH
345 (AD 956),11 and was used by Sinan b. Thabit (d. AH 332) (AD 943)) in
his Kitab al-Anwa’ (see chapter 1). The Arabic translation of the Phaseis
must therefore have been made at the beginning of the tenth century at the
latest, and although we do not have the original translation, we have
numerous references to it by Arab astronomers.

Ptolemy’s Handy Tables was used by al-Khwarizmi, as we have seen, and
then by Qusta b. Luqa (in the mid-ninth century),12 and we find traces of it
subsequently in the work of many other authors, but we do not possess the
Arabic translation and we have no knowledge of the circumstances in which
it was produced.

We should add in the context of Ptolemaic astronomy that the comments
on the Almagest by Theon of Alexandria were available in Arabic during the
ninth century, since we find lengthy literal quotations from them in the work
of astronomy Kitab fi-l-sina‛at al-‛uzma by Ya‛qub b. Ishaq al-Kindi (d. c.
873).13 The Arabic translation of Theon’s work has not survived.

As we have said, the evolution of astronomy as an exact science beginning
in Baghdad in the third century AH (ninth century AD) was primarily based
on the works of Ptolemy. Only very few of the earliest extant Arabic studies
of astronomy have yet been edited or undergone detailed scientific comment,
and in most cases reference must be to the manuscript sources. All attempts at
synthesis must therefore be provisional at this stage and will be continually
subject to review in the light of any seriously edited and commented texts
that may emerge. Here we shall take some examples of significant works and
demonstrations in order to outline the first phase of the evolution of scientific
astronomy in Arabic, concentrating more on the progressive transformation of
methods of reasoning than on calculations of the different parameters for the
movement of the stars despite their specific interest.

ARABIC ASTRONOMY IN THE EAST DURING THE
NINTH CENTURY

As an introduction to the early development of Arabic astronomy in the East,
we shall group the contributions of the different scientists who began work in
this area into subjects of study, from the simplest to the most complex: the
dissemination of Ptolemy’s astronomy, the critical analysis of his results, and
finally the rigorous mathematization of astronomical reasoning; an additional
section is devoted to the celebrated astronomer al-Battani, who worked at the
turn of the ninth to tenth century in Raqqa.
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The dissemination of Ptolemy’s astronomy

From the first half of the ninth century, several treatises were written to
present the findings of the Almagest in a simple manner, or to summarize it
so that this fundamental work could reach the largest possible audience
beyond the restricted circle of specialized astronomers. The best-known
example of this type of literature is the book by Ahmad b. Muhammad b.
Kathir al-Farghani. His was also the most widely distributed work—first in
Arabic (as attested by the large number of manuscripts listed from all periods
and all regions), then in Latin (there were two successive Latin translations in
the twelfth century)—and it was passed on under several titles, the most
common being Compendium of the Science of the Stars (Kitab fi jawami‛ ‛ilm
al-nujum).14 We know little of the author, except that he was a member of the
team of scientists formed by al-Ma’mun (813–33) and that he died sometime
after 861. His book was probably written after 833 and before 857. It is a sort
of manual of cosmography, comprising about a hundred pages in its
published version and containing thirty chapters in which al-Farghani
explains the state of the universe according to the findings of Ptolemy. It is
purely descriptive without any mathematical demonstration. It contains, in
the following order: a description of the computations for the months and
years of the different eras (Arab, Syrian, Byzantine, Persian and Egyptian);
the justification of the sphericity of the sky and of the earth, the latter being
stationary at the centre of the universe whereas the sky has two circular
movements; the inclination of the ecliptic over the equator; a description of
the inhabited part of the earth with seven climates and the different regions
and towns; the size of the earth; the movement of the seven ‘wandering stars’
both in longitude and latitude, explained by the model of eccentrics and
epicycles; the precessional movement of the fixed stars; the distances of all
the heavenly bodies from the earth and their sizes; the heliacal risings and
acronycal settings; the phases of the moon, its parallax and the eclipses of the
moon and sun.

This work thus sets out the principal problems of ancient scientific
astronomy, which is why it became a subject of repeated commentary by
scientists of the highest calibre, including in particular al-Biruni.15 Al-
Farghani uses Ptolemy as his virtually exclusive source, but corrects him on
several points according to the results obtained by the astronomers of al-
Ma’mun, such as the rectification of the obliquity of the ecliptic from 23; 51
to 23; 33, the assertion that the apogees of both the sun and the moon follow
the precessional movement of the fixed stars, and the use of the measurement
of the earth’s circumference determined under al-Ma’mun. In addition, after
claiming that Ptolemy had only calculated the distance and the size of the sun
and the moon, which demonstrates that al-Farghani knew the Almagest but
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not the Planetary Hypotheses, he gives numerical values identical to those in
the latter book, without indicating the source from which he drew his data.

Several other works of a similar nature have survived, including in
particular a treatise by Qusta b. Luqa, as yet unpublished, and two more
scientific treatments by Thabit b. Qurra, focusing especially on the movements
of the heavenly bodies and taking their reasoning from the first part of the
Planetary Hypotheses.16

These texts made scientific astronomy accessible, bringing together its
findings in an understandable form that would nowadays be dubbed a
‘popularization of the highest standard’, produced by professional
astronomers and widely diffused among the educated circles of the time. This
tradition continued in all the accounts of the Almagest written by the authors
of encyclopedias such as Ibn Sina, who included a summary in his great
survey of philosophy, the Shifa’.

Critical analysis of Ptolemy’s results

Once the Almagest became available in Arabic under al-Ma’mun, the work
of verifying its findings began, and this was the reason for the setting up of
the first programme of astronomical observations in Baghdad and Damascus
referred to in chapter 1. About 700 years lay between Ptolemy and the al-
Ma’mun astronomers, who found in the Almagest schemes of computation
and tables permitting the theoretical calculation of the position of the
celestial bodies for a given date. The results of these calculations, made for a
period of 700 years, were set against the data from the observations recorded
at Baghdad and Damascus, and a discrepancy was noted between the two
sets of figures obtained.

This discrepancy, inevitable over such a long period of time, led the
Baghdad astronomers not just to ‘re-set their clocks’—i.e. simply to add a
correction to all the lines of a table so that it could be used again—but to re-
examine the theoretical base of Ptolemy’s results, in order to revise the
mechanisms he had proposed and recalculate the parameters of the different
movements. Three examples will serve to illustrate this work, which was
undertaken from the beginning of the ninth century: the ‘Verified table’ (al-Zij
al-mumtahan), the ‘Book on the solar year’ (Kitab fi sanat al-shams) and the
work of Habash al-Hasib.

The ‘Verified table’

The Arabic term al-zij al-mumtahan is in itself a generic one, denoting a set
of tables compiled on the basis of observations and thereby offering all
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possible guarantees of scientific accuracy. But the term ‘Verified table’, used
alone, refers specifically to the first set of astronomical tables in Arabic
based on the results of observations carried out at the observatories of
Baghdad and Damascus; it was Yahya b. Abi Mansur (d. AH 217 (AD 832))
who was nominated by al-Ma’mun to co-ordinate this research. The tables
had a great influence in so far as they continued the first series of precise
scientific observations recorded since Ptolemy, within the same tradition of
Hellenistic astronomy, and they were widely quoted by later Arab
astronomers, such as Ibn Yunus and al-Biruni.

The complete original text has not come down to us.17 However, the
recorded results from it cited by later authors show that the different
parameters of the motion of the heavenly bodies had been recalculated.18 But
the most important conclusion from the observations in these tables
concerned the movement of the sun: they showed that the apogee of the solar
orb was connected with the precession of the fixed stars, contrary to the view
of Ptolemy, who considered this apogee to be subject to diurnal movement
only.19

Although we cannot establish a clear relationship between this conclusion
from the ‘Verified table’ and the ‘Book on the solar year’, it is the latter text
that contains the demonstration of the link between the movement of the sun
and that of the fixed stars.

The ‘Book on the solar year’20

Manuscript tradition attributes this text to Thabit b. Qurra, but close critical
analysis reveals that it pre-dates this author and that it probably came from
within the team of researchers that formed around the Banu Musa prior to the
arrival of Thabit, i.e. before the middle of the ninth century.

The author of this treatise defines his position in relation to Ptolemy with
regard to the movement of the sun and the calculation of the length of the
solar year. Figure 2.1 is a reminder of what the Almagest has to say on this
subject.

E is the position of the observer on a stationary earth at the centre of the
world. The sun moves in a uniform circular orb on an eccentric circle in
relation to the earth: circle I, with centre D, of which the most important points
are the apogee A and the perigee P. E is also the centre of the ecliptic circle
II, the apparent trajectory of the sun in the sky during the year; the reference
points of the ecliptic are the equinoxes B and C, and the solstices M and N.
The common plane of these two circles intersects the sphere of the fixed stars
according to circle III, also centred on E.

In one year, the sun completes one revolution on its eccentric orb I, with a
uniform regular motion. The time of this complete revolution is constant,
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whatever its starting point. This is the value of the anomalous year, the time
taken for the sun to return to the same point in its orb. This value is the only
one that can be considered as a constant reference; but it is not directly
measurable from E, as the eccentric in itself does not contain any sufficiently
precise element of reference. The observer must first position circle I clearly
in relation to circle II or circle III.

When we observe from E the motion of the sun on circle II, and we
measure the time interval between two successive passages of the sun at the
same point, for instance B, the spring equinox, we obtain the value of the
tropical year.

When we observe from E the sun’s movement on circle III, and measure
the time interval between two successive conjunctions of the sun with the
same star, we obtain the value of the sidereal year.

If the circles I, II and III were fixed relative to each other, the three values
of the solar year defined above would be absolutely identical—but this is not
the case. The problem for the ancient astronomers was to try to find, from
observations of the irregular motion of the sun on circles II or III, the value
of the anomalous year over orb I, the only absolute constant.

The study of the sun’s movement is detailed in the third book of the
Almagest. Here Ptolemy begins by noting, in line with Hipparchus, that the

Figure 2.1
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sidereal year is slightly longer than the tropical year, but he concentrates on
the latter, in order to prove that this is the sought-for absolute constant. He
thus makes the tropical year and the anomalous year coincide, causing circles
I and II to combine while circle III moves in relation to them by the motion of
the precession of the equinoxes, evaluated by Ptolemy at 1° per century.

To calculate the parameters of the eccentric solar orb, Ptolemy uses the
model illustrated in Figure 2.2. ABCD is the circle of the ecliptic, with centre
E, the position of the observer; the circle MNPO, with centre G, is the
eccentric orb around which the sun moves, A and C are the two equinoxes
and B is the summer solstice. The figure is completed by the straight lines
MQGP and NGXO parallel to DEB and AEC respectively, and the straight
line EGH which intersects the eccentric orb at H, its apogee. By observing
the moment at which the sun passes over A, B and C, one can obtain, by a
simple calculation based on the mean movement of the sun, the value of the
arcs IL, IK, KL, IN, PK, LO on the eccentric,  and consequently calculate all
the parameters. Assuming by convention that the radius of the eccentric orb
is 60 ‘parts’, Ptolemy then finds that the eccentricity EG is equal to 2; 30 of
these parts, that the apogee H is situated at 5; 30° of Gemini, that this apogee
is fixed on the ecliptic, and that the length of the tropical solar year (passage

Figure 2.2
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of the sun over the same point of the ecliptic) is constant and equal to 365;
14, 48 days.

Following the observations made in Baghdad between 830 and 832—
some 700 years after the Almagest and 950 years after Hipparchus—the
author of the ‘Book on the solar year’ notes that the sun’s apogee in his era is
at 20; 45° of Gemini and that this shift of 15; 15° since Hipparchus’
observations is analogous to that due to the precession of the fixed stars,
which had been measured on Regulus as 13; 10°, excepting observational
errors of which the author was well aware. This therefore lends him to link
circles I and III of Figure 2.1 and to conclude that the apogee of the eccentric
orb of the sun is subject to precessional motion. The anomalous year is thus
found not in the tropical year but in the sidereal year, the only absolute
constant. But since the sidereal year is only a theoretical reference, it is
necessary to derive the value of the tropical year from it, as the only practical
reference which will permit the marking of terrestrial time throughout the
year.

Since the eccentric orb shifts in relation to the circle of the ecliptic, we
cannot measure the length of the tropical year directly by observing the time
interval separating two successive passages of the sun over the same point of
the ecliptic; the length of the tropical year can only be derived from a
calculation based on the values of the sidereal year and the constant of
precession. In fact, if one takes the mean motion of the sun along the
eccentric from the apogee, it shifts slightly because of precessional movement
and, to relate the mean motion to the ecliptic, one must add these two shifts
which have a constant value.

In this way, the author of the ‘Book on the solar year’ radically challenges
Ptolemy’s conclusions, his computations and even the quality of his
observations: he compares these last with his own and with those of
Hipparchus, and deduces that all of Ptolemy’s observations should be
rejected in favour of a return to Hipparchus. He concludes his vigorous
critique as follows:

As well as the error of calculating the duration of the solar year from a
point on the ecliptic, Ptolemy has created further error as a result of his
observations themselves: he did not conduct them as they should have
been conducted and it is this part of the error that has most seriously
damaged the method of computation that he has proposed.21

Despite his criticisms, the author considers that Ptolemy’s is still the best
geometrical method for calculating the parameters of the sun’s orb. He 
reworks the third book of the Almagest, quoting it at length by adopting its
geometrical method, partly re-organizing the plan of the book while retaining

30 EASTERN ARABIC ASTRONOMY



its content, and relying solely on the observations of Hipparchus and himself.
His calculation of the parameters of the solar orb is based on Ptolemy’s
model as shown in Figure 2.2, but he alters the orientation of the
observations: A, B and C no longer correspond to the two observed
equinoxes and one solstice for, as the author says:

Given that observations of solstices are difficult, we shall not include
any solstice observation results in our three measurements. In the three
measurements from which he identified the solar anomaly, Ptolemy
included one measure of the summer solstice. We do not agree with
this; on the contrary, we consider that this gave him little safety from
error.22

During a solstice, the variation of the sun’s declination is effectively very
slight, and it was difficult to determine the exact moment of the sun’s
passage at this point. The author of the treatise therefore changes the three
observations by 45° and measures the passage of the sun on the ecliptic in the
middle of Aquarius, Taurus and Leo. He reformulates the method of
computation in the Almagest by ‘modernizing’ it, i.e. by reasoning with sines
of arcs instead of with their chords (see vol. II, chapter 15), and he obtains
the following results:23

Position of the apogee of the sun 20; 54° of Gemini (22; 53°)
Constant of precession 0; 0, 49, 39° per year (0; 0, 50, 1)
Sidereal year 365; 15, 23, 34, 33 days (365; 15, 22, 53, 59)
Tropical year 365; 14, 33, 12 days (365; 14, 32, 9, 20)
Eccentricity of the solar orb 2; 6, 40

In addition to the good level of accuracy of the preceding results, bearing in
mind the means of observation of the period, the ‘Book on the solar year’ is
extremely important for the understanding of how Arabic astronomy first
developed from the heritage of Ptolemy. This treatise was written in the first
half of the ninth century, thus shortly after the Arabic translation of the
Almagest by al-Hajjaj, which is liberally quoted in over a third of the text. It
enables us to see first how some Arab astronomers of the first generation
used this fundamental text, and second to identify a certain number of
scientific innovations which became established as a result of their work.

To summarize the foregoing, we see that the author of the ‘Book on the
solar year’ concludes, on the one hand, that Ptolemy has made some errors of
computation, particularly over the precession constant, and on the other
hand, that his observations are less reliable than those of Hipparchus. He
therefore dismisses the observations and the results. After having established
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the displacement of the solar apogee and its relationship with the precession
of the fixed stars, he works out a method which will permit him to determine
the time it will take the sun to return to the same star, in order to calculate the
length of the sidereal year. He retains Ptolemy’s geometrical reasoning, and
all the subjects treated in Almagest III, slightly modifying the order by
moving two chapters, and redrafts all these elements. The result suggests that
the ‘Book on the solar year’ was not composed as an isolated treatise, but
was part of a vast project aimed at rewriting the Almagest, keeping its structure
and its theoretical reasoning but eliminating Ptolemy’s observations and
calculations; its author keeps Hipparchus’s observations in order to compare
them with recent observations made in Baghdad and Damascus, and he
creates new methods of computation based on the theories proposed by
Ptolemy.24 We do not know how far this project of a ‘new Almagest’ may
have been pursued, but the content and structure of the book we have been
discussing clearly demonstrate that this important work was started in
Baghdad in the first half of the ninth century in the school formed around the
Banu Musa.

The ‘Book on the solar year’ also contains a number of innovations which
were adopted by later astronomers. First, following the composition of this
treatise it was accepted that the apogee of the solar orb moved in relation to
the ecliptic, and that a relationship needed to be established between the
sidereal year, the constant of precession and the tropical year (although it
would be the end of the eleventh century before the Andalusian astronomer
al-Zarqallu calculated the real supplementary movement of the solar apogee
at 19 minutes per century). Next, contrary to Ptolemy, the author of the
treatise connects the movement of the apogee of the sun’s orb and that of the
moon’s orb with the precessional motion of the sphere of fixed stars, in the
same manner as the apogee of the orbs of all the other planets; the motion of
the sphere of the fixed stars therefore carries with it all the celestial spheres;
the sun and the moon are not special cases in the universe. In this way, the
circle of the ecliptic becomes a purely theoretical circle beyond the sphere of
the fixed stars, located by the passage of terrestrial time and the rhythm of
the seasons. Finally, the displacement by 45° of the three solar observations,
introduced in order to avoid errors in solstice observation, were used by later
astronomers in their calculations of the parameters of solar motion.25

The work of Habash al-Hasib

We know little about the life of Habash. He was one of the astronomers of
Caliph al-Ma’mun, and he was alive in AH 254 (AD 859), as a calculation is
attributed to his name in that year, but we do not know the date of his death.
Only one of his original, but incomplete, works has been published: his short
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treatise on the sizes and distances of the heavenly bodies, partially preserved
in a single manuscript (Langermann 1985). A lengthy work of his, al-Zij al-
dimashqi (‘Damascus tables’), has come down in two different versions, one
to be found in Istanbul and the other in Berlin. The text of the Berlin
manuscript has obviously been much revised by later hands; the Istanbul
version appears to be quite close to Habash’s original work but has not yet
been published.26

This work is in the Ptolemy tradition, but is not a reworking of the
Almagest as the ‘Book on the solar year’ is in part. Habash merely selects
those areas which he considers susceptible to modification in the light of his
own studies and of the data acquired from the early work of theoretical
astronomy at Baghdad and Damascus. His text is therefore for use alongside
the Almagest and is not intended to replace it. An important part of the
‘Damascus tables’ concerns trigonometry: Habash ‘modernizes’ the theories
of the Almagest, introducing sines, cosines and tangents in place of chords,
and proposes complete formulae to be applied in the different astronomical
computations. This will be examined in detail in volume II, chapter 15; here
we shall consider certain points raised by Habash concerning pure astronomy.

The first section of the ‘Damascus tables’ deals with chronology and the
passage between the different eras for the calculation of the equivalences of
dates—under Persian, Egyptian, Greek, Hegirian, etc. calendars—focusing
on tables of concordance. But in addition Habash sets out to draw up tables
for the motion of the heavenly bodies based on the lunar year, recalculated
with great care because this was the legal year in his society; however, this
attempt was not pursued by Arab astronomers because the lunar year was much
less well adapted to the computations and theories of astronomy than the
solar year, which was used both in the Hellenistic world of Ptolemy and by
the Persians with their regular months of thirty days.

Throughout his work, Habash compares the parameters calculated by
Ptolemy for the motion of the different heavenly bodies with his own
calculations and systematically modifies the composition of his tables
accordingly for each one, without returning to the theoretical aspect of the
geometrical models. But Habash’s most important theoretical innovation
occurs in his study of the visibility of the crescent moon.

This problem of the visibility of the crescent is not treated in the Greek
tradition of astronomy, but some methods of calculation were elaborated in
the Indian tradition. Before looking at Habash’s solution, let us consider two
previous solutions based on various elements of reference on the celestial
sphere.

In the situation of a stationary earth at the centre of the world, the sun and
the moon each have their ‘proper motion’ daily, in the opposite direction to
the diurnal motion, being slightly less than 1° with respect to the ecliptic for
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the sun and about 13° for the moon on either side of the ecliptic (its
maximum latitude is 5°). Thus each month, the moon ‘catches up’ with the
sun and overtakes it, the crescent then becoming visible again on the western
horizon just after sunset, signalling the beginning of a new lunar month.
Figure 2.3 shows the moon setting at D; its latitude is DG, and the sun is at O
under the horizon. HDA is the horizon from the point of observation, E is the
closest equinoctial point (here the autumn equinox), OGE is the ecliptic and
MAE is the celestial equator. OM is the position of the horizon at the moment
of sunset, OH represents the distance from the sun to the horizon when the
moon is setting, OG is the longitudinal distance between the sun and the
moon, and the angle A between the horizon and the equator is equal to the
complement of the latitude of the place. 

Ya‛qub b. Tariq and al-Khwarizmi, whom we mentioned earlier, both
adopted an Indian solution based on the time that elapses between sunset and
the setting of the moon, i.e. on the arc AM in Figure 2.3.27 According to them,
the crescent will be visible if the calculation for the chosen day shows this
arc to equal at least 12°, which corresponds to an interval of 48 minutes
between the setting of one and the other body.

Habash follows the tradition created by Ptolemy in his study of the
visibility of the fixed stars and of the planets on the horizon.28 Ptolemy had 
never been concerned with the visibility of the crescent moon, but he had
based his entire study of the visibility of the other heavenly bodies at their

Figure 2.3
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rising or setting on the luminosity of the atmosphere on the horizon, and thus
on ‘the arc of depression of the sun under the horizon’ before its rise or after
its setting—i.e. OH in the case of Figure 2.3. He had determined the value of
this arc necessary for a given body to be visible on the horizon; the arc was
later known in the Latin tradition as arcus visionis, or ‘arc of visibility’.
Habash took this idea and applied it to the case of the moon; he determined
as a result of observations and calculations that ‘the arc of depression of the
sun under the horizon’, or ‘arc of visibility of the crescent’, OH, should have
a value of at least 10° for the lunar crescent to be visible after sunset, on the
twenty-ninth night of the lunar month.

This method of Habash became famous; it was taken up unchanged some
two centuries later by al-Biruni, and cited by many subsequent authors as one
of the typical means of approaching the difficult problem of the visibility of
the crescent.

Habash therefore emerges as an observer who studied the Almagest in
order to verify its data, pursuing the work begun under al-Ma’mun by the
group which had compiled al-Zij al-mumtahan; however, his work goes
further than that of his immediate predecessors, as he also adapted and
developed certain of Ptolemy’s ideas after having completely assimilated
them, but without tackling his theoretical demonstrations as such. Another
author was to undertake that task, as we shall see in the following section.

The mathematization of astronomical reasoning

A single author is our subject here: Thabit b. Qurra. He was born probably in
AH 209 (AD 824) and died in AH 288 (AD 901); he came from Harran in
upper Mesopotamia and his mother tongue was Syriac but he knew Greek
perfectly and his working language was Arabic. Joining the team of the Banu
Musa in Baghdad, Thabit produced original works in all the known sciences
of his time. Especially famous as a mathematician, he wrote more than thirty
treatises on astronomy, nine of which have been handed down under his
name, including the ‘Book on the solar year’ discussed earlier, which is
incorrectly attributed to him; we therefore have only eight of his books from
which to judge the work in astronomy of this author.29 We shall look at just
three of these eight treatises: the first concerning the theoretical study of the
motion of a heavenly body on an eccentric; the second about the choice of
time intervals for determining the different motions of the moon; and the
third concerning a method of calculating the visibility of the crescent.
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Theoretical study of the motion of a heavenly body on an
eccentric30

When Ptolemy discusses the motion of the sun on its eccentric orb, he notes
the inequality of its apparent motion:

The greatest difference between the mean motion and the motion which
appears irregular, the difference by which we know the passage of the
heavenly bodies in their mean distances, occurs when the apparent
distance from the apogee is a quarter of a circle and the heavenly body
takes longer to go from the apogee to this mean position than from the
latter to the perigee.31

Ptolemy thus establishes only that the slowest apparent motion occurs on the
side of the apogee, the fastest on the side of the perigee, and that between the
two there is a point of ‘mean passage’ at a quarter of a circle from the apogee.

Thabit studies this question and proves Ptolemy right. When any heavenly
body, or the centre of an epicycle, moves along an eccentric ABC with centre
D with uniform circular motion, this movement is observed from the earth at
E on the circle of the ecliptic A′B′C′, and it is an irregular apparent movement.
Thabit takes equal arcs on the eccentric, which are thus covered by the
moving body in question in equal times: GF on either side of the apogee A,
HI on either side of the perigee C, BK on the side of A and LM on the side of
C (see Figure 2.4).

Based on the reasoning in Euclid’s Elements he proves that the arcs of
apparent motion observed on the ecliptic are such that G′F′ < B′K ′ < L′M′ <
H′I′, so that he can conclude precisely:

When the motion of a heavenly body or of the centre of any orb is
uniform on an eccentric, its slowest apparent motion, on the ecliptic,
will be produced when the moving body is at the apogee of its
eccentric, and its fastest apparent movement will occur when it is at its
perigee. For the rest, apparent motion is slower when it occurs close to
the apogee than when it occurs far away from it.

Note that Thabit refers to the speed of a moving object at the apogee or the
perigee. As far as we know, this is the first reference in history to the notion
of speed at a point.

This was the first theorem of Thabit’s treatise. The second theorem is no
less important. Thabit takes an eccentric ABC with centre D, apogee A and
perigee C, and he positions points B and F as ‘those for which the distance to

36 EASTERN ARABIC ASTRONOMY

the apogee, in apparent motion on the ecliptic, is a quarter of a circle’ (see
Figure 2.5).



Figure 2.4
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He then demonstrates, again with the help of reasoning from the Elements
of Euclid, that the are of mean motion IH, the sum of HB  and BI, is equal to
the arc I′H′, which is the sum of the arcs of apparent movement H′B′ and B′I
′, that there is an ‘approach to equality between the mean motion and the
apparent motion when point B is approached… and that the same is true
when the motion occurs at point F’. He concludes, in conjunction with the
preceding theorem:

The closer the apparent motion to one of these two points, B or F, the
closer it is to equality with the mean motion; and each time that two
equal arcs of apparent motion on the ecliptic are taken on either side of
each of these two points, their sum is in fact equal to the mean motion.
These are the two points which resemble two points of mean motion.

This purely mathematical proof permits him to analyse precisely the apparent
motion and the mean uniform motion relative to one another and to situate
two axes: AC, an axis of symmetry for the mean uniform motion as observed
from point E; and BF, an axis of symmetry for the apparent motion on the
ecliptic. Thus for Thabit it became possible to analyse theoretically a
geometric model as such that had been postulated to account for the
movement of a heavenly body, using all the resources offered by the
development of mathematics, leading him here to carry out the first
mathematical analysis of a movement.

The choice of time intervals for determining the motions of
the moon32

Here again Thabit takes a problem posed by Ptolemy, this time at the
beginning of Almagest IV. Ptolemy based his whole study of lunar
movements on the observations of lunar eclipses, as these could give the
relative positions of the sun and moon without any error of parallax entering
in to distort the results. The movement of the sun had been studied in
Almagest III, and the next problem was to choose the time intervals at the limits
of which lunar eclipses are found periodically, so as to ensure that the moon
would have accomplished complete revolutions of each of its different orbs;
once the number of these revolutions was known, the periodicity of the
different movements of the moon could be determined. Before considering
how Ptolemy solved this problem, we shall look at the way in which Thabit
poses it.

He concentrates first on the sun, taking the two axes of symmetry
determined in his preceding treatise for the movement of a body on an
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eccentric, shown in Figure 2.6 as AP and BC, O being the position of the
observer at the centre of the ecliptic, and E the centre of the eccentric. In the
first time interval t1 the sun goes from M1 to M2, in a second interval t2=t1 it
goes from N1 to N2, and these two arcs of mean motion on the eccentric are
then equal, M1M2=N1N2, whereas the question remains for the corresponding
arcs of apparent motion observed on the ecliptic,  and , the
relationship between these two arcs being dependent on the respective
position of M1 and M2 on the eccentric according to the results of the treatise
described earlier (see note 30). 

Let us call q1 and q2, r1 and r2 respectively the difference between mean
motion and apparent motion for M1 and M2, N1 and N2; we obtain

and

Keeping t1=t2, i.e. for two intervals of equal time, Thabit obtains seven types
of combination between the two movements, which can be expressed in a
purely theoretical way in terms of relations between q2−q2 and r2−r1,
immediately applicable in the case of the sun.

Figure 2.6
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1 In t1 the sun leaves M1 and returns to the same point after a number of
complete revolutions; in t2 it leaves N1 and returns to it. Obviously we
then have q1=q2 and r1=r2.

2 q2−q1=r2−r1=0
3 q2−q1=r2−r1>0
4 q2−q1=r2−r1<0
5 |q2−q1|=|r2−r1|

but each is of opposite sign.
6 q2−q1≠r2−r1

7 q2−q1=0 and r2−r1≠0

In these two equal time intervals, there is equality between the apparent
movements for the cases 1 to 4, and inequality for cases 5 to 7; in cases 1 and
2 there is equality between the mean motion and the apparent motion (case 2
corresponds to the preceding second theorem). Figure 2.6 shows the general
case of mode 6.

With the help of the two theorems from the preceding treatise, and with
reference to the two axes of symmetry, we can easily situate the points M1

and M2, and N1 and N2, corresponding to the points of departure and arrival
of the sun in the two equal time intervals for each of these seven cases.

The case of the moon is more complex in that it moves on an epicycle, itself
mobile on an eccentric. But we are in the situation where eclipses of the
moon are at the limits of the two time intervals cited, which allows us to
relate the movement of the moon to that of the sun, since they are then in
opposition, as shown in Figure 2.7.

The sun being at O and the earth at T, the moon on its epicycle can be
found at L or L′ at the moment of opposition. In this situation, Thabit finds
seven forms of combination for lunar motion, analogous to those of the sun.
If the sun, in each of the two time intervals, has covered equal angular
distances in apparent motion, so has the moon. But, in order for all its
motions to be restored to its different orbs, it is necessary to eliminate the
cases where the moon would pass from L to L′ on its epicycle between the
two limits of the time intervals considered. Looking again at the seven cases,
cases 5 to 7 are set aside because of the situation of the sun which presents
unequal apparent movements at the limits of the time intervals, and cases 2 to
4 are eliminated since the moon would then pass from L to L′ on its epicycle.
Only the first case is retained, when the moon and sun leave from the same
point of the ecliptic to return there, because only in this situation will they
have completed a number of revolutions on their various respective orbs.
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Ptolemy had also discussed two analogous time intervals, choosing four
cases for the sun.33

(a) In t1 and t2, it travels complete circles—equivalent to Thabit’s case 1. 
(b) In t1 it goes from perigee to apogee and in t2 it goes from apogee to

perigee—a special case of Thabit’s mode 2.
(c) In t1 and t2, the sun departs from the same point on the ecliptic—a special

case of Thabit’s modes 3 or 4.
(d) The point of departure for t1 is symmetrical, with respect to the apogee

or the perigee, to the point of arrival for t2, and vice versa—equivalent to
Thabit’s cases 3 or 4.

Ptolemy then considers the question of the moon and eliminates cases (b), (c)
and (d), keeping only the first—Thabit’s mode 1. The conclusions of both
thinkers are similar, but Ptolemy reasons only from particular cases, while
Thabit regards the problem in its entirety, his analysis is exhaustive and he
reaches a conclusion which becomes irrefutable (in the frame of the
geometrical models concerned) due to the impeccable precision of his
theoretical analysis.

Figure 2.7

 

REGIS MORELON 41



The visibility of the crescent

Like all the Arab astronomers, Thabit studied the problem of the visibility
of the crescent moon, and two of his treatises on this subject have been 
preserved: ‘The visibility of the crescent by calculation’ and ‘The visibility
of the crescent by tables’. The first is purely theoretical, and the second is a
simplification of the first for practical application with the aid of tables.34

In a general sense, Thabit looks for a quantifiable relationship between the
luminosity of the first lunar crescent and that of the horizon just after sunset.
As we have seen above, in his study of the visibility of the fixed stars and the
planets, Habash took from Ptolemy the notion of the ‘arc of visibility’ of the
crescent, giving it a fixed value of 10°. Thabit followed the same tradition,
but his solution is much more complex because, for him, this ‘arc of
visibility’ is no longer a constant and he needs to modify its values by
successive calculations based on the four variables that he defines.

The first three variables are the three sides of the fundamental spherical
triangle OHD in Figure 2.8, O being the position of the sun under the
horizon, H the ‘brightest point on the horizon’ in a vertical line from the sun,
and D the position of the moon at its setting; let us call these three arcs α1,
α2, α3 (Figure 2.8).

Figure 2.8

The first, α1, is the angular distance between the moon and the sun; it is
this arc which will determine the portion of the crescent, as seen from the
earth, that is illuminated by the sun. The luminosity of the sky at point H on
the horizon after sunset depends on the second arc, α2; this is ‘the arc of
depression of the sun under the horizon’. On the third arc, α3, depends the
luminosity of the sky at the point where the moon sets; it is the distance from
D to H, the ‘brightest point on the horizon’. This fundamental triangle allows
two limit situations (Figures 2.9 and 2.10).

When the moon sets on the vertical line from the sun, at the ‘brightest point
on the horizon’ (Figure 2.9), α3=0, the crescent can be visible if α1 and α2

have a value at least equal to what we shall call α0, the precise limit value for
these two arcs together; α0 is the absolute value for the ‘arc of visibility’ of
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the crescent, to be determined as a function of the earth-moon distance.
Thabit states, without justifying it, that its minimum value in degrees is 10;
52; thus if α0 < 10; 52 the crescent will be invisible.

When the crescent is at the limit of visibility while the moon and the sun
are setting together, the angular distance between the two must be such that
the crescent can be visible by day (Figure 2.10). We then obtain α2=0 and
α1=α3=A, the limit value beyond which the crescent will be visible in all
possible conditions. Thabit states that for A > 25° the crescent will be visible
by day whatever the value of the other variables. This upper limit of 25°
seems to correspond to an observation; in fact, recent observations show that
in the middle of the day the moon is at the limit of visibility when its angular
distance to the sun is close to 25°.

The fourth variable refers to the distance between the moon and the earth,
on which depends the apparent diameter of the moon and therefore its
luminosity for that portion of crescent illuminated. At the moment when the
crescent is first visible, the position of the centre of the moon’s epicycle
could be mistaken for the apogee of its eccentric; the true angle of anomaly a
is the only variable which intervenes in the distance from the moon to the earth
(Figure 2.11).

The moon is furthest from the earth when a=0 and closest when a=180. If
R is the radius of the eccentric orb, e its eccentricity and r the radius of the
epicycle, the distance from earth to moon will go from R+e+r to R+e−r as a
goes from 0 to 180. 

Figure 2.9

Figure 2.10
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First stage: relation between α1 and α2

The main point of the discussion concerns arcs α1 and α2 of Figure 2.8, which
are the two most important variables. If α1 increases, the crescent becomes
brighter, and if α2 decreases the sky’s luminosity will be stronger on the
horizon. A balance needs to be found between the variation of these two arcs
and will need to be modified in accordance with the other two variables. Let
V(α1, α2) stand for the relation between a specific pair of these variables
when the crescent is at the limit of visibility. Thabit looks for the relation
that must exist between the ‘increasing’ ∆α1 and the ‘decreasing’ ∆α2 so that
we can express the following identity:

V(α1, α2) ⇔ V(α1+∆α1, α2−∆α2)

The second term of this expression means that the crescent is once again at
the limit of visibility for the pair in question. Thabit then states that the
relation between ∆α1 and ∆α2 is a constant k=∆α1/∆α2=(A−α0)/α0, A and α0

being the values defined above. This constant is found when the crescent
passes from one limit to the other (see Figures 2.9 and 2.10), i.e. from
α1=α2=α0 to α1=A and α2=0. Using the previous expression we can then say
that V(α0, α0) ⇔  V(A, 0), with ∆α1=A−α0 and ∆α2=α0 which gives the
proposed constant relation k between ∆α1 and ∆α2. We then obtain A=(k+1)
α0, and Thabit states that this relation k is known. The numerical data in the

Figure 2.11
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text give us k=1; 11, 46, a figure possibly derived from the author’s work on
the values for the ‘arc of visibility’ of different planets given by Ptolemy in
the Planetary Hypotheses.35

Second stage: intervention of α3

α0 is the absolute value of the ‘arc of visibility’ of the crescent for, in the
limit situation of Figure 2.9, the moon sets in a vertical line from the sun and
α3=0. When the moon moves away from H, the ‘brightest point on the
horizon’, the value of α0 must be modified in order to find a new slightly fainter
‘arc of visibility’, for at this point the horizon will be slightly less luminous
than at H. Thabit then applies the formula put forward by Ptolemy in the
Phaseis for the visibility of the fixed stars at any point on the horizon
(Morelon 1981:3–14), and he gives the first formula for modification of the arc
of visibility: 

Third stage: intervention of the distance earth-moon (as a
function of a)

As we have seen, Thabit gives α0=10; 52 as the absolute minimum of the arc
of visibility, and A=25 as the maximum above which the moon is visible by
day whatever other conditions might be. Thus for him, α0=10; 52
corresponds to the best conditions of visibility, and therefore the moon’s
closest position to the earth (a=180 in Figure 2.11), and A=25 corresponds to
the worst conditions of visibility, i.e. when the moon is furthest from the
earth (a=0). When the moon moves from one distance to another its apparent
diameter changes, and consequently α0 and A must be calculated again.

To solve this problem, Thabit draws an analogy with the visibility of Venus
as explained in the Planetary Hypotheses: there Ptolemy determines that the
arc of visibility of Venus is 5° when the planet is at its minimum distance
from the earth (166 times the earth’s radius according to the figures accepted
at the time) and 7° at its maximum distance (1,079 times the earth’s radius),
whilst the figures given for the moon in the same work correspond to R+e
−r=53 and R+e+r=64. Without explicitly justifying his calculation, Thabit
then declares that the corresponding differences in the arc of visibility in the
case of the moon are 0; 31 for α0 and 1; 8 for A. He then deduces that 10; 52
≤ α0 ≤ 11; 23 and 23; 52 ≤ A ≤ 25 when 0 ≤ a ≤ 180.

The only method of calculation that will enable a close approximation of
these figures to be found is to establish, term by term, a corresponding 
geometrical progression for the distances and an arithmetical progression for
the values of the arc of visibility. The result is as follows: for Venus the
arithmetical progression is of ratio 1, and the two arcs of visibility are
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obviously of rank 5 and 7; the geometrical progression is of ratio 2.712 and
we find 147 and 1,079 of ranks 5 and 7. For the moon the arithmetical
progression is of ratio 0; 31, and we find 10; 51 and 11; 22 of ranks 21 and
22; the geometrical progression is of ratio 64/53, and we find 53 and 64 of
ranks 21 and 22. This correspondence is sufficiently close for us to conclude
that this was the procedure used. If the relation k is known, as Thabit states,
the single value of A=25, corresponding to one observation, is sufficient to
find the limit values of α0 and A.

This term-by-term correspondence of two progressions only yields the
extreme values of α0 and A, those which correspond to a=0 and a=180. To go
from one to the other, Thabit uses a simple interpolation formula which
Ptolemy calculated by making a table36 for I(a) such that 0 ≤ I(a) ≤ 1 when 0
≤ a ≤ 180. He then sets out as a function of a:

α0=11; 23−0; 31 I(a)
and

A=25−1; 8 I(a)

The discussion then turns to the arc α2 (arc of depression of the sun under the
horizon), in order to compare it with the ‘arc of visibility’ calculated in
stages by giving a fixed value to one or another of the variables.

1 Thabit writes α3=0 and α1=10; 52 (its absolute minimum); he calculates
as a function of a the value of α0=11; 23–0; 31 I(a) and concludes that for
α2 ≥ α0 the crescent will be visible.

2 He takes the real value of α3 and keeps α1=10; 52; he calculates the
corresponding decrease of the arc of visibility  using the
formula of Ptolemy in the Phaseis: . He then
concludes that for  the crescent will be visible.

3 He substitutes all the variables by their real values and calculates
. The corresponding decrease will depend on α1, the real

angular distance between the moon and the sun, giving the true width of
the visible crescent, and another factor is added, acting to increase α1

from its absolute minimum of 10; 52 and introducing A′ as the value of A
modified like α0 by the formula from the Phaseis. The final expression is
as follows:

He concludes that for  the crescent will be visible.

This theory of the visibility of the crescent thus involves six elements: an
observation, A=25; a constant relation k between the ‘increase’ of α1 and the
‘decrease’ of α2; a term-by-term correspondence of two progressions, one

46 EASTERN ARABIC ASTRONOMY



arithmetical and the other geometrical; the situation of the three main
variables with respect to their limit values, α0 ≤ α1 ≤ A, 0 ≤ α2 ≤ α0, 0 ≤ α3 ≤
A; a simple interpolation formula taken from Ptolemy; the formula of the
Phaseis to modify the result according to the position of the moon over the
horizon.

Thabit bases his study on an analogy between the case of the crescent and
that of the fixed stars, using the formula from the Phaseis, and another
analogy with the case of the planets, using the example of Venus. This means
that, for him, there is just one problem of visibility for every luminous
celestial body on the horizon after sunset or before sunrise: the lunar
crescent, fixed stars and planets all take part in this unique phenomenon
which Thabit tries to analyse in mathematical terms using a relation between
the magnitudes linked to the luminosity of the body in question and to that of
the horizon at that moment. He seems, then, to have looked for a general law
which he has tried to apply numerically to the case of the crescent.

This author thus attempts to deal with the problems of astronomy in a
rigorously mathematical way, looking at them in general terms and studying
the models proposed by Ptolemy from a purely geometrical point of view
without questioning them as such. He recognizes that the degree of accuracy
of pure reasoning cannot always match that of observation, for as he says,
‘what is perceived by sense does not lend itself to such precision’ (Thabit, p.
108, 1. 6). Verification by observation will always be necessary, and the
conclusion of his purely theoretical treatment of the visibility of the crescent
is entirely devoted to this matter, including conditions of observation and
personal factors associated with the quality of the observer.

Al-Battani

Al-Battani, an astronomer of great reputation, lived at the turn of the ninth
and tenth century: he was born about the middle of the ninth century and died
in AH 317 (AD 929). Originally from Harran, like Thabit, he lived for most
of his life in Raqqa, on the Euphrates in the north of present-day Syria, where
for more than thirty years he made many high-quality observations from a
private observatory. He wrote a survey of his work in a monumental book
called ‘The Sabian tables’ (al-Zij al-Sabi).37 This had a great influence on the
astronomy of the Latin West in the Middle Ages and at the beginning of the
Renaissance, because it is the only complete treatise on Arabic scientific
astronomy of this era to have been translated in its entirety into Latin in the
twelfth century (and then directly into Spanish in the thirteenth century),
naming the author Albategni or Albatenius. His was therefore the only
majorly important work of eastern astronomy in the Arabic tradition that was
known and studied until relatively recent times, which is why al-Battani is so
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renowned and has been hailed as ‘the greatest Arab astronomer’ by
successive authors of most of the books on the history of astronomy.

He was indeed a great observer, but his work in theoretical astronomy is
not of major importance; it depends almost entirely on his immediate Arab
predecessors, who are never explicitly cited although al-Battani frequently
refers to Ptolemy. He recalculates certain parameters and compares the
results of his own observations with some preceding theories without
criticizing them or making any notable additions.

His important contribution, then, lies in the area of pure observation. He
measures the obliquity of the ecliptic with a high degree of accuracy (23;
35); he finds that the apogee of the sun’s orb on the ecliptic is at 22; 50; 22
of Gemini, which is much closer to the true position in his day than the value
recorded in the ‘Book on the solar year’, and he thus confirms the mobility of
this apogee. He calculates the length of the tropical year and finds it equal to
365; 14, 26, a value slightly less accurate than that in the ‘Book on the solar
year’. Having checked it but without naming his source, he accepts the value
of the precession constant given in the ‘Verified table’ (al-Zij al-mumtahan)
(1° every sixty-six years), and from this he recalculates the figures in the
catalogue of fixed stars in the Almagest, reducing their number by slightly
more than half (489 stars instead of 1,022).

His most famous observation, and deservedly so, is that of the variation of
the apparent diameter of the sun and the moon, on the basis of which he
comes to the conclusion, for the first time in the history of astronomy, that
annular eclipses of the sun are possible as long as the apparent diameter of
the moon at its minimum is slightly less than that of the sun. He finds that the
apparent diameter of the moon, when in conjunction with the sun, can vary
from 0; 29, 30 to 0; 35, 20 (real variation from 0; 29, 20 to 0; 33, 30), and that
the apparent diameter of the sun can vary from 0; 31, 20 to 0; 33, 40 (real
variation from 0; 31, 28 to 0; 32, 32), whereas Ptolemy had considered that
the apparent diameter of the sun would remain equal to 0; 31, 20—curiously
disregarding the difference in its distance from the earth during its movement
on the eccentric—and that this value was the same as the minimum apparent
diameter of the moon, thereby eliminating the possibility of annular
eclipse.38

In conclusion, to attempt a brief summary of the study of astronomy under
the Abbasids in the ninth century, we can say first that original research took
place in this domain as soon as the basic resources became available to
scholars, whether those resources were Indian, Persian, Syriac or above all,
Greek. Translation into Arabic of earlier sources and pure scientific research
went hand in hand, for astronomy as for all the exact sciences, right from the
beginning and during the whole of this century (Rashed 1989).
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The work of astronomical research really got underway with the
establishment of a collective programme of continuous observations under al-
Ma’mun a little before 830, and the caliph strongly encouraged this
fundamental research, many of his successors doing the same. It is clear that
right from this period astronomers stressed the precision of the instruments
and the necessity for continuous and repeated observations—for the sun and
the moon at first in Baghdad and Damascus, and then for the rest of the
heavenly bodies—whereas the sources transmitted only observations that
were isolated in space and time; this programme was continued and
developed throughout succeeding history.

The collective aspect of the work should also be emphasized even outside
a purely observational framework for in addition to the existence of
communal structures such as the observatories at Baghdad and Damascus
financed by central power, numerous traces of scientific correspondence
between astronomers are to be found cited in ancient Arabic bio-
bibliographic works concerning this era. We can therefore speak of the
founding of a real ‘school of Baghdad’ in astronomy of the ninth century.

The constant movement back and forth between theory and observation,
markedly more systematic than in the astronomy of Hellenistic tradition,
allowed an early and sometimes vigorous critique of parts of Ptolemy’s
theories or results, but still exclusively within the framework of the system
and the geometrical models that he had proposed.

During this century the progress of spherical trigonometry, considered at
the time to be just an ‘auxiliary science’ to astronomy, enabled much more
rigorous and elaborate geometrical reasoning concerning the arcs of the
celestial sphere, due to the systematic utilization of sine and cosine and the
introduction of tangents and cotangents (see vol. II, chapter 15); finally, the
research begun by Thabit to apply to astronomy the results achieved by
mathematicians, who were often also astronomers, was continued by most of
his great successors, consequently making astronomy increasingly
‘scientific’.

Thus the subsequent developments in Arabic astronomy had already taken
root in the ninth century, especially in Baghdad, for the programme and
methods of work which reached a high state of organization there would be
followed without notable change, at least in basic principles, for several
centuries.39
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ASTRONOMY IN THE TENTH AND ELEVENTH
CENTURIES UNTIL AL-BIRUNI

We saw in Chapter 1 that it was between the tenth and eleventh centuries that
decisive progress was made with regard to the conception and organization
of permanent large-scale observatories in Baghdad or in Persia, and the
chapter on trigonometry (vol. II, chapter 15) shows the importance of the
results achieved during the tenth century for the development of this science,
on which the accuracy of astronomical calculations partly depends.

However, few but fragmentary or incomplete texts of theoretical
astronomy have come down from this era, and it is paradoxically more
difficult to sketch the evolution of eastern Arabic astronomy in the tenth
century than in the preceding century. We shall therefore simply take three
examples of scientists from this period, who seem to have worked in greater
isolation than their predecessors of the ninth century, and then turn our
attention to the line that, from master to student, leads to al-Biruni, who lived
partly in the tenth and partly in the eleventh century and who stands at the
summit of this first period of eastern astronomy.

Abu Ja‛far al-Khazin, ‛Abd al-Rahman al-Sufi and Ibn
Yunus

Abu Ja‛far al-Khazin was a brilliant mathematician; originally from
Khurasan, he spent part of his life in Rayy and he died between AH 350 and
360 (AD 961 and 971). He composed several treatises of theoretical
astronomy, but only some fragments of his Commentary on the Almagest —
mainly on trigonometry—remain; however, the allusions to this work made
by certain later authors, notably al-Biruni, demonstrate its importance for his
successors. He had studied the motion of the sun and, unlike al-Battani, he
used Ptolemy’s observation of the constant value of its apparent diameter,
therefore necessitating a fixed distance from the earth. He thus proposed a
new model for the motion of the sun: not on an eccentric but on a circle
concentric with the earth, the uniform motion occurring around an eccentric
point in an analogous way to the movement of the epicycle around the
‘equant point’ in the Ptolemaic model of the upper planets.40 This is currently
the only point which reveals that he had made a critical evaluation of
Ptolemy’s models.

He also wrote the Kitab fi sirr al-alamin (‘Book on the secret of the
worlds’), which is lost in its entirety and in which he proposed a new global
conception of the universe based on Ptolemy’s results in the Planetary
Hypotheses.41 Although we cannot yet determine its precise measure, the
work of Abu Ja‛far al-Khazin had an undoubted influence, a century later, on
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the work of Ibn al-Haytham, al-Shukuk ‛ala Batlamyus, relating to his
criticism of the Ptolemaic system, which is frequently based on arguments of
a cosmological nature (see the following chapter).
‛Abd al-Rahman al-Sufi (AH 291–376 (AD 903–86)) was born in Rayy

and worked in Shiraz and Isfahan. Several of his observations, on the
obliquity of the ecliptic and on the motion of the sun or the length of the
solar year, have been reported, but he is most famous for his Kitab suwar al-
kawakib al-thabita (‘Book concerning the constellations of the fixed
stars’);42 this is a reworking of the catalogue of fixed stars from the
Almagest, written around 965. In his introduction, al-Sufi defines his position
in relation to the Arab astronomers of the preceding generation who dealt
with the fixed stars or to the makers of celestial spheres, criticizing the way
in which one or another constellation was handled, and he chooses the value
of the precession constant calculated by the authors of the ‘Verified table’
under al-Ma’mun—1 ° in sixty-six years—instead of the 1° per century
stated by Ptolemy. This work is not just an adaptation of the catalogue of the
Almagest achieved by modifying the longitude of each star with the aid of the
correction corresponding to the precessional movement between the second
and tenth centuries, because al-Sufi also made many verifications by
observation, for the magnitude of the stars as well as for their ecliptic
longitude—he states that he preserved the value for the latitudes given by
Ptolemy—and introduced notes on the apparent colours of the principal stars.
Al-Sufi’s book was widely read in Arabic, and from the twelfth century was
translated and disseminated in Latin—the name of its author being
transcribed as ‘Azophi’—resulting in many stars being given names of
Arabic origin in the West.

The work describes each of the forty-eight constellations according to a
unique format: first a presentation of the constellation concerned, listing all
its stars and the different Arabic names under which they could be known;
then a table giving their ecliptic co-ordinates and their magnitude. All copies
of the book, from the earliest, contain miniatures of the mythical figures
representing each of the constellations with the positions of its different
stars, always sketched twice in symmetrical fashion—‘as seen in the sky’ and
‘as seen on the sphere’ (i.e. on a representation, in wood or metal, of the
celestial sphere)—thus enabling easy location of the constellations even by a
beginner. The author intended a double purpose for his work, at once
theoretical and practical, for example in orientation on land or sea, and this was
part of the reason for its success. A number of illustrations printed here show
the quality and diversity of the representations of constellations in the
manuscripts of this famous work.

Ibn Yunus (d. AH 399 (AD 1009)) was a great Egyptian astronomer, and
above all an observer, who worked in Cairo during the first period of the
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Fatimids and probably had his observatory on Mount Muqattam, east of 
Cairo. His most important work is al-Zij al-Hakimi al-Kabir (‘The great
Hakemite table’)—from the name of the Fatimid sultan al-Hakim who
reigned in Cairo from AH 386 (AD 996) to AH 411 (AD 1021)—a
monumental book in eighty-one chapters of which only a little more than
half is preserved.43 Ibn Yunus set out to produce a complete treatise of
astronomy including the greatest possible number of previous observations,
critically reviewed and analysed and enriched with the results of his own
numerous observations. His work is therefore a means of gaining access to
much scientific material of the ninth and tenth centuries which is known only
through his quotation of it.

There is very little theoretical reasoning in this work of Ibn Yunus; it is a
‛zij’ in the strict sense of the term, i.e. a work that concentrates exclusively
on the compilation of tables of the movements of heavenly bodies, with
calculations of their various parameters and details of how to use them. Since
his results became available in translation at the beginning of the nineteenth
century, the accuracy of his observations has been exploited by modern
scientists to gain, for example, a better knowledge of the secular acceleration
of the moon.

Al-Biruni

Al-Biruni was born in AH 362 (AD 973) in the Khwarizm and died around
AH 442 (AD 1050), probably in Ghazna (modern Afghanistan). He was the
pupil of Abu Nasr Mansur b. ‛lraq, himself the pupil of Abu al-Wafa’ al-
Buzjani; he explicitly recognized these two scholars as his masters, and he
worked in Rayy with al-Khujandi. These three contributed toward al-Biruni’s
becoming simultaneously a mathematician, an astronomical theorist and an
observer.

Abu al-Wafa’ al-Buzjani, mathematician and astronomer, who was born in
AH 328 (AD 940) at Buzjan in Persia, and died at Baghdad in AH 388 (AD
998), represents a return to the tradition of astronomical research of the
‘Baghdad school’, which had been so strong in the preceding century, as we
have seen, for he gained his scientific training in this environment and
worked in Baghdad thereafter. For his astronomical research Abu al-Wafa’
used the large observatory built under the patronage of Sharaf al-Dawla in
the gardens of the royal palace in Baghdad. He entitled his principal
astronomical treatise Almagest, but only part of this text has been preserved
and this mainly concerned with questions of trigonometry, a science
considerably developed by this author.44 We thus know little about his
contributions to theoretical astronomy, but al-Biruni makes numerous
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allusions to his studies concerning the motion of the sun and the value of the
precession constant.45

We have less information about al-Biruni’s immediate ‘master’, Abu Nasr
Mansur b. ‛Iraq, who died around AH 427 (AD 1036) at Ghazna. We know
that he was a student of Abu al-Wafa’ al-Buzjani, and his surviving works
consist mainly of important texts on trigonometry, written partly at al-
Biruni’s request when the latter was puzzling over specific problems (Samsó
1969). Al-Khujandi, who died c. AH 390 (AD 1000), devoted a great deal of
study to the question of observational instruments, about which he wrote
several books, and he was responsible in particular for the building of the
great sextant at Rayy described in the preceding chapter.

Al-Biruni is a scholar of exceptional stature, who wrote about 150 works
on all the known sciences of his time. These included thirty-five treatises of
pure astronomy of which only six have survived; his other works—on India,
for example, or about chronology—contain numerous references to
astronomical matters. His major survey in this area is al-Qanun al-Mas‛udi
(‘Tables Dedicated to Mas‛ud’), a work consisting of eleven treatises written
around AH 426 (AD 1035) which comprises 1,482 pages in the original
edition (Boilot 1955).

His mother tongue was Persian, but his chief working language was
Arabic and he also knew Sanscrit fluently because he used it and he made
several translations of scientific texts from Sanscrit to Arabic. He thus had
direct access to all the sources of Indian scientific astronomy, to which he
constantly refers alongside the Greek sources or the works in Arabic of his
predecessors, whereas since the transmission of Sanscrit texts at the end of
the eighth century, those predecessors seem only to have had access to a few
Indian astronomical documents or to secondary sources, while the Greek
scientific tradition was much more widespread. Al-Biruni could therefore
bring together and study directly the entire astronomical heritage of his day,
from the Greek world, the Indian world and the Arab world, and all his work
does in fact tend toward the goal of a rigorously conducted synthesis. Rather
than attempting to present all the astronomical work of al-Biruni, which
would be particularly difficult, we shall consider some aspects of his method.

In the first treatise of al-Qanun al-Mas‛udi, al-Biruni states some general
principles of astronomy and sets out the bases of chronology in different
cultures, including that of China. In Chapter 2 he deals with the position of
the heavens in relation to the earth, and considers the hypothesis of the
rotation of the earth about itself to explain diurnal movement.46 He states
that this hypothesis was supported in India by Aryabhata and his disciples
but that it is not compatible with one of Ptolemy’s arguments according to
which a body in free fall will not fall vertically if the earth has a rotational
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movement; al-Biruni then asserts that a ‘great scholar’ (whom he does not
name) contends that Ptolemy’s argument is not valid in so far as every 
terrestrial body is carried by this rotation along the vertical line through
which the body falls. After setting out this argument, which he appears to
find consistent, al-Biruni returns to the question, considers the problem of
horizontal motion, calculates the speed of a point on the earth in the
hypothesis of its rotation about itself, and concludes that this great speed
could only be added to or subtracted from the other movements of terrestrial
bodies from East to West, which cannot be verified, and therefore, according
to him, it is not possible for the earth to rotate about itself.

In general, al-Biruni deals with a specific astronomical problem according
to the following scheme: first, he outlines some general principles about the
problem in question; then he gives the various solutions proposed by the
Indians, by Ptolemy and by the Arab astronomers, all presented and critically
analysed on the basis of the general principles stated at the beginning; then,
where relevant, he details the earlier observations that are most important or
most noteworthy for the phenomenon in question, and describes his own
observations; finally he selects one of the preceding solutions, or proposes
his own solution based on all the foregoing material. As an example, we
shall take the question of the visibility of the crescent as set forth in al-Qanun
al-Mas‛udi.47

Treatise VI of this work concerns the motion of the sun, treatise VII
concerns the motion of the moon and treatise VIII concerns the observable
phenomena on the connection between the motions of the sun and of the
moon, i.e. the question of eclipses of one or other of these ‘two luminaries’
and that of the visibility of the crescent. Chapter 13 of treatise VIII is devoted
to the morning and evening twilight, with a description of this phenomenon
as the approach of the horizon to the limit of the cone of shadow created on
the earth by the sun, and al-Biruni states that ‘the astronomers’ (without
citing them) have determined that the beginning of the morning twilight in
the East, or the end of the evening twilight in the West, occurs when ‘the arc
of depression of the sun below the horizon’ is 17° or 18°—without choosing
between the two values. Chapter 14 then deals with the visibility of the
crescent.

General principles

The ability of the eye to see the crescent depends on several factors: first, the
distance between the moon and the sun, which determines the portion of the
moon’s surface which is illuminated; then the earth-moon distance on which
its apparent luminosity for the same amount of illumination depends; then the
luminosity of the atmosphere on the horizon depending on the inclination of
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the ecliptic on the horizon, and therefore on both the position of the sun on
the ecliptic and the latitude of the place; finally the position of the setting
moon on the horizon, more or less close to the ‘brightest point on the horizon’,
and thus to the vertical of the sun’s position below the horizon.48 Al-Biruni
concludes that all these parameters must be carefully taken into account.

Earlier solutions

Ptolemy did not study this question because the problem did not arise in his
culture. Four Arab astronomers, al-Fazari, Ya‛qub b. Tariq, al-Khwarizmi
and al-Nayrizi, used an Indian method, taking the difference in time between
the setting of the sun and of the moon, but this criterion did not allow for the
inclination of the ecliptic on the horizon, and it was therefore not valid; al-
Nayrizi, however, did a little better than the other three, because unlike them,
he took account of the correction of the lunar parallax. Following several
corrections, al-Battani took into consideration the distance between the sun
and the moon both on the equator and the ecliptic but did not pay sufficient
attention to the inclination of the ecliptic on the horizon. Finally, Habash
used as his principal criterion ‘the arc of depression of the sun below the
horizon’, which can only be calculated from all the other parameters.

Conclusion

Habash’s method must be chosen. Al-Biruni does not offer a personal
solution, and concludes his chapter by describing the means of finding the
lunar crescent on the horizon with the aid of the observation tube described
in the preceding chapter.

The problem of the motion of the sun according to al-Biruni has been
studied by Hartner and Schramm (1963). As well as all the stages of the
preceding scheme, al-Biruni includes large numbers of observations of the
sun in addition to his own, and a mathematical study of the apparent motion
on the eccentric which recalls that of Thabit b. Qurra described earlier.
Following a critical analysis of the findings of previous authors, al-Biruni
establishes in definitive manner the motion of the apogee of the sun,
recalculates all the parameters and draws up tables of its movement.

This type of astronomical work did not disrupt the overall system of
astronomy as perceived by al-Biruni, because he remained faithful to the
model of epicycles and eccentrics defined by Ptolemy. However, al-Biruni
reviewed everything in detail, continuing, for example, the movement toward
the mathematization of astronomy begun by Thabit a century and a half
before him,49 and rigorously taking stock of the current state of the science in
all its aspects. In so far as such a comparison is possible, this work is
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analogous to that carried out by Ptolemy in the Almagest eight centuries
earlier: establishing a rigorous scientific tradition, but without major global
innovation, using all the preceding research and all the mathematical tools
available to the astronomer at the given time.

Al-Biruni accomplished this synthesis brilliantly; it was the crowning
achievement of the first period of Arabic astronomy, remaining within the
general framework erected by Ptolemy. It was his contemporary Ibn al-
Haytham who began to break free of that framework, a development that
might not have been possible without the precise contribution of al-Biruni.

NOTES

1 See al-Qifti.
2 See the Indian sources referred to in Chapter 1.
3 Cf. al-Biruni, Kitab fi Tahqiq, pp. 351–2. Al-Biruni is usually very reliable when

reporting traditions of a scientific nature, particularly with regard to India, and the
tradition recounted here is probably based on historical fact, but certain elements
are lacking, without which we cannot be absolutely convinced of the authenticity
of everything that has been reported concerning the episode: the various Arabic
sources disagree on an exact date; who was the Indian astronomer and in which
language did the exchanges between him and his questioners take place; was this
the translation of a text in the proper sense of the term—and if so, which text, since
the expression Zij al-Sindhind may be purely generic— or was it simply a
transmission of results in the form of tables? And so on….

4 For al-Fazari, see Pingree (1970). For Ya‛qub b. Tariq, see Pingree (1968: 97–125).
5 Latin text edited by Suter (1914); translation with commentary by Neugebauer

(1962a).
6 The four texts by Euclid were translated by Hunayn and Thabit; the three texts by

Theodosius were translated by Qusta; the two texts by Autolycus were translated
by Ishaq and by Qusta respectively; the text by Aristarchus and that of Hypsicles
were translated by Qusta; and the book by Menelaus was translated by Hunayn or his
son Ishaq.

7 For the transmission of the Almagest in Arabic, see Kunitzsch (1974).
8 Ibn al-Salah, Arabic text, p. 155, ll. 12–18.
9 Only one part of these two versions has been published: the star catalogue of the

Almagest. See Ptolemy, Almagest: Der Sternkatalog, edited and translated into
German by Kunitzsch.

10 See Leiden, or. ms. 180, fol. 1a.
11 al-Mas‛udi, Kitab al-Tanbih, pp. 15–16.
12 In his book Hay’at al-aflak, ms. Oxford, Bodl., Seld. 3144.
13 See al-Kindi for the edition of the text and Rosenthal for his analysis.
14 See al-Farghani.
15 We no longer possess his commentary, which numbered 200 folios.
16 Thabit Ibn Qurra, treatises 1 and 2. For Qusta’s text see note 12.

56 EASTERN ARABIC ASTRONOMY



17 The Arabic manuscript Escurial 927 carries the explicit title ‘Table verified
according to the observations of al-Ma’mun’, but the text contains many elements
dating from after the ninth century; see the analysis by Vernet (1956) and Kennedy
(1956:145–7).

18 They are regrouped in tabular form in al-Hashimi, pp. 225–6.
19 Cited in Thabit, treatise 2, p. 22, lines 4–5, and in al-Farghani, pp. 50–3.
20 The Arabic text of this treatise can be found in Thabit, pp. 26–67; see the

introduction, pp. XLVI–LXXV, and the complementary notes, pp. 189–215, where
the arguments condensed here are detailed.

21 Thabit, treatise 3, p. 61.
22 Thabit, treatise 3, p. 49.
23 Recalculated results for the period (year 830) are given in parentheses.
24 For details of the reasoning see Thabit, pp. LX–LXIII.
25 See the commentary on this point in Neugebauer (1962b:274–5).
26 The contents of this manuscript have been analysed in detail by Debarnot (1987).
27 See Kennedy (1965, 1968), reprinted in Kennedy (1983:151–63).
28 See the detailed exposition in Thabit, pp. XXVI–XXX.
29 His works on astronomy preserved in Arabic have been edited and annotated (see

Thabit); the account that follows is summarized from that study.
30 Treatise entitled ‘Ralentissement et accélération du mouvement apparent sur

l’écliptique selon l’endroit où ce mouvement se produit sur l’excentrique’; cf. Thabit,
pp. LXXVI–LXXIX, 69–82, 216–21.

31 Ptolemy, Almagest, Heiberg, vol. I, p. 220; Toomer (1984), p. 246.
32 Treatise entitled ‘Clarification d’une méthode rapportée par Ptolémée, à l’aide de

laquelle ceux qui l’avaient précédé avaient déterminé les divers mouvements
circulaires de la lune, qui sont des mouvements uniformes’ or ‘Le mouvement des
deux luminaires’; cf. Thabit, pp. LXXX–XCII, 84–92, 222–9.

33 Ptolemy, Almagest, Heiberg, vol. I, pp. 272–5, and Toomer (1984), pp. 176–8.
34 See Thabit, pp. XCIII–CXVII, 94–116, 230–59, for details of the description

summarized here in an attempt to reconstruct the reasoning of the author.
35 For the explanation of this hypothesis see Thabit, pp. CXIII–CXV.
36 Ptolemy, Almagest, Heiberg, Vol. I, p. 524; Toomer (1984), p. 308.
37 The full name of this author is Abu ‛Abd Allah Muhammad b. Jarir b Sinan al-

Battani al-Sabi al-Harrani; see the bibliography under al-Battani.
38 For these various observations see al-Battani (translation and commentary, vol. 1;

Arabic text, vol. 3; tables, vol. 2): the obliquity of the ecliptic, translation p. 12,
commentary pp. 157–62, Arabic p. 18, 1. 14; apogee of the solar orb, translation p.
72, Arabic p. 107, 1. 23 to p. 108, 1. 7; tropical year, translation p. 42, commentary
pp. 210–11, Arabic p. 63, 1. 22 to p. 64, 1. 1; precession, translation p. 128, Arabic
p. 192, ll. 1–5; catalogue of fixed stars, translation pp. 144–86, Arabic pp. 245–79;
apparent diameters of the sun and the moon, translation p. 58, commentary pp. 236–
7, Arabic p. 88, ll. 3–15.

39 This topic is discussed further in Morelon (1994), under the following areas: the
link between theory and observation, the ‘mathematization’ of astronomy, and the
link between ‘mathematical’ astronomy and ‘physical’ astronomy.

40 See al-Biruni, al-Qanun al-Mas‛udi, pp. 630–2. Al-Biruni (ibid., p. 1312) also
refers to a Book on the Sizes and the Distances of Heavenly Bodies by the same
author.
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41 Al-Kharaqi al-Thabiti, an author from the twelfth century, refers to al-Khazin while
mentioning similar work by Ibn al-Haytham, in the introduction to his book of
cosmology: Muntaha-l-idrak fi taqasim al-aflak (‘The farthest point of knowledge
for the divisions of celestial spheres’)—manuscript: Paris, B.N., Ar. 2499.

42 See al-Sufi, ‛Abd al-Rahman.
43 See Ibn Yunus for the edition in French translation of the first chapters of this work.
44 The Paris manuscript, B.N., Ar. 2494, is very incomplete; it was studied by Carra

de Vaux (1892). The use by this author of a particular term sparked a controversy,
begun by L.A.M.Sédillot, concerning the discovery by Abu al-Wafa’ of the motion
of lunar variation, by showing that this was not what was referred to in the text.

45 See al-Biruni al-Qanun al-Mas‛udi, pp. 640–77.
46 al-Biruni al-Qanun al-Mas‛udi, pp. 42–53; see Pines (1956).
47 al-Biruni al-Qanun al-Mas‛udi, pp. 950–65.
48 See Figure 2.3 and the discussion of it, including a description of the different

methods. Note that al-Biruni was obviously unaware of Thabit b. Qurra’s method,
described above, which uses all the parameters cited in a more complete way than
that of Habash.

49 For the complexity of the interpolation methods employed by al-Biruni for the use
of the tables, see Rashed (1991).
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3
Arabic planetary theories after the eleventh

century AD
GEORGE SALIBA

This chapter takes its starting date as the eleventh century AD for several
reasons. First, one can argue that it was in the eleventh century that Arabic
astronomy was finally ‘acclimatized’ within the Islamic environment and
from then on it began to be coloured with whatever prerequisites that
environment demanded. From this perspective several works began to be
characterized by original production, and were no longer mere repetitions of
problems that were discussed in the Greek tradition. Figures such as Abu Sahl
al-Kuhi, Abu al-Wafa’ al-Buzjani, Biruni, Mansur ibn Nasr ibn ‛Iraq, etc.,
who lived just around the turn of the previous century, were setting the
grounds for this new production in astronomical research. This work could
still be considered as a continuation of that of Habash al-Hasib, Thabit Ibn
Qurra, Khwarizmi and others of the previous ninth century.

Second, the eleventh century witnessed a series of works all characterized
by a genuine interest in the philosophical basis of Greek astronomy. As a
result, these works led to a new school of writers on astronomical subjects
whose main concern was to point out the problems that were inherent in the
Greek astronomical system. One should recall the works of Ibn al-Haytham
in his Shukuk, Abu ‛Ubayd al-Juzjani in his Tarkib al-Aflak and the
anonymous Spanish astronomer in his Istidrak. The problems raised by these
astronomers were later taken up by ‛Urdi, Tusi, Qutb al-Din al-Shirazi and
Ibn al-Shatir, among others. The last four astronomers have been referred to
in the literature as the ‘School of Maragha’, mainly because of the
association of the first three with the observatory built by the Ilkhanid
monarch Hulagu in the city of Maragha in northwest modern Iran in AD
1259. If one were to take their works alone, one could show that within the
thirteenth century, when the first three lived, there occurred a real revolution
in astronomical research and a definite change in attitude towards
astronomical presuppositions. This tradition, started in the eleventh century,



reached a sophisticated maturity during the thirteenth century, and climaxed
with the works of Ibn al-Shatir in the fourteenth, but lingered on well into the
fifteenth and sixteenth centuries if one takes into consideration the works of a
student of Ulugh Beg, ‛Ala’ al-Din al-Qushji (d. 1474), and al-Hay‛a al-
Mansuriya of Mansur ibn Muhammad al-Dashtaghi (1542).

By defining this genre of writing as the main motivating direction of
astronomical research after the eleventh century, one has to accept the fact
that from this perspective the works of someone like Jamshid b. Giyath al-
Din al-Kashi in the fifteenth century, especially in his zij-i Khaqani,
represent a return to the older tradition as represented by such works as those
of Khwarizmi and Biruni, where the main concern is mathematical and
computational and not at all concerned with theory of science and
philosophy.

Other important figures of the fifteenth and the sixteenth centuries such as
Abu ‛Ali al-Birjandi seem to have taken it upon themselves to write
commentaries on earlier works, mainly the works of Tusi, and have produced
very little original material that could be classified either way. Works of
people like Jaghmini and Qushji were elementary indeed, and of the two
authors only Qushji seems to have understood the originality of the Maragha
School, as we shall see later.

In what follows, it will be shown that the Maragha School astronomers not
only produced original mathematical astronomy, but also left their imprint on
later astronomical research, mainly in the Latin West, and may perhaps have
laid the foundation for Copernican astronomy itself.

This chapter will introduce the problems that were the main concern of the
New School, discuss their various solutions by various authors and conclude
with an evaluation of their possible relationship to Copernican astronomy.

THE CONTROVERSIAL PROBLEMS

The most outstanding problems in the Ptolemaic astronomy as expounded in
the Almagest and the Planetary Hypotheses were seen to be (1) the problem
of prosneusis, (2) the problem of inclination and deviation of the spheres of
Mercury and Venus, (3) the problem of the equant in the model of the
superior planets, and (4) the problem of the consistency of the planetary
distances as they were perceived to be within nested shells.1 But this list
could be enlarged depending on the seriousness with which one took the
various lists compiled during the later centuries such as the list compiled by
al-Akhawayn sometime during the latter years of the fifteenth century and
the early years of the sixteenth. The list of problems—called ishkalat—that
was the subject of the treatise of al-Akhawayn will be reproduced here as an
example of the kind of comprehensive coverage that these problems received.
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According to al-Akhawayn, the general ishkalat in astronomy were
classified as follows:

Ishkal 1 Speeding up, slowing down and average motion are
inappropriate motions in the heavens and need a special solution. Such
an ishkal is easily solved, in the case of the sun for example, by the
adoption of either the eccentric model or the epicyclic one.

Ishkal 2 Planetary bodies appear sometimes to be larger than at other
times. One such problem involves the explanation of the reason why
there is a total solar eclipse when the sun is in the middle of its slow
motion sector, while there is only an annular eclipse when it is on the
opposite side in its fast moving sector, knowing that in both cases the
sun is covered by the same-size body, i.e. the moon. The solution
would obviously follow from the kind of model one would adopt for
the solution of the first ishkal, i.e. if one were to take the eccentric
model then it is easy to see why the sun would look smaller when it is
on the far side of the eccentric than when it is on the near side.

Ishkal 3 Stationary, retrograde and forward motion of the planets are
phenomena which seem to deny the assumed regular motions of the
planets. Here again, the adoption of the epicyclic model could explain
the three phenomena without any inconsistencies with respect to the
general principles of uniform circular motions as being the only
appropriate motions for the heavenly bodies.

All of the three problems mentioned above could have been solved by relying
on principles already enunciated by Ptolemy in the Almagest and without
recourse to any conditions contrary to the general principles.

Ishkal 4 Uniform motion is measured around a point which is not the
centre of the body that generates this motion. This is the general
problem of the equant directly applicable to the model of all the
planets, but in a special application includes the motion of the moon
which is uniform with respect to the earth rather than the centre of its
deferent.

It is this problem which generated a great amount of research, for it implied a
contradiction in the Ptolemaic theory between the physical assumptions and
mathematical ones. In what follows, we shall discuss in great detail the
various solutions that were applied to this problem.

Ishkal 5 The uniform motion is around a point, in spite of the fact that
the moving body draws sometimes nearer to that point than at other
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times. The solution of this problem required the development of a 
mathematical theorem—now called the ‘Tusi Couple’—that became an
integral part of most astronomical research after its discovery.

Ishkal 6 A problem which results from requiring in the motion of a
sphere that its diameter be slanted away from the centre of the carrying
sphere that moves it. This ishkal will be made clear in the discussion of
the prosneusis problem mentioned above. The most notable illustration
of this problem is in the model of the moon as it was perceived by
Ptolemy.

Ishkal 7 The problem of incomplete circular motions being part of
the motion of the heavenly bodies. The best illustration of this ishkal is
the assumed motion of the epicyclic diameter in the Ptolemaic latitude
theory of the lower planets. This is the same problem referred to above
as the problem of the inclination and the deviation.

PTOLEMAIC THEORY OF THE MOTION OF THE
PLANETS IN LONGITUDE

In order to begin to appreciate the seriousness of these problems, and the
nature of the criticism as well as the solutions applied to them, it is best that
we review very quickly the Ptolemaic theory for the motion of the planets.

The motion of the sun

The motion of the sun is described in Almagest III by Ptolemy in either one of
two models, namely the eccentric model or the epicyclic model. The equality
of these models had already been shown by Apollonius (Neugebauer 1959;
re-edited in 1983), and was incorporated by Ptolemy as an integral part of the
Almagest terminology. In Figure 3.1, the observer is supposed to be at point
O, the centre of the ecliptic. The sun could either move along the eccentric
ABCD with uniform speed so that it will appear to the observer on the earth
to be moving fast when in the lower half of the eccentric BCD and to slow
down when in the upper half DAB—of course it would seem to be at its slowest
point when it is at the apogee A—or the whole motion could equally be
described if one assumed the sun to be moving on an epicycle with centre E
in the direction contrary to the order of the signs (i.e. in the direction
indicated by the arrow, which is also called ‘forward’, while the opposite
motion is called ‘to the rear’ or ‘backward’),2 while the centre E itself is moved
on a concentric circle (the broken one in the figure) in an equal and contrary
motion to that of the epicycle. The resulting motion will obviously be the
same as the one anticipated by the eccentric model. The equivalence of the
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two models, and thus the resulting motions, is best described in Almagest III,
3. 

Although the motion of the sun could appear to the novice as implying a
contradiction with the original principles of uniform motion, the Ptolemaic
double-model explanation was found to be perfectly satisfactory, in that all
the motions were indeed taking place around the centre of a sphere which
was different from the position of the observer, in the first case, but could
also be explained as identical with it in the epicyclic model and still be a
combination of motions all uniform and all around centres of spheres—hence
satisfying the primary principles.

The motion of the moon

In the case of the moon, however, the situation is quite different, for the
motion is much more complex. In Almagest IV, Ptolemy first tried the
Hipparchian model, which was essentially an extension of that of the sun, but
soon realized that it did not describe all the motions properly. After a lengthy
description that seems like a change of mind, he finally adopted a rather
complicated model, in Almagest V, to account for the lunar movements.3 In

Figure 3.1
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Figure 3.2 the observer is supposed to be at point O, the centre of the
ecliptic. An encompassing sphere, called the sphere of the nodes, would
move uniformly forward around the centre of the universe carrying with it
the apogee of the deferent A. The deferent itself moves in the opposite
direction around its own centre F, such that angles SOA and SOC are equal
and opposite. This is obviously ishkal 4 of al-Akhawayn’s list mentioned
above, for we have a deferent moving in a non-uniform motion around its
centre F but moving uniformly around another point O. The epicycle carrying
the moon is supposed in this model to be at point C, moving backward. The
moon itself moves with its epicycle in the forward direction but measuring the
forward angle from the extension of the line that connects point N—a point
diametrically opposite to F from the centre of the universe called the
prosneusis point—to the centre of the epicycle C, and extended to the mean
apogee H at the epicycle’s circumference. Since point N is always in motion,
to remain opposite to the moving point F, it was thought to be a non-stable
point for one to begin the description of motion from it, thus giving rise to
the ishkal of prosneusis mentioned above.

Figure 3.2
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To summarize therefore, in the Ptolemaic lunar model one had to accept
inconsistencies that gave rise to serious problems when one thought of the
heavenly spheres as actual solid spheres. For it was impossible to move these
spheres uniformly with respect to a centre other than their own, or with
respect to a moving point that is not a fixed reference point for equal motion.
All the criticism and the reformulations of Ptolemaic astronomy were really
centred around these two points.

The motion of the upper planets (Saturn, Jupiter, Mars)
and Venus

Figure 3.3

The motion of the upper planets as described by Ptolemy was relatively
simpler than that of the moon, and involved the following elements. In
Figure 3.3 the observer is taken to be at point O. The centre of the sphere that
carries the epicycle of the planet—i.e. the deferent—in a backward motion is
at point T. The epicycle of the planet itself moves backward around its centre,
point C. The planet, P, is carried by the epicycle in its backward motion at a
uniform speed measured by the angle of the anomaly. The reference point for
the measurement of the anomaly, however, is located along the extension of
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the line joining the centre of the epicycle C to a point E, which is located
along the line of centres OTA and is at such a distance from O that T bisects
the line OE.

The difficulty in this model is in the motion of the deferent. For, as it was
described by Ptolemy, the deferent carried the epicycle in a backward motion
but did not do so in such a way that point C, the centre of the epicycle, would
describe equal arcs in equal times around the centre of the deferent T, but
rather around point E, the so-called equant. In essence then, the deferent,
assumed by Ptolemy to be a physical sphere in the Planetary Hypotheses, is
here being forced to move uniformly around a point different from its own
centre. Put differently, the condition seems to require a sphere to move
uniformly around an axis that did not pass through the centre of that sphere,
which is an impossibility (muhal).

The motion of Mercury

Because Mercury is difficult to observe on account of its proximity to the sun
and on account of its relatively fast motion, the Ptolemaic model for this
planet was conceived to involve very complicated motions, which could not
be included in the models described above. Moreover, this planet was unlike
any other planet, in that Mercury was thought to have two perigees instead of
one like all the others. These perigees were supposed to be symmetrically
located with respect to the line of centres at angles equal to 120° from the
apogee.

For an observer at point O, the centre of the universe, the motion of Mercury
could be described as resulting from the following motions.4 Let there be an
encompassing sphere, analogous to the one that carried the nodes of the
moon (Figure 3.4), and let it move forward around centre B in such a way
that it carries the deferent’s apogee with it. Let that apogee fall along the
extension of line BG. Now let the deferent itself move backward around its
own centre G, thereby carrying the epicycle’s centre to point C, and making
angle AEC equal to angle ABG. The epicycle itself moves backward around
centre C, thus moving the planet M with the anomaly motion, which is
measured from the extension of line EC. This model will allow the centre of
the epicycle C to come close to the earth— i.e. to reach the perigee—twice
per revolution, namely when ABG=120° and 240° approximately. In both of
these situations line GC will pass through E. Moreover, since the mean
anomaly is always measured from the extension of the line EC, point E
therefore will always act as the equant for the planet Mercury in an
analogous fashion to the equant of the upper planets.

It is obvious that this model of Mercury suffers from difficulties similar to
the ones encountered so far in connection with the models of the moon and
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the upper planets. In the first instance, the crank-like mechanism suggested
here, with which the deferent is moved in one direction around a centre
different from its own, while it moves on its own centre in the opposite
direction, is very similar to the type of mechanism used in connection with
the moon. The main difference between the two models is that in the case of
the moon the mean anomaly was measured from a line that connected the
centre of the epicycle with a moving point called the prosneusis point N,
while here, in the case of Mercury, the analogous point is taken to be the
midpoint of line OB, and thus a fixed equant, like that of the upper planets.
In both models though, the deferent was supposed to move around its own
centre at a non-uniform speed, while its uniform motion is supposed to occur
around another centre, the centre of the universe O, in the case of the moon,
and around the equant E in the case of Mercury.

It is not surprising therefore to find that the objections that were raised
against Ptolemy’s lunar model—especially in regard to the prosneusis point
—and the model of the upper planets, in connection with the equant problem

Figure 3.4
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in particular, were also raised against the Ptolemaic model for Mercury, for it
seemed to have had the disadvantages of both of the other earlier models.

THE MOTION OF THE PLANETS IN LATITUDE

The previous description of the Ptolemaic models assumed that their motion
in latitude is either negligible or that if it existed it did not affect the motion
in longitude, which is not true. The facts are such that the planets are rarely
seen to coincide with the plane of the ecliptic where the longitude motion is
really measured, and that the latitude component is sometimes considerable
and has to be taken into consideration. But in a typical Ptolemaic approach,
this latitude component is thought of as an adjustment to the longitude and
was left to be described in a separate section by itself.

The models accounting for the latitude theory were described in the
Almagest in three separate models, i.e. one for the moon, one for the upper
planets Saturn, Jupiter and Mars, and one for the inferior planets Venus and
Mercury. This order also represents their order of complexity.

The latitude of the moon

For the moon, the model is rather simple, on account of the fact that the lunar
orbit does pass through the earth, and thus for a geocentric observer the
calculation of the lunar latitude is not too difficult. In fact, since the lunar orbit
is at a fixed angle with respect to the ecliptic, and since the observer is at the
centre of the ecliptic, the computation of the lunar latitude is very similar to
the computation of the solar declination with respect to the celestial equator.

But because the lunar orbit is inclined at a fixed angle with respect to the
ecliptic, the angle being about 5°, this means that the maximum latitude of
the moon will also reach around 5° which it does according to observations.
On the other hand, the observations have also shown that the moon’s
maximum latitude is not reached at any specific position on the ecliptic, but
that it rather ‘moves’ around. This, coupled with the fact that solar eclipses
also happen at various points on the ecliptic, meant that the line of
intersection between the lunar orbit and the ecliptic, the nodal line, was also
moving. That could only happen if one assumes the existence of a sphere that
carries the whole configuration around so that the sphere whose cincture
(mintaqa) is the lunar orbit itself, or in Ptolemaic terms the deferent, is also
moved by this assumed sphere. This last sphere is called the sphere of the
parecliptic (mumaththal), or that of the nodes (jawzahar), and was supposed
to move at about three minutes per day in the direction opposite to the order
of the signs (i.e. forward in the sense used above).
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To summarize, the lunar model, in its complete form, included the
following spheres: (1) a sphere called the sphere of the parecliptic
(mumaththal) which moves the nodes and everything else in a forward
direction; (2) an inclined sphere (al-ma’il), which also moves in the same
forward direction and also accounts for the lunar latitude, and whose mintaqa
has the same plane as the deferent; (3) the sphere of the deferent, which
moves in the backward direction in its own motion; and finally (4) the sphere
of the epicycle which carries the body of the moon itself and is itself carried
by the deferent sphere.

We have seen above the two objections raised against this model in terms
of its performance when describing the lunar motion in longitude. These
objections do not apply to the motion in latitude, for in this case all the
motions that are needed to account for the motion in latitude are performed
by spheres moving around their own centre, in this case the centre of the
universe as well.

Latitude of the upper planets

For the upper planets, the situation is more complex, just because the actual
orbit of these planets does not pass through the earth, the centre of the
universe, but rather through the sun. For an observer on the earth, the
transformation of the motion in latitude to geocentric co-ordinates involves
more complicated procedures than the ones used in the lunar latitude which
was just described.

To use the analogy of the lunar model, the upper planets’ deferents (Figure
3.5) were also thought to be inclined, at a fixed inclination i1 with respect to
the ecliptic. The line along which the deferent intersects the ecliptic plane is
also called the line of nodes, where the point at which the

Figure 3.5
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epicycle ascends from the south to the north is called the ascending node (or
the head) and the diametrically opposite one is called the descending node
(or the tail). The line issuing from the observer’s point, perpendicular to the
line of nodes, defines the top of the deferent N when it intersects the northern
circumference of the deferent, and the bottom of the deferent S when it
intersects the southerly one. This line is not in general the same as the
apsidal line for it only passes through the centre of the ecliptic O, not through
the centre of the deferent and the equant as the apsidal line does.

But unlike the lunar model, the epicycles of the upper planets do not lie in
the plane of the deferent, as they were assumed to do when the component of
the longitude was being considered on its own. Instead the plane of the
epicycles themselves becomes inclined with respect to the plane of the
ecliptic by an angle i2 when the epicycle moves from the nodes. This last angle
of inclination (called a deviation) reaches a maximum northerly inclination
when the epicyclic centre is at the top of the deferent. The same deviation
reaches a maximum southerly value, a value larger than the northerly one in
absolute terms, when the epicycle is at the bottom of the deferent. This
situation occurs because the portion of the deferent that is to the north of the
ecliptic is larger than the southerly portion, which implies that the bottom
part of the deferent is closer to the observer, and thus subtends a larger angle.

But when the centre of the epicycle is along the line of nodes, the plane of
the epicycle is supposed to go back to lie in the plane of the ecliptic. Both
angles of latitude, that of the inclined deferent and that of the deviation of the
epicycle, will be equal to zero.

In effect, therefore, the plane of the epicycle seems to undergo a see-saw
motion about an axis, RNT, which is perpendicular to the line joining the
real apogee to the real perigee of the epicycle, and is always parallel to the
plane of the ecliptic. This result is in itself an awkward one, for it involves a
see-saw kind of motion in a portion of the heavens that was supposed to
allow only complete circular motions. To account for it, Ptolemy suggested
in Almagest XIII, 2, that small circles be attached to the tip of the see-sawing
diameter P1 of the epicycle such that the radius of the small circle would be
equal to the maximum angle of deviation and the plane of the small circle
would be perpendicular to the plane of the deferent from which the deviation
is measured. With the insertion of such small circles, the line connecting the
real apogee of the epicycle to the real perigee will no longer see-saw, but
would have its tip moving along these small circles. But here again, since the
time the epicycle takes to move along the larger northerly portion of the
deferent is in general greater than the time it takes to cover the southern
portion of the same deferent, and since the period along the small circle for
the tip of the epicyclic diameter is equal to the period of the epicyclic motion
along the deferent, the motion of the tip of the epicyclic diameter along the
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small circle is not uniform, and like the epicyclic centre has to be moving
uniformly along its own equant.

This must have proved embarrassing to Ptolemy, since he begs the reader
not to consider this arrangement as over-complicated, ‘for it is not
appropriate to compare human [constructions] with divine, nor to form one’s
beliefs about such great things on the basis of very dissimilar analogies’
(Almagest XIII, 2). He goes on to say that he accepted that only because it
yields a simple representation of the motions of the heavens.

It was this specific point that was objected to above (ishkal 7) and was
thought to be a violation of the accepted premises of the discipline of
astronomy. As we shall see, the invention of what later came to be called the
‘Tusi Couple’ would allow for the solution of this problem. In fact there is
enough evidence to support the claim that the ‘Couple’ was specifically
invented by Tusi to solve this inconsistency, and was only applied later to
produce a linear motion as a combination of two circular motions. Moreover,
the ‘Couple’, being composed of two circular motions, allows the tip of the
epicyclic diameter to oscillate back and forth in the same plane, without
violating the circular motion principle, and thus allows the longitude
component not to be disturbed.

Latitude of the lower planets

The Ptolemaic model for the lower planets is still more complicated, and
assumes, in the case of Venus for example, that the inclination of the
deferent plane is not fixed, but that it oscillates back and forth; that the
deviation of the epicycle, like that of the upper planets, also undergoes a see-
sawing motion about an axis that passes through the centre of the ecliptic;
and finally, that the epicyclic plane also see-saws about another axis
perpendicular to the first, and thus undergoes two see-sawing motions of its
own. In the case of Mercury, all these motions are also required except that
they are taken to be in the opposite direction.

To illustrate the case of the model for Venus, we take (Figure 3.6) the
eccentric deferent to be inclined with respect to the plane of the ecliptic at an
angle i0, and let it intersect the plane of the ecliptic along the nodal line that
passes through the point of the observer at the centre of the ecliptic. Unlike
the case of the upper planets, in this model the apsidal line itself is
perpendicular to the nodal line. But the inclination of the deferent is no longer
fixed as it used to be in the case of the upper planets and the moon. In this
case, the inclination of the deferent i0 is coupled with the motion of the
epicycle so that the plane of the deferent would coincide with the plane of the
ecliptic when the epicycle is along the ascending node. As the epicycle
begins to move towards the north, the inclination of the deferent begins to
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increase also in the northerly direction to reach a maximum inclination i0
when the epicycle reaches the apogee. The inclination will then decrease as
the epicycle moves from the apogee to the descending node, to get back to
the plane of the ecliptic as shown in Figure 3.7. But as the epicycle moves
from the descending node towards the perigee, the inclination of the deferent
will increase again in the northerly direction, as shown in Figure 3.8, to reach
another maximum value i0 when the epicycle reaches the perigee. As the
epicycle goes back to the ascending node, the plane of the deferent goes back
to its original position in the plane of the ecliptic as in Figure 3.7. This is the
first see-sawing motion in the model for Venus.

Figure 3.7

The second see-sawing motion is called a ‘slant’. To explain it, Ptolemy
assumed the plane of the deferent to coincide with the plane of the ecliptic

Figure 3.6
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when the epicycle is at the ascending node as in Figure 3.7. The line COD
defined by the intersection of the plane of the ecliptic with the perpendicular
plane produced by the line joining the apparent epicyclic apogee R, H and
perigee S, E and the centre of the ecliptic is taken to be the first axis about
which the slanting motion will take place. The line perpendicular to this last
axis KDL, NCI, and which passes through the centre of the epicycle D, C
(the mean diameter), is then taken to be the second axis about which the
deviation motion will be described.

When the epicycle is at the ascending node, the epicyclic mean diameter
KDL lies in the plane of the ecliptic, and thus has no latitude component for
that slant. But at that position the plane of the epicycle is ‘deviated’ in such a
way that it reaches its maximum deviation i1 just at that position. As the
epicycle begins to move towards the apogee, the plane of the deferent moves
towards the north as in Figure 3.6, and the plane of the epicycle begins to
‘deviate’ back from its maximum position to reach zero deviation when the
epicycle reaches the apogee, while the slant which was equal to zero at the
node begins to increase to reach a maximum slant i2 when the epicycle is at
the apogee.

When the epicycle reaches the apogee, the plane of the deferent will be at
its maximum inclination i0, the plane of the epicycle will be slanted such that
the eastern side of the epicycle will be northerly at a maximum slant i2, while
the line connecting the centre of the ecliptic to the apparent perigee and
apogee of the epicycle will lie in the plane of the deferent having a zero
deviation.

As the epicycle moves to the descending node as in Figure 3.7, the plane
of the deferent goes back to coincide with the plane of the ecliptic, while the
epicyclic plane reaches its maximum deviation i1 with the apogee of the

Figure 3.8
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epicycle being in the northerly direction, and at that position the epicycle
will have a zero slant.

But when the epicycle moves to the perigee of the deferent as in
Figure 3.8, the inclination of the deferent increases to bring the perigee of the
deferent to a maximum northerly direction i0. The plane of the epicycle is
slanted in that position to bring the easterly side of the epicycle to its
maximum northerly slant i2, as it did when the epicycle was in the apogee of
the deferent. Here again, the deviation of the epicycle will be zero.

In the case of Mercury, the inclination of the deferent, the slant and the
deviation of the epicycle are all in the direction opposite to that of Venus.
When the epicycle is at the nodes, the deviation is northerly for Mercury
when it was southerly for Venus and vice versa. At the apogee the inclination
of Mercury’s deferent moves to its maximum southerly inclination when that
of Venus moves to its maximum northerly direction. Similarly at the apogee
the slant is southerly for Mercury where it was northerly for Venus.

If the deviation in the case of the upper planets had been an
embarrassment for Ptolemy in terms of his having to use small circles to
account for the motion of the deviation of the epicycles of the upper planets,
the inclination, the deviation and the slant of the inferior planets, all of them
requiring such small circles to allow them to see-saw about their various
axes, are a triple embarrassment, and it should not be surprising that such
models were considered to be inconsistent with the original premises of the
discipline of astronomy. Here again, the ‘Tusi Couple’ could be efficiently
used to account for all those linear motions of the tips of the various axes as
resulting from circular motions.

This then is a brief description of the main features of the Ptolemaic theory
of latitude. And as we have seen, it was easy to find many faults with it in
spite of its observational base and its ability to predict positions of specific
planets at specific times. The main problem that permeates the whole theory
at all levels is the one referred to above as ishkal 7, and could be simply
described as the problem of admitting oscillating linear motion among the
heavenly motions which are supposed to be circular. Once those oscillating
motions could be produced by circular motions, as in the case of the ‘Tusi
Couple’, the problem would then be reduced to adjusting the periods of
motion so that the circles of the ‘Couple’ will themselves move at a uniform
speed, which is not an easy matter.
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THE REFORM OF THE PTOLEMAIC PLANETARY
MODELS

It was said above that serious criticisms of the Ptolemaic models started, as
far as we know, sometime during the eleventh century. In that century, two
main lines of research seem to have been developed simultaneously; namely,
the line of criticism that was limited to identifying the main defects of the
Ptolemaic models, and that of finding alternative models to replace the
defective Ptolemaic ones.

The first line of research, that devoted to criticism, was represented by Ibn
al-Haytham (c. AD 965–1039) in his work al-Shukuk ‛ala Batlamyus, and an
anonymous astronomer whose work al-Istidrak ‛ala Batlamyus has not yet
been located.5 From Ibn al-Haytham’s work, we know that the criticism was
not only limited to Ptolemy’s planetary models, but that it also included other
works of Ptolemy such as the Optics. This means that the whole work was
probably motivated by considerations that were much more general than the
astronomical ones. One could argue that this genre of writing was in all
likelihood in the same tradition as the work of the tenth-century physician
Abu Bakr al-Razi (d. c. AD 925) who wrote a similar work against Galen
(second century AD), which he called al-Shukuk ‛ala Jalinus. The
astronomical contents of Ibn al-Haytham’s work will be summarized in the
following section. The work of the anonymous astronomer, on the other hand,
seems to have been devoted to astronomical issues. For in his surviving
treatise, whenever he reaches one of the difficult points in the Ptolemaic
models that were noted above, he says that the point is rather difficult to
accept and is explained in his work al-Istidrak.

Contents of Ibn al-Haytham’s Shukuk6

The book begins with an introduction in which Ibn al-Haytham sets down the
principles that he intends to follow in his work. After admitting the
excellence of Ptolemy’s works, he goes on to say that, in this book, he will
only mention those problems (shukuk) that cannot be explained away, and
are in direct contradiction with the accepted original principles.

Apparent size of the sun

The rest of the book is divided into three main parts; each is devoted to the
contradictory positions in one of the three works of Ptolemy, i.e. the
Almagest, the Planetary Hypotheses and the Optics. In the first part,
following the order of the Almagest, Ibn al-Haytham begins with the problem
in Book I,3, which is the problem of the apparent size of the sun, as it 
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appears bigger when the sun is closer to the horizon than when it is in the
middle of the heaven. Here Ibn al-Haytham uses Ptolemy’s own results from
the Optics against his statement in the Almagest.

Directions from the centre of the world

In regard to chapter 5 of Book I of the Almagest, Ibn al-Haytham requires of
Ptolemy more precision in his use of his own concepts, and objects to
Ptolemy’s use of the earth being ‘higher’ or ‘lower’ with respect to the centre
of the world when there are no such directions with respect to the centre of
the universe, since all directions from the centre are in the ‘higher’ direction.
This kind of mistake (ghalat), Ibn al-Haytham identifies as a mistake in
conceptualization (tasawwur) rather than a contradiction. Similarly, when
Ptolemy uses the terms east and west to describe the position of the earth, he
would be committing the same conceptual error.

The value of the chord of 1°

In the same vein, Ibn al-Haytham objects to Ptolemy’s use of a value being
bigger and smaller than another quantity, as a proof of its being equal to that
quantity. He would have forgiven Ptolemy had he said at that point that the
value of the chord of 1° was approximately equal to that quantity and that it
differed from it by some small number rather than being at the same time
greater than and smaller than that quantity.

The inclination of the ecliptic

Ibn al-Haytham also objects to Ptolemy’s method for determining the
inclination of the ecliptic, for he said that he observed the sun along the
meridian circle and found the difference between the highest position of the
sun at the summer solstice and its position at the winter solstice to be 47° and
a value greater than  but less than  and .

The reason he objects to that is that the solstices need not occur when the
sun is crossing the meridian circle of that specific locality, and Ptolemy knew
that. But he agreed to take the approximate value, when he ought to have
explained how such a value could be determined with precision. Moreover,
he also knew that the sun will never return to the same point on the meridian
circle in an integral number of days in the years that follow. But in spite of
that he still said that he observed the sun cross that point of the solstice year
after year, which could not be true. Because several parameters are connected
to this measurement, Ibn al-Haytham concludes that neither the solar year,
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nor the solstice point, nor the declination, nor the equinoctial points are
known from Ptolemy’s statements.

The proof that Ptolemy did not really determine these parameters is that
modern astronomers have found them to be different. They found the
declination to be different and the solar apogee to be moving when Ptolemy
had determined that it was fixed.

The prosneusis point

The objection about the prosneusis point is the same as the one mentioned by
al-Akhawayn under ishkal 6. It derives from the Ptolemaic lunar model in
which it was required that the mean epicyclic apogee be determined by the
extension of a line joining the centre of the epicycle and the prosneusis point,
which was itself defined as being diametrically opposite to the centre of the
deferent with respect to the centre of the universe. Such an apogee is not only
imaginary to Ibn al-Haytham, but it could not be a reference point from
which one could measure motion. Ibn al-Haytham’s real concern, however,
is expressed in the following terms:

The epicyclic diameter is an imaginary line, and imaginary lines have
no perceptible motion that produces an existing entity in the world.
Similarly, the plane of the ecliptic is also an imaginary plane, and
imaginary planes do not exhibit an observable motion. And nothing
moves in an observable motion, which produces an existing entity in
this world, except the bodies that do [indeed] exist in this world.

(Shukuk, p. 16)

Moreover, even if one were to accept the existence of such an imaginary
line, and thus the existence of a mean apogee defined by it, one still could
not explain according to the accepted principles the motion of this line, for it
seems to oscillate back and forth producing positive and negative angles within
a period of half a lunar month. None of these motions seemed to have been
produced by full revolutions of spheres moving at uniform speed as they
ought to be. Ibn al-Haytham concludes this section with a tirade of
criticisms, exhausting all possible excuses for Ptolemy, and finally rejecting
the existence of such lines or bodies that could move these lines in this
manner. ‘If such bodies were then found to be impossible [to exist] [muhal]
then it is impossible for the diameter of the epicycle to move in such a way
that it would be in line with the assumed prosneusis point’ (p. 19).

The later attempts by other astronomers to modify the Ptolemaic lunar
model included in one way or another a statement about the problem of the
prosneusis point and an effort to avoid using it.
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Limits of eclipses

In this section Ibn al-Haytham objects to Ptolemy’s apparent use of an
approximate method when he determined the limits of eclipses. The brunt of
the objection centres around Ptolemy’s use of an arc—equal to the sum of the
solar and lunar radii—perpendicular to the orbit of the moon rather than the
ecliptic, as Ibn al-Haytham would have preferred. Ibn al-Haytham then argues
that Ptolemy’s choice of that procedure does not allow him to compute the
beginning of the eclipse, nor its middle nor its end, and ‘his assumption that
this arc could determine the limits of an eclipse in longitude and in latitude is
an obvious error without any doubt’.7

The equant problem

This section is by far the most important of Ibn al-Haytham’s criticisms of
Ptolemaic astronomy. It deals with the problem referred to above as ishkal 4,
which simply states that a sphere could not possibly move uniformly around
an axis which does not pass through its centre as Ptolemy assumed. To
construct his argument, however, Ibn al-Haytham started by showing that
Ptolemy was quite aware that he was violating his own premises in regard to
the equant problem.

Ibn al-Haytham begins by pointing to Almagest IX, 2, where it is clearly
stated that the upper planets are supposed to move uniformly8 just like the
other planets that he had already described. This section is then contrasted
with Almagest IX, 5, where Ptolemy clearly states that in the model for the
upper planets ‘We find, too, that the epicycle centre is carried on an eccentre
which, though equal in size to the eccentre which produces the anomaly, is
not described about the same centre as the latter’. (Toomer 1984:443) Later
on, in Almagest IX, 6, Ptolemy describes his model for the upper planets in
more detail. It is there that Ptolemy defines the equant (to use the later
medieval term) as simply the point around which the centre of the epicycle
moves uniformly. Without any proof, Ptolemy also states in this chapter that
the centre of the deferent lies midway between the centre of the universe and
that of the equant.

To this Ibn al-Haytham says: ‘What we have reported is the truth of what
Ptolemy had established for the motion of the upper planets; and that is a
notion [ma‛nan] that necessitates a contradiction’ (p. 26). The proof of the
contradiction is then constructed as follows. Since Ptolemy accepted the
principle of uniform motion, and since he had shown in the case of the sun that
if any body moves uniformly around one point it must necessarily move non-
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uniformly around any other point, therefore, Ptolemy must have contradicted
himself by stating that the centre of the epicycle moves uniformly around the
equant for then it means that it does not move uniformly around the centre of
its own deferent, which is impossible.

In the details of the response, Ibn al-Haytham states quite clearly that his
objection is actually based on the fact that these motions are supposed to be
motions of real bodies, not imaginary ones, ‘since imaginary circles do not
move by themselves in any perceptible motion’ (p. 28). Moreover, Ibn al-
Haytham makes the obvious remark that if a body is supposed to move
uniformly around a point, it also means that the body must be always
equidistant from that point. In effect, if the bodies that were described by
Ptolemy were supposed to be real physical bodies, then a sphere could move
uniformly only around an axis that passes through its centre.

Ibn al-Haytham then extends his criticism to the Ptolemaic model of
Mercury, Almagest IX, 9, for it suffers from the same contradiction. He goes
on to conclude this section by casting doubt about the method in which
Ptolemy determined the eccentricities of the planets.

In order to clinch his argument, Ibn al-Haytham quotes Ptolemy, Almagest
IX, 2, which proves that even Ptolemy himself had already admitted that he
was using hypotheses that were contrary to the accepted principles (kharija
‛an al-qiyas). Since Ptolemy

had already admitted that his assumption of motions along imaginary
circles was contrary to [the accepted] principles, then it would be more
so for imaginary lines to move around assumed points. And if the
motion of the epicyclic diameter around the distant center [i.e. the
equant] is also contrary to [the accepted] principles, and if the
assumption of a body that moves this diameter around this center is
also contrary to [the accepted] principles for it contradicts the premises
[al-usul], then the arrangement, which Ptolemy had organized for the
motions of the five planets, is also contrary to [the accepted] principles.
And it is impossible for the motion of the planets, which is perpetual,
uniform, and unchanging to be contrary to [the accepted] principles.
Nor should it be permissible to attribute a uniform, perpetual, and
unchanging motion to anything other than correct principles, which are
necessarily due to accepted assumptions that allow no doubt. Then it
becomes clear, from all that we have shown so far, that the
configuration, which Ptolemy had established for the motion of the five
planets, is a false [batila] configuration, and that the motions of these
planets must have a correct configuration, which includes bodies
moving in a uniform, perpetual, and continuous motion, without having
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to suffer any contradiction, or be blemished by any doubt. That
configuration must be other than the one established by Ptolemy.

(Shukuk, pp. 33–4)

Motion in latitude

Ibn al-Haytham’s objections to the theory of latitude begin with a long
quotation from Almagest XIII, 1, which treats the motion of the inferior
planets in latitude. He then follows that with his own summary of Ptolemy’s
statement, and concludes by saying that

This is an absurd impossibility [muhal fahish], in direct contradiction
with his earlier statement about the heavenly motions—being
continuous, uniform and perpetual—because this motion has to belong
to a body that moves in this manner, since there is no perceptible
motion except that which belongs to an existing body.

(Shukuk, p. 36)

Moreover, since the motions of the inclined plane in which the deferent lies
are contrary in direction, Ibn al-Haytham concludes that Ptolemy did indeed
commit a great error in allowing the same body to have two different
natures, thus signalling a possibility of change in the heavens which is
contrary to the accepted principles.

Conclusion

The concluding section of the critique of the Almagest is a long reflective
statement by Ibn al-Haytham on the reasons why Ptolemy said what he said.
He admits that there are places where these contradictions might have
occurred as a result of negligence from which no human is free. At these
places, Ptolemy could be excused. But at the places where he intentionally
falls into contradiction, he has no excuse whatsoever. To prove that Ptolemy
did indeed intend to accept the contradictions, Ibn al-Haytham quotes the
famous passage of the Almagest IX, 2, in which Ptolemy says that he was
obliged to employ devices that were contrary to the accepted principles
(kharija ‛an al-qiyas) and that he demonstrated his proof by using imaginary
circles. Ibn al-Haytham then isolates the main problem with Ptolemy’s
configuration for the upper planets as being exactly that; i.e. that he had
demonstrated the motion of these planets in reference to imaginary circles
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and lines. But once the existence of real bodies was assumed, the
contradiction then became clear.

Nor would Ibn al-Haytham accept the statement of an apologist who
would say that these configurations are all imaginary, and that they would
not affect the behaviour of the real planets, because one need not assume a
contradictory configuration to describe the motions of existent bodies. Nor
could Ptolemy be excused for saying as he did (Almagest IX, 2) that he
reached a correct description of the motion of the planets without being able
to describe the method by which he reached those conclusions. He should
rather have admitted first that the configuration that he was describing was
not the real one, and that he had not yet come to understand the correct one.
Only then would he be excused.

This section is followed by Ibn al-Haytham’s summary of Ptolemy’s models
for the planets, a straightforward rendering of the models described in the
Almagest (Shukuk, pp. 39–41). He concludes by saying that Ptolemy

had gathered together all the motions that he could verify from his own
observations and from the observations of those who have preceded
him. Then he sought a configuration of real existing bodies that could
exhibit such motions, but could not realize it. He then resorted to an
imaginary configuration based on imaginary circles and lines, although
some of these motions could possibly exist in real bodies. He resorted
to this method simply because he could not devise another one. But if
one imagines a line to be moving in a certain fashion according to his
own imagination, it does not follow that there would be a line in the
heavens similar to the one he had imagined moving in a similar motion.
Nor is it true that if one imagined a circle in the heaven, and then
imagined the planet to move along that circle, that the [real] planet would
indeed move along that circle. Once that is accepted, then the
configuration assumed by Ptolemy for the five planets is a false
configuration [hay’a batila], and he established it knowing that it was
false for he could not devise anything else. But the motions of the [real]
planets have a correct configuration in [real] existing bodies that
Ptolemy did not comprehend, nor could he achieve. For it is not true
that there should be a uniform, perceptible, and perpetual motion which
does not have a correct configuration in existing bodies.

(Shukuk, pp. 41–2)

Doubts concerning the Planetary Hypotheses

In his doubts engendered by the text of the Planetary Hypotheses, Ibn al-
Haytham starts by enumerating the points of variation between that text and
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the text of the Almagest. He enumerates, for example, the number of motions
attributed to the planets in the Almagest, which were found to be thirty-six,
with the number of motions of those in the Planetary Hypotheses, which
were found to be only twenty-six.

Then, in the description of the movements of the epicyclic spheres in the
first book of the Planetary Hypotheses, Ibn al-Haytham finds Ptolemy’s text
wanting in that it did not include the ‘small circles’, referred to in the
Almagest, that carried the epicycles in latitude, nor did he find any account of
how the planet is supposed to be moved in latitude (Shukuk, pp. 43–4).

He then concludes that Ptolemy’s statements in the first book of the
Planetary Hypotheses not only describe an erroneous configuration (hay’a
fasida), but are in fact contrary to what is found by observation—in terms of
the latitudinal motion of the planets—and to what is found in the Almagest
itself.

In analysing the causes (‛ilal) for the planetary movements, Ptolemy
proposes in the first book of the Planetary Hypotheses that each of these
planets has two movements: ‘One that is voluntary [iradiya], and the other
that is by compulsion [yudtarru ilayha]’ (Goldstein 1967b:26, ll. 16–18). In
the second book of the Planetary Hypotheses, he goes on to say that ‘each of
these various movements that vary in quantity and kind must have a body that
produces it by moving about some poles…in such a way that it undergoes no
forcing or compelling from outside’ (Shukuk, pp. 45–6).

Ibn al-Haytham finds these two statements to be contradictory, for how
could a body be compelled to move in one case and in the other accept no
compulsion from an outside agent?

Then he attacks Ptolemy for using the idea of spherical shells (manshurat)
instead of spheres, saying that instead of solving the problems under
discussion, the planetary shells suffer from the same disadvantages and
introduce some of their own in addition.9

This brings Ibn al-Haytham back to the theory of latitude for the inferior
planets, and the ‘small circles’ which were assumed, in the Almagest, to
move the epicycles of the inferior planets along two perpendicular axes.
These ‘circles’ are not mentioned in the Planetary Hypotheses. To this Ibn al-
Haytham says:

If one were to explain them in the same manner as before [i.e. in the
case of the Almagest] then they would produce the same impossibilities,
but if not, then one has to assume that Ptolemy had made a mistake in
their regard [by not mentioning them here] or that he had made a
mistake by mentioning them in the Almagest.

(Shukuk, p. 58)
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Similarly, Ptolemy did not mention in the Planetary Hypotheses the
oscillating motion of the inclined planes of the inferior planets, as he did in
the Almagest.

Moreover, Ptolemy dropped from consideration the motion of the
prosneusis point while describing the spheres of the moon, which he had
included among the movements of the moon in the Almagest.

At the end of the second book of the Planetary Hypotheses, Ptolemy
seemed to have accepted the fact that planets could move by themselves,
without the need for any bodies to move them. But to this Ibn al-Haytham
says that it necessitates the existence of void in the heavens, by allowing the
planet to ‘empty’ one place and ‘fill’ another. Then he goes on to object to 
the motion as being one of rolling (tadahruj), and he concludes by saying:

If Ptolemy could find it permissible that a planet could move by itself,
without the need for any body to move it, then all the spherical shells,
which he had proposed for the planets, as well as the spheres
themselves would be invalid.

(Shukuk, p. 62)

This section is concluded like the one concerning the criticism of the
Almagest by saying that Ptolemy

either knew of the impossibilities that would result from the conditions
that he assumed and established, or he did not know. If he had accepted
them without knowing of the resulting impossibilities, then he would
be incompetent in his craft, mislead in his attempt to imagine it and to
devise configurations for it. And he would never be accused of that.
But if he had established what he established while he knew the
necessary results—which may be the case befitting him—with the
reason being that he was obliged to do so for he could not devise a
better solution, and [on top of that] he went ahead and knowingly fell
into these contradictions, then he would have erred twice: once by
establishing these notions that produce these impossibilities, and the
second time by committing an error when he knew that it was an error.

When all is considered, and to be fair, Ptolemy would have
established a configuration for the planets that would have been free
from all these impossibilities, and he would not have resorted to what he
had established—with all the resulting grave impossibilities—nor
would he have accepted that if he could produce something better.

The truth that leaves no room for doubt is that there are correct
configurations for the movements of the planets, which exist, are
systematic, and entail none of these impossibilities and contradictions,
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but they are different from the ones established by Ptolemy. And
Ptolemy could not comprehend them, nor could his imagination come
to grips with them.

(Shukuk, pp. 63–4)

As if that condemnation was not enough, Ibn al-Haytham then reminds the
reader once more that Ptolemy neglected to mention in the Planetary
Hypotheses the ‘small circles’ that he had used in the Almagest to account for
the latitudinal motion. Ibn al-Haytham then guesses that Ptolemy did not do
so either because he knew of the contradictions it would lead to if he adopted
the model of the spherical shells, or because he wanted to avoid the
cumbersome additional spheres if he adopted the model of the spheres. ‘He
then saw that it was better to remain silent about this (latitudinal) motion than
to fall into these contradictions that it entailed’ (Shukuk, p. 64).

Contents of al-Istidrak ‛ala Batlamyus

We know very little about the author of this work, or about the work itself,
which has not yet been located. But whatever we can glean from the existing
treatise by the same author, called Kitab al-Hay’a, now kept at the Osmania
University Library in Hyderabad (Deccan, India), seems to indicate that the
author of Kitab al-Hay’a had lived in Spain sometime during the eleventh
century; he spoke of the famous Spanish astronomer al-Zarqael (or al-
Zarqallu) (d. 1099) as his personal friend. The author also mentioned that in
one of his works he described the instrument used for the observations that
were conducted at Toledo, without specifying the year.

This author of Kitab al-Hay’a tells us that he had found some of the
statements of Ptolemy to have been objectionable, and states quite explicitly
that he did not want to interject his objections in this elementary text which he
was writing, for he had already devoted a special book to such objections
which he called al-Istidrak ‛ala Batlamyus (‘Recapitulation Regarding
Ptolemy’).

The manner in which he refers to this work is quite revealing of the
subject matter that the book must have included. While speaking of the
inaccuracy of the instrument which ‘was found in Toledo, in al-Andalus’, he
says that ‘the instrument was set in accordance with (the position) designated
by the man who actually used it for observations, Abu Ishaq Ibrahim b.
Yahya known as al-Zarqael (sic) as he himself had told me’ (fol. 15v). On
folio 16r, the author says that he had composed a book that he called al-
Istidrak ‛ala Batlamyus. And while discussing the solar apogee, the author
says: ‘It was during the time of al-Ma’mun at twenty degrees of Gemini and
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about two thirds of a degree. These matters ought to be better mentioned in
the book al-Istidrak’ (fol. 41v).

When the author discussed the motions of the moon, he had the following
to say: ‘I may object to Ptolemy in these matters in several ways, but I ought
to mention that in what is simpler (?) than this book, and I will mention it in
al-Istidrak if God wills it’ (fol. 48r).

Finally, while discussing the planetary apogees, the author had the
following to say: ‘And Ptolemy found that the motion of the (origin of the)
longitudes of these five planets takes place at the rate of one degree every
one hundred years, while the more recent (astronomers) found it to be one
degree in about sixty six years. We will mention the reasons for this variation
in Kitab al-Istidrak’ (fol. 68r).

ALTERNATIVES TO PTOLEMY’S PLANETARY
MODELS

The two critical works that were cited above represent what is now known of
this type of literature. But that does not mean that the scope of the critical
activity was limited to those two, nor does it mean that other criticisms were
not as influential as those. From the recovered works that were written in the
later centuries we can assert that the criticism of Ibn al-Haytham was taken
very seriously by astronomers, and more than one astronomer took it upon
himself to find an alternative set of models that was free of the contradictions
that had bedevilled Plotemaic astronomy.

At this point, and in the interest of space and time, it is useful to divide the
response to such criticisms—which found expression in the attempts to
construct planetary models which were construed as alternatives to the
Ptolemaic ones—into two schools; namely, the Andalusian School and the
Eastern School.

The Andalusian school

The anonymous Andalusian astronomer who wrote al-Istidrak may have
been the forerunner of a later school of astronomers who continued his work
and added some of their own criticisms; they all attempted to reformulate the
Ptolemaic models. Names such as those of Jabir ibn Aflah (d. c. middle of
the twelfth century), Al-Bitruji (fl. c. 1190) and Averroes (d. 1198) are but a
few of those whose works have been critical of Ptolemy’s models and have
been subjected to some study.10

Considering Jabir ibn Aflah’s work, Islah al-Majisti (‘Correction of the
Almagest’), the main contribution of that work is that it lists some ten to
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fifteen problems—called ‘errors’ by Jabir—through which the reader is led
step by step to realize the difficulties and the problems in the Ptolemaic text.
One such major difficulty, for example, is the treatment of the planetary
distances in the Almagest, for, according to Ptolemy’s values, at least Venus
would have to be placed above the sun.11 Noting this difficulty, Jabir
argues12 that his computations required that both Venus and Mercury ought
to be above the sun.

The main arguments of Jabir for placing both Venus and Mercury above
the sun are as follows. (1) Ptolemy admits that the sun exhibits a parallax of
about three minutes of arc, and that Venus and Mercury do not exhibit any
observable parallax. This, according to Jabir, could only mean that they were
further away than the sun, and hence above the sun in the arrangement of the
heavenly spheres. (2) Jabir uses Ptolemy’s values for the ratio between the
epicyclic radii of Venus and Mercury and their respective deferents, and
proves that if these values were to be taken seriously then Venus and
Mercury would have to exhibit a parallax of about six to seven minutes,
almost twice as much as that of the Sun. Since none of that takes place then
they must be above the sun.

After citing the full text of Ptolemy in regard to the relative distances of
the spheres of the planets, Jabir remarks in the following manner: ‘I am
extremely amazed at this man, and quite perplexed by him, because he
appears to contradict himself without even knowing it’ (fol. 78v).

Since the absolute distances of the planets could not be determined with
any certainty, this problem of the relative order of the planetary spheres
remained a challenging one throughout the Middle Ages, and was taken up,
as we shall see below, by al-Bitruji and by Mu’ayyad al-Din al-‛Urdi (d.
1266) among others.

For al-Bitruji, as for Ibn al-Haytham, the main problem with Ptolemaic
astronomy was that it was not sufficiently Aristotelian. But unlike Ibn al-
Haytham, who understood motion along an eccentric as being acceptable in
the Aristotelian sense, al-Bitruji did not even tolerate eccentrics and
epicycles if these were to be understood in the traditional Ptolemaic sense.
His main concern was that the universe must have only one point around
which all other points must revolve, and that point had to be fixed and must
coincide with the centre of the earth. This purist Aristotelian attitude is
supposed to have been first championed by al-Bitruji’s teacher Ibn Tufayl (d.
1185), who promised that he would produce a book in which such an
astronomy would be described, but does not seem to have done so.

These attempts were then followed by al-Bitruji’s book Kitab al-Hay’a
(‘Book on Astronomy’) which was written especially to develop such an
astronomy, and later by the work of Ibn Rushd (mainly his commentary on
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the Aristotelian Metaphysics), who only recorded his objections in a
qualitative manner.

All this activity remained limited in its applicability and scope, simply
because the new proposed configurations—such as the one proposed by al-
Bitruji—were not successful enough in their ability to duplicate the
Ptolemaic observational and analytical results. There was a real need
therefore for a set of new models that would avoid the Ptolemaic
shortcomings, with the provision that these models had also to conform to
Ptolemy’s valid observations, and save the same phenomena that were saved
by Ptolemy’s models.

The real progress in that regard was achieved in the eastern part of the
Islamic world, where generations of astronomers, beginning in the eleventh
century and continuing well beyond the fourteenth, had achieved several
results first by isolating the Ptolemaic problems and then by applying new 
techniques to them which rendered them consistent with the original
principles of the Aristotelian cosmos.

The Eastern School

The Eastern School discussed here has been referred to in the literature as the
‘Maragha School’,13 simply because all but one of the astronomers who were
then known to have discussed non-Ptolemaic astronomical models had
worked at one time or other during the latter part of the thirteenth century at
the Maragha Observatory in northwest modern Iran. But since we now know
more about this activity, and we know that it was not restricted to the
environs of the Maragha Observatory, nor to the thirteenth century, we chose
a term that contrasts the activities that were carried out in this region of the
Islamic Empire with those that have been described as belonging to the
Andalusian Revolt.

Luckily, the activities in the Eastern School have some cohesion, and
could therefore be characterized as belonging to the same tradition. The
general attitude of the astronomers belonging to this School towards Aristotle
and Aristotelian cosmology was distinctly different from the attitude of their
Western colleagues in Andalus. As the Andalusians were concerned with the
inadmissibility of eccentric and epicyclic motion, for it violated the principle
of the Aristotelian centre of the universe which marked the centroid around
which all circular motion had to take place, the Eastern astronomers did
indeed realize that this problem was only a pseudo-problem. For as Ibn al-
Shatir put it:

The existence of small spheres such as the epicyclic spheres, that do
not surround the earth, is not impossible, except in the ninth sphere.
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The proof of that is that [it is similar] to the existence of a planet in
each sphere and a multitude of stars in the eighth sphere where each of
them [i.e. the planets or the stars] is greater than some of the epicycles
of some planets, and the planet [or star] is different from the body of
the [heavenly] sphere. Thus it is not inadmissible that there be
epicycles and such things. From this, it is understood that the [heavenly]
spheres have some sort of composition [fiha tarkibun ma] and that the
only one which is absolutely simple [basit mutlaq] is the ninth [sphere]
for it is not possible to imagine in it the existence of a planet [or star] or
such similar thing.14

Ibn al-Shatir expresses the same opinion later on when he says:

They [i.e. the astronomers] have disagreed about the motion of the
small spheres which do not encompass the center of the universe, such
as the sphere of the epicycle and the like. They have all accepted that it
could move towards any assumed direction, for they indicated that the
epicyclic sphere has an upper and a lower half. So if it moves in the
direction of the signs in the upper half, it would move in the direction
opposite to the signs in the lower half, and vice versa. Its motion would
not be by compulsion [qasriya] nor by accident [‛aradiya], but would
rather be natural [tabi‛iya]. They have also agreed that it was
permissible to have epicycles in other than the ninth [sphere], because
we see planets in the spheres. And the existence of a planet in a sphere
signifies some sort of composition [tarkibun ma]. And whoever says
that the spheres are all simple, and thus no epicycles could exist in them,
and every motion that is not a motion around the center could not be a
simple motion, I would say that the motion of the epicycles has been
proven to exist. And if that could ever be proven with a conclusive
proof [burhan qat‛iy], then the composition and the lack of simplicity
in the spheres would be proven. My opinion is that it is composed of
simple [essences] and not of elements [‛anasir], except for the ninth
[sphere]. And only God knows best.15

The problem for the Eastern School astronomers was therefore a problem of
devising models that would preserve Ptolemy’s observations, save the
phenomena and be consistent mathematically as well as physically. In other
words, their main concern was to find a set of models that would describe the
motion of the physical spheres that carry the various planets by using
geometrical mathematical terms, without having the mathematical statements
contradict the physical assumptions.
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The general thrust of the research that was initiated at the Eastern School
is usually described in the literature as being of a philosophical nature, for it
had accepted in general all the observational results of Ptolemy and only
expressed some philosophical objections to the Ptolemaic models.

In a separate article, I have argued that Ibn al-Shatir’s model for the sun
was, as far as we can tell, the only model that seems to have been motivated
by philosophical as well as observational considerations (Saliba 1987a). In
that article, I discussed in great detail Ibn al-Shatir’s attitude to observations,
and the manner in which his solar model was definitely conceived to
accommodate his observational results and that it was not proposed only as a
philosophical objection to Ptolemy’s model which, as we have seen, was in
no way philosophically objectionable. In fact I know of no other astronomer
who considered Ptolemy’s solar model as objectionable, or who had offered
any alternative to that model.

In order to trace the general activities of the astronomers of the Eastern
School, however, I shall single out Ibn al-Shatir’s solar model, since it is
unique in its conception and the only model for the sun, lay down the main
outlines of the argument against the Ptolemaic solar model and then proceed
to give a short description of the model itself. For the sake of economy, and
to avoid duplication of material, the models for the other planets will be
treated in a thematic fashion, by giving, in a chronological progression, all
the known alternative models that were proposed for each planet.

Ibn al-Shatir’s solar model

The Ptolemaic model for the sun (Figure 3.1) was conceived as being either
an eccentric or an epicyclic model, both alternatives being philosophically
acceptable for they could actually describe the behaviour of physical bodies.
But from other considerations of the solar theory, Ptolemy had assumed, for
example, that the apparent disk of the sun always had the same size, 0; 31,
20°, at all distances of the sun, and was therefore equal to the size of the
lunar disk when the moon is at its maximum distance from the earth.
Naturally, this assumption implies, on the one hand, that the solar
eccentricity has at best a negligible effect on the size of the apparent
diameter of the sun, and denies, on the other hand, the possibility of annular
eclipses. The first statement is obviously an approximate one, and the second
is simply contradicted by observations.

We unfortunately do not have an explicit statement by Ibn al-Shatir in
which he objects to this Ptolemaic assumption. But from his remarks
throughout his Nihayat al-Sul (‘The Final Quest’),16 we know, for example,
that, in contradistinction to Ptolemaic theory, Ibn al-Shatir did admit the
possibility of annular eclipses (fol. 38r). From his other observational results,
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which are only quoted in the Nihaya, we also know that he considered the
apparent size of the solar disk to be variable, again contrary to Ptolemaic
theory. Ibn al-Shatir referred the reader to another one of his texts, namely
Ta‛liq al-Arsad (‘Discourse on Observations’), in which these observations
were supposed to have been analysed in detail. Unfortunately, the Ta‛liq
itself has not yet been identified, and is presumed to be lost.

In the Nihaya, in at least two places (fols 12v, 41r), Ibn al-Shatir gives the
apparent size of the solar diameter to be

at apogee 0; 29, 5°
at mean distance 0; 32, 32°
at perigee 0; 36, 55°

which proves beyond doubt that he must have been reporting only
observational results as he himself says in many different expressions such as
‘taharrara bi-l-rasd’ and ‘haqqaqtu dhalika bi-l-rasd’, both meaning ‘to
verify by observation’.

In a different context (fol. 3r), Ibn al-Shatir also says that he observed the
sun in the middle of the seasons and found that the maximum equation of the
sun, a function of the eccentricity, was different from the one given by
Ptolemy; Ibn al-Shatir’s maximum equation was 2; 2, 6°, which implies an
eccentricity of about 2; 7 parts instead of 2; 30 parts as given by Ptolemy.

As long as we do not know the details of Ibn al-Shatir’s observational
methods, we refrain from making any comments on the plausibility or the
accuracy of these reports. We simply state that Ibn al-Shatir must have
convinced himself that his results were indeed more accurate than those of
Ptolemy, and thus require a new model that accommodates them for they could
not be accommodated by the Ptolemaic model. What he had to do, therefore,
was to devise a model that has the effect of a smaller eccentricity than that of
Ptolemy, to accommodate the smaller maximum equation, but at the same
time allow the sun to move much closer to the earth to appear at an angle of
0; 36, 55°, and farther from the earth to appear at an angle of 0; 29, 5°. The
ratio of the maximum size to the minimum one should therefore be
approximately the same as 0; 36, 55/0; 29, 5=1.26934.

To do that, he assumed (Figure 3.9) the following orbs for the solar model.
(1) An orb of radius 60 parts, which he called the parecliptic, concentric with
the observer at point O, the centre of the world, and moving in the direction
of the signs at the same speed as the daily mean motion of the sun, namely 0;
59, 8, 9, 51, 46, 57, 32, 3° per day. This parecliptic orb carries another
smaller one (2), called the deferent, of radius 4; 37 parts in  the same units
that make the radius of the first orb 60 parts. The second orb moves on its own
centre at the same speed as the first, but in the opposite direction, thus
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keeping line AB always parallel to OCT and having the same effect as
transferring the eccentricity OT to an epicycle with centre A (as in
Figure 3.9). (3) The third orb, called the director, of radius 2; 30, is carried by
the deferent in a direction opposite to that of the signs, but moves on its own
centre in the opposite direction at twice the speed of the first orb. This third orb
carries the body of the sun S, which now seems, according to ‘Urdi’s lemma
(discussed later), to be moving at uniform speed around point C. Finally, all
of these orbs are embedded within a final orb (4) called the encompassing
one (al-shamil), that moves at the same speed as the solar apogee, in the
direction of the signs, which was found to be 1° per 60 Persian years.

The effect of this model is to allow the sun S to move uniformly around point
C, i.e. eccentricity OC=4; 37−2; 30=2; 7 which is smaller than the Ptolemaic
eccentricity of 2; 30, and thus achieve longitudes close to those of Ptolemy,
to be later corrected for the maximum equation. But unlike the Ptolemaic
model, that of Ibn al-Shatir allows for a variation in the apparent size of the
solar disk in the magnitude of

which is very close to the value predicted by the observations of the apparent
size of the solar diameter. As an additional benefit, Ibn al-Shatir adds that his

Figure 3.9
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model yields a further advantage in that all the angles for mean motion are
measured around point O, the observer, rather than around the centre of the
eccentric, as would have been required by the Ptolemaic model.

The lunar models

As we have seen above (Figure 3.2), the Ptolemaic model for the moon
suffered from two main contradictions: (1) the impossibility (muhal) of the
motion of the deferent sphere, as it seemed to describe, according to
Ptolemy, equal arcs in equal times around the centre of the universe rather
than around its own centre as it should; and (2) the unaccountability for a
mechanism that could allow the diameter of the epicycle that connects the
mean apogee and the epicyclic centre to be always directed towards the
prosneusis point rather than towards the centre of the deferent.

The astronomical reforms of the thirteenth century included several
suggestions for alternative lunar models. One such alternative was proposed
by the Damascene astronomer Mu’ayyad al-Din al-‛Urdi (d. 1266) sometime
before 1259.17

‛Urdi’s lunar model

In order to avoid the first impossibility, ‛Urdi required that the direction of
the motion of the Ptolemaic inclined sphere be reversed so that it now
moves, according to ‛Urdi, in the same direction as that of the signs instead
of the reverse. In this new arrangement (Figure 3.10) the apogee of the
deferent will be carried in the same direction as that of the order of the signs,
say to point B. ‛Urdi further required that the motion of the inclined sphere be
in absolute value three times as much as the motion required by the
Ptolemaic model. Since the inclined sphere is concentric with the centre of
the universe, it meant that angle S• OB would be three times as large as
angle S• OA. 

Once the whole deferent is carried with the inclined sphere in the same
direction as that of the order of the signs, then the apogee that would have
reached point A in the Ptolemaic model would now be carried to point B.
Now ‛Urdi requires that the deferent itself move around its own centre P in
the direction opposite to that of the order of the signs, by an absolute amount
equal to twice the motion required by Ptolemy. This would require that point
B would be carried back to point I, thus making line PI, parallel to OC, the
original direction of the Ptolemaic epicyclic centre from the observer’s
position O. All of these motions described so far are performed by spheres
that move around their own centres, and thus do not contradict the principles
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of uniform motion. ‛Urdi notes at this point that his model is only describing
mean motions, just like the Ptolemaic model, and thus the direction PI should
be taken as equivalent to the direction OC since it is parallel to it. With this
configuration the epicyclic centre could then be carried to the same position
required by the Ptolemaic model without having to fall into the same
contradiction as the first one mentioned above.

The new model also solves the second contradiction, i.e. that of the
prosneusis point, since now one should notice that line PI passes, in general,
very close to point N, K in Figure 3.10, thus making it appear at point I as if
it is coming from point N, the Ptolemaic prosneusis point. The mean apogee
will therefore be, in this model, a fixed point defined as the common point of
tangency between the deferent and the epicycle, falling naturally at the
extremity of the line connecting the centre of the deferent to that of the
epicycle.

By reversing the order of the motions, and by changing their magnitudes,
‛Urdi managed, therefore, to retain the Ptolemaic observations and to
reproduce the predictable motions of the moon without any compromise on

Figure 3.10
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the physical principles that were accepted by Ptolemy himself. He was quite
aware of this major step that he had taken, and of the differences between his
model and that of Ptolemy. But that did not bother him greatly, for he tells
his reader that Ptolemy could only demand that his observations be taken for
facts, not the mathematical methods—such as the directions and amount of
motions—that he used to account for these facts. These, ‛Urdi claims, are
only guesses (hads) on the part of Ptolemy, and no one should be held
responsible for them, because anyone’s guesses could be as good as those of
Ptolemy.
‛Urdi then takes up the problem of the variation between his model and that

of Ptolemy, and computes the variations between the equation due to the
prosneusis point as predicted by his model and the one predicted by
Ptolemy’s model. After a lengthy argument he concludes that the variation
between the two models is less than two and a half minutes of arc, which he
considers as quite permissible since Ptolemy himself had accepted variations
from the facts of up to four minutes of arc and said that such variations could
escape even the best of observers. For that reason he felt quite satisfied with
his model, and urged the reader to accept it and to reject that of Ptolemy,
since the latter had been shown to have been riddled with contradictions.

In ‛Urdi’s words, the alternative would be to accept that there are spheres
that move irregularly on their own centres, and

if we were to accept that there is a sphere that moves around its own
center, sometimes speeding up and other times slowing down, then
there would be no need for all the efforts expended in regard to this
astronomy, and the final quest would then be the knowledge of the
equations to be applied to the motions, even if those were based on
false notions.

(‛Urdi, Kitab al-Hay’a, p. 135)

Tusi’s lunar model

Tusi discusses in Chapter 7 of his most famous astronomical work al-
Tadhkira fi ‛ilm al-hay’a the lunar model according to Ptolemy. At the
difficult points, however, he mentions that there were problems with that
model and that he intended to treat them later on. In fact, after he finishes
surveying the remaining models for the upper planets and for Mercury, he
devotes a special chapter to the solution of all those difficulties that had been
encountered so far. The strategy of that approach becomes obvious when one
considers that the model which Tusi finally proposed for the lunar motion
was also applied to the motion of the upper planets, and hence placing it at the
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end meant that he could take advantage of combining both models under one
solution.

Tusi’s understanding of the difficulties in the Ptolemaic model for the
moon seem to have been centred around the inability of that model to allow
the centre of the epicycle to approach the centre of the universe and to draw
away from it without having to incorporate the crank-like mechanism of
Ptolemy. If one could, by some method, keep the centre of the deferent
sphere at the centre of the universe, and only allow the line joining the centre
of the deferent to that of the epicycle to be shortened at quadratures and be
elongated at conjunction and opposition, then that could allow the deferent to
move uniformly around the centre of the universe, and, at the same time,
account for the great observable variation in the equation due to the epicyclic
radius.

Once the problem was conceived as such it was reduced to having to
devise a mechanism that would allow a vector-like magnitude to be
shortened and elongated as a result of circular motion only. Put differently,
the problem could be solved once the tip of a vector line could be made to
oscillate back and forth as a result of uniform circular motion. The same
problem was faced when Ptolemy had to consider the oscillating planes of
the latitude model for all the planets with the exception of the moon. It was in
that context that Tusi proposed a new mechanism in one of his other books
called Tahrir al-Majisti (‘A Redaction of the Almagest’, composed in 1247),
with the help of which he managed to get the tip of the oscillating diameters
to be mounted on a pair of circles—discussed elsewhere as the ‘Tusi
Couple’—and thus made that tip to move in an oscillating linear motion
which was produced by circular motion. All that Tusi had to do was to
generalize that solution which he had proposed for the latitude model and
apply it to the special requirement of the lunar model, and then use the same
technique for the model of the upper planets as well.

It is not surprising, therefore, that Tusi would begin the chapter in which
he proposed his alternative models with a statement of the lemma that came
to be called the ‘Tusi Couple’ lemma and a formal proof of the same lemma.
That was done in Chapter 11 of his Tadhkira mentioned above.

The lemma is stated in the specific case first, i.e. the plane case, and
afterwards generalized to include the spherical case.18 In the plane case a
paraphrase of that lemma states the following: Let there be two circles
(Figure 3.11), such that one of them is tangent to the other from the inside,
and whose diameter is half the diameter of the other encompassing circle. If
we then assume that the smaller interior circle moves in a direction opposite
to the direction of motion of the exterior encompassing circle, and at twice the
speed, then the point on the diameter of the larger circle and the
circumference of the smaller circle, namely, the initial point of tangency, will
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oscillate back and forth between the extremities of the diameter of the larger
circle.

Once that result was proved, Tusi remarked that instead of these circles
one could take two spheres whose diameters and positions have the same
relationship to each other as these two circles. If that were true, then those
spheres could be taken to be of an appropriate thickness to encompass other
spheres such as the epicycle of the moon in the Ptolemaic model. In fact, Tusi
replaces the initial point of tangency with the initial position of the centre of
the lunar epicycle which is now embedded inside two such spheres. What that
did was to allow the centre of the lunar epicycle to oscillate back and forth
along the diameter of the larger sphere. Once that was achieved, there was no
longer any need for the eccentric deferent of Ptolemy, nor for his crank-like
mechanism, both of which were originally required to bring the lunar
epicycle closer to the earth at quadrature and farther away at conjunction and
opposition. 

If one ascribes the appropriate motions to these spheres in such a way that
they would match the Ptolemaic observed motions, then one could devise a
model (Figure 3.12) whereby the deferent of the moon could move uniformly
around the centre of the universe, to solve the first difficulty of the Ptolemaic
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model, and the epicycle could be drawn closer to the earth at quadratures and
farther at conjunction and opposition in order to approximate the maximum
equations observed by Ptolemy. For the prosneusis point, Tusi adopts a
spherical ‘Couple’ which, like the plane one, allows the tip of the epicyclic
diameter to oscillate back and forth covering in each direction an angle equal
to the maximum equation of Ptolemy.

With that resolved Tusi goes on to show that the resulting path of the
centre of the epicycle around the earth is not a circle, although it looks like
one.

But once the advantage of the ‘Couple’ was realized, Tusi goes on to use it
in the model for the upper planets, discussed below, and in the latitude
theory, as was mentioned above.  

The lunar model of Qutb al-Din al-Shirazi (d. 1311)

In his Nihayat al-Idrak,19 Shirazi begins the discussion of the lunar model, on
folio 54r, with a general survey of the conditions for the Ptolemaic model,
concluding in effect that the Ptolemaic model answers very well for a
description of the observational phenomena. After giving the observational
facts that would account for the existence of the spheres of the lunar model,

Figure 3.12
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he lists in detail the number of spheres that the lunar model must have in
order to account for all the observational variations. The following section is
then devoted to the various motions of these spheres and to the way in which
such motions could be combined to produce the observational variations,
giving in each case the mean motion for each of these spheres. That synopsis
is immediately followed by a description of the variations that are observed
between the mean motions produced by these spheres and the actual motions
of the moon. Here, in this section, he gives the maximum equations, which,
like the mean motion parameters quoted above, are strictly Ptolemaic.

On folio 60r, he recapitulates and summarizes the objections that have
been raised to this Ptolemaic model that he had just finished describing. In
effect, he gives the two famous objections quoted so far, namely, the 
inadmissibility of the motion of the deferent around its centre while it
describes equal arcs in equal times around the centre of the universe, and the
prosneusis point.

Then he quickly says that such objections could be answered. One of those
answers, which had to do with the objection to the uniform motion around
the centre of the universe rather than around the deferent centre, had already
been given by the principle of ‘the large and the small (spheres)’ —an
obvious reference to the ‘Tusi Couple’. Moreover, from the description that
he gives for this principle, and the way in which it responds to the objections
against the Ptolemaic model, it becomes very clear that he is only
summarizing Tusi’s solution that was given in Chapter 11 of the Tadhkira,
and which was described above. Even the terminology used is transparently
that of Tusi, and, at best, one could say that the model offered in the Nihaya,
so far, was nothing other than a paraphrase of Tusi’s model.

As for the objection concerning the prosneusis point, ‘that is a matter of
some subtlety’ (mahall nazar). He asserts that it was difficult to achieve, and
without repeating the statements of Tusi in this regard moves on to say that it
could be answered by using the ninth principle—referring to a principle that
he had described earlier in the text—which he now calls the principle of
inclination ‘asl al-mayl’. On the other hand, Shirazi does not offer a detailed
description of how that principle, which was mainly applied to the latitude
theory problem, could be applied here for the prosneusis point. Nor is it clear
as to how Shirazi intended to combine this principle with Tusi’s model. He
then continues to describe the behaviour of the Ptolemaic model that
necessitated the assumption of the prosneusis point.

Then, without any introduction, Shirazi juxtaposes a long quotation from
‛Urdi’s text Kitab al-Hay’a, beginning it simply with the statement ‘one of
the learned men of the moderns here, who is versed in this discipline had
said’ (qala ba‛d afadil al-muta’ akhkhirin min ahl al-sina‛at hahuna).20 That
is followed by a detailed paraphrase of ‛Urdi’s lunar model which apparently
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had been accepted by Shirazi as the preferable solution, for he ends this
section with the following statement:

This is the configuration for the spheres of the moon, the magnitudes of
their motions, and the manner in which it could be taken according to
the chosen method [al-wajh al-mukhtar] that suffers from none of the
objections [al-ishkalat] and which conforms to the principles and the
observations. The method is only different from that which has been
accepted by common opinion, but that should not be detrimental to it
once it is the true one. For the truth is beloved, and the teacher is
beloved, but the truth is lovelier still.21

To summarize, therefore, Shirazi, who had promised in the introduction of
his Nihaya to offer an anthology of solutions that would answer the 
objections raised against the Ptolemaic models, had offered, in the case of the
moon, two models—one by Tusi, which he did not think answered both
objections to the lunar model, and one by ‛Urdi, which he seems to have
preferred.

Figure 3.13

But in the Tuhfa, which Shirazi had written later, he proposed a model of
his own. The model consists of vector connections that will ultimately allow
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the centre of the epicycle to move uniformly around the centre of the
universe as a result of a combination of two other uniform motions. Instead of
the regular eccentric sphere of Ptolemy, Qutb al-Din proposed (Figure 3.13)
an eccentric of his own, DHK, which has only half the Ptolemaic eccentricity.
He then allowed this new eccentric sphere to move in the direction of the
order of the signs at a speed equal to twice the speed of the inclined sphere of
Ptolemy, ABG, which carried the apogee D in the direction opposite to that of
the order of the signs. Then at the circumference of the cincture of that
eccentric, Qutb al-Din required the introduction of another small sphere with
centre H whose radius is equal to half the Ptolemaic eccentricity. He required
that the smaller sphere should move in the same direction as the new
eccentric, and at the same speed. This allowed the epicyclic centre E, which
is placed at the cincture of this sphere, to be brought very close to the old
Ptolemaic epicyclic centre C, and to move uniformly around the centre of the
universe.

The improvement in the new model is that one could show that the new
position of the epicyclic centre will appear as if it is moving uniformly
around O, the centre of the universe, when in reality it is moving uniformly
around H, the centre of its own carrier—the smaller sphere—which in turn is
moving uniformly around F, the centre of its own carrier as well—the centre
of the new eccentric proposed by Qutb al-Din. To prove that such a
relationship actually exists, Qutb al-Din used a theorem that was first
proposed by Mu’ayyad al-Din al-‛Urdi which will be discussed below as
‛Urdi’s lemma. What the new model does to the Ptolemaic one is to remove
the first objection that was raised in connection with the Ptolemaic model,
namely that of having a sphere move uniformly around a point which is not
its own centre.

But what it does not do is solve the second objection, namely that of the
prosneusis point. Qutb al-Din remains silent on this second issue, in Chapter
10 of the Tuhfa, and takes it up again at the end of Chapter 12 of the same
book. But, even then, Qutb al-Din did not seem to have succeeded in
responding to the second objection. In the words of a later astronomer by the
name of ‛Ubaydallah b. Mas‛ud b. ‛Umar Sadr al-Shari‛a (d. AH 747 AD
1346/7), who attempted to solve this specific problem of Qutb al-Din’s
model,22 he said that the author of the Tuhfa ‘had spoken profusely about the
prosneusis point, without any apparent success, for the import of his
statement was that the motion of the eccentric alone was sufficient to exhibit
the difference between the two (epicyclic) apogees. But there is no doubt that
that would not do so.’23 The work of Sadr al-Shari‛a himself, which is
encyclopedic in nature, has now been studied by Dallal (1995a). What he
seems to have done (Figure 3.14) is to suggest the addition of yet another
sphere—of radius r1—to be carried at the tip of the epicyclic radius, whose
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own radius is equal to 0; 52 parts in the same units that make the radius of
the inclined sphere 60 units. This additional sphere is supposed to move at
the same speed as the deferent and in the same direction, i.e. in the direction
opposite to that of the epicycle. The effect of this small additional vector is to
increase the anomaly by an amount proportional to the first equation at the
intermediate points between syzygies and quadratures, and to leave it as is,
i.e. have the effect of a zero equation, at syzygies and quadratures. This
small epicyclet could also allow the radius of the epicycle to appear larger at
quadrature, and smaller at syzygies as required by the Ptolemaic
observations.

Figure 3.14

A more successful astronomer, and a better known one, a contemporary of
Sadr al-Shari‛a, was a Damascene by the name of Ibn al-Shatir (d. 1375), 
who proposed a new set of models that did not suffer from the same
difficulties as the Ptolemaic models, and that were apparently very close—
even at times identical, as in the case of the lunar model—to those proposed
by Copernicus some two hundred years later.

The lunar model of Ibn al-Shatir24

Ibn al-Shatir’s approach to the lunar model, like his approach to the
remaining planets, as we shall see below, centres around his interest in doing
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away with eccentric spheres altogether. As a result of that strategy, he felt
that he could not tolerate Ptolemy’s crank-like mechanism which caused the
problems in the first place, despite the fact that it did explain the
phenomenon of the variation of the lunar equation between the two positions
of the moon, i.e. when the moon is in conjunction with the sun and when it is
at quadrature with it.

To solve the problem of the lunar model, Ibn al-Shatir proposed a new
configuration. Let the lunar model (Figure 3.15), not to scale, have the
following spheres. (1) A parecliptic sphere (mumaththal) concentric with the
sphere of the zodiacal signs, whose centre is naturally the centre of the
universe O and whose radius is 69 parts.25 (2) An inclined sphere whose 
equatorial plane is inclined with respect to that of the parecliptic by a fixed
amount having a maximum value of 5°. The centre of this second sphere
coincides with the centre of the universe O, which is at the same time the centre
of the parecliptic, and its radius r1 is assumed to be 60 parts. The cincture
(mintaqa) of this sphere intersects that of the parecliptic at two points that are
called the nodes. The concave surface of this sphere has a radius of 51
parts.26 (3) A third sphere whose radius r2 is 8; 16, 27 parts (i.e. eight parts,
sixteen minutes and twenty-seven seconds)27 is then assumed to be
embedded within the inclined sphere, and let it be called the epicyclic

Figure 3.15
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sphere.28 (4) A fourth sphere whose radius r3 is 1; 41, 27 parts is assumed to
be embedded within the sphere of the epicycle, and let it be called the sphere
of the director (al-mudir). The moon itself is embedded in the sphere of the
director, and its diameter is 0; 32, 54 parts.

Since the fourth sphere is embedded in the third one and the moon whose
radius is 0; 16, 27 is embedded in the fourth, the circular representation of
these spheres will have the following dimensions. The radius of the third
circle will be 6; 35 parts, that of the fourth will be 1; 25 parts and that of the
moon will be 0; 16, 27 parts.

The motions of these spheres are as follows. (1) The parecliptic sphere
moves around the centre of the universe in a direction opposite to that of the
order of the signs at a speed equal to the speed of the nodes, i.e. 0; 3, 10, 38,
27° per day. Obviously this sphere carries with it all the other spheres of the
moon, and thus causes them to move with this motion. (2) The inclined
sphere moves around the same centre as the first sphere, but in the direction
of the order of the signs, at a speed equal to 13; 13, 45, 39, 40 which is equal
to the sum of the motion of the nodes and the mean longitude of the moon.
As a result the centre of the epicycle of the moon is moved in the direction of
the order of the signs by an amount equal to the mean longitude of the moon
which is equal to 13; 10, 35, 1, 13. (3) The third motion, 13; 3, 53, 46, 18° per
day, is that of the epicycle which takes place around its own centre, and is in
the direction opposite to that of the order of the signs in the upper part of the
epicycle. This motion was called in the past the motion of the moon in
anomaly, and it begins from the apparent apex of the epicycle. (4) The fourth
motion, which carries the moon with it along the cincture of the inclined
sphere, is that of the director, a simple motion around the director’s own
centre in the direction of the order of the signs, and is equal to 24; 22, 53, 23°
per day which is also equal to twice the elongation between the mean
position of the sun and that of the moon.

This model will in effect answer the two objections that were raised
against the Ptolemaic model, for it now allows the variations in the observed
positions of the moon to be accounted for while all the motions are motions
of spheres around their own centres. When the moon is in conjunction with
the sun (Figure 3.15) all centres will be in line with the sun, or as Ibn al-
Shatir would put it they would be in the direction of what he calls the
position of the apogee. As the inclined sphere moves in the direction of the
order of the signs, the epicyclic sphere will move in the opposite direction.
The two motions will therefore satisfy the phenomena of elongation of the
moon and the lunar anomaly. To account for the evection, the director is then
made to move at a speed equal to twice that of the inclined sphere, thus
leaving the moon at the perigee of the director, i.e. towards the earth, but in
the direction of the apogee when the moon is in conjunction and at the
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director’s apogee when the moon is in quadrature. This will allow the lunar
equation to increase from the observed Ptolemaic value 5; 10 at conjunction
(Ibn al-Shatir has 4; 56) to the maximum value of 7; 40 at quadrature.

But more importantly, this model allows the lunar distance to vary
between 1, 5; 10 and 54; 50 at syzygies and between 1, 8; 0 and 52; 0 at
quadrature in the same parts that make the radius of the inclined sphere equal
to 60 parts. This model is then a vast improvement over that of Ptolemy for
in the latter model the moon was allowed to come as close as 34; 7 parts to
the earth, which would have had to make the moon look twice as big at
quadrature than when it is at syzygies which is contrary to the observed 
facts. Although this result was probably one of the main aspects that made
this model attractive to Copernicus, for he used the same dimensions and
configuration in his De Revolutionibus, it was only mentioned in passing by
Ibn al-Shatir who definitely knew of the advantages of his own model
(Nihaya, fol. 3r).

The model for the upper planets

In the case of the upper planets, the Ptolemaic model, as described above
(Figure 3.3), suffered from one major difficulty, namely that of the equant. In
brief, this problem is essentially the same as having to force a sphere to move
uniformly around an axis that does not pass through its centre, a true physical
impossibility as long as these spheres were thought of as real physical
bodies, which they were. The Arabic-writing astronomers proposed several
models to get around the equant problems of Ptolemy.29

Abu ‛Ubayd al-Juzjani (d. c. 1070)

The first astronomer-philosopher that we know of who left us a treatise that
purports to reform Ptolemy’s astronomy, namely to solve the problem of the
equant, is Abu ‛Ubayd al-Juzjani, the student and collaborator of Avicenna
(see Saliba 1980). In it he tells us that Avicenna had also made the incredible
claim that he too had solved the same problem, but he was not going to tell
his student about it, for he wanted him to work it out for himself. In a
mixture of cynicism and wit, Abu ‛Ubayd continues: ‘I suspect that I was the
first to have achieved these results’ (ibid.: 380).

A summary of Abu ‛Ubayd’s solution of the equant problem is given in
Figure 3.16. He clearly thought that he could replace the Ptolemaic deferent
by the equant sphere itself—shown in broken lines—and thus transfer the
motion of the epicycle from point H on the deferent to point B, now carried
on a secondary epicycle of radius e equal to the Ptolemaic eccentricity of the
planet. The advantage of such a model would obviously be that B, the
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epicyclic centre, would now move uniformly around H, while H itself also
moves uniformly around T, thus not violating the uniform motion
requirement. Moreover, if the secondary epicycle, with centre H, is made to
move at the same speed as the Ptolemaic deferent, but in the opposite
direction, then point B, the planet’s epicyclic centre, will look as if it is
moving uniformly around D, the equant, as required by observation. As such
the new model seems to satisfy both uniform motion and observation.

All this would have been acceptable if the distance of point B, the planet’s
epicyclic centre, from the observer at Q were not also determined by
observation, and thus could not be easily replaced. The laborious and lengthy
 computations in Book X of the Almagest were specifically carried out to
determine the relative dimensions of the model of each planet in such a way
as to satisfy the observational data that Ptolemy was trying hard to save.

Figure 3.16

Moreover, if Abu ‛Ubayd’s model were to work, Ptolemy would have been
the first to adopt it, for it only seems to replace an eccentric sphere, the
deferent, by a concentric one and a secondary epicycle. This equation was
very well known to Ptolemy who further attributed it to Apollonius in Book
XII, 1, of the Almagest, and used it efficiently in Books III, 3, and IV, 6 (See
Neugebauer 1959). It would be naive, therefore, to assume with Abu ‛Ubayd
that the observational problem of the equant could be solved simply by
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replacing the eccentric hypotheses by the epicyclic hypotheses as Ptolemy
would have called this transformation.

The problem, therefore, was still to find a model that preserved both the
Ptolemaic deferent distance and the effect of the equant, and would still be
the result of the motion of spheres that move uniformly around their own
centres.

Mu’ayyad al-Din al-‛Urdi30

Figure 3.17

Taking advantage of the fact that one could transfer motion on an eccentric to
a motion along a concentric with an epicycle—the Apollonius equation 
referred to above—‛Urdi’s problem was to devise such a motion so that point
B (Figure 3.17) in Juzjani’s model could be brought closer to Ptolemy’s
deferent, if possible to coincide with Z. This does not necessarily mean that
‛Urdi was trying to emend the model of Juzjani directly, for he does not
mention Juzjani at all, and he could have been working directly with the
Apollonius equation. But it was a stroke of genius to realize that one does
not have to transfer the whole eccentricity TD=BH to the secondary
epicycle, but instead accept a compromise and transfer only half of that
eccentricity KD=NB. To do so, and approximate Ptolemy’s deferent as
closely as possible, ‛Urdi found that the epicyclet BOH must revolve in the
same direction and by the same amount as the new deferent with centre K
that he had just introduced. Only then will the combined motion of the
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deferent with centre K and the epicyclet with centre N produce a resultant
path marked by point O which hugs very closely the Ptolemaic deferent EZH.
Once this technique had been discovered by ‛Urdi, it was used by every
astronomer who came after him to adjust the Ptolemaic model in one way or
another.

But to preserve the effect of the equant as well, ‛Urdi had to show that the
resultant motion of point O had to look as if it is itself uniform with respect
to point D, the equant. This is tantamount to proving that under the stated
conditions—namely, the epicyclet moving by the same angle x as the
proposed deferent and in the same direction—the lines OD and NK will
always be parallel.

To do so, ‛Urdi stated the problem in the form of a general lemma,
namely:

Every straight line upon which we erect two equal lines on the same
side so that they make two equal angles with the (first) line, be they
corresponding or interior, if their edges are connected, the resulting line
will be parallel to the line upon which they were erected.

(Kitab al-Hay’a, p. 220)

Figure 3.18 is taken from ‛Urdi’s text in which he shows that line GD is
always parallel to AB in all the cases where AG and BD describe equal
angles with line AB. It is also assumed that AG=BD. The proof is then
straightforward both when the corresponding angles DBE and GAB are
equal or the interior angles DBA and GAB are equal, for with the
construction of line DZ parallel to AG, both cases become identical and
require only Elements I, 27–33, to be proved. 

Figure 3.18
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Now that the line OD (Figure 3.19) was shown to be always parallel to NK,
point O could then be taken as the centre of the planet’s epicycle and the
Ptolemaic conditions would be very closely approximated. ‛Urdi was quite
aware of the fact that the path resulting from the motion of O coincides
exactly with the Ptolemaic deferent only at the apogee E and the opposite
perigee. To quote ‛Urdi in full on this point, he says:

As for the center of the epicycle, i.e. the point of tangency mentioned
above [O in Figure 3.19], on account of the fact that the center of the
epicycle will be on this circle [i.e. the deferent] at its two distances, i.e.
its farthest distance from the eye and its closest distance to it, and since
it is very close to its circumference at the remaining portions of its
revolution, that has led Ptolemy to believe that the center of the
epicycle is coincident with its circumference, and describes it with its
motion.

(Kitab al-Hay’a, pp. 222–3)

Instead of calculating the variation between the resulting path of the model
and the Ptolemaic deferent, which is very small indeed,31 ‛Urdi assumed
confidently that his model was the true one, and that the burden of proof

Figure 3.19
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should be required of Ptolemy for it was Ptolemy who was confused about
the true path when he assumed that it was along a circular deferent. This is
exactly the same sentiment expressed by Maestlin some three centuries later
when he explained this same point in Copernicus’s astronomy to his student
Kepler: ‘For Copernicus shows (V, 4) that the path is not perfectly circular…
[and] that Ptolemy thought that this path of the planet…was truly circular’
(see Grafton 1973:526). It is interesting to note that Maestlin also proves a
specific case of the introductory lemma stated and proved by ‛Urdi, without
stating it in general terms (ibid.: 528).

In the words of Copernicus himself (V, 4), the same argument is made
thus: ‘Hence it will also be demonstrated that by this composite movement
the planet does not describe a perfect circle in accordance with the theory of
the ancient mathematicians but a curve differing imperceptibly from one’
(De Revolutionibus, p. 743).

Therefore, both ‛Urdi and Copernicus were satisfied with this new
technique of bisecting the Ptolemaic eccentricity, for it allowed them to
preserve Ptolemy’s deferent, the effect of the equant, and still describe all
motions in their respective models as uniform motions of spheres that
revolve on their own centres, thus avoiding the apparent contradictions in
Ptolemy’s model. But to understand the possible relationship between the
Copernican model for the upper planets and that of ‛Urdi, we need to
investigate the intermediary models that were described by Qutb al-Din al-
Shirazi (d. 1311), Sadr al-Shari‛a (d. 1346/7) and Ibn al-Shatir of Damascus
(d. 1375).

In an earlier article the present author has shown that the model of Qutb al-
Din was indeed identical with that of ‛Urdi (Saliba 1979b), and was used as
the basis for the model described by Sadr al-Shari‛a. For these two
astronomers, therefore, ‛Urdi’s model was quite sufficient to explain away
the contradictions in the Ptolemaic model. As for Ibn al-Shatir, his main
objection remains to be against the use of eccentrics. As in the case of the
moon, he manages here too to devise a model that is perfectly geocentric, but
incorporating ‛Urdi’s model as we shall see below.

Ibn al-Shatir’s planetary model

Because of the historical importance of Ibn al-Shatir’s model, and its
possible relationship to the works of Copernicus, a full English translation of
the short section in which Ibn al-Shatir describes his model for Saturn will be
given here. The text comes from Ibn al-Shatir’s Nihayat al-Sul in an
unpublished edition of the present author, and varies from the text that
describes the models for Jupiter, Mars and Venus only with respect to the
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actual dimensions. The general relationships that are applicable to the model
of all the upper planets are summarized in Figure 3.20.

Chapter 12 of Ibn al-Shatir’s Nihayat al-Sul begins thus:

Concerning the Configuration of the Spheres of Saturn according to the
Correct Manner.

Of the spheres of Saturn, let there be a sphere that is represented
[mumaththal] by the sphere of the zodiacal signs, occupying the same
surface 

Figure 3.20

and having the same centre and the same poles [not represented in
Figure 3.20 for simplicity].

One then imagines that there would be another sphere [represented
by radius QH in Figure 3.20], inclined with respect to the first, at a
fixed inclination of 2; 30 parts, intersecting it at two opposite points:
one [of the points] is called the head and the other the tail.

Then let there be a third sphere [represented by the circle with centre
H in Figure 3.20] whose centre is on the periphery of the inclined, and
whose radius is equal to  parts, being in the same units that measure
the radius of the inclined [R in Figure 3.20] as 60 parts. Let [this
sphere] be called the deferent [al-hamil].
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A fourth sphere is imagined to have its centre on the periphery of the
deferent [circle with centre N in Figure 3.20], and whose radius is 1; 42,
30 parts. Let it be called the director [al-mudir].

A fifth sphere is imagined, with its centre on the periphery of the
director [circle with centre O in Figure 3.22], and whose radius is 6; 30
of the same parts; it is called the sphere of the epicycle [omitted in
Figure 3.20].

The centre of the body of Saturn is fixed to one point on the cincture
[mintaqa] of the epicycle.

From the dimensions given, we can verify the relationships HN=3 e/2 and
NO=e/2, where e is the same as the Ptolemaic eccentricity, as applicable for
all the other upper planets. In the case of Saturn, is indeed
equal to 3 NO=3×1; 42, 30, and HN+NO=2 e=6; 50 which is exactly twice
the Ptolemaic eccentricity of 3; 25 parts.

The directions of the motions of the spheres in Figure 3.20 are to be
surmised from the following set of values as given by Ibn al-Shatir.

Sphere 1 moves at 0; 0, 0, 9, 52° per day, in the direction of the order
of the signs; not represented.

Sphere 2 moves at 0; 2, 0, 26, 17° per day in the direction of the
order of the signs; radius QH.

Sphere 3 moves at 0; 2, 0, 26, 17° per day in the direction opposite to
that of the order of the signs; radius HN.

Sphere 4 moves at 0; 4, 0, 52, 34 in the direction of the order of the
signs; twice Sphere 2, radius NO.

Sphere 5 moves at 0; 57, 7, 43, 34, 22 in the direction of the order of
the signs; not represented.

From these relationships, which are applicable to the other upper planets as
well, it is clear that what Ibn al-Shatir calls the deferent, circle with centre H,
moves at the same speed as the inclined sphere, represented by radius QH,
but in the opposite direction. This, in effect, transfers the portion of the
eccentricity QK from the centre to the periphery, using the same technique
referred to above and used by Ptolemy in the Almagest III, 3. This allowed
Ibn al-Shatir to make his model actually geocentric, for now the radius HQ
revolves around the centre of the earth itself.

To adjust for the remaining portion of the eccentricity, and to retain the
Ptolemaic deferent EZ, Ibn al-Shatir makes the epicyclet with centre N
revolve in the opposite direction to the deferent with centre H, thus making
angle HNO=2x. Since NH is parallel and equal to QK, lines NK and QH are
also equal and parallel. Therefore, angle KNH is equal to x=angle KNO.
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But it was ‛Urdi who proved earlier the general lemma (Figure 3.18) that if
DK=NO and both lines describe the same angle with respect to KN, then
OD, the line that connects their extremities, will be parallel to KN, and point
O will be brought very close to Z on the Ptolemaic deferent.

What Ibn al-Shatir seems to have done, therefore, is to combine two
results already available to him from previous research. First, he used the
Apollonius equivalence to transfer the effect of QK to the periphery HN, and
then used the result already reached by ‛Urdi to draw point N back to O, by
using ‛Urdi’s lemma. We do not need to speculate whether Ibn al-Shatir knew
directly of the work of ‛Urdi, for he explicitly tells us that he did, and he
criticizes ‛Urdi specifically for retaining eccentric spheres.

The net result is an orbit very close to the Ptolemaic deferent, and a
geocentric model that is strictly concentric and free from the Ptolemaic 
contradictions. Figure 3.21 shows the relationship between Ibn al-Shatir’s
model—the model drawn in dashes—and that of Ptolemy—the continuous
lines—with the dotted lines KN and DO as reminders of ‛Urdi’s model. I
have intentionally exaggerated the distance between points O and Z just to
make the point that they are not in general identical, but in no way to suggest
that they could have been differentiated by any observational result. For
Mars, the planet with the largest eccentricity, the value of OZ is in the order
of 0.005 for a radius taken to be 60 units (see Swerdlow 1973:469).

Figure 3.21
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Ibn al-Shatir and Copernicus

In Figure 3.22, Ibn al-Shatir’s model is superimposed over that of
Copernicus, using for the latter’s model his description of it in the
Commentariolus (Swerdlow 1973:456f) and De Revolutionibus (V, 4). In
order to facilitate the transformation between the heliocentric Copernican
model, the model drawn using broken lines, and the geocentric model of Ibn
al-Shatir, drawn using continuous lines, the mean sun S in Ibn al-Shatir’s
model is held fixed and the other relationships and motions are allowed to
remain the same. Once S was held fixed, Ibn al-Shatir’s model, with all its
dimensions, was translated to the model adopted by Copernicus. Since we 
now know that the addition of vectors is commutative, it is not surprising to
find that both models predict the same position for planet P, irrespective of
whether the earth or the mean sun is taken to be fixed.

To conclude this section, all the four models discussed above, namely
those of Ptolemy, ‛Urdi, Ibn al-Shatir and Copernicus, are superimposed on

Figure 3.22
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the same Ptolemaic deferent in Figure 3.23. Juzjani’s model was disregarded
for obvious reasons, and so was the model of Qutb al-Din and Sadr al-Shari‛a
for they both adopted that of ‛Urdi. The equivalence of the remaining
models, however, is best illustrated here by the fact that they all predict the
position of planet P, without having to accept the Ptolemaic contradictions.

The historical relationships between ‛Urdi and Ptolemy may have gone
through the first attempt of Abu ‛Ubayd, but may very well be a direct
modification of the Apollonius equivalence, with the elegant and successful
bisection of the Ptolemaic eccentricity. Once that result was achieved, Ibn al-
Shatir, realizing its full significance, simply combined it with the Apollonius
equivalence to produce his own model. We noted that Ibn al-Shatir knew of
the works of ‛Urdi and took issue with him for retaining the eccentrics in his
model. Then it is understandable that he did not feel obliged to prove the
parallelism of OD and NK (Figure 3.23), for it was already proved by ‛Urdi
with the general lemma (Figure 3.18). Similarly, Copernicus did not prove

Figure 3.23
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that parallelism either, and it was Maestlin who explicitly proved it again in
his letter to Kepler (see Grafton 1973:528f).

The question of the explicit relationship between Copernicus and his
Muslim predecessors, especially Ibn al-Shatir, remains open, and further
research will have to be done before it can be decisively established one way
or the other. What is clear, however, is that the equivalent model of Ibn al-
Shatir seems to have had a well-established history within the results reached
by earlier Muslim astronomers, and could therefore be historically explained
as a natural and gradual development that had started some three centuries
earlier. The same could not be said of the Copernican model. But some more
research has to be done on the Arabic sources themselves before their inner
relationships can be fully understood and exploited in this regard, and on the
Byzantine sources for a possible connection between Copernicus and his
Muslim predecessors.

The planetary model of Tusi

Figure 3.24

GEORGE SALIBA 115



In terms of its relationship to the Copernican model for the upper planets,
Tusi’s model represents a tradition different from that of Ibn al-Shatir.
Rather than bisecting the Ptolemaic eccentricity, in the tradition of ‛Urdi, Tusi
generalizes his own lunar model (Figure 3.24) and allows a ‘Couple’ to move
in such a way that the centre of the epicycle would also be moved closer to
the equant when the epicycle is at the Ptolemaic apogee, and farther away
when the epicycle is at perigee. The ‘Couple’ itself is carried by a deferent
that is now concentric with the equant. All motions therefore would be
uniform around the centres of the spheres concerned, and would produce none
of the contradictions that were assumed in the Ptolemaic model.

The model for the motion of Mercury

The Ptolemaic model for the motion of Mercury as described above
(Figure 3.4) is very similar to that of the moon. In effect, Ptolemy uses the
same crank-like mechanism that allows the planet to come close to the earth
at two points instead of one, hence accounting for what Ptolemy observed to
be the greatest elongations from the sun, and thus assumed the existence of
two perigees for Mercury. The equant for Mercury, on the other hand, is now
placed on the line of centres in between the centre of the universe and that of
the eccentric, when the diameter of the eccentric is still in the direction of the
apogee, instead of its being at twice that distance away from the centre of the
universe as in the case of the upper planets. Unlike the lunar model, the
model for Mercury requires the planet to move uniformly around the equant
point instead of the centre of the universe as in the case of the moon.

The first astronomer known to have proposed an alternative model that
would answer the objections to the Ptolemaic model is the same Mu’ayyad
al-Din al-‛Urdi whose work we have seen above in connection with the models
for the moon and the upper planets.

The Mercury model of ‛Urdi

‛Urdi devotes two different chapters to the discussion of Mercury’s model, in
addition to the various remarks that he makes about it in connection with the
other planets. Chapter 4432 contains a straightforward description of the
spheres of Mercury with brief remarks about the motions of these spheres.
Whenever it was appropriate, ‛Urdi would correct the Ptolemaic description
to fit the new observations. He, at one point, reminds the reader that ‘it is no
longer necessary to add the conditions that were assumed by Ptolemy for
these motions, for it was found that the solar apogee [assumed fixed by
Ptolemy] indeed moves at the same rate as the apogee of the director (al-mudir)
which is in Libra’.
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Chapter 48,33 as its title Islah Hay’at ‛Utarid (‘A Reform of Mercury’s
Model’) implies, is devoted to a reconstruction of Mercury’s model in such a
way that the two main problems in the Ptolemaic model are solved. These
problems were, as in the case of the lunar model, (1) a deferent that moves
uniformly around an axis that does not pass through its centre, and (2) an
equant point which is neither the deferent’s centre nor the centre around
which the deferent describes equal motion.

In Ptolemy’s model (Figure 3.25), the deferent is moved uniformly by the
director around centre B in a direction contrary to the direction of the order
of the signs, in order that it brings the apogee to point T. The deferent itself is
made to move in the opposite direction around its own centre G, to carry the
epicyclic centre to point C, but seems to be moving uniformly at equal and
opposite speed around point E, the equant. It is necessary, therefore, that the
deferent describe an irregular motion around its own centre G, a clear
violation of the uniform motion principle. 

In response to that, ‛Urdi states the following:

This total configuration resulted from several considerations. Among
them are the observations, the proof that is based on the observations,
the periodic movements, the model [hay’a] that he [i.e. Ptolemy]
conjectured [hadasa], and the directions of these movements. No one
should be critical of the observations, the proof, or the periodic
movements, for there has not come to light anything to contradict them.
As for the method of conjecture, he [i.e. Ptolemy] should have no
priority over anyone else, especially that his error had been made
evident. And if anyone were to find another proposition [amr] that
agrees with the principles, and matches the particular movements of the
planet that are found by observation, then that person should be deemed
as closer to the truth [awla bi-isabat al-haqq].

And now that we have seen his erroneous opinion and sought to
emend it [islah] as we did in the case of the other planets, we found that
we could do so if we reversed the directions of the two movements
mentioned above, that is, the movement of the director and that of the
deferent. Let us assume then, that the director moves in the direction of
the order of the signs by as much as three times the mean motion of the
sun, and that the deferent moves in the opposite direction [i.e. contrary
to the direction of the order of the signs] by twice that motion. Then the
resulting motion of the epicyclic center is in the direction of the order of
the signs by as much as the mean motion of the sun, which is the same
as in his [i.e. Ptolemy’s] model.
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Translated into the diagram (Figure 3.25) and superimposed, not to scale,
over Ptolemy’s model, ‛Urdi’s model describes the motion of Mercury by
letting the director move uniformly, like Ptolemy’s lunar deferent, in the
direction of the order of the signs around centre B to carry the apogee to point
S. Then the deferent should also move uniformly, but in the opposite
direction, around its own centre K to bring the epicyclic centre back to I. The
resultant motion of the epicyclic centre would then be parallel to that of
Ptolemy and is very close to it, as in the figure. Moreover, ‛Urdi’s model will
agree with the principles of uniform motion and will match the results of
observations very closely, thereby, in ‛Urdi’s words, ‘varying only slightly
(from that of Ptolemy) by an amount that could escape the observer’. ‛Urdi
then continues to say: ‘Our method, on the other hand, is free from doubt and
contradiction, and is therefore clearly superior to any other’.34

Figure 3.25
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The next astronomer to propose an alternative model for Mercury was
Qutb al-Din al-Shirazi, a student of Tusi, for Tusi himself clearly admitted in
his Tadhkira that he had not yet devised a model for Mercury, and that he
would describe it once he did.35 The status of our present research does not
indicate that he ever did.

The Mercury model of Qutb al-Din al-Shirazi

A brief description of Shirazi’s model has already been given by E.S.
Kennedy (see Kennedy 1966: esp. pp. 373–5), and the following is mainly
derived from his work and from the work of Shirazi in the Tuhfa.

Shirazi proposed to replace the Ptolemaic model with one of his own
(Figure 3.26), which was composed of six spheres: (1) a deferent with a
radius r1 equal to 60, eccentric to the centre of the universe by the same
eccentricity as that of Ptolemy, and whose centre B does not move as in the
Ptolemaic model, thus eliminating the need for a ‘director’; (2–5) two sets of
Tusi Couples whose smaller spheres have radii r2=r3=r4=r5 equal to half the
Ptolemaic eccentricity; and (6) a final sphere of radius r6 equal to the
eccentricity.

The motions of these spheres as described by Kennedy, and by Qutb al-
Din in his Tuhfa, are such that the deferent moves uniformly at the same  
speed x as the mean motion of the sun, in the same direction as that of the
order of the signs. This deferent carries with it all other spheres, the two Tusi
Couples and the sixth sphere of radius equal to the eccentricity. The first of
the two Couples moves in such a way that the larger of the two spheres
moves at the same speed as the mean motion of the sun but in the direction
opposite to that of the order of the signs. This means that the smaller sphere
will move at twice this speed but in the opposite direction, thus keeping the
point of original tangency along the diameter of the larger sphere, which is in
turn the radius of the deferent. This point F which has to oscillate along the
radius of the deferent is taken to be the centre of the larger sphere of the
second Couple. The second Couple will then take over and move in the
opposite direction to the first Couple at twice the speed, which means that it
will generate its own point G which will oscillate along the diameter of the
larger sphere, which, in turn, is along the radius of the deferent. The effect of
both Couples is to keep the centre of the sixth sphere G along the radius of the
deferent, but to allow it to oscillate nearer to the earth and farther away from
it. With this motion the radius of the sixth sphere GC=r6 will, together with
line BE, satisfy the conditions for ‛Urdi’s lemma, thus allowing the centre of
the epicycle to describe a curve that looks like an egg-shape but pressed in at
the waist, so to speak, when the centre of the epicycle is at the two perigees.

GEORGE SALIBA 119



To describe these motions by using modern vector terminology, and if we
assume that the deferent had already moved by an angle equal to x, we could
then take the radius of the deferent (Figure 3.26) to be a vector r1 that has
been moved by an angle x, and vector r2, the radius of the smaller sphere in
the first Couple, to have been moved by the larger sphere in the opposite
direction by an angle equal to x. By the motion of the smaller sphere vector
r3 would have been moved in the direction opposite to r2 by an angle equal to
2 x. Now, in the second Couple, vector r4 would be moved by the larger
sphere through an angle equal to 2 x, measured from the direction of r1, and
r5 would be moved in the opposite direction to r4 by the second smaller
sphere through an angle equal to 4 x measured from the direction of r4.
Finally r6 would be moved by its own sphere through an angle equal to x,
measured from the direction of r1.

Perceived as such, the sum of vectors r2, r3, r4 and r5 will allow the centre
of the sixth sphere G, i.e. the origin of vector r6, to always oscillate along the

Figure 3.26
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radius of the deferent. In this model the centre of the deferent is fixed at a
distance from the centre of the universe equal to twice the Ptolemaic
eccentricity. Now, since vector r6 will always move at an angle equal to that
through which the deferent moves, and in the same direction, it means that
the tip of that vector will seem as if it is always moving uniformly around the
equant centre, as it would have been predicted by the lemma proposed by
‛Urdi in the model for the upper planets, and as it would have been required
by the Ptolemaic observational data.

What Qutb al-Din seems to have done is to use the results reached by Tusi
and ‛Urdi and to develop his own model by using both techniques that were
developed earlier, namely Tusi’s Couple and ‛Urdi’s lemma.

Ibn al-Shatir’s model for Mercury

To account for a uniform motion of Mercury with respect to the equant, and
for the larger elongations from the sun at distances symmetrically placed at
around 120° on both sides of the apogee, both facts supported by Ptolemaic
observations, Ibn al-Shatir devised a model in which all these facts can be
accommodated as resulting from uniform motions of spheres around their
respective centres. Like Qutb al-Din, he too, as we shall see, used the results
reached by Tusi and ‛Urdi, namely the Tusi Couple and ‛Urdi’s lemma.

Ibn al-Shatir used the same techniques he had used in the lunar and
planetary models described above. And here too, he started constructing his
model with the assumption that it should be strictly geocentric, so that he
would not have to use eccentric deferents which he thought that others had
erroneously used.36 To make the model strictly geocentric he assumed
(Figure 3.27) the existence of an inclined sphere, of radius r1=60 parts, which
is concentric with the centre of the universe O, and which moves in the
direction of the order of the signs at the same speed as the mean motion of
the sun. That inclined sphere is supposed to carry at its cincture (mintaqa)
another sphere, called the deferent (al-hamil), whose radius r2 is 4; 5 parts
and which moves at the same speed as the inclined sphere but in the opposite
direction. The deferent carries, in the same manner, a third sphere, called the
director (al-mudir), whose radius r3 is 0; 50 parts and whose motion is like
that of the inclined sphere in the direction of the order of the signs, but at
twice the mean daily motion of the sun. The director then carries the epicycle
whose radius r4 is 22; 46 parts and whose motion is equal to that of the
anomaly of Mercury. At the cincture of the epicycle there is a fifth sphere,
called the encompassing sphere (al-muhit or al-shamil), whose radius r5 is 0;
33 parts and whose motion is equal to twice that of the daily mean motion of
the sun and in the same direction as the order of the signs. In turn the
encompassing sphere carries an identical sixth sphere, called the preserver
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(al-hafiz), whose radius r6 is the same as that of the fifth sphere and whose
motion is four times as much as the daily mean motion of the sun, but in a
direction opposite to the direction of the order of the signs. The planet Mercury
is immersed at the cincture of this sixth sphere. 

To use modern vector terminology, we let the radius of the inclined sphere
be a vector r1, 60 parts long. Its motion would then be equal to that of the
daily mean motion of the sun in the same direction as the order of the signs.
At the tip of this vector, another one, r2, will represent the deferent and
whose length will therefore be 4; 5 parts. Its motion will be equal and
opposite to the motion of r1. This means that r2 will continuously be
displaced in such a way that it will remain parallel to the line of apsides, and
will in effect carry an amount of the eccentricity equal to 4; 5 from the centre
to the periphery. The vector that represents the director, r3, will move at
twice the speed of r1 and in the same direction. It can be easily shown by
‛Urdi’s lemma that the tip of r3 will seem to move uniformly around a point
on the apsidal line at a distance from the centre of the universe equal to 4; 5
−0; 50=3; 15 parts. Since the tip of r3 is actually the centre of the epicycle in
the Ptolemaic model, this displacement will in effect produce the same effect
as that of the motion of the centre of the epicyclic centre around the equant

Figure 3.27
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which is 3 parts away from the centre of the universe in the Ptolemaic model.
Thus far the problem of the equant is resolved.

The last two vectors r5 and r6 are supposed to answer the second
requirement of the Ptolemaic model, namely to create the effect of enlarging
the epicycle of Mercury when the planet is about 90° away from the apogee.
This will be achieved if we assume those two vectors to represent the two
radii of the small circle of a Tusi Couple,37 whereby the diameter of the larger
circle will be along the direction of the epicyclic diameter, and thus allowing
the latter to be reduced in length by 0; 66 parts, or enlarged by the same
amount.

With that solved, the two main requirements of the Ptolemaic model were
met, and the contradictions were solved. As stated above, the model takes
advantage of the two important results which were achieved by ‛Urdi and
Tusi. Ibn al-Shatir was, therefore, unlike Copernicus who used the same model
for the motion of Mercury—once without understanding it fully as in the
Commentariolus (Swerdlow 1973:504), and once in the De Revolutionibus
(Swerdlow and Neugebauer 1984:403f), where it was better described—a
true heir to a long tradition of Arabic astronomy, which supplied him with
such techniques that he only had to put them together, as he did in the model
for the upper planets, and then add the requirement of making the whole
model strictly geocentric.

The Mercury model of Sadr al-Shari‛a

In his Kitab al-ta‛dil, Sadr al-Shari‛a describes the Ptolemaic model for
Mercury (fols 32r–33v) and concludes the section by a statement of the
inadequacies of this model. He then repeats the statement of Tusi in his
Tadhkira where he admitted that he had not yet developed a model for the
motion of Mercury. Sadr al-Shari‛a then claims that, with God’s help, he had
been successful where Tusi had failed. He goes on to describe a model which
was essentially a modification of the lunar model proposed by Qutb al-Din
and is described above.

Sadr al-Shari‛a proposes a new eccentric deferent whose centre F (Figure 3.
28) is to be placed at a distance e/2 from the centre of the director, i.e. above
the Ptolemaic equant in the direction of the apogee by one and a half times
the Ptolemaic eccentricity, and whose motion is taken to be twice that of the
director and in the opposite direction to that of the director, i.e. in the same
direction as the order of the signs. He then uses ‛Urdi’s lemma, by affixing an
epicyclet to the cincture of this deferent of a radius r1 equal to e/2, and
allows this epicyclet to move at the same speed and direction as the deferent.
The actual epicycle of the planet is supposed to be carried at the cincture of
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this epicyclet. By ‛Urdi’s lemma, the centre of the actual epicycle H will seem
as if it is describing equal arcs in equal times, i.e. moving uniformly, around
the centre of the director B. Moreover, the centre of the actual epicycle H
would then be in the same direction from the centre of the director as the
centre of the epicycle in the Ptolemaic model is from the equant. Since all
these motions were described as mean motions, then to have the centre of the
epicycle move in a direction parallel to the one that would have been
anticipated in the Ptolemaic model must have satisfied Sadr al-Shari‛a, for he
claimed that he had found an equivalent model that did not suffer from the
Ptolemaic inconsistencies.

‛Ala’ al-Din al-Qushji (d. 1474)

In an anonymous treatise kept at the Asiatic Society Library in Calcutta (No.
A1482), which, according to the present author, was written by Qushji, we
find yet another attempt to resolve the problem of Mercury.

After presenting the Ptolemaic model for Mercury, and criticizing it,
Qushji goes on to present his own solution of the problems entailed by the
Ptolemaic model. He first assumes (Figure 3.29) the centre C (or G) of the
Ptolemaic epicycle to be carried by an epicyclet with centre D, whose radius
is half the Ptolemaic eccentricity, and which is in turn carried by another

Figure 3.28
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epicyclet, with centre B, of identical radius. Next he assumes that the
epicyclet B is carried by a new deferent whose centre is point H, at a distance
equal to half the Ptolemaic eccentricity from the centre of the director N after
defining this new centre of the director to be at a distance from the centre of
the universe equal to one and a half times the Ptolemaic eccentricity.

The motions of these spheres are then described as in the Figure to be as
follows. The director carries the deferent with it in the direction opposite to
that of the order of the signs at a speed equal to the mean daily motion of the
sun to bring the apogee to point A′. The deferent moves in the opposite
direction at twice that speed, bringing point B, the centre of one of the
epicyclets, to the direction HB. The epicyclet with centre B moves in the same
direction as the deferent and with the same speed, thus bringing point D, the

Figure 3.29
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centre of the second epicyclet, to look as if it is moving uniformly around
centre N, the centre of the new director. The second epicyclet then carries the
centre of the epicycle G by moving back in the same direction as the director
and at the same speed as the director. This combination of motions will
ensure that G will always be in line with C, and on the extension of the line
connecting C to the equant E, thus making point G look as if it is always
moving uniformly around the equant as it should.

Any close consideration of this model will immediately reveal its
indebtedness to ‛Urdi’s lemma, used once to align D with N, and another
time to align G with E, to Qutb al-Din’s lunar model, by retaining the crank-
like mechanism of Ptolemy but also bisecting the eccentricity, and to Sadr al-
Shari‛a’s more rudimentary form of the same model.

CONCLUSION

After this general review of the planetary theories which were developed by
Arabic writing astronomers after the twelfth century, it has become clear that
the two major achievements of this long tradition were, after disregarding
motion in latitude and planetary distances for they are less important for that
tradition, essentially two mathematical theorems: one that we referred to
above as ‛Urdi’s lemma and the other being the so-called Tusi Couple. With
the help of these two theorems, and with the technique of dividing the
eccentricities of the Ptolemaic models, it was possible to transfer segments of
these models from the central parts to the peripheries and back. This freedom
of movement not only allowed the retention of the effect of the equant in the
Ptolemaic models, but also allowed the development of sets of uniform
motions that would not violate any physical principles. The Tusi Couple
allowed, in addition, the production of linear motion as a combination of
circular motions, and thus allowed someone like Ibn al-Shatir, and after him
Copernicus, to create the effect of enlarging the size of the epicyclic radius
and of shrinking it by using uniform circular motion only or combinations
thereof.

The other result that has become clear from this overview is that the
tradition of criticism of Ptolemaic astronomy became a well-established
tradition after the thirteenth century, and very few astronomers could do any
serious work without attempting some reform of Greek astronomy on their
own. Ironically, this period of original production in Arabic is usually thought
of as a period of decadence in Islamic science and little effort is spent to
study it in any depth.

But recent scholarship on Copernican astronomy, especially that of
Swerdlow and Neugebauer, has left no doubt that this Arabic tradition in
astronomy must have had an impact on Copernicus himself, and only future
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research will reveal the exact nature of the channels of transmission from the
East to the West that were responsible for this impact.

NOTES

1 For a complete statement of these problems and their solutions see the fuller
discussion that follows.

2 For a description of the direction of motion and the problems associated with it, see
Toomer (1984:20 and 221) where he says that a point A moves ‘clockwise’ as
being in ‘advance [i.e. in the reverse order] of the signs’.

3 See, for example, Petersen (1969), Pedersen (1974:167–95) and Neugebauer (1975:
68f).

4 For a geometric description of Mercury’s model in the Almagest, see Toomer
(1984:444–5).

5 We know about this anonymous author from a treatise titled simply Kitab al-hay’a,
which seems to have survived in a unique copy at the Osmania Library in
Hyderabad (India), and is summarized later in this chapter.

6 For the contents of this work I use the Cairo edition. There is a preliminary English
translation of this text that was completed as a dissertation by Dan Voss at the
University of Chicago under Noel Swerdlow’s supervision (unpublished).

7 Shukuk, p. 23. For the clumsy derivation of the limits of eclipses by Ptolemy in the
Almagest, VI, 5, see Pedersen (1974:227f).

8 The actual statement of Ptolemy is: ‘Now it is our purpose to demonstrate for the
five planets, just as we did for the sun and the moon, that all their apparent
anomalies can be represented by uniform circular motions, since these are proper to
the nature of divine beings, while disorder and non-uniformity are alien (to such
things)’ (Toomer 1984:420).

9 Shukuk, pp. 48–58. See also page 60 for the comparison between the conditions of
the spheres and the shells of spheres.

10 The work of Jabir ibn Aflah has not yet been fully analysed. That of al-Bitruji was
published by Goldstein (1971), and the work of Averroes in conjunction with that
of al-Bitruji was first analysed by Gauthier (1909) and more recently by Sabra
(1984).

11 For a full description of the problem of the planetary distances in the Ptolemaic
works, see Swerdlow (1968).

12 Escurial Ms. Arab. 910, fols 78v–79r.
13 Cf., for example, Kennedy et al. (1983), passim.
14 Ibn al-Shatir, Nihayat al-Sul, Bodleian Library Ms., Marsh 139, fol. 4v.
15 ibid., fol. 10r.
16 The present author has completed a critical edition of this text of Ibn al-Shatir,

which is now being prepared for the press. The references given here, however, are
to the Bodleian Arabic manuscript Marsh 139.

17 For the date of ‛Urdi’s work, see Saliba (1979a), and for the edition of the text, see
al-‛Urdi, Mu’ayyad al-Din: Kitab al-Hay’a (Tarikh ‛ilm al-falak al-‛arabi).
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18 A translation of that chapter, including the intended lemma, has been given, in
French, by Baron Carra de Vaux (1893), and more recently in English by Faiz
Jamil Ragep (1993), pp. 194–223.

19 We use for this study the Köprülü Ms 657, which is dated 20, Jumada I, 681 AH
(27 August 1282) within the lifetime of Shirazi (d. 1311).

20 Ms. fol. 61v.
21 Ms. fol. 66r, the last sentence in the quotation is the same one quoted by ‛Urdi,

Kitab al-Hay’a, p. 136. See also p. 118 of the same text where ‛Urdi states that he
had gone against the opinion of all astronomers in matters relating to the directions
of the motions of the lunar spheres and the magnitudes of these motions (khalafna
fihi jami‛a ashab ‛ilm al-hay’a). In a forthcoming article the present author will
show the exact indebtedness of Shirazi to ‛Urdi in regard to the lunar model.

22 For this astronomer, see Suter (1900:165, n. 404). The work used for this study is Sadr
al-Shari‛a’s Kitab al-Ta‛dil fi al-hay’a, British Museum Add. 7484, fol. 27r sqq.

23 Ibid.
24 For a brief description of this model see Roberts (1957: esp. pp. 430–2).
25 In an earlier version of Nihayat al-Sul (‘The Final Quest’), the book in which Ibn

al-Shatir proposed his new astronomy, the radius of this sphere is taken to be sixty-
seven.

26 This measurement was not given in the early version of the Nihaya.
27 Again, these measurements were not given in the earlier version of the Nihaya.
28 In the earlier version of the Nihaya he adds a note to the effect that this sphere should

not be confused with the commonly known epicyclic sphere for they are not the
same.

29 For a general survey of these solutions see Saliba (1984). The rest of this section
depends heavily on this article.

30 For the edition of this author’s work, see al-‛Urdi, Kitab al-Hay’a, and Saliba
(1979a).

31 For the derivation of the greatest distance between the two, see Swerdlow (1973:
esp. p. 469).

32 See ‛Urdi, Kitab al-Hay’a, pp. 235–8. The following citation is found on p. 237.
33 Ibid., pp. 246–57. The following citation is found on pp. 250–1.
34 Ibid., p. 257.
35 In the Tadhkira, Leiden Ms. Or. 905, fol. 47r, he says: ‘As for [the model of]

Mercury, I have not yet been able to imagine that in the proper manner. For it is
difficult to imagine the cause for the uniform motion of a [body] around a point by
having [that body] move with a complex composite motion closer to that point or
away from it. If God were to grant me success in that, I would append it at the
appropriate place, if God wills it’.

36 See Ibn al-Shatir’s attack against earlier astronomers who used eccentric deferents
at the beginning of his Nihayat al-Sul, ch. 2.

37 Ibn al-Shatir speaks of two spheres having identical radii, one carried at the
cincture of the other. This could only mean that he was thinking of a Tusi Couple,
and not of two intersecting circles, for in medieval terminology such spheres would
have had to intersect with each other which was never allowed.
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4
Astronomy and Islamic society: Qibla,

gnomonics and timekeeping
DAVID A.KING

(a)
Qibla: The sacred direction

INTRODUCTION

In the Qur’an. Muslims are enjoined to face the sacred precincts in Mecca
during their prayers. The relevant verse (2.144) translates: ‘turn your face
towards the Sacred Mosque; wherever you may be, turn your face towards
it…’. The physical focus of Muslim worship is actually the Ka‛ba, the cube-
shaped edifice in the heart of Mecca. This formerly pagan shrine of uncertain
historical origin became the physical focus of the new religion of Islam, a
pointer to the presence of God.

Thus Muslims face the Ka‛ba in their prayers, and their mosques are
oriented towards the Ka‛ba. The mihrab, or prayer-niche, in the mosque
indicates the qibla, or local direction of Mecca. In medieval times the dead
were buried on their sides facing the qibla; nowadays burial is in the
direction of the qibla. Islamic tradition further prescribes that a person
performing certain acts, such as the recitation of the Qur’an, announcing the
call to prayer, and the ritual slaughter of animals for food, should stand in the
direction of the qibla. On the other hand, bodily functions should be
performed perpendicular to the qibla. Thus in their daily lives Muslims have
been spiritually and physically oriented with respect to the Ka‛ba and the
holy city of Mecca for close to fourteen centuries.

Muslim astronomers devised methods to compute the qibla for any locality
from the available geographical data, treating the determination of the qibla
as a problem of mathematical geography, as the Muslim authorities do
nowadays. However, mathematical methods were not available to the



Muslims before the late eighth or early ninth century. Furthermore, even in
later centuries the qiblas found by computation were not generally used
anyway. This is immediately clear from an examination of the orientations of
medieval mosques, which are aligned towards Mecca, but not always
according to the scientific definition of the qibla. The methods commonly
used to find the qibla were derived from folk astronomy. Cardinal directions
sanctioned by religious tradition and astronomical risings and settings were
favoured. Thus the Muslims adopted different notions of a sacred direction
different from those of the Jews and the Christians, who generally favoured
praying toward the east. There was a most compelling reason for this
independent development.

THE ORIENTATION OF THE KA‛BA

Figure 4.1 The astronomical orientation of the Ka‛ba, mentioned in several medieval
Arabic texts and confirmed by modern investigations. The associated wind-scheme shown
here is also described in the medieval sources

The Ka‛ba itself is astronomically aligned, i.e. its rectangular base is oriented
in astronomically significant directions. The earliest recorded state ments
about the astronomical alignment of the Ka‛ba date from the seventh century,
being attributed to Companions of the Prophet. The texts imply that the
major axis points towards the rising of the star Canopus, the brightest star in
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the southern sky, and that the minor axis points towards midsummer sunrise.
These two directions are roughly perpendicular to the latitude of Mecca
(Figure 4.1). Modern plans of the Ka‛ba and the surrounding mountains
based on aerial photography essentially confirm the information provided by
the medieval texts.

From these texts it is clear that the first generations of Muslims knew that
the Ka‛ba was astronomically aligned, so this was why they used
astronomical alignments in order to face the Ka‛ba when they were far away
from it. In fact, they often used the same astronomical alignments to face the
appropriate section of the Ka‛ba as they would if they had been standing
directly in front of that particular section of the edifice. One of several
popular wind-schemes associated the four cardinal winds with the four walls
of the Ka‛ba (Figure 4.1).

For these reasons alignments with astronomical horizon phenomena and
wind directions were used for qibla determinations for over 1,000 years.

THE ORIENTATION OF THE FIRST MOSQUES

The Prophet Muhammad had said when he was in Medina: ‘What is between
east and west is a qibla’, and he himself had prayed due south to Mecca. In
emulation of the Prophet, and interpreting his remark as implying that the qibla
was due south everywhere, certain Muslims used south for the qibla
wherever they were. When mosques were erected from Andalusia to Central
Asia by the first generation of Muslims known as the Companions of the
Prophet (sahaba), some of these were built facing south even though this was
scarcely appropriate in places far to the east or west of the meridian of
Mecca. Certain early mosques from Andalusia to Central Asia bear witness
to this. One may compare this situation with the eastern orientation of
churches and synagogues.

Not only did the practice of the Prophet inspire later Muslims, but the
practice of his Companions was also emulated. The Prophet himself had
said: ‘My Companions are like stars to be guided by; whoever follows their
example will be rightly guided’. For this reason the qiblas adopted by the
Companions of the Prophet in different parts of the new Islamic
commonwealth remained popular in later centuries. In Syria and Palestine
they adopted due south for the qibla, which was the generally accepted qibla
in both regions thereafter. This qibla direction had the double advantage of
having been used by the Prophet and by his Companions. In other parts of the
Islamic commonwealth the first generation of Muslims adopted directions
other than due south, for reasons which will become apparent below.

Some of the first mosques established outside the Arabian Peninsula were
erected on the sites of previously existing religious edifices or were adapted
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from such edifices. Thus, for example, in Jerusalem the Aqsa Mosque was built
in the year 715 on the rectangular Temple area. Its mihrab was aligned with
the major axis of the complex to face roughly due south. This direction was
favoured as the qibla in Jerusalem in later centuries even though the
astronomers had calculated that, according to the available geographical
data, the qibla in Jerusalem was about 45° east of south.

Again, about the year 715, the Byzantine cathedral in Damascus, itself
built on the site of a pagan temple, was converted into a mosque. The site
was aligned in the cardinal directions, as was the orthogonal grid of the
street-plan of the Greco-Roman city. The mihrab of the new mosque was
placed in the southern wall. In Damascus the qibla of due south was favoured
over the centuries in spite of the fact that the astronomers had calculated the
qibla there at about 30° east of south. For this reason most medieval mosques
in Damascus face south. 

The first mosque to be built in Egypt was built facing winter sunrise, and
it was this direction which remained the most popular throughout the
medieval period amongst the religious authorities. Likewise some of the
earliest mosques in Iraq were built facing winter sunset. These orientations
were chosen so that the mosques would be ‘facing’ specific walls of the

Figure 4.2 The qibla in Iraq was taken by certain authorities as the direction of winter
sunset. One of the reasons for this was that the northeastern wall of the Ka‛ba was
associated with Iraq, and that if one stands in front of this wall one is indeed facing winter
sunset

 

132 ASTRONOMY AND ISLAMIC SOCIETY



Ka‛ba (Figure 4.2). Throughout the medieval period, winter sunrise and
sunset were favoured in Egypt and Iraq respectively as the qiblat al-sahaba.

FINDING THE QIBLA BY NON-MATHEMATICAL
METHODS

Simple practical means for finding the qibla by the sun, moon and stars, and
even by the winds, are outlined in a wide variety of medieval texts. The
methods advocated in these sources are adapted from the notions underlying
the folk-scientific tradition which was widely disseminated in the Muslim
world throughout the medieval period. This popular tradition of astronomy
and meteorology was ultimately derived from pre-Islamic Arabia, but had
been embellished by the indigenous as well as the Hellenistic traditions of
folk science which had been practised in the areas overrun by the Muslims in
the seventh century. It was quite distinct from the scientific tradition of the
Muslim astronomers, but was far more widely known and practised.

Documented for the first time in the early centuries of the Islamic era, this
astronomical lore was eventually applied on a popular level to the practical
problems of organizing the agricultural calendar, regulating the lunar
calendar and the religious festivals, reckoning the time of day by shadow
lengths and the time of night by the positions of the lunar mansions and,
what concerns us here, finding the direction of the qibla by non-
mathematical means. Aspects of this scientific folklore are practised in
agricultural communities in the Near East to this day.

Unlike the ‘astronomy of the ancients’, the popular scientific tradition
relied solely upon observation of natural phenomena such as the sun, moon,
stars and winds. As the Qur’an states that these celestial bodies and natural
phenomena were created by God, and specifically that men should be guided
by the stars, folk astronomy, unlike mathematical astronomy and astrology,
was not criticized by the legal scholars.

In the texts mentioned above, the qibla in individual localities is defined in
terms of an astronomical horizon phenomenon, such as the rising or setting
of a prominent star or of the sun at the equinoxes or solstices. Qibla
directions are also given in terms of wind directions. These sources were not
compiled by astronomers, but rather were texts dealing with the legal
obligation of facing the qibla in prayer or texts dealing with folk astronomy. 
Such non-mathematical methods for finding the qibla are occasionally cited
in treatises on geography or history. The astronomers themselves are
generally silent on these non-mathematical procedures.

The stars rise and set at fixed points on the horizon for a particular
locality. At the equinoxes, sunrise and sunset define east and west, and the
positions of sunrise and sunset at the solstices are some 30° north of these in
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midsummer and some 30° south of these in midwinter. The sources state
that, for example, the qibla in Northwest Africa is towards the rising of the
sun at the equinoxes (due east); that the qibla in the Yemen is towards the
direction from which the north wind blows or is towards the Pole Star (which
does not rise or set, but whose position defines north); that the qibla in Syria
is towards the rising of the star Canopus; that the qibla in Iraq is towards the
setting of the sun at midwinter; or that the qibla in India is towards the setting
of the sun at the equinoxes (due west).

However, the situation was not quite so simple as this because different
authorities proposed different means for finding the qibla in each region.  In
fact, sometimes different legal schools advocated radically divergent qiblas.
In Central Asia, for example, one legal school favoured due west, which was
the direction in which the road to Mecca left the region, and the rival legal
school favoured due south because of the Prophetic dictum cited above. Others
favoured the qibla used by the Companions who built the first mosques in the
region, i.e. toward winter sunset. Yet others, of course, favoured the qibla
computed by the astronomers.

Plate 4.1 The two different general procedures for finding the qibla advocated by legal
scholars. Taken from MS Oxford Bodleian Marsh 592, fols. 23v–24r, of a twelfth-century
Egyptian legal text on the qibla, with kind permission of the Keeper of Oriental
Manuscripts, Bodleian Library, Oxford
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In an attempt to resolve such problems, some legal scholars proposed that,
whilst standing so that no one was actually facing the Ka‛ba (in such a way
that if one could actually see it, one’s line of vision would be along a side of
the edifice) was to be favoured, it was also permissible to pray in any
direction which would be within one’s field of vision in that optimal position
(see Plate 4.1). The Arabic phrases jihat al-Ka‛ba and ‛ayn al-Ka‛ba used to
describe these two situations translate roughly as ‘standing so as to face the
Ka‛ba head-on’ and ‘standing so as to face the general direction of the
Ka‛ba’. Since one’s field of vision is slightly more than one quadrant of the
horizon, both due west and due south were, at least to some, legally
acceptable qibla directions for Central Asia. Likewise, due  east and due
south were both accepted by those Andalusian legal scholars who held the
opinion that the entire southeastern quadrant constituted the qibla.

As noted above, we sometimes find qibla directions expressed in terms of
wind directions, instead of astronomical horizon phenomena. Here we should
bear in mind that several wind-schemes, defined in terms of solar or stellar
risings and settings, were part of the folk astronomy and meteorology of the
Arabian Peninsula before the advent of Islam. The limits of the winds in
these schemes, which are recorded in various early Islamic sources, were

Figure 4.3 A wind-scheme recorded by the celebrated philologian Ibn al-A‛rabi (fl. Kufa,
c. 825) and doubtless of pre-Islamic Arabian origin
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defined either in terms of the rising or setting of such stars or star-groups as
Canopus, the Pleiades and the stars of the handle of the Plough (which in
tropical latitudes do rise and set), or in terms of the cardinal directions-or
sunrise and sunset at the solstices (Figure 4.3). One of the most popular wind-
schemes was the one associating the four winds with the walls of the Ka‛ba
(see above and Figure 4.1). Thus when a wind direction is mentioned for the
qibla, it is assumed that one knows the astronomically defined limits from
between which the wind blows.

THE SACRED GEOGRAPHY OF ISLAM

The notion of a sacred geography, with a world divided into sectors about the
Ka‛ba and each facing a particular part of the Ka‛ba, was widely accepted in
the Muslim world in medieval times. The Islamic notion of a world oriented
about the Ka‛ba has its parallels in the medieval Jewish and Christian
traditions of a world centred on Jerusalem, but is considerably more
sophisticated than either.

One example of an Islamic scheme in this tradition is displayed in
Plate 4.2, which is taken from an eighteenth-century Egyptian manuscript,
although the scheme itself is much earlier, dating back at least to the twelfth
century. The world is divided into eight sectors about the Ka‛ba, and the
mihrabs or prayer-niches in each sector face a specific segment of the
perimeter of the edifice. The twelfth-century Egyptian legal scholar al-
Dimyati described the notion in the following terms:

The Ka‛ba with respect to the inhabited parts of the world is like the
centre of a circle with respect to the circle. All regions face the Ka‛ba
surrounding it as a circle surrounds its centre, and each region faces a
particular part of the Ka‛ba.

The Ka‛ba itself has various features which lend themselves to particular
schemes. Since the edifice has four sides and four corners, a division of the
world into four or eight sectors around it would be natural, and such four-and
eight-sector schemes were indeed proposed. However, in other schemes   the
sectors were associated with segments of the perimeter of the Ka‛ba, the
walls being divided by such features as the waterspout on the northwestern
wall and the door on the northeastern wall. In the scheme illustrated in
Plate 4.2, the direction which one should face in each sector of the world is
defined either in terms of the rising or the setting of a prominent star or star-
group or in terms of a wind direction. In other such schemes the qibla is
defined in terms of the cardinal directions or the rising or setting of the sun at
the solstices. The directions of sunrise and sunset at midsummer, midwinter
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and the equinoxes, together with the north and south points, define eight
(unequal) sectors on the horizon, and together with the directions
perpendicular to the solstitial directions they define twelve (roughly equal)
sectors. Each of these eight- and twelve-sector schemes was used in the
sacred geography of Islam.

The sources for our knowledge of this tradition of sacred geography are
treatises on folk astronomy; treatises on mathematical astronomy (espe cially
almanacs of the kind produced annually); treatises on geography; treatises on
cosmography; encyclopedias; historical texts; and, last but by no means
least, texts dealing with the sacred law. Sometimes the schemes are described
in words, sometimes with the aid of diagrams. Altogether more than thirty
different sources compiled between the ninth and the eighteenth centuries
have been found attesting to this tradition. Of these, only five are published;
the remainder exist in unpublished manuscript form. We can be confident that
more such works dealing with the subject were compiled but have not
survived in the available manuscript sources.

Plate 4.2 Two diagrams in an Ottoman Egyptian treatise on magic, mysticism and folk
astronomy. On the right-hand side is an early eight-sector scheme of sacred geography.
On the left-hand side is a latitude-longitude grid marked with the Ka‛ba and various
localities: an approximate value for the qibla can be found by measuring the inclination of
the meridian of the line joining the locality to the Ka‛ba. Taken from MS Cairo Tal‛at
majami‛ 811,7, fols 60v–61r, with kind permission of the Director of the Egyptian
National Library
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The earliest Ka‛ba-centred geographical scheme that is known is a simple
four-sector scheme recorded in the published text of the geography of the ninth-
century Baghdad scholar Ibn Khurradadhbih (Figure 4.4). One manuscript of
the geography of the tenth-century Jerusalem-born geographer al-Muqaddasi
contains a crude eight-sector scheme which has been much corrupted by
copyists’ errors. The scheme may not be original to al-Muqaddasi; it is
probably by an even earlier writer.

A more developed system of sacred geography was formulated by the
tenth-century legal scholar Ibn Suraqa, a native of the Yemen who studied in
Iraq. He produced three different schemes with eight, eleven and twelve
sectors about the Ka‛ba. His works on this subject have not survived in their
original form, but his schemes were incorporated into various later treatises.
His prescriptions for finding the qibla in each of the various regions about the
Ka‛ba are outlined in detail without any diagram. For each region he explains
how people should stand with respect to the risings or settings of some four
stars and the four winds. Thus, for example, the inhabitants of Iraq and Iran
should stand in such a way that the stars of the Great Bear rise and set behind
the right ear; a group of stars in Gemini rises directly behind the back; the
east wind blows at the left shoulder and the west wind blows at the right
cheek, and so on. In fact, the stars of the Great Bear do not rise or set in

Figure 4.4 A simple scheme of sacred geography associated with Ibn Khurradadhbih
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places as far north as Iraq and Iran—there they appear circumpolar. This
feature of the instructions indicates that they were actually formulated in
Mecca. When one stands there in the position described by Ibn Suraqa one is
actually facing winter sunset, although this is not explicitly stated. The
ultimate object of the exercise is to face the northeast wall of the Ka‛ba.

In the eight-sector scheme illustrated in Plate 4.2, the qiblas are defined in
terms of the stars which rise or set behind one’s back when one is standing in
the qibla, and in terms of the Pole Star. One would be thus facing these stars
if one were standing directly in front of the appropriate section of the Ka‛ba
with one’s back to the edifice. Various twelfth- and thirteenth-century
Egyptian and Yemeni astronomical and legal texts contain two different
twelve-sector schemes, one adopted from that of Ibn Suraqa. One such
Yemeni treatise on folk astronomy presents both schemes —the diagrams are
illustrated in Plate 4.3. Several medieval authors whose works were widely
read in different parts of the Muslim world, such as the geographer Yaqut
and the cosmographers al-Qazwini and Ibn al-Wardi, copied these twelve-

Plate 4.3 Two different twelve-sector schemes of sacred geography with full instructions
for finding the qibla by astronomical horizon phenomena, found in a thirteenth-century
Yemeni treatise on folk astronomy. Taken from MS Milan Ambrosiana X73 sup.,
unfoliated, with kind permission of the Director of the Biblioteca Ambrosiana
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sector schemes but omitted the associated instructions for finding the qibla
(Figure 4.5).

Figure 4.5 A simplified version of Ibn Suraqa’s twelve-sector scheme of sacred
geography as represented by various late-medieval cosmographers

Yet another scheme occurs in the navigational atlas of the sixteenth-
century Tunisian scholar al-Safaqusi. It is distinguished from all others by
the fact that there are forty mihrabs around the Ka‛ba, and the scheme is
superimposed upon a thirty-two-division wind-rose, a device used by Arab
sailors to find directions by the risings and settings of stars (see Plate 4.4).
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Plate 4.4 A forty-sector scheme of sacred geography in the Atlas of the sixteenth-century
Tunisian scholar al-Safaqusi. This scheme is superimposed on a thirty-two-sector wind-
rose, a device used by Arab navigators for orientation by stellar risings and settings.
Taken from MS Paris B.N. ar. 2273, with kind permission of the Director of the
Bibliothèque Nationale 

DAVID A.KING 141



Figure 4.6 The qibla problem on the terrestrial sphere. A given locality and Mecca are
represented by X and M, the North Pole by P and the equator by AB. The latitudes of X
and M are XA=φ and MB=φM, and their longitude difference AB=∆L. The angle AXM
defines the qibla q

No new schemes of sacred geography are attested in any known works
compiled after the sixteenth century.

FINDING THE QIBLA BY MATHEMATICAL
METHODS

The Muslim astronomers defined the qibla as the direction of the great circle
joining the locality to Mecca, measured as an angle to the local meridian
(Figure 4.6). From the ninth century onwards, they computed the direction of
Mecca for various localities. Such calculations required a knowledge of
latitudes and longitudes, originally adopted from Ptolemy’s Geography, and
they also involved the application of complicated trigonometric formulae or
geometrical constructions, which the Muslims developed from a combination
of Greek and Indian methods. The achievements of the Muslim astronomers
in this field of endeavour are now fairly well documented in the modern
literature, in so far as the methods of several medieval astronomers have been
studied and analysed for their mathematical content.

Most Islamic astronomical handbooks with tables (known as zijes and
modelled after Ptolemy’s Almagest and Handy Tables) contain a chapter on
the determination of the qibla by such procedures. Independent treatises 
dealing only with the qibla problem were also compiled. The first solutions
to the qibla problem, dating from the ninth—if not the eighth—century were
approximate, but were adequate for determining the qibla to within a degree
or two for localities as far from the meridian of Mecca as Egypt and Iran.
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One of these early qibla methods, which owes its inspiration to
cartography, involves representing the locality and Mecca on a plane
orthogonal grid of latitude and longitude lines and measuring the orientation
of the segment joining them (see Plate 4.2). Other approximate mathematical
methods and a complicated accurate method were derived by solid geometry,
but none of these was widely used in later centuries.

Another approximate method, mentioned by al-Battani, was widely used
and remained popular until the nineteenth century. The method could not be
simpler. First draw a circle on a horizontal plane and mark the cardinal
directions (Figure 4.7). Then draw a line parallel to the north-south line  and
at an angular distance—measured on the circle—equal to the longitude
difference between Mecca and the locality ∆L, and another line parallel to
the east-west line at an angular distance equal to the latitude difference ∆φ=φ
−φM. Then the line joining the centre of the circle to the intersection of these
two lines defines the qibla q. This procedure is equivalent to an application
of the simple formula

Figure 4.7 al-Battani’s approximate solution to the qibla problem. On the horizontal circle
NESW the longitude difference ∆L is marked as SA and the latitude difference ∆φ is
marked as ED. Segments AB and CD are drawn parallel to NS and EW, respectively, to
intersect at Q; then OQ defines the qibla
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In the ninth and tenth centuries, more sophisticated accurate procedures were
derived by plane or solid geometry or by spherical trigonometry. Most
medieval scientists dealt with the qibla as a problem of spherical astronomy,
in which it is required to determine the azimuth of the zenith of Mecca on the
local horizon (Figure 4.8). In their procedures the altitude of the zenith of
Mecca must be determined first; then the determination of its azimuth  is a
standard problem of spherical astronomy. These methods are all ultimately
equivalent to an application of the modern co-tangent formula for spherical
trigonometry, which yields

In order to illustrate the elegance of classical and medieval projection
methods, we reproduce the geometric procedure outlined by Habash al-Hasib
(fl. Baghdad and Damascus, c. 850), from which this formula follows
immediately. His instructions refer to Figure 4.9 (the notation has been to
some extent standardized). On a circle centre O mark the cardinal directions
NESW, and then mark arc WQ=φ, arc QB=φM and arc QT=∆L. Draw the
diameter QOR and the parallel chord with mid-point G. Mark the point M2
on OT such that OM2=GC and draw the perpendicular M2M1 onto BC. Next
draw M1L parallel to WE and M1IJ parallel to SN to cut WE in I and the

Figure 4.8 The qibla problem transferred to the celestial sphere (see Figure 4.6). It is
required to find the azimuth of the zenith of Mecca ZM. The problem is mathematically
equivalent to finding the azimuth a of the sun with declination δ when the hour-angle is t:
we have for latitude φ, δ=φM, t=∆L and a=q. To solve this problem by medieval methods
involved first finding the altitude of ZM, namely h, and then deriving the corresponding
azimuth a, which is the qibla. For the method of al-Nayrizi we produce PZM to cut the
equator at T and the horizon at R. For the method of the zijes we draw the quadrant EZMF
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circle in J. Finally, construct the point M3 on M1L such that OM3=IJ and
produce OM3 to cut the circle at K. Then OK defines the qibla.

This construction may be justified as follows. First, QOR and BGC
represent the projections of the celestial equator and the day-circle of the
zenith of Mecca in the meridian plane. Second, M2 represents the projection
of the zenith of Mecca in the equatorial plane. If we then imagine the
equatorial plane to be folded into the meridian plane, M2 moves to M1, which
is thus the projection of the zenith of Mecca in the meridian plane.
Furthermore, M1IJ is the projection in this plane of the almucantar (circle
with fixed altitude) through the zenith of Mecca, whose radius is IJ. Also
M1I and IJ measure the distances from the zenith of Mecca to the prime
vertical and to the line joining the local zenith to O, respectively. Finally, we
consider the working plane to represent the horizon: by virtue of the
construction, M3 is the projection of the zenith of Mecca in this plane so that
OM3 produced indeed defines the qibla.

Alternatively the qibla problem could be solved by spherical trigonometry
(see vol. II, Chapter 15). Al-Nayrizi (fl. Baghdad, c. 900) proposed the
following solution using four applications of the cumbersome Theorem of

Figure 4.9 A diagram representing the solution to the qibla problem by Habash al-Hasib.
This kind of solution, adopted by the Muslims from Greek sources, is known as an
analemma. The various planes of operation, namely those of the meridian, celestial
equator and horizon, are represented together in a single working plane
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Menelaus. In Figure 4.8, we find successively the arcs TR, SR, MK and KS.
First, find TR by considering SRE as the transversal of triangle TQP, thus:

i.e.

Second, find SR by considering QTE as the transversal of triangle RSP, thus:

i.e.

whence ER and SR (=90°−ER).
Third, find MK (=h) by considering SRK as the transversal of triangle

ZMZP, thus:

i.e.

Finally, find KS (=q) by considering SZP as the transveral of triangle ZMRK,
thus:

i.e.

Later Muslim astronomers also used the sine rule and the tangent rule to
solve the problem in essentially the same way. The most popular procedure
involving spherical trigonometry was known as the ‘method of the zijes’. It is
recorded in several works from the ninth to the fifteenth century and simply
involves finding the azimuth of the zenith of Mecca on the meridian and then
on the local horizon. In Figure 4.8 we draw EZMF perpendicular to the
meridian and then determine ZMF=∆L′ and QF=φ′, called the modified
longitude difference and the modified latitude, respectively. These two
quantities are found by two successive applications of the sine rule, as follows.
From right triangles ZMFP and TQP we have
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i.e.

and from right triangles FQE and ZMTE we have

i.e.

Then we determine FZ=∆φ′=φ−φ′, called the modified latitude difference.
Note that ZMF and FZ are the coordinates of ZM with respect to the zenith Z
on the meridian. We now determine ZMK=h and finally KF=q, again by two
applications of the same rule, as follows. From right triangles ZMKE and FSE
we have

i.e.

and from right triangles KSZ and ZMFZ we have

i.e.

Some astronomers, such as Ibn Yunus (fl. Cairo, c. 980), preferred solutions
derived by projection methods. Others, such as Abu al-Wafa’ (fl. Baghdad, c.
975), preferred solutions by spherical trigonometry. Ibn al-Haytham (fl.
Cairo, c. 1025) wrote two treatises on the qibla, treating both kinds of
solutions. His universal solution to the qibla problem by the ‘method of
zijes’, in which he considered sixteen possible cases, is of particular
mathematical interest. Also al-Biruni (fl. Central Asia, c. 1025) proposed
solutions of both kinds.

Already in the early ninth century, simultaneous observations of a lunar
eclipse were conducted at Baghdad and Mecca in order to measure the
longitude difference between the two localities with the express purpose of
finding the qibla at Baghdad. Al-Biruni devoted an entire treatise to the
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determination of the qibla at Ghazna (now in Afghanistan). He used several
different methods to measure the longitude difference between Mecca and
Ghazna, took the average of the result and then calculated the qibla by several
different accurate procedures. His treatise is a classic of mathematical
geography and scientific method.

Plate 4.5 An abstract from the qibla-table of the fourteenth-century Damascus astronomer
al-Khalili. This sub-table shows entries for latitudes 28°, 29°,…, 33°, entered
horizontally; the vertical arguments correspond to longitude differences ranging from 1°
to 60°. Taken from MS Paris B.N. ar. 2558, fols 56v–57r, with kind permission of the
Director of the Bibliothèque Nationale
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Muslim astronomers from the ninth century onwards also computed tables
displaying the qibla as a function of terrestrial latitude and longitude, some
based on approximate formulae and others based on the accurate formula.
Some eight different tables are known from the manuscript sources, and one,
by Ibn al-Haytham, has not been identified yet. An extract from one of the
most remarkable of these tables, which was compiled by al-Khalili, a
professional timekeeper (muwaqqit) at the Umayyad Mosque in Damascus in
the fourteenth century, is displayed in Plate 4.5. Also, the  tables of
geographical coordinates which were a feature of every Islamic astronomical
handbook sometimes included qibla values for each locality.

Plate 4.6 An instrument for finding the qibla, from Iran (nineteenth century?). On the top
half of the dial numerous localities are marked relative to Mecca at the centre; on the
bottom half is a horizontal sundial for an unspecified latitude. Photograph courtesy of the
Museum of the History of Science, Oxford
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Islamic treatises on the use of instruments such as the astrolabe and
different varieties of quadrants usually included a chapter on finding the 
qibla by means of the instrument. From the fourteenth century onwards,
compass boxes were available bearing lists of localities with their qibla
directions or simple cartographic representations of the world about Mecca
(Plate 4.6). Such devices have enjoyed a remarkable revival during the last
few years: Saudia Airlines has recently purchased one million qibla boxes
from a company in Switzerland for distribution to its passengers.

FINDING THE QIBLA FROM MECCA-CENTRED
WORLD-MAPS

Plate 4.7 A world-map from Isfahan, c. 1700, using which the direction and distance to
Mecca can be read for any locality between Andalusia and China. Private collection;
photograph by Margit Matthews, courtesy of the owner
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In 1989 a remarkable world-map centred on Mecca came to light (see
Plate 4.7). It is engraved on a circular brass plate of diameter 22.5 cm, and
was originally fitted with some kind of universal sundial. Some 150 localities
between Andalusia and China are marked and named. The highly-
sophisticated cartographical grid (see Figure 4.10) is conceived so that one
can read the direction of any locality to Mecca from the circumferential scale
and the distance to Mecca (in farsakhs) from the non-uniform scale on the
diametral rule. From the calligraphy it is clear that the map dates from
Isfahan, c. 1700, and the maker may be ‛Abd ‛Ali or his brother Muhammad
Baqir, who together made the magnificent astrolabe presented to Shah
Husayn in 1712, which is now in the British Museum. In 1995 another
Mecca-centred world-map, like the first Isfahan one but somewhat later,
came to light. It is fitted with a European-type universal, inclining sundial,
and is signed by one Muhammad Husayn. The maker is probably to be
identified as the son of the well-known Safavid mathematician Muhammad
Baqir Yazdi, who in turn may be identical with the Muhammad Baqir
mentioned above.

Figure 4.10 The mathematics underlying the theory of the grid on the Isfahan world-map,
enabling the user to read the qibla on the circumferential scale and the distance on the
diametral scale. An approximation has been used on the world-map so that the latitude
curves are arcs of circles; this produces slight inaccuracies noticeable only on the edges of
the map (that is, in Andalusia and China)

There is no parallel to these maps in Islamic cartography and no apparent
trace of any European influence; indeed, they are without parallel in the history
of cartography. Prior to the rediscovery of the first one in 1989 it was
thought that the first person to construct a world-map centred on Mecca from
which one could read off the qibla and the distance to Mecca was the German
historian of Islamic science Carl Schoy, who published such a map c. 1920
(see Figure 4.11). The burning question remains: who designed the
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cartographical grid? And why would Muslim craftsmen attach to such grid a
European-type sundial, a type quite useless for regulating any of the times of
Muslim prayer other than midday?

In Safavid Iran no innovations of consequence were made in science, and
when European notions were introduced—celestial maps on astrolabe plates,
universal inclining sundials, and mechanical clocks—they are easily  
identifiable. Most Safavid treatises on qibla-determinations do not progress
beyond the trivial, with extensive discussions of the quadrant in which one
might expect to find the qibla and of the standard approximate method for
calculating specific qibla-directions. One such is a treatise by Qasim ‛Ali
Qayini, a student of Muhammad Husayn ibn Muhammad Baqir Yazdi! Now,
on the two maps the selection of localities is similar but not identical, and it
is clear that the geographical data is taken from a more extensive list, and it
seems likely that both are copies of a more detailed map based on the same
principle. A fifteenth-century Persian geographical table, entirely within the
Islamic tradition and known only from an early eighteenth-century copy,
constitutes the common source, not only for the geographical data
incorporated into both maps but also for the extensive geographical data
engraved on various Safavid astrolabes (such as the one presented to Shah
Husayn mentioned above). The compiler of this table not only listed longitudes
and latitudes of some 250 localities but also accurately computed the qibla
and distance from Mecca for each locality. Such competence in computation
may well have been matched by the ingenuity needed to design a highly
sophisticated grid based on the same principles.

Nevertheless at least this author would not be surprised if the idea behind
the cartographical grid goes back far beyond the fifteenth century. Al-Biruni
(fl. Central Asia, c. 1025) wrote on a polar equi-azimuthal equidistant
projection of the celestial sphere, but as yet no trace of a map by him centred
on Mecca has been found (my assertions in 1994 that the geographical data
from such a map had been located have been proven in 1995 to be
misfounded). Al-Biruni’s surviving works on mathematical geography mark
a high point between Antiquity and the Renaissance, and some ten other
books by him on the subject, most focussing on the qibla-problem, are known
to us only by title. Research on the development of this remarkable tradition
of Mecca-centred world-maps is currently in progress.

ON THE ORIENTATION OF ISLAMIC RELIGIOUS
ARCHITECTURE

Of course, the accuracy (judged by modern criteria) of a value of the qibla
computed by a correct mathematical procedure for a particular locality
depends on the accuracy of the available geographical data. Medieval latitude
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determinations were usually accurate to within a few minutes, but estimates
of the difference in longitude between Mecca and various localities might be

Plate 4.8 A plan of medieval Cairo showing the Mosque of al-Hakim and the Azhar
Mosque inclined at about 10° to the street plan of the Fatimid city founded a few years
earlier in the year 969. Both mosques were oriented in the qibla of the astronomers (c. 37°
South of East) whereas the minor axis of the city is oriented towards the qibla of the
Companions of the Prophet who conquered Egypt, i.e. towards winter sunrise (c. 27°
South of East). The later Mamluk ‘City of the Dead’ was built entirely in the qibla of the
astronomers. The modern qibla for Cairo is about 45° South of East but this is irrelevant
to any discussion of the orientation of medieval mosques

 

154 ASTRONOMY AND ISLAMIC SOCIETY



in error by several degrees. In Cairo, for example, the modern qibla is some
8° south of the qibla of the medieval astronomers, because they relied on a
value for the longitude difference which was too small by 3°. 

Now it is quite apparent from the orientations of mosques erected between
the seventh and the nineteenth centuries that the astronomers were not
always consulted on the matter of the qibla. Some mosques, to be sure, are
indeed oriented in the qiblas determined by the astronomers for the locality in
question, but they constitute a minority. The different qiblas proposed in the
various sources to some extent explain the diversity of mosque orientations
in any given region of the Muslim world. For certain localities, yet more
information on mosque orientations is available.

In Córdoba for example, as we know from a twelfth-century treatise on the
astrolabe, some mosques were laid out towards winter sunrise because it was
thought that this would make their qibla walls parallel to the northwest wall
of the Ka‛ba, itself thought by some authorities to be facing winter sunrise.
The Grand Mosque faces a direction perpendicular to summer sunrise for the
very same reason. Its axis is indeed parallel to the axis of the Ka‛ba, a fact
which explains why it faces the deserts of Algeria rather than the deserts of
Arabia.

As noted already, the earliest mosque in Egypt, the Mosque of ‛Amr in
Fustat, was laid out towards winter sunrise. The new city of al-Qahira
(Cairo) was laid out in the late tenth century a few miles to the north of Fustat
with a more or less orthogonal street plan alongside the canal linking the Nile
to the Red Sea. Now it happened quite fortuitously that the canal, first built
by the ancient Egyptians and then restored once by the Romans and again by
the Muslims, flowed past the new city in a direction perpendicular to the
qibla of the Companions’ mosque in Fustat. Thus the entire city lay in the
qibla of the Companions (c. 27° South of East). But the Fatimids who built
the city did not appreciate their good fortune, and besides, the Fatimid
astronomer Ibn Yunus computed the qibla mathematically as c. 37° South of
East. So the first Fatimid mosques in Cairo, the Mosque of the Caliph al-
Hakim and the Azhar Mosque, were erected at 10° skew to the street plan
(Plate 4.8). In much of the later (thirteenth-sixteenth century) Mamluk
religious architecture in the Old City, the exterior is aligned with the qibla of
the Companions and the street plan and the interior is twisted so that the
mihrab faces the qibla of the astronomers. In a suburb of al-Qahira known as
al-Qarafa, the main urban axis and the various mosques along it have a
southerly orientation, because that direction was preferred as the qibla. The
entire ‘City of the Dead’, built by the Mamluks to the east of al-Qahira, is
laid out so that all the mausolea are facing the qibla of the astronomers, both
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internally and externally, and the roughly orthogonal street plan of the
quarter is also aligned with this particular qibla.

In Samarkand, as we know from an eleventh-century legal treatise, the
main mosque was oriented towards winter sunset in order that it should face 
the northeast wall of the Ka‛ba. We have already noted that one legal school
favoured due west for the qibla and another favoured due south; one would
expect to find some of the religious edifices associated with the two schools
reflecting this difference of opinion. Other religious architecture in the city was
oriented in the qibla determined by the astronomers.

Only a preliminary survey has been made of mosque orientations, using
over 1,000 plans available in the modern scholarly literature. Yet most of
these plans are unreliable, so that no conclusions can be drawn from this data.
Clearly, a proper survey of mosque orientations all over the Muslim world
would be of extreme historical interest. Not only should all mosques,
madrasas, mausolea and other religious edifices, as well as cemeteries, be
carefully measured for their orientation, but also the local horizon conditions
should be recorded in order to check for possible astronomical alignments.
All measurements should be made with the accuracy achieved in the
archaeoastronomical investigations that have been conducted in other parts
of the world. This topic has yet to arouse the interest of historians of Islamic
architecture—the latest general books on that topic and even regional studies
of architecture ignore orientations altogether.

FURTHER READING

For an overview of the whole subject of the qibla see King (1985b). See also the articles
‘Anwa’, ‘Manazil’, ‘Matla‛’, ‘Ka‛ba’, ‛• ibla’ and ‘Makka (as centre of the world)’ in
the Encyclopaedia of Islam (2nd edn, 8 vols to date. Leiden: E.J.Brill, 1960 to present)
for various relevant topics. The 3rd, 5th and 6th are reprinted in King (1993).

On the popular methods of finding the qibla see Hawkins and King (1982) and King
(1983a). On the notion of the world divided about the Ka‛ba, see King ‘The sacred
geography of Islam’, to appear.

On problems of orientation of religious architecture in Córdoba, Cairo and Samarkand,
see King (1978b, 1983b, 1984). See also Barmore (1985) and Bonine (1990), for the
only systematic surveys of mosque orientations in particular regions. See also King,
‘The Orientation of Medieval Islamic Religious Architecture and Cities: Some
Remarks on the Present State of Research and Tasks for the Future’, Journal for the
History of Astronomy (1995).

On the earliest mathematical procedures for finding the qibla, see King (1986a). Other
studies on individual methods are Kennedy and Id (1974). Schoy (1921, 1922),
Berggren (1980, 1981, 1985) and a study by Dallal (1995b) on Ibn al-Haytham’s
universal treatment of the qibla problem by spherical trigonometry.

Al-Biruni’s Kitab Tahdid nihayat al-amakin was published by P.Bulgakov (Cairo, 1962)
and translated by J.Ali as The Determination of the Coordinates of Cities: al-Biruni’s
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Tahdid al-amakin (Beirut: American University of Beirut Press, 1967). See further
Kennedy (1973).

On medieval tables for finding the qibla, see, in addition to King (1986a), King (1975)
and Lorch (1980).

On instruments for finding the qibla see Lorch (1982), Janin and King (1977) and King
(1987b). For the sole surviving example of a compass-bowl in which the needle should
float on water see S.Cluzan, E.Delpont and J. Mouliérac, eds., Syrie, Mémoire et
Civilisation, Paris: Flammarion & Institut du Monde Arabe, 1993, pp. 440–1. (This
compass is from 16th-century Syria, but the geographical information on it was
carelessly copied from a much earlier instrument of the same kind.)

On world-maps centred on Mecca see King, ‘Weltkarten zur Ermittlung der Richtung
nach Mekka’, in G.Bott, ed., Focus Behaim-Globus, 2 vols., Nuremberg:
Germanisches Nationalmuseum, 1992, I, pp. 167–71, and II, pp. 686–91 and, more
recently, idem, ‘World-Maps for Finding the Direction and Distance of Mecca—a
Brief Account of Recent Research’, Symposium on Science and Technology in the
Turkish and Islamic World, Istanbul, 3–5 June, 1994, and the article ‘Samt’ in
Encyclopaedia of Islam, 2nd ed. None of these is to be regarded as authoritative.

(b)
Gnomonics: Sundial theory and construction

INTRODUCTION

One expression of the Muslim concern with timekeeping and regulating the
times of prayer (see below) was an avid interest in gnomonics. Muslim
astronomers made substantial contributions to both the theory and practice of
the subject, and by the late medieval period there were sundials of one form
or another in most of the major mosques in the Islamic world.

The Muslims came into contact with the sundial when they expanded into
the Greco-Roman world in the seventh century. Already c. 700 the Caliph
‛Umar ibn ‛Abd al-‛Aziz in Damascus was using a sundial for regulating the
times of the daylight prayers in terms of the seasonal hours. This was
probably a Greco-Roman sundial that had been found in the city. In antiquity
the most common types were the hemispherical and the plane variety, and
such sundials would have been known to the earliest Muslim scholars who
dealt with mathematical astronomy. But at least al-Fazari and Ya‛qub ibn
Tariq, who worked in this field in the eighth century, are not known to have
written on sundials.

EARLY TEXTS ON GNOMONICS

The earliest surviving Arabic treatise on sundials deals with their
construction and was rediscovered only about ten years ago. Its author is
stated to be al-Khwarizmi, the celebrated astronomer of Baghdad in the early
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ninth century. The work consists mainly of a set of tables of coordinates for
constructing horizontal sundials for various latitudes (including the equator).

Figure 4.12 The basic theory underlying the construction of a horizontal sundial marked
for the seasonal hours

The basic mathematics is relatively straightforward although the precise
means by which the tables were computed remains to be explained. With
values of the solar altitude and azimuth (h, a) computed for the required
ranges of solar longitude and time intervals, the radial coordinates of the
points of intersection of the hour lines with the shadow traces are simply (n
cot h, a) where n is the length of the gnomon (Figure 4.12). Each of al-
Khwarizmi’s sub-tables for a specific latitude displays for both of the
solstices the solar altitude, the shadow of a standard gnomon (12 units) and
the solar azimuth, i.e. triplets (h, s, a) for each seasonal hour of day (Plate 4.
9). With these radial coordinates already tabulated, construction of the  
sundial would have been almost routine. We may presume that sundials were
actually constructed using these tables, but none survives from this early
period and no descriptions are known from contemporary historical sources.

The celebrated astronomer and mathematician Thabit ibn Qurra (fl.
Baghdad, c. 900) wrote a comprehensive work on sundial theory which has 
survived in a unique manuscript. It is a masterpiece of mathematical writing,
but has attracted remarkably little attention from historians of science since it
was published in the 1930s. Thabit’s treatise deals with the transformation of
coordinates between different orthogonal systems based on three planes: (1)
the horizon, (2) the celestial equator and (3) the plane of the sundial. The last
may be the plane of (a) the horizon, (b) the meridian or (c) the prime vertical;
or it may be (d) perpendicular to (b) with an inclination to (c); (e) perpendicular
to (c) with an inclination to (b); (f) perpendicular to (a) with an inclination to
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(b); or (g) perpendicular to (c) with an inclination to (b), i.e. skew to (a), (b)
and (c).

Thabit presents formulae for the solar altitude as a function of the hour-
angle, declination and terrestrial latitude which are clearly derived by
projection methods, and other formulae for coordinate conversion which are
more easily explained by means of spherical trigonometry. Unfortunately he
gives no clues how he derived the various formulae, and it is not known how
he arrived at them. Even if Thabit had been familiar with Ptolemy’s writings
such as the Analemma, in which similar coordinate transformations are

Plate 4.9 An extract from al-Khwarizmi’s tables for sundial construction showing two
pairs of sub-tables for each of latitudes 21°, 28°, 33°, 35° and 40°, based on obliquity 23;
51°. The final pair of tables is for latitude 29;30° but with obliquity 23;35°. These tables
occur here in a treatise on astrolabes and sundials by al-Sijzi (fl. Iran, c. 975). Taken from
MS Istanbul Topkapi 3342, 8+9, with kind permission of the Director of the Topkapi
Library
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discussed, his own treatise is very much the result of a mature reworking of
the material.

As far as we know, Thabit’s main treatise on sundial theory is not referred
to by any later astronomer. So it appears to have been of very limited
influence in later Islamic gnomonics despite the fact that it is the most
sophisticated Arabic account of the subject. Later Muslim astronomers were
more interested in the practical side of gnomonics.

A unique fifteenth-century copy of a tenth-century treatise on the
construction of vertical sundials has also survived. The work is by one of the
two Baghdad astronomers Ibn al- dami or Sa‛id ibn Khafif al-Samarqandi:
the copyist was not sure. Included in the treatise are tables of the functions a
(T, λ) and z(T, λ) (where z=90°−h is the zenith distance of the sun) for each
half seasonal hour of time since sunrise T and each 30° of solar longitude λ.
Values are given to three sexagesimal digits and are computed for the
latitude of Baghdad, taken as 33°. A second set of tables displays values of
the functions sin θ and cot θ to three sexagesimal digits and each degree of
argument. The base used for the sine function is 10, which is most unusual
but simply means that the gnomon length was taken as 10. Two tables of the
co-tangent function are presented, one to base 10 and another to base 1. The
utility of these two sets of tables for generating pairs of orthogonal

Figure 4.13 The basic theory underlying the construction of a vertical sundial inclined at
an angle to the local meridian
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coordinates for drawing vertical sundials at any orientation to the meridian is
obvious when we observe that for the sun at azimuth A from a vertical sundial
with a perpendicular horizontal gnomon of length n—see Figure 4.13—the
orthogonal coordinates of the end of the gnomon shadow  measured with
respect to the horizontal (x) and vertical (y) axes through the base of the
gnomon are (−n cot A, −n cosec A tan h).

Even though several early works of consequence on gnomonics have been
lost without trace, there is no shortage of other early material awaiting to be
studied.

LATE TEXTS ON GNOMONICS

The major Islamic work on sundial theory from the later period of Islamic
astronomy was a compendium of spherical astronomy and instrumentation
appropriately entitled Jami‛ al-mabadi’ wa-l-ghayat fi ‛ilm al-miqat (An A to
Z of Astronomical Timekeeping). It was compiled by Abu ‛Ali al-Marrakushi,
an astronomer of Moroccan origin who worked in Cairo c. 1280. It is
difficult to assess al-Marrakushi’s own contribution to this enormous work
(the Paris copy comprises 750 pages). The lengthy sections on sundial theory,
with numerous tables mainly for Cairo, seem to be original, but we have no
information on earlier Egyptian texts on sundial theory. In addition, the
contemporary activity of al-Maqsi (see below) seems to be quite
independent.

Al-Marrakushi’s treatise was widely influential in later astronomical circles
in Egypt, Syria and Turkey, and it survives in several copies. Although it is
the most important single source of Islamic instrumentation, it has still not
received the attention it deserves from historians. A French translation of the
first half dealing with spherical astronomy and sundial theory was published
by J.-J.Sédillot in 1834–5, and a rather confused summary of the second half
dealing with other instruments was published by his son, L.A.P.Sédillot, in
1844.

Al-Marrakushi’s discussion of sundials, richly illustrated with diagrams,
concentrates on descriptions of the mode of construction; there is little
underlying theory and usually no clue given as to how the numerous tables
were constructed. The text deals with horizontal, vertical, cylindrical and
conical sundials. There is also a discussion of ‘winged’ sundials in which the
markings cover two adjacent plane surfaces, with a common axis in the
horizon or vertical planes. A description of a compendium of scales and
graphs for measuring shadows, converting horizontal and vertical shadows
and calculating ascensions is also included. This device, known as mizan  al-
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Fazari (‘the balance of al-Fazari’) seems to be related to the eighth-century
astronomer of that name.

A contemporary of al-Marrakushi, the Cairene astronomer al-Maqsi,
compiled a set of tables for sundial construction which was also rather
popular amongst later Egyptian astronomers. Al-Maqsi prepared tables for
horizontal sundials for various latitudes, but the bulk of his treatise consists of
tables for marking vertical sundials for the latitude of Cairo. For each degree
of inclination to the local meridian he tabulated the coordinates of the points
of intersection of the lines for the seasonal hours and the ‛asr with the shadow
traces at the equinoxes and the solstices (Plate 4.10). Several later
astronomers compiled extensive tables for sundial construction for specific
latitudes, notably Cairo, Damascus and Istanbul; these still await study.

SUNDIALS

Only a few sundials survive from the medieval period. Hundreds or even
thousands must have been constructed from the ninth century onwards, but
the vast majority have disappeared without trace. Most, but not all, of the

Plate 4.10 An extract from al-Maqsi’s tables for constructing vertical sundials for the
latitude of Cairo. This particular sub-table serves an inclination of 15° to the meridian.
Taken from MS Cairo Dar al-Kutub miqat 103, fols 68v–69r, with kind permission of the
Director of the Egyptian National Library
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surviving sundials constructed before c. 1400 have been published; however,
no inventory of Islamic sundials has been prepared yet.

Most Islamic sundials bear markings for the hours (seasonal or
equinoctial) and for the midday (zuhr) and afternoon (‛asr) prayers. Since the
definitions of the beginnings of these two prayers were in terms of shadow
lengths, the determination of the prayer times with a sundial was singularly
appropriate.

HORIZONTAL SUNDIALS

The oldest surviving Islamic sundial (Plate 4.11) was made by Ibn al-Saffar,
an astronomer of some renown who worked in Córdoba about the year 1000.
Only one half of the instrument survives but the remains are adequate to
establish that gnomonics was not the maker’s forte. The sundial is of the
horizontal variety and there are lines for each of the seasonal hours, some
with a kink at the shadow trace for the equinox, which is itself not straight.
There are markings for the zuhr prayer and there would also have been
markings for the ‛asr. The gnomon is now missing, but its length is indicated
as the radius of a circle engraved on the sundial. Several other later
Andalusian sundials which survive are singularly poor testimonials to their
makers’ abilities; most are marred by serious mistakes and one is from a
practical point of view quite useless. Yet proper sundials must have existed
in medieval Andalusia. 

The Tunisian sundial shown in Plate 4.12 is a much neater production than
the Andalusian sundials mentioned above. It was made in 1345/6 by Abu al-
Qasim ibn al-Shaddad and is of considerable historical interest because its
markings display only the times of day with religious significance rather than
the seasonal hours. For the afternoon (right-hand side) the curves for the zuhr
and ‛asr are marked according to the standard Andalusian/Maghribi
definitions. For the forenoon there is a curve for the duha, symmetrical with
the ‛asr curve with respect to the meridian, and a line for the times of the
institution of ta’hib one equinoctial hour before midday, associated with the
communal worship on Friday. It was the symmetry of the duha and ‛asr
curves on this sundial which first led to an understanding of the definitions of
the times of the daylight prayers in Islam. Close inspection of the markings
on the sundial reveals that the solstitial curves are drawn as arcs of circles
rather than hyperbolae. This sundial constitutes, therefore, a rather
respectable example of a tradition of marking the solstitial traces in this way,
which must have been widely known in medieval Andalusia and the Maghrib.

The astronomer Ibn al-Shatir, chief muwaqqit of the Umayyad Mosque in
Damascus in the mid-fourteenth century, constructed in the year 1371/2 a
magnificent horizontal sundial, some 2 m×1 m in size (Plate 4.13). This was
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erected on a platform on the southern side of the main minaret of the Mosque,
and fragments of it are on display in the garden of the National Museum in
Damascus. An exact replica of the original made by the muwaqqit al-Tantawi
in 1876 is still in situ on the minaret. A long line of muwaqqits worked in the
Mosque from the fourteenth to the nineteenth century, and presumably they
used Ibn al-Shatir’s sundial for regulating the prayer-times, along with the
tables and other instruments that were also available to them.

Ibn al-Shatir’s sundial has three main sets of markings. Indeed, there are
actually three sundials inscribed on the marble slab. The small northern
sundial with its own gnomon has markings for the seasonal hours and the
‛asr prayer. The small southern sundial has markings for the equatorial hours

Plate 4.11 The oldest surviving Islamic sundial, made about the year 1000 in Córdoba by
Ibn al-Saffar. The curve for the zuhr is just visible on this fragment, and presumably there
were curves for the beginning and end of the ‛asr as well. Photograph courtesy of the
Museo Arqueológico Provincial de Córdoba
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before midday and after midday, as well as after sunrise and before sunset.
Its gnomon, parallel to the celestial axis, is ingeniously aligned with the
larger gnomon of the third and main sundial. The latter bears markings for
each twenty minutes before midday and after midday, as well as for each
twenty equatorial minutes after sunrise up to midday and for each twenty
minutes before sunset starting at midday. There are also curves for each twenty
minutes up to the ‛asr prayer starting two hours before the prayer, as well as
curves for the times three and four hours after daybreak and before nightfall.
Finally, there is a curve for the time  hours before daybreak the next day,
which al-Tantawi says he himself added to Ibn al-Shatir’s sundial.

Thus the sundial can be used to measure time after sunrise in the morning
and time before sunset in the afternoon, and time before and after midday. It
measures time relative to the zuhr and maghrib prayers, and the ‛asr curves
enable measurement of time relative to the ‛asr prayer as well. The curves
associated with nightfall and daybreak are for measuring time with respect to
the ‛isha’ and fajr prayers: when the shadow fell on these lines, the muwaqqit

Plate 4.12 A fourteenth-century Tunisian sundial indicating four times of day with
religious significance. Property of the National Museum of Carthage; photograph courtesy
of the late M.Alain Brieux, Paris
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would know, for example, that the ‛isha’ would begin in four hours or three
hours and could see what the celestial configuration would be at nightfall
from his astrolabe or quadrant. It is not clear why the muwaqqit would be
interested in the times three or four hours after the fajr prayer, but when the
shadow fell on al-Tantawi’s curve for  hours before daybreak, he could
check with another instrument what the celestial configuration would be at
daybreak the next day. The time  hours before daybreak was chosen
because this was the latest time that could be shown on the sundial. A
masterpiece of ingenuity and design, and an example of outstanding
technical skill in stonemasonry, Ibn al-Shatir’s sundial was first described in
the scholarly literature in 1972. It is undoubtedly the most splendid sundial
of the Middle Ages.

VERTICAL SUNDIALS

No vertical sundials survive from the first few centuries of Islamic
astronomy, but we know they were made because of the treatises on their use
which were compiled from the ninth century onwards.

The earliest surviving sundial from Muslim Egypt and Syria, made in
1159/60, is a simple vertical hand-dial. It serves for measuring the seasonal

Plate 4.13 The markings on the sundial of Ibn al-Shatir which once graced the main
minaret of the Umayyad Mosque in Damascus. The original sundial is in fragments,
preserved in the garden of the Archaeological Museum in Damascus. This copy is made
from an exact replica made by the nineteenth-century muwaqqit al-Tantawi which is still
in situ on the minaret. Courtesy of the Syrian Department of Antiquities and the late
M.Alain Brieux, Paris
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hours and bears two sets of markings on either side, one for latitude 33°
(Damascus) and the other for latitude 36° (Aleppo). The instrument is known
from texts such as the treatise of al-Marrakushi, where it is called saq al-
jarrada, ‘the locust’s leg’. It is to be held in a plane perpendicular to that of
the sun, with the gnomon attached to one of six holes at the top (which
correspond to each pair of zodiacal signs between the solstices). The shadow
of the tip of the gnomon will then fall on the markings and the time of
seasonal hours can be measured. The inscription, which includes a dedication
to the Ayyubid Sultan Nur al-Din al-Zanji, states that the markings are for
determining the seasonal hours and the times of the prayers, from which one
can conclude that the times of the zuhr and ‛asr prayers were regulated at
particular seasonal hours.

The most common kind of vertical sundial was known from the ninth
century onwards as munharifa, meaning simply ‘vertical and inclined to the 
meridian’. There were usually markings for each seasonal hour and the ‛asr
prayer bounded by two hyperbolic shadow-traces for the solstices. Tables
such as those of al-Maqsi (see above and Plate 4.10) were particularly useful
for constructing such sundials for the walls of mosques.

ASTRONOMICAL COMPENDIA

A compendium, or multi-purpose astronomical instrument, was devised by
the fourteenth-century Syrian astronomer Ibn al-Shatir. The various movable
parts of the instrument all fit into a shallow box with square base, which is
covered by a hinged lid. On the outside of the lid there was fitted an alidade
which could be rotated over a series of markings with which the user could
compute oblique ascensions for Damascus and latitudes 30°, 40° and 50°.
The lid could be opened so that it would lie parallel to the celestial equator
for a series of six localities in Syria, Egypt and the Hejaz. Two sights could
be erected at the end of the alidade and perpendicular to it, so that the alidade
could be aligned equatorially with the sun or any northern star and the hour-
angle could be read off a circular scale on the lid. A polar sundial, whose
markings were engraved on the movable plate, could be set up so that it
rested, somewhat precariously, on the sighting devices attached to the alidade
now held horizontally. Using the polar sundial, supported in this way, one
could read the equatorial hours before or after midday and also see when the
time of the ‛asr had arrived. (However, Ibn al-Shatir erred in thinking that an
‛asr curve on a sundial for latitude zero could be used universally in this
way.)

The fifteenth-century Egyptian astronomer al-Wafa’i developed another
compendium which he called da’irat al-mu‛addil, literally ‘the equatorial
circle’. The instrument consists of a semi-circular frame attached at the ends
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of its diameter to a horizontal base; this frame can be aligned in the celestial
equator of any latitude. A special sight is attached radially to this frame so
that the hour-angle of any celestial body with northern declination less than
the obliquity of the ecliptic can be measured (Plate 4.14). The base of the
instrument bore markings indicating the qiblas of various localities and
occasionally also a horizontal sundial for a specific latitude.

Plate 4.14 A compendium of the variety known as da’irat al-mu‛addil, particularly useful
for measuring the hour-angle of the sun or any star at any latitude. Courtesy of the
Director of the Museum of History of Science, Kandilli Observatory, Istanbul

The question of the influence of these Islamic compendia on the
compendia which were so popular in Renaissance Europe has yet to be
investigated. Otherwise the only Islamic treatise on sundials known in
Europe seems to have been that incorporated in the thirteenth-century Libros
del saber, which lacks, however, any sophisticated theory and tables, features
which characterized most Islamic treatises on the subject. 
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FURTHER READING

For an overview see the article ‘Mizwala’ in The Encyclopaedia of Islam (2nd edn, 8 vols
to date, Leiden: E.J.Brill, 1960 to present), reprinted in King (1993). On Islamic
sundial theory in general see Schoy (1923, 1924). On tables for constructing sundials
see my forthcoming ‘Survey of Islamic tables for sundial construction’.

On al-Khwarizmi’s sundial tables see Rosenfeld (1983:221–34) and also King (1983d:
esp. 17–22). On Thabit’s treatise see Garbers (1936) and Luckey (1937–8).

On al-Marrakushi’s treatise see Sédillot J.-J. (1834–5) and Sédillot, L.A. (1844).
On Andalusian sundials see King (1978a). The Tunisian sundial is discussed in King

(1977b). On Ibn al-Shatir’s sundial see Janin (1971).
Other medieval sundials are described in Casanova (1923), Janin and King (1978)

‘L’astronomie en Syrie à l’époque islamique,’ in S.Cluzan, E. Delpont and
J.Mouliérac, eds., Syrie, Mémoire et Civilisation, Paris: Flammarion & Institut du
Monde Arabe, 1993, pp. 436–9, Bel (1905), Janin (1977) and Michel and Ben-Eli
(1965).

The compendium of Ibn al-Shatir is discussed in Janin and King (1977), Brice et al.
(1976) and Dizer (1977).

(c)
‛Ilm al-miqat: Astronomical timekeeping

INTRODUCTION

The expression ‛ilm al-miqat refers to the science of astronomical
timekeeping by the sun and stars in general, and the determination of the
times (mawaqit) of the five prayers in particular. Since the limits of permitted
intervals for the prayer are defined in terms of the apparent position of the
sun in the sky relative to the local horizon, their times vary throughout the
year and are dependent upon the terrestrial latitude. When reckoned in terms
of a meridian other than the local meridian, the times of prayer are also
dependent upon terrestrial longitude.

THE TIMES OF THE PRAYERS IN ISLAM

The definitions of the times of prayer outlined in the Qur’an and hadith were
standardized in the eighth century and have been used ever since (Figures 4.
14 and 4.15). According to these standard definitions, the Islamic day and the
interval for the maghrib prayer begins when the disc of the sun has set over
the horizon. The intervals for the ‛isha’ and fajr prayers begin at nightfall and
daybreak. The permitted time for the zuhr usually begins when the sun has
crossed the meridian, i.e. when the shadow of any object has been observed
to increase. In medieval Andalusian and Maghribi practice, it began when the
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shadow of any vertical gnomon had increased over its midday minimum by
one-quarter of the length of the object. The interval for the ‛asr begins when
the shadow increase equals the length of the gnomon and ends either when
the shadow increase is twice the length of the gnomon or at sunset. In some
circles, an additional prayer, the duha, was  performed at the same time
before midday as the ‛asr was performed after midday.

The names of the daylight prayers appear to have been derived from the
names of the corresponding seasonal hours in pre-Islamic classical Arabic,
the seasonal hours (al-sa‛at al-zamaniya) being one-twelfth divisions of the
period between sunrise and sunset. The definitions of the times of these
prayers in terms of shadow increases (as opposed to shadow lengths in the
hadith) represent a practical means of regulating the prayers in terms of the
seasonal hours. The definitions of the duha, zuhr and ‘asr in terms of shadow
increases correspond to the third, sixth and ninth seasonal hours of daylight,
the links being provided by an appropriate Indian formula relating shadow
increases to the seasonal hours (see later).

SIMPLE ARITHMETICAL SHADOW SCHEMES
FOR TIMEKEEPING

Before considering the activities of the Muslim astronomers in ‛ilm al-miqat,
it is important to note that, in popular practice, tables and instruments were
not widely used. Instead, as we see from treatises on folk astronomy and on

Figure 4.14 The Islamic day begins at sunset because the calendar is lunar and the months
begin with the sighting of the crescent shortly after sunset. There are five canonical
prayers; the times of the daylight prayers are defined in terms of shadow lengths, and the
night prayers are determined in terms of horizon and twilight phenomena. A sixth prayer,
the duha, was practised at mid-morning in certain communities —see, for example,
Plate 4.12 (Tunis) and Plate 4.18 (Istanbul)
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the sacred law, the daytime prayers were regulated by simple arithmetical
shadow schemes of the kind also attested in earlier Hellenistic and Byzantine
folk astronomy. Some twenty different schemes have been located in the
Arabic sources. In most cases they are not the result of any careful
observations, and the majority are marred by copyists’ mistakes. Usually a
single one-digit value for the midday shadow of a man 7 qadams (‘feet’) tall
is given for each month of the year. One such scheme, attested in several
sources, is (starting with value for January)

9 7 5 3 2 1 2 4 5 or 6 8 10.
The corresponding values for the shadow length at the beginning of the ‛asr
prayer are 7 units more for each month.

Other arithmetical schemes presented in order to find the shadow length at
each seasonal hour of day. The most popular formula advocated in order to
find the increase (∆s) of the shadow over its midday minimum at T (<6)
seasonal hours after sunrise or before sunset is

where n is the length of the gnomon. This is the formula which was first used
to establish the values ∆s=n for the third and the ninth seasonal hours of
daylight (the beginnings of the ‛asr and duha) and ∆s=2n for the tenth hour
(sometimes taken as the end of the ‛asr).

Figure 4.15 The standard medieval definitions of the zuhr (Andalusia and the Maghrib)
and the ‛asr prayers in terms of shadow increases
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Other simple kinds of time-regulation for irrigation purposes are practised
in various rural areas of the Muslim world.

THE EARLIEST TABLE FOR TIMEKEEPING

It was al-Khwarizmi in Baghdad in the early ninth century who prepared the
first known tables for regulating the times of the daylight prayers. Computed
for the latitude of Baghdad, his tables display the shadow lengths for a
gnomon of length 12 at the zuhr and at the beginning and end of the ‛asr,
with values to one digit for each 6° of solar longitude (corresponding roughly
to each six days of the year) (Plate 4.15). He also compiled some simple
tables displaying the time of day in seasonal hours in terms of the observed
solar altitude based upon an approximate formula.

Plate 4.15 The earliest known Islamic table for regulating the times of the daylight
prayers, associated with al-Khwarizmi. Taken from MS Berlin Ahlwardt 5793, fol. 94r,
with kind permission of the Director of the Deutsche Staatsbibliothek, Preussischer
Kulturbesitz

The ninth-century astronomer ‛Ali ibn majur compiled a more exten sive
table for timekeeping based on a simple approximate formula which serves
all latitudes. The underlying formula is
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where h is the observed altitude, H is the meridian altitude and T(≤6) is the
time in seasonal hours elapsed since sunrise or remaining until sunset. (Note
that T=0 when h=0, and that T=6 when h=H, as required for the cases when
the sun is on the horizon and the meridian; in fact this formula is accurate
only when the sun is at the equinoxes.) Ibn majur simply tabulated T(h, H)
for each degree of both arguments (h < H).

In astronomical handbooks from the ninth century onwards we find
descriptions of an accurate method for finding the time elapsed since sunrise
in equatorial degrees T or the corresponding hour-angle t from a pair of
values h and H, or from h, φ and δ, where φ is the local latitude and δ is the
declination (note that H=90°−φ+δ). These involve the semi-diurnal arc D and
the use of the versed sine function (vers θ=1−cos θ) (see vol. II, chapter 15).
The standard medieval formula, adopted by the Muslims from Indian sources,
is (in modern notation)

This could be derived with facility by reducing the three-dimensional
problem on the celestial sphere to two dimensions (Figures 4.16 and 4.17).
The equivalent modern formula for the hour-angle t can also be derived by
such procedures. It is

Figure 4.16 The celestial sphere about the observer at O. The horizon with the cardinal
points in NES(W). The celestial equator is EQ(W), the celestial axis OP and the zenith Z.
A celestial body rises at A, culminates on the meridian at B and sets at C. An
instantaneous position is X with altitude measured by the arc XK; the hour-angle at that
moment is then measured by the arc TQ of the celestial equator (or by angle TPQ) and the
azimuth by arc EK of the horizon
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and is used in a form equivalent to this by later Muslim astronomers (see al-
Khalili below). Several Islamic tables were universal in the sense that they
served all terrestrial latitudes.

From the ninth century onwards we find descriptions of how to find the
time of day or night using an analogue computer such as an astrolabe or
using a calculating device such as a sine quadrant. In the first case there is no
need to know the formula; in the second case one uses the formula to
compute specific examples. Likewise numerous Islamic instruments were
devised to be universal, serving all terrestrial latitudes.
‛Ali ibn majur also compiled a table of T(h, H) for Baghdad based on an

accurate trigonometric formula. Some anonymous prayer-tables for Baghdad

Figure 4.17 An analemma construction for finding the hour-angle from the observed
altitude of the sun or any fixed star. The three-dimensional celestial sphere of unit radius
is first projected orthogonally into the plane of the meridian SQBN. Then OQ, A′B and
SN represent the celestial equator, the day-circle and the horizon, and X′ is the projection
of X. The altitude circle (arc ZXK in Figure 4.16) is folded about its radius ZO into the
plane of the meridian: X moves to X1 such that X1S=h, so that X1Y1=sin h. Note also that
BY=sin H. The day-circle is then folded about its diameter through B into the plane of the
meridian (yielding an arc of a circle radius cos δ). X (in Figure 4.16) moves perpendicular
to BA′ to X2 (in this figure) and BX2 measures the hour-angle t and BA the half arc of
daylight D. Note that triangles BZX′ and BYA′ are similar. Therefore,

whence the standard medieval formula for t(h, H)
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are preserved in a thirteenth-century Iraqi zij; these display, for example, the
duration of twilight in addition to the times of the daylight prayers for each
day of the year, and are probably another Abbasid production, dating perhaps
from the tenth century. Certainly quantitative estimates of the angle of
depression of the sun at nightfall and daybreak occur in the zij of the ninth-
century astronomer Habash al-Hasib. Isolated tables displaying the altitudes
of the sun at the zuhr and ‛asr prayers and the duration of morning and
evening twilight occur in several other early medieval Islamic astronomical
works, usually of the genre known as zij.

Several examples of extensive tables for reckoning time by day for the
solar altitude, or for reckoning time of night from altitudes of certain
prominent fixed stars, have come to light. All of these tables were computed
for a specific locality, and display either T(h, H) or T(h, λ), where λ is the
solar longitude. To use any of them, one needed an instrument, such as an
astrolabe, to measure celestial altitudes or the passage of time. There is no
evidence that these early tables were widely used.

Of particular interest was the development in the ninth and tenth centuries
of auxiliary trigonometric tables for facilitating the solution of problems of
spherical astronomy, though not especially those of timekeeping. The
auxiliary tables of Habash (see above) and Abu Nasr (fl. Central Asia, c.
1000) are the most impressive of these from a mathematical point of view,
and al-Khalili’s universal tables for timekeeping (see below) should be
considered in the light of these earlier developments.

THE INSTITUTION OF THE MUWAQQIT

In practice, at least before the thirteenth century, the regulation of the prayer-
times was the duty of the muezzin (Arabic, mu’adhdhin). These individuals
were appointed for the excellence of their voices and their character, and they
needed to be proficient in the rudiments of folk astronomy. They needed to
know the shadows at the zuhr and the ‛asr for each month, and which lunar
mansion was rising at daybreak and setting at nightfall, information which
was conveniently expressed in the form of mnemonics; they did not need
astronomical tables or instruments. The necessary techniques are outlined in
the chapters on prayer in the books of sacred law and the qualifications of the
muezzin are sometimes detailed in works on public order (hisba or ihtisab).

In the thirteenth century there occurred a new development, the origins of
which are obscure. In Egypt at that time we find the first mention of the
muwaqqit, a professional astronomer associated with a religious institution,
whose primary responsibility was the regulation of the times of prayer.
Simultaneously, there appeared astronomers with the epithet miqati who
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specialized in spherical astronomy and astronomical timekeeping, but who
were not necessarily associated with any religious institution.

TIMEKEEPING IN MAMLUK EGYPT

In Cairo in the late thirteenth century, a miqati named Abu ‛Ali al-
Marrakushi compiled a compendium of spherical astronomy and instruments
from earlier sources which was to set the tone of ‛ilm al-miqat for several
centuries. His treatise, appropriately entitled Jami‛ al-mabadi’ wa-l-ghayat fi
‛ilm al-miqat, (An A to Z of Astronomical Timekeeping), was first studied by
the Sédillot père et fils in the nineteenth century.

Al-Marrakushi’s contemporary, Shihab al-Din al-Maqsi, compiled a set of
tables displaying the time since sunrise as a function of solar altitude and
longitude for the latitude of Cairo (apparently based on an earlier, perhaps
less extensive, set by the tenth-century astronomer Ibn Yunus). In the
fourteenth century these tables were expanded and developed into a corpus
covering some 200 manuscript folios and containing over 30,000 entries. The
Cairo corpus of tables for timekeeping was used for several centuries and
survives in numerous copies, no two of which contain the same tables.
Besides tables displaying the time since sunrise, the hour-angle (time
remaining until midday) and the solar azimuth for each degree of solar
longitude, which with about 30,000 entries make up the bulk of the corpus
(Plate 4.16), there are others displaying the solar altitude and hour-angle at
the ‛asr, the solar altitude and hour-angle when the sun is in the direction of
the qibla (see section (a)), and the duration of morning and evening twilight.

In some late copies of the Cairo corpus there are tables for regulating the
time when the lamps on minarets during Ramadan should be extinguished
and when the muezzin should pronounce a blessing on the Prophet
Muhammad. In some copies, early and late, there is a table for orienting the
large ventilators which throughout the medieval period were a prominent
feature of the Cairo skyline. These were aligned with the roughly orthogonal
street plan of the medieval city, itself astronomically aligned towards winter
sunrise.

Al-Maqsi also compiled an extensive treatise on sundial theory, including
tables of co-ordinates for making the curves on horizontal sundials for
different latitudes and vertical sundials at any inclination to the local
meridian for the latitude of Cairo. The latter were particularly useful for
constructing sundials on the walls of mosques in Cairo, and the special
curves for the zuhr and ‛asr enabled the faithful to see how much time
remained until the muezzin would announce the call to prayer.

A contemporary of al-Marrakushi and al-Maqsi, the Cairo astronomer
Najm al-Din, compiled a table of timekeeping which would work for any
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latitude and which could be used for the sun by day and the stars by night. 
The function tabulated is T(h, H, D), where D was the half arc of visibility of
the celestial body in question over the horizon, and the entries number over a
quarter of a million. This table was not widely used (if at all) and is known
from a unique copy, perhaps in the hand of the compiler.

Another region of the Islamic world in which the writings of al-
Marrakushi and the output of the early Cairo muwaqqits were influential was
the Yemen. Under the Rasulids mathematical astronomy was patronized and
practised. In particular the Sultan al-Ashraf (reg. 1295–6) compiled a treatise
on instrumentation inspired by that of al-Marrakushi. The Yemeni astronomer
Abu al-‛Uqul, who worked for the Sultan al-Mu’ayyad in Taiz, compiled a
corpus of tables for timekeeping by day and night which is the largest such
corpus compiled by any Muslim astronomer, containing over 100,000
entries.

Plate 4.16 An extract from the Cairo corpus of tables for timekeeping. This particular sub-
table displays values of three functions—the hour-angle, time since sunrise and azimuth—
for each degree of solar longitude when the sun has altitude above the horizon 15°. Taken
from MS Cairo Dar al-Kutub miqat 690, fols 15v–16r, with kind permission of the Director
of the Egyptian National Library

 

DAVID A.KING 177



In Cairo in the fourteenth century there were several muwaqqits producing
works of scientific merit, but the major scene of ‛ilm al-miqat during this
century was Syria.

TIMEKEEPING IN FOURTEENTH-CENTURY
SYRIA

The Aleppo astronomer Ibn al-Sarraj, who is known to have visited Egypt,
devised a series of universal astrolabes and special quadrants and
trigonometric grids, all for the purpose of timekeeping: his works represent
the culmination of the Islamic achievement in astronomical instrumentation.
Two other major Syrian astronomers, al-Mizzi and Ibn al-Shatir, studied
astronomy in Egypt. Al-Mizzi returned to Syria and compiled a set of hour-
angle tables and prayer-tables for Damascus modelled after the Cairo corpus.
Ibn al-Shatir compiled some prayer-tables for an unspecified locality,
probably the new Mamluk city of Tripoli. Al-Mizzi also compiled various
treatises on instruments, but Ibn al-Shatir turned his attention to theoretical
astronomy and planetary models. This notwithstanding, he also devised the
most splendid sundial known from the Islamic Middle Ages.

It was a colleague of al-Mizzi and Ibn al-Shatir named Shams al-Din al-
Khalili who made the most significant advances in ‛ilm al-miqat. Al-Khalili
recomputed the tables of al-Mizzi for the new parameters (local latitude and
obliquity of the ecliptic) derived by Ibn al-Shatir (Plate 4.17). His corpus of
tables for timekeeping by the sun and regulating the times of prayer for
Damascus was used there until the nineteenth century. He tabulated the
following functions for each degree of solar longitude λ: the solar meridian
altitude; half the diurnal arc; the number of hours of daylight; the solar
altitude at the beginning of the ‛asr; the hour-angle at the beginning of the
‛asr; the time between the beginning of the ‛asr and sunset; the time between
midday and the end of the ‛asr; the duration of night; the duration of  evening
twilight; the duration of darkness (from nightfall to daybreak); the duration
of morning twilight; and the time remaining until midday from the moment
when the sun is in the same direction as Mecca. Entries for all but the third
function are in equatorial degrees and minutes (where 1° corresponds to 4
minutes of time). These tables contain 2,160 entries. Al-Khalili also tabulated
the hour-angle t as a function of solar altitude h and solar longitude λ for the
latitude of Damascus. His tables of t(h, λ) contain about 10,000 entries.

In addition, al-Khalili compiled some tables of auxiliary trigonometric
functions for any latitude considerably more useful than the earlier tables of
this kind by Habash (see above). The functions tabulated are
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Plate 4.17 An extract from the prayer-tables for Damascus prepared by al-Khalili. This
particular sub-table serves solar longitudes in Aquarius and Scorpio, and the twelve
functions are tabulated for each degree of longitude across the double-page. Taken from
MS Paris B.N. ar. 2558, fols 10v–11r, with kind permission of the Director of the
Bibliothèque Nationale
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and

where the trigonometric functions are to base R=60. The total number of
entries in these auxiliary tables exceeds 13,000. Values are given to two
sexagesimal digits and are invariably accurately computed. With these tables
the hour-angle can be found with a minimum of calculation. Al-Khalili
presents the procedure

which is equivalent to the modern formula. Likewise the corresponding
azimuth a (measured from the meridian) is given by

These tables serve to solve numerically any problem which can, in modern
terms, be solved by means of the spherical cosine formula.

Al-Khalili also compiled a table displaying the qibla or local direction of
Mecca as a function of terrestrial longitude and latitude. He appears to have
used the universal auxiliary tables to compile this qibla table.

Some of the activities of the Damascus school became known in Tunis in
the fourteenth and fifteenth centuries. Extensive auxiliary tables and prayer
tables for the latitude of Tunis were compiled there by astronomers whose
names are not known to us. Prayer-tables were also prepared for various
latitudes in the Maghrib.

TIMEKEEPING IN OTTOMAN TURKEY

More significant was the influence of the Cairo and Damascus schools on the
development of ‛ilm al-miqat in Ottoman Turkey. The Damascus
astronomers of the fourteenth century had already prepared a set of prayer-
tables for the latitude of Istanbul, but several new sets of tables were
prepared by Ottoman astronomers for Istanbul and elsewhere in Turkey after
 the model of the corpuses for Cairo and Damascus. Prayer-tables for
Istanbul are contained in the very popular almanac of the fifteenth-century
Sufi Shaykh Vefa and in the less widely distributed almanac of the sixteenth-
century scholar Darendeli (Plate 4.18). The latter displays the lengths of
daylight and night, as well as the times (expressed in the Turkish convention,
see below) of midday, the first and second ‛asr, nightfall and daybreak, the
moment when the sun is in the qibla and a morning institution called the
zahve (related to the duha, see above). These two sets of tables remained in use
until the nineteenth century.
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Large sets of tables for timekeeping by the sun and/or stars were prepared
for Istanbul and for Edirne. One set for the sun was compiled by Taqi al-Din
ibn Ma‛ruf, director of the short-lived Istanbul Observatory in the late sixteenth
century. In the eighteenth century the architect Salih Efendi produced an
enormous corpus of tables for timekeeping which was also very popular
amongst the muwaqqits of Istanbul.

A feature distinguishing some of these Ottoman tables from the earlier
Egyptian and Syrian tables is that values of the time of day are based on the
convention that sunset is 12 o’clock. This convention, inspired by the fact
that the Islamic day begins at sunset (because the calendar is lunar and the

Plate 4.18 An extract from the prayer-tables for Istanbul prepared by Darendeli. This sub-
table serves the two zodiacal signs Aries and Virgo. Note that the entries are written in
Indian numerals, rather than the alphanumerical (abjad) notation which was more usual
for astronomical tables even under the Ottomans. Taken from MS Cairo Tal‛at miqat turki
29, fol. 44r, with kind permission of the Director of the Egyptian National Library
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months begin with the sighting of the crescent shortly after sunset), has the
disadvantage that clocks registering ‘Turkish’ time need to be adjusted by a
few minutes every few days. Prayer-tables based on this convention were
compiled all over the Ottoman Empire and beyond: examples have been
found in the manuscript sources for localities as far apart as Algiers and
Yarkand and Crete and Sanaa. In the late Mamluk and Ottoman periods the
muwaqqits compiled numerous treatises on the formulae for timekeeping and
the procedures for computing the time of day or night, or the prayer-times,
using either an almucantar quadrant (modified from the astrolabe) or a sine
quadrant.

MODERN TABLES FOR THE PRAYER TIMES

In the nineteenth and twentieth centuries, the times of prayer have been or
still are tabulated in annual almanacs, wall-calendars and pocket-diaries, and
the times for each day are listed in newspapers. In Ramadan, special sets for
the whole month are distributed. These are called imsakiyas, and indicate in
addition to the times of prayer, the time of the early morning meal called the
suhur and the time shortly before daybreak when the feast should begin,
called the imsak. Modern tables are prepared either by the local surveying
department or observatory or by some other agency enjoying the approval of
the religious authorities; usually they display the times of the five prayers and
sunrise. Recently, electronic clocks and watches have appeared on the
market which are programmed to beep at the prayer-times for different
localities, and to pronounce a recorded prayer-call.

FURTHER READING

On the prayers in Islam see the article ‘Salat’ in the Encyclopaedia of Islam (2nd edn,
Leiden, 1960 onwards). For an overview of Islamic timekeeping see the article
‘Mi• at’ in the Encyclopaedia of Islam, reprinted in King (1993).

On the definitions of the times of prayer as they appear in the astronomical sources, see
Wiedemann and Frank (1926). For al-Biruni’s discussion, see Kennedy et al. (1983:
299–310). On the origin of these definitions see King, ‘On the Times of Prayer in
Islam’, to appear.

On the procedures advocated by the legal scholars and in treatises on folk astronomy see
King (1987a).

On the formulae for timekeeping used by the Muslim astronomers see the papers by
Davidian, Nadir and Goldstein reprinted in Kennedy et al. (1983: 274–96) and the
studies listed below.

On solutions (i.e. tables and instruments) serving all latitudes see King (1987c, 1988,
1993).
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On the earliest known tables for regulating the prayer times and reckoning time of day
from solar altitude, see King (1983d: esp. 7–11). On al-Marrakushi and his treatise
see the section ‘Gnomonics’ in this chapter and also King (1983c: esp. 539–40 and
534–5). On the institution of the professional mosque timekeepers see King, ‘On the
role of the Muezzin and the Muwaqqit in medieval Islamic society’, to appear in
S.Livesey and J.F. Ragep, eds., Proceedings of the Conference ‘Science and Cultural
Exchange in the Premodern World’ in Honor of A.I.Sabra, University of Oklahoma,
Norman, Ok., Feb. 25–27, 1993, Leiden: E.J.Brill, 1995.

On the corpuses of tables for Cairo, Taiz, Damascus and Jerusalem, Tunis and Istanbul,
see respectively, King (1973a; 1979: esp. 63; 1976), King and Kennedy (1982: esp.
8–9) and King (1977a). Each of these papers is reprinted in King (1987b).

On the auxiliary tables of Habash, Abu Nasr and al-Khalili see, respectively, Irani (1956),
Jensen (1971) and King (1973b).

For an analysis of all available tables see King, Studies in Astronomical Timekeeping in
Islam, I: A Survey of Tables for Reckoning Time by the Sun and Stars, and II: A
Survey of Tables for Regulating the Times of Prayer (forthcoming).

On the Ottoman convention of reckoning sunset as 12 o’clock, see Würschmidt (1917).
On the muvakkithanes, the buildings adjacent to the major Ottoman mosques which
were used by the muwaqqits, see Ünver (1975).
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5
Mathematical geography

EDWARD S.KENNEDY

INTRODUCTION

The historian of the Islamic exact sciences is frequently confronted with an
embarras de richesse—hundreds of manuscript sources which have never
been studied in modern times. For descriptive geography the situation may
well be the same. The reader will find indications to this effect in the surveys
of S.Maqbul Ahmad (1965a,b). But for those parts of the subject which
employ mathematics, frustration arises from a paucity rather than a plethora
of sources. For instance, it is reliably reported (Shawkat 1962:12) that the
astronomer Ibn Yunus (fl. 1000) made a world map for the Fatimid caliph
al-‛Aziz. But precise information as to the projection method is not available,
much less the map itself.

What information is available can be regarded as involving either geodesy
or cartography, and the presentation below is organized under these two main
topics. Under the first, the subject of latitude determinations leads to that of
geodesy proper, thence to the fixing of longitudes and the zero meridians
upon which they were based. The section concludes with an indication of the
end-products of these operations—lists of place names with co-ordinates.

In the cartographical section which follows, the lack of precise information
alluded to above severely hampers an assessment of the degree to which
Hellenistic geography penetrated the Muslim world. The situation of al-
Biruni will be seen to be the reverse of al-ldrisi’s. For the former, projections
are adequately described, but no applications to actual maps can be exhibited
until the Renaissance or later. For the latter, many copies of the map survive,
but the projection methods are largely a matter of conjecture. The maps of
other scientists are described, but no attempt is made to cover Muslim
navigation or sea charts.



GEODESY

Determination of latitudes

Since the latitude φ of a locality equals the altitude of the celestial pole at
that place, this quantity is easily determined by astronomical methods (Figure
5.1). For instance, the observer may note h, the meridian altitude of the sun
on a particular day, and calculate δ, its declination at the time of the
observation. Then, for localities in the northern hemisphere,

φ=90°−(h−δ)
since the elevation of the culminating point on the celestial equator is the
complement of the polar altitude. Or the meridian altitude of a fixed star of
known declination may be observed at night, and the same expression can be
applied.

Figure 5.1 The latitude of a locality equals the altitude of the celestial pole at that place
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Alternatively the observer may note the altitudes of a circumpolar star at
its two meridian crossings. The φ is the mean of the two altitudes.

Worked examples of these methods from the records of his predecessors
and contemporaries are given by al-Biruni (fl. 1010) in his Tahdid (Kennedy
1973:16–31).

Given the ease of latitude determinations, it would be expected that the
values which have come down to us might be fairly accurate. Out of the 506
localities whose co-ordinates are reported by al-Kashi (fl. 1400), modern
values for the latitude have been found for 381. The mean of the differences
between al-Kashi’s latitudes and the modern determinations is only four
minutes of are. However, the mean of absolute values of the same set of
differences is 1° 15′, which is not very impressive. The results for al-Kashi
are typical of the fifty or so sources for which these statistics were
calculated. In extenuation, it must be remembered that no author was in a
position to verify personally any more than a very few latitudes. The rest he
must accept on faith, and there must have been many cities which could
boast no competent resident astronomer. The records show many latitudes
which are precise to within a quarter of a degree.

The size of the Earth

It is appropriate to discuss this topic next, because the commonest medieval
method of finding the length of a degree along a terrestrial meridian
depended upon latitude determinations.

The caliph al-Ma’mun (reigned 813–33) mounted one or more expeditions
charged with this task. The sources vary as to details, but there is general
agreement as to the method used (see Barani 1951). The idea was to choose a
suitably flat expanse of the Syrian desert, and from some initial point observe
φ. The observers then set out either due north or due south, measuring the
distance traversed as they proceeded. This continued until the expedition
arrived at a station at which φ was just one degree different from that of the
first locality. Then the distance travelled is the length of a meridian degree.

It would have seemed vastly more practical to have travelled any distance,
the farther the better, and then simply have divided the distance by the
change in φ. For to demand that ∆φ=1° implies a continued setting up of
additional stations until the desired integer difference is observed. Perhaps in
practice the observers adopted the reasonable procedure.

However it was arrived at, the value of  Arab miles per degree was
obtained, and was consistently used by subsequent investigators, e.g. al-
Biruni (1967, say) and al-Tusi (Kennedy 1948:115). Other results are cited
by the sources, but they are all close to this canonical value. Its multiplication
by 360/π gives the corresponding diameter of the earth.
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To inquire concerning the method’s precision is to pose the difficult and
perhaps insolvable metrological problem of conversion between medieval
and modern units. The question was exhaustively investigated by Nallino
(1892–3). He concluded that the  Arab miles is equivalent to 111.8 km per
degree, which is astonishingly close to the accurate value of 111.3. This is
probably a coincidence. But he gives the results of investigations by nine
other scholars, which range between 104.7 and 133.3. So the Ma’munic
result is probably rather good.

Base meridians

All of the geographical lists described below, except two, may be divided
into a pair of categories depending upon the zero meridian of the particular
table. Ptolemy (fl. AD 150), the father of mathematical geography, measured
longitudes eastward from the Fortunate Isles (al-jaza’ir al-khalidat, the
Canaries). About half of the Muslim sources followed him, and the group
thus constituted is called for convenience the C class. The second group,
designated by A, followed al-Khwarizmi (fl. AD 820) in using as prime
meridian the ‘western shore of the encompassing sea’ (sahil al-bahr al-muhit
al-gharbi), it being agreed in the literature that the A meridian is 10° east of
the C (e.g. al-Biruni 1967:121). It is not clear how this division originated.
Nallino has shown (1944:490) that it was not al-Khwarizmi’s intention to
change the zero point. For some reason, the astronomers of al-Ma’mun
decided that the longitude of the Abbasid capital, Baghdad, should be 70°.
However, if Baghdad were reasonably plotted on a map based on Ptolemy’s
Geography it would have a longitude near 80°, and over half of the Muslim
sources give this value. The notion reported below, that the ‘Cupola of the
Earth’ as conceived by the ‘Easterners’ was  east of Ptolemy’s ‘Cupola’,
was probably involved, for  is not far from ten. Biruni explicitly gives
the displacement as 10° (al-Biruni 1967:120, 121). Al-Khwarizmi corrects by
10° Ptolemy’s gross overestimate of the length of the Mediterranean, but this
did not affect the base meridian.

However it came about, the existence of the A and C categories is a fact.
Longitudes of the same city in tables of the two groups tend to differ by
precisely 10°. Furthermore, for localities of known modern (Greenwich)
longitude, calculations have been made of the mean difference between
medieval and modern longitudes. There is considerable divergence between
the means for individual sources, but those of the A class cluster about 24°;
those from C are near 34° (cf. Kennedy and Regier 1985).

Longitudes measured from a third base meridian are reported by one
source. Al-Hamdani (d. 946; Müller 1884:27,45) states that the ‘Easterners’
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(ahl al-mashriq), the Indians and those who follow them, measure longitude
west from the eastern edge of China. It was commonly agreed that the
inhabited portion of the globe is the surface of a hemisphere bounded by a
great circle through the poles. The apex of this, called the ‘Cupola of the
Earth’ (qubbat al-ard), is the point on the equator which has the bounding
circle as pole. Hamdani goes on to say that the Easterners take the Cupola as
being 90° west of their base meridian. Since he also mentions the Sindhind
(from Sanskrit siddhanta), the Cupola is probably supposed to be on the
meridian through Ujjain, the Greenwich of ancient Indian astronomy. In the
Arabic literature the name was corrupted from Uzain (by the omission of a
dot over one letter) to arin, hence qubbat arin. Hamdani states further that
Ptolemy’s Cupola is, reasonably enough, 90° east of his base meridian, and
that the two cupolas do not coincide, the Indian one being east of
Ptolemy’s. If longitudes measured from east and west are denoted by λE and
λW respectively, then the Indian and Ptolemaic longitudes of a particular
locality should satisfy the relation

Hamdani gives the Indian co-ordinates of twenty-two cities, most of them in
the Arabian peninsula, but including also Jerusalem and Damascus. Of these,
three towns are not found among the other Muslim lists of place names with
co-ordinates. But of the remaining nineteen, the longitudes of nine conform
to the above rule within a degree, for many sources of the C (Ptolemaic)
category.

Honigmann (1929:132–55) writes of a ‘Persian system’ in which
longitudes are measured west of a prime meridian passing through the
eastern-most point of Asia. He is doubtless referring to the meridian of
Hamdani’s ‘Easterners’, for the latter attributes some co-ordinates to al-
Fazari (fl. AH 760) and some to Habash al-Hasib (fl. 850), and both of these
were influenced by the astronomy of Sasanian Iran as well as that of India.

Al-Biruni implies (Kennedy 1973:126) that in at least one set of tables, no
longer extant, the base meridian was that of the Cupola itself.

One source, contained in Leiden MS Utr. Or. 23, is unique in that its
longitudes are reckoned from Basra, presumably the anonymous compiler’s
station. However, since the column heading of the longitude entries is
‘longitude difference’, rather than the usual ‘longitudes’, the Basra meridian
is not to be regarded as a base.
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Longitude determinations

Once a prime meridian has been agreed upon, finding the longitude of a
given locality resolves itself into the problem of determining the longitude
difference between it and a place of known longitude. In theory this is even
simpler than a latitude determination, for by virtue of the earth’s rotation, in
which twenty-four hours corresponds to 360°, the longitude difference equals
the difference in mean local time between the two places. But in practice,
what is needed is a time signal available simultaneously at both localities,
and in medieval times, with no radio, this was far from simple.

A lunar eclipse is such a signal, for its phases appear the same from any
point on the earth at which the eclipse is visible. A pair of observers, one at
each locality, could observe the respective local times at which contact, and
maximum immersion or totality, begin and end. Al-Biruni (Kennedy 1973:
164) reports such a joint operation carried out between him, observing at
Kath (in Central Asia), and Abu al-Wafa’ at Baghdad. A difficulty is that the
phases of a lunar eclipse, unlike those of the solar variety, are not sharply
defined events.

Al-Biruni also exploited to the full, in his Tahdid (1967; Kennedy 1973), a
geodetic method of finding longitude differences. Suppose the latitudes of
the two localities are known, as well as the great circle distance between
them. A meridian and a parallel of latitude pass through each of the two
points. These four circles intersect in four points which constitute a
determinate isosceles plane trapezoid. To this al-Biruni applies a theorem of
Ptolemy involving the sides and diagonals of cyclic trapezoids which gives
him the equivalent of the following formidable expression (Kennedy 1973:
152):

where ∆ indicates a difference, λ is terrestrial longitude, crd θ is the length of
the chord of the unit circle subtended by a central angle θ and A and B are
the localities in question.

Al-Biruni approximated great circle distances by obtaining the length of
caravan routes in leagues (farsakhs), multiplying by a coefficient which
depended upon the directness and difficulty of the route, thence converting to
miles and degrees. Seeking the ∆λ between Baghdad and Ghazna (in modern
Afghanistan), his patron’s capital, he made successive applications of his
algorism for the stages through Rayy, Jurjaniya and Balkh. Being rightly
suspicious of his result, he made additional calculations along a southern
traverse through Shiraz and Zaranj, trying also a branch through Bust. He
accepted the arithmetic mean of the three findings thus obtained. The final
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result is in error by about a third of a degree out of twenty-four, which,
considering the crudeness of his original data, is very good.

No other geographers are known to have adopted al-Biruni’s method, and
a geodetic solution explained by al-Kashi (Kennedy 1985:30) is
astonishingly inaccurate. By and large, the longitudes appearing in the texts
are much less reliable than the latitudes.

Geographical lists

Indicative of the amount and extent of geographical knowledge current in the
world of medieval Islam is a collection of lists giving place names with
latitudes and longitudes (published as Kennedy and Kennedy 1987). The
sources may be divided into three categories: (1) astronomical handbooks
(zijes), unpublished manuscripts for the most part, containing geographical
tables enabling the user to reduce observations made at one locality to
consistency with those made at any other place in the table; (2) compilations
made to form the basis for a map; and (3) more general geographical works
which contain the co-ordinates of localities. To date, seventy-four sources
have been entered on the magnetic tape on which the material is stored, and
the number continues to rise. The sources vary in size from over 600
localities to as low as two. Most of the cities listed are in the Mediterranean
basin, the Middle East and central Asia, but there are scatterings of localities
in Europe north of Spain, central Africa, India and China.

It is possible to establish families of related sources, but no two are
identical. On the other hand, no source is completely independent of the
others.

CARTOGRAPHY

The Hellenistic heritage

The earliest cartographer whose work influenced the Muslims was Marinus of
Tyre (c. AD 100). In Marinus’ world map the co-ordinate net consisted of
two families of mutually orthogonal parallel lines (Figure 5.2). Since the
sphere is not applicable to the plane, any plane map of a portion of the
earth’s surface involves distortion. The cartographer may choose a mapping
which is conformal (shape preserving), which is area preserving or in which
some distances are preserved, but he cannot have everything. In Marinus’
map, distances are preserved along all the meridians and along the parallel of
latitude through Rhodes (φ=36°; Neugebauer 1948:1037–9). But since
latitude circles decrease in size as φ increases, distances along parallels north
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of Rhodes in the Marinus map are stretched, and those south of Rhodes are
compressed. 

Ptolemy developed two map projections, in both of which the meridians
converge, in contrast to Marinus’ cylindrical scheme.

In the first Ptolemaic map, distances are preserved along all the meridians,
which make up a family of concurrent straight lines. Parallels of latitude map
into concentric circles, orthogonal to the meridians, which therefore pass
through the common centre. The latter point is so chosen that (1) distances
are preserved along the latitude circle which passes through Rhodes, and (2)
the ratio of distances is preserved along the parallels through Thule (φ=63°)
and the equator (φ=0°).

Ptolemy’s second scheme retained concentric circles as maps of the
parallels of latitude, but now distances are preserved along three of them, for

Figure 5.2 The principle of the Marinus mapping
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latitudes of 63°, 23; 50° and −16; 25°. As a consequence of this, the maps of
the meridians can no longer be straight lines. They are now a family of
circles, each one being determined by the three points having the same
longitude on the three latitude circles named above. The effect of this is to
damage slightly the preservation of distances along the meridians.

Note the progression in these three maps. In the first, the co-ordinate net is
rectilinear and orthogonal; in the second, one set of co-ordinate curves is
made up of circles; in the third, both sets are circles.

It is well-nigh certain that, in some form or other, Ptolemy’s world map
was available to the geographers of the Abbasid Empire. Al-Mas‛udi (Muruj
al-Dhahab, vol. 1, p. 183; and Kitab al-Tanbih wa-l-Ishraf, p. 33) claims that
he had seen one or more examples, and that they had been surpassed in
excellence by al-Ma’mun’s map (al-surat al-ma’muniya). But no versions
from Abbasid times are known to have survived. The earliest extant copies of
the Geography were made in thirteenth and fourteenth century
Constantinople. From these, Arabic translations were made c. 1465 by order
of the Ottoman sultan Mehmet II. One of the translations is MS Aya Sofya
(Istanbul) 2610, and the world map from it has been reproduced in facsimile
in Fischer (1932) and in Maqbul Ahmad (1965b). The entire manuscript was
published in facsimile in Egypt (Cairo?) in 1929 (Bagrow 1955:27n),
although the book has no indication of its provenance or date.

All this is much too late to have any bearing on the Abbasids, and indeed
the nature of the Ptolemaic material that did reach them is a matter of dispute.
Thus Mžik (1915) thinks it probable that they used a Syriac version of the
Geography, perhaps with no world map at all. Ruska (1918), on the other
hand, considers they may well have worked from the Greek directly.

Al-Ma’mun’s map

It is well known that during his reign (813–33) the caliph al-Ma’mun
attracted eminent savants to his ‘House of Wisdom’ (bayt al-hikma). One of
the fruits of their collaboration was a picture of the known world which, in
important respects, was an improvement upon Ptolemy’s (Nallino 1944: 458–
532). But of this, only the related geographical table by al-Khwarizmi
(1926), together with three regional maps, has survived. No copy of the main
map has turned up. Al-Mas‛udi (Kitab al-Tanbih wa-l-Ishraf, p. 44) states
that on it the climate boundaries, which are parallels of latitude, are
rectilinear. This can be taken to imply that the projection was of the Marinus
type.

The conjecture is made well-nigh certain by the geographical table of
Suhrab (fl. 930) which is closely related to that of al-Khwarizmi. In the
introduction to Suhrab’s work (Mžik 1930) are careful directions as to how to
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lay out the co-ordinate net on which the localities are to be plotted. It is to
consist of two families of mutually orthogonal parallel lines which form
squares. Hence distances along the equator and the meridians are preserved.
Because of greater east-west stretching in the temperate zone it is inferior to
the Marinus map proper.

The ‘Atlas of Islam’

In the tenth century a group of geographers including al-Balkhi, al-Istakhri,
al-Maqdisi and Ibn Hawqal composed works which have so many features in
common that they have been given the appellation the ‘Atlas of Islam’
(Kramers 1931–2). Each one has a standard set of twenty maps, of which the
first is a world map. However, these are so strongly schematized as to
become, as Kramers puts it, cartographical caricatures.

Al-Biruni’s contributions

Fairly early in his career (c. 1005, cf. Richter-Bernburg 1982), the great
polymath of Central Asia wrote a short work on mappings of the sphere.
Berggren (1982) is a recent translation, together with a commentary and a
bibliography of earlier translations and editions. To it a facsimile of the
Leiden manuscript copy has been appended. Al-Biruni discusses in this
treatise eight varieties of map projection. Three of them are described below.
Of these, the first and third seem to have been originated by him. The names
given to them here conform to modern standard usage.

1 The doubly equidistant map is laid out as follows. Choose a pair of fixed
points on the sphere, A and B. In the middle of the paper on which the map is
to appear draw the straight segment A′B′, the length of which, to a suitable
scale, shall equal the length of the great circle are AB. Then the map of any
point P on the sphere is the vertex P′ of the plane triangle A′B′P′ of which the
sides A′P′ and B′P′ have the lengths of the great circle arcs AP and BP
respectively, and are on the proper side of the base. This mapping has been
discussed in modern times, but no modern applications are known (Deetz and
Adams 1945:176), much less medieval ones.

2 The azimuthal equidistant map is equally easy to describe. Choose a
fixed point on the sphere, say A, and a zero direction through it. Then the
point A ′ at the centre of the map is the image of A, and a fixed ray through A
′ determines directions. For any point P on the sphere, its map P′ is the end-
point of the straight segment A′P′ having as length the length of the great
circle are AP. The azimuth of A′P′ with respect to the fixed ray must equal the
azimuth of AP on the sphere. Biruni describes the process in mechanical
terms as being a rolling of the sphere on top of the map from an initial 
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tangent position at A′ in the direction of P until P is the point of tangency,
thus determining P′.

A primitive and presumably intuitive example of this system is the world
map drawn by ‛Ali b. Ahmad al-Sharafi of Sfax in 1571 (Brice 1981: vi;
Nallino 1916). He was doubtless ignorant of the work of al-Biruni, as was
Postel, the first to apply this mapping in Europe, in 1581 (Deetz and Adams
1945:175). The azimuthal equidistant projection is widely employed
nowadays (Figure 5.3).

3 The globular system maps a hemisphere onto a circle (Figure 5.4).
Consider a pair of diameters EW and NS, which intersect at O and which
divide the circle into quadrants. EOW is the map of half the equator such that
E has longitude λ=0°, O has λ=90° and W has λ=180°. Graduate all four
radii and all four quadrants into convenient equal divisions, say ninety; one
per degree. Number the divisions upward and downward from E, O and W in
such manner that N, the map of the north pole, has φ=90°, and for S, the
south pole, φ=−90°. The co-ordinate net is composed of two families of
circular arcs. The map of the meridian having longitude λ is the unique
circular arc passing through N, S and the point on EW determined by the
given λ. The map of the parallel of latitude φ is the circular arc passing
through the three points, on each of NES, NOS and NWS, for which φ has
the given value.

Al-Biruni was clearly pleased with his construction, for he derives
expressions for calculating the radii and locating the centres of the co-
ordinate curves. He had every right to be complacent; distortion is slight in
the central portion of the map, and radial distances are very nearly preserved
throughout. The region of greatest stretching is along the periphery. Since the
map resembles the stereographic projection described below, it is almost
conformal.

Conjectures have been made as to how al-Biruni came to think of this
mapping. Berggren (1982) suggests that, because of the co-ordinate net
composed of equally divided circular arcs, it is an expansion of Ptolemy’s
second mapping to cover an entire hemisphere. It seems more probable,
especially since al-Biruni may have been ignorant of Ptolemy’s maps, to
think of it as a close approximation to the azimuthal equidistant system when
the centre is a point on the equator, and only a hemisphere is mapped. For
this special case the meridians map into smooth symmetrical curves, each
one passing through the two poles and one of the equally spaced graduations
on the rectilinear map of the equator. The parallels of latitude map into
smooth curves, each one passing through the two points on the circumference
and the one point on the vertical diameter for which φ has a particular value.
These curves are not circles, but they are close to being  circles, and al-
Biruni drew them as such. In Kennedy and Debarnot (1984) superposed co-
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Figure 5.3 The principle of azimuthal equidistant mapping of a hemisphere from the mid-
point of the equator

196 EDWARD S.KENNEDY



No oriental examples of the globular map are known. However, after a
lapse of six centuries, it reappeared, independently of al-Biruni, in Europe. In
1660 a Sicilian, Gianbattista Nicolosi, published two examples, one a
representation of the eastern, the other of the western hemisphere (d’Avezac
1863:342). Another application appeared, in Paris, in 1676, and others
followed. In 1701 the French scientist, Philippe de la Hire, described a
perspective mapping invented by him for which some of the co-ordinate
curves are elliptical. However, the resulting net is very similar to that of the
globular map.

The English cartographer, Aaron Arrowsmith, in 1794 published a world
map. In the explanatory material accompanying it he says he has chosen de la
Hire’s projection as being the best. He then describes laying out the
coordinate net with circular arcs in exactly the same manner as al-Biruni
(d’Avezac 1863:359). There is no question of al-Biruni’s having influenced
Arrowsmith, but it would be curious if both men, one in the eleventh 
century, the other in the eighteenth, had the same motive for choosing the
simpler curve.

Figure 5.4 Superposed co-ordinate nets of a hemisphere mapped by the azimuthal
equidistant (broken line) and global projections
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and they are seen to be very near to each other.



The equatorial stereographic projection

In a stereographic mapping (Figure 5.5), points on a sphere are projected
onto the plane of a fixed great circle from one of the poles of the circle. The
projection, together with its leading property, that circles map onto circles,
was discovered early, perhaps around 150 BC (Neugebauer 1949). Its main
application has been the standard astrolabe, in which the point of projection
is the south celestial pole.

Figure 5.5 The principle of stereographic projection of a hemisphere from the mid-point
of the equator

About 1050, however, the Spanish Arab al-Zarqallu (Azarquiel) invented a
form of astrolabe called al-safiha (in the Latin West, saphea) which employs
stereographic mapping from a point on the equator (Millás-Vallicrosa 1943–
50). This instrument was popularized in Europe; its form of projection was
adopted for terrestrial maps. By the end of the sixteenth century it had become
the prevailing system for presenting world maps (Keuning 1955:7–9). These
have been confused with the globular projec tions described above. The two
types can be distinguished by noting that in the stereographic maps the
distances between graduations on the equator increase slightly toward the
edge of the map; in the globular case the distances are constant.
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Al-Idrisi’s map

The Norman king Roger II of Sicily included geography among his many
intellectual interests. He commissioned the Moroccan Abu ‛Abdallah
Muhammad al-Sharif al-Idrisi to compile a comprehensive atlas of the world.
Roger supported the project lavishly, sending travellers to distant places
whose reports supplemented the written sources at al-Idrisi’s disposal. After
fifteen years of work, in 1154, the job was complete. It comprised a circular
world map (Miller 1926–31: vol. 5, p. 160), the much larger rectangular map
described below and an accompanying Arabic text.

The large map (most recently published as Miller (1981)), is made up of
seventy rectangular sheets, to be assembled in seven rows of ten sheets each,
north being at the bottom, opposite to the modern convention. Many
hundreds of geographical features and cities are shown, but the method by
which they were plotted is not obvious. The upper and lower edges of each
sheet coincide with the upper and lower boundaries of one of the seven
‘climates’ of classical antiquity (see Honigmann 1929; and Dallal 1984). The
standard definition of these zones on the earth’s surface is astronomical. In
principle, the first climate begins at the parallel of latitude along which the
length of maximum daylight is  hours. It ends, and the second climate
commences, at the latitude enjoying a maximum daylight of  hours.
Thence the successive climates advance northward, each boundary marking a
half hour increase in maximum daylight length.

It is a consequence of this definition that the widths of the climates
decrease as they proceed north. On the Idrisi map, however, they tend to
have a constant width of 6°, as can be seen from a partial scale of latitudes
along the right edge of the map (cf. Miller 1926–31: vol. 5, p. 164).

All indications are that al-Idrisi was mathematically unsophisticated and
innocent of trigonometry, but that his rough and ready methods were well
suited to reconciling the mass of frequently contradictory data available to
him. The introduction to his text (al-Idrisi 1970; Jaubert 1836–40) lists
twelve sources, only one of which, Ptolemy’s Geography, is known to be
based upon co-ordinates. However, most Muslim geographers tended to
present their material arranged by climates, so it would be natural for al-
Idrisi to plot localities judiciously within their proper climates, without
bothering about the precise boundaries of the latter. The naïve investigation 
described in Kennedy (1986) demonstrates that in fact he did not err
drastically.

As for longitudes, no trace of a horizontal scale appears on the map. It has
been explained above why medieval longitude determinations were
extremely unreliable, and al-Idrisi’s diffidence is understandable. If he
assumed (as was then common) that the inhabited portion of the globe
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comprised 180° of longitude, it follows that each sheet covers 18°.
Comparison of this with the climate widths demonstrates that the map is of
the Marinus type, in the sense that a degree of longitude is about  of
latitude. Hence only in the sixth and seventh climates is distortion minimal.
Everywhere else east-west distances appear shorter than they should in
comparison with north-south distances.

In his introduction al-Idrisi mentions a plotting board (lawh al-tarsim) and
an iron scale. The precise form and function of these objects is not clear.
However, his sources frequently gave the distances between localities. A
reasonable procedure would have been to commence by plotting widely
separated cities whose positions seemed reliable, thence filling in
intermediate points by successive triangulation on the plotting board for
eventual transfer to the final map, originally engraved on sheets of silver.

Whatever method was used, the result was the chef d’oeuvre of Islamic
cartography. A large body of literature has grown up about it, including
studies of particular regions on the map, e.g. the British Isles in Beeston
(1949), Scandinavia in Tuulio-Tallgren (1936) and Tuulio-Tallgren and
Tallgren (1930), Germany in Hoernerbach (1938), Spain in Dozy and de Goeje
(1866), Bulgaria in Nedkov (1960), Africa in Mžik (1921) and India in
Maqbul Ahmad (1960).

Iranian rectangular co-ordinate maps

There exist several copies of a geographical work written c. 1340 by one
Hamdallah al-Mustawfi al-Qazwini which contain a map published in
facsimile in Miller (1926–31: vol. 5, plates 34, 35 and 86). This covers the
region between Syria and Kashmir from west to east and from the Yemen
through Khwarizm south to north. The field was broken into rectangles by
families of orthogonal parallel lines drawn at 1° intervals. Some 170 cities
were located by writing their names inside the appropriate rectangle
determined by their respective latitudes and longitudes. Examination of a
dozen or so cases demonstrates that their co-ordinates, to integer degrees,
coincide with the geographical tables of the late Persian zijes. Geographical
features are lacking except for coast lines.

The map described above is a sensible if primitive example of a coordinate
net, the only one extant from medieval Muslim cartography. It is an
application of the directions in the introduction to Suhrab’s table mentioned
above. A world map which also appears in al-Mustawfi’s book is a less
happy effort along the same lines. It is best discussed in conjunction with the
world map of Hafiz-i Abru (d. 1430), published in Miller (1926–31: vol. 5,
plates 72 and 82), for the later geographer seems clearly to have depended
upon his predecessor, and the vagaries of copyists’ errors make it easier to
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draw conclusions from as many manuscripts as possible. Two copies of al-
Mustawfi’s world-map appear in Miller (1926–31: vol. 5, plate 83).

The general idea was to lay down a square rectilinear co-ordinate net with
longitudes ranging from 0° to 180° and latitudes (in modern terminology)
from −90° to 90°. For al-Mustawfi the interval between lines was 10°, for Hafiz
5°. Inside the square a circle was inscribed representing the inhabited
hemisphere. Inside this was the map proper, with the regions having
coordinates falling within the excluded corners either ignored or fudged. Al-
Mustawfi wisely refrained from plotting cities, confining himself to regions
only. Hafiz displays a good many cities, but they tend to be in the central
portion of the map where distortion is less disastrous.

NOTE

The author is greatly beholden to Professor Fuat Sezgin for the hospitality of
the Frankfurt Institute, and to Dr. Reinhard Wieber for pointing out errors
and omissions in a first draft of the chapter. 
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6
Arabic nautical science
HENRI GROSSET-GRANGE

(in collaboration with HENRI ROUQUETTE)

INTRODUCTION

Nautical ‘knowledge’ is principally founded on the accumulated experience
of navigators, but it is also a ‘science’ which stands at the cross-roads of
different disciplines: in particular, astronomy, geography and meteorology —
without forgetting the question of measuring and observational instruments.

It is difficult to retrace the history of Arabic nautical science, because the
ancient texts are currently lacking. The only works that are available were
composed at the end of the fifteenth and at the beginning of the sixteenth
century, and describe exclusively the art of navigating in the Indian Ocean.
This account is therefore limited by force of circumstance to the analysis of
the nautical instructions of their two authors, Ibn Majid and Sulayman al-
Mahri, navigators who were, we can say, the inheritors of a tradition whose
historical development we cannot rediscover with our present knowledge of
the sources.

It is helpful to recall first of all the historical and geographical framework
in which the work of these two mariners was undertaken, to note the ‘routes’
and the vessels which they used, and to discuss some basic facts of
navigation both ancient and modern, together with a brief definition of some
nautical terminology; all of which is necessary to enable the texts to be
presented and analysed, and the importance of the Arabic nautical experience
to be fully understood.

The geographical and historical setting

The experience of the two navigators Ibn Majid and al-Mahri is set within a
very precise geographical framework, that of the Indian Ocean: the traditional



route of contact between the Western (Roman and then Arabic) and the
Chinese civilizations, it is the domain of regular and alternating winds, the
monsoons, which have always favoured extremely active commercial
exchanges between its different shores.

The era in question covers about a century (1450–1550), and is generally
considered to be that of the transition between the Middle Ages and modern
times; it was the era of ‘great discoveries’ which saw Portuguese mariners
round Africa and penetrate the Indian Ocean, which had been the exclusive
domain of Arab, Persian, Indian and Chinese navigators for more than half a
millennium.

In this ocean, the Arabs of the time operated from two main areas: on one
side, the east coast of Africa, in the fief of Oman, with its numerous ports
(thirty-seven, it appears) of which the most important were Mogadishu and
particularly Malindi (modern Kenya), Kilwa (Tanzania) and Sofala
(Mozambique); on the other side, the Sultanate of Delhi (since 1206; in 1310
it controlled nearly all the Deccan). The mariners were thus required to
navigate, with the aid of the south-western monsoon, between these two
coasts, and even beyond, towards the straits. In about 1420 an Indian (or
Arabic) vessel rounded the Cape and entered the Atlantic.

On these voyages, the navigators crossed the paths of Chinese mariners,
who were pushing into the area. From 1402 a Korean map included the tip of
Africa. In 1405 the great maritime expeditions of the Chinese Admiral Zheng
He began; in the course of several attempts, he reached Indonesia and India,
then passed them, headed for Africa in around 1417 and returned there in
1431–3.

Was the Indian Ocean therefore a Sino-Arabic condominium? It seems
that the Arabs maintained a more permanent presence there, of an essentially
commercial nature.

In the fifteenth century the closure of the overland silk route, due to the
xenophobic and isolationist policies of the Mings, gave the Muslims a
monopoly of east-west trade. But they profited from it only until the
intervention of the Portuguese.

The latter progressively circumnavigated Africa. Bartholomeu Dias
reached the Cape in 1488. Vasco da Gama sailed along the coast of
Mozambique (where, at Quelimane, he met four Arabic vessels heavily laden
with gold, jewels, diamonds and spices). In order to rival his counterpart in
Mombasa, the sultan of Malindi secured for da Gama the services of the
most skilful pilot of the Indian Ocean, Ibn Majid, known since 1462 for his
nautical treatises. In twenty-three days, Ibn Majid led the Portuguese fleet to
Calicut (south of Mahé, in present-day Kerala state).

Although this feat indicates an experienced pilot, the identification of that
pilot as Majid the author of the navigational treatises has not been formally
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demonstrated. At all events, an Arab mariner became the unwitting 
instrument if not of the ousting of the Arabs from the navigation of the Indian
Ocean—since it continues to be active in our own times between east Africa,
Somalia, the Arabian peninsula, the Indian sub-continent and Laccadives-
Maldives—at least of the ending of a private hunting ground.

The routes and the vessels

The phenomenon of the monsoon favoured the establishment of regular
routes, exploited by family shipowners.

Having set out from the bustling and competing ports of Africa, the Arab
navigators put in at Goa or Calicut on the West coast of India, and pressed on
as far as Malaysia. Their reaching China is more uncertain (there may have
been a trading post at Canton). They transported ivory and gold, the raw
materials for luxury goods, and also slaves from west to east. The return
freight included cotton, silk, spices, ceramics and porcelain.

The monsoon then, was the major influence on the orientation of these
routes: from November to March the movement of air from India (cool)
towards Africa (hot) generates the monsoon from the northeast; from April,
the sun reheats India, causing the monsoon to reverse direction and blow
from the southwest. From June to September, it sweeps over the whole of the
Arabian sea and the Bay of Bengal.

There were two main shipping routes. The first was the route serving
Malacca; for various reasons this rounded Ceylon at a great distance (only
the condensation covering its contours, or, at night, ‘false lights’, were
visible), then it continued, with the aid of observations, towards Nicobar. The
second route was the crossing from India to Oman, at the end of the eastern
monsoon; heading first for Socotra, which was sometimes sighted before the
first signs of the reverse monsoon were felt, then sailing back up by hugging
the wind in the direction of Arabia, and then travelling along the Arabian coast;
if the coast was not reached in time, it was necessary to return to India and
wait there fore several months. At best this would take twice as long as the
direct route.

Routes which basically followed a straight line, such as sailing up the Red
Sea, were equally not without serious dangers.

There is, however, evidence of breaks in this web of maritime exchanges.
The manuscripts hint at the existence of some kind of interdicts operating
south-east of Sumatra, beyond Singapore, in the Bay of Bengal, in the Arab-
Persian Gulf itself and even north of Jeddah. On the other hand, the accuracy
of the latitude figures between the Sunda Islands, the Chagos Islands and
Pemba suggests that there may have been recent direct contacts. As al-Mahri
wrote: ‘the mariners of the Indian Sea and the Christians are in agreement on

HENRI GROSSET-GRANGE 205



such a value…but the people of China, Java and beyond …’ It would appear
that documents as yet unfound but indispensable to complete our knowledge
should be sought in India and in Portugal.

Because of its meteorological characteristics, the Indian Ocean requires
ships that make good speed into the wind (tacking close to the wind) and that
perform especially well with following winds. In fact the dhows—still found
today, made of teak boards assembled side by side, with a tall stem and a
raised deck at the stern—the baghlas and the sambuks are all rigged with the
‘Arabic’ lateen sail, operated according to local custom. These are excellent
seasonal ships, long and slim.

We know that the vessels of Ibn Majid and al-Mahri’s time were capable of
tacking close to the wind at the end of a season, and thus with gentle breezes,
so as to reach home without being trapped in a foreign anchorage when the
monsoon turned. On the other hand, we cannot describe with certainty the
construction and rigging of these ships, which also varied. The drawings
which probably most resemble them figure on certain Portuguese maps of the
early sixteenth century. We can recognize in them a type of steering apparatus
still sometimes used on sturdy smaller boats, the helmsman being practically
at the foot of the rear mast (on a boat with two masts).

Nautical terminology

Altitude or elevation angle from the direction of a celestial body to the
horizontal plane of the observation point (altitude + zenith distance =
90°).
Astrolabe ancient instrument that determines the moment when a star
reaches a given altitude above the horizon.
Azimuth the angle (measured from the south towards the west) between
the vertical plane of a star and the meridian plane of a given place.
Co-ordinates longitude and latitude of a star:

(a) ecliptic co-ordinates relative to the largest circle described in a year by
the earth on the celestial sphere in its motion around the sun.

(b) equatorial co-ordinates relative to the great circle described on the
celestial sphere by the plane of the earth’s equator.

Dead reckoning a means of determining the ship’s position on a sea chart by
an estimate based on the preceding course, the speed, or even the wind and
the current. This estimated ‘position’ must be verified as soon as the
opportunity permits by the most precise observation possible of seamarks or
celestial bodies.

Following wind wind from behind or thereabouts.
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Free wind wind received at about 30° in relation to the rear of the boat
(on the port or starboard side) (wind…60°…)
Gnomon column or pin on an early sundial whose shadow indicates the
time of day. Sometimes applied to the sundial itself.
Landing(s) the approach(es) to land.
Latitude angle formed at a given place by the vertical between that
place and the equatorial plane (measured from the equator—positive
northwards, negative southwards). To determine the longitude and the
latitude of the ship is to ‘take a bearing’.
Longitude dihedral angle formed at a given place between the meridian
plane of that place and the meridian plane of an acknowledged standard
place (now usually Greenwich observatory), measured westwards.
Mansion (or ‘house’) position of the sun on the celestial sphere with
respect to well-known constellations (Sagittarius, Aquarius, etc.) on a
particular day.
Meridian (a) plane defined by the vertical of a given point and the
earth’s rotational axis.
Meridian (b) measure of the highest apparent position of a celestial
body (preferably the sun) from a given place, on a given day; it permits
easy calculation of the vessel’s latitude, useful for routes travelling
approximately north to south.
Nautical ephemeris (pl. ephemerides) table(s) giving the values for
certain variable astronomical measurements for each day of the year, in
particular the co-ordinates of the planets, of the sun and of the moon.
Nautical instructions collection of useful navigational information
relating to coasts, winds, currents, seamarks, lights and lighthouses.
Nautical mile unit of length, used only in sea or air navigation,
corresponding to the distance between two points of the same longitude
and whose latitude differs by one minute of arc (approximately 1,852 m).
Ocean navigation navigation of the high seas (out of sight of land and
seamarks).
Precession very slow conical movement, made by the earth’s rotational
axis around a mean position corresponding to a direction perpendicular
to the ecliptical plane.
Rhumb angle made by two of the thirty-two divisions of the compass
(‘areas of wind’): N, N1/4NE, NNE, etc. 1 rhumb=11° 15′ (see
Figure 6.1).
Seamark fixed and highly visible object, situated on the coast, enabling
the navigator at sea to determine the ship’s position.
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Shore bed sea bed close to the coast which plunges vertically into the
sea.

A North Pole 5 Vega Lyrae 9 Orion 13 Argo Navis

1 Ursa Minor 6 Arcturus 10 Sirius 14 Canopus

2 Ursa Major 7 Pleiads 11 Scorpio 15 Southern Cross

3 Cassiopia 8 Altair 12 Antares B South Pole

4 Aries

Tack action of catching the wind alternately from the port and starboard
sides, generally to sail into the wind.
Tacking point, gybing point inferior angles fore and aft of a sail.

Some basic facts of modern astronomical navigation

The reader with no particular nautical knowledge will probably best
appreciate the technical skill of the contemporaries of Ibn Majid by taking a
brief look at the principal methods of determining a ship’s position used by

Figure 6.1 The map compass which is described in Arabic manuals of nautical instruction
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sailors in around 1950, just prior to the intensive, indeed exclusive, use of
radio-electrical equipment for navigation.

Navigation within sight of land

In order to locate the ship correctly when in sight of land, a triangle was 
drawn by plotting, with the alidade of the compass, the azimuth of three
seamarks (if possible) and marking them on the map. The triangle obtained
by the connection of the three plots had to be as small, and thus as precise, as
possible.

Navigation out of sight of land

In the case of fog, or at night (no coastal lights) or when on the high seas, the
ship’s route was drawn from the last definite plot taken, by means of dead
reckoning: a combined estimate of the course, of the assumed speed (at the
surface) and, if necessary, of the wind and the current. The result was, of
course, only approximate and had to be verified by observation of seamarks
or stars as soon as possible.

Astronomical navigation usually included two procedures.
For all routes, the ship’s position was obtained by plotting three stars,

considered as seamarks. The ‘elevation’ of the star, taken with the sextant,
was converted with the help of the nautical ephemerides into a ‘geometrical
place’, i.e. the site of those points where the star is seen under the same
elevation at the same moment, plotted in a roughly straight line on the map.
By plotting three stars simultaneously, situated if possible at 120° from one
another, a triangle could be obtained, as with the seamarks, whose internal
area, and therefore accuracy, depended on the measuring precision of the
sextant. This in turn depended on the clarity of the star and of the horizon (at
night and by day in ‘poor visibility’), as well as on refraction, on the stability
of the ship and the steadiness of the operator’s arm, etc.; in short it could be
haphazard.

For approximately north-south routes, where it was necessary to rectify the
dead reckoning principally by latitude (except in the case of strong cross-
currents), the faster meridian method would be used. The operator focused on
a star at its diurnal apogee (given by the ephemerides when it passed the
meridian of the supposed place, then measured the altitude and made a
simple calculation to obtain the latitude of the observation point. Using the
sun at precisely midday, this method was generally more accurate, at least
for moderate altitudes (less than 45°).
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It is easy, therefore, to understand the importance, for seafarers of all eras,
of the observation of seamarks, of the visibility and altitude of the stars, and
of the meridian.

It goes without saying that the contemporaries of Ibn Majid and al-Mahri,
while basing themselves on the same elements, employed much more
rudimentary methods. In the first place, there was no question of locating the
ship’s position on a map, and no possible comparison between that map (a
‘portulan’ sea chart) and modern-day route charts (large-scale ocean maps
that permit the plotting of an approximate route, which is then transferred
onto detailed small-scale charts). In sight of land as on the open sea, the
navigators used their own reckoning (of speed, voyage time and drift)
compared with texts, such as the poems of Ibn Majid, that served as nautical
instructions:

to go from Aden to Goa, take such a course up to point x, where you
will find such a wind regime at such a time of year. Then take such a
course until you measure such a star at such an altitude which
corresponds to the landing at Goa. Do this from the east, correcting
your deviation from the route by using the altitude of the star each
night. After such a voyage time, start to sound…

Thus we can see that the modern idea of bearings was not conceivable
because of the lack of precise equipment, such as charts, measuring
instruments and ephemerides. Nevertheless, Ibn Majid led Vasco da Gama
from Malindi to Calicut in twenty-three days.

SOURCES FOR THE STUDY OF ARABIC
NAUTICAL KNOWLEDGE

As we have previously stated, this study is not a detailed review of Arabic
nautical knowledge, but an analysis of the quintessential experience of two
navigators covering the northern and western parts of the Indian Ocean—
and far beyond in the case of Ibn Majid—during the period 1450–1550. The
relativity of Arabic nautical knowledge is indeed recognized by its principal
possessor, Ibn Majid, who, probably because of his collaboration with the
Portuguese, advised his compatriots of the Indian Ocean to enlist ‘in the
school of the Francs [Westerners], whence nautical science and art now
come’.

This experience of an essentially utilitarian and empirical technique is
related in various manuscripts written between about 1460 and 1550. Extant
copies of the originals are the source for most of the notes and comments
which form the substance of this chapter.
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Ibn Majid and al-Mahri were both navigators. If the former was at the
height of his art in 1496 (date of Vasco da Gama’s expedition, which he
could have piloted) and thus experienced the incursion of the Portuguese in
the ‘Arab lake’, then al-Mahri is probably his junior. According to different
hypotheses, he died between 1511 and 1554. The dating of his books is
therefore difficult, all the more so because certain of his works contain the
same material.

Manuscript sources

Three manuscripts were referred to in writing this chapter.

1 A copy of manuscript no. 992 by Ibn Majid: fols 82r–106r, Oriental
studies, Academy of Sciences, Leningrad.

2 Manuscript no. 2292 of the Arabic collection in the Bibliothèque
Nationale, Paris. This contains some of the books of Ibn Majid.

3 Manuscript no. 2559 of the Arabic collection in the Bibliothèque
Nationale, Paris. This contains some of the books of Ibn Majid and those
of al-Mahri.

These manuscripts are themselves only copies with variations (where
comparison between two texts is possible). Through these copies we
encounter the titles of other books so far unknown.

Other collections of Arabic knowledge

The Indian Ocean was a place of frequent meetings, even of collaboration
and exchanges between mariners. Consequently the parameters of ‘Arabic
knowledge’ cannot be drawn as neatly as one would like: do not important
components of this knowledge come from Chinese seafarers? And does not
the abundant Portuguese maritime literature of the sixteenth century rely in
part on the legacies of Ibn Majid and his contemporaries?

Therefore we can say that nautical knowledge transcends time and history;
it is a common storehouse drawn from predecessors and rivals and enriched
with each generation. However, the preponderance of Arab mariners in the
Indian Ocean for some centuries gives weight to the part of that knowledge
conveyed by Ibn Majid and al-Mahri.

Having said that, the authors of works published in Arabic in around the
tenth century and later are mostly of foreign origin, and the Arabic nautical
books themselves highlight the differences between Arabs, Ormuzians,
Indians etc. Well before Marco Polo, books of astronomy called the Sind
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were known in Andalusia, and Marco Polo referred to the methods and
documents of the mariners of the Far East. There were also some Chinese
and Japanese charts.

We must thus expect to have to contrast the Arabic nautical books with
many others of the same genre. In due course the Portuguese benefited from
these former sources and enriched them with their own observations: ‘for the
single period from 1538 to 1552, more than 4700 documents, nearly all in
Portuguese and nearly all unpublished’ (Aubin 1972).

The study of the nautical instructions of Ibn Majid and of al-Mahri must 
thus depend on comparisons with a whole group of other texts from various
periods.

Discussion of the sources

Before undertaking the interpretation and analysis of the authors, which often
entails questions of authenticity, i.e. the faithfulness of the copies to the
original, it is necessary to have overcome the obstacle of language.

The instructions are written in terminology that we find too vague—
although more precise than some in modern vocabulary—despite the stability
of Arabic over the centuries. Thus ‘tacking point’ and ‘gybing point’ were
expressed then, as they are today, by specialized terms; but in certain cases,
right and left are written identically. Similar examples abound.

But in what spirit should one approach the reading of Ibn Majid and al-
Mahri? How much of a critical eye should the informed reader apply to their
claims? A knowledge both of the personalities of the authors and of their
work (we have about forty highly varied volumes) can be helpful; extensive
analyses can be found in Ferrand (1921, 1924), Khoury (1970, 1972) and
Tibbets (1971).

At first sight al-Mahri’s sober and lucid didacticism is appealing, whereas
Ibn Majid seems unmethodical and pretentious. However, the scientific
verification of the authors’ statements, and Ibn Majid’s greater familiarity
with navigational practices, lead the reader to one conclusion: Majid has
sailed the seas far more than his emulator. We can see in al-Mahri a wise
man spurred by his curiosity for things of the sea, but a poor navigator, and
in Majid perhaps something of a ‘Captain Marius’1 but undoubtedly a fellow
enthusiast of the sea.

Certainly his books, which were apparently written for apprentice
navigators, cause the reader a great many difficulties: this is poetry,
composed of evocation and allusion in which certain hints enabled the
informed and perceptive individual to understand the rest.

Moreover, the techniques of critical analysis can refine the essential
research needed to determine the authenticity of certain texts. Thus in the
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Sufaliyya, one of the three nautical texts in manuscript 992, certain passages
appear apocryphal because of inadmissible nautical blunders on the part of
Majid, and would be difficult to attribute to lack of attention by the copyist.
And this is not the only text which reveals the intention of ‘playing Majid’.

Finally we note that Majid, the traditional practitioner, remains silent on
the theory of latitude extracted from a meridian altitude (although he refers to
declination tables), whereas al-Mahri demonstrates this point masterfully, but
betrays himself by omitting to adapt the formula to southern latitudes: thus
he never crossed the equator, which explains certain of his results.

The study of Ibn Majid and al-Mahri leads us to ask where the line should
be drawn between science and empiricism. An empirical and traditional
mariner such as Majid based himself on direct and lengthy experimentation.
But should we regard either of these two navigators as men of science on that
account? We can certainly grant al-Mahri the status of a scholar, who was
simply intrigued by the sea, and hail Ibn Majid as a craftsman whose skill
put him ‘in a class of his own’, despite the undoubted flaws that marred his
personality.

THE MEANS OF ARABIC NAVIGATION

This discussion is not intended to be a didactic account of Arabic nautical
knowledge, but is an attempt to make some progress, albeit often conjectural,
in the understanding of a body of knowledge which is itself largely imperfect
and lacking in overall coherence.

We should not picture an Arab mariner such as Ibn Majid as being like an
officer of the watch, observing the seamarks or the stars with the relative
accuracy of his day, and plotting them in a triangle on a chart to correct an
earlier position obtained by dead reckoning.

Using his own experience and that of his precursors, Ibn Majid practised
what we might call a ‘refined dead reckoning’—an improved method of
estimation. The charts were probably only used as a guide to the distances
between lands or the general orientation of coasts and the locations of ports;
they would scarcely have allowed any other purpose. The elevations of the
stars, for their part, helped to locate the ship in a particular zone. And for the
rest, the ‘nautical instructions’, the knowledge of the navigators and their
intuition determined the reckoning. Although the Indian Ocean is a sea with
stable winds, offering the advantages already noted, the regularity of the
monsoons is not such as to make a good assessment of the force and direction
of the winds and currents unnecessary.
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Units of measurement

In a world that pre-dated the unifying and pro-scientific effects of the metric
system, what means of measurement did the Arabs use? Essentially fingers,
or digits, zams and tirfas. As in modern times, it was the measure of height
which enabled the determination of distance: zams and tirfas were defined in
relation to the finger. However, the concept of a constant unit of
measurement was not yet entirely familiar to the minds of the time, thus
constituting a major obstacle—made worse by the absence of sufficiently 
precise instruments—to the adoption of a truly scientific approach. Basically,
however, invariance is not important provided that the order of magnitude of
the variations is consistent with the degree of precision of the observations.

Fingers and the dubban

Fingers were measured by means of the ‘wood’ (see pages 225–8).
Consequently the maximum measurement was twelve fingers, or about 20°.
Thus only the elevations of the lower stars could be measured.

Different human cultural groups have naturally based their measurements
on the finger, or on the palm, the elbow, the foot, etc., but seeking to measure
‘fingers’, in the sense of very fine angles carved with a knife on small
boards, would appear to be attempting the impossible. In fact accurate
elevations could only be reached up to 20° and very probably less (cases of
accuracy lower than 5° are too frequent to be attributed to chance).

Recourse was therefore had to the hand, which provided the dubban, a
term used to define the angle covered by 4 fingers—a crude though
personalized standard. (The mariners of Majid’s time could, of course, have
obtained the standard of 4 fingers by means of the rotation of the Pole star —
if the diameter did not change with time. In any case the sky could provide an
invariant means of reference, the angular distance between most of the stars
remaining stable over the centuries.)

The term dubban is used in connection with two stars, of which α Cocher
was one of Majid’s favourites: ‘α Cocher has a dubban to its east (β) and to
the south of the dubban is a star of the same size (θ) which is called the
dubban of the dubban, they have a distance between them of 4 fingers’.

In spite of this, Ibn Majid never formally refers to this standard for the
wood, in contrast to al-Mahri: ‘the wood of the measuring dubban must
correspond to the dubban of a Cocher at the culminating point of Leo, and
the rest of the woods will be correct by being divided according to this
standard; it is an angular measure, and that is more exact than extending the
arm.’
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The angular distance is 7° 36′ between α and β and 7° 42′ between β and
θ. Since there is no example of precise measurements being taken with the
wood other than vertically, and that at the culminating point given, α and β
are vertical, about 30° of altitude in al-Mahri’s land, the reference of four
fingers for the dubban on the wood is an accurate definition, at least
according to him. In these conditions (Figure 6.2) measurement by the woods
is ‘out’ by about 1°, whence an observed angle of 6° 40′ (compared with the
true angle of 7° 36′). This implies that the arm must have contracted from h1

to h2.
To clarify these ideas and to achieve an equivalence between fingers (as

corresponding to the meridians of stars noted by Ibn Majid) we have
incorporated several corrections of a ‘modern’ nature: refraction (bending of
the rays by the atmospheric layers), true altitude (the height of the
observation point above the sea influences the measured altitude of the
celestial body), and the Pole star, which is not true north (the true altitude of
the Pole star by meridian gives the latitude). The results of these calculations
are given in Table 6.1. We have used the observations of the stars reported by
Ibn Majid, leaving aside al-Mahri as too questionable despite his scientific
qualities (except in the case of agreement with Majid).

This table results from a very great number of comparisons between
meridians of the α Southern Cross, α Eridian, and above all the Pole star, as
well as several paired stars taken as quasi-meridians. The mean values
between the second and the twelfth degree, being 1° 36′, corresponds to the

Figure 6.2 (Note: proportions greatly exaggerated)
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figure given by the Portuguese. As for the huge first finger, we can explain it
by the haziness of the nocturnal horizon, which necessitates an exaggerated
elevation of the wood in order to distinguish the horizon clearly from the lower
part of the wood. This hypothesis appears to be confirmed by the exaggerated
measurements (sometimes of the order of a degree) observed in the pairing
of large southern stars that are too high to be measured by  the meridian
method; indeed it is recorded that ‘α Navire and β Centaur… must be
measured in the first northern climate…by the light of the moon; this is the
particularity of the southern stars…’.

Certainly the clarity of the horizon by moonlight would have avoided an
exaggerated elevation of the wood and consequently an inflated altitude
figure.

The modern reader is surprised by the inequality of the fingers in the table,
whereas the Arabs did not ask themselves whether the fingers differed in
value. A close analysis of the texts, which would overburden the present
study without enhancing it, would reduce a certain number of inaccuracies in
the notations of altitude, but not all of them.

Zams

Estimated distances were calculated in terms of a unit known as the zam,
duly defined by al-Mahri: ‘the zam is of two types, definite (or customary)
and technical. The former is the eighth of a distance such that a star
increases or diminishes in height by one finger, when going towards it or
turning away from it, whether in theory or reality…’.

Elsewhere, he also qualifies as haqqi, ‘true’ or ‘in its true sense’, the zam
obtained by measurement (though it may be obvious that the meridian
method could be used, and al-Mahri was probably aware of that, Ibn Majid
believed at first that the procedure was valid whatever the azimuth of the
observed star, provided that it was situated in the axis of the ship, which is
mathematically false). Al-Mahri specifies that the definite zam implies ‘a
stable wind of average force’. On the other hand, he does not mention the
‘general zams’ (my interpretation of Jumma), which Ibn Majid refers to a
great deal, noting in particular: ‘the exact value of technical ‘general zams’
exceeds the zams of routes and of distances (actually travelled…)’. (This
passage allows the questioning of certain estimated distances.)

By ‘general zams’, Ibn Majid simply intended to define a certain standard:
‘such is my figure in zams of three hours by normal navigation; it is up to the
reader to adapt it as required.’

He therefore comes closer to al-Mahri’s ‘definite zam’ especially as he
distinguishes further between ‘heavy’ and ‘light’ zams, the typical heavy zam
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evidently being used in conditions of dead calm and in the absence of
current.

However, his use of these qualifying terms in connection with particular
regions, and thus according to their specific meteorology, is more
unexpected. The following extract comes from the ‘particularity of
particularities’ (or ‘nature of proportions’) dariba al-dara’ib, in which Majid
associates these distances with variations in the altitudes of stars (being 
supposedly measurable by astronomical observation of distance from the
meridian, which would result in the finding of a component of longitude!):
‘the estimated distance of the first rhumb is heavy…one does not count it
from Hadmati to your Muluk (from 2° 35′ to 1° 50′ North, in the Maldives)
as one counts it from Bab (el Mandeb) to Zuqur, nor from Muruti to Brawa
(eastern Somalia)

There are great differences between the cited distances, the ‘lightest’ being
Somalia where the northeast monsoon blows coolly and regularly, with a
good running current; this monsoon marks the longest period of the year for
navigating in these waters, whereas all sailing ships get underway at the very
start of the southwest monsoon, when the breeze is light, in order to avoid its
violence later on.

The discrepancies due to the relativity of the unit of measurement were
compounded by the variability of the routes described; thus Ibn Majid
declares: ‘from such a point in Somalia to Aden there are 20 zams,
sometimes less in clear easterly monsoon weather…’. This passage shows
that distances were not necessarily calculated between the norm of the
departure point and the arrival point; this is not a problem for the long routes,
but probably explains the sometimes surprising speeds on short routes.

• ariba (not dated), like Dhahabiyya or Hawiya, deals in a similar fashion
with these observed distances in variable zams (unacceptable, as we have
seen, because they were assimilated to the observation of longitude). Yet if
the Hawiya represents Ibn Majid’s early armoury, he speaks of his great age
from the very start of the • ariba; we must therefore conclude that either
Majid was a victim of perseverare diabolicum (which is highly unlikely on
his part), or that he did not understand the correlation with longitude.

If the distance-time ratio constitutes a relative element, it is nevertheless
probable that the theoretical zam, based on an eighth of a finger, possessed a
value to which we could accord a figure of about 12 nautical miles.

Al-Mahri, for his part, did establish the ‘mathematical value of the zam’ by
standardizing it on the finger: ‘the astronomers are well aware that the
revolution of the Pole Star (taken by mariners as a standard of 4 fingers) is 6°
6/7′ [which is correct for 1505], thus 1 finger=1° 5/7′ and 1°=1 zam less a
third…’; this gives a value of 12.82 nautical miles for the zam— an
allowable figure.
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Tirfas (and deviations)

A tirfa is the distance covered in each rhumb before the meridian value of a
celestial body varies by one finger.

Here again we find ourselves confronting the notion, which is now foreign
to us, of a relative unit of measurement that seemed natural to a milieu before
abstraction, where individuals were used to relying solely on the observation
of concrete data.

Tirfas were classified by their obliquity in relation to the meridian, that is,
according to the rhumb of the course: the less angled rhumbs (1–5) were
called the ruhuwayat or rahawiyyat, the others being the shaqaqat. Majid
cites them notably in connection with routes close to the west or east (thus in
situations where the estimated course distance is doubtful), specifying that
‘for the rahawiyyat, dead reckoning estimation is preferable…especially if it
tallies with observation, while for the shaqaqat, the altitudes alone are
preferable’. This was quite logical in view of the complete ineffectiveness of
meridian observation where westerly or easterly discrepancies were
concerned.

We should also mention the manakib (‘deviations’, ‘obliques’, or
‘intercardinal rhumb lines’ in the common European sense of the term),
which represented the course par excellence between the meridian and
distances east or west: the masafat. (see Figure 6.3.)

The tirfas shown in Table 6.2 bring together elements relating to estimated
distances that are to be found widely scattered in the books of both Ibn Majid
and al-Mahri.

Figure 6.3

The theoretical views of the two writers concerning these matters should
emerge unambiguously from such a table. Yet we are immediately surprised
to note the definite value allotted to the east or west tirfas, which are in
reality infinite. With regard to al-Mahri, we have already seen that we cannot
date his writings precisely and thus judge the progress of his experience. He
is often content to report information collected from various navigators
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without verification. In his commentary on the Tuhfa, he gives the figures
from different schools, including that of the mariners of  Coromandel, listing
their approximate figures although basing them on ‘the quarter circle
neglected by the pilots…and that is my school…’.

Previously he had rectified the figures for the first four rhumbs by adding
approximate fractions to them and again by using the quarter sine method. In
this way, we note that if the values for the first four rhumbs are the least
incorrect of the table, aligning it with the data of the Coromandel mariners
yields figures that are notably incorrect, except for the seventh rhumb (no
reading is given for the following rhumb). As it would be an undoubted
exaggeration to hold the copyists responsible for this accumulation of so-
called errors of approximation, it would seem that al-Mahri’s science (which
is accurate in other respects) must have given way before a question so much
more elementary that he illustrated it by building a rose on the ground on
which people could walk in the direction of physically marked out rhumbs.

Charts

The manuscripts mention ephemerides briefly and the mariners did have
charts (these are never referred to in the texts and are now completely lost,
but the Portuguese saw them). However, the mariners of around 1500
navigated the Indian Ocean without charts or ephemerides; they used an
approximate calendar and copious nautical instructions. Their own
experience did the rest.

In fact the charts of the time would probably have been useless for locating
the vessel at sea, their accuracy in regard to the distances between coasts
being inferior to the uncertainty of the estimated position corrected by
astronomical observation.

The manuscripts of Ibn Majid and al-Mahri, which epitomize the nautical
instructions used by mariners of the time, provide nautical distances (and also
terrestrial distances in the case of Majid) at the height of each finger (Pole
Star, βγ Ursa Minor εξ Ursa Major). The keying of these distances to the
original system of meridians permitted the location of the places, all of which
tied in fairly well with the coastal routes (curiously enough, considering the
expression of these orientations in true headings and round rhumbs),
although there are sometimes differences of detail in a particular area—the
‘Berber gulf’, for example. The map in Figure 6.4 compares a representation
of the coastlines taken from the works of Ibn Majid and al-Mahri with the true
outlines.

Al-Mahri orders his distances methodically, and Ibn Majid occasionally
does likewise. The two writers sometimes complement each other, but with
some divergencies when dealing with the same region. Co-ordinating the
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whole was not easy. One of the most revealing examples concerns the height
 of 5 fingers for the Pole star, extended from Bargamlah (modern
Margabeleh, near Aseb on the Bab el Mandeb Strait) to Tawahi (Tavoy in
Burma).

Errors of latitude reveal on the map the zones that were unknown to the
Arabs—principally Australia (Timor), which is indicated by a vertical line in
its presumed position (without distances) and whose toponymy is in places
relatively recent.

Madagascar appears with two outlines; that showing the western coast
only is from Ibn Majid. In the Far East, confusion begins immediately after
Malacca. The western coast of Sumatra shows some important errors. Ibn
Majid and al-Mahri differ by 2 fingers in the location of the Sunda Islands.
Bali still appears to the west of Java.

There is confusion too, although less so, to the north of the line between
Sri Lanka (Ceylon) and Nicobar Island, because according to Majid, ‘few
Arabs visit Bengal, Siam and the east of India…’.

The presence of the mythical isle of Tirm Turi is explained—even more
convincingly than the uncertainty over the Seychelles and especially over the
Mascarene Islands—by the fact that sailing ships never ventured into the ‘pot
au noir’ (‘cauldron of darkness’). With regard to Karm Danwa (or Diwa),
which is shifted longitudinally like the African coast and the Sunda Islands,
this would appear to testify to the relatively recent migrations of the
Indonesians.

In his Qibla al-Islam, Ibn Majid corrects certain beliefs of his time. A
check of his orientations confirms the outlines reconstructed in Figure 6.4
(except for places distant from the sea, and for Madagascar, which is much
too extended).

Charts were thus marred by serious uncertainties, and we know that the
manuscripts are silent about their actual use at sea. Moreover it seems that
the Arab geographers knew nothing of the mariners’ charts. Nevertheless it
must be acknowledged that before the rise of Iberian cartography, the
mariners’ chart (as opposed to the marine chart), developed by simple folk,
provided the navigator with a kind of Identikit picture of regions to which he
would have travelled in complete ignorance of their geography had he only
had tradition to guide him.
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The instruments

The compass (and declination)

Out of sight of directional seamarks, alongside radio-electrical aids to
navigation, sailors still use the instrument that Europeans and others know as
the ‘compass’. The same word, within the meaning of the period, was used
by Majid when writing about the Mediterraneans.

The presence of a magnetic needle, housed in a binnacle, is taken for
granted although no one can state with certainty how exactly it was
positioned. Two points, however, merit attention:

1 Ibra and Samaka certainly denote the needle, but the second term is only
used twice.

2 We believe we can put forward the hypothesis of a block or housing with
an axial support, on the evidence of a passage (admittedly unique) in a
commentary on the defects of the compass: ‘…resulting from the
heaviness of the rose and the poor quality of its “cupola”’. And unless it
were supported on an axis, how could the needle have floated freely
without hitting the sides of the container? How come in that case that
when discussing the defects of the compass, there is no mention of any
container? A seafarer will realize at once that the ‘heaviness’ makes the
compass insufficiently sensitive to right itself rapidly after rolling or
yawing when changing course.

In the daytime, it was possible to use a strip of cloth to indicate the relative
wind, so as to steer in relation to that and help keep the vessel on course.

In the hypothesis of a needle resting by means of a block on an axis in a
box or binnacle, how would bearings be found for the relevant course? There
are two basic configurations:

1 The dish of the binnacle fixed to the ship is graduated, but in reverse; in
Figure 6.5(a), if the ship is heading NW, the NW graduation will be to
the right of N and the needle will point there.

2 Conversely, on a graduated rose borne by the needle, and so fixed to the
needle, a single mark suffices, on the binnacle which need not be
circular: a mark that stands for the forward direction (our ‘line of trust’)
and which must be in line, or approximately in line, with a graduation
which is the course (Figure 6.5(b)).

Solution (2) is the more convenient, because the helmsman always reads the
course in front of him, almost unconsciously, whereas in (1) he has to refer to
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the point of the needle whose position varies from that of the course, and he
will thus find it less easy to keep the ship on that course.

Steering by the stars is a variant of (1). So why should the two methods
not have coexisted in this transition period? This would explain why the texts
indiscriminately use the terms al-haqqa (strictly speaking, the binnacle
only), Bayt al-ibra (strictly, the location of the pointer) and al-da’ira (strictly,
the rose). 

Finally, there is the question of how the compass was illuminated.
Doubtless naphtha was lit for certain celebrations—for example on the arrival
at Grand Nicobar: ‘…light the naphtha and dress the ship’—but was there a
properly protected night light for the compass?

Declination

If iron or steel influence the compass, this ‘deviation’, which varies with the
course, combines with magnetic ‘declination’ (the influence of the earth’s
magnetic field, independent of the course) to give a ‘variation’.

Although Ibn Majid and al-Mahri warn of errors between course and
compass (drift, etc.), which are prolifically commented on, we search in vain
for a formal definition of declination. But in two cases, we may wonder
whether the navigators had detected some inexplicable interference. The first
case, taken from Ibn Majid, brings us back to the samaka which is definitely
the needle, because ‘it [the route] is only distorted by…or by defects in the
housing of the needle whose fish is called the fish of the box (samaka)’.

Further on: ‘…the pilot thinks he is plying a (given) route but departs from
it because of his lack of knowledge or the bad positioning of a binnacle or
[because of] a needle touching the “farqadeuse” stone as stated, east or west
farqad, or faraqad, referred to Ursa Minor.’

Figure 6.5
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Al-Mahri is less vague: ‘…it could be that some roses indicate NNW…’.
In fact, since routes advised in such excellent fashion by credible men led

dependably to port (excepting individual errors of application), why worry
that the needle did not point exactly north? Did many even notice it?

The woods

In about the first half of the sixteenth century, two techniques emerged for
measuring the altitude of a celestial body: the measurement of the angle formed
by the line of sight of the celestial body with that of the horizon; and the
locating of the celestial body on a small board (or boards) graduated in
‘fingers’, whose lower edge had to be aligned with the horizon.

While we would spare the reader who is unfamiliar with nautical matters
from details of the various methods which can be used to sight the horizon
and a celestial body simultaneously with one eye, we should nevertheless
bear in mind the substantial inherent problem of the constant instability of
the ship, and the related unsteadiness of the arm that was holding the
measuring instrument: it was necessary to take a quick sighting of objects
(points or lines) that were sometimes indistinct. In short, prior to the
development of electronic plotting, neither the wood, nor even a sextant,
gave precise altitudes, the skill of the operator none the less acting to correct
this inaccuracy.

Can we then establish from the texts in our possession the relative
frequency with which graduated equipment (quadrant, astrolabe) and woods
were used at the time of Ibn Majid and al-Mahri? The term ‘wood’
(khashabat—more rarely khushb or khushub—plural of khashaba) referred to
the apparatus for measuring the distance of a star from the horizon. The
singular was used frequently in an expression describing the situation in
which stars were found at the same altitude: ‘fi khashaba wahida’. Divergent
views among present-day commentators mean that the analysis of the texts
concerning the use of woods must be approached with the greatest care.

When Barros talks of unexpected Arabic instruments (such as a quadrant)
being used to measure the altitude of the sun, is this the result of a
compulsion for ‘sensational reporting’, or a deception on the part of the
informer, who reveals shortly afterward that he himself only uses the woods?
The same, though more subtly, is the case in Celebi’s Muhit (a translation
with commentary and analysis of some of the books of Majid and al-Mahri)
written in Turkish in 1553, translated into German by Hammer-Purgstall and
from there into English by Princep, who adds to his translation a commentary
on the description of the measuring instruments. Celebi discusses in detail
the characteristics of the graduations of a wooden apparatus equipped with a
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graduated wire, which, he explains—according to al-Mahri—could take the
slack.

Al-Mahri for his part also refers to the simultaneous use of the two
techniques:

the hand altitude [taken with the apparatus], which is the measuring
woods, and the division (degrees of arc of a circle) altitude [taken with
the apparatus] is not altered by the increase in altitude of the stars,
unlike [the case of] measurement by hand…

The term khatba for khashabat is rarely used except by al-Mahri. This
quotation appears to allude to apparatus of the astrolabe type, based on the
true vertical, and al-Mahri’s statement is obviously logical for measurements
which are known to have been made on land.

Al-Mahri refers subsequently to another apparatus with wire: ‘in
proportion to the raising of the hand, the wire which is in the measure
slackens as the apparatus is brought closer to the eye, and the measurement
becomes smaller…’ How was it that the wire slackened, whereas its purpose
was to remain taut? Khoury’s answer is to attribute to khayt the meaning of
imaginary wire—a theoretical line.

Whatever the case, we should now examine what Ibn Majid and al-Mahri
have to say concerning the use of the woods, the technique which appears to
have been the most widely employed—indeed virtually the only technique—
of their era. They do not mention it a great deal, but what exactly do they say
about it?

the [necessary] condition of measurements is that on the four large
woods they be low, on the four medium ones they be standard [or normal,
usual = without correction]; between the star and the wood a wire
[must be left], and between the wood and the water also a wire like the
sharp edge of a knife, in the observer’s sight; and the condition for the
small woods is that they be high…

between the observed star and the direction of your face put 7
rhumbs as from the north to al-taïr [which would make 8 rhumbs] and
the large woods are low in measurement, spread your hand to the
maximum extent, and the four small woods are high, contract your
hand to the maximum, for the four medium ones the measurement is
normal, this being in order to dilate the ‘section’ of the horizon and the
reduce its upper part…

the best measurement is made with average woods neither too big nor
too small…
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Thus it is possible to conclude that there was a set of three small boards
increasing by series of 4 fingers, each board constituting a rigid unit, as in
Figure 6.6 for example (since we do not know its true configuration). In
place of a step-ladder gradation, the fingers could have been shaded in

Figure 6.6

Figure 6.7
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alternate dark and light bands (whence khatba). All divisions are imaginable 
since it was necessary to be able to read the fingers, and even some sub-
multiples.

Figure 6.7 offers an interpretation of how the apparatus was used. The
ideal would have been to spread three jointed elements, each of 4 fingers,
over a sector whose radius would have been centred on the eye, giving the
chords ab′ (small woods), hc (medium woods) and gd′ (large woods). Since
this was not the case (that would have made it a quadrant or an astrolabe),
and since each of the woods was held by its upper part, the problem to be
solved was as follows: to measure, successively, by means of the boards, 4f,
8f and 12f of angles with a constant distance between them of 4f, as seen by
the eye: i.e. aob′, aoc′ and aod′. Keeping a constant tension, the hand travels
through the arc of circle bcd, centred on the shoulder, but in this way the 4f
displayed on the boards (equal, by definition) are obviously not right.
Suppose, therefore, that the problem is resolved by taking c, the fourth of the
medium woods (thus 8f) as the point of departure, at normal hand tension.
Then, at 4f vertically from c, let two parallel lines be drawn to the horizon.
The fourth of the small woods (4f) and the fourth of the large woods (12f)
intersect the arc centred on the eye, at b′ and d′ respectively, where the top of
the boards should consequently be placed. The hand is thus ‘spread’ from f to
g and ‘contracted’ from e to a.

Other instruments

We have already seen that Ibn Majid and al-Mahri mention the use of
instruments other than the woods to measure the altitude of celestial bodies.

The hypothesis of a tool with an actual wire is not entirely unfounded. It
could have been of a similar type to the kamal, which appeared in about the
1540s—the wire evidently being used to measure the tangent of the angle of
elevation and therefore the elevation also.

As Tibbets has already noted (1971):

Neither Ibn Majid nor al-Mahri ever speaks of kamal, or kamal, but
many are nevertheless convinced of its use in that era. Amongst other
reasons for this conviction, we can see Majid’s propensity for
superlatives, including ‘kamalan’ = excellently, a source of
misunderstanding; thus when Majid is rounding the Laccadive Islands
(fal, or falat), and writes that, because of seasonal imperatives at certain
times of year, they should not be rounded too far out to sea, he
comments ‘do not let the Pole Star fall and (if necessary) turn
northwards, certainly do not deviate (southwards) by 3 kamalan
[meaning ‘strong’]…
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‘Strong’ (kamalan) is ambiguous. Majid uses it first in his rhyming works; the
‘strong’ or ‘weak’ values are expressed differently from the normal usage of
the term.

As for the astrolabe in the strict sense, some maintain that it was used by
the Arab mariners, on the evidence of the only altitude in figures (round
degrees) said to have been ‘taken by astrolabe’. Majid quotes some
coordinates in degrees, but he took them from geography books. Al-Mahri
gives some altitudes measured with the ‘division instrument’. Compared with
the accumulation of thousands of altitudes in fingers measured with the
‘woods’, however, it is evident that the standard measuring instrument was
not the astrolabe.

The quadrant (another circle or part-circle split into equal divisions) is also
one of the instruments to which the texts may be referring.

The calendar

In seas that are subject to marked seasonal regimes, navigation is obviously
completely dependent on the seasons. But how can a particular first day in
the solar year be accurately determined, since the stars move in precession
relative to the sun?

The question of the calendar was a source of such problems for the human
race that an acceptable solution was not found until the Gregorian reform at
the end of the sixteenth century. So where did that put the mariners of the
Indian Ocean a century earlier?

According to the computations given in the nautical manuscripts, the first
day of nawruz (or nayruz, or niruz) was determined by the appearance at
dawn of the mansion of ‘Diadem’ (Libra) at 15° declination. This first day of
niruz was around 20 November of the modern calendar.

The problems involved in drawing up an invariant calendar start here,
because niruz had 365 whole days, and leap years were unknown. The first
day of niruz thus moved forward by nearly three months in four centuries
(the great Arab astronomers wrote in around the tenth century). Compared
with this difference, the discrepancy due to precession becomes negligible.
Nevertheless, this over-short niruz was used in Ibn Majid’s time and still is
used in the Indian Ocean (although it operates differently from one region to
another and is no longer based on the Diadem).

The second problem was that the appearance of a star varies according to
latitude and to its declination, a phenomenon of which Majid was aware.
Now the astronomers ‘of the great books’, as he records, marked out in a
regular mathematical fashion each heliacal rising and setting, without taking
account of the declinations, as if they had been operating at the equator,
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whereas they had actually been observing at more than 25° north. In the
nautical manuscripts their statements concerning the lunar mansions are
copied almost day for day.

Towards the end of the fifteenth century, at 15° north, α Libra did indeed
appear at around the present 20 November, and a mariner such as Ibn Majid,
who was constantly scrutinizing the star-filled skies, could very well have
observed it. As this coincided, at least to within about ten days, with the
assertions put forward in the tenth century, he would have been tempted to
relativize the phenomenon ‘it is sometimes said that the date of the voyages
goes back by one degree per year…’. Al-Mahri, however, saw it completely
differently: ‘it changes by a quarter of a day per year…’. Another proof of
the difference in their characters!

How did the mariners of old cope with the dimly understood irregularities
of this calendar based on a star? Bearing in mind, on the one hand, their
technical heritage (falling rapidly into disuse among modern sailors), and on
the other hand, the lively practice of holding meetings for captains in the
form of ‘seminars’, on board their vessels or at the ship-brokers’, which
would have provided an opportunity for exchanges of information of all sorts,
it is possible to envisage the idea of a consensus, in around 1450, which laid
down that a vessel should cast off from particular regions toward other
particular regions at certain dates of the niruz, which were nearly always
close to within ten days, and very occasionally five days. Some ages later, as
a result of repeated experience on given lines, discussion at meetings and the
authority of certain celebrated pilots, corrections of five to ten days were
gradually applied to the preceding consensus, which was finally revised
overall, whence the slide towards modern deviations.

This consensus modelled the calendar for voyages on the calendar of the
monsoons (the very term ‘monsoon’, which is of Arabic origin, implies the
idea of seasonal periods; thus the dates of voyages were known as
mawasim).

The dividing into periods of the characteristic winds was, of course,
expressed in niruz. The listing of the periods for voyages that was grafted on
to this basic division was, on the other hand, quite complex. The outline
which follows takes into account numerous micro-climates, which could
cause the scheme to be reversed or even cancel the ‘closure of the seas’.
Moreover, a text sometimes mentions a wind that is inconsistent with the
place and the season, but the interpretation of such passages depends,
amongst other things, on the local meaning of the terms used.

The closure of the seas, ghalaq al-bahr, is the season when navigation
stops, spent as far as was possible at home in the port where the vessel was
fitted out. From the beginning of June to mid-August the south-west
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monsoon rages. On modern seasonal charts, one of the curves indicating the
force of the winds east of Socotra in July has an elongated shape marking out
the area swept by the strongest winds (known as the ‘haricot’, or ‘bean’, by
French sailors), which should be avoided by low-powered ships heading 
west. The season of the south-west monsoon and the wind itself (as well as
its numerous derivatives) constitute the kaws (although its equivalent dabur
or dabbur is more often applied to the wind itself).

With the end of the closure, in August-September, the Great Season (al-
mawsim al-kabir) begins, where good weather occurs just about everywhere.
It includes the easily managed end phase of the south-westerly winds (damani
or dimani), the entire north-east monsoon (aziyab or saba) from October to
April, and finally the equally manageable start of the south-west monsoon,
from the end of April to the end of May, still called the start (or head) of
kaws or the end of the (Great) Season (awwal, or ra’s al-kaws, or akhir al-
mawsim (al-kabir)). The end of kaws (akhir al-kaws) marks the end of the
manageable start of this wind: the extreme end of the season.

Nautical instructions

Whereas in modern times, nautical instructions refer to an essential
document in the navigator’s library that contains all the information needed at
sea which is not directly connected with charts and measurements, the
writings of Ibn Majid and al-Mahri, being comprehensive collections of
information and advice to the mariners in their particular seas, comprised,
together with the instruments described above and personal experience, the
only useful aid to navigation.

The following section is thus an account of the essential substance of the
nautical instructions used by the Arab mariners of the sixteenth century in the
Indian Ocean, focusing on the most important problems that they faced at
sea.

THE TECHNIQUES OF PLOTTING A POSITION AT
SEA USING DEAD RECKONING AND

ASTRONOMICAL OBSERVATION

A bearing, or more accurately an estimation of the ship’s position at sea,
depended on the estimated distance covered, verified as soon as possible by
the measurement of the altitude of known and observable celestial bodies, all
with reference to the nautical instructions and the experience of the
navigation officer.

Thus what mattered to the navigator were estimates of the course and the
true speed and the celestial altitudes. Now, as we have seen, distances were
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evaluated in zams. That is why the most important passages of Ibn Majid and
al-Mahri’s manuscripts as far as the mariner was concerned were those
regarding the accuracy of the course and the altitude of the stars.

We should remind ourselves that until the commercialization of the
chronometer, reliable in all climates and for prolonged periods—that is to
say, until about 150 years ago—sailors could only observe latitude. Of course
procedures using triangulation would have permitted them to work out
approximately the longitude of an important port, but not that of a ship.

As this discussion concerns Arabic navigation, which was principally
carried out between coasts that were, broadly speaking, oriented toward the
north, a merely approximate knowledge of longitude did not have to be a
serious drawback, and we shall refer to it only occasionally. However, it can
be appreciated that the co-ordination between observed latitude and longitude
estimated by distance was already in itself a technical feat.

The accuracy of the course

How accurately did the mariners keep to their course on long voyages? The
answer depends on a number of practical contingencies.

The finest subdivision of the rose in rhumbs (which is the same in the
Indian Ocean today) was at best every 2° (in good weather, the most
sophisticated modern ships can hold a course to  maximum). Ibn Majid
appears to report navigation over long distances to  rhumb, that is, an
accuracy of slightly less than 3°. He lists the types of route: coastal, direct on
the open sea, and what he calls, in this instance, a ‘deduced’ route (by
comparison with another presumed to be correct). He shows himself critical
of the estimated distances—the tirfas—accepted by the ‘ancients’:

a vessel goes south-eastward from Muscat and Hadd [until] there are 4
zams between it and the reef to the north of the Laccadives [Figure 6.8]
…the route of a second vessel wishing to reach this reef is [set] at 4/7
rhumb between SE and SE1/4E [in reality from SE1/4E towards SE:
these approximations are customary with Ibn Majid], and it reaches the
reef after a rapid course of 7 tirfas and it would have navigated 28/7 of
4 zams (more than the first)…therefore the tirfas are false…because for
one route as for two, the two distances are equal at 117 zams….

Here is our explanation of this somewhat elliptical but important passage. A
southeasterly course does indeed lead to 4z of the reef (whose latitude is
supposed to be known, taken as 5f, just as Muscat is at 12f, since 12−5=7).
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Figure 6.8 The current reconstructions include a single scale in latitude and in
‘longitudinal distances’.

Routes and orientations of Majid ---------
of Sulayman al-Mahri .........
Crossover points of their paths ⊗
The ‘true’ contours are marked with solid lines and the ‘real’ places are marked with thick
points
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For the second vessel, the route would be at 6/8 rhumb, without Ibn Majid’s
customary approximations; but let us accept 5/7 instead. The two vessels
have travelled 7 tirfas; if the southeasterly tirfa is 16z and the SE1/4E tirfa is
18z, the difference is 2z. To calculate the additional distance covered in the
second case, Ibn Majid proportions this difference at 2/7 (7/7−5/7=2/7), this
gives: 2×7×2/7=28/7, thus 4z. (Yet the text quoted above says ‘28/7 of 4z’,
which is why it seems necessary to correct it: the original probably stated
a‛ni arba‛a and the copyist transcribed ‛an arba‛a, then to make it tally with
28/7, he presumed that the proportion could only be 4/7—and not 5/7, or
better 6/8—which, when multiplied by the 7 tirfas, does indeed give 28/7.)

Verification of the extra distance travelled by the second ship is easy using
2 rhumbs, either by subtracting from the SE1/4E journey 5/7 of the
difference between the two journeys (18−16=2, and 2×7×5/7=10; 126
−10=116); or by adding to the first ship’s journey 2/7 of 14, giving 4, which
added to 112 does indeed make 116.

That leaves the question of the figure of 117 given in the text as the
common value for both journeys. The figure for the first is unquestionably
112+4, which is confirmed by the preceding calculation. So is this the result
of another slip in the copying, from 16 to 17? Whatever the reason may be,
Ibn Majid’s demonstration is correct to within one zam.

Finally we should mention that no pilot would have dared to head directly
for this immense and formidable reef that breaks the surface but is invisible
for unfathomable depths, and against which a Portuguese vessel had been
wrecked with the loss of all hands on her second voyage. Ibn Majid does not
even feel the need to issue a warning.

Al-Mahri also mentions fifths of rhumb in similar circumstances, but the
two navigators refer to no more than four examples of this type in all.
Consequently it is difficult to use these arguments as a basis for asserting the
operational reality of fine subdivisions on ocean routes.

On the other hand, where an enclosed sea is concerned, we can cite an
example from Majid involving navigation by quarters of rhumb: in the Red
Sea, at the end of one of the various routes plied down from Jedda toward
Siban (Jabal Tir), a 245 m peak that dominates its region and is surrounded
by steeply plunging inshore depths (Figure 6.9).

In the Red Sea, banks of more or less dense reefs extend a long way out to
sea; on the Arabian side, they rise up from great depths, and on the ‘foreign’
side they are often preceded by soundable depths. When sailing back up the
Red Sea, however, the mariners looked for an easier passage on the Arabian
side, because in the evening the reefs there were easier to detect thanks to the
setting sun, even though it was at a low angle; moreover, the following winds
on the way back were subject to frequent inversions, whereas on the way
down, the wind is less irregular (is this the reason why Majid increases the
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number of celestial altitudes for the voyage back and gives only a few for the
descent?).

Some of these routes ended west of Siban. But after sailing more than 300
nautical miles from Jedda, or after approximately 17° (around  of the
Pole Star), caution is essential: where are we longitudinally? (Figure 6.9
shows the soundable depths around the Dahlak, on which, in places, scarcely
more than some low rocks covered with sand and rare tufts of undergrowth
can be distinguished.) Knowing that the route is SE1/4S, Ibn Majid advises
that if the sounding line indicates a shifting towards the west, to hold
between 35 m and 24 m depth, as necessary: ‘by heeling towards the SE by 1/
4, 1/3 or 1/2 rhumb’. The manoeuvre described ensured a safe distance from
land at shallow depths.

Finally, avoiding the dangers of the Arabian coast by locating their
position with soundings when out of sight of seamarks on Huatib and Hajouat,
they then strove not to miss the extraordinary seamark of Siban before
confronting further dangers to the south.

In conclusion, the example of the route to the redoubtable Fal reef
(Laccadives) that was purely depicted in the mind, and the example of the
immediate contingencies to be finely negotiated in the Red Sea, support the 
hypothesis of a compass arrangement allowing the real sustained use of 1/4
rhumb.

Figure 6.9
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The altitudes of stars

In a system of navigation by dead reckoning where the ship’s position was
generally verified by reference to the altitudes of stars cited in the ‘nautical
instructions’, these altitudes constituted the ‘purple passages’ of the Arabic
nautical manuscripts.

Preliminary remarks

Four points need to be underlined.

1 If the ecliptical co-ordinates of the stars are said to be fixed, and are
approximately so, their equatorial co-ordinates—the only ones valid for
the observation of latitude—are, on the contrary, unstable. But the
movements of the latter are sufficiently slow (of the order of 15′ in 40
years) to have gone unnoticed by the mariners of the time.

2 The Arab mariners used only the stars, precisely because of their fixity;
the simple identification of the stars meant that long experience (helped,
if notebooks were lost, by the prodigious memory of simple people in
permanent contact with nature) was all that these authentic long-haul
voyagers needed.

3 Despite the demands of science the ephemerides used by modern sailors
are still based on a geocentric universe (their computations being
considerably simplified). Consequently we are easily able to reconstruct
the procedures used by the sailors of old.

4 When considering the measurement of celestial altitudes in the mid-
sixteenth century, we always need to bear in mind the relative
imprecision of the instruments, the instability of the platform and the
absence of corrections (refraction etc.).

To enter some little way into the minds of these mariners as they navigated
the ocean (‘such stars are at such an altitude, so I am at such a place’), it is
necessary to think back to the great empiricism inherent in the rudimentary
methods available at the time (even today the local pilot who takes charge of
a ship in delicate areas is still referred to by the Spanish as ‘el practico’).

Paired altitudes

The woods, which were, as we have seen, the only instrument in regular use,
could not measure beyond 12f, nor could they go much below 3f (the
mariners had detected abnormal effects, due to refraction, at very low
altitudes; according to Ibn Majid: ‘it is no good if a star is low over the
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water…’). Consequently the range of meridians was very restricted.
However, the mariners had noticed (Figure 6.10) that at a given reference
height at latitude L defined by the meridian of a given star a, two stars b and
c appear at a particular moment at the same height h. In the case of
Figure 6.11, the most usual configuration, c was setting and b rising. But they
could equally well be rising at the same time, b and d, or setting, c and e;
moreover, their declinations could also be related at b and c or d and e, or b
and d, b and e, etc. They were said to be ‘on a single wood or in equality
(i‛tidal)’, but other expressions were used that were either synonymous or
bore diverse nuances according to the various situations that were
encountered.

Compared with the meridians, whose theoretical efficiency is 100 per
cent, the efficiency of celestial pairings can be anywhere from 0 to 100 per
cent, because it depends upon the declinations and azimuths of the paired
stars. If the empiricism of Ibn Majid the ‘instinctive’ seems to have led him
to a real degree of clairvoyance, because he often accompanies his pairings
with proportions that appear to imply a degree of accuracy, al-Mahri missed
this evidence—surprisingly for him—confining himself to the  comment that
‘the measuring of altitude is much more satisfactory if the observed star is
meridian at the moment of observation; the reason for this accuracy is that
there is then a finishing [perfection, interruption], neither increase nor
decrease…conversely to coastal measurements, which are uncertain because
of the speed of their movement…’

In fact, the momentary relative stability of a star at its highest point (even
in equatorial regions) permits a surer observation than the upward velocity of

Figure 6.10
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stars that are a large distance apart on the meridian. The list of stars
recommended by al-Mahri consists of nine positions; in the four meridians, he
claims the paternity of the meridian of α Paon (valid at the time of the
westerly monsoon covering the three-month closure of the seas). The pairs
are those of βγ Ursa Minor, εξ Ursa Major, αβ Centauri and Canopus-
Achernar; but the altitudes disagree from one work to another.

In his usual way, Ibn Majid does not propose a coherent list of pairings.
Only by picking out examples as and when they arise in the manuscripts do
we achieve an inventory comprising about sixty pairings, some of which are
duplicates. It is then necessary to undertake the considerable task of
obtaining each of the values for each couple and checking them
mathematically. In the following we shall confine ourselves to giving the
broad outlines of the pairings and stating the results of the checks, in order to
evaluate the usefulness, or ‘profitability’, of these venerable navigators after
having described their techniques.

The inclusion in the Hawiya (written in his youth by Ibn Majid, if it is
entirely his) of many pairings—besides the classic Ursa Minor and Major,
we find αβ Centauri, Vega-Sirius, Achernar α Phoenix and Achernar-Vega —
suggests that it may have been Ibn Majid himself who inaugurated the
procedure. Then he applied himself doggedly to developing it, but in a
fragmented and sometimes esoteric fashion. Ultimately, there are few pairings

Figure 6.11
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that cover a wide range of latitudes and are accompanied by considerations
relating to the appropriate periods for voyages and observations.

Schematically, three pairing profiles are recognizable:

1 One of the stars is close to the meridian, the other is distant from it, its
speed of ascension standing for local time for the given moment, since
the slowness of its companion implies a certain delay. This is the type of
the ‘staff’ or support, of captains…‛asa, or ukkaz al-rabbabin: Achernar
not far from its meridian and Sirius away from azimuth. The latitudinal
band goes from 25° 36′ to 19° north, then descends in ‘immobilization’
from one of the stars (the supporting procedure is described later). The
passages concerning the pairing do not present any great difficulty,
provided the various names of the stars and the geographical locations
are known, and one is familiar with the style of Ibn Majid. Elsewhere, he
gives the equality of Capricorn and Canopus, with the astrolabe in
support, (in whole degrees!).

2 The two stars are at some point of declination; cases where one is lower
than 45° are, however, very rare, the other remaining indifferent. The
model of this type is the Great Solitary ‘fard al-kabir’ ξ Ursa Major and
α Aries. The analysis of this pair raises a great many difficulties. The
results are excellent for the easterly monsoon between 19° and 14° 30′,
and for the westerly monsoon between 18° and 24° north. Elsewhere the
approximation exceeds 20′ even to reach 1° 30′, which is absurd. Ibn
Majid boasts of the value of this pairing in the entire world, be it even in
the sea of Roums. Elsewhere he merely gives it as ‘weak’ in Zang lands
and strong in high latitudes. But why does he say nothing of this pairing
in the voyages to the Moluccas (the vessels rounded Ceylon very far out
to sea), nor even abreast of Somalia, as we already saw him do with
regard to ‘bachi’ in those waters?

3 This is primarily a variant of (1) and (2), but sufficiently original to
merit separate examination: it is the ‘qayyid-immobilization’. There are
situations when twinning occurs at a time when it is impossible to
observe: during the day, for example. Majid solved this by
acknowledging inequalities in the pair, so that one of the stars is always
observed at a particular height, and, as it were, immobilized along a band
of latitude inside which its companion follows a remarkable gradation.

We should also mention Ibn Majid’s idea of ‘abdal-permutation’, using pairs
for which the differences of right ascension are close to twelve hours —the
Great Solitary being one example. As these stars are on nearly opposite
meridians, they return once again to equality about twelve hours later. Of
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course the second equal altitude is different from the first, and the
phenomenon does not occur in a single night, except in high latitudes, in
winter; and these sailors never observed beyond 25° north or south (Figure 6.
12). This particular feature of the permutation has an additional application in
aiding the use of immobilization.

Finally, we must ask whether Ibn Majid grasped the relationship between
positional errors and results of the pairings. Although we cannot maintain it
with certainty, it is nevertheless the case that in one part of the characteristics
of the ‘dara’ib’ (in other words, the results), which include his finding of the
‘tartib-arrangement’, for each pair he often came close to the truth: ‘when the
latitude changes, the altitude of such a pair, or of the companion of the
immobilized [star], evolves by so many fractions of a finger per finger of
meridian’. But were his margins of latitude too narrow to have enabled him
to detect certain inconsistencies in certain pairs? 

Co-ordination between the measurement of altitude and the
reading of the chart

This co-ordination was not always easy as the following two extreme
examples show:

1 For the descent southwards (which must already have been situated at
the bottom of the chart, since it was called safil), the alliance of the
references to the Pole Star and to βγ Ursa Minor is perfect. On the other

Figure 6.12 In each of the abdal-permutation positions the two respective common
altitudes or elevations, h1 and h2, are not equal
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hand, the link between these and εξ Ursa Major arouses justified
controversy. Disagreement between astronomical observations and chart-
drawing persisted for a long time, particularly in relation to the south of
Madagascar and the Mascarenes (but excepting the Comoros Islands,
which were very precise). Is this evidence of a break in Arabic
navigation, as in the Moluccas to the east or at Jedda to the north? But
the Arab mariners rejoined Sofala in various ways. It is easy to imagine
ourselves alongside Majid on one of the coastal routes, and to experience
the full force of a sailor’s terror amid currents as violent ‘as in Cambay’
in the turbulent and perilously shallow waters of the immense Zambezi
delta. As for the open-sea route, this headed firstly south-south-east
before heading on to the level of Mambone-Chiluan, accurate to within
about 20′.

2 In contrast to these random inaccuracies, we have seen precision of Ibn
Majid’s altitudes by the Southern Cross in the Red Sea. One of these is
of particular interest. First it is a unique example of equivalence to the
Pole Star—7.25f: two equal and opposite meridians, giving values of 16°
33′ and 16° 36′ N, which are surprisingly close figures. Furthermore it
locates two treacherous reefs in a coral series jutting out from the Farsan
(an area that is uncertain on modern charts, so it would be exciting to see
one of the bearings defined with the help of a fifteenth-century
document —part of the admirable solidarity of sailors of all eras!)

CONCLUSION

These sparse studies and reflections on documents which are themselves
singularly lacking in overall coherence, cannot pretend to draw definitive
conclusions about Arabic nautical knowledge in the Indian Ocean in around
1500.

As we have mentioned in passing, it still remains to discover, interpret and
exploit numerous sources that are dispersed in the archives of the nations
which were part of the complex history of navigation in the Indian Ocean.

The preceding pages are only a minor contribution to a far greater
collective effort, which will never have the goal of enriching our own
navigational science, since we have now entered irreversibly into the domain
of electronically assisted navigation. Will our contribution therefore be only
a nostalgic farewell from the sailors of the sextant and marine chart to their
precursors of the ‘woods’ and the tirfa? A last gesture of complicity between
sailors on the gangway, before they hand over to the anonymous servitors of
‘central operations’?
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To think so would be a grave injustice to those two sailors Ibn Majid and al-
Mahri (one more of a ‘sailor’, admittedly, than the other), whom we have
come to appreciate in spite of their faults, which indeed make them seem
even closer to us. Also, it would overlook the fact that, for all their ‘scientific’
imperfections, they were the heirs of a prestigious secular tradition of
rigorous thought, to which the whole of the present work bears witness.

NOTES

1 Tr. note: a colourful and boastful old sea dog, hero of a French cartoon.
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7
The development of Arabic science in

Andalusia
JUAN VERNET AND JULIO SAMSÓ

INTRODUCTION

The historical context of this chapter1 extends from 711 (the date of the first
Muslim conquest of the Iberian peninsula) to 1492, the year when Granada was
taken by the Catholic kings, who also brought about the demise of the Banu
Nasr, the last independent Muslim dynasty in Spain.

Within this context we shall study the development of the exact sciences
and the physical and natural sciences which had Arabic as their language of
expression—even though the sources have sometimes been preserved in
Latin, Hebrew, Castilian or even Catalan—in a world politically controlled
by Islam, excluding a priori medicine but not pharmacology, given its direct
relationships with botany. This means, in principle, leaving aside the
contributions (very humble, certainly, but extremely interesting from a socio-
historical point of view) of the Mudéjares (Muslims living in a politically
Christian environment) and of the Moriscos (Muslims apparently converted
to Christianity at the end of the sixteenth and beginning of the seventeenth
century); the main reason for this exclusion is the lack of precise studies,
even though research in this area had been initiated for medicine.2 With
regard to the geographical context, it should be noted that the term Andalusia,
as used here, in no way corresponds to the boundaries of the region known as
Andalusia today, but is intended to translate the term al-Andalus used by the
Arabs to describe Muslim Spain: a political, and often cultural, reality, whose
northern border extended to the Pyrenees in the eighth century, but which
gradually contracted during the Christian ‘reconquest’ until it became limited
to the Kingdom of Granada from the thirteenth century onwards.

The history of this period, spanning nearly eight centuries, is known in a
very uneven way: reasonably well up to the twelfth century and then rather



poorly, because periods of decline tend to attract much less attention from
historians. In addition, if we consider the development of Arabic science in
Andalusia alongside that of eastern science, we note certain interesting
differences: first, in Andalusia we find the survival of a modestly important
Latin-Visigothic-Mozarabic science (and culture) which dominated until
about the middle of the ninth century and survived until at least the eleventh
century. An ‘easternization’ of Andalusian science occurred mainly between
850 and 1031 (the fall of the caliphate of Córdoba): new contributions from
eastern science became increasingly rare after the eleventh century,3 and
Andalusian science grew progressively more independent, limiting its
cultural interactions generally to North Africa. The eleventh century marked
the high point of Andalusian science, whose overall development occurred at
least a century after the science of Mashriq. This advance slowed in the
fundamentally philosophical twelfth century, and decline began from the
thirteenth century at the time of the birth of a scientifically active period in
Christian Spain (under Alfonso X). Andalusia hardly benefited at all from the
scientific revival that occurred in the Orient from the thirteenth century.
Throughout this period, Andalusian scientists cultivated astronomy, botany,
medicine and agriculture, in their particular way, often leaving aside
mathematics; however, recent research into key figures such as King al-
Mu’taman of Saragossa, Ibn Mu‛adh al-Jayyani or Ibn Bajja may require us
to change our view in the fairly near future.

THE SURVIVAL OF THE ISIDORIAN CULTURE
(711–850)

The Muslim conquerors of Spain were neither men of science nor cultured
people. The first waves of invasion involved primarily Berbers whose
arabization was very recent;4 in addition, Hispano-Arab historiographers
(notably Ibn al-Qutiyya) have shown certain highly placed figures among the
Arabs who entered the Iberian peninsula in the eighth century as individuals
of a relatively low cultural level. We can, of course, find exceptions: the first
Andalusian Umayyad, ‛Abd al-Rahman I al-Dakhil (756–88), made attempts
to acclimatize oriental plants in the gardens of his Rusafa palace—named
after the palace founded by his grandfather Hisham at Damascus—and
similar experiments were conducted by his courtiers; we can therefore see
here in embryo the botanical gardens established in Spain from the eleventh
century (Samsó 1982). But these are very exceptional cases: Muslim tradition
attributes to one of the tabi‛un, Hanash al-San‛ani, an aptitude for divination
as well as for the determination of the azimuth of the qibla for the great
mosques of Córdoba and Saragossa, whereas everybody, at least from the tenth
century onwards, was aware of the incorrect orientation of the mosque at
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Córdoba.5 The problem was obviously too sophisticated for the knowledge
of the time in Andalusia, and historical sources related to the conquest
contain references to the practice of divination—whether astrological or not
(the specific technique is rarely identified)—as much in Muslim circles as in
Christian ones (Marin 1986: 509–35; Samsó 1985c). However, there is a
certain amount of data which enables us to defend the theory of a surviving
Latin-Visigothic astronomical and astrological tradition in Muslim
Andalusia: the Dhikr bilad al-Andalus, written by an anonymous Maghreb
author in the second half of the fourteenth or at the beginning of the fifteenth
century, attributes to King Sisebut (612–21) some writings in verse on
questions relating to astronomy, astrology and medicine; we know nothing
about the medical writings of Sisebut but he is beyond doubt the author of
Epistula metrica ad Isidorum de libro rotarum, in which he gives an accurate
and rational explanation of the eclipses of the sun and moon. Likewise, the
famous Hispano-Arab historian al-Razi refers to Isidore of Seville’s
reputation as an astrologer, which can be explained by the astronomical
section of his Etymologies as well as by his book De natura rerum (Samsó
1985b). The encyclopedic work of Isidore is, in fact, more interesting than it
may at first appear: it contains, for example, reminiscences of the Babylonian
goal years (années-limites, Ziel-jahre), which are fundamental to
astronomical almanacs like that of al-Zarqallu (Samsó 1979a).

The clearest evidence of the survival of a Latin-Visigothic tradition in the
field of astrology is found in an Alfonsine work, the Libro de las Cruzes.
This book is the Castilian translation of an Arabic astrological text, numerous
passages of which have recently been discovered (Vernet 1979e; Muñoz
1981), including thirty-nine lines of verse of an urjuza of ‛Abd al-Wahid b.
Ishaq al-• abbi, court astrologer to Emir Hisham I (788–96), which
correspond very well to chapter 57 of the Libro de las Cruzes.6 We therefore
have a text which is, as far as we know, the oldest source on Andalusian
astrology and which, in addition, was composed in a period for which we do
not possess the slightest clear trace of the introduction into Andalusia of
oriental astrological texts, of the Indian, Persian or Greek tradition. It should
be added that both the Arabic texts that have been preserved and the Castilian
Alfonsine translation stress the fact that ‘the system of crosses’ (tariqat
ahk• am al-sulub) was the ancient system of astrological prediction used by
the Rum (Romans? Christians?) of Andalusia, Ifriqiyya and the Maghreb
before the introduction of more advanced systems from eastern astrologers.
We can thus conclude that the Libro de las Cruzes represents the last stage in
the evolution of a manual of astrology which originated in early Latin and
was in use in Spain and North Africa before the Muslim conquest. This type
of astrological technique also survived the period of easternization in
Andalusia: we have evidence for believing that it was employed by the
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astrologers of al-Mansur b. Abi ‛ mir (981–1002) (Vernet 1970), that it was
revised later—probably in the eleventh century—by a certain ‛Ubayd Allah
who is usually identified with ‛Ubayd Allah al-Istiji (an astrologer
contemporary with qadi Sa‛id of Toledo) and that it must still have been
appreciated in the thirteenth century, because Alfonso X ordered its
translation.7

One should not be surprised by this probable Latin origin of the ‘system of
crosses’ because it confirms what we know of the Andalusian culture of the
time. Eulogius of Córdoba—well known for his inspiration of the ‘voluntary
martyrs’ Christian movement, beginning in 850—was a lover of Latin books.
He had in his library the codex R.II 18 (Ovetense) from the Escorial which
contains part of the De natura rerum by Isidore of Seville, some geography
texts (derived from Etymologies and other sources), a reference to the eclipses
of 778 and 779, the catalogue of the Córdoba church library, etc., all of
which is accompanied, by marginal notes in Arabic which are also found in
other Latin manuscripts containing the Etymologies. More spectacular still is
the celebrated Isidorian T map preserved in a manuscript in the National
Library of Madrid whose legends are written in Arabic: it was drawn either
by a Muslim who was very familiar with Isidorian tradition, or by a highly
Arabianized Christian (Menendez Pidal 1954). If we pass from geography to
history the evidence becomes even clearer, but this chapter is not the most
appropriate place to enlarge upon this: it is sufficient to mention, as an
example post-dating the period which concerns us here, the Arabic
translation made at Córdoba of Historiarum adversos paganos libri septem
by Paulus Orosius.8

Returning to the history of the sciences, we shall consider later the
Mozarab cultural elements found in the Calendar of Córdoba. First, a
reading of the chapter on Andalusian physicians in the Kitab tabaqat al-
atibba’ wa-l-hukama’ of Ibn Juljul al-Andalusi (Vernet 1979d) is extremely
instructive because this author indicates that Andalusian medicine was
predominantly practised by the Christians until the time of ‛Abd al-Rahman
III al-Nasir (912–61) and that ‘in Andalusia, medicine was practised
according to one of the books of the Christians that had been translated. Its
title was Aphorism, a word meaning summary or compilation’. The term
aphorism does not here imply a reference to the Aphorisms of Hippocrates,
because if the definition of Isidore of Seville (Etym. 4, 10) is to be accepted,
this word denotes a literary style in the medical literature. Moreover, of the
six physicians mentioned by Ibn Juljul under the emirates of Muhammad
(852–86), al-Mundhir (886–8) and ‛Abd Allah (888–912), five were
Christian, two of these having names as characteristic as Hamdin b. Ubba
(i.e. Oppas) and Khalid b. Yazid b. Ruman. Furthermore, one of these five
physicians, called Jawad, is the author of Monk’s Medicine. This situation
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changed with the caliphate of ‛Abd al-Rahman III, but the Latin medical
tradition survived in the person of Yahya b. Ishaq, author of five notebooks of
aphorisms, who consulted a monk about a case of otitis from which the
caliph was suffering. All of this is confirmed by the physician Sa‛id b. ‛Abd
Rabbihi (d. c. 953–77) who, in his Urjuza fi al-tibb, says that ‘the highest limits
[of medicine] will only be reached by one who knows [the ancient texts]
translated into Arabic’ (al-mu‛arrabat) (Kühne 1980).

A third area in which the survival of a Latin tradition seems quite clear is
agronomy. Until recently it was fairly generally accepted that there existed a
direct tradition from Columella amongst Andalusian agronomists and it was
even postulated that there was an Arabic translation, made in Spain, of his De
re rustica. This theory was based on quotations by Ibn Hajjaj (c. 1073) of an
author called Yunyus, who was identified as being Iunius Moderatus
Columella.9 But it has been shown that the similarities between quotations
from Yunyus and certain passages of De re rustica are more probably due to
the identical nature of the subject treated, contradictions also exist, and
greater similarities can be found by comparing the quotations from Yunyus
with an agronomical work by Vindanios Anatolios of Berito preserved in an
Arabic translation that derives from an earlier Syriac translation. Moreover,
Yunyus is a distortion of the name Vindanios (Rodgers 1978).

However, despite the blow to the theory of a tradition from Columella in
Andalusia—which, for some scholars, would have constituted the essential
difference between Andalusian agronomy and eastern agronomy—even the
most critical authors have not abandoned the idea of a survival of Latin
agronomy in Muslim Spain, given that Ibn Hajjaj asserts that his statements
are founded on the tradition of the Rum (Mozarabs) of Andalusia and that Ibn
al-‛Awwam (twelfth century or first half of thirteenth) says that he collected
the opinions of non-Muslim authors, without quoting their names but
introducing the quotations with phrases such as ‘there are agronomists who
say…’, ‘others who say…’. One of the anonymous sources has been
identified in an Arabic manuscript in the Bibliothèque Nationale in Paris. Its
author was clearly a Christian because he eagerly defends the evangelical
procedure of fertilizing a barren tree by threatening it with an axe. The text is
a short treatise of the tenth century, whose author is a Mozarab, steeped in
Arabic culture, who quotes the classical authors in eastern Arabic translation.10

THE DEVELOPMENT OF EASTERN CULTURE
(850–1031)

The picture we have so far drawn is inevitably one-sided. We have
emphasized the survival of the Latin-Visigothic culture because this is the
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most characteristic feature, but we do not claim it to be the only one. Moreover,
the chronological milestones of our exposé are simply points of reference: we
have given a sufficient number of examples to demonstrate that Latin culture
survived beyond 850, alongside Arabic culture. However, at least after the
accession to the throne of the first Umayyad (756), the process of the
easternization of Andalusian culture began with a period of Syrian influence,
followed by a phase of Iraqi influence, which began in the ninth century and
was consolidated under Emir ‛Abd al-Rahman II (821–52).11 Travellers who
departed for the East, either to study or to accomplish their duty of
pilgrimage, returned with the latest inventions. The Great Mosque of
Córdoba, founded in 786 by ‛Abd al-Rahman I, became a centre of cultural
diffusion and medicine, astronomy and mathematics were slowly introduced
into the higher education given in the mosques or in private houses (the
madrasa appeared much later).12 We know nothing about the development of
other scientific institutions, such as hospitals (there surely were some) and
observatories (which perhaps did not exist), but the situation is altogether
different with regard to libraries (Ribera 1928a,b). There was a constant
interest by certain emirs in books for these: ‛Abd al-Rahman II, a reader of
works of philosophy and medicine, sent ‛Abbas b. Nasih to the East to buy
books, and the existence of a royal library is attested from the time of the
emirate of Muhammad (852–86). It was considerably developed under al-
Hakam II (961–76), even if we reject the total of 400,000 volumes which
tradition claims for it in that caliph’s day (the same number is reported for
the great library of Alexandria). In addition, private libraries appeared in
large numbers during the tenth and eleventh centuries at Córdoba, Seville,
Almeria, Badajoz, Toledo, Saragossa, etc.

The role of promoting this easternization of scientific culture must perhaps
be accorded to ‛Abd al-Rahman II. Our anonymous Maghreb author of the
fourteenth or fifteenth century tells us that it was he who first introduced
astronomical tables to Andalusia (Huwa awwal man adkhala kutub al-zijat),
as well as books of philosophy, music, medicine and astronomy (Molina
1983:138). In fact, it was in this period that ‛Abbas b. Firnas (d. 887) (Terés
1960), or ‛Abbas b. Nasih (d. after 844) (Terés 1962), introduced a version of
the Sindhind tables which is usually identified with that of al-Khwarizmi. It
is possible that the al-daftar al-muhkam of which Ibn Firnas speaks in a poem
is also a zij.13 At all events, astrology was fashionable at the court of
Córdoba and the emir was surrounded by a court of poet-astrologers such as
Ibn Firnas, Ibn Nasih, Yahya al-Ghazal (Vernet 1979e) and Ibn al-Shamir
(Terés 1959). The emir’s interest in astrology may have originated from the
important astronomical events which took place during his reign, including
the solar eclipse of 17 September 833, virtually total at Córdoba, which
terrified the townspeople and led them to gather at the great mosque for the
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ritual prayer of the eclipse. There was also a massive shower of shooting
stars between 20 April and 18 May 839. From this time onward at least, the
astrologer became a prominent figure who frequently enjoyed the confidence
of emirs, and later of caliphs, which aroused the jealousy of the pious
fuqaha’ and of certain poets. There is evidence of anti-astrological dispute,
which also became anti-astronomical, in the ninth as well as the tenth century
(Samsó 1979b).

At the same time, this was a period in which innovations were continually
being introduced. To give just a few examples: easternization in the field of
medicine may have much to do with the presence in Córdoba of the
physician al-Harrani, who practised at the court of ‛Abd al-Rahman II. Ibn
Juljul, who refers to this figure, also mentions his grandsons (?) Ahmad and
‛Umar b. Yunus al-Harrani, who studied at Baghdad between 941 and 962
with Thabit b. Sinan b. Thabit b. Qurra, also a Harranian. There is thus a
continuity of tradition, and it has been suggested that, on their return to
Andalusia, they may have introduced to that country both the works of
Thabit b. Qurra and the techniques of talismanic magic which were to
blossom in Spain in the eleventh century with the Ghayat al-hakim (Picatrix)
of Abu Maslama al-Majriti. In the tenth century also Ibn Juljul used Latin
and Arabic sources to write his Tabaqat al-atibba’, and amongst the latter is
the Kitab al-uluf by Abu Ma‛shar. The interest in this type of astrology is also
apparent in the introduction of the Liber Universus of ‛Umar b. Farrukhan al-
Tabari to Córdoba towards the end of the tenth century (Pingree 1977).
During this century the Rasa’il of Ikhwan al-Safa’ and the Tabula
Smaragdina (Stern 1961) were also introduced, Yahya b. Ishaq wrote a
manual of medicine in which he brought together all the Greek medicine
known in his time (Meyerhof 1935, esp. p. 6), and Ibn Juljul provided a list
of the sixteen works of Galen which it was necessary for a student of
medicine to know.14

Andalusian science began to appear productive. From this point of view,
the most outstanding figure in the second half of the ninth century is perhaps
‛Abbas b. Firnas (d. 887), who was not only a poet and astrologer but also
carried out experiments in flying at the Rusafa of Córdoba— reminiscent of
similar attempts made in England in the eleventh century by the monk
Eilmer of Malmesbury; he introduced a new technique for cutting rock
crystals, and constructed a kind of planetarium in a room of his house as well
as an armillary sphere that he presented to ‛Abd al-Rahman II, and, finally, a
water-clock equipped with moving robots. This miqata or minqana enabled
one to determine the hour for canonical prayers when there was neither sun
nor stars to serve as an indicator; it was given to Emir Muhammad (Vernet
1980a,b).
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‛Abbas b. Firnas is a quite exceptional figure in the ninth century without,
however, being a real man of science but rather a courtier endowed with an
encyclopedic curiosity and the skill to exploit his knowledge. The true
development of Andalusian science occurred during the following century,
especially in its latter half, when we find: a popular calendar, the Calendar of
Córdoba, which contained the first known evidence of the Andalusian miqat;
the development of a native pharmacology; and the school of Maslama of
Madrid, the starting point of Hispano-Arabic astronomy.

The Calendar of Córdoba

The Calendar of Córdoba15 was compiled for al-Hakam II, before or after
his accession to the caliphate (960), by the physician and historian ‛Arib b.
Sa‛id16 and the Mozarab bishop Rabi‛ b. Zayd (Recemund). This work
contains a curious mixture of different traditions: Latin and Mozarab
(references to the feasts of Christian saints, customary farming practices in
Spain); pre-Islamic Arab (meteorological predictions based on the ancient
system of the anwa’); and Greco-Alexandrian (dietetic references which the
text ascribes to the school of Hippocrates and of Galen and which correspond
closely to the Hippocratic Diet (Samsó 1978). But it also contains the new
astronomy created by the Arab-Islamic culture on the basis of the Indo-
Iranian and the Ptolemaic traditions. Thus the text gives the date when the
sun enters the twelve signs of the zodiac according to the Sindhind and the
Ashab al-mumtahan, and we have been able to confirm that this refers to the
zij of al-Khwarizmi and possibly that of Yahya b. Abi Mansur or Habash al-
Hasib (Vernet 1979a, esp. pp. 28–30). Furthermore, the Calendar gives a
whole series of numerical values which demonstrate the existence in tenth-
century Andalusia of the miqat tradition, revealed here for the first time.17

Thus the text contains:

1 Twenty-three meridian heights of the sun, distributed throughout the
year, which correspond to a latitude of 37; 30° (plotted for Córdoba in
one of the manuscripts of the Toledan Tables) and an obliquity of 23;
50° (a value rounded from the Ptolemaic figure of 23; 51, 20°).

2 The shadows corresponding to the preceding meridian heights,
calculated for a gnomon g=1, since the gnomon used had the height of a
man. These values appear, nevertheless, to be derived from a table
calculated for g=12 or, rather, from two tables of the same type,
calculated probably using arithmetical methods, one giving the shadow
corresponding to the entry of the sun in the signs of the zodiac and the
other to its passage through the middle of each sign.
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3 Twenty-four values (two per month) corresponding to the length of the
day and of the night throughout the year, computed by means of the
same parameters as those above, using a trigonometrical calculation,
with results that are generally correct.

4 Twenty-eight values for the duration of twilight: this series is without
doubt the most surprising since it seems to be calculated for an arc of
depression of the sun of 17°, using an approximate formula similar to
that of Brahmagupta:

Here, then, is one example of the extensive evidence that exists to
demonstrate the influence of the Indo-Iranian tradition of astronomy in
Andalusia, which we shall be emphasizing later in this chapter. However, the
four series of numerical values that we considered above employ very
different methods and pose a problem concerning the source used by the
authors of the Calendar: given that neither ‛Arib b. Sa‛id nor Rabi‛ b. Zayd were
astronomers, they may have used the miqat tables for a latitude of 37; 30°
which could be for Córdoba or another town of the same latitude (Samsó
1983b).

The development of a native pharmacology

Even if an Andalusian pharmacology can be said to have existed before the
era of ‛Abd al-Rahman III, a fundamental development occurred during his
caliphate. The Andalusian physicians had difficulty in identifying the simples
(medicinal plants and resulting medicines) referred to by Dioscorides, in his
De materia medica, which was known through an Arabic translation made in
the East by Istifan b. Basil. In 948(?) Caliph ‛Abd al-Rahman III received
from the emperor of Byzantium (Constantine VII?) a magnificent illustrated
manuscript of Dioscorides in Greek which could not be understood because
there were no Hellenists in Córdoba at that time. At the caliph’s request the
Byzantine emperor sent the monk Nicolas to Andalusia and with his help, a
group of Andalusian physicians undertook a systematic revision of the
botanical nomenclature used in the Arabic version of Dioscorides,
succeeding in identifying most of the simples (Vernet 1979b; Meyerhof 1935;
Dubler and Terés 1952, 1953, 1957). This had important consequences,
amongst which was a rapid expansion of pharmacology and Hispano-Arabic
botany which began shortly after the completion of the work on Dioscorides,
and one of whose first manifestations was the botanical work of Ibn Juljul, to
whom we have already referred more than once; he knew the collaborators of
monk Nicolas and he made haste to write a book on the plants and remedies
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identified and a second on the medicines which had not been mentioned by
Dioscorides (Garijo 1990, 1992a, b).

This was also the period that witnessed the first manifestations of the
maturity of Andalusian medicine. Let us briefly mention the name of ‛Arib b.
Sa‛id, who was the author, in about 964, of a treatise on obstetrics and
paediatrics which also contained one of the first Andalusian references to
medical astrology. Much more important is the work of Abu al-Qasim al-
Zahrawi (born after 936; died around 1013), whose Tasrif contains one of the
most important treatises on surgery of the entire Middle Ages, as well as a
treatise on pharmacology in which he uses advanced laboratory techniques
that were in use among Egyptian or Iraqi artisans and perfumers who had
preserved procedures of Mesopotamian origin. His work on pharmacology is
also of theoretical interest because, basing himself on the theory of the
humours, the four therapeutic qualities of Hippocrates (cold, hot, wet, dry)
and the Galenic degrees of those qualities, he investigated the problem of the
dosage of simples to be used in a compound medicine: he may have known
the De medecinarum compositarum gradibus of al-Kindi.18

The school of Maslama al-Majriti

Maslama had a similar role in the history of Andalusian astronomy to that of
Abu al-Qasim in the history of medicine. Born in Madrid, he studied at
Córdoba, where he died in 1007. An astrologer of renown, he foretold the
fall of the caliphate as well as certain details of the politics which preceded
the fitna. However, his prestige stemmed in particular from his adaptation of
the tables of al-Khwarizmi, which are consequently often called the zij of al-
Khwarizmi-Maslama. We have already mentioned the introduction of the
Sindhind, probably in the Khwarizmian version, to Andalusia during the
emirate of ‛Abd al-Rahman II. This text, known in Spain in its condensed
form, without demonstrations, was the object of an adaptation by Maslama
and his disciple Ibn al-Saffar (d. 1034), which has been preserved in a Latin
translation by Adelard of Bath (Suter 1914; Neugebauer 1962a,b).
Establishing the precise contribution of the Andalusian astronomers to this
zij is not easy, given that al-Khwarizmi’s original text appears to be lost and
we can only try to reconstruct it by means of the data preserved in Ibn al-
Muthanna’s commentary (Millás Vendrell 1963; Goldstein 1967a,b) in the
Liber de rationibus tabularum of Abraham b. Ezra (Millás Vallicrosa 1947),
or in similar texts, such as the Kitab fi ‛ilal al-zijat of al-Hashimi.19 The
presence in this zij of al-Khwarizmi of material corresponding to the Indo-
Iranian, Greco-Arabic and Hispanic traditions has been established. One
could contend a priori that the Indo-Iranian material is from the original zij,
but this is not always true, notably for the tables of mean motion, since the
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basic parameters are of Indian origin but the disposition of the tables
transmitted shows an important formal modification that is traditionally
attributed to Maslama. In fact, the original tables used the Persian solar year,
and the date of origin was the beginning of the era of Yazdegerd III (16/06/
632), whereas the tables that have been preserved use the Muslim lunar year
and the beginning of the Hijra (midday on 16/07/622) as the date of origin.
The intervention of Maslama in the tables of eclipses has also been pointed
out (Pingree 1976:165), as well as in the tables for computing the latitude of
the planets, although in this last case the results that he obtained were not
very good (Kennedy et al. 1983:125–35). A similar situation exists with
regard to the part of the zij that was influenced by Ptolemy: on the one hand,
al-Khwarizmi was a contemporary of Caliph al-Ma’mun, i.e. he lived at a time
when the Almagest and the Handy Tables were very well known; on the
other hand, there is sometimes a more or less well founded impression that
the original material may have been reshaped and have been subject to
interpolations by Maslama or someone else. The same applies to certain
trigonometric tables, such as the sine table, calculated for a radius of 60 p.
This table is the result of the division by two of the table of chords in the
Almagest. This contradicts the evidence of Ibn al-Muthanna, who states that
the value of the radius used in the sine table of al-Khwarizmi was 150 p. We
can also postulate a contribution from Maslama for all the Hispanic material,
for example, the reference to the Hispanic era (38 BC) in the chronological
part of the zij or the use of the meridian of Córdoba for certain tables, such as
those for the determination of the conjunction and opposition of the moon
and the sun—derived from the original table but modified by Maslama— or
the tables for the mean motion of the ascendent node of the moon, which
contains a supplementary table for the meridian of Córdoba and for the
period between 970 and 1174 (Neugebauer 1962a:61, 63, 95, 108–10). There
is a similar example in the tables of the projection of radii (projectio radii
stellarum), which comprise nearly a fifth of all the numerical tables of the
zij: they are calculated for a latitude of 38; 30° (Córdoba) and do not
coincide with the original tables of al-Khwarizmi preserved by the Eastern
astrologer Ibn Hibinta (Baghdad, c. 950). A recent work shows that the work
of Maslama improved the calculation methods of al-Khwarizmi because the
tables of the astronomer from Córdoba give accurate results and are much
easier to use than those of al-Khwarizmi (Kennedy et al. 1983: 373–84;
Hogendijk 1989).

Ascribing certain modifications to Maslama is sometimes more
problematical, and the intervention of later hands must be considered. This is
the case with the table for the visibility of the new moon, based on an Indian
theory of visibility but calculated for a latitude of around 41; 35°, much
farther north than Córdoba, which could correspond to Saragossa, and was
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thus probably established in the eleventh century, a period when the exact
sciences underwent rapid expansion in that town (Kennedy et al. 1983:151–6;
King 1987c:189–92; Hogendijk 1988b).

Maslama’s work in connection with astronomical tables was not limited to
the zij of al-Khwarizmi. In his Tabaqat al-Uman, Sa‛id of Toledo tells us that
Maslama ‘applied himself to the observation of the heavenly bodies and to
understanding the book of Ptolemy entitled Almagest’ and that he was ‘the
author of a summary of the part of al-Battani’s table concerning the equation
of the planets’.20 These three affirmations must be treated independently.

1 With regard to the observations of heavenly bodies, we need only recall
the evidence of al-Zarqallu, who stated that Maslama observed the star
Qalb al-Asad (Regulus) in 979 and that he established its longitude to be
135; 40°. This evidence agrees with the value of the longitude of this star
found in the small table of twenty-one stars which accompanies his
commentaries on the Planisphaerium (Millás Vallicrosa 1943:310–11;
Kunitzsch 1980); the determination of the longitude of this star was used
by Maslama to establish a movement of precession of 13; 10° with
respect to the catalogue of stars in the Almagest, which permitted him to
determine the longitude of the rest of his stars.

2 We know nothing of Maslama’s work on the Almagest (his disciple Ibn
al-Samh appears to have written a résumé of it) but this work was
obviously well known to the school of Maslama whose interests were
not confined to the Sindhind: Ibn al-Saffar refers to Ptolemy’s Geography
in his work on the use of the astrolabe and a manuscript related to the
translations made in the monastery of Ripoll towards the end of the tenth
century gives a structuring of the climates of the earth which may derive
from the Almagest or Geography.21

3 We do not know either what Maslama took from the zij of al-Battani,
although the edition of Nallino contains half a dozen tables attributed to
Maslama but probably false. However, it is clear that the school of
Maslama knew the works of al-Battani well since, in his treatise on the
construction of the equatorium, Ibn al-Samh used al-Battani’s 
parameters for the longitudes of the apogees of the planets, while the
values for the eccentricities and the radii of the epicycles could have
been derived from either al-Battani or the Almagest (Samsó 1983c,
Comes 1991).

Moreover, Maslama produced a version of the Planisphaerium of Ptolemy:
given the conceivable connection between Maslama and the monk Nicolas,
and thus the possibility that Maslama had learnt Greek, it has been suggested
that he may have translated the Planisphaerium; it is equally possible that he
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revised an eastern Arabic translation to which he added his commentaries.
The Greek original of this work has not been preserved, and the question
cannot be resolved without first studying all the available material, i.e. (1)
Maslama’s version of the Planisphaerium in a Latin translation by Hermann
of Dalmatia (1143)22 and in a Hebrew version; (2) an Arabic version (earlier
than Maslama?), preserved in manuscript;23 (3) Maslama’s commentaries on
the Planisphaerium (Vernet and Catala 1979, Kunitzsch and Corch 1994).

The last text contains a series of additions to the work of Ptolemy: three
new methods for dividing the ecliptic of the astrolabe (Ptolemy gives two
others); three procedures also for dividing the horizon, analogous to those
given for the ecliptic, which fill a gap in the Planisphaerium; three methods
for locating the fixed stars of the rete, or star map, on the astrolabe, using
ecliptic, equatorial and horizontal co-ordinates. In a second part of the work,
Maslama employs only one trigonometric tool: the theorem of Menelaus on
which he had previously written several notes that have been preserved in a
Latin translation (Björnbo and Suter 1924:23–4, 39, 79, 83). He deals with the
determination of the right ascension of the beginning of each zodiacal sign,
using a similar procedure to the one that he had already described for
dividing the horizon from the basis of right ascensions; the determination of
the declination of a star; the determination of the degree of culmination of a
heavenly body in the sky (using certain formulae of al-Battani); and the
determination of the degree of the zodiac that rises or sets with a heavenly
body. Finally he gives a table of ‘inclinations’ of the fixed stars for a latitude
of 38; 30° (Córdoba), whereas in an example in the first part of the work he
uses a latitude of 39°.

These commentaries of Maslama on the Planisphaerium are not in any
way a treatise on the construction of the astrolabe but they doubtless
influenced the treatises of Andalusian origin on the construction on this
instrument, notably the work of Alfonso X (Samsó 1980a,b,c,d) and that
which is wrongly attributed to Masha’allah (Viladrich 1982; Viladrich and
Marti 1981), for it has been demonstrated that this so-called treatise of
Masha’allah concerning the construction and use of the astrolabe is in reality
a compilation of the thirteenth century, made up of extremely heterogeneous
elements including some passages that could possibly be identified with the
school of Maslama. This school is represented, with regard to the instrument
in question, by the commentaries of Maslama which we have been discussing
here, as well as by Ibn al-Saffar’s treatise on the use of the astrolabe (Millás
Vallicrosa 1955)—very popular on account of its brevity and practicality—
and the much more verbose work by Ibn al-Samh (Viladrich 1986). This last
text is interesting for two reasons: first, it contains quotations from an
unknown work on the astrolabe by the eastern astronomer Habash al-Hasib
(c. 835), which constitutes the first evidence of the knowledge of this author
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in Andalusia; second, this book of Ibn al-Samh was the source used by the
collaborators of Alfonso X for the writing of a treatise on the use of the
spherical astrolabe—in the absence of an Arabic text to translate, they
adapted a treatise on the plane astrolabe to the requirements of the spherical
astrolabe (Viladrich 1987).

The tenth century also witnessed the emergence of other innovations in the
field of astronomical instruments. The oldest extant sundials date from this
era (King 1978a; Barceló and Labarta 1988; Carandell 1984a,b; King 1992;
Casulleras 1993; Labarta and Barceló 1995), and one of these instruments is
explicitly credited to Ibn al-Saffar; but the important defects in the
instrument make it difficult to accept this attribution to a competent astronomer
and suggest instead that it was made ‘in the manner of Ibn al-Saffar’ by a
less conscientious craftsman. However, there is no such doubt that Ibn al-
Samh is the author of the first known treatise on the construction of an
equatorium (Comes 1991): the instrument designed by this astronomer
consisted of eight plates (one for the sun, six for the deferents of the moon
and the five planets, and one for the planetary epicycles) that were placed
within the mother of an astrolabe.24 The plates of the planetary deferents
contained, in addition to the geometrical diagram, tables of mean motion in
longitude and in anomaly of the corresponding planet which recall the Zij al-
safa’ih of Abu Ja‛far al-Khazin (d. 961–71) (King 1980): the latter zij could
be found on the plates of an equatorium-astrolabe and, in that case, this type
of instrument would have been of eastern origin. The question remains open
until new elements are discovered.

THE GREAT EXPANSION OF ANDALUSIAN
SCIENCE (ELEVENTH CENTURY)25

During the tenth century Andalusian science reached a productive level and
certain Andalusian men of science acquired a reputation even in the East: an
obvious example is Abu al-Qasim al-Zahrawi, and another is [Maslama] al-
Majriti, who was cited by Ibn al-Shatir in the prologue of his Nihayat al-sul,
in the fourteenth century, as one of the authors who had criticized Ptolemy
(Kennedy et al. 1983:62). The repercussions in the East of Andalusian
scientific successes were much more numerous from the eleventh century:
the work of Andalusian agronomist Ibn Bassal became well known in the
Yemen, where, in the mid-fourteenth century, the sovereign rasuli al-Malik al-
Afdal used the complete version of the Kitab al-qasd wa-l-bayan instead of
the shorter version which has reached us (Serjeant 1963, 1977). We could
give many more examples of this type but we shall confine ourselves to the
influence in the East of the universal astrolabes developed in the eleventh
century by ‛Ali b. Khalaf and by al-Zarqallu: the safiha of the latter, in two
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versions (zarqaliyya, a very elaborate instrument; and shakkaziyya, a more
simple instrument), was well known in the Near East where, at the end of the
fourteenth and the beginning of the fifteenth century, developments of the
simple version of the instrument appeared in the form of quadrants of the
shakkazi type, which were employed by the astronomers at the observatory
of Istanbul in the sixteenth century.26

The standard of Andalusian science increased considerably after the
political crisis of 1031, which did not lead to a cultural crisis: three scientific
centres of the greatest importance sprang up in Saragossa, Toledo and
Seville. The level of easternization of Andalusian culture became more
pronounced at this time: a good example is the Kitab al-anwa’ wa-l-azmina
wa ma‛rifat a‛yan al-kawakib of ‛Abd Allah b. Husayn b. ‛ sim, known as al-
Gharbal (d. 1012),27 which is a totally different work from the Calendar of
Córdoba. In fact, whereas the latter text is a mixture of elements from Arab,
Mozarab and Hellenistic cultures, as we have seen, in Ibn ‛ sim’s book Arabic
elements quite clearly predominate and reading it reminds us more of the
Kitab al-anwa’ of Ibn Qutayba than of any other similar text. In addition, this
is the period when the survival of the Mozarab culture—the revision of the
Libro de las Cruzes and the use of Latin sources by the agronomist Ibn Hajjaj
—became completely residual, and Andalusian students considered that they
could acquire an adequate scientific training without needing to travel to the
East. The development of local schools is attested by Sa‛id of Toledo, whose
Kitab tabaqat al-umam supplies sufficient information to enable the
reconstruction of the ‘genealogical tree’ of the schools of Maslama and Abu
al-Qasim al-Zahrawi, which were enormously important in the development
of astronomy, medicine and of Andalusian agronomy in the eleventh
century. Moreover, independence with regard to the East is clearly evident if
we compare the statistics for journeys undertaken by the Muslims of the
Valley of the Ebro:28 in the tenth century 25 per cent of Muslim travellers
from this region departed for the East, whereas in the eleventh century the
proportion fell to 11 per cent. Nevertheless journeys to the East continued,
including significantly the case recorded by Sa‛id of Toledo of his patron
‛Abd al-Rahman b. ‛Isa Muhammad (d. 1080), who lived in Cairo, where he
met Ibn al-Haytham.

One of the most remarkable characteristics of the eleventh century in
Andalusia is the development of mathematics, due especially to the work of
three key figures: King Yusuf al-Mu’taman (1081–5) of the ta’ifa of
Saragossa; the mathematician Ibn Sayyid, master of the great philosopher Ibn
Bajja, who wrote his works in Valencia between 1087 and 1096; and the
faqih and astronomer Ibn Mu‛adh (d. 1093). Until quite recently, all that was
known of the first of these three mathematicians was the title of his
mathematical work, al-Istikmal, and certain indirect references to its contents
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(Djebbar 1993); the situation changed with the discovery of four fragments
of the work (Hogendijk 1991, 1995), which showed that the Kitab al-
Istikmal is a great mathematical encyclopedia, which bears witness to the
knowledge of the best literature and contains original contributions. We only
know the work of the second mathematician, Ibn Sayyid, through indirect
references.

But without doubt the best known of the eleventh-century mathematicians
named above is the third: Ibn Mu‛adh al-Jayyani. His Maqala fi sharh al-
nisba (Plooij 1950), is a text of great interest and is an important link in the
chain of Arabic commentaries on the notion of ratio exposed by Euclid in
Book V of his Elements.29 In addition, Ibn Mu‛adh’s Kitab majhulat qisi al-
kura (Villuendas 1979), is without doubt the oldest treatise of the medieval
West concerning spherical trigonometry and in which that discipline
becomes totally independent of astronomy (the work contains no reference to
astronomy except in the prologue).

The mathematical revival was accompanied by an identification of
astronomical research. In this field we must first stress that the influence of
the Sindhind remained predominant; in relation to this, Sa‛id of Toledo
emphasized the work carried out by the school of Maslama and by others,
amongst whom he placed himself. A small part of that work has been
preserved and studied, for example the Latin translation of the canons written
by Ibn Mu‛adh for his Tabulae Jahen: based on the system of the Sindhind
and calculated for the co-ordinates of Jaén, the town where the astronomer
was born (Hermelink 1964), these tables also contain original data. Ibn
Mu‛adh, following al-Khwarizmi, places the solar apogee at 75; 55° from the
vernal point: the same parameter was used by al-Zarqallu in his treatise on
the equatorium (Comes 1991:92).

The Toledan Tables, begun under the direction of qadi Sa‛id, seem to have
been a collective work, participated in by the most important Andalusian
astronomer of all time, Abu Ishaq b. al-Zarqallu (also called al-Zarqiyal/
Azarquiel by Sa‛id), but they have disappointed researchers for the tables of
mean motions are the only original work, while the rest is derived from the
zij of al-Khwarizmi-Maslama and of al-Battani; however, certain elements
attributed to the latter could also have been derived directly from Ptolemy,
whose influence can be noted in the tables of retrograde motion and the
tables of the co-ordinates of the stars. Lastly, the tables of computations for
the trepidation of the sphere of the fixed stars are also found in the Liber de
motu octave spere, attributed until very recently to Thabit b. Qurra. It is
nevertheless possible that these tables, which are only found in some
manuscripts of Liber de motu, are independent of this work and derive from
the work of the astronomers of Toledo (Mercier 1987; Samsó 1994).
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These negative findings lead us to certain considerations: it is well known,
for example, that al-Zarqallu devoted twenty-five years of his life to making
solar observations, first at Toledo and later in Córdoba (Millás Vallicrosa
1943:241). The result of this work was contained in a lost text on solar
theory, certain elements of which have been reconstructed with the help of
indirect sources (Toomer 1969, 1987; Samsó 1988, 1994): notably, around
1074, al-Zarqallu determined the position of the solar apogee (85; 49°) and
estimated that its own movement was 1° in 279 solar years; he also designed
a solar model based on a moving eccentric (analogous to the deferent of
Mercury in the Ptolemaic model), which produced a trepidation of the
position of the apogee as well as a variation in the solar eccentricity. The same
solar model was used much later by Copernicus, who, like al-Zarqallu, did
not take into account the trepidation of the apogee, thereby proving that the
model had been adopted because it justified the variation in the values of the
solar eccentricity proposed by astronomers since the time of Hipparchus.
Obviously, al-Zarqallu also established the value of the solar eccentricity for
his era (1; 58 p approximately). In view of this degree of research, it is
difficult to accept that al-Zarqallu simply copied the table of the solar
equation from the zij of al-Battani in the Toledan Tables, whereas the solar
tables of his Almanac implied an eccentricity which was not that of al-
Battani but rather of the order of the parameter quoted above. This all fits
very well with the hypothesis according to which the Toledan Tables were
begun towards the end of qadi Sa‛id’s life (1029–70) and after he had
completed his Tabaqat al-Umam (1068) in which he does not mention the
tables (Richter-Bernburg 1987). Al-Zarqallu would have introduced elements
derived from his own observations or from those of Sa‛id’s team, but most of
his work on solar theory was probably carried out after the compilation of the
Tables. Al-Zarqallu may also have undertaken work on planetary astronomy,
because his treatise on the construction of the equatorium, which is preserved
in an Alfonsine Castilian translation, also gives planetary parameters that do
not always coincide with those of the Toledan Tables: thus, although the
eccentricities of Jupiter, Mars and the moon are Ptolemaic, those of Saturn (2;
51, 23 p or 2; 48, 48 p), Venus (1; 03, 27 p) and Mercury (2; 51, 26 p) appear
to be original.30

The importance of his work on the movement of the fixed stars, which is
preserved in a Hebrew version, should also be noted (Millás Vallicrosa 1943:
245–343; Goldstein 1964a,b; Samsó 1987b, 1994). In this work, after several
studies, al-Zarqallu presents us with a model of trepidation derived from that
in the Liber de motu—although with new parameters—to which he adds, in a
fairly artificial manner, a second independent model for calculating the
obliquity of the ecliptic that he finds to oscillate between 23; 53° (about the
beginning of the Christian era) and 23; 33° (for AD 954–5). The study of the
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values of the obliquity, which are implicit in the tables of the Liber de motu,
offers satisfactory results for the time of Ptolemy as well as for the period of
the Caliph al-Ma’mun, but the function gains rapidly increasing values after
AD 887 and consequently leads to unacceptable values for the era of al-
Zarqallu. The latter doubtless tried to correct this anomaly by providing a
geometric model as well as tables which, while remaining in agreement with
the values of the obliquity established by Ptolemy and the astronomers of al-
Ma’mun, gave reasonable values for his own period (23; 33, 49° for the end
of 1074).

Finally, with regard to al-Zarqallu we must also mention his almanac,31

which can be used to determine, almost without calculation, the true
longitude of the sun and planets by means of Babylonian goal-years. It is the
first known work of its kind from the Middle Ages and it had a lasting
influence in the Muslim and Christian West. However, apart from the solar
tables, which may have resulted from observations by al-Zarqallu himself,
the work is an adaptation of a Greek almanac that can be dated between AD
250 and 350 (the presumed author is referred to in the text as Awmatiyus),
and there may also have been an Arabic version in the tenth century before
the version of al-Zarqallu. It should be pointed out that both the geometrical
models and the parameters that can be deduced from the planetary tables
seem to originate from Ptolemy.

A third area of rapid Andalusian expansion in the eleventh century is
alchemy and technology. Abu Maslama al-Majriti is important with regard to
the first of these disciplines; his Rutbat al-hakim contains descriptions of
experiments by the author which imply a certain intuition of the principle of
preservation of matter (Holmyard 1924). With regard to technology, the
existence of an Andalusian tradition in the field of mechanics has been
known for about ten years thanks to the discovery of the Kitab al-asrar fi 
nata’ij al-afkar of Ahmad, or Muhammad, ibn Khalaf al-Muradi, in a unique
manuscript which contains a note in the hand of R. Ishaq b. Sid, the chief
astronomer of Alfonso X.32 The development of the agronomical tradition is
much better known.33 A school of agronomists, comprising a number of
scholars whose chronology is not certain in all cases but whose overall
activities appear to have covered some fifty years (1060–1115), emerged
first in Toledo, under the patronage of al-Ma’mun, and later in Seville, under
the reign of the Banu ‛Abbad (Attié 1982). The preserved texts are mostly
incomplete: they consist of summaries or anthologies written by North
African authors.34 We should mention the physician Ibn Wafid (999–1074)35

and Ibn Bassal, both of Toledo; Abu al-Khayr (Carabaza 1990) and Ibn
Hajjaj (Attié 1980; Carabaza 1988) of Seville; and al-Tignari (García
Sánchez 1987b, 1988, 1990), who studied in Seville and then lived in several
Andalusian and North African towns. We must add to this list the name of
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Ibn al-‛Awwam, who lived later (his work must be dated at around the end of
the twelfth century) and who summarized the contributions of the whole
Andalusian school.36

Andalusian agronomy inherited a great mixture of ancient agronomical
traditions: on the one hand, Babylonian and Egyptian, through the influence
of the Filaha Nabatiyya of Ibn Wahshiyya (El-Faiz 1990); and on the other
hand, Carthaginian, Roman and Hellenistic, whose influence was exercised
mainly through the Arabic translation of the Byzantine Geoponika. The
Andalusian sources quote a considerable number of authors from the different
traditions mentioned but, in most cases, these are indirect quotations. They
also cite other sources, such as the Filaha rumiyya and the Filaha hindiyya,
the former of which at least (attributed to a certain Qustus) seems to be a
forgery, made around the middle of the tenth century by ‛Ali b. Muhammad
b. Sa‛d (Attié 1972). However, as we have already indicated in the first part
of this chapter, from the end of the eighteenth century scholars have laid great
emphasis on the direct influence of the Latin agronomical tradition.

Andalusian agronomy seems, then, to have been familiar with the best
agronomical literature available to the authors of the eleventh century. In
addition, contact was never lost with the experience and tradition of the
botanical garden, which began in the eighth century in Córdoba and
continued in the eleventh century in Toledo and Seville. A third and very
important aspect was the theoretical effort undertaken by the Andalusian
agronomists to make agronomy a true science. To achieve this end, the
Andalusian authors drew on the support of two more highly developed
sciences: botany and pharmacology, on the one hand, and medicine on the
other. The first of these two disciplines reached its peak in Andalusia in the 
‛Umdat al-tabib fi ma‛rifat al-nabat li-kull labib (anonymous but written in
the eleventh or twelfth century) (Asín Palacios 1940, 1943; Khattabi 1990;
García Sánchez 1994), where we find an excellent attempt at a taxonomic
classification of plants by genus (jins), species (naw‛) and variety (sanf),
which greatly surpasses the systems of classification in use amongst botanists
since Aristotle and Theophrastus. Even if we find no explicit influence of the
anonymous botanist (Abu al-Khayr al-Ishbili or al-Tignari?) amongst
Andalusian agronomists, it is clear that they were greatly interested in the
question of the classification of vegetables: Ibn Bassal, for example, pointed
out that grafting could only take place between plants of the same nature and
therefore offered a scheme of classification of plants by families; similar
efforts can be found in the work of Ibn al-‛Awwam.

Medicine, like botany, seems to have been linked to agronomy right from
the origins of this discipline in Andalusia: a treatise on agriculture has been
attributed to Abu al-Qasim al-Zahrawi and, although this attribution has
recently been disputed, it is undeniable that Ibn Wafid and al-Tignari were
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physicians. It is therefore not surprising that Andalusian agronomists
developed a theory that seems closely linked to the humoral theory of
Hippocrates and Galen. The four humours of the human body (yellow bile,
black bile, phlegm and blood) are replaced by the four elements of
Empedocles (earth, water, air and fire), the place of fire being given to
fertilizer. Each of these four elements is associated with two qualities which
are the same as those of classical tradition (the earth is cold and dry, water is
cold and wet, and air is hot and wet), except in the case of fertilizer (hot and
wet, unlike fire which is hot and dry). The humoral theory held that the
human body was healthy when the four humours were in equilibrium and
that illness arose from the imbalance of one humour in relation to the others.
The same principle was applied in agriculture, where the system of
complementarity between the elements of the remedy and the diseased body
was also used. The Andalusian agronomists described in great detail the
mixtures appropriate to each problem, justifying them theoretically according
to the qualities of the soil. The latter, being cold and dry, could only become
fruitful by receiving warmth (from the sun and air and from fertilizer) and
moisture (from water). The agronomists developed a detailed classification
of soils, and made serious efforts to promote the cultivation through human
work alone of soils that had previously been considered unusable. Moreover,
in the face of the classical tradition which rejected them, Andalusian
agronomists stressed the value of black soils, rich in organic material. We
also find realistic classifications of different types of water qualify, together
with descriptions of techniques for recovering, harnessing and using water
(Glick 1970): qanat (Oliver Asín 1959; Goblot 1979), wells and norias
(na‛ura) (Torres Balbas 1940; Caro Baroja 1954). The texts also stress the
importance of ploughing, which enables the earth to be warmed by contact
with the air, and the use of crop rotation techniques for the same reason. The
latter include leaving the land fallow or systematically rotating crops, but
fertilizer is the prime method: again there are attempts to classify the different
types of fertilizer and detailed formulae for mixtures to suit the particular soil
or crops in question.

Generally speaking, according to Lucie Bolens (1981), Andalusian
agronomy achieved a high technical level which was not surpassed until the
nineteenth century with the development of chemistry: it is interesting to note
that between the end of the eighteenth and the middle of the nineteenth
century, the work on agronomy by Ibn al-‛Awwam was published in a
Spanish translation and in a French version, not for learned but for utilitarian
purposes, the techniques it describes for the development of agriculture in
Spain and Algeria being of particular interest.
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THE CENTURY OF PHILOSOPHERS

The eleventh century was without doubt the golden age of Andalusian
science, but the century that followed marked the beginning of a slow
decline. The attempts at political unification under the Almoravids (1091–
1144) and then under the Almohads (1147–1232) were not always
accompanied by the patronage of cultural activities, even though the most
famous philosophers (Ibn Bajja, Ibn Tufayl and Ibn Rushd) were physicians
to the Almohad caliphs and carried out research under their patronage. There
was a long period under the Almohads when the influence of the fuqaha’ did
not facilitate research in astronomy and moreover led to the birth of non-
intellectual sentiments. Men of science frequently found themselves forced to
leave: this was the case, notably, of the philosopher and physician Musa b.
Maymun (Maimonides), who lived in Egypt from 1166 until his death in
1204. There were others too, such as Abu al-Salt Umayya al-Dani (c. 1067–
1134), whose rather unhappy stay in Egypt (1095–1112) led him to write
scornful commentaries on the knowledge of Egyptian astronomers and
physicians (de Prémare 1964–6). The arrival of the Almohads seems also to
have caused the departure for the East of Abu Hamid al-Gharnati (1080–
1169), an indefatigable traveller whose cosmographic treatise al-Mu‛rib ‛an
ba‛d ‛aja’ib al-Maghrib should have read al-Mashriq in the title instead of al-
Maghrib: the text contains a large amount of miqat materials which,
unfortunately, does not relate to Andalusia but to Tabaristan.37

Some scientific developments of this period seem to have been a
continuation of trends from the preceding century. From the tenth century, 
Andalusian botany and pharmacology followed in the footsteps of
Dioscorides but there were sometimes innovations: Ibn Buklarish, whose
work belongs to the beginning of the century, wrote a treatise of
pharmacology, the Musta‛ini, in which the medical material is set out in
synoptic tables in the manner of Ibn Butlan and Ibn Jazla. Moreover, like
Abu al-Qasim al-Zahrawi, he was interested in the problem derived from al-
Kindi that was also treated by Ibn Rushd: how to calculate the ‘degree’ of a
medicine composed of several simples having different qualities and
‘degrees’.38 However, in most cases, Andalusian pharmacology was
concerned with problems already raised in the previous two centuries: Ibn
Bajja, author of a list of addenda to the pharmacology of Ibn Wafid, which
seems to be lost, wrote on the classification of plants (Asín Palacios 1940);
Maimonides, in his Sharh asma’ al-‛uqqar, explored the problem of
botanical terminology (Meyerhof 1940), which had been the point of
departure for the work at Córdoba on the Arabic translation of Dioscorides,
as well as the researches of Ibn Juljul. Other authors, such as al-Ghafiqi
(Meyerhof and Sobhy 1932–40) and Abu al-‛Abbas al-Nabati (c. 1166–1240)
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(Dietrich 1971), prepared the major work of synthesis that was completed in
the following century by Ibn al-Baytar: these authors composed treatises on
pharmacology of an encyclopedic nature, in which they sought to bring
together Dioscorides, Ibn Juljul and the preceding traditions, while adding
their personal contribution which related, of course, to plants existing on the
Iberian Peninsula. It was also during this century that the major synthesis of
Andalusian agronomy appeared: that of Ibn al-‛Awwam.

The spirit of observation was thus not entirely absent from Andalusian
science of the twelfth century, even in the most speculative minds, such as
Ibn Rushd (1126–98), whose interest in the observation of nature has often
been noted (Alonso 1940; Cruz Hernandez 1960, 1986), together with a certain
originality in the presentation of anatomical elements in his Kitab al-
Kulliyyat (Colliget in Latin versions), where he does not hesitate to correct
his sources nor to employ arguments based on observation (bi-l-hiss).39 In
fact, he also seems to have been interested in elementary astronomical
observations, such as the observation made at Marrakesh in 1153 of the star
Suhayl (Canopus), which is invisible from the Iberian Peninsula: by means
of a famous argument from Aristotle, he used this to deduce the sphericity of
the earth (Gauthier 1948:5). The observations of sunspots that are attributed
to Ibn Rushd and Ibn Bajja are of greater interest; they were interpreted by
these two authors as transits of Mercury and Venus in front of the sun (Sarton
1947; Sayili 1960:184–5; Goldstein 1985d): this interpretation implies, on
the part of these authors, a criticism of the positions of Ptolemy and of Jabir
b. Aflah on the problem—much discussed in Andalusia in the twelfth century
—of the order of the planetary spheres. Ptolemy had justified the absence of
transits of Mercury and Venus in front of the sun by the fact that these two
lower planets did not pass through the line between the eyes and the sun
(Almagest IX, 1), and this was seriously disputed, with reason, by Jabir and
by al-Bitruji (Goldstein 1971:I, 123–5). But Jabir postulated a different order
of the planetary spheres, placing Mercury and Venus above the sun: in
addition to the absence of transits, his basic argument was that these two
planets exhibit no observable parallax and therefore could not be closer to the
earth than the sun.40 Al-Bitruji, in turn, proposed the order moon-Mercury-
sun-Venus etc. and rejected the argument of the transits because he
considered that Mercury (like Venus) had its own light, which implied that a
transit would be invisible.

Andalusian astronomy in the twelfth century was divided between authors
like Abu al-Salt of Denia (c. 1067–1134), Ibn al-Kammad (c. 1100) and Ibn
al-Ha’im (c. 1205), who followed the tradition of al-Zarqallu, and those who
were critical of Ptolemaic astronomy. The criticisms of Ptolemy were
ultimately based on positions which were either Ptolemaic (as in the case of
Jabir ibn Aflah) or Aristotelian (Ibn Rushd, al-Bitruji, etc.).
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In the area of ‘orthodox’ astronomy, we shall begin with Abu al-Salt of
Denia, who wrote on the astrolabe and the equatorium. His work on the latter
instrument is the third text of this type to have been preserved, following
those of Ibn al-Samh and al-Zarqallu: it seems to have been a development of
al-Zarqallu’s equatorium, but the parameters used in the text are Ptolemaic
(Kennedy et al. 1983:481–9; Comes 1991:139–57, 237–51). Ibn al-Kammad,
for his part, is the author of some astronomical tables that have been very
recently studied (Chabás and Goldstein 1994) and in which the solar tables at
least clearly show the influence of al-Zarqallu (Vernet 1979b; Toomer 1987).
The Zij al-Kamil fi al-Ta‛alim of Ibn al-Ha’im of Seville is a long collection
of canons, without numerical tables, accompanied by meticulous geometrical
demonstrations: the author emerges as a faithful disciple of al-Zarqallu and
provides a large quantity of new information about the work of the school of
Toledo in the second half of the eleventh century (Samsó 1994b).

With regard to the criticisms of the Almagest, the Islah al-Majisti of Jabir
b. Aflah (still unpublished) is probably a key work in the development of
‘orthodox’ astronomy in twelfth-century Andalusia (Swerdlow 1987;
Hugonnard-Roche 1987). This is a book by a theoretician, who criticizes
certain aspects of the Almagest, for example the fact that Ptolemy does not
prove his bisection of the planetary eccentricity. The work also describes two
instruments of observation which may herald the arrival of the torquetum
(Lorch 1976), and he contributes to the European diffusion of the new
trigonometry—already introduced into Andalusia by Ibn Mu‛adh in the
preceding century—since he uses the ‘rule of four quantities’, the theorems of
sine and cosine, and the ‘theorem of Geber’. The Islah was well known in
Europe through the Latin translation of Gerard of Cremona and two Hebrew
translations, and it was frequently cited from the fourteenth century onward:
the trigonometry section is generally considered to have been the source of
the De triangulis of Regiomontanus. However, the European ‘exploitation’
of this part of the work seems to go back even further, because around 1280
the astronomers of Alfonso X were using the series of trigonometric
theorems set out by Jabir (Ausejo 1984). Also, the Islah had been introduced
into Egypt in the twelfth century by Joseph ben Yehudah ben Sham ‛un, a
disciple of Maimonides, with whom he studied and revised the original
work. The book was well known in Damascus in the thirteenth century, and
Qutb al-Din al-Shirazi (1236–1311) made a summary of it.

The relatively meagre development of mathematical astronomy—after the
brilliance of the eleventh century—was in some way compensated for by the
birth of a ‘physical’ astronomy, which does not seem to have been cultivated
previously in Andalusia. This was a century dominated by Aristotelian
philosophers, and scholars such as Ibn Rushd, Maimonides, Ibn Bajja and Ibn
Tufayl dreamt of developing an astronomy which could be reconciled with
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the physics of Aristotle. For Aristotle there could only be three types of
motion (centrifugal, centripetal and circular around a centre which, as far as
astronomy was concerned, had to coincide with the earth): this implied the
rejection of Ptolemaic astronomy based on eccentrics and epicycles, and the
wish to return to a system of homocentric spheres. These ideas were
accepted, with variations, by the four thinkers just mentioned but, although
there are a certain number of indirect quotations which suggest that Ibn Bajja
and Ibn Tufayl did devise ‘physical’ astronomical systems, we do not know
the details of them: all we have are statements of principle. Ibn Rushd was
well aware of the problem, and his case is particularly curious, because in his
paraphrase (Talkhis) of Aristotle’s Metaphysics, written in 1174, he seems to
accept the Ptolemaic astronomy that he rejected later (after 1186) in his
major commentary (Tafsir) on the same work (Sabra 1978, 1984; Carmody
1952). In the Tafsir Ibn Rushd sets out the principles on which astronomical
reform must be based (most of which will be adopted by al-Bitruji) and
confesses that, even though in his youth he had hoped to carry out the
necessary research personally, he had to relinquish the idea because of his
advanced age.

However, these thinkers who rejected Ptolemy because of his
incompatibility with Aristotle were aware of the predictive capacity of the
astronomy of the Almagest. Thus Maimonides, who was convinced that the
Ptolemaic universe did not coincide with the real universe, also believed that
human beings were incapable of achieving a true knowledge of the laws that
govern the structure of the cosmos. That is why he used Ptolemaic
astronomy, in a totally competent manner, in his book of the Sanctification of
the New Moon, where he tackled a particularly difficult problem: to
determine in advance the visibility of the new moon (Gandz et al. 1956). It
seems clear that these philosophers knew Ptolemy: Ibn Bajja was able to
calculate an eclipse of the moon (kana qad ‛arafa waqt kusuf al-badr bi-
sina‛at al-ta‛dil),41 and al-Bitruji praised the precision and accuracy of the
Almagest from which all the numerical parameters employed in his Kitab fi al-
hay’a were derived.

Al-Bitruji was the only representative of the Aristotelian school of twelfth-
century Andalusia who succeeded in formulating an embryonic astronomical
system in line with the homocentrism of Eudoxus,42 in which he incorporated
a large number of subsequent contributions from Ptolemy to al-Zarqallu
(Goldstein 1964a). He considered first that, if the origin of all celestial
motion is the prime mover, situated in the ninth sphere, it is absurd to think
that the prime mover transmits to lower spheres movements in opposite
directions: a diurnal movement from east to west and a longitudinal
movement from west to east. It is necessary to accept that the motion of the
ninth sphere—the fastest, the strongest and the simplest of all the movements
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—is transmitted to the lower spheres, which become progressively slower the
farther away they are from the prime mover. The precession of the sphere of
fixed stars and the movements in longitude of the planetary spheres are a sort
of ‘slowing’ or ‘brake’ (taqsir, incurtatio) which slows down the diurnal
motion. Here al-Bitruji set himself a problem that he was incapable of
solving: the problem of the transmission of movement between the ninth
sphere and the lower spheres. He tried to explain the phenomenon by means
of two metaphors which are none the less interesting as attempts to assimilate
terrestrial with celestial dynamics. Duhem was the first to draw attention to
one of these metaphors and to note that it constituted a return by al-Bitruji to
the ancient theory of impetus from neo-Platonic dynamics, created in the
sixth century by John Philoponus: just as an archer gives the arrow a ‘violent
tilt’ (al-mayl al-qasri) which continues to propel it when it is flying
separately from its driving force, one can conceive of a transmission of
movement between the celestial spheres even if they are separated from one
another (Duhem 1906–13:II, 191). The second of the metaphors also has a
neo-Platonic character and derives from the eastern philosopher Abu al-
Barakat al-Baghdadi (eleventh to twelfth century), whose work may have
been introduced into Andalusia by Isaac, son of Abraham b. Ezra, who was his
disciple in Baghdad: like Abu al-Barakat, al-Bitruji considered that the
circular movement of the celestial spheres is due to the ‘desire’ (shawq in the
terminology of al-Bitruji) that each of these spheres experiences for the
sphere immediately above and this desire is analogous to that felt by the four
elements to occupy their natural place. However, each part of the lower
sphere finds itself, at a particular moment, close to another part of the upper
sphere and able to satisfy this desire only partially. For that reason, the lower
sphere is set in motion and the circular motion results from the effort made
by each of the parts to draw nearer to each of the parts of the upper sphere
(Samsó 1980c, 1994).

The astronomical system of al-Bitruji is thus founded on the belief that the
sphere of the fixed stars moves most rapidly and the sphere of the moon most
slowly. There is nothing entirely original in this concept, since Lucretius
attributes similar ideas to Democritus, and Alexander of Aphrodisias to the
Pythagoreans. Moreover, Martianus Capella (De nuptiis VIII, 853) tells us
that the peripatetics believed that the planets do not move in the opposite
direction to the motion of the celestial sphere but that this sphere overtakes
them because it moves at a speed that the planetary spheres cannot achieve.
The same ideas are put forward again by Theon of Alexandria and Ibn Rushd.
The movement of the ninth sphere is also transmitted to the sublunar world
where, in the sphere of fire, it leads to the appearance of shooting stars and,
in the sphere of water, to tides and waves. This theory of al-Bitruji on the
origin of tides is quoted in the Kitab al-madd wa-l-jazr attributed to Ibn al-
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Zayyat al-Tadili (d. 1230), a work which also includes an in-depth study of
the daily, monthly and annual cycles of the tides.43

We have thus far stressed the physical bases of the system of al-Bitruji.
We cannot elaborate here on the details of his models for the sun, the moon,
the fixed stars and the planets. It is sufficient to note generally that these are
homocentric models in which the planets move at the end of an axis (an are of
circle of 90°) which, in turn, moves on an epicycle whose centre is on a polar
deferent. It thus involves a systematic use of the geometric apparatus of
Ptolemy, but with the eccentric deferents and the epicycles placed around the
pole of the universe: al-Zarqallu had employed similar solutions in his
geometrical models for explaining the variations in the obliquity of the
ecliptic. On the whole, the models of al-Bitruji are sometimes ingenious but
they do not achieve the precision of those used in the Ptolemaic tradition.
Moreover, no tables were ever calculated with these new models. The purely
qualitative system of al-Bitruji is not always absolutely consistent with his
own principles; he was greatly admired by scholastic philosophers44 but he
does not seem to have been taken seriously by astronomers.

A last point remains to be emphasized: we have seen that, even though the
Kitab fi al-hay’a of al-Bitruji was considerably influenced by Aristotle, the
physical principles which underlie it are not always in accord with this
classical author, and we have been able to discern the influence of neo-
Platonic dynamics. This may be due to the indirect influence of Ibn Bajja, the
representative in Andalusia of this ‘new’ physics against Ibn Rushd, a
leading defender of Aristotelian orthodoxy. Ibn Bajja seems to have known of
the work of John Philoponus through the refutation of al-Farabi, and one can
also envisage the influence of Abu al-Barakat al-Baghdadi. The ideas of Ibn
Bajja are interesting in several respects: he investigated the movement
produced by a magnet and the displacement of a weight on an inclined plane,
and he showed remarkable intuition in his concept of the driving force, in
which certain analogies have been found with the concept of inertia in
Newtonian physics. Even though he does not appear to accept the theory of
impetus and shows support for Aristotelian ideas with regard to ‘violent
motions’, he goes against Aristotle in defending the possibility of ‘natural
motion’ in a vacuum, since he accepts that a body (e.g. planets and fixed
stars) can move in the void with finite velocity and needs a period of time t to
cover a certain distance d. When motion takes place in a medium it suffers a
retardation (but’, tarditas) proportional to the density/viscosity (?, quwwat al-
ittisal) of the medium itself, which implies that it needs an extra time (∆t) to
cover the same distance d. This new interpretation of Ibn Bajja’s ideas
(Lettinck, 1994) discards previous hypotheses (Moody 1952; Grant 1965,
1974) according to which the echoes of our author’s ideas would have
reached sixteenth-century Italian scholars such as Benedetti and Borro and
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exerted an indirect inflence on Galileo’s Pisan dynamics. In spite of this
restriction we must acknowledge that Ibn Bajja’s theories reached medieval
Europe through the great scholastic philosophers of the thirteenth century and
they pushed the development of Dynamics in the correct direction: unlike
Aristotle, both Ibn Bajja and al-Bitruji have the obvious merit of conceiving
a universal dynamics that can be applied to both the sublunar and supralunar
world.

THE DECLINE (THIRTEENTH TO FIFTEENTH
CENTURIES)

After the fall of the Almohad empire, Muslim Spain found itself reduced to
the Nasrid kingdom of Granada (1232–1492),45 and the decline that had
become apparent during the previous period continued even more obviously.
Muslim scholars who found themselves in territory conquered by the
Christians mostly crossed the frontier either to settle in Granada or to
emigrate to North Africa or the East. This was in spite of the policy adopted
by Alfonso X (1252–84) to hold on to Muslim men of science after his
conquest of Murcia in 1266: if Ibn al-Khatib is to be believed, the king
offered considerable compensation to those who converted to Christianity,
and this was accepted by figures such as Bernardo el Arabigo, who
collaborated in the revision of the Castilian version of the treatise of al-
Zarqallu on the safiha (azafea), made at Burgos in 1278. A much more
important physician and mathematician, Muhammad al-Riquti, refused the
royal offer and left for the Granada of Muhammad II (Samsó 1981). Thus
there was no Muslim scientific development in Christian Spain, although we
can find occasional exceptional situations: in the second half of the fifteenth
century there was a madrasa at Saragossa where one could study medicine
by reading, in Arabic obviously, the Urjuza fi al-tibb and the Qanun of Ibn
Sina (Ribera 1928b). Moreover, despite the limitations, there are documents
showing a certain freedom of movement for Muslims, at least in the region
of Valencia: some journeyed to Granada or crossed the Strait of Gibraltar to
make pilgrimage or to travel for study, and there are also examples of Muslim
travellers who arrived in Valencia from Granada or North Africa (Barceló
1984, esp. 102–4). These journeys sometimes had consequences for science:
in 1450 a faqih from Paterna introduced a new astronomical instrument to
Valencia: the sexagenarium, which was used by astronomers in Cairo. This
was a device from the equatoria family, with a ‘planetary face’ (which gave
the mean motions of the planets) and a ‘trigonometrical face’ which
contained a sine quadrant permitting the graphical solution of
trigonometrical problems to determine planetary equations. The treatise
describing the instrument was translated into Catalan, Italian(?) and Latin
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and is one of the last known cases of scientific transmission through Spain
(Thorndike 1951; Poulle 1966).

However, as we have said, the men of science often tended to cross the
border. In the thirteenth century, the great pharmacologist Ibn al-Baytar left
for the Maghreb and Egypt and finally died in Damascus in 1248; the
astronomer Muhyi al-Din al-Maghribi was also probably of Andalusian
origin but he worked in Syria and, later, at the observatory of Maragha; a
third notable case is that of the mathematician al-Qalasadi, who was born at
Baza c. 1412 and died in Tunisia in 1486. There were also those who stayed
in Granada, their only home base in the Peninsula. Certain distinguished
monarchs offered them a welcoming reception, notably Muhammad II (1273–
1302), who attracted to his court al-Riquti, to whom we have previously
referred, and also the mathematician and astronomer Ibn al-Raqqam (d.
1315), who was of Andalusian origin and settled in Tunisia. The former
originated an important school of medicine which gave rise to Muhammad al-
Shafra (d. 1360). Ibn al-Raqqam, in turn, instructed Abu Zakariyya’ b.
Hudhayl in mathematics and astronomy, and taught the sultan Nasr (1309–
14) how to calculate almanacs and construct astronomical instruments.
Among the illustrious patrons we must also mention Yusuf, the brother of
Muhammad II, who was a great lover of books on mathematics and astronomy
but was forced to hide his interests from his father Muhammad I, who
disapproved of them.46

Nevertheless, the scientific development emerging in Christian Spain
during the thirteenth century seems to have been reflected in Nasrid
Granada, and there are indications of the beginning of the phenomenon that
Garcia Ballester has termed ‘reflux of scholasticism’ (Garcia Ballester 1976:
21ff.): the introduction into Muslim Spain of a scientific culture developed in
Christian Europe in the early Middle Ages using bases that came from the
Arab world. This movement, which was later to have important
consequences in North Africa, seems to have started here. We can cite, for
example, the case of Muhammad b. al-Hajj (d. 1314), who was born in
Christian Seville and was praised by Ibn al-Khatib for his knowledge of the
language and culture of the Rum. This figure, or his father,47 a carpenter
mudéjar of Seville, constructed the great noria at Fes al-jadida for the
Marinid sultan Abu Yusuf (1258–86). This noria attracted the attention of
Leo Africanus, who described it, indicating that it only turned twenty-four
times a day(?): if this information is correct, it suggests the possibility of a
clock set in motion by the noria, like the one built in China in the eleventh
century by Su-Sung. On the death of Abu Yusuf, Ibn al-Hajj returned to
Granada where he was well received at the court of Muhammad.

Even more interesting is the case of the surgeon Muhammad al-Shafra (d.
1360), who was born in Crevillente (Alicante) when the town was already in
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the hands of the Christians, and who learned surgery ‘from a large number of
excellent practitioners of this manual art who were Christians’, among whom
was a certain master Baznad (Bernat?) of Valencia (Renaud 1935).

Within this ambiance, which were the scientific disciplines cultivated by
the scholars of Granada? An initial answer to this question can be found in the
information given in the Ihata of Ibn al-Khatib (Puig 1983a,b; 1984): from
Granada himself, Ibn al-Khatib mentions forty-seven people who showed their
interest in the sciences in the Kingdom of Banu Nasr in the thirteenth and
fourteenth centuries. In these forty-seven biographies the most frequent
references are to medicine, followed by mathematics and astronomy. This
finding corresponds fairly closely with reality, and even leaving aside
medicine, the names of Ibn al-Baytar (1197–1248) and Ibn Luyun (1282–
1349) can be found in botany and agronomy. The former stands at the
summit of Andalusian pharmacology, which had continued to develop since
the tenth century: his Jami‛ al-mufradat is the most complete treatise of
applied botany produced in the Iberian Peninsula in the Middle Ages.48 It
describes 3,000 simples, listed in alphabetical order, and draws information
from more than 150 authors, from Dioscorides to al-Ghafiqi and Abu
al-‛Abbas al-Nabati. It also includes personal observations by the author but
these represent a small percentage of the overall compilation. Ibn al-Baytar
thus corresponds simultaneously to the peak of this science and the beginning
of a decline. The same cannot be said of the second figure, Ibn Luyun,
because the role of Ibn al-Baytar in the field of agronomy corresponds with
that of Ibn al-‛Awwam in the preceding century: a major synthesis had
already been made, so the next task was to summarize it; and the agricultural
urjuza of Ibn Luyun is only an agronomical précis in verse without great
interest.49

In mathematics there are only two names of note. The first is Ibn Badr,
whose dates are uncertain but who seems to have lived in the twelfth or
thirteenth century; he is the author of an elementary text of algebra in which
he examines the solution of indeterminate equations (Sanchez Perez 1916).
Much more important is the work of a writer on many subjects, al-Qalasadi
(c. 1412–86), who is of particular interest because of his texts on arithmetic,
algebra and rules of inheritance (‛ilm al-fara’id), which are still as a whole
not well known. His rihla with a view to accomplishing his pilgrimage
enabled him to study at Tlemcen, Oran and Tunis as well as in the East,
which explains the influence in his work of the mathematical treatises of Ibn
al-Banna’ of Marrakesh (d. 1321) and his use of an algebraic symbolism
already employed by various eastern mathematicians and in the Maghreb by
the Moroccan Ya‛qub b. Ayyub (c. 1350) and the Algerian Ibn Qunfudh (d.
1407).50
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In the area of astronomy, we would again stress the Andalusian interest in
the construction of instruments, and also the fact that contact with the East
was not lost, even in this period of decline. Thus Ibn Arqam al-Numayri (d.
1259) wrote on the linear astrolabe (al-asturlab al-khatti), an instrument
invented by the Persian astrolabe maker Sharaf al-Din al-Tusi (d. 1213) (Puig
1983b); this same Ibn Arqam is also the author of the first of a series of
treatises on the study of horses, a very fashionable discipline in Nasrid
Granada.51 In addition, in 1274, a certain Husayn b. Ahmad b. Bas (or Mas)
al-Islami wrote a long treatise on a universal plate, valid ‘for all latitudes’ (li-
jami‛ al-‛urud), which is identifiable with the tradition of the azafea of al-
Zarqallu and, at the same time, with that of the safiha afaqiyya, whose plates
show the projection of several horizons. Ibn Bas can probably be identified
as Hasan b. Muhammad b. Baso (d. 1316), an astronomer who became the
chief muwwaqitun at the great mosque of Granada. His son Ahmad b. Hasan
was also of the muwaqqits at the same mosque, and Ibn al-Khatib praised
these two figures for their skill in constructing astronomical instruments,
particularly sundials (Renaud 1937; Samsó 1973; Calvo 1990, 1993, 1994).
This information is interesting in two respects: on the one hand it constitutes
the first clear evidence of the existence of muwaqqitun in Andalusian
mosques; on the other hand, the admiration expressed by Ibn al-Khatib for
the sundials constructed by Ibn Baso is surprising in view of the poor quality
of the instruments of this type known so far (King 1978a). It is very possible
that thirteenth- and fourteenth-century Granada saw an important revival of
the study of gnomonics and of its application to the construction of sundials:
this hypothesis is confirmed by recently completed studies on the Risala fi
‛ilm al-zilal of Ibn al-Raqqam (d. 1315), which show the great abilities of this
mathematician and astronomer, who applied to the study of sundials
analemmic methods not previously known in Andalusia (Carandell 1984a,b;
1988). Ibn al-Raqqam is also the author of astronomical tables (Vernet
1980b) in which he follows the tradition of al-Zarqallu and Ibn al-Ha’im.
These tables are now being studied, and there is every indication that
research in depth on this scholar will reveal him as probably the most
interesting figure of Nasrid science.

Ibn al-Raqqam is an exception, however. Andalusian science attained its
peak in the eleventh century and could still present interesting results in the
twelfth, but it did not survive the political decline and the long death throes
of the Granadan Nasrids. Al-Qalasadi well understood it—as did many other
men of science at the end of the thirteenth century—and he left for Ifriqiyya
shortly before the final crisis: his death, in 1486, was followed, six years
later, by the end of the entire Andalusian culture.
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NOTES

1 Recent overall studies by Vernet (1986, 1993), Samsó (1992, 1994a), Vernet and
Samsó (1992).

2 See the work of Garcia Ballester (1976, 1984).
3 The development of these contributions can be traced through translations; see

Vernet (1985).
4 Cf. Guichard (1977), who suggests that more Arabs were involved in the first waves

of the invasion than is asserted in traditional Spanish historiography, but without
changing the fundamental points at issue.

5 See Marin (1981). On the determination of the qibla in Andalusia, see King
(1978a) and Samsó (1990).

6 See the edited translation of this text in Samsó (1983a).
7 For the techniques employed by the astrologers who followed ‘the system of

crosses’, see Samsó (1979b, 1980d, 1985a) and Poch (1980). See also Castells
(1992).

8 From the copious bibliography on this subject we shall limit ourselves to
mentioning the recent edition by ‛Abd al-Rahman Badawi: Urusiyus, Tarikh
al-‛alam.

9 See Ibn Hajjaj for the recent edition of Kitab al-muqni‛ fi al-filaha, studied by
J.M.Carabaza, ‘La edicion jordana de al-Muqni‛ de Ibn Ha• • a• . Problemas en
torno a su autoría’, Al-Qantara 11 (1990):71–81.

10 The agronomy text considered to be the work of a Christian author is published in
Lopez (1990b).

11 This process has been well described from the point of view of the history of
Andalusian culture by Makki (1961–4).

12 On education in Andalusia, see Ribera (1928b) and Muhammad ‛Abd al-Hamid ‛Isa
(1982).

13 See Ibn Hayyan, Al-Muqtabas min anba’ ahl al-Andalus, pp. 281–2.
14 Ibn Juljul, Kitab tabaqat al-atibba’ wa al-hukama’, p. 42.
15 See Dozy and Pellat (1961), Martínez Gázquez and Samsó (1981) and Samsó and

Martínez Gázquez (1981).
16 On this scholar, see Lopez (1990a).
17 On the Andalusian tradition of miqat, see also King (1978a), and on the specific

problem of the visibility of the new moon, King (1987d).
18 See Hamarneh and Sonnedecker (1963). Concerning al-Kindi’s theory of grades

and his influence in medieval Europe, see the introduction by M.R.McVaugh to his
edition of Arnald of Villanova’s De gradibus.

19 al-Hashimi, Kitab fi ‛ilal al-zijat.
20 Sa‛id al-Andalusi, Kitab Tabaqat al-Umam, pp. 129–30.
21 See Marti and Viladrich (1981). We have recently had the opportunity of reading

the Istanbul Carullah 1279 manuscript, containing the Kitab al-Hay’a of Qasim b.
Mutarrif (c. 950) which gives a list of the distances and magnitudes of the planets
that seems to derive indirectly from Ptolemy’s Planetary Hypotheses.

22 Ptolemy, Planisphaerium.
23 See Dictionary of Scientific Biography, ‘Ptolemy’.
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24 See Comes (1991:27–68); Poulle (1980a:I, 193–200); and Samsó (1983c), certain
errors in which have been indicated by J.L.Mancha in De Astronomia Regis
Alphonsi, Barcelona, 1987, pp. 117–23.

25 This part of the chapter is an updated summary of Vernet and Samsó (1981: 135–
63). Cf. the more recent work of Richter-Bernburg (1987).

26 See Samsó and Catalá (1971–5), King (1974, 1987c, 1988). On the two safiha of al-
Zarqallu, see Puig (1985, 1986, 1988).

27 The only manuscript has been published in facsimile by the Institute für Geschichte
der Arabisch-Islamischen Wissenschaften of the University J.W. Goethe,
Frankfurt, 1985. It is also possible that the true author of this Kitab al-anwa’ was a
certain Muhammad b. Ahmad b. Sulayman al-Tujibi and that Ibn ‛ sim was the
author of a summary of the latter’s book. See the partial edition, translation and
commentary in Forcada (1993).

28 See the study by J.Vernet and M.Grau in the Boletín de la Real Academia de
Buenas Letras de Barcelona 23 (1950):261; 27 (1957–8):257–8.

29 See Dictionary of Scientific Biography, ‘Euclid’.
30 See Hartner (1974). It should also be pointed out that the deferent of Mercury in the

equatorium of al-Zarqallu is not a circle but an elipse: see Hartner (1978), Comes
(1991:114ff.) and Samsó and Mielgo (1994).

31 See Millás Vallicrosa (1943:72–237), Boutelle (1967) and the very important
account by Swerdlow in Mathematical Reviews, 41 (5149) (1971):4.

32 See a summary of the matter, together with an up-to-date bibliography, in Vernet
(1987) as well as in Vernet and Samsó (1992).

33 Bolens (1981). See the bibliography in that book and in Vernet and Samsó (1981,
1994). In the following we provide only a bibliographical update.

34 A good account of the question of the manuscript sources and their probable
authors can be found in García Sánchez (1987a).

35 The attribution of a work on agronomy to this author has been much debated. This
work is ascribed in two manuscripts to a certain Abu al-Qasim b. ‛Abbas al-Nahrawi,
who is probably the celebrated physician and surgeon of the second half of the
tenth century, Abu al-Qasim Khalaf b. ‛Abbas al-Zahrawi. Recent studies (Forcada,
1995) confirm the interest in agronomy towards the end of the tenth century.

36 See Banqueri, Libro de Agricultura.
37 See Dictionary of Scientific Biography, I, pp. 29–30, ‛Abu Hamid’. See the edition

and Spanish translation of the Mu‛rib by Bejarano (1991).
38 On this author see Renaud (1930). See also the more recent work of M.Levey in

Studia Islamica, 6 (1969):98–104 and in Journal for the History of Medicine, 26
(1971):413–21. M.Levey and S.S.Souryal have published an English translation of
the prologue of Musta‛ini, containing all the theoretical part of the work, in Janus,
55 (1968):134–66; A.Labarta has published an edited and annotated translation of
the same prologue in Estudios sobre Historia de la Ciencia Arabe, Barcelona
(1980):181–316; on the sources of Ibn Buklarish, see A.Labarta in Actas del IV
Coloquio Hispano-Tunecino, Madrid (1983): 163–74.

39 See Rodríguez Molero (1950). The theses of Rodríguez Molero have been
discussed by Esteban Torres (1974). See also Ibn Rushd for the critical edition of
Kitab al-Kulliyyat.

40 See Lorch (1975); see also Dictionary of Scientific Biography, ‛Jabir ibn Aflah’,
VII, pp. 37–9.
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42 See Kennedy in Speculum, 29 (1954):248.
43 Edited and translated into Spanish by Martinez (1981); see also Martinez (1971).
44 See, for example, Cortabarria Beitia (1982) and Avi-Yonah (1985). See also al-

Bitruji for the Latin version of De motibus celorum.
45 See Arié (1973:428–38) for a short survey of the sciences and medicine. See also

Calvo (1992).
46 The most important general source for this period is the Ihata of Ibn al-Khatib, the

scientific data of which have been examined and analysed by Puig (1983a,b, 1984).
47 The text of Ibn al-Khatib is not entirely clear. For the two interpretations cf. Colin
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8
The heritage of Arabic science in Hebrew

BERNARD R.GOLDSTEIN

The medieval Hebrew scientific tradition that reflects the Greek heritage
transmitted through Arabic sources began with a period of translations in the
twelfth century, and was followed by further study and elaboration based on
them. Though the main centres of activity were Spain and southern France,
virtually all Jewish communities displayed some interest in the scientific
disciplines. Indeed, poets, mystics, legal scholars, as well as philosophers,
devoted considerable attention to scientific subjects (Goldstein 1979, 1985a).

Most of these Hebrew texts remain in manuscript form scattered in
libraries all over the world, but a sufficient number are available to permit us
to describe the character of this tradition. It is also worth noting that many
Arabic texts were copied in Hebrew characters, a common practice among
Arabic-speaking Jews, and, in some cases, this is their only surviving form.
In contrast to literary texts, there are a large number of documents preserved
in the Cairo Geniza, most of which were written for a particular occasion and
discarded shortly thereafter. The Geniza was originally located in a room in
the Cairo synagogue where documents were deposited for subsequent ritual
burial, but in fact no such disposition took place, and over 200,000
documents ranging in date from the tenth to the nineteenth century were still
there when this valuable collection was transferred to European and
American libraries around the turn of the twentieth century. Among these
documents are scientific texts representing all disciplines studied in the Middle
Ages, for the most part in Arabic written in Hebrew characters, but also some
in Arabic written in Arabic characters and some in Hebrew.1

The subjects most widely studied in the Jewish community were
astronomy, mathematics and medicine, although various branches of physics
and biology were also represented, as we learn from the compendious 
bibliographic studies of M.Steinschneider (1893) and E.Renan (1893)
undertaken in the nineteenth century. In addition, most of the large European



collections of manuscripts have been catalogued, greatly facilitating detailed
examination of them. Among recent studies, we may note an article listing
over 100 copies of various Hebrew versions of Avicenna’s Canon of
Medicine, the fundamental text for medical studies in the late Middle Ages
(Richler 1982). Similarly, numerous copies survive of Euclid’s Elements and
of Ptolemy’s Almagest translated from Arabic into Hebrew: these were the
basic texts for the study of mathematics and astronomy in the Middle Ages.2

However, in the subsequent discussion we shall limit our attention to
astronomy.

Jews began to contribute to astronomy in Arabic early in the Islamic
period, e.g. Masha’allah (d. c. 815) (Sezgin 1978:127–9). In the twelfth
century an interest in science arose among Jews in Christian countries whose
literary language was Hebrew and for whom translations from Arabic were
required. The first scholar to provide information for them in matters of
astronomy and mathematics was Abraham bar Hiyya of Barcelona (twelfth
century) (Millás Vallicrosa 1952). Generally, he paraphrased Arabic texts
rather than translating them. So, for example, his astronomical tables are
based on those of al-Battani (d. 929), and he also relied on al-Battani in his
introduction to them (Millás Vallicrosa 1959). One of these tables is a list of
fixed stars with their co-ordinates. To understand the significance of this list,
we must go back to the Greek text of Ptolemy’s Almagest (c. AD 140), where
1,025 stars are listed, that was translated into Arabic during the ninth century
(Kunitzsch 1974). Al-Battani excerpted about half this list and corrected the
stellar positions in longitude for the precession from Ptolemy’s time to his
own. (Precession is the rate by which the longitudes of fixed stars increase
over time, and this was already noted by Ptolemy; the other co-ordinate,
called latitude, does not change). Bar Hiyya shortened the list even more,
displaying only the stars of first and second magnitude, where magnitude is
to be understood as a measure of a star’s brightness.

As Ptolemy’s star list was translated, copied and recopied, many errors
crept in that seem quite puzzling, but a comparison of the surviving
manuscripts in Greek, Arabic and Hebrew reveals the various stages in this
transmission and leads to a resolution of most of the problems. For example,
a star that in Ptolemy’s catalogue is of fourth magnitude is listed by Bar
Hiyya as of first magnitude, an error that goes back to a confusion between
Greek alpha (which had the numerical value 1) and Greek delta (which had
the numerical value 4) which were virtually indistinguishable in some hands.
Bar Hiyya gives the Arabic name of each star (written in Hebrew characters)
together with a Hebrew translation of it, a practice followed by many of his
successors. From an analysis of the data both in Arabic and Hebrew, it is
clear that this medieval tradition of fixed star names and positions was
literary and not based on new or independent observations (Goldstein 1985b).
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Another influential Arabic text that received much attention in Spain was
al-Khwarizmi’s astronomical tables. In this.case the original ninth-century
text is lost and one is forced to depend on a twelfth-century Latin version of a
revised Spanish-Arabic version that dates from about the year 1000 (Suter
1914; Neugebauer 1962a). However, we also have a tenth-century Arabic
commentary on the original version composed in Spain by Ibn al-Muthanna
that is extant only in Hebrew and Latin. One of the Hebrew versions was
written by Abraham ibn Ezra (Spain, d. 1167) and it is an important source
of information on the early development of Islamic astronomy in the late
eighth and early ninth centuries (Goldstein 1967a). It appears that the first
astronomical tradition to reach the Arabs in the eighth century derived from
Indian sources and that Greek astronomy arrived somewhat later. Ibn al-
Muthanna’s commentary is an attempt (not always successful) to explain a
text that reflects Indian sources by the methods of the Greek tradition. In the
introduction to his translation Ibn Ezra wrote (Goldstein 1967a: 149):

a scholar more eminent than the others in the sciences of geometry and
astronomy, whose name is Muhammad b. Muthanna, composed a
distinguished book for one of his relatives concerning the rules of planetary
motion which apply to the tables of al-Khwarizmi, and he included short
proofs and diagrams whose principles are taken from the Almagest…There is
no difference between Ptolemy’s rules for planetary motion and those of the
Hindu scholar except in a few places. Where it occurs I will mention how the
difference arises.

It is clear that Ibn Ezra was aware of this blending of traditions but his
ability to sort out the differences between them was limited by his lack of
independent access to the appropriate sources.

The leading Jewish philosopher of the twelfth century, Maimonides, wrote
a treatise in Hebrew on the Jewish calendar that depends in part on the works
of his Muslim predecessors, notably al-Battani (Gandz et al. 1956). In
addition, there are many allusions to astronomy and mathematics in his main
philosophic work, The Guide for the Perplexed, that was translated from
Arabic into Hebrew in his lifetime. Maimonides reports criticisms of
Ptolemaic astronomy by Ibn Bajja (Spain, twelfth century) and Jabir ibn
Aflah (Spain, twelfth century) (Maimonides 1956:164, 196). Maimonides
adds his own criticisms of Ptolemaic astronomy based in part on the
discussion of planetary distances by al-Qabisi (tenth century) and concludes
that3

Man’s faculties are too deficient to comprehend even the general proof the
heavens contain for the existence of Him who sets them in motion. It is in
fact ignorance or a kind of madness to weary our minds with finding out
things which are beyond our reach, without the means of approaching them.
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In the thirteenth century a great many texts were translated from Arabic
into Hebrew, mainly in southern France, for the use of Jewish scholars there
who were ignorant of Arabic. The most prolific translator was Moshe ben
Tibbon, a member of an illustrious family of translators that had emigrated
from Spain to France in the twelfth century (Romano 1977). An example of
his work is his Hebrew version of al-Bitruji’s On the Principles of
Astronomy, composed c. 1200 and translated in 1259 (Goldstein 1971). Al-
Bitruji set himself the task of reconciling the homocentric planetary models
of Aristotle with the eccentric and epicyclic models of Ptolemy. His idea was
to consider a modified version of the Ptolemaic models on the surface of a
sphere, rather than in the plane of the ecliptic, in order to avoid the criticisms
raised by a number of Spanish-Muslim philosophers.

The solution offered by al-Bitruji was itself subject to comment and
criticism by Yahuda ben Solomon Kohen of Toledo in an encyclopedic work
originally written in Arabic and translated into Hebrew by the author in
1247; by Levi ben Gerson (d. 1344) in his astronomical treatise written in
Hebrew that forms Part 1 of Book 5 of his magnum opus in philosophy, The
Wars of the Lord; and by Isaac Israeli of Toledo (fl. c. 1310) in his
astronomical treatise in Hebrew, The Foundation of the World (Yesod Olam)
(Goldstein 1971: vol. 1, pp. 40–4). In effect, this attempt to replace the
Ptolemaic models was rejected because al-Bitruji could not account for all
the known astronomical phenomena, and because the Ptolemaic models were
highly successful in predicting these events. Moshe ben Tibbon’s translation
is quite literal and devoid of commentary, and it depended on the formation
of a technical vocabulary in Hebrew that did not exist before the twelfth
century (Sarfatti 1968).

Due in large measure to the efforts of Moshe ben Tibbon, subsequent
generations of Jewish scholars whose only literary language was Hebrew
could make original scientific contributions relying on the antecedent Greek
and Arabic traditions. Nevertheless, translations from Arabic into Hebrew
continued in the fourteenth century, and Samuel ben Judah of Marseilles (d.
after 1340), for example, produced a Hebrew version of Ibn Mu‛adh’s
Treatise on Twilight written in Spanish in the eleventh century and not extant
in the original Arabic (Goldstein 1977a). This treatise concerns an attempt to
determine the height of the atmosphere by means of a measurement of the
solar depression arc at daybreak or nightfall, where this is defined as the arc
from the sun (below the horizon) to the horizon on a circle passing through
the observer’s zenith. By means of a clear geometric argument, Ibn Mu‛adh
concluded that the atmosphere reaches up to about 50 miles above the
surface of the earth, a value cited by Torricelli in 1644. Samuel ben Judah
also revised an earlier Hebrew version of The Improved Version of the
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Almagest (Islah al-Majisti) by Jabir ibn Aflah, and Samuel tells us something
about his motivation for working on this text (Berman 1967:315):

When I achieved a good understanding at that time of this honored
science [astronomy] and all or nearly all of the other sciences, I realized
from the words of Averroes in his book on this science that the good
found in them was gleaned from the book of Ibn Aflah…

A comparison of The Epitome of the Almagest by Averroes (Spain, twelfth
century) with Ibn Aflah’s book on astronomy demonstrates that Samuel ben
Judah’s assertion has considerable merit.

At about the same time, another translator, Kalonymos ben Kalonymos
(Arles, d. after 1328), translated the Arabic version of Ptolemy’s Planetary
Hypotheses (Goldstein 1967b). This work is only partially extant in Greek,
and Ptolemy’s discussion of cosmic distances that played such an important
role in medieval theory only survives in the Arabic and Hebrew versions.
Ptolemy’s theory assumes that the geometric model that serves to predict a
planet’s position also reflects the relative distances of that planet from the
earth. He then constructed a set of nested planetary spheres with no empty
spaces between them that fill the universe such that the outermost sphere,
that of the fixed stars, lies at a distance of about 20,000 terrestrial radii.

The most original astronomer to write in Hebrew was Levi ben Gerson
(1288–1344) who lived in Orange and occasionally visited nearby Avignon
(Goldstein 1974, 1985c). He composed a long treatise on astronomy in which
he argued that Ptolemy’s models ought to produce agreement with his own
observations of planetary phenomena and eclipses or be replaced by more
suitable models. For the Ptolemaic tradition he relied heavily on al-Battani,
presumably in the Hebrew version of Abraham bar Hiyya. In Levi’s
Astronomy we find tables based on new models that fulfilled the
requirements of having a sound philosophical basis and of agreeing with his
own observations. Levi rejected the epicyclic model that Ptolemy used
extensively, but accepted Ptolemy’s equant model that received much
criticism by a number of Muslim scholars including Ibn al-Haytham
(eleventh century) and Nasir al-Din al-Tusi (thirteenth century) (Pines
1964b; Ibn al-Haytham 1971; Kennedy 1966). There is no indication that
Levi was aware of the important astronomical research being carried out by
contemporary Muslim scholars in the eastern Islamic world. Levi was also
responsible for a modification of the astrolabe, an instrument widely known
in the Islamic world that is used for making observations as well as for
transforming coordinates (Goldstein 1977b). This modification involved
adding a transversal scale on the rim to allow finer angular subdivisions to be
displayed. The transversal scale on an arc of a circle was later used by Tycho
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Brahe (sixteenth century) on his precise observational instruments (Raeder et
al. 1946:29–31). Levi was aware of certain defects in Ptolemy’s lunar model,
also noticed by Ibn al-Shatir (Damascus, fourteenth century), but their
solutions were entirely different.4

Emmanuel Bonfils of Tarascon (fl. c. 1360), who lived a generation after
Levi ben Gerson, mentions his debt to Muslim astronomers, notably al-
Battani (Goldstein 1978). His popular tables for the sun and the moon, The
Six Wings, were even translated from Hebrew into Latin and Byzantine
Greek. It is perhaps surprising that he preferred the tables of al-Battani that
depend on Ptolemy’s models to those of Levi ben Gerson whose work he
also cites.

The impact of science from the eastern Islamic world in the late Middle
Ages was also felt. For example, Shelomo ben Eliyahu of Saloniki (fl. c.
1380) translated a text called the Persian Tables from Byzantine Greek into
Hebrew whose ultimate sources lie in the Islamic world (Goldstein 1979:
36). Another Hebrew text (Vatican, MS 381) contains tables that are
identical with those in an anonymous Arabic text known from a number of
copies (e.g. Paris, Bibliothèque Nationale, MS Ar. 2428).5 This text uses the
year 600 of the Persian era (that corresponds to the year AD 1231) as its
radix or starting point, and so it presumably dates from the thirteenth century
in the eastern Islamic world. The history of this text in Arabic and Hebrew
(and also in Byzantine Greek) awaits further analysis, and for the moment it
is not possible to say who the Hebrew translator was, when he lived or where
he worked.

A copy from about 1500 (probably written in the vicinity of Venice) of an
anonymous Hebrew version of Ulugh Beg’s tables also exists among the
manuscripts in the Bibliothèque Nationale.6 This version of a text composed
in the mid-fifteenth century is of special interest, for it suggests the
possibility that aspects of eastern Islamic astronomy, perhaps even the lunar
and planetary models of Ibn al-Shatir, may have reached European
astronomers via Hebrew intermediaries. So far, the similarities between Ibn al-
Shatir and Copernicus have been noted, but no route of transmission has been
established (Rosi ska 1974). The tables of Ulugh Beg are also mentioned in
a supplement to a Hebrew prayer book published in Venice in 1520
(Goldstein 1974:75). A nineteenth-century Arabic copy of Ibn al-Shatir’s
tables written in Hebrew characters in Aleppo, Syria, has also been identified,
another indication of the impact of eastern Islamic science on the Jewish
community (Goldstein 1979:38).

Yemenite Jewish scholars were heavily indebted to Muslim scientists, and
a number of copies of Arabic texts in Hebrew characters written in Yemen
have been found. Included among them are Jabir ibn Aflah’s text on
astronomy written in twelfth-century Spain and Kushyar ibn Labban’s
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astronomical tables written in eleventh-century Iran, i.e. Yemenite Jews had
access to scientific traditions from diverse regions of the Islamic world.7

A number of Jewish scientists, but not all, accepted astrology as a proper
scientific discipline and wrote treatises that were widely cited. Abraham ibn
Ezra was perhaps the best known expositor of astrology in Hebrew and he
depended in large measure on Arabic sources. He also translated into Hebrew
an Arabic astrological treatise, Masha’allah’s Book of Eclipses, that includes
a discussion of astrological history, i.e. a theory in which historical periods
correspond to the time intervals between planetary conjunctions (Goldstein
1964b). Among the opponents of astrology was Maimonides who wrote a
polemical work attacking it as inconsistent with both science and religion
(Twersky 1972:463–73).

An important group of astrological texts consisting of almanacs and
horoscopes in Arabic (some in Arabic script, others in Hebrew script) have
been found among the documents of the Cairo Geniza. The almanacs, all
from the twelfth century, are noteworthy in that they follow the Muslim
calendar and refer to other calendars used in the medieval world, but not to
the Jewish calendar. This suggests that they originated outside the Jewish
community and hence tell us something about Muslim tastes in astrology as
well as Jewish interest in the subject (Goldstein and Pingree 1981, 1983). An
astronomical text from the Geniza that may have been composed with an
astrological purpose in mind can be dated to 1299 (Goldstein and Pingree
1982). On the basis of internal evidence, the anonymous author of this
Arabic document written in Hebrew characters depended on the astronomical
tables of Ibn Yunus (Cairo, fl. c. 1000) that were also popular among Muslim
scholars. This text, though brief, is sufficiently detailed for us to notice
numerous errors of different kinds that demonstrate the author’s limited
understanding of astronomy.

Scientific instruments were widely discussed by medieval Hebrew
astronomers, and here again the influence of the Arabic tradition can be
discerned. For example, al-Hadib (fl. c. 1400), of Spanish origin but who
migrated to Sicily, wrote a description of an equatorium that he invented.
Such instruments were designed to allow astronomers to find planetary
positions without recourse to complex calculations using astronomical tables.
Indeed, many clever adaptations of the planetary models were invented for this
purpose, as we know from texts in Arabic, Latin and now Hebrew (Goldstein
1987). Al-Hadib cited unnamed Christian scholars as well as al-Zarqallu
(Spain, eleventh century), Ibn al-Raqqam (Tunisia, thirteenth century) and
other Muslim scholars.

In sum, medieval Jewish scholars in many different countries, both in
Christian Europe and in the Islamic world, depended on a legacy of Arabic
science both in the original Arabic and in Hebrew translation. On the basis of
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this heritage they contributed to various scientific disciplines over the course
of many centuries.

NOTES

1 On the Geniza, see Goitein (1967, vol. I, pp. 1–28).
2 Steinschneider (1893:506, 523). A more complete list of manuscripts can be found

at The Institute for Microfilmed Hebrew MSS, The National Library, Jerusalem.
3 Maimonides (1956:197–8). On al-Qabisi and Maimonides, see Goldstein (1980:

138).
4 On Ibn al-Shatir, see Kennedy and Ghanem (1976).
5 The Arabic version of this text is cited in Sezgin (1974:324) under the name of Abu

al-Wafa’ although he is mentioned in the introduction, he is not the author. The
Hebrew version has not been previously identified or even noted.

6 MS heb. 1091; cf. Goldstein (1979:38).
7 Goldstein (1985b); on Kushyar see Sezgin (1974:246); see also Langermann

(1987).
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9
The influence of Arabic astronomy in the

medieval West
HENRI HUGONNARD-ROCHE

At the beginning of his Epitome astronomiae Copernicanae, Kepler lists the
following components of astronomy, all of which he considers necessary to
the science of celestial phenomena (Kepler 1953:23). The astronomer’s task,
he says, consists of five main parts: historical, to do with the recording and
classification of observations; optical, to do with the shaping of the
hypotheses; physical, dealing with the causes underlying hypotheses;
arithmetical, concerned with tables and computation; and mechanical,
relating to instruments. The first three areas, adds Kepler, involve mainly
theory; the last two are more concerned with practical aspects.

In each of the areas identified by Kepler, the contribution of Arabic
science was essential to the birth and subsequent development of astronomy
in the Latin West. Prior to this contribution, there was indeed no astronomy
of any advanced level in those countries.1 What was understood by
astronomy was scarcely more than a collection of imprecise cosmological
ideas concerning the shape and size of the world, and some basic notions
about the movements of celestial bodies, principally concerning synodical
phenomena, such as heliacal risings and settings. The needs of the Church
with regard to the regulation of the calendar had nourished a tradition of
chronological calculation following the De temporum ratione of Bede (d.
735). But this literature of computation, with which the names of Raban Maur,
Dicuil or Garlande are associated, was not based on any mathematical
treatment of the phenomena. A single example will suffice: in Bede, the
planetary movements are represented by simple eccentrics, and the second
planetary anomaly thus remains unexplained. In short, the science of the
heavens in the early Middle Ages lacked observations, geometrical analysis 
of celestial phenomena and reflection on the foundations of hypotheses, in
other words, the three areas that Kepler related to astronomical theory.



Practical astronomy was no better represented: tables were inexistent and
instruments (gnomons, sundials) were very basic.

This chapter obviously cannot detail, or even list, all the changes produced
in the Latin West by successive translations of Arabic works, nor can it cite all
the translations or all the medieval authors who may have been influenced by
them.2 We shall omit, among other things, Arabic influence on the
development of trigonometry in the West, on instruments and on the Latin
catalogues of stars,3 as well as the considerable influence exerted on Latin
astrology by treatises such as the Introductorium maius or the De magnis
coniunctionibus of Abu Ma‛shar (end of the ninth century).4 This chapter
will focus instead on the problems of astronomical theory proper, in order to
reveal some essential aspects of Arabic influence on the growth and
development of this theory in the medieval West.

THE ASTROLABE AND THE ASTRONOMY OF THE
PRIME MOVER

The first evidence of the penetration of Arabic astronomy in the Latin West
relates to the stereographic astrolabe. The properties and advantages of
stereographic projection, on which this instrument was based, had already
been described by Ptolemy in his Planisphere, but this text was not known in
the Latin world until the twelfth century, through the translation by Hermann
of Dalmatia (1143) of a critical Arabic revision of the text by Maslama al-
Majriti (c. 1000). However, scholars in the north of the Iberian peninsula,
who were in contact with Islam, became familiar with this instrument and the
treatises relating to it from the end of the tenth century. At this period, the
first technical literature appeared in Latin under the names of Gerbert (the
future Pope Sylvester II), Llobet of Barcelona and Hermann the Lame. This
literature consists of texts describing applications or construction, or
construction followed by applications, which are extracts or revisions of
earlier Arabic treatises that have still not been clearly identified.5 A new
series of translations in the twelfth century, such as the translation of the
treatise of Ibn al-Saffar (d. AH 426 (AD 1035)) by Plato of Tivoli (fl. 1134–
45), and various original Latin works, such as those of Adelard of Bath (c.
1142–6), Robert of Chester (1147) and Raymond of Marseilles (before
1141), gave the Latin West definitive mastery of the instrument. In addition,
the inclusion of the astrolabe in university teaching programmes reinforced
the educational role of this instrument until the end of the Middle Ages and
ensured the success of the Latin translation by John of Seville (fl. 1135–53) of
a work attributed to Masha’allah (end of the eighth century).

The astrolabe was not only the educational instrument par excellence of
the Middle Ages, but also an instrument of calculation, permitting the rapid
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geometrical solution of the principal problems of spherical astronomy. The
astrolabe provided an easy demonstration of the daily and annual motions of
the sun and of the combination of their effects, covering right and oblique
ascensions, the duration of irregular hours, the heliacal rising of stars and the
position of the celestial houses in astrology. Bearing in mind the traditional
medieval division of astronomy into two distinct areas—the astronomy of the
daily motion of the heavenly vault, on the one hand, i.e. the astronomy of the
prime mover, and planetary astronomy, on the other —treatises on the
astrolabe obviously dealt only with the first of these. Consequently, they
contain few technical data: apart from the positions of stars, these are
confined to the obliquity of the ecliptic, the location on the zodiac of the
apogee of the sun and the position of the first point of Aries (spring equinox)
in the calendar, which is associated with the movement of precession.
Raymond of Marseilles’s treatise on the astrolabe6—the oldest Latin text on
the subject that is not a pure adaptation from the Arabic— contains two
tables of stars, one drawn from the treatises of Llobet of Barcelona and
Hermann the Lame, and the other derived from al-Zarqallu (d. 1100).
Raymond demonstrates a marked enthusiasm for this last author, and also
borrows from him the position of the apogee of the sun at 17; 50° of Gemini
and the value of the obliquity of the ecliptic estimated as 23; 33, 30°, which
he prefers to that of Ptolemy (23; 50°). This example already enables us to
identify two notable aspects of Arabic influence on Latin astronomy: the
major role played by the work of al-Zarqallu and the questioning of
Ptolemaic parameters in relation to the sun.

THE TOLEDAN TABLES AND PLANETARY
ASTRONOMY

By the time the treatise of the astrolabe had reached its definitive form, in the
middle of the twelfth century, it was far from being the Latin world’s only
means of access to technical astronomy. A considerable collection of Arabic
texts were translated in the course of that century, which opened up to Latin
astronomers a much wider field of study in the form of astronomical tables.
This designation covers a huge variety of material, which can be divided
schematically into three groups: the first comprises elements relating more or
less directly to the astronomy of the prime mover (tables of right and oblique
ascensions, of declinations, of the equation of time); the second comprises
the planetary tables and is made up of four parts (chronological tables, tables
of mean co-ordinates, tables of equations and tables of latitudes); the third
group consists of disparate tables relating to conjunctions of the sun and
moon, eclipses, parallaxes, the visibility of the moon and other planets, etc.
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Three principal sources served to introduce the Latin astronomers to all
these subjects: first, the canons and tables of al-Khwarizmi (c. 820), as
revised by the Andalusian astronomer Maslama al-Majriti and translated by
Adelard of Bath (c. 1126); next, the tables of al-Battani (d. AH 317 (AD
929)), first translated by Robert of Chester in a text that remains unfound,
and then in a version by Plato of Tivoli, of which only the canons have been
preserved;7 lastly, the tables of al-Zarqallu, which form the basis of the
collection known as the tables of Toledo from their meridian of reference.
Translated by Gerard of Cremona (d. 1187), the Toledan tables achieved
widespread diffusion throughout the Latin West.8

One of the first Latin authors to use tables of Arabic origin was Raymond
of Marseilles. In 1141 he composed a work on the motions of the planets,
consisting of tables preceded by canons and an introduction in which he
claims to draw on al-Zarqallu. In fact, his tables are an adaptation of those of
al-Zarqallu to the Christian calendar and the longitude of Marseille. As in his
treatise on the astrolabe, Raymond utilizes the value of 23; 33, 30° for the
obliquity of the ecliptic, which he took from al-Zarqallu. Furthermore, he is
aware of the proper motion of the apogee of the sun as demonstrated by al-
Zarqallu and he reproduces the Arab astronomer’s table for the positions of
the apogees of the sun and other planets. Appearing some thirty years before
the translations of Ptolemy’s Almagest and the Toledan tables, by Gerard of
Cremona,9 Raymond’s work was the first to introduce to the Latin world,
through the perspective of a borrowing from al-Zarqallu, the Ptolemaic
method of calculating planetary positions (Figure 9.1), which consists in
finding the algebraic sum of the mean motion, the equation of the centre and
the equation of the argument, correcting the equation of the argument by
means of proportional parts. From his study of the tables of al-Zarqallu,
Raymond of Marseilles understood, however, the clearly stated notion that
astronomical tables demand continual correction. Astronomers throughout
the Middle Ages found themselves faced with these corrections and the
theoretical problems that they involved, and it was one of the aims of
Copernicus finally to establish tables that would be permanently valid.

The adaptation of Arabic tables, and particularly the Toledan tables,
continued in various parts of the Christian world throughout the twelfth and
thirteenth centuries (Millás Vallicrosa 1943–50:365–94). Thus one can cite
tables for the meridian of Pisa compiled around 1145 by Abraham ibn Ezra,
tables for the meridian of London in 1149–50 by Robert of Chester and in
1178 by Roger of Hereford, and further anonymous tables, for London
(1232), Malines, Novara, Cremona, etc. The tables for Toulouse seem to
have been particularly well used, notably by Parisian astronomers, because
of the proximity of the meridians of Toulouse and Paris. The large number of
manuscripts of the Toledan tables dating from the fourteenth and even the
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fifteenth century testify to their continued use even after the Alphonsine
tables had become the preferred source of astronomical reformers in Paris at
the beginning of the fourteenth century. The Toledan tables also influenced
the almanacs, which were designed not to provide the means of calculating
planetary positions but to give the positions themselves. This is the case, for
example, in the Almanach compiled for Montpellier for the years 1300 and
following by Profatius (d. c. 1307), who himself records his debt to the
Toledan tables.10

The Toledan tables are a composite collection, including the parts taken
from the tables of al-Zarqallu alongside extracts from al-Khwarizmi (notably
the planetary latitudes), elements from al-Battani (in particular, the tables of
planetary equations), and yet other parts derived from the Almagest or the
Handy Tables of Ptolemy, and from the De motu octavae spherae, which was
attributed in the Middle Ages to Thabit ibn Qurra.11 This diversity of

Figure 9.1 Ptolemaic theory of the motion of the planets in longitude (general case: upper
planets and Venus). Medieval nomenclature: T, centre of the earth or the world; D, centre
of the deferent; E, centre of the equant (TD=DE); O, centre of the epicycle; P, planet; X,
origin of the co-ordinates on the ecliptic (first point of Aries); A, apogee on the ecliptic; ω,
longitude of the apogee; µ, mean motion; γ, mean centre; α, mean argument; x, equation
of the centre; y, equation of the argument; λ, true locus
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composition means that the Toledan tables do not have a coherent underlying
astronomical schema and that certain computations are based on different,
incompatible parameters. For example, the tables of differences of ascension
are calculated for an obliquity of the ecliptic equal to 23; 51°, the value
which appears in the Handy Tables, whilst the table of right ascension is
calculated with the value of 23; 35° used by al-Battani. As another example,
some of the columns which make up the table of equation of Venus are
calculated using two different eccentricities for the planet. The absence of
any geometrical analysis of planetary motions in the canons, which are
limited to stating the methods of calculation to be applied, must have made it
more difficult for the early Latin users of the Toledan tables to be critical of
them, and they tacitly accepted the new parameters.

The characteristic features of the twelfth- and thirteenth-century Latin
tables are therefore identical with those of the Toledan tables, and essentially
reflect the modifications applied to Ptolemaic theory by the Arab
astronomers of the ninth century. These modifications mainly affected solar
parameters, whose definition by Ptolemy had proved very unsatisfactory.
Observations made in the East in the ninth century—some 700 years after
Ptolemy—had led to different estimations from Ptolemy’s12 for the length of
the tropical year, for the speed of precessional movement, for the obliquity of
the ecliptic (23; 33° according to the astronomers of al-Ma’mun and 23; 35°
according to al-Battani, instead of 23; 51, 20° in the Almagest), for the
eccentricity of the sun (2; 4, 45P for al-Battani, 2; 29, 30P for Ptolemy) and
for the position of the solar apogee (at 65; 30° from the first point of Aries
according to Ptolemy, at 82; 17° according to al-Battani, and 82; 45°
according to the De anno solis attributed to Thabit ibn Qurra13). The
discovery of these divergences between the results obtained by Ptolemy and
their own findings confronted the Arab astronomers with a delicate problem
which echoed on until the time of Copernicus: were these divergences due to
errors of observation or to long-term variations in the parameters which
would therefore indicate the existence of movements not so far observed? Both
interpretations were put forward in the ninth century. The first was supported
by al-Battani, who did not question the kinematic models of Ptolemy, merely
adopting a more rapid precessional movement than Ptolemy’s (1° in 66 years
rather than 1° in 100 years). The second interpretation was represented by the
author of De motu octavae spherae, who postulated further that the presumed
variations of the solar parameters were periodic: to account for this, he
imagined a model14 which produced simultaneously a periodic variation in
precession, and thus in the length of the tropical year, and a periodic
variation of the obliquity of the ecliptic. Briefly, this model consisted of two
ecliptics: a fixed ecliptic inclined at 23; 33° to the equator, which it bisects at
two points, the first point of Aries and the first point of Libra; these two
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points are taken as the centres of two small circles described by the first
point of Aries and the first point of Libra of a moving ecliptic (but fixed in
relation to the stars), which, in turn, bisects the equator at the equinoctial
points. When the moving first point of Aries, which is the origin of the
sidereal co-ordinates, completes a revolution on its small circle, the vernal
point is drawn into an oscillatory motion on the equator. The parameters of
the model were chosen to produce the maximum effect (distance between the
first point of moving Aries and the vernal point) equal to ± 10; 45°, and the
periodicity of the oscillatory movement was 4163.3 Arabic years (4039.2
Christian years). The tables of De motu that correspond to this geometrical
model were included without amendment in the Toledan tables, thus ensuring
until the end of the thirteenth century the unchallenged success of this theory
of the oscillatory motion of the equinoxes, known in medieval times as the
motion of accession and recession (accessio and recessio translating the
Arabic terms iqbal and idbar).15

The calculation of planetary motions contained in the Toledan tables is
based on three quantities: the mean motion and the two corrections, known
as the equation of the centre and the equation of the argument. These two
corrections are the translation into computational terms of the irregularities
produced by the presence in the Ptolemaic geometrical models of
eccentricities and epicycles. They are therefore a function, for each planet, of
the eccentricity and of the relation between the radius of the epicycle and the
radius of the deferent. It is remarkable that, although the mean co-ordinates
given in the Toledan tables (mean motion of the upper planets and mean
argument of the lower planets) appear to have been established independently
of earlier known tables, the tables of equations are essentially the same as
those of al-Battani and derive from the Handy Tables of Ptolemy. The
principal exception to the Ptolemaic origin of the tables of planetary
equations is the table of equation of the centre of Venus, which is similar to al-
Battani’s but completely different from that of the Handy Tables. The reason
is that, in the table of al-Battani, the centre of the epicycle of Venus was
assumed to coincide with the mean sun and thus the eccentricity of Venus
had to be the same as that of the sun. This was the concept—generally
accepted by Arab astronomers, according to al-Biruni (d. 1048) (Toomer
1968:65)—that was duly adopted by the author of the Toledan tables.

With the exception of Venus, therefore, the preservation of equation tables
of Ptolemaic origin indicates that the structure of the geometrical planetary
models underlying the Toledan tables, and the Latin tables that derived from
them, had remained the same since Ptolemy. By contrast, the setting of those
models within the reference system of a solar theory associated with the
theory of the motion of the fixed stars had involved a complete modification
of the Ptolemaic concept. In fact, the Arab astronomers of the ninth century
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had shown that the position of the solar apogee is variable (in tropical co-
ordinates) and had found a value for its movement similar to that for the
precessional movement (1° in 66 years). They had therefore assumed that
these two movements were identical, i.e. that the solar apogee was fixed, not
in relation to the equinox (as Ptolemy had thought) but relative to the sphere
of the stars. As a result, the sphere of the stars served as the reference for
planetary motions from that time on. Thus, whereas the Ptolemaic tables had
been expressed in tropical coordinates, the Toledan tables were expressed in
sidereal co-ordinates. It was therefore only after having found the true
positions of the planets on the sphere of the fixed stars (the eighth sphere in
medieval terms), by algebraic summation of the mean motion and the
equations, that the positions on the ninth sphere (or sphere of the stationary
ecliptic) could be calculated by adding the equation of the motion of
accession and recession, to take account of the motion of ‘trepidation’ of the
stars, and consequently of the planetary apogees, in relation to the vernal
point. This procedure, inherited from the Toledan tables, was constantly used
in Latin astronomy until the end of the thirteenth century.

PLANETARY THEORIES AND THE
GEOMETRICAL ANALYSIS OF APPEARANCES

Although the astronomical tables could satisfy the practising astronomer by
enabling him to find the position of a celestial body in longitude and latitude
at any particular moment, they did not provide any direct information in two
of the areas defined by Kepler as constituting the theory of astronomy, i.e.
the study of hypotheses and of their causes. These two areas of study
developed in the Latin West in the thirteenth century, and once again Arabic
influence had a considerable part to play in them. The development of this
new field of research was made possible by the appearance of a new type of
astronomical text, the theoricae planetarum, whose aim was to set forth
kinematic models that would represent the celestial motions as faithfully as
possible. Instead of the highly technical demonstrations in the Almagest,
Latin astronomers preferred more basic descriptions of the world system
according to Ptolemy, as epitomized in two Arabic treatises: the introduction
to Ptolemaic astronomy by al-Farghani, entitled Differentie scientie astrorum
in the translation of 1137 by John of Seville and Liber de aggregationibus
scientiae stellarum in the translation by Gerard of Cremona; and second, an
analogous treatise composed by Thabit ibn Qurra (d. AH 288 (AD 901)), also
translated by Gerard of Cremona and known as De hiis que indigent
antequam legatur Almagesti.16 In the same way as these two treatises, the
theoricae planetarum of the Latin Middle Ages usually restricted themselves
to explaining basic astronomical concepts and the general organization of the
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circles used to represent planetary motions. A notable example of this
approach is the most widely known of all the medieval theoricae, called the
Theorica planetarum Gerardi,17 whose author is unknown but which
probably dates from the beginning of the thirteenth century. The geometrical
models described in this Theorica conform to Ptolemaic constructs, with the
exception of those concerning the erroneous determination of planetary
stations by the tangents and the theory of planetary latitudes. On the second
point, two traditions were known in the Middle Ages: the first was
represented by the Almagest and followed by al-Battani and an anonymous
translation of the Toledan tables; the other tradition, derived from Indian
methods, came into the West via the tables of al-Khwarizmi and the
translation of the Toledan tables by Gerard of Cremona. Based on a model of
the inclinations of the planes of the various circles representing planetary
motions which differed from that of Ptolemy, this second method led
naturally to different computational procedures from those in the Almagest.
These are the procedures discussed in Theorica Gerardi, and that work was
largely responsible for their dissemination until the beginning of the
fourteenth century, at which time the Alfonsine tables restored the primacy
of Ptolemaic methods.

A concise example of the medieval theoricae, the Theorica planetarum
Gerardi, gave no indication of the parameters of the geometrical
constructions, nor of the periods of revolution of their moving elements. A
more elaborate theorica, the Theorica planetarum of Campanus of Novara
(composed between 1261 and 1264), by contrast, combined a detailed
theoretical exposé of the Plotemaic kinematics of planetary motions with a
description of the appropriate equipment to represent those motions—the
first Latin treatise on the equatorium. Included in university programmes
during the fourteenth century, the Theorica of Campanus aided the
widespread diffusion of ideas drawn from the work of al-Farghani which
was, after Ptolemy, its major source. Like al-Farghani, Campanus augmented
his summary of the Almagest with information concerning the system of
celestial spheres: he completed the description of each planetary model with
an evaluation of the dimensions of each part of the model. He was himself
the author of astronomical tables for the town of Novara, which were based
on the Toledan tables, and he took quite a lot of his parameters from the
latter. Thus all the parameters of the planetary apogees were drawn from the
Toledan tables, including the solar apogee, which is subject to precessional
movement, as for the Arab astronomers. Equally, Campanus adopted the
Toledan values for the mean motions of the upper planets and for the mean
argument of Mercury, but he used the value from his own Novara tables for
the mean argument of Venus. For the distances between station and apogee,
he again followed the Toledan tables. Like them also, he adopted Ptolemaic
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parameters for the eccentricities and the magnitudes of the radii of the
epicycles (except in the case of Mars where the difference is probably due to
error).

With regard to the dimensions of the world, Campanus derived the basic
elements of the comparative dimensions of the spheres of the earth, moon
and sun from Ptolemy, and adopted the Ptolemaic principle of the contiguity
of the celestial spheres which permits the calculation, step by step, of the
relative dimensions of the planetary spheres up to Saturn and, from there, to
the fixed stars. However, Campanus based all his estimations in absolute
values on the evaluation of the length of a terrestrial degree of latitude (
miles) that he took from al-Farghani and introduced into the Ptolemaic
calculations of basic parameters (the diameters of the earth and sun, the
distance from the earth to the sun, etc.). By also using the magnitudes of the
planetary bodies provided by al-Farghani, Campanus was able to calculate
the dimensions of all the parts of the world system.

To summarize very broadly, we can say that medieval astronomy in the
thirteenth century, as exemplified by the Theoricae planetarum of Campanus,
was dominated by three major influences: the influence of Ptolemy on the
geometrical models and their parameters; the influence of the Toledan tables
on the mean co-ordinates of the moving elements in those models; and the
influence of al-Farghani (and through him the influence of Ptolemy’s
Planetary Hypotheses) on the cosmological constitution of the universe.
Within this framework, two principal questions remained: the problem of the
motion of the sphere of the stars, merely alluded to by Campanus in a
reference to both the Ptolemaic movement of 1° in 100 years and the
movement of accession and recession (not quantified) attributed to Thabit;
and the question of the actual reality of Ptolemy’s kinematic models.

THE PROBLEM OF THE FOUNDATION OF THE
HYPOTHESES

At the same time as the Latin West discovered, through the theoricae, the
Ptolemaic hypotheses implicit in the tables and their canons, they learned,
through the translations of Michael Scot (d. c. 1236), of the commentaries of
Averroës (d. 1198) in which those hypotheses were strongly criticized.18

Aristotelian physics required that the celestial substance undergo no other
movement than the uniform rotation of homocentric spheres. It was therefore
easy for Averroës to show the contradictions between this physics and the
astronomy of eccentrics and epicycles. Simultaneously with the radical
criticism by Averroës, the Latin West acquired Michael Scot’s 1217
translation of the De motibus celorum of al-Bitruji (c. 1200), in which the
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author attempted to reformulate astronomy in accordance with the physics of
Aristotle. In principle, the models of al-Bitruji can be seen as a kind of
reworking of the homocentric models of Eudoxus—accepted by Aristotle —
with the innovation that the inclinations of the axes of the planetary spheres
were made variable, the movement of each sphere being governed by that of
its pole, which described a small epicycle in the neighbourhood of the pole
of the equator.

The discovery of these texts initiated a lengthy medieval debate on the
foundation of these hypotheses (Duhem 1913–59:3, pp. 241–498 passim). As
early as 1230 echoes of the work of al-Bitruji—albeit still confused— could
be found in the writings of William of Auvergne (1180–1249), and a little
later in the work of Robert Grosseteste (1175–1253). Albertus Magnus (d.
1280), for his part, was fascinated by a very simplified model of the theory
of al-Bitruji, i.e. the attempt to explain all celestial appearances by means of
a single driving force that would carry all the celestial bodies in a more or
less rapid motion towards the west, which would account for their apparent
proper motions towards the east. At the conclusion of his discussion, Albert
rejects the criticism of Averroës concerning the eccentrics and epicycles, for
the reason that celestial bodies differ from terrestrial bodies in matter and in
form. He also rejects the astronomy of homocentric spheres, for ‘this
astronomy’, he says, ‘has not been completed by observation of the
magnitude of the motions’. He thus gives prominence to the inability of this
astronomy to account for appearances quantitatively, a failing that was
constantly cited against the hypothesis of al-Bitruji in the Middle Ages and
which explains the indifference of astronomers toward it.

The doubts and criticisms concerning Ptolemy raised by the works of
Averroës and al-Bitruji, by contrast, prompted a deepening reflection on the
status of astronomical theory and led to the appearance of theses which
would be studied anew in the sixteenth century as part of the polemic 
between Ptolemaic and Copernican hypotheses. These theses were clearly
articulated by Thomas Aquinas (1225–74), when he stated that the
suppositions imagined by the astronomers were not necessarily true even if
they seemed to explain appearances, for it may be possible to explain those
appearances by some other process not yet conceived. Thomas thus
contrasted two ways of explaining a phenomenon: sufficient proof of a
principle from which the phenomenon follows, or the demonstration of
agreement between the phenomenon and a principle advanced beforehand.
Astronomy, according to Thomas, uses the second method, which suffices to
explain the most obvious appearances.

In this debate between physics and astronomy—championed at the time of
Simplicius by Aristotle and Ptolemy and revived in the guise of the
opposition between Ptolemy and al-Bitruji—certain Latin scholastics found
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the germ of a solution in the work of another Arab author: the treatise on the
Configuration of the World attributed to Ibn al-Haytham (d. c. 1041), of
which three anonymous Latin translations survive (one dated 1267).19 The
work is a cosmography without any mathematical treatment in which Ibn al-
Haytham returns to the arrangement of solid orbs imagined by Ptolemy in his
Planetary Hypotheses. Schematically, the sphere of each planet was seen as
composed of an orb concentric with the earth into which there is fitted an
eccentric orb containing the deferent and the epicycle: the two parts of the
concentric orb, which are respectively interior and exterior to the eccentric
orb, are of unequal thickness and function, as it were, to ‘compensate’ the
eccentricity and to make the whole of the planetary sphere concentric with
the world. Presented by Roger Bacon (d. 1294) in his Opus tertium as an
ymaginatio modernorum created to avoid the difficulties of eccentrics and
epicycles, this physical interpretation of Ptolemaic astronomy invalidates the
objections of Averroës, according to the author. Conversely, the variations of
planetary distances and the non-uniformity of their motions appeared to him
to confirm the hypotheses of Ptolemy. This was also the opinion of numerous
great medieval scholars, such as Bernard of Verdun, Richard of Middleton
and Duns Scotus.

The inability of the system of al-Bitruji to account for simple observations
concerning, for example, the eccentricity of the planets—an inability again
denounced at the end of the Middle Ages, by Regiomontanus—and,
conversely, the ability of the ymaginatio inherited from Ibn al-Haytham to
respond to the criticisms of Averroës, ensured the triumph of the Ptolemaic
hypotheses and their physical interpretation by means of the orbs of Ibn al-
Haytham. The most thorough exposition of this interpretation appeared at the
end of the Middle Ages in the Theoricae novae planetarum, written in 1454
by Georg Peurbach: the description of the celestial orbs contained in this
treatise served as an authoritative account of the structure of the heavens
until Tycho Brahe (1546–1601) rejected the very existence of the celestial
spheres.

THE PROBLEM OF PRECESSION AND THE
ABANDONMENT OF THE TOLEDAN TABLES

The second major problem encountered by the medieval astronomers, that
concerning the movement of precession, was more difficult to overcome. In
his commentary (probably dated 1291) on Gerard of Cremona’s translation
of the canons of al-Zarqallu regarding the Toledan tables, the Parisian
astronomer John of Sicily20 enumerated the various hypotheses that he knew
relating to precession: the uniform motion estimated by Ptolemy as 1° in 100
years and by al-Battani as 1° in 66 years; the to-and-fro motion of 1° in 80
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years and of 8° amplitude rejected by al-Battani; and the movement of
accession and recession of the De motu octavae spherae attributed to Thabit
ibn Qurra. He rejected, for his part, the movement of accession and recession
and adhered to the Ptolemaic concept of uniform motion, while regarding its
exact magnitude as uncertain. In this respect, John of Sicily is representative
of the mistrust of Parisian astronomers of the time regarding the theory of De
motu and, more generally, the Toledan tables.

At the end of the thirteenth century, indeed, the divergence between the
positions calculated from these tables or the Latin tables derived from them
—notably the tables for Toulouse—and the observed positions of the celestial
bodies had become inadmissible. Thus, on the basis of personal observations
made to establish his Almanach, William of Saint-Cloud21 estimated the
difference between the positions of the moving apogees and those of the
fixed apogees on the eighth sphere as 10; 13° for 1290 and 10; 15° for 1292.
Noting that this difference was nearly 1° greater than the value which would
have resulted from the calculation made according to the law of motion
proposed in the De motu octavae spherae, he concluded that this law should
be rejected, and he accepted that the movement of precession must be
considered, at least provisionally, to be uniform at one minute per year (i.e. a
value close to that obtained by al-Battani). Concerning the mean motions of
the planets, on the other hand, William supplied empirical corrections to the
radices of the Toledan tables, adding or subtracting fixed quantities as follows:
+1; 15° for Saturn, −1° for Jupiter, −3° for Mars and +0; 22° for the moon.
These same corrections were also proposed by two other Parisian authors,
Peter of Saint-Omer and G.Marchionis (Poulle 1980a:205–9, 260–5) in their
treatises concerning equatoria, written in 1294 and 1310 respectively. In
addition, Peter of Saint-Omer evaluated the difference between the fixed
apogees and the moving apogees at 10; 10°, by reference to the estimations
of precessional motion by William of Saint-Cloud, which also seem likely to
have inspired Profatius in his treatise on the equatorium written between
1300 and 1306. A collection of texts from the very end of the thirteenth
century thus attests to the ending of the comprehensive influence of the
Toledan tables: the astronomers of this era no longer considered them
sufficient, and they rejected in particular the movement of accession and
recession, preferring instead a uniform motion of precession.

The influence of these criticisms was, however, short-lived. At the
beginning of the fourteenth century, Latin astronomy replaced the Toledan
tables with the Alfonsine tables. The latter were drawn up in Spanish
between 1252 and 1272 for Alfonso X of Castile, and only the original
canons survive. However, the Latin version, which appeared in Paris around
1320, dominated tabular astronomy from then until the publication of the De
revolutionibus of Copernicus in 1543. In the first known essay concerning
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the new astronomy, the Expositio tabularum Alfonsi regis Castelle,22 written
in 1321, John of Murs did not refer to planetary parameters, eccentricities
and magnitudes of epicycles, but concentrated his study on the values given
in the Alfonsine tables for the mean motion of the sun and the movement of
the auges of the planets. It was the treatment of the movement of precession,
in fact, that most clearly differentiated the Alfonsine tables from the earlier
tables. As John of Murs said, they represented an attempt to reconcile the
Ptolemaic theory of uniform precessional motion with the Arabic theory of
the movement of accession and recession. According to the Alfonsine
theory, the motion of the apogees and the stars was made up of two
components: a uniform motion in the order of the signs, for which the period
was 49,000 years (1° in just over 136 years) and a movement of accession
and recession relative to the intersection of the zodiac and the equator, for
which the period was 7000 years, with a maximum effect of 9°. The
movement of accession and recession of De motu was thus conserved as the
component that causes the velocity of precessional motion of the apogees and
the stars to vary. In addition, this movement of precession was taken into
account from the start of operations to compute the planetary positions and
not, as in the Toledan tables, at the end when it was necessary to transpose
the positions obtained on the sphere of the fixed stars into tropical co-
ordinates. More generally, the Alfonsine tables were designed to give the true
positions of the planets on the ninth sphere directly, i.e., in tropical co-
ordinates.

As far as the planetary equations were concerned,23 the Alfonsine
astronomers made only slight modifications to the Toledan tables, except in
the cases of the sun, Venus and Jupiter. The change in the maximal equation
of the sun (and consequently in its equation table) arose from the tacit
modification (nowhere explained in the canons) of the eccentricity of the 
sun, which varied from 2; 6p in the Toledan tables (2; 30p according to
Ptolemy) to 2; 15p in the Alfonsine tables. The eccentricity (of the deferent)
of Venus being traditionally taken as half that of the sun—i.e. 1; 8p for the
Alfonsine astronomers (instead of 1; 15p for Ptolemy and 1; 3p in the Toledan
tables)—the maximal equation of Venus and the corresponding table of
equation were similarly modified. Finally, in the case of Jupiter, the increase
in the maximal equation, which changed from 5; 15p in the Ptolemaic and
Toledan tables to 5; 57p in the Alfonsine tables, corresponded to an increase
in the eccentricity from 2; 45p to 3; 7p. With regard to the radii of the
epicycles, by contrast, parameters derived (by modern computation) from the
tabulated values of the equation of the argument show that the Alfonsine
tables were based on similar values to those used for the Toledan and
Ptolemaic tables.
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In short, the new hypotheses did not change the structure of the Ptolemaic
planetary models, except as far as the eccentricity of the sun and of Venus
and Jupiter were concerned. Once again it was the theory of motion of the
sun and the directly linked theory of the movement of the fixed stars that
were the essential subject of modification. On this point, the concepts of the
De motu octavae spherae again played a key role: although they no longer
served to describe the actual motion of the equinoxes, they served to describe
variations in the velocity of that motion.

THE COPERNICAN REVOLUTION AND ARABIC
ASTRONOMY

Once the astronomical tables had been updated by the Alfonsine reforms, the
attention of the leading astronomers of the late Middle Ages turned to the
analysis of Ptolemy’s kinematic models. This was the task, in particular, of
the Theoricae novae planetarum of Peurbach and the Epitome in Almagestum
Ptolemaei, started by Peurbach and completed by Regiomontanus (d. 1476).
The latter work, which contained a highly detailed analysis of Ptolemy’s
treatise, was the principal source for Copernicus concerning the results
obtained by the Arab astronomers, notably al-Battani and al-Zarqallu. In the
former work Copernicus could become familiar with the constitution of the
solid spheres, as inherited from Ptolemy’s Hypotheses and Ibn al-Haytham’s
Configuration of the World. There too he could read the description of the
movement of accession and recession according to the De motu octavae
spherae in a chapter on this subject added by Peurbach after his original
draft. He could discover there also the representation of the deferent of
Mercury as an oval figure, the first mention of which occurs in the treatise on
the equatorium of al-Zarqallu, which had become known in the West through
the Spanish translation in the Libros del Saber compiled for Alfonso X and
which was probably Peurbach’s ultimate source.24

The question of Arabic influence on Copernican texts25 focuses on two
groups of problems which relate, on the one hand, to the theory of precession
and solar theory, and, on the other hand, to planetary theory. As we have
seen, the problem of the motion of the sun and stars was the major stumbling
block for Latin astronomers throughout the Middle Ages, and it is therefore
not surprising that the prime merit ascribed to Copernicus by his disciple
Rheticus was to have solved this problem.

The long medieval debate on the solar parameters (eccentricity, position of
the apogee and obliquity of the ecliptic) and on the precession or the
trepidation of the equinoxes appeared in a new light in the Copernican
system, once the earth was seen as responsible not only for the diurnal
revolution but also the annual revolution and even, through the motion of its
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axis, for the westward slide of the equinoxes with respect to the fixed stars
and thus the difference in length of the sidereal and the tropical years. Taking
into consideration, in his Commentariolus, the lengths of the tropical year
given by Ptolemy, al-Battani and the Alfonsine tables, and the corresponding
values for precession obtained by the same sources, Copernicus concluded
that in all cases the calculation gave a constant sidereal year of 365 days 
hours. The model conceived in the Commentariolus to account for this result,
i.e. the westward movement of the earth’s axis accomplishing its revolution
in a tropical year, while the great orb carrying the earth turned to the east in a
sidereal year, still produced only a uniform precession, because Copernicus,
by his own admission, had not at that date discovered the law of precessional
motion. It none the less indicated that the sphere of stars is fixed, that the
lines of planetary apsides are fixed with respect to it and that it is the motion
of the earth’s axis which displaces the equinox with respect to the ecliptic. It
also demonstrated the return by Copernicus to the concepts of the Arab
astronomers, for whom, since the time of Thabit ibn Qurra and al-Battani, the
sidereal year had been constant and the periods of planetary motion had been
fixed with respect to the stars.

The analogy does not stop there. When he turned his attention, in the De
revolutionibus, to a more accurate description of the inequalities in the
motions of the earth, Copernicus carried out a historical assessment of the
data obtained by his predecessors for the precession, the obliquity of the
ecliptic, and the eccentricity and position of the solar apogee, and he took the
results of al-Battani and of al-Zarqallu for the medieval period.26 In view of
the diversity of values that emerged, Copernicus found himself facing exactly
the same problem as the Arab astronomers of the ninth century with their new
data for the parameters in question: were the discrepancies in the findings
due to error or to variations in the parameters over a long period? In other
words, should certain values be rejected, or should they all be integrated in
the laws of motion to be determined? On this point, Copernicus was inspired
by the example of De motu octavae spherae. Like the author of that treatise,
Copernicus assumed that the combined observations reflected periodic
variations in the relevant motions, and he constructed a model which, like
that of the De motu, combined a uniform sidereal year and a trepidation of
the equinoxes. For Copernicus, however, the trepidation was not a simple
one but was composed, as in the Alfonsine tables, of a secular term and a
periodic term (having periods of 25,816 and 1717 years of 365 days
respectively).

According to Copernicus, however, the variation of the degree of
precession was insufficient to explain the variation in the length of the year.
It was also necessary to incorporate two long-term inequalities which,
according to his assessment, affected the motion of the sun, i.e. a decrease in
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the eccentricity and a non-uniform motion of the line of aspides. It was in the
work of al-Zarqallu that the Latin astronomers had first discovered the
affirmation of the solar apogee’s own (but uniform) motion and a clear
distinction of the anomalous year confused until then with the tropical year
(Ptolemy) or the sidereal year (Thabit, al-Battani). It was from al-Zarqallu too
—through the intermediary of the Epitome of Regiomontanus—that
Copernicus adopted27 the mechanism designed to account for both the
variation of the eccentricity (the period of which he assumed to be equal to
that of the variation in obliquity of the ecliptic) and the inequality of motion
of the line of the apsides: all that was required was to let the centre of the
terrestrial orbit, i.e. the mean sun, move on a small circle around a point
removed from the real sun by a distance equal to the mean eccentricity in the
relevant period (3434 years of 365 days).

It may also be from al-Zarqallu that Copernicus drew the principle for his
model representing the concomitant variations of precession and obliquity of
the ecliptic. In fact, al-Zarqallu had succeeded in making these two variations
independent of each other by using, in one case, an epicycle placed around
the equinox to make the precession vary (following the method of the De
motu), and in the other case, a polar epicycle (with its centre on a deferent
concentric with the pole of the ecliptic) to make the obliquity of the ecliptic
vary.28 The method of polar epicycles was later generalized by al-Bitruji,
who employed it for all planetary motion but with the disastrous consequence
that the latitude depended on the longitude (or more accurately, on the
argument of the planet). Copernicus, in turn, took up this method of polar
epicycles, as part of a complex solution permitted by the fact that these two
variations of precession and obliquity could be treated as two perpendicular
oscillations of the axis of the terrestrial equator: each of the two variations
was then given a small polar circle of appropriate diameter, the earth’s axis
was made to oscillate back and forth along the diameters of these circles and
the two oscillations were combined so as to occur in perpendicular planes
and in the relevant periods. The technical procedure used by Copernicus to
obtain each of the oscillations is described by Nasir al-Din al-Tusi (1201–74)
in his major treatise al-Tadhkira fi ‛ilm al-hay’a, and has consequently
become known to modern scholars as the ‘Tusi Couple’. This procedure,
used by Tusi in planetary theory, thus leads us to the second group of
problems relating to Arab influence on Copernican astronomy.

This set of problems is not concerned with the second planetary anomaly,
which relates to proving the heliocentric theory, but with the first anomaly,
which is explained in Ptolemaic theory by the uniform motion of the
eccentric deferent around a point that is not its own centre but the centre of
the equant. Such a movement had been strongly criticized as contrary to the
principles of physics by Ibn al-Haytham and then by the astronomers
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associated with the observatory of Maragha (founded by Hulagu in 1259),
such as Nasir al-Din al-Tusi, Mu’ayyad al-Din al-‛Urdi (d. 1266) and Qutb al-
Din al-Shirazi (1236–1311), as well as by the Damascene astronomer Ibn al-
Shatir (1304–75).29 The method employed by these scientists to avoid the
difficulty consisted of breaking down the motion around the centre of the
equant into two or more components which were circular motions and which
controlled the direction and the distance of the centre of the epicycle in such
a way that the centre was as close as possible to the position that it would
have occupied in the Ptolemaic model. The Eastern astronomers used two
technical procedures to achieve this end: the addition of epicycles to give the
Ptolemaic effect of bisection of the eccentricity, and the ‘Tusi Couple’. This
model permits a rectilinear motion to be produced from circular motions in
the following manner (Figure 9.2): if two equal circles rotate around their
respective centres D and F so that the circle of centre F revolves in the
opposite direction and twice as fast as the circle of centre D, the point H
(such that ) on the circumference of the circle of centre F
describes with an oscillatory motion (or motion of libration in the
terminology of Copernicus) the diameter AB of a large circle (with centre D
and radius double that of the small circles). If this model is in plane, it
produces a rectilinear oscillation of H. If it is drawn on a sphere, the diameter
AB described by H will be an arc of large circle (provided that the oscillation
is weak).

These two technical procedures, the ‘Tusi Couple’ and the addition of
epicycles, were put to work by Copernicus. He used the first, as we have
seen, to account at one and the same time for the inequality of the precession
and the variation in the obliquity of the ecliptic. For this he used not one, but
two, Tusi models, in such a way that the diameters described by the two
resulting oscillations are in perpendicular planes and intersect at the mean
North pole to the equator (the radii of the circles and the speeds of rotation
being chosen, of course, so that the two oscillatory motions have the
necessary amplitude and periodicity). Copernicus also used the Tusi model,
as did the author of the Tadhkira, to account for the oscillations of the orbital
planes in the theory of latitudes.

More striking still is the similar use made by Copernicus and Ibn al-Shatir
(in his treatise Nihayat al-Sul fi Tashih al-Usul) of the other procedure (the
addition of epicycles) to represent planetary motion in longitude while
avoiding the problems associated with the Ptolemaic equant. Thus, in the
Commentariolus, all the planetary models are similar, with regard to the first
anomaly, to those of Ibn al-Shatir in which the combination of a deferent and
two epicycles is substituted for the movement of the deferent with respect to
the centre of the equant. The only differences between the two authors lie in
the values attached to the parameters and, of course, in the fact that the earth
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was at the centre of the planetary models for Ibn al-Shatir while it was the
mean sun for Copernicus. A further similarity brings together the models of
Copernicus and Ibn al-Shatir: both place a ‘Tusi Couple’ at the tip of the
deferent radius of Mercury in such a way as to vary the length of the orbital
radius of this planet, by imposing at the centre of the first epicycle an
oscillatory motion along a line directed always towards the centre of the
deferent. A final similarity is the following: the model of the moon in the
Commentariolus and the De revolutionibus is the same, except for
parameters, as the model of Ibn al-Shatir.

These numerous analogies suggest that Copernicus was influenced by the
Eastern astronomers of the thirteenth and fourteenth centuries. It is true that
we do not know of any Latin translation of their works, nor even of any
reference to them in the Latin literature of the late Middle Ages. However, it
seems that the transmission of certain of these Arabic texts to the Latin West
may have been achieved through the intermediary of Byzantine sources
which reached Italy in the fifteenth century. Thus a manuscript (Vat. Gr. 211
which was in Italy by 1475) contains a treatise dealing with planetary theory
(in a Greek translation, made around 1300 by Chioniades from the original
Arabic), that contains Tusi’s lunar model and an illustration showing the
‘Tusi Couple’. Further evidence of the use of the ‘Tusi Couple’ is found in

Figure 9.2 Copernicus, De revolutionibus, Nuremberg, 1543, fol. 67v
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the treatise of Giovanni Battista Amico entitled De motibus corporum
coelestium iuxta principia peripatetica sine excentricis et epicyclis, published
in Venice in 1536, in which the author endeavours to revive homocentric
astronomy with the aid of models which are all based on the use of Tusi’s
mechanism.30

THE END OF THE INFLUENCE OF ARABIC
ASTRONOMY IN THE LATIN WEST

Copernicus marks the end of the long period of influence of Arabic astronomy
in the Latin West. He was the last to make constant use of observational
results taken from Arab authors, results which helped him to elaborate his
estimations of the long-term variations in solar parameters. He was the last,
also, to choose the thesis based on the De motu octavae spherae, which
involved serious use of the collected observations of the past to formulate the
laws of motion being sought, rather than using new observations to refute
pre-existing theories. Remembering Kepler’s three-way division of
theoretical astronomy, we note that shortly after Copernicus, the abundant
and accurate observations of Tycho Brahe made all reference to the history
of ancient observations irrelevant. As for the Ptolemaic geometrical models
and their Arabic or Latin variations, Kepler put an end to them. All that
remained was the requirement to account physically for the phenomena,
which Ibn al-Haytham and the Eastern astronomers of the thirteenth and
fourteenth centuries had striven to do: nevertheless, after the refutation of the
existence of solid spheres by Tycho Brahe, this requirement was no longer
linked by Kepler with an Aristotelian vision of the world but rather with a
vision inspired by a Platonic mathematical tradition.

NOTES

1 On the astronomy of the Middle Ages before the arrival of Arabic science in the
West, see the synthesis and study by Pedersen (1975).

2 The most recent study of the transmission of Arabic science to the Latin world,
with an extensive bibliography, is by Vernet (1985). Despite its age, Haskins (1927)
remains useful. See also Carmody (1956).

3 On this last point, see Kunitzsch (1959, 1966).
4 See Lemay (1962). The doctrine of De magnis coniunctionibus (translated by John

of Seville from Kitab al-qiranat) which exposes the effects of planetary
combinations on the rise and fall of dynasties and earthly kingdoms exerted a
persistent influence in the Middle Ages, whose traces can still be found in
Rheticus, pp. 47–8, 98–9.
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5 The classic study on this subject is in Millás Vallicrosa (1931). See also the work
of synthesis entitled ‘Las primeras traducciones científicas de origen oriental hasta
mediados del siglo XII’ in Millás Vallicrosa (1960:79–115).

6 See the edition of this treatise by Poulle (1964) (with a list of existing editions of
Latin treatises on the astrolabe, pp. 870–2). See also Poulle, ‘Raymond of
Marseilles’, in Dictionary of Scientific Biography, XI, 1975, pp. 321–3.

7 There is no modern edition of Plato of Tivoli’s translation, which was published in
Nuremberg in 1537 under the title De scientiis astrorum.

8 There is no modern edition of the Toledan tables, but see the detailed analysis by
Toomer (1968).

9 An annotated list of the Latin translations attributed to Gerard of Cremona can be
found in Lemay, ‘Gerard of Cremona’, Dictionary of Scientific Biography, XV,
1978, pp. 173–92. For the Arabic-Latin tradition of the Almagest, see Kunitzsch
(1974).

10 The planetary positions calculated from the Toledan tables do in fact coincide well
with the values given by Profatius, as demonstrated by Toomer (1973).

11 The Arabic text of this treatise has not been found. The Latin version by Gerard of
Cremona appears in Millás Vallicrosa (1943–50:487–509) (reprinted in Millás
Vallicrosa 1960:191–209) and in Carmody (1960). The attribution of this work,
which is definitely not by Thabit, is currently disputed: Millás Vallicrosa has
rejected the attribution to al-Zarqallu, supported by Duhem (1913–59:II, 246f); the
attribution to Ibrahim b. Sinan, the grandson of Thabit b. Qurra, is supported by
Ragep (1993:400–08). An annotated translation can be found in Neugebauer
(1962b).

12 Most of the values that follow are taken from Hartner, ‘Al-Battani’, in Dictionary of
Scientific Biography, I, 1970, pp. 507–16.

13 The Latin version of this treatise has been edited by Carmody (1960), who
attributes it to Gerard of Cremona. This attribution is considered doubtful by
Morelon, who also thinks that the original Arabic text came from the circle of the
Banu Musa and not from Thabit: see Thabit ibn Qurra, pp. XLVI–LII.

14 On this model, and on theories of precession generally in the Middle Ages, see
Mercier (1976–7), Goldstein (1964a).

15 Analysis of some texts relating to this tradition can be found, for example, in North
(1976), vol. 3, pp. 238–70.

16 This translation is published in Carmody (1960). The original Arabic text, with
French translation and commentary by Morelon, is in Thabit ibn Qurra.

17 See Gerardus. An English translation by Pedersen is published in Grant (1974: 451–
65).

18 The passages of commentary on the treatises of Aristotle in which Averroës
criticizes Ptolemaic astronomy are collected in Carmody (1952). On the criticism
of Ptolemy by the Arab scholars of Spain, see Sabra (1984).

19 One of these translations, which seems to have been made from a Spanish version
(now lost) compiled for Alfonso X, has been published by Millás Vallicrosa (1942:
285–312). On the astronomical concepts of Ibn al-Haytham, see Sabra (1978).

20 See Poulle, ‘John of Sicily’, in Dictionary of Scientific Biography, VII, 1973, pp.
141–2.
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21 On this astronomer and the values quoted, see Poulle, ‘William of Saint-Cloud’, in
Dictionary of Scientific Biography, XIV, 1976, pp. 389–91, and Poulle (1980a:68,
209).

22 This important treatise has been published by Poulle (1980b). See also Poulle,
‘John of Murs’, in Dictionary of Scientific Biography, VII, 1973, pp. 128–33.

23 The information that follows has been taken from Poulle (1980a:26–7, 767–9).
24 Concerning solid spheres and the representation of the deferent of Mercury

according to Peurbach (and his Arabic sources), see Hartner (1955).
25 An overall survey of the influence of Arabic astronomy on Copernicus can be

found in Swerdlow and Neugebauer, pp. 41–8. For the Commentariolus, see also
Swerdlow (1973: passim.)

26 A good summary of this historical assessment and of the conclusions drawn by
Copernicus can be found in Rheticus, pp. 94–8.

27 On the solar theory of al-Zarqallu and its transmission to the Latin West, see
Toomer (1969).

28 See Goldstein (1964a) and the same author’s edition of al-Bitruji, On the Principles
of Astronomy.

29 From the extensive literature on this aspect of Arabic astronomy, we only mention
here the studies directly concerned with the comparison of the Arabic and
Copernican models: Kennedy (1966), Kennedy and Roberts, Hartner (1971).

30 These two references are taken from Swerdlow and Neugebauer, pp. 47–8. On
Amico, see Swerdlow (1972).
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