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In this paper, we argue that model-based design and platform-based design are two views of the same
thing. A platform is an abstraction layer in the design flow. For example, a core-based architecture and
an instruction set architecture are platforms. We focus on the set of designs induced by this abstraction
layer. For example, the set of all ASICs based on a particular core-based architecture and the set
of all x86 programs are induced sets. Hence, a platform is equivalently a set of designs. Model-
based design is about using platforms with useful modeling properties to specify designs, and then
synthesizing implementations from these specifications. Hence model-based design is the view from
above (more abstract, closer to the problem domain) and platform-based design is the view from below
(less abstract, closer to the implementation technology).

One way to define a platform is to provide a design language. Any valid expression in the language
is an element of the set. A platform provides a set of constraints together with known tradeoffs that flow
from those constraints. Actor-oriented platforms, such as Simulink, abstract aspects of program-level
platforms, such as Java, C++, and VHDL. Actor-oriented platforms orthogonalize the actor definition
language and the actor composition language, enabling highly polymorphic actor definitions and de-
sign using multiple models of computation. In particular, we concentrate on the use of constrained
models of computation in design. The modeling properties implied by well chosen constraints allow
more easily understood designs and are preserved during synthesis into program-level descriptions.
We illustrate these concepts by describing a design framework built on Ptolemy II.
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1. Introduction

Embedded systems interact with the physical world through sensors and actuators.
These days, most include both hardware and software designs that are specialized to the
application. Conceptually, the distinction between hardware and software, from the per-
spective of computation, has only to do with the degree of concurrency and the role of time.
An application with a large amount of concurrency and a heavy temporal content might as
well be thought of using hardware abstractions, regardless of how it is implemented. An
application that is sequential and has no temporal behavior might as well be thought of us-
ing software abstractions, regardless of how it is implemented. The key problem becomes
one of identifying the appropriate abstractions for representing the design.

Unfortunately, for embedded systems, single unified approaches to building such ab-
stractions have not, as yet, proven effective. HDLs with discrete-event semantics are not
well-suited to describing software. On the other hand, imperative languages with sequential
semantics not well-suited to describing hardware. Neither is particularly good at expressing
the concurrency and timing in embedded software.

Another approach is to increase the expressiveness of the languages in use. VHDL,
for example, combines discrete-event semantics with a reasonably expressive imperative
subset, allowing designers to mix hardware abstractions and software abstractions in the
same designs. To attempt to unify these design styles, the VLSI design community has
made heroic efforts to translate imperative VHDL into hardware (using so-called behav-
ioral compilers) with only limited success.

A significantly different direction has been to develop domain-specific languages and
synthesis tools for those languages. For example, Simulink, from The MathWorks, was
originally created for control system modeling and design, and has recently come into
significant use in embedded software development (using Real-Time Workshop, and related
products), and experimentally in hardware design. 14 Simulink is one of the most successful
instances of model-based design.46 It provides an appropriate and useful abstraction of
control systems for control engineers.

Simulink also represents an instance of what we call actor-oriented design. We will de-
fine this precisely below, but loosely, actors are concurrent components that communicate
through ports and interact according to a common patterns of interaction. Primarily, actor-
oriented design allows designers to consider the interaction between components distinctly
from the specification of component behavior. This contrasts with component communi-
cation in hardware description languages such as VHDL, where interaction is expressed at
a low-level using hardware metaphors, and with software component techonologies such
as CORBA, where interaction between objects is expressed through method invocation.
In both cases, the communication mechanism becomes an integral part of a component
design.

The advantages of orthogonalizing component behavior and component composition
have been observed by other researchers. These include the ability to refine communi-
cation,43 and to simulate and design mixed hardware and software systems. 12,16 This or-
thogonalization also allows for component behavior to be specified in a variety of ways
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within the same design. For example, in Simulink, blocks can be defined in M (the Matlab
scripting language), C, Ada, Fortran, or even as state machines using Stateflow. However,
perhaps the most significant advantage of actor-oriented design is the use of patterns of
component interaction with useful modeling properties. These patterns are termed models
of computation.33

Another approach to designing hardware and software systems is platform-based des-
ign.28,44 A platform is an abstraction layer in the design flow. For example, a core-based
architecture for ASIC design and an instruction set architecture for software design are
platforms. Platform-based design constrains the possible design choices to those that can
be easily implemented, while hiding unnecessary details of the implementation technology.
Two key advantages of platform-based design are the ability to better leverage expensive
manufacturing processes (the “million-dollar mask” problem) and the improved design pro-
ductivity through abstraction and re-use.28

In this paper, we present a formal structure that exposes the commonality between
platform-based design and model-based design. In both cases, whether a high-level level
control system or a lower-level embedded architecture, we are interested in expressing the
important properties of a system and leaving the unimportant properties unspecified. We
show how actor-oriented design helps address these issues.

2. Platform-based and Model-based design

In this section, we elaborate on model-based design and platform-based design. We
will argue that these are two views of the same thing, and will give a conceptual framework
for understanding their basic tenets.
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2.1. Platform-based design

Figure 1 is a representation that Sangiovanni-Vincentelli frequently uses to explain
platform-based design.44 At the top is the “application space,” which is a set of designs.
An application instance is a point in that space. The downward arrow from this space
represents a mapping by the designer of an application into an abstract representation that
conforms with the constraints of the platform. The lower arrows represent (typically auto-
matic) mappings of that abstract representation into concrete designs in the platform. The
upper half is called the “API platform” and the lower half the “architecture platform.” The
bottleneck (vertices of the cones) represents the constraints of the platform meeting the
conceptual model within which the designer builds the design.

Inspired by this, give a somewhat more formal structure here. We define platform to be
a set. We will call elements of the set designs. Examples of such sets are:

• The set of all linear ordinary differential equations (ODEs).
• The set of all single output boolean functions.
• The set of all x86 binaries.
• The set of syntactically correct Java programs.
• The set of all Java byte-code programs.
• The set of standard-cell ASIC designs using a given cell library.
• The set of all SOC designs based on a particular processor core.
• The set of all synthesizable VHDL programs.
• The set of all digital CMOS integrated circuits.
• The set of all Wintel PCs.
• The set of all Wintel PC applications.
• The set of all ANSI C programs.
• The set of all FPGA configurations for a Xilinx Virtex II XC2V4000

Note that since a platform is a set of design, even a set of applications can be thought
of as a platform. For example, the set of audio signal processing applications is a set of
designs and hence a platform.

The value in a platform is the benefits that arise from working with a restricted set of
designs. For example, synthesizable VHDL programs are synthesizable, unlike general
VHDL programs. ANSI C programs can be compiled to run on just about any computer.
Boolean functions can be tested for satisfiability, and the stability of a linear ODE can be
determined.

For a platform to be useful, a designer must be able to recognize when a design is a
member of a platform. Many less successful efforts use, for example, a “subset of C” to
define silicon circuits, but fail to define precisely the subset that works. Even for synthe-
sizable VHDL, the synthesizable subset can be difficult to determine.5 A subset is a new
platform.

For each platform, there are two key (but separable) issues:

1. How the set is defined.

2. How the elements of the set are described.
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Fig. 2. Three platforms and mappings between them.

For example, the set of all Java byte-code programs is defined by the Java virtual machine
specification. A member of this set is defined by a finite sequence of Java byte codes,
typically stored in a class file or a collection of class files. An ill-defined “subset of C”
makes it clear how elements of the set are described, but not how the set is defined. Given
a C program, one cannot tell whether it is a member of the set. For an application-level
platform, such as audio signal processing, the elements of the set are described in the
informal language of the application domain.

The hourglass in figure 1 does not clearly separate these two issues, so we prefer a
representation like that in figure 2. In this representation, we replace the bottleneck with a
platform. The bottleneck is a reference to how elements of the upper platform are described.
We instead think of the middle layer as consisting of the set of all possible designs in some
application specification language. In figure 2, the upper region is a set of applications (a
platform), for example the set of all audio signal processing systems. The middle region is
the set of designs (also a platform) in some specification language, for example the set of
all C programs. The lower region is a set of “architectural” designs (also a platform), for
example the set of all x86 binaries. The arrows represent the same things as in figure 1,
but now as relations between sets. The two lower arrows represent, for example, that two
distinct compilers may produce distinct binaries from the same C program. The shaded
area in the architectural space represents, for example, the set of all valid x86 binaries that
execute the give C program.

A relation R from platform P1 to P2 is a subset of P1×P2. P1 is called the domain and
P2 the codomain of R. Relations between platforms play a key role in design. A function
F : P1 → P2 is a relation F ⊂ P1 × P2 where

(p1, p2) ∈ F and (p1, p3) ∈ F ⇒ p2 = p3.

Functions that map one platform into another are realized by, for example, synthesis tools
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Fig. 3. Platforms and mappings between them.
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and compilers.
The key difference between figures 1 and 2 is that in figure 2, we do not attempt to de-

scribe how the members of the sets (the dots in the platforms) are represented. Of course,
the efficacy of a platform will depend on there being a reasonable and manipulable rep-
resentation, and on there existing one or more relations with platforms that are closer to
a physical system. Figure 2 now has a formal structure, that of sets and relations. This
structure can be manipulated independent of semantics. More importantly, it makes it clear
that for a given application, there may be many application models. For example, we can
subdivide the application specification layer into more refined, domain-specific platforms.

We can now give a much more complete picture that lends insight into the roles of tools
and platforms. In figure 3, each box is a platform. It is a set of designs. The arrows between
boxes represent mappings (functions), which convert one design into another. For example,
the Java compiler javac converts a member of the set Java programs into a member of the
set Java byte-code programs. The platforms are stacked roughly by degree of abstraction
from a physical realization (we will give a more precise meaning to this stacking shortly).
There are two key concerns:

1. It may be possible to map a single design in one (higher) platform into several designs
in a (lower) platform.

2. It may be possible for several designs in a (higher) platform to map into the same
design in a (lower) platform.

(We put “higher” and “lower” in parentheses pending provision of a formal reason for
putting a platform higher or lower.) For example, the dot labeled “P4-M 1.6GHz” (an Intel
processor) induces a subset of executables labeled x86 programs, which is the subset of
executables that it can execute. Consider a function executes,

executes: x86 programs → microprocessors

where, as illustrated in figure 3,

∀ x ∈ x86 programs, executes(x) = P4-M 1.6GHz.

This function represents the fact that the P4-M 1.6GHz processor can execute any x86 bi-
nary. In fact, the P4-M 1.6GHz itself becomes a useful platform (a set with only one mem-
ber), where the function executes induces another platform x86 programs. This connection
between a physically realizable platform (the P4-M 1.6GHz processor) and an abstract one
(the set of x86 programs) is essential to being able to use the abstract platform for de-
sign. Moreover, this connection has to not just exist as a mathematical object (the function
executes), but it has to be realizable itself (and of course, it is). Thus, platforms that are
useful for design must have paths via realizable relations to physically realizable platforms.

This begins to address the question: if a platform is merely a set of designs, how do we
distinguish a good platform from a bad one? Sangiovanni-Vincentelli defines platform as
follows:
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“... an abstraction layer in the design flow that facilitates a number of pos-
sible refinements into a subsequent abstraction layer (platform) in the design
flow.”44

In our structure, this is more a description of a platform that is useful (for design) than
a definition of the concept of platform. To be more precise, we need to combine platforms
and relations:

A design framework is a collection of platforms and realizable relations be-
tween platforms where at least one of the platforms is a set of physically real-
izable designs, and for any design in any platform, the transitive closure of the
relations from that design includes at least one physically realizable design.

A relation R ⊂ P1×P2 is realizable if for all p1 ∈ P1, there is a terminating procedure
(manual or automatic) that yields p2 ∈ P2 such that (p1, p2) ∈ R. “Physically realizable
design,” however, is a term we leave undefined, at least formally. In figure 3, any design in
the lowest platform silicon chips is physically realizable.

“Transitive closure” can be formally defined. Given a collection of platforms P 1, · · · , PN

and relations R1, · · · , RM between platforms, we say that two designs p1 and p2 are tran-
sitively related if there exist elements r1, · · · , rQ of R1, · · · , RM such that r1 = (p1, a1),
r2 = (a1, a2), · · · , and rQ = (aQ−1, p2). The transitive closure from a design p1 is the set
of all designs that are transitively related to p1.

Figure 3 illustrates (incompletely) a design framework where communication systems
or DSP applications are manually translated into models obeying either discrete-event
(DE), synchronous dataflow (SDF), or Simulink semantics (all of which are actor-oriented).
This manual translation process is represented formally as a relation R. Consider a member
of this relation,

(x, y) ∈ R ⊂ applications × actor-oriented models.

We interpret this member to mean that model y realizes application x (making this any
more precise would require formalizing what we mean by “realizes,” which would be chal-
lenging). Whether this relation is “realizable” (by a designer) depends on many factors,
some very fuzzy, such as how good the user interface is to design tools like Simulink or
SDF block diagram editors. Indeed, focusing on realizable relations between these two top
layers is a valid and challenging research area.

In figure 3, synthesis tools (a set of relations that happen to be functions) are used to
generate Java programs, C programs, or VHDL programs from the actor-oriented models.
These are then compiled or synthesized into FPGA configurations, standard-cell designs,
binary programs, or Java byte code. The set Java byte code programs bears a relation
with one or more specific designs in x86 programs (for example), which realize a byte
code interpreter. The JVM interpreter (and any other x86 program) then bears a relation
to members of the set microprocessors. This completes the path to a physically realizable
platform.
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The platform Java byte code programs lies between the platforms that we call exe-
cutables and programs. This in-between layer is newly popular, and represents the virtual
machine concept. Indeed, the trend has been towards adding layers to the platform stack.
The actor-oriented layer is relatively new, still immature, largely unproven, and the focus
of this paper.

For any two platforms, we can define a relation by pairs of designs that we consider in
some sense to be equivalent. They realize the same system, at least with respect to some
aspect of the behavior of that system that might be of interest. For two platforms P 1 and
P2, a refinement relation R ⊂ P1 × P2 is a relation where ∀ p1 ∈ P1, ∃ p2 ∈ P2 such that
(p1, p2) ∈ R. That is, to be a refinement relation from P1 to P2, then for every design in
P1 there must be at least one “equivalent” design in P2.

Consider a relation R ⊂ P1 × P2. We write the image of a point p1 ∈ P1 as IR(p1),
and define it to be the largest subset of P2 such that

p2 ∈ IR(p1) ⇒ (p1, p2) ∈ R.

For a refinement relation, the image of a design p1 is the set of all possible refinements.
The shaded squiggly paths at the bottom of figure 1 is intended to represent members of a
refinement relation. The shadow they cast in the lower platform is the image of the design.

For the same relation R ⊂ P1 × P2, we define the coimage CR(p2) of a point p2 ∈ P2

as the largest subset of P1 such that

p1 ∈ CR(p2) ⇒ (p1, p2) ∈ R.

For a refinement relation, the coimage of a point is the set of all designs that can be refined
into it. In figure 3,

Cexecutes(P4-M 1.6GHz) = x86 programs.

Refinement relations might have strong properties that bind two platforms in useful
ways. We define for example a strict refinement to be a refinement relation R ⊂ P1 × P2

that satisfies the following constraint:

if (p1, p2) ∈ R and (p′1, p2) ∈ R, then IR(p1) = IR(p′1).

This says that if two designs in P1 are equivalent to the same design in P2, then they have
exactly the same set of refinements.

For example, consider a refinement relation T between the set of Java programs and the
set Java byte code programs based on the Turing test. That is, if p1 is a Java program and p2

is a byte code program, then (p1, p2) ∈ T if the input/output behavior of the two programs
is identical. For any particular Java program, there are many byte code programs that are
Turing equivalent to that program. Different Java compilers, or even the same compiler
with different command-line options, will generate different byte code realizations of the
program.

Such a refinement relation is strict if the following statement is true: If Java programs p 1

and p′1 compile into the same byte code p2 (using any compiler, or even distinct compilers),
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then every byte code that is a legitimate compilation of p1 is also a legitimate compilation
of p′1.

That a refinement relation is strict is useful. It means that if the set Java byte code
programs has a semantics, then that semantics, together with the strict refinement relation,
induces a semantics on the set Java programs. That is, if byte code has a meaning, then
so does Java code. A framework where every design is transitively related to a physically
realizable design via strict refinement relations is a particularly useful framework. It means
that every design in the framework has a meaning with respect to the physically realizable
designs.

The semantics induced by a strict refinement relation may be incomplete. A trivial
case, for example, is the refinement relation labeled “executes” in figure 3. This relation
is a function that maps every x86 program into a single point in silicon chips, the P4-M
1.6GHz. The semantics induced on x86 programs, therefore, is fairly weak. All it says
that any x86 program executes on a P4-M 1.6GHz. However, a strict refinement relation
between Java programs and byte code programs (a compiler) is not so weak. Indeed, this
relation can be used to define an operational semantics for Java in terms of the operational
semantics for byte code.

In figure 1, it is implied that for every design in the “application space” there are many
designs in the “architecture space.” This represents the notion that the design in the applica-
tion space is more abstract than the one in the architecture space. This notion of abstraction
does not appear to be formal, but rather to reflect the concept that there exist mappings
of designs in one platform into designs in another that can result in several designs in the
latter.

Figure 3 stacks the platforms vertically, also trying to capture the notion that designs
above are more “abstract” than those below. A “top-down” design process would begin at
the top and use refinement relations (that are preferably strict and realizable by some com-
puter program) to refine the design to one that is physically realizable. Determining how
abstract a design is then becomes a simple matter of determining how many refinement re-
lations separate the design from one that is physically realizable. By this metric, platforms
in figure 3 that are higher are more abstract.

2.2. Model-Based Design

A model is a design bearing a particular relationship to another design, the one being
modeled. Suppose p1 ∈ P1 is a model for p2 ∈ P2. To be a useful model, we require that
if some statement about p1 is true, the some closely related statement about p2 is also true.
For example, we could construct a synthesizable VHDL program p 2, and then construct a
performance model p1 ∈ DE models, the set of discrete-event models. That performance
model might discard functionality, and talk only about timing. Furthermore, if p 1 satisfies
certain timing properties, then we infer that so does p2.

To be useful for modeling, a platform has to have useful modeling properties. In par-
ticular, it needs to be possible (and preferably easy) to determine whether a property of
interest is true for a particular design in the platform.
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Model-based design46 is simply the observation that if one uses a modeling language
to state all the important properties of a design, then that model can and should be refined
into an implementation.

To accomplish model-based design, therefore, one needs a design framework. To call
it model-based design, one needs for the specification constructed by the designer to be in
a language that expresses what is important about the design. The “modeling language”
defines a platform (the set of all designs expressible in the language). Furthermore, to be
useful in terms of platform-based design, the platform has to be effectively realizable.

For platform-based design to be useful, designs in a platform must express what is
important about the system being designed, and preferably no more. Thus, model-based
design and platform-based design are essentially two sides of the same coin. The term
“platform-based design” is typically used when emphasizing the refinement relations to
physically realizable platforms. The term “model-based design” is typically used when
emphasizing refinement relations between the application space and the platform.

From the perspective of a semiconductor vendor, therefore, platform-based design is
the way to go. This vendor needs to provide customers with platforms and refinement re-
lations into their semiconductor technology. The design of these platforms needs to reflect
the capabilities and limitations of the technology. From the perspective of a communica-
tions systems engineer, however, model-based design is the way to go, since it is based
on platforms that reflect the constraints and requirements of the application space and en-
able effective engineering analysis. Of course, for a communications engineer to attempt
a system implementation, the perspectives of both platform-based design and model-based
design are crucial. Platforms are needed that reflect the capabilities and limitations of less
abstract platforms into which they will be refined, and that offer convenient and under-
standable sets of designs to those that have to create the designs.

A key issue (and one that is largely unresolved) is that in modeling, multiple views are
often useful. That is, one might construct a performance model to examine timing, and
a rather different model to examine power consumption in some design of an electronic
system. This is suggested by the light area in the set DE models in figure 3, which is the
coimage of a design in the set synthesizable VHDL programs, and reflects that fact that
there is often more than one useful discrete-event model of a particular chip. Although
there has been some success with multi-view modeling,32,29 it still seems unclear how to
generally and systematically blend multiple abstract models to create a refinement.

In the rest of this paper, we will focus on the set of actor-oriented models in figure
3. Actor-oriented design separate component specification and component composition.
We will show that by carefully defining the platforms at the actor-oriented level, we can
achieve the important objectives of both model-based design (designer convenience) and
platform-based design (synthesizability). The key mechanism is a hierarchical form of
heterogeneity and an abstract semantics that makes this hierarchical heterogeneity possible.
We also describe a process by which such models can be realized into an implementation.



Actor-Oriented Design of Embedded Hardware and Software Systems

external parameters

external port
actor

port

hierarchical abstraction

model

Fig. 4. Illustration of an actor-oriented model (above) and its hierarchical abstraction (below).

3. Actor-Oriented Design

Actor-oriented design is a component methodology that is particularly effective for
system-level design (close to the application level in figure 3). Components called actors
execute and communicate with other actors in a model, as illustrated in figure 4. Actors
have a well defined component interface. This interface abstracts the internal state and be-
havior of an actor, and restricts how an actor interacts with its environment. The interface
includes ports that represent points of communication for an actor, and parameters which
are used to configure the operation of an actor. Often, parameter values are part of the a
priori configuration of an actor and do not change when a model is executed. The config-
uration of a model also contains explicit communication channels that pass data from one
port to another. The use of channels to mediate communication implies that actors interact
only with the channels that they are connected to and not directly with other actors.

Like actors, which have a well-defined external interface, models may also define an
external interface, which we call its hierarchical abstraction. This interface consists of
external ports and external parameters, which are distinct from the ports and parameters
of the individual actors in the model. The external ports of a model can be connected
by channels to other external ports of the model or to the ports of actors that compose
the model. External parameters of a model can be used to determine the values of the
parameters of actors inside the model.

Taken together, the concepts of models, actors, ports, parameters and channels describe
the abstract syntax of actor-oriented design. This syntax can be represented concretely in
several ways, such as graphically, as in figure 4, in XML35 as in figure 5, or in a program
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<class name="Sinewave">
<property name="samplingFrequency" value="8000.0"/>
<property name="frequency" value="440.0"/>
<property name="phase" value="0.0"/>
<property name="SDF Director"

class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<port name="output"><property name="output"/></port>
<entity name="Ramp" class="ptolemy.actor.lib.Ramp">

<property name="init" value="phase"/>
<property name="step"

value="frequency*2*PI/samplingFrequency"/>
</entity>
<entity name="TrigFunction"

class="ptolemy.actor.lib.TrigFunction">
<property name="function" value="sin"

class="ptolemy.kernel.util.StringAttribute"/>
</entity>
<relation name="relation"/>
<relation name="relation2"/>
<link port="output" relation="relation2"/>
<link port="Ramp.output" relation="relation"/>
<link port="TrigFunction.input"

relation="relation"/>
<link port="TrigFunction.output"

relation="relation2"/>
</class>

Fig. 5. An XML representation of the sinewave source.
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designed to a specific API (as in SystemC). Ptolemy II13 offers all three alternatives.

It is important to realize that the syntactic structure of an actor-oriented design says
little about the semantics. The semantics is largely orthogonal to the syntax, and is deter-
mined by a model of computation. The model of computation might give operational rules
for executing a model. These rules determine when actors perform internal computation,
update their internal state, and perform external communication. The model of computation
also defines the nature of communication between components.

Our notion of actor-oriented modeling is related to the work of Gul Agha and others.
The term actor was introduced in the 1970’s by Carl Hewitt of MIT to describe the con-
cept of autonomous reasoning agents.25 The term evolved through the work of Agha and
others to describe a formalized model of concurrency. 4,1,2,3 Agha’s actors each have an
independent thread of control and communicate via asynchronous message passing. We
are further developing the term to embrace a larger family of models of concurrency that
are often more constrained than general message passing. Our actors are still conceptually
concurrent, but unlike Agha’s actors, they need not have their own thread of control. More-
over, although communication is still through some form of message passing, it need not
be strictly asynchronous.

The utility of a model of computation stems from the modeling properties that ap-
ply to all similar models. For many models of computation these properties are derived
through formal mathematics. Depending on the model of computation, the model may be
determinate,27 statically schedulable,34 or time safe.24 Because of its modeling properties,
a model of computation represents a style of modeling that is useful in any circumstance
where those properties are desirable. In other words, models of computation form design
patterns of component interaction, in the same sense that Gamma, et al. describe design
patterns in object oriented languages.19

For a particular application, an appropriate model of computation does not impose un-
necessary constraints, and at the same time is constrained enough to result in useful derived
properties. For example, by restricting the design space to synchronous designs, Scenic 37

enables cycle-driven simulation,22 which greatly improves execution efficiency over more
general discrete-event models of computation (such as that found in VHDL). However,
for applications with multirate behavior, synchronous design can be constraining. In such
cases, a less constrained model of computation, such as synchronous dataflow 34 or Kahn
process networks27 may be more appropriate. One drawback of this relaxation of syn-
chronous design constraints is that buffering becomes more difficult to analyze. On the
other hand, techniques exist for synchronous dataflow that allow co-optimization of mem-
ory usage and execution latency47 that would otherwise be difficult to apply to a multirate
system. Selecting an appropriate model of computation for a particular application is often
difficult, but this is a problem we should embrace instead of avoiding. In the following
sections, we examine more fully several models of computation that are useful for model-
based design of hardware and software.
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3.1. Synchronous/reactive models of computation

The synchronous/reactive (SR) model of computation is actor-oriented, where the com-
putation of actors is triggered by clocks, and at least conceptually, the computation is in-
stantaneous and simultaneous in all the actors.6 Most synchronous/reactive languages give
a fixed-point semantics to resolve zero-delay cycles. Examples of such languages include
Esterel,7 Lustre,21 and Signal.20 These languages do not associate a separate thread of
control with each component, and a compiler can compile away the concurrency, reduc-
ing a highly concurrent program to a single thread of control. Consequently, they are
well suited to realization in software. Moreover, because of their hardware-inspired con-
currency model, they have proven effective as specification languages for hardware. In
practice, these languages are used at the actor-oriented level of figure 3, and are typically
compiled into VHDL or C programs.

Synchronous/reactive languages are specialized. There is only one type of communi-
cation, unbuffered and instantaneous with fixed-point semantics. This communication is
integral to the semantics, and the strong formal properties of synchronous/reactive models
flow from this semantics. For example, because of the semantics, it is possible (and often
practical) to check models by exhaustively searching the reachable states of the model for
undesirable states. Moreover, highly efficient execution is possible (for hardware simula-
tion, for instance, using cycle-driven simulation,22 and for software design, by compilation
that removes all concurrency7).

Time-triggered models of computation are closely related to synchronous/reactive ones.
These models of computation have appeared as platforms at the lower levels of figure 3 (as
hardware architectures) and at the higher levels (as actor-oriented languages). The time-
triggered architecture(TTA)31 is a hardware architecture supporting such models. The TTA
takes advantage of this regularity by statically scheduling computations and communica-
tions among distributed components. The Giotto language 23 elevates this concept the actor-
oriented level by defining a language that is compiled into more traditional programming
languages for realization in real-time software.

Discrete-time models of computation are also closely related. These are commonly
used for digital signal processing, where there is an elaborate theory that handles the com-
position of subsystems. This model of computation can be generalized to support multiple
sample rates. In either case, a global clock defines the discrete points at which signals have
values (at the ticks).

3.2. Dataflow

Despite the name, the synchronous dataflow (SDF) model of computation 34 is not syn-
chronous in the same sense as synchronous/reactive models of computation. It is a dataflow
model of computation. In dataflow models, actor computations are triggered by the avail-
ability of input data. Connections between actors represent the flow of data from a pro-
ducer actor to a consumer actor, and are typically buffered. Examples of actor-oriented
languages that use the synchronous dataflow model of computation are SPW (signal pro-
cessing worksystem, from Cadence) and LabVIEW (from National Instruments).
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SDF is also specialized. There is only one type of communication, and actors are re-
quired to declare and obey a fixed contract that dictates the amount of data that they produce
and consume when they execute. This specialization yields formal properties that are use-
ful from both the modeling and synthesis perspectives. For example, SDF models can be
statically scheduled. Moreover, their memory requirements can be determined statically,
unlike more general dataflow models. And whether the model deadlocks can also be deter-
mined statically, unlike more general dataflow models. Like synchronous/reactive models,
SDF has proven effectively realizable in both software and hardware. Design frameworks
with SDF use it at the actor-oriented level in figure 3, and compile SDF specifications into
VHDL, C, or some other language.

There are several richer dataflow models of computation. Boolean dataflow (BDF) is
a generalization that sometimes yields to deadlock and boundedness analysis, although
fundamentally these questions remain undecidable.10 Dynamic dataflow (DDF) uses only
run-time analysis, and thus makes no attempt to statically answer questions about deadlock
and boundedness.42 In Kahn process networks (PN),27 actors execute asynchronously and
communicate via FIFO queues. PN has been used effectively for actor-oriented design of
signal processing systems.15

3.3. Discrete events

In discrete-event (DE) models of computation, the connections between actors repre-
sent sets of events placed on a time line. An event consists of a value and time stamp (or
just a time stamp, for pure events). This model of computation governs the process interac-
tion through signals in VHDL and Verilog, and is used in Scenic 37 and SystemC45 to link
synchronous islands with asynchronous clocks. It is also used at the modeling level in a
number of modeling packages aimed at analyzing telecommunication systems and queuing
systems.

DE models are typically fairly literal descriptions of physical systems, and hence are
somewhat less abstract than the other models of computation considered here. The notion
of time in these models is very much the Newtonian physical notion of time, although
with embellishments (such as delta delays in VHDL) to handle non-physical issues such as
simultaneous events.

A main advantage of discrete-event models is that events can occur with almost any
time stamp. In particular, it is simple to realize the notion of a component that has delay
associated with it; the component simply creates output events at the appropriate point in
the future. This is true even if the delay is unknown beforehand or is random. As such,
discrete-event models have seen significant application in modeling digital logic circuits.
Unfortunately, this advantage is often a disadvantage in some circumstances. Because
delays are easy to change, it is often difficult to model the effect of simultaneous events.
Additionally, modifications to one part of a design can easily affect other portions, since
the ordering of events can easily be disturbed.
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3.4. Continuous time

Physical systems can often be modeled using coupled differential equations. These
have a natural representation as actor-oriented models, where the connections represent
continuous-time signals (functions of the time continuum). The components represent re-
lations between these signals. The job of an execution environment is to find a fixed-point,
i.e., a set of functions of time that satisfy all the relations. Two distinct styles are used in
practice. In one style, an actor defines a functional relationship between input signals and
output signals. This style is realized for example in Simulink, from The MathWorks. In
another style, an actor also defines a relation between signals, but no signal is considered
an input or an output. The actor instead asserts constraints on the signals. This style is
realized in Spice and many derivative circuit simulators, as well as the simulation language
Modelica (http://www.modelica.org).

Continuous-time (CT) models, like DE models, are typically fairly literal descriptions
of physical systems, and hence are somewhat less abstract than the other models of compu-
tation considered here. The notion of time in these models is again the Newtonian physical
notion, and again there are embellishments.

3.5. Hierarchical Heterogeneity

Countering the desire for a specialized model of computation that is finely tuned to a
particular application is the fact that applications are heterogeneous and complex. Mod-
els of multi-vehicle control systems,30 high-energy astrophysics experiments,40 and even
simple control systems18,39 can include continuous-time dynamics, multiple modes of exe-
cution, extensive signal processing, and distributed real-time execution. In such cases, it is
difficult to model the heterogeneous aspects of a system effectively using a single, special-
ized model of computation. For instance, while the discrete-event model of computation
used in VHDL is effective at representing discrete logic in an embedded system, it cannot
capture the continuous-time aspects. While the problem can be avoided by requiring the
designer to manually construct discrete approximations, it is generally more effective to
use the continuous-time model of computation in cooperation with the discrete model of
computation.

Of the levels shown in figure 3, actor-oriented design is the least mature. A large num-
ber of exploratory and commercial tools have been created and have evolved. Typically,
these tools begin rather specialized, and become more general over time by enriching the
semantics of their model of computation. This is not necessarily the best approach, how-
ever, because enriching the semantics can lead to loss of formal properties, thus hindering
both the modeling objectives and the effective realizability of the designs. Less analysis
and less optimization is possible. One may end up trying to analyze or realize designs that
are extremely unstructured.

As an example, we consider the evolution of the Scenic design language 37 into SystemC
(see http://systemc.org). These languages attempt to bridge the gap between software and
hardware design methodologies. The designers adopted a mainstream software language,
C++, and defined a class library that offered concurrent semantics suitable to hardware
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design. Thus, in figure 3, SystemC is shown as a subset of C++ (all SystemC programs are
C++ programs, but not vice-versa).

As a first effort to define concurrent semantics more suitable to software than that of
VHDL, Scenic emphasized cycle-driven models rather than discrete-event models. On the
hardware side, this has the effect of limiting the designs to synchronous circuits. On the
software side, it makes execution of the concurrent system dramatically more efficient,
enabling both efficient simulation and opening the possibility of using these concurrent
designs directly as deployable software.

In Scenic, each component conceptually has its own thread of execution. The thread ex-
ecutes until it next calls wait(), which stalls the thread until the next tick of the clock. Scenic
also provides a wait until() method, which stalls the thread until a specified condition on a
signal is satisfied, and a watching() method, which causes a call to wait() or wait until() to
return with an exception when a specified condition on a signal occurs. Scenic also allows
for multiple asynchronous clocks, and schedules the ticks of the clocks using a simplified
discrete-event scheduler. Unfortunately, a naive software implementation that creates an
operating system thread for each component thread can result in significant context switch-
ing overhead. Scenic cleverly reduces this overhead for components that do not process
data on every clock tick through the use of sensitivity and watch lists, which avoid awaken-
ing processes unless there is real work to be done. This technique is fundamentally based
on the modeling properties of the synchronous and cycle-driven model of computation.

SystemC 1.0 36 extends Scenic by adding method-style components, where a com-
ponent is triggered not by awakening a thread, but instead by invoking a method. Con-
ceptually, the component process becomes a sequence of invocations of this method, and
maintenance of the state of the component becomes the responsibility of the component,
rather than the responsibility of the thread program counter. While this increases the ways
in which components may be specified, it does not change the semantics of communication
between components.

However, the synchronous signal communication in Scenic and SystemC 1.0 has been
viewed as too limiting for system designers. SystemC 2.045 addresses this concern by
augmenting the SystemC model with channels. A channel is an object that serves as a
container for communication and synchronization. Channels implement one or more inter-
faces (access methods) that can reflect specialized properties of the communication style
that is used for the particular channel. For example, Swan45 describes a fixed-length FIFO
queue channel with blocking reads and writes that can be reset by the producer, but not by
the consumer. This approach is similar to that in Metropolis,11 where concurrent compo-
nents communicate via protocols that can be chosen by the designer. This approach has
been called interface-based design.43 The intent in SystemC 2.0 is that by using a set of
channels from a library, a designer can build a concurrent design using communication
constructs that are abstract from a particular hardware realization.

Unfortunately, although interface-based design enables some simple communication
refinement, the ability of a channel to block component threads vastly changes the mod-
eling properties of SystemC designs. Although a designer has great flexibility in the in-
teraction between individual components because each channel is specified at a low level,
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the overall design has much less structure. In SystemC, this flexibility has a distinct price,
since correct execution must implement mutual exclusion on all access methods for all ob-
jects. In Java, this would be realized by requiring all methods of all objects to be declared
synchronized. In C++, it requires use of a thread package to implements such mutual
exclusion. The Java experience indicates, however, that mutual exclusion of this type is
quite expensive, adding considerably to the already substantial context switching costs of
a multi-threaded style of design. This mutual exclusion is required because, relative to
Scenic, the model of computation imposes fewer constraints on the structure of component
interaction.

However, there is a more distinct danger in using interface-based design. In particu-
lar, flexible low-level component interactions make designs harder to understand and ana-
lyze. Through its channels, SystemC 2.0 will inevitably tempt designers to mix and match
communication styles. For instance, they might combine buffered, asynchronous message
passing with mailboxes and rendezvous. A designer who chooses the semantics of each
communication channel individually faces a severe challenge in getting the design right.
The interactions between the various communication semantics will be very difficult to
understand. Classical pitfalls, such as priority inversion, where synchronization locks due
to communication may interfere with scheduling policy, will look trivially easy by com-
parison to the mysterious deadlocks, livelocks, and timing anomalies that are likely to
result. Unfortunately, the useful modeling properties of specialized models of computa-
tion have been lost in the search for a “generic model of computation.” 45 In contrast to the
predictable modeling properties inherent with specialized models of computation, we find
interface-based design to require disciplined use by designers simply to create models with
predictable properties. This makes it difficult to use in a model-based design methodology
where a designer attempts to capture the important properties of a application abstractly
from an implementation.

Hierarchical heterogeneity enables the description of a heterogeneous application with-
out selecting a single model of computation. It allows for the description of portions of a
design using different models of computation without losing the modeling properties as-
sociated with each model of computation. The basis for the composition is an abstract
semantics that captures not the complete semantics of a model of computation, but only
those aspects that are important for composition.

4. Abstract Semantics

In order to preserve the specialization of models of computation while also building general
models overall, we concentrate on the hierarchical composition of heterogenous models of
computation. The composition of arbitrary models of computation is made tractable by an
abstract semantics, which abstracts how communication and flow of control work. The
abstract semantics is (loosely speaking) not the union of interesting semantics, but rather
the intersection. It is abstract in the sense that it represents the common features of models
of computation as opposed to their collection of features.

A familiar example of an abstract semantics is represented by the Simulink S-function
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initialize Initialize the actor.
prefire Test preconditions for firing and return true if firing can proceed.
fire Read inputs, if necessary, and produce outputs.
postfire Read inputs and update the state of the actor.
wrapup End execution of the actor and free system resources.

Fig. 6. The key flow of control operations in the Ptolemy II abstract semantics.

interface. Although not formally described as such, it in fact functions as such. In fact,
Simulink works with Stateflow to accomplish a limited form of hierarchical heterogeneity
through this S-function interface. We will describe an abstract semantics that is similar to
that of Simulink, but slightly simpler. It is the one realized in the Ptolemy II framework for
actor-oriented design.

In Ptolemy II models,13 a director realizes the model of computation. A director is
placed in a model by the model builder to indicate the model of computation for the model.
For example, an SDF director is shown visually as the uppermost icon in figure 4. The
director manages the execution of the model, defining the flow of control, and also defines
the communication semantics.

When a director is placed in a model, as in figure 4, that model becomes an opaque
composite actor. To the outside environment, it appears to be an atomic actor. But inside,
it is a composite, executing under the semantics defined by the local director. Obviously,
there has to be some coordination between the execution on the outside and the execution
on the inside. That coordination is defined by the abstract semantics.

The flow of control and communication semantics are abstracted by the Executable and
Receiver interfaces, respectively. These interfaces define a suite of methods, the semantics
of which are the abstract semantics of Ptolemy II. A receiver is supplied for each channel in
a model by the director; this ensures that the communication semantics and flow of control
work in concert to implement the model of computation.

4.1. Abstract Flow of Control

In the Ptolemy II abstract semantics, actors execute in three phases, initialize, a se-
quence of iterations, and wrapup. An iteration is a sequence of operations that read input
data, produce output data, and update the state, but in a particular, structured way. The
operations of an iteration consist of exactly one invocation of prefire, followed by zero or
more invocations of fire, followed by zero or one invocation of postfire.

These operations and their significance are summarized in figure 6. The first part of
an iteration is the invocation of prefire, which tests preconditions for firing. The actor
thus determines whether its conditions for firing are satisfied. If it indicates that they are
(by a return value of true), then the iteration proceeds with one or more executions of fire
followed by exactly one invocation of postfire. These latter two operations can read (and
possibly consume) input data values, but only fire can produce outputs.

If prefire indicates that preconditions are satisfied, then most actors guarantee that in-
vocations of fire and postfire will complete in a finite amount of time. Such actors are said
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to realize a precise reaction.38 A director that tests these preconditions prior to invoking
the actor, and fires the actor only if the preconditions are satisfied, is said to realize a re-
sponsible framework.38 Responsible frameworks coupled with precise reactions are key to
hierarchical heterogeneity.

It is also expected of an actor that only postfire updates the state of the actor. That is, the
prefire and fire operations are purely functional. This allows a director to iterate executions
of fire of a family of actors in search of a fixed point. This can be used, for example, to
solve algebraic loops (as done in Simulink), to iterate under the control of a numerical
integration algorithm (also as done in Simulink), or to iterate to a fixed point in a cyclic
synchronous/reactive model. In Ptolemy II, not all actors obey this contract (particularly
hierarchically heterogeneous actors), and thus, not all actors can be placed within models
that iterate to a fixed point. It is an ongoing research issue to design and realize actors that
are assured of obeying this contract.

An example of an actor definition that provides these methods is shown in figure 7.
This actor implements a counter that begins with a value given by its “init” parameter, and
on each iteration, increments by the value given by the “step” parameter. Since it obeys the
abstract semantics, it can be used in models using any model of computation that conforms
to this abstract semantics. Such an actor is called a domain polymorphic actor in Ptolemy
II terminology. The key to hierarchical heterogeneity is to ensure that composite models,
like that in figure 4, are themselves domain-polymorphic actors.

4.2. Abstract Communication

The abstract semantics provides the set of primitive communication operations shown
in figure 8. These operations allow an actor to query the state of communication chan-
nels, and subsequently retrieve information from the channels or send information to the
channels.

These operations are abstract, in the sense that the mechanics of the communication
channel is not defined. It is determined by the model of computation. For instance, in syn-
chronous dataflow,34 the channel is implemented by a queue with fixed length. In Giotto, 23

the channel is a double-buffered mailbox. A value produced by a put operation becomes
available to a corresponding get operation only in the next cycle of the periodic execution.
In the continuous-time model of computation, the channel is a simple variable whose value
is the value of a signal at the current time. A domain-polymorphic actor, like that in fig-
ure 7, is not concerned with how these operations are implemented. It is designed to the
interface of the abstract semantics.

4.3. Hierarchically Heterogeneous Composition

A hierarchically heterogeneous model is supported by this abstract semantics as fol-
lows. Figure 4 shows an opaque composite actor. It is opaque because it contains a director.
That director gives the composite a behavior like that of an atomic actor viewed from the
outside. A director implements the Executable interface, and thus provides the operations
of figure 6.
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public class Ramp extends TypedAtomicActor {
// Define an output port
public IOPort output = new IOPort(this, "output", false, true);
// Define parameters
public Parameter init = new Parameter(this, "init", new IntToken(0));
public Parameter step = new Parameter(this, "step", new IntToken(1));

public void initialize() {
_stateToken = init.getToken();

}

public boolean prefire() {
// Always ready to fire.
return true;

}

public void fire() {
// Send current state on channel 0.
output.send(0, _stateToken);

}

public boolean postfire() {
// Polymorphic add.
_stateToken = _stateToken.add(step.getToken());
// Indicate that firing can continue to the next iteration.
return true;

}

private Token _stateToken;
}

Fig. 7. A specification for a simplified Ramp actor in Ptolemy II (simplified to ignore exception handling).

get Retrieve a data token via the port.
put Produce a data token via the port.
hasToken(k) Test whether get can be successfully applied to the port k times.
hasRoom(k) Test whether put can be successfully applied to the port k times.

Fig. 8. The key communication operations in the Ptolemy II abstract semantics.
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Suppose that in figure 4 the hierarchical abstraction of the Sinewave component is used
in a model of computation different from SDF. Then from the outside, this model will
appear to be a domain-polymorphic actor. When its prefire method is invoked, for example,
the inside director must determine whether the preconditions are satisfied for the model to
execute (in this case, they always are), and return true or false accordingly. When fire is
invoked, the director must manage the execution of the inside model so that input data
(if any) is read, and output data is produced. When postfire is invoked, the director must
update the state of the model.

The communication across the hierarchical boundary will likely end up heterogeneous.
In figure 4, the connection between the TrigFunction actor and the external port will be a
channel obeying SDF semantics (that is, it will be realized as a finite-length queue, in this
case, with length one). The connection between the external port and some other port on
the outside will obey the semantics of whatever director is provided on the outside. This
need not be the same as the SDF semantics.

There are many subtle issues with hierarchical heterogeneity that are beyond the scope
of this paper. In this paper, we focus on the implications for model refinement into hardware
and software system realizations.

5. Actor-Oriented Model Refinement

The primary benefit of actor-oriented design is the possibility of succinctly capturing
the requirements of an embedded system by the modeling properties of a model of com-
putation. In other words, it satisfies the requirements of model-based design. This abstract
model must be physically realized into an embedded implementation, and we would like
this process to be automated by a design tool as much as possible. This is the objective
of platform-based design. Unfortunately, the orthogonalization between actor specification
and actor composition somewhat complicates the construction of such a design tool.

One approach is to define a platform consisting of a library of primitive actors and a
model of computation for assembling them into a model, as in Williamson 50 and Davis.14

The refinement process recognizes actors from the library and substitutes a specialized
implementation of the actor. Unfortunately, such a library-based approach has proved un-
wieldy because library development and maintenance become very difficult. Moreover, to
be sufficient in all but the most domain-specific contexts, the library becomes huge, making
it difficult for designers to find the components they need.

Our approach is to parse a Java specification of an actor, based on the previously de-
scribed abstract semantics. The actor specification is then combined with other actor spec-
ifications according to the particular model of computation. Additionally, certain actors
may be recognized by the refinement tool and replaced with a specialized implementation.
This extensible library approach is similar to the approach used by Simulink’s Real-Time
Workshop. This approach also enables hierarchically heterogenous models to be dealt with
recursively by first generating an implementation of most deeply contained models and
then working upwards.

In this section we illustrate an extensible library approach by briefly describing a pro-
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totype tool called Copernicus, built on Ptolemy II,13 that performs automatic refinement
of synchronous dataflow specifications into both hardware and software implementations.
Such a mapping is an example of a refinement relation defined above. For example, a
mapping between the platform defined by the synchronous dataflow model of compu-
tation and the platform defined by synthesizable JHDL is the refinement relation R ⊂
SDF models × JHDL programs. This refinement relation is represented by the descending
line between SDF models and JHDL programs in figure 3. While it is possible to create a
software executable or hardware circuit directly from an actor-oriented model, we exploit
the existing program-level platforms to realize our actor-oriented design.

Like SystemC, El Greco (which became System Studio),9 and System Canvas,41 our
tool uses an imperative language for actor definition (Java in this case). However, only
the abstract actor semantics is used for composition. This allows the possibility for other
languages to be transparently used for actor specification. In particular, a special-purpose
actor definition language, such as CAL49 could enable actor properties to be inferred rather
than having to be declared.

When describing the refinement of models, we concentrate on the synchronous dataflow
model of computation, which has been found to describe efficient structures in both soft-
ware,8 and hardware.50,17 In either case, this refinement process must generate an imple-
mentation that preserves the semantics of the original model (i.e. the partial ordering of
iterations and the pattern of communication), while attempting to minimize cost of imple-
mentation.

In particular, notice that the abstract semantics described in section 4 does not require
a thread to represent each component. In this respect, it is similar to the notion of method-
style components in SystemC 1.0.36 While still being able to represent concurrency be-
tween components through the use of concurrent models of computation, this abstract se-
mantics is much more amenable to the creation of efficient software realizations of models.

5.1. Refinement Example

We illustrate our refinement tool using the example shown in figure 9. This model is a
synchronous dataflow model, as declared by the SDF Director. This model represents a two
stage cascaded integrator-comb or CIC filter. CIC filters are frequently used for narrow
band filtering when large sample rate changes are required. 26 This model contains two
instances of a discrete integrator, a downsample rate change, and two instances of a comb
filter. The discrete integrator is a single-pole IIR filter with a unity feedback coefficient
(yint[n] = xint[n] + yint[n − 1]). The downsample rate change actor decimates the signal
by a factor of R and the comb-filter is an odd-symmetric FIR filter (y comb[n] = xcomb[n]−
xcomb[n−R]). In this case, the modeling properties of synchronous dataflow easily capture
the multirate behavior of the CIC filter.

The CIC model shown in Figure 9 can be simulated for functional verification, and
thanks to the properties of the synchronous dataflow model can be synthesized into efficient
software or hardware. The model includes two specialized actors (the DiscreteIntegrator
and the CombFilter) that are unlikely to be found in any but the most extensive actor li-
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Fig. 9. A model of a two-stage CIC filter.

public class DiscreteIntegrator ... {
...

Token _sum; // actor state.
Token _temp; // temporary storage.

public void fire() ... {
_temp = _sum.add(input.get(0);
output.send(0,_temp);

}
public boolean postfire() ... {

_sum = _temp;
return true;

}
...

}

Fig. 10. An abbreviated specification of a discrete integrator.

braries, so a pure library-based approach will not be sufficient. We illustrate the extraction
of behavior from Java actor specification and circuit synthesis using the DiscreteIntegerator
actor, shown in figure 10.

In the SDF domain, an iteration of this actor corresponds to one invocation of the fire
method and one of the postfire method. The temporary storage is used to comply with the
abstract semantics, where the state of the actor is not updated in the fire method. If this actor
is to be used only in SDF, then this policy is not necessary. However, by following it, we
define a domain-polymorphicactor that can be used, for example, in a synchronous/reactive
model of computation, where the semantics is based on iteration to a fixed point.

The invocations of the get and send methods in fire correspond to the communication
operations in figure 8. In each iteration, this actor obtains a data token at its input port, adds
the value of the data token to the internal sum variable (using a polymorphic add method),
and sends the resulting sum to other actors through its output port. Before completing the
iteration, the state of the sum variable is updated in the postfire method. Our tool analyzes
the Java byte code produced by compiling this definition and extracts this behavior into the
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Fig. 11. Extracted SDF model of the discrete integrator.
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Fig. 12. Flat SDF model of CIC decimator.

data flow graph in figure 11.

A similar process occurs for the CombFilter actor, with the additional complication that
a bulk delay must be recognized in the Java byte code in order to do effective synthesis.
The Downsample actor, on the other hand, represents a primitive rate change operation and
is treated as a library actor. Each actor is composed along with communication queues into
a single dataflow graph. The data flow graph resulting from the CIC filter is shown in figure
12.

6. Conclusion

A platform is a set of designs. Platforms provide both an abstraction of implementation
technologies and a set of design constraints together with benefits that flow from those
constraints. In particular, the modeling properties of platforms can help designers to capture
the properties of particular systems under design. Unfortunately, in many cases, choosing
the wrong platform for design results in properties that conflict with the desired properties
of a design, such as the multithreading required by SystemC 2.0.

We describe an actor-oriented approach to embedded system design that is gaining
popularity both in industry48,9,41 and in academia.12,14,16 Actor-oriented design orthogo-
nalizes component definition and component composition, allowing them to be considered
independently. We concentrate on how this orthogonalization enables the use of multiple
models of computation, allowing a designer to select appropriate modeling properties at all
levels of design, and not simply at different stages in design. Furthermore, certain mod-
els of computation can be automatically realized in both efficient software and efficient
hardware, unlike existing methodologies oriented around communication refinement. We
have built a tool that refines heterogenous actor-oriented models into software-based and
hardware-based program-level descriptions.
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