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Rapid advances in consumer electronics have led to the anomaly that consumer off-the-shelf gaming
hardware and software provide better interactive graphics than military and other specialized systems
costing orders of magnitude more. UTSAF (Unreal Tournament Semi-Automated Force) is bridging
software written to take advantage of the power of gaming systems by allowing them to participate
in distributed simulations with military simulators. UTSAF illustrates the use of multiagent technology
to flexibly interconnect otherwise incompatible systems. This article describes an architectural ap-
proach for rapidly constructing middleware by taking advantage of built-in capabilities for processing,
communication, and interoperation that a multiagent infrastructure provides. Several software agents
based on Reusable Environment for Task-Structured Intelligent Networked Agents (RETSINAs) are
used to support interoperability between military simulation nodes based on distributed interactive
simulation and Unreal game simulators. Using a multiagent system, UTSAF can be expanded to
support several network environments and interact with other agent-based software.

Keywords: Semi-automated force, UnrealTournament, simulation interoperability, multiagent system,
game simulation

1. Introduction

Distributed simulation has long been used in military appli-
cations for simulated battlefield training and strategic plan-
ning. Distributed simulations often involve different sys-
tems such as the core simulation engine, terrain database,
synthetic theater, computer-generated forces, command-
and-control center, decision support systems, and more.
The distributed simulation may also involve different oper-
ators, agencies, or partners. Due to this heterogeneity, inter-
operation among systems is both critical and problematic.
From the beginning, a major problem for distributed sim-
ulation has been defining a standard for interoperability.
The SIMulator NETwork (SIMNET) project was begun in
1984 [1] to network different military simulation systems,
using information units called protocol data units (PDUs)
to describe typed data structures to be exchanged between
the systems. Building on SIMNET protocols, a family of

|
|
|
|

SIMULATION, Vol. 80, Issue 12, December 2004 647-657
©2004 The Society for Modeling and Simulation International

DOI: 10.1177/0037549704050907

distributed interactive simulation (DIS) protocol standards
for PDU exchange was later defined and published by the
Institute of Electrical and Electronics Engineers (IEEE) in
1993 [2] and became the basis for interoperability among
networked military simulations. By using the DIS proto-
col, military simulations could be extended to a very large
network of simulation nodes [3].

However, DIS has several problems. First, the DIS
PDUs transmitted between simulation nodes tend to over-
whelm network bandwidth [4]. Since the DIS protocol
works in a stateless manner, all information for each entity
and event is transmitted to other simulation nodes, even
though there may be no status changes in those entities
or events. A second problem of DIS simulation is lack of
a common and affordable three-dimensional (3-D) simu-
lated environment. Using DIS for training requires very ex-
pensive customized systems such as vehicle or dismounted
infantry simulators. Last, the DIS environment was origi-
nally built to link simulation nodes together but does not
provide the additional information or interfaces needed for
interoperating with other operational systems, such as a
decision-making, a human behavioral, or a situation aware-
ness module.
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To address some of these deficiencies of DIS and further
increase interoperability among simulation systems and
reusability of simulation components, the Defense Mod-
eling and Simulation Office (DMSO) developed the High-
LevelArchitecture (HLA) specification in 1996. IEEE later
published HLA in 2000 as an open standard to increase
interoperability for both military and nonmilitary simu-
lations. However, legacy simulation systems that are not
HLA compliant cannot be used in HLA-based federations.
To overcome the interoperability problem among non-
HLA-compliant systems, several mitigation approaches
have been proposed. However, there are still several issues
that have slowed HLA adoption by the simulation com-
munity. First, although several commercial off-the-shelf
(COTS) simulation products now support HLA, they are
not yet mature in terms of interoperation between prod-
ucts of different vendors [5]. Second, while there are sev-
eral COTS products that use a gateway to bridge legacy
systems to HLA, the gateway poses restricted access to
some HLA capabilities [6]. There are also compatibility
issues arising from limitations in programming language,
operation systems, and platforms for available HLA-based
products.

Recently, there has been increasing interest in forms
of interoperation not supported by HLA [7] such as be-
tween modeling and simulation (M&S) systems and Com-
mand, Control, Communication, Computers, and Intel-
ligence (C4I) systems. A new framework called XMSF
(Extensible Modeling and Simulation Framework) has
been proposed to solve this interoperability problem [8].
The XMSF is based on the idea of integrating Web services
into M&S using open standards such as the Extensible
Markup Language (XML) and the Simple Object Access
Protocol (SOAP). The XMSF provides a common inter-
face to the C4I systems, which is similar to that recently
proposed for the C4I architecture, called NCES (Network
Centric Enterprise Services) [9].

The work to standardize a framework for M&S and C4I
interoperability is just one of many efforts to interconnect
military information systems designed to operate in iso-
lation. In this and a companion paper [10], we propose
an architecture for interoperability among heterogeneous
systems. The proposed architecture uses a multidomain,
multiagent system (MAS) in which each agent performs
a specific task and interacts with other agents through a
standard infrastructure to achieve interoperability between
otherwise incompatible systems. For example, an agent
could be used as an interface to provide data from DIS
protocol communications to an information-filtering agent
that passes on only task-relevant information in the agent
communication language to a decision-making agent. The
agents are built using the Reusable Environment for
Task-Structured Intelligent Networked Agent (RETSINA)
environment, which has been widely used in many appli-
cations, including serving as the primary interoperator for
the Coabs’s grid [11].

In this article, we demonstrate this architectural ap-
proach by describing an implemented system, UTSAF,
which integrates a military simulation, OneSAF Testbed
Baseline (OTB), with a 3-D game engine, Unreal Tour-
nament (UT), to provide a low-cost, high-quality solution
to the problems of stealth viewing and simulation for hu-
man task allocation studies requiring 3-D visualization.
UTSAF was developed to support human-in-the-loop stud-
ies by simulating remote video feeds and driving immer-
sive panoramic displays as part of a study of high-level
information fusion [12, 13]. Since the system provides a
bridge between the OTB simulation and UT game engine,
we have called it the Unreal Tournament Semi-Automated
Force (UTSAF).

UTSAF illustrates an agent-based divide-and-conquer
strategy for interoperability between heterogeneous sys-
tems. Use of an MAS allows processing to be distributed
among a group of agents with preexisting infrastructure
for communication and coordination. Agents act as wrap-
pers around the incompatible systems and use this com-
munication and coordination infrastructure to provide an
abstraction layer for exchanging data and messages. In
our implementation, the SAF manager agent plays the role
of the HLA Federation Object Model (FOM) by specify-
ing the semantic correspondence among wrapped systems.
Because system-specific processing is encapsulated at the
wrapper level, new systems can be added simply by writ-
ing additional wrappers and specifying correspondences to
the SAF manager. This MAS approach allows rapid devel-
opment of interoperability middleware for systems not ad-
hering to interoperability standards, such as HLA, without
requiring any modification to these systems themselves.

UTSAF solves practical problems as well. ModSAF,
OTB’s precursor, was originally developed as a large-scale,
special-purpose military simulation. Over the past decade,
rapid increases in processing power have allowed it to mi-
grate from expensive workstations to inexpensive Linux
PC systems. While ModSAF and its descendents have of-
ten been used [14] as servers for maintaining ground truth
for realistic task simulators, they provide only a map-like
graphical user interface (GUI) for user interaction. Soft-
ware for generating the realistic 3-D views of the simulated
battlefield needed for training and research has remained
expensive and proprietary. UTSAF solves this problem by
generating high-quality 3D graphics using a COTS game
engine on a commodity-priced PC.

2. Background

In this section, we first explain what an MAS is and how
we can deploy an MAS-based architecture to offer interop-
erability between heterogeneous military simulation sys-
tems. Then, we provide some background for the military
simulator, ModSAF, and its related communication pro-
tocol, the DIS protocol. We introduce the essential com-
ponents of a game engine and the use of the GameBots
modification to control entities in the game simulation.
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2.1 ModSAF, OneSAF, and DIS Protocol

One of the most popular ground forces modeling simu-
lations is ModSAF, which was released as a joint effort
between the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Simulation, Training, and In-
strumentation Command (STRICOM) in 1993 [15]. Mod-
SAF consists of SAFsim and SAFstation processes that
communicate with each other and with other distributed ap-
plications by sending PDUs that describe the current state
of entities being modeled across a network. Each SAFsim
and SAFstation reads PDUs from the network and places
processed message data into its own state database. The
“semi-automated forces” of the simulation’s name are ve-
hicles and troops that have been programmed to respond to
simulated events in accordance with rules of engagement.
So a tank, for instance, might fire upon an enemy vehicle if
it entered the tank’s field of view. A new HLA-compliant,
general-purpose SAF simulation, OneSAF Objective Sys-
tem, is scheduled to replace ModSAF with an accompa-
nying change in terrain format from the Compact Terrain
Database (CTDB) to the Synthetic Environment Data Rep-
resentation and Interchange Specification (SEDRIS). The
UTSAF middleware described in this article was developed
to interoperate with an interim version of the simulation,
OTB (http://www.onesaf.org), that retains ModSAF pro-
tocols and formats.

ModSAF was created as a DIS-based simulation. Each
simulator communicates with one another by using the DIS
protocol standardized by IEEE [2]. The DIS protocol is
used to convey messages about entities and events, through
a network, to simulation nodes that are involved in a dis-
tributed simulation. The messages are in the form of PDUs.
The primary PDUs used to convey entity interactions are
the Entity State PDU (ESPDU), Fire PDU (FPDU), and
Detonation PDU (DPDU). The ESPDU contains informa-
tion about the entity’s current status, including its type,
location, orientation, velocity, and articulations. Most of
the network traffic between simulation nodes is ESPDU
messages. The FPDU is used to convey information about
the firing of a weapon. The FPDU contains munitions type,
a firing entity, a target entity, a launching location, and mu-
nitions velocity. The DPDU is used to convey information
about the impact of munitions. The DPDU contains a det-
onation location, a detonation result, and information con-
tained in the FPDU. More details about PDUs can be found
in IEEE [2]. Distributed simulators can synchronize their
models of the world by modifying their databases to reflect
the PDUs they receive and sending PDUs in response to
changes within their local simulation.

2.2 Game Engines and Simulation

Both military simulation and computer games have a long
and related history but with different foci. While military
simulations concentrate on high-fidelity validation and ver-

ification (e.g., trying to reproduce as closely as possible
real-world effects such as the damage associated with a
projectile), video games focus on pushing computer hard-
ware to its limits to produce graphically rich simulations.
In many areas, the cutting edge of computer development
in both software and hardware is now being driven by
the needs of large audience games [16]. The most power-
ful graphics-processing units, for example, are now found
on game-oriented video cards rather than the refrigerator-
sized graphics workstations of the 1990s. In 2002, the
$10.3 billion in U.S. revenues for video games exceeded
that from movies ($9.27 billion) for the first time. In this
high-volume competitive market, the cost of developing
ever more compelling simulations has grown so huge that
even game developers can no longer rely on recouping
their entire investment from a single game. This has led to
the emergence of game engines, modular simulation code
written for a specific game but general enough to be used
for a family of similar games. This separation of func-
tion from content now allows game engines to be used as
general-purpose, high-fidelity simulators [16].

The game’s engine refers to the collection of modules
of simulation code that do not directly specify the game’s
behavior (game logic) or game’s environment (level data).
The engine includes modules handling input, output (3-
D rendering, 2-D drawing, and sound), networking, and
generic physics and dynamics. The levels define 3-D en-
vironments using open data formats accessible to standard
3-D modeling tools. The game code handles most of the
basic mechanics of simulation, including simple physics,
display parameters, networking, and the base or atomic-
level actions for animations, and can be modified using a
game-specific scripting language. Multiplayer games use
a client-server architecture in which the server maintains
the reference state of the simulation while clients perform
the complex graphics computations needed to display their
individual views.

Unreal Tournament (UT) is a multiplayer, network-
based video game for personal computers (http://unreal.epic
games.com). It runs on various operating systems, includ-
ing MicrosoftWindows, Linux, MacOS, and even the game
consoles Sony Playstation and Microsoft XBox. The game
engine used by UT provides a high-resolution simulation
environment at a very low price, which can run on com-
modity personal computer hardware. Like most other mod-
ern video games, UT is designed to be easily programmable
and highly modularized. End users are able to modify eas-
ily most parts of the game above the actual rendering sub-
system, to both manipulate default game behavior and to
supplement the game with their own changes. The Unreal
engine is arguably the best-suited game engine for gen-
eral simulation because of its clean, object-oriented archi-
tecture and easy-to-use end-user tools and documentation.
Recent work at the MOVES Institute at the Naval Post-
graduate School has produced the America’s Army video
game, using the Unreal engine to realistically portray life
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as a new U.S. Army recruit [17]. The Unreal engine has
also been used as an interface to human behavior model-
ing in the Soar architecture [18] for research in multiscreen
displays [19, 20], architectural re-creations [21], and as a
testbed for studying human–robot interaction [22].

There are two possible approaches to adapting the UT
game engine for simulation: licensing the engine or modi-
fying the UT game to provide an interface for simulation.
Licensing the engine provides full access to source code
and the ability to modify rendering and networking proto-
cols but costs in the range of $250,000 to $500,000 because
of the high commercial potential of successful games. This
approach gives the most flexibility but is extremely expen-
sive and does not provide migration to new releases of the
engine. Modifications can be made using the game’s script-
ing language for free under a GNU public license (GPL) by
which anyone is allowed to modify the game, provided the
modifications are freely distributed. These modifications
can be wide ranging and include the ability to provide an
interface for controlling entities within the game.

UTSAF uses game modifications to provide interop-
erability between OTB and the Unreal engine without
modifying the underlying code. Subsequent efforts to pro-
vide interoperability between SAF simulations and Un-
real have relied on licensing and modifying the game’s
engine. A military simulation vendor, MÄK, reported in
a 2003 press release [23] that it had licensed the engine
and successfully integrated the Unreal game engine Game
Developer’s Toolkit with its VR-Link product. A more
recent effort at the Institute for Creative Technologies,
University of Southern California (http://www.ict.usc.edu/
disp.php?bd+proj_ia) is including the Unreal engine in a
suite of applications being linked to the new OneSAF Ob-
jective System simulation. Although it would be possible
to provide interoperation without modifying the Unreal
engine’s virtual machine using another architecture, the
encapsulation and abstraction provided by agent wrappers
makes the task much easier using an MAS.

UTSAF follows the modification route by using the
GameBots [24] modification to provide the simulation
interface. UT has two types of entities: human players
who run individual copies of the game and connect to
the server (typically running on the first player’s ma-
chine) and “bots” (short for robots), simulated players
running simple reactive programs. GameBots is a modi-
fication to the UT game that allows bots to be controlled
through a normal Transport Control Protocol/Internet Pro-
tocol (TCP/IP) socket. GameBots talks to the game engine
directly and opens its own networking sockets. A protocol
for interacting with UT is defined in the GameBot Web
site (http://gamebots.sourceforge.net). With a simple text-
based TCP/IP protocol, we are able to create and manip-
ulate players in an UT instance using GameBots. UTSAF
uses GameBots to update Unreal entities in accordance
with the PDUs it receives.

3. UTSAF Architecture

Our example architecture is based on using software agents
to solve the interoperability problem. The architecture uses
an MAS in which each specific task is assigned to each
type of agent. Because of their common communication
infrastructure and language, agents can freely exchange
information with one another. Thus, the architecture is ex-
tensible and able to support novel systems mediated by
new agents. In this section, we describe the MAS archi-
tecture and discuss our proposed MAS-based framework
for interoperability among C4I systems and distributed
simulation.

3.1 Multiagent System (MAS)

A single intelligent agent is created to solve only a par-
ticular, small problem due to its limited knowledge, its
computing resources, and its perspective. However, in a
more complex, heterogeneous system, a single agent may
not perform its task well. Multiagent systems were intro-
duced to offer modularity as a tool to handling complexity
and heterogeneity [25]. In the MAS, each agent is imple-
mented to use the most appropriate paradigm to solve a
specific problem. Having several agents, each with their
own paradigm working together, increases the capability
for solving larger, more complex, and more dynamic prob-
lems than a single monolithic agent could handle. Because
MAS agents are created with a common architecture, they
share communication modules and a common language, al-
lowing them to address problems of an open system where
other agents come and go or a heterogeneous network
where agents mediate among legacy, modern, or dynamic
systems. Thus, MAS is an appropriate tool to deal with
integrating heterogeneous systems such as military simu-
lation and command-and-control systems in which (1) each
system uses its own standard or is proprietary, (2) having
a centralized database is not possible, or (3) computation
is asynchronous.

3.2 RETSINA Multiagent Infrastructure

RETSINA provides a domain-independent, componen-
tized, and reusable substratum to (a) allow heterogeneous
agents to coordinate in a variety of ways and (b) enable
a single agent to be part of a multiagent infrastructure.
To this end, RETSINA provides facilities for reuse and a
combination of different existing low-level infrastructure
components, and it also defines and implements higher
level agent services and components that are reconfig-
urable and reusable. Low-level categories include com-
munication protocols, such as TCP/IP, Hypertext Transfer
Protocol (HTTP), and Wireless Access Protocol (WAP);
generic application programming interfaces for relational
database access and query, such as Java Database Con-
nection (JDBC), Simple Query Language for Java (SQLJ),
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Figure 1. The multiagent system (RETSINA 1999)

Open Database Connection (ODBC), and Open Knowl-
edgebase Connection (OKBC); distributed framework fa-
cilities, such as Java Remote Message Interface (RMI);
and security services, such as Secure Socket Layer (SSL)
and Public Key Infrastructure (PKI). On top of such ser-
vices and components, RETSINA implements agent-level
services such as distributed Agent Name Servers (ANS),
the RETSINAANS; agent communication languages, such
as Foundation for Physical Agent (FIPA), Agent Commu-
nication Language (ACL), and Knowledge Query Model
Language (KQML); and mechanisms for peer-to-peer
communications through the abstractions in the RETSINA
communicator. Figure 1 shows an example of MASs in
which each agent communicates with each other to per-
form a specific task and to achieve a single goal.

3.3 Single-Agent Infrastructure

Each individual RETSINA agent consists of agent reusable
and reconfigurable components (i.e., a set of generic soft-
ware components for knowledge representation, agent con-
trol, and interaction with other agents). Each RETSINA
agent consists of several modules, each of which is im-
plemented as multithreaded code. The main modules of a
RETSINA agent are as follows: communicator, planner,
scheduler, and execution monitor. The modules can op-
erate asynchronously and concurrently. For example, as
the planner module is engaged in planning, the commu-
nicator module can receive and process messages. This
architecture allows RETSINA agents to keep up with in-
formation assessment, planning, and replanning in the face
of a rapidly changing and dynamic environment.

Communicator. This module provides an abstraction
that supports peer-to-peer communication between agents
based on the agent names. The default communication

language is KQML, and the messages are transmitted
through TCP/IP sockets. The communicator has applica-
tion programming interfaces (APIs) for other agent lan-
guages (such as FIPA) as well.

Planner. The planner receives goals through communi-
cation messages and finds alternative ways to fulfill them.
The planning component is reusable and capable of accept-
ing different planning algorithms.

Scheduler. The agent’s scheduling component takes as
input the agent’s current set of task structures, particu-
larly the set of current executable actions, and schedules
them. The default scheduling algorithm uses the earliest-
deadline-first heuristic. A list of all actions is constructed
(the schedule), and the action with the earliest deadline is
chosen for execution. When a periodic action is chosen for
execution, it is reinstated into the schedule with a deadline
equal to the current time plus the action’s period.

Execution monitor. The execution monitor takes the
agent’s next intended action and prepares, monitors, and
completes its execution.

Creating a new instance of an agent to interact with a
new information source such as OTB requires that the agent
be provided with a schema definition, desired domain con-
cepts, their mapping to data types, and which ones are
selectable as inputs or outputs of a query. In addition, a
source-specific function, the external query function, must
be written to translate inputs and outputs into formats com-
patible with the information source.All other agent compo-
nents are parts of the agent infrastructure reused between
different agent instances.

3.4 An MAS-Based Architecture for C4I and
Simulation Interoperation

In heterogeneous systems such as military simulation,
command and control, and operation and planning sys-
tems, a multi-agent-based architecture can provide a gen-
eral solution to the integration and interoperability prob-
lem. Rather than declaring a common standard such as
HLA to which all participants must adhere, an MAS uses
specialized agents to wrap each participant, letting the
MAS infrastructure serve as the medium for interopera-
tion. Because of this generality, an MAS could join legacy
DIS with newer HLA- and XMSF-based systems without
requiring internal modifications to the systems themselves
by serving as a bridge between legacy systems to mitigate
incompatibilities, as described in Tolk [9].

As shown in Figure 2, each component, such as a human
behavior model, connects to an agent domain to transfer its
tasks to agents inside the domain. In each agent domain,
there are several types of agents. An interface agent com-
municates with a system through the DIS, HLA, or XMSF
interface. On the other side, the interface agent is connected
to one or many task agents to perform a task such as lan-
guage/protocol interpretation. The task agent may trans-
late a DIS protocol into a common language such as Battle
Management Language (BML) [26] or vice versa for direct
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Figure 2. The multidomain, multiagent framework for integra-
tion and interoperability

communication to a C4I system. The task agent may com-
municate with an information agent to access databases
before or after an information processing.

In each domain, agents may communicate using a lan-
guage such as BML; thus, systems using the same language
can connect to each other in the same domain to reduce
overhead and to increase scalability. Using the multido-
main architecture, communication due to unnecessary in-
formation that is only relevant to a particular domain can
be reduced to increase the scalability of the whole system.
Inside a domain, scalability can be achieved through the
use of social interaction among agents, in which each agent
performs one task and contacts other agents to achieve an
overall goal.

Interoperability is also achieved using the multidomain,
multiagent architecture. Similar systems (e.g., systems that
employ the same communication language) are grouped
together and connected to the same domain. Between do-
mains, a common agent language such as KQML is used,
and an interpreter agent is implemented to translate KQML
into the local domain language. With M systems that speak
N communication languages, only O(N) interpreter agents
are needed instead of O(MN).

4. UTSAF ARCHITECTURE

As a demonstration of the integration and interoperability
possible within MAS architectures, we have implemented
a middleware system, UTSAF, which serves as a bridge
between the OTB military simulation and the Unreal game
engine. As shown in Figure 3, a multiagent environment
is used to span the gap between the two simulations. In an
effort to keep the system scalable, diverse, and extensible,
this architecture allows subtasks to be assigned to special-
ized agents. A communication protocol between agents is

Figure 3. The UTSAF (Unreal Tournament Semi-Automated
Force) system architecture

necessary to allow tasks and data to be distributed. The
assignments of each of the agents as well as the commu-
nication protocol are discussed in detail below.

4.1 Agent Tasks

SAF brokers listen to DIS network traffic from an OTB-
SAF simulation node over a multicasting group. To get
information from the traffic, a PDU parser extracts rele-
vant information (entity type, location, velocity, and ori-
entation) from each DIS PDU and sends this information
to a SAF manager agent. The SAF broker is able to lis-
ten to multiple OTBSAF simulations on a single multicast
group, giving the user the ability to only view entities from
a single simulation.

SAF manager agents control the flow of information
between OTBSAF and UT at the entity level. These agents
receive information from an SAF broker, update an internal
database, and forward relevant updates to an agent repre-
senting the entity on the UT side of the simulation. The
SAF manager interface (shown in Fig. 4), allows the oper-
ator to view entity-specific information such as its location,
velocity, and other state variables.

A GameBot agent serves as the final connection between
the agent space and the UT representation of the entities.
GameBot agents await updates from SAF manager agents.
When triggered, the GameBot agent manipulates the prop-
erties of the appropriate GameBot within a UT node. Fig-
ure 5 shows the interface used to track the communication
between the GameBot agent and its associated GameBot.

Although each GameBot agent connects to all Game-
Bots running on a UT game server, it may still be beneficial
to employ multiple GameBot agents. For example, if sev-
eral dozen OTBSAF entities are being tracked, processing
the updates via GameBots on a single UT server can cause
a bottleneck in the computer’s resources. Fortunately, the
GameBots can be distributed over multiple UT servers,
spreading the computational load over multiple machines.
In this scenario, a GameBot agent would be required for
each UT server. This does not affect the rest of the agent
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Figure 4. The SAF manager agent graphical user interface

Figure 5. The GameBot agent graphical user interface

architecture; several GameBot agents may connect to a
single SAF manager agent.

4.2 Communication Protocol Translations

OTBSAF simulations use the DIS protocol to communi-
cate between each simulation node; entities in UT are ma-
nipulated via the GameBot protocol. To bridge these het-
erogeneous simulated environments, a protocol conversion
is necessary. Fortunately, both protocols are well docu-
mented. The DIS protocol is purely based on exchanging
messages in a standard format described in IEEE [2]. Like-

wise, the GameBot network API is defined on the Game-
Bot Web site (http://gamebots.sourceforge.net). However,
there are differences that must be addressed to ensure
compatibility.

The first difference is the coordinate system used to
track the location of entities. In DIS, location is defined
in terms of the world coordinate system. As such, the zero
point is the centroid of the earth, and the axes represent
distances from this central point. In Unreal Tournament,
the zero point is defined as the center of the level. To per-
form a conversion, the world location is first translated
into latitude and longitude coordinates. Then, a specific
latitude and longitude point is selected to be the zero point
in Unreal Tournament. The difference between the entity
location and the new center point is then scaled and used
as the Unreal Tournament entity location.

The systems also differ on the units used to measure
entity velocity and acceleration. DIS uses meters and sec-
onds, while UT worlds are modeled in terms of arbitrary
“unreal units” (1 uu ≈ 1.9 cm), and time is an adjustable
setting for UT simulations. Both are simply scaled before
being sent into Unreal Tournament.

The orientation of entities in DIS is specified in terms
of Euler angles based on the entity’s coordinate system.
For ground vehicles, these values are converted into roll,
pitch, and yaw values and then input into Unreal Tourna-
ment, which uses a range from 0 to 65,535 for each axis.
For aerial vehicles, the entity’s velocity is used to com-
pute the orientation instead, as it provides a more accurate
representation of the entity’s true orientation in real time.

4.3 UTSAF Virtual Environment Design

To view a military simulation in a 3-D virtual world using
our UTSAF architecture, several modifications to the exist-
ing game environment were necessary. First, we needed to
create an entity in the game simulation to represent each en-
tity in the military simulation because none of the required
vehicles for representing OTBSAF entities was available
by default in Unreal Tournament. A collection of 3-D mod-
els was acquired from Internet sources. Additional models
were designed manually if no appropriate model could be
found online. These models were entered into the user pro-
gramming tools provided by Unreal Tournament to create
appropriate entities. This may be time-consuming at first,
but once a model (e.g., a ground vehicle model) is created,
it can be reused to create other ground vehicles.

Second, we needed to translate the terrain stored in
the CTDB format for OTBSAF into the terrain format
used by Unreal. This was accomplished through a transla-
tion chain using Database Automatic Re-use Technology
(DART) utility (http://www.terrex.com) to convert CTDB
terrain to the OpenFlight format (http://www.multigen-
paradigm.com/products/standards/ openflight/index.shtml),
NuGraf (www.okino.org) to convert OpenFlight to the 3ds
format, and finally 3ds2unr (http://unreal.epicgames.com/
Models.htm) to convert into the Unreal format. Third, we
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Figure 6. Sample architecture of a multidomain, multiagent
system (MAS) domain

used a feature of the UT game that allows a simulation
operator to “attach” itself as a spectator to any entity in the
UT game to allow viewing the simulation from the per-
spective of that entity. In this mode, the user’s view moves
in conjunction with the entity to which the user is attached,
allowing the user, for example, to attach to an uninhabited
aerial vehicle and view the simulation from the vehicle as
it flies around the map.

4.4 Extending UTSAF Architecture

UTSAF is an example of interfacing two different domains,
where the SAF domain employs the DIS PDU language
and the UT domain uses the GameBot language. To inte-
grate a new system, a new interface agent is required to
serve as a wrapper, and new correspondences need to be
added to the SAF manager. There are two kinds of interface
agents: the intradomain and interdomain interface agents.
The intradomain interface agent needs a protocol parser to
parse and filter necessary information from the connected
system to its domain. This information is maintained and
processed by an agent, such as the SAF manager agent
shown in Figure 3. An interdomain interface agent, which
was not needed in our prototype, would be implemented to
translate its domain language to KQML. All domains need
to have a common ontology to understand the content of
the KQML language [11]. In Figure 6, each system such as
OTB is connected to intradomain interface agent A to filter
necessary information to the manager agent. The informa-
tion may be interpreted into KQML by the interdomain
interface agent X.

5. Experimental Testbed

We are using UTSAF to convert UT into a stealth viewer
and in experiments involving the control of wide-area
search munitions. For experiments, we have set up a
testbed in a local-area network, as shown in Figure 7.
We run a OTBSAF simulation engine on a Pentium III
Linux-based machine. The DIS protocol traffic from this
machine is broadcast to a multicast group that includes

ModSAF and DIS Network
RETSINA Agents and Server

Unreal Game Engine
Cave-like Theater

Figure 7. Our experimental testbed

the server where RETSINA agents operate. Within the
MAS system, the information from OTB is processed and
passed to the UT game server. PC clients connected to
this game server then generate the graphical views needed
to provide camera views to a targeting interface or drive
a cave-like theater described on the CaveUT Web site
(http://www.planetjeff.net/ut/CaveUT.html).

Figure 8 shows the user interface of an OTB simula-
tion of a Fort Knox terrain. In this scenario, two flights
of A-10 Thunderbolts are flying over a biochemical depot,
which is surrounded by several T-80 tanks. Figure 9 shows
the chemical depot and T-80 tanks in the OTB simulation
interface. The same simulation scenario in 3-D visualiza-
tion using UT simulation engine is shown in Figure 10, in
which the biochemical depot and T-80 tanks are depicted.
This figure shows an example of the view from a spectator
attached to an A-10 Thunderbolt flying over the biochemi-
cal depot. In the 3-D visualization, we are able to change a
view of a simulated battlefield using our agent. Figure 11
shows another view of the simulation from a T-80 tank. It
shows that several A-10 Thunderbolts are flying over the
biochemical depot and other T-80 tanks in the biochemi-
cal depot area. Figure 12 shows another view from a T-80
tank where other T-80 tanks are being attacked by A-10
Thunderbolts.

5.1 Experience and Performance

In our testbed, we have run scenarios with more than 35
ground vehicles and six aircraft. On average, each ve-
hicle and aircraft generates PDU packets at the rate of
100 ms/packet and 20 ms/packet, respectively. There are
also other management PDUs that are used for verification
and validation of the simulation. Thus, the packet rate in
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Two A-10s 

Figure 8. OTBSAF simulation command and control graphical
user interface

Figure 9. A biochemical depot in OTBSAF

the testbed is above 1000 packets/sec or more. Since we use
MAS as middleware, we can reduce the traffic flowing from
the OTB to UT game engine down to about 450 packets/sec
since we use PDU filters such as a motion filter to reduce
PDU packets of the ground vehicles that have no move-
ment. By reducing the PDUs flowing through UTSAF, we
also reduce about 35% of the computational resources used
by UTSAF.

Some delay between OTB and the UT engine occurs
in our testbed. Delay is unavoidable due to overhead in
our system. However, we use dead-reckoning models such
as a cubic spine function to predict future locations of
each entity and asymmetric directional filtering to pre-

Biochem
depot

Figure 10. A biochemical depot in Unreal Tournament (UT)

Figure 11. A view from a T-80 tank showing A-10 Thunderbolts
flying over

vent jittering and to reduce the lag of the entity location
between OTB and UT systems. This enables the repro-
duction of OTB entities in the UT system in close to real
time and with verisimilitude sufficient for use in human
experimentation.

6. Conclusion and Future Work

In this article, we describe the use of a multidomain, multi-
agent architecture to integrate a military simulation with a
COTS game engine. Our approach can easily be extended
to integrate other components such as human behavior
models, intelligent information gathering and filtering, and
decision-making modules or C4I systems. Using agents to
wrap incompatible systems lacking other provisions for
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Figure 12. A spectator view showing T-80 tanks being attacked
by A-10 Thunderbolts

interoperability allows the rapid construction of middle-
ware. Although such middleware is not open in the sense
of federations complying with interoperability standards
such as HLA, it is readily extensible. As an example of this
architecture, we created a software bridge for visualizing
a DIS-based OTB simulation in a 3-D virtual world using
the Unreal game engine. Unlike alternative approaches,
this software bridge did not require any modification to the
OTB application or game engine. Instead, we introduced a
multiagent system that provided wrappers for both OTB-
SAF and Unreal simulations to allow them to interoperate.

Obstacles remain to the seamless integration of OTB-
SAF and Unreal. The Unreal engine currently has limits
on both the possible map size and the number of entities
allowed in a given simulation. To simulate very large OTB
areas in Unreal, beyond the allowed map size in the game,
we are currently investigating ways of dividing up the map
into subunits. Each submap would be run on an individual
game server and then linked together to create a seamless
representation of the overall map.
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