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Abstract

The significant speed-gap between processor and
memory and the limited chip memory bandwidth make
last-level cache performance crucial for future chip mul-
tiprocessors. To use the capacity of shared last-level
caches efficiently and to allow for a short access time,
proposed non-uniform cache architectures (NUCAs) are
organized into per-core partitions. If a core runs out
of cache space, blocks are typically relocated to nearby
partitions, thus managing the cache as a shared cache.
This uncontrolled sharing of all resources may unfortu-
nately result in pollution that degrades performance.

We propose a novel non-uniform cache architecture
in which the amount of cache space that can be shared
among the cores is controlled dynamically. The adaptive
scheme estimates, continuously, the effect of increas-
ing/decreasing the shared partition size on the overall
performance. We show that our scheme outperforms a
private and shared cache organization as well as a hy-
brid NUCA organization in which blocks in a local par-
tition can spill over to neighbor core partitions.

1 Introduction

Two important challenges for next generation micro-
processors are the slow main memory and the limited
off-chip bandwidth. Efficient management of the last-
level on-chip cache is therefore important in order to ac-
commodate a larger number of cores in future multi-core
architectures.

A last-level multi-core cache can be organized as pri-
vate partitions for each core or having all cores shar-
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ing the entire cache. The shared cache organization can
be utilized more flexibly by sharing data between cores.
However, it is slower than a private cache organization.
In addition, private caches do not suffer from being pol-
luted by accesses from other cores by which we mean
that other cores displace blocks without contributing to
a higher hit rate.

Non-uniform cache architectures (NUCA) are a pro-
posed hybrid private/shared cache organization that aims
at combining the best of the two extreme organizations
[2, 3, 5, 8, 9, 16] by combining the low latency of small
(private) caches with the capacity of a larger (shared)
cache. Typically, frequently used data is moved to the
shared cache portion that is closest to the requesting
core (processor); hence it can be accessed faster. Re-
cently, NUCA organizations have been studied in the
context of multi-core systems as a replacement for a pri-
vate last-level cache organization [3, 6]. The cache is
statically organized into private partitions but a partition
attached to one core can also keep blocks requested by
other cores. When a block is installed in a certain parti-
tion, a replaced block from that partition will be installed
in a neighbor’s partition, picked by random. As a result,
on a miss in one partition, all other partitions are first
checked before accessing main memory. While this hy-
brid scheme provides fast access to most blocks, it can
suffer from pollution because of the uncontrolled way
by which partitions are shared among cores.

Our contribution in this paper is a novel NUCA de-
sign for multi-cores based on private partitioning in
which the sizes of the core-local partitions that are
shared are chosen adaptively to maximize the overall
performance. We show in the paper that our adaptive
scheme outperforms the uncontrolled sharing of private
partitions in [3] which is prone to pollution effects.

Our work is inspired by earlier work on dynamic
partitioning of the resources in shared caches among
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cores [7, 10, 13]. In the NUCA setting, the new issue
becomes how to select the size of the shared partition
which is not addressed in the earlier work. We com-
bine and extend several existing mechanisms intended
for solving problems in other contexts. The contribu-
tion of this paper is the unique combination and usage
of these mechanisms and the novel architecture for the
last-level cache.

In our organization, hits to the private partitions are
fast, while hits to neighboring partitions are slower. The
size of the private partition is dynamically controlled and
balanced against the other cores. Cores that can best
utilize the cache get more private cache space, but the
private cache space is never larger than the local last-
level cache. The cache usage in the shared partition is
controlled as well. The size of the private partitions for
each core is dynamically adjusted to minimize the total
number of cache misses by determining the change in
the total miss rate.

We compare the performance of the new scheme with
the performance of private and shared cache organiza-
tions. Additionally, we also compare it with the NUCA
scheme proposed by Chang and Sohi [3] in which essen-
tially all last-level cache resources can be shared. The
new scheme outperforms all these schemes. Our sim-
ulations show that we can improve the performance by
more than 20% for the memory-intensive applications in
the SPEC2000 suite compared to private caches.

We describe the new scheme in Section 2. Sections 3
and 4 then present the evaluation methodology and the
results, respectively. Related work is discussed in Sec-
tion 5 and we conclude in Section 6.

2 The Adaptive Partitioning Scheme

An architectural framework for a four-core system
with the proposed scheme is shown in Figure 1. Note
that this is a conceptual view rather than implying a
physical layout. Each core has three levels of cache,
where the L3 cache is the last-level cache. The sharing
engine implements sharing of the last-level cache among
the cores. Hits in the core-local L3 cache partition are
faster than the hits in the neighboring last-level cache
partitions.

The L3 cache usage is controlled in two ways: (a) a
part of the cache is private and inaccessible by the other
cores, (b) the size of the private cache partition and the
number of cache blocks in the shared partition of the
cache are controlled on a per-core basis in order to min-
imize the total number of cache misses. The division
of private and shared partitions is conceptually shown in
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Figure 1. Conceptual view of the on-chip
architectural framework (not floorplan).
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Figure 2. Sharing of the L3 cache. Each
local cache has a private and potentially a
shared partition.

Figure 2. Each core has its own local cache with two
partitions: A private partition for its own cache blocks
and a shared cache partition intended for all the cores.
Each set is divided among the four cores. The most re-
cently used cache blocks for each core are stored in the
private (and fast) partition of the set. Looking for a tag
match in the set is a two phase process. First the tags in
the private cache partition are checked then, if there is
no match, the rest of the set is checked.

The sharing engine depicted in Figure 1 consists of
several components: (a) a method for estimation of the
best private/shared partitioning of caches, (b) a method
for sharing the cache and (c) a replacement policy for
the shared cache space. These components and the nec-
essary structures are described in the following subsec-
tions.
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2.1 Estimation of Partition Sizes

Our scheme adapts the size of the private partitions
by essentially increasing or decreasing the number of
blocks per set for each private partition but keeping the
number of sets fixed. Obviously, the potential benefit of
balancing the cache partitions depends on the cache-size
sensitivity of the applications that are running. For illus-
trative purposes, we show the cache-size sensitivity for
five applications in Figure 3 for a fixed snapshot (in pro-
cessor cycles) of the entire execution. The graph shows
the number of cache misses per application as a func-
tion of the number of cache blocks per set but with a
fixed number of sets for the cache.

For mcf, the innermost graph, only a single block per
set is required. There is no benefit from increasing the
number of blocks per set as the remaining misses are
likely cold misses. On the other hand, gzip requires four
blocks per set to avoid most misses.

Our scheme adjusts the shared partition size if the to-
tal number of misses is expected to go down if one core
gives up a block to the benefit of another. For example if
mcf and gzip both had three blocks per set it would make
sense to change the partition so that mcf had two blocks
and gzip had four blocks per set since the total number of
cache misses is then reduced (see Figure 3). Adjusting
partition sizes dynamically requires two methods: one
for estimating the gain of increasing the cache size and
one for estimating the loss of decreasing the cache size
per application/core. We present the methods chosen
next.

The method for estimating the number of cache
misses that would have been avoided if the cache size
was increased with one block per set is implemented as
follows. Each set has a register for each core that is re-
ferred to as shadow tag according to Figure 4(b). When
a cache block is evicted from the L3 cache, the tag of

the block is stored in the shadow tag associated with the
core that fetched the block into cache. On a cache miss,
the tag of the miss is compared to the shadow tag for
that set. If there is a match, the counter hits in shadow
tags for the requesting core is increased. This counter is
shown in Figure 4(c).

The method for estimating the number of increased
cache misses as a result of decreasing the cache size with
one block per set is derived from Suh et al. [13] and
works as follows. If there is a hit in the LRU block for
the requesting core, a counter is increased for that core.
This counter (see Figure 4(c)) represents the number of
cache misses that would have occurred if the cache size
is reduced by one block per set.

The algorithm re-evaluates the private partition sizes
per core on a regular basis. In our experiments, we use
2000 cache misses in the last-level cache to trigger a
re-evaluation. This period is long enough to measure
cache sensitivity and short enough to make the scheme
dynamic. The core with the highest gain for increasing
the cache size, i.e. the core with most hits to its shadow
tags, is compared to the core with the lowest loss of de-
creasing the cache size, i.e. the core with the fewest hits
to its LRU blocks. If the gain is higher than the loss,
one cache block (per set) is provided to the core with
the highest gain. The counters are reset after each re-
evaluation period.

In the initial partitioning, 75% of the local cache par-
tition acts as a private cache whereas 25% is a contribu-
tion to the shared partition.

2.2 The Structures

The hardware structures needed for the new scheme
for a four core multi-core chip are shown in Figure 4.
Even though the structures are shown as tables, the phys-
ical layout can be divided and distributed among the
cores. Each cache block is extended with a core iden-
tification as shown in Figure 4(a). This field is updated
with the value from the requesting core every time a
cache block is installed in the cache. When a cache
block is evicted from the last-level cache, the tag of the
block is stored in the shadow tag table for the core that
fetched the block, see Figure 4(b). The last block that
was evicted for core 2 in set 1 is the block with tag f.
Accesses that miss in the cache, but have a tag match in
the shadow tag table, would hit in the cache if the pri-
vate partition had one more block in this set. This event
is counted by the shadow tag’s hit counter according to
Figure 4(c). For example if core 1 requests the block
with tag a in set 0, the counter for the shadow tag’s hits
will increase from 10 to 11. The other counter, hits in the
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Index Tag LRU data Cache line data Core ID
.. .. .. .. ..

(a) This is an example of a cache block. Each cache
block is extended to include the core ID.

Set number Core 1 Core 2 Core 3 Core 4
0 a b c d
1 e f g h
.. .. .. .. ..

(b) This is the structure with the shadow tags.
Each cache set has one shadow tag per core.

Counter Core 1 Core 2 Core 3 Core 4
Hits in the LRU blocks 2 3 2 3
Hits in the shadow tags 10 11 9 2

(c) There are two global counters per core.

Description Core 1 Core 2 Core 3 Core 4
Max. no. of blocks in set 2 3 2 3

(d) The partitioning parameters (one per core) used by the replace-
ment policy.

Figure 4. The extra storage requirements
for the new scheme.

LRU blocks, is increased when a request hits in the LRU
block. This number represents the increase in number
of misses as a result of reducing the cache size by one
block per set.

A constraint (max. no. of blocks per set) is associ-
ated with each core that limits the maximum number of
blocks that can be in each set as shown in Figure 4(d).
This value reflects the total maximum number of blocks
in each set for both the private partition and the shared
partition. If the value is larger than the maximum size
of the private partition (i.e. the associativity of the local
cache) the core can use the shared space in addition to
the private partition. If the value is smaller than the max-
imum size of the private partition, some cache blocks in
the private partition are shared. In this case the core is
still allowed to allocate one block in the shared partition.
This increases the cache space flexibility and utilization.
In such cases, the allocated block will be a candidate for
eviction by the replacement policy for the shared parti-
tion.

2.3 Management of the Partitions

Each L3 cache is divided into a private and a shared
partition as shown in Figure 2. The private partition
is not shared and is managed by a least recently used
(LRU) replacement policy. To locate a block in the
cache, the partitioning does not matter. However, to find

a victim using LRU, the private partition is only consid-
ered and blocks belonging to the shared partition are not
involved. Compared to a conventional LRU algorithm
this requires that only a part of the blocks in a set is af-
fected by an eviction. In our evaluation we use a 4-way
private cache so there are only four different cases to
consider and the amount of extra logic should hence be
small.

In order to describe the behavior of the entire cache
scheme, let us consider the key events:

• Cache hit in private portion of L3 cache. The
block that is hit is moved to the top of the LRU
stack, and the others are moved down. No access
to the shared partition of the cache set is required.

• Cache hit in neighboring L3 cache. Before this
happens, a miss occurred in the private partition
of the last-level cache. Then all the neighboring
caches are checked in parallel since the cache block
can be in any of these caches. The cache block with
the hit is moved to the local cache. The LRU cache
block in the private cache replaces the block with a
hit in the shared cache, and the block is set as MRU
in the shared cache.

• Cache miss. The block is requested from main
memory and inserted into the private cache. The
LRU block in the private partition of the cache is
inserted into the shared partition of the cache. The
block that is evicted is found according to Algo-
rithm 1. We describe the algorithm in the next sub-
section.

2.4 The Replacement Policy

On cache misses, data loaded from main memory
is always allocated in the private partition of the cache
as most recently used. This normally requires that one
block is evicted from the private partition of the cache.
The evicted block is allocated in the shared cache par-
tition. Each core has a minimum of 1 cache block per
set in the shared block partition, so space is guaranteed
for this block. The algorithm for finding which block
to evict in the shared cache partition in order to allocate
the evicted cache block from the private cache is shown
in Algorithm 1. The search for a victim block starts at
the bottom of the LRU stack (step 2) and steps the LRU
stack towards the MRU block. If the core that owns the
cache block has too many cache blocks within the set
(step 4), this block is chosen for eviction (step 5). If no
block is found, the LRU cache block is evicted (step 8).
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2.5 Repartitioning of the Cache

Repartitioning the cache might sound expensive.
However, the only changes that are needed are in the par-
tition parameters for the private and shared cache. This
influences the replacement policy of the cache, and the
eviction process on cache misses that actually repartition
the cache later on. When the partition size for one core is
decreased, the ”extra” cache blocks are not invalidated,
but they are valid until they are evicted. When a private
set is controlled for a hit, the tags for all blocks in the set
are compared to the tag of the requested block including
the blocks that are not in the partition of the private set.
This lazy repartitioning, i.e. repartitioning only involves
changing the parameters for the replacement policy, re-
quires virtually no effort and can therefore be done at
any pace.

Algorithm 1 Pseudo code for finding a block for evic-
tion. The function returns the position of the block to
evict.

1: function FIND BLOCK TO EVICT
2: for LRU stack pos←no blocks per set, 1 do
3: proc id← core owns block(LRU pos)
4: if max no of blocks in set[proc id] <

count no of blocks in set(proc id) then
5: return LRU stack pos
6: end if
7: end for
8: return number of blocks per set
9: end function

2.6 Discussion

One implication of using the new scheme is that some
applications do not get the cache space they require be-
cause some other applications can utilize the cache more
efficiently in the sense that the total miss rate will be
lower. This means that an application that frequently
accesses the last-level cache and which benefits from a
large cache space is likely to get more cache capacity.
An application that infrequently accesses the last-level
cache, but that would also experience a lower miss rate
from a larger cache space will less likely get a larger
cache space since the number of misses removed by in-
creasing the cache space for that application is lower.
Consequently, applications that access the cache rarely
or that do not benefit from a larger cache space will
receive modest cache capacity if other more demand-
ing cores (on the same chip) benefit from a large cache
space.

The speed of the application (instructions per clock
cycle) will depend on the number of accesses to main
memory since these take several hundred clock cycles.
The new scheme will prioritize these slow running ap-
plications if increasing the cache size helps. This is dif-
ferent from maximizing the average speed of the cores
in a multi-core chip. In fact, the objective is to maximize
the harmonic mean performance of the cores. As Smith
points out [12]: This is more important than optimizing
the average performance since most systems are often
bound by the slowest running application. The result is
that performance might be sacrificed for fast running ap-
plications to speed up slower running applications com-
pared to a conventional shared cache.

2.7 Implementation Cost

The implementation cost can be divided into the extra
storage required by the new scheme and the extra logic
required.

The shadow tags require s ∗ p ∗ t bits where s is the
number of sets, p is the number of cores, t is the number
of bits per tag. However, shadow tags are not needed for
all sets as shown later in Section 4.6. We have found that
monitoring only 6% of the sets is sufficient for estimat-
ing cache sizes with no degradation of performance. The
field for the ID of the core that fetched the block requires
log2 p∗b bits where b is number of cache blocks. Finally,
the storage for the two counters and one register per core
is p∗3∗w bits for w-bits registers and counters. The to-
tal storage cost is then 0.06∗s∗p∗t+log2 p∗b+p∗3∗w
bits. For the baseline architecture used in the evaluation
section the storage requirements are increased with 152
Kbits. 16% of this is used for shadow tags and 84%
is used for core IDs in the blocks. This is an increase of
0.5% of the storage requirement for a 4-MByte last-level
cache.

The logic and communication in the sharing engine
require some extra cache logic. However, a conventional
multi-core chip with private caches also requires logic
for connecting the caches as they usually share the off-
chip bus. Most of the logic in the sharing engine can be
rather slow since its latency is overlapped by the slow
memory access latency. We therefore believe that the
area and power budget for the sharing engine are modest,
however more work is required to quantify this.

3 Methodology

Simulation is used to compare the efficiency of the
new scheme with a conventional LRU-based shared
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Table 1. The baseline configuration used
for the experiments.

Parameter Value
Register Update Unit 
Size

128 instructions

Load Store Queue 64 instructions
Fetch queue size 4 instructions
Fetch, Decode, Issue 
and Commit width

4 instructions/cycle

Functional Units
4 INT ALUs, 4 FP ALUs, 1 INT 
Multiply/Divide, 1 FP Multiply/Divide

Branch Predictor
Combined, Bimodal 4K table, 2-
Level 1K table, 10-bit history table, 
4K Chooser

Branch Target Buffer 512-entry, 4 way
Mispredict Penalty 7 cycles
L1 Instruction/Data 
Cache

64K, 2-way (LRU), 64 B Blocks, 2/3 
cycle latency 

L2 Instruction/Data 
Cache

128/256K, 4-way (LRU), 64 B 
Blocks, 9/9 cycle latency 

Shared L3 Cache
4 MByte unified, 16-way (LRU), 64 B 
Blocks, 19 cycle latency

Private L3 Cache

1 MByte per processor, 4-way 
(LRU), 64 B Blocks, 14 cycle latency 
for  private cache,  19 cycle latency 
for neighboring cache

Main Memory

260 cycles first chunk (258 for 
private cache), 4 cycles inter chunk. 
Chunk size 8 bytes. 9 GBytes/s 
theoretical limit for 4.5 GHz 
processor

I-TLB/D-TLB 
(Translation Lookaside 
Buffers)

128-entry, fully associative, 30 
cycles miss penalty

Processor cores 4 independent cores

cache, with private caches and with recently proposed
NUCA schemes. The simulated architecture is shown in
Figure 1. The baseline chip multiprocessor (CMP) ar-
chitecture has four cores per chip with private L3 cache
partitions that can also be shared. We use a detailed
pipeline-level, out-of-order execution model simulator
with non-blocking caches to get statistics on improve-
ments using the instructions-per-cycle (IPC) metric. The
model is based on SimpleScalar version 3 [1], but is ex-
tended to simulate the new schemes and CMP configu-
rations including congestion to main memory.

The baseline parameters for the simulator are shown
in Table 1. The latency for the L3 cache is 19 cycles
for a shared cache and 14 cycles for a smaller private
cache. A hit in a neighboring cache is assumed to take

19 cycles. The increase from 14 to 19 cycles is caused
by extra communication latency and the time to handle
the cache miss in the local cache. We assume serial last-
level caches where tag and data lookup are separated.
The latency introduced by the cache itself is lower for
a miss than for a hit since data lookup is not performed
for misses. The numbers are based on recent processors
from AMD and Intel, other papers [3, 16] and CACTI
4.0[15]. These numbers do not only depend on the ar-
chitecture but also on the implementation. Therefore we
only show relative performance in the evaluation sec-
tion.

All of the SPEC2000 benchmark applications were
used with the reference data sets except for two: The
simulator had compatibility problems with vortex and
sixtrack, and they are not included in the experiments.
We create multiprogrammed workloads for our CMP ar-
chitecture as follows. In each experiment, four randomly
picked applications are run in parallel. Each applica-
tion is randomly forwarded between 0.5 and 1.5 billion
instructions and then we simulate two hundred million
cycles.

We do not consider sharing of cache blocks in this pa-
per as would be the case had we used parallel workloads.
However we hypothesize that the new scheme will be ef-
fective also for such workloads and will address it in our
future work.

4 Results

Several of the SPEC2000 applications have a small
working set which more or less fits into the L1 and L2
cache. These applications are not sensitive to enhance-
ments of the last-level (L3) cache and hence not relevant
for the evaluation of the proposed scheme. Neverthe-
less, it is important that our proposed scheme is robust
also for non-memory-insensitive applications. We com-
pare the performance of the new scheme with a pure
private cache organization because the performance of
such an organization is quite predictable and well un-
derstood. We first classify the applications with respect
to their sensitivity to last-level cache performance. We
then consider the speedup of our scheme, the effects of
larger caches and technology scaling and show the re-
sults of reducing the number of shadow tags. Finally
we compare the performance of our scheme to an earlier
proposed NUCA scheme.
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Figure 5. Classification of applications based on number of misses in L2 data cache.

4.1 Classification of Workloads

The number of last-level data cache accesses is
shown in Figure 5 for different SPEC2000 applications.
We classify the applications as (a) either being last-level
cache intensive or (b) not depending on the last-level
cache. The applications with more than nine last-level
data cache accesses per thousand clock cycles are clas-
sified as last-level cache intensive. The rationale behind
this is that there could potentially be a last-level cache
miss every hundred clock cycles which add another few
hundred cycles to the execution time. The number of
last-level cache misses per clock cycle could have been
used to classify the applications as well, but then the ap-
plications that work well for a conventional LRU scheme
would not have been included in the evaluation of the
proposed scheme. If the new scheme degraded perfor-
mance for these applications it might not have been de-
tected.

4.2 Speedup of the Proposed Scheme

The harmonic mean of the instructions per clock cy-
cle (IPC) for all four cores per experiment is shown in
Figure 6 for the last-level cache-intensive applications.
Each experiment consists of four randomly picked appli-
cations run in parallel as described in the methodology
section. The experiments are sorted by the performance
of the new scheme relative to a private cache organiza-
tion with the experiments with the highest speedup to the
right. Except from a single experiment, the new scheme
has equal or higher performance than both the private
cache and shared cache schemes. The shared cache does
a good job of speeding up the performance for the last-
level cache intensive applications which is why the new
scheme only has 2% higher harmonic speedup while the
average speedup is 5%. Compared to private caches the
harmonic mean of the new scheme is 21% higher while
the average speedup is 13% higher.
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Figure 6. Harmonic mean of IPC for the
last-level cache intensive benchmarks per
experiment.

The performance of the proposed scheme is shown
for each last-level cache intensive application in Fig-
ure 7. The performance is compared against that of
private caches, shared caches and private caches where
each cache is the size of the shared cache (4 x size pri-
vate). By considering the speedup with the 4 x larger pri-
vate cache we see which applications that could benefit
from larger caches. These are ammp, art, twolf and vpr.
The proposed scheme works well for these four applica-
tions while a shared cache degrades the performance for
two of them compared to private caches.

The new scheme degrades performance for some of
the applications. This is expected since these applica-
tions are not given the same amount of cache space as
with the private and shared schemes because some other
application are believed to benefit more from using the
cache space.
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Figure 7. Speedup for the last-level cache
intensive benchmarks.

4.3 Speedup for All SPEC2000 Benchmarks

The speedup per application compared to private
caches for all SPEC2000 applications is shown in Fig-
ure 8 with both application categories; last-level cache
intensive and last-level cache non-intensive applications.
The poor performance of wupwise is caused by an ex-
periment that contains three instances of ammp and a
single instance of wupwise. ammp can utilize the cache
space better than wupwise and therefore the performance
is degraded to speedup the slow ammp. The actual num-
bers for the IPC for this case is for the proposed scheme:
wupwise: 1.326 and ammp: 0.0323, 0.0322 and 0.0319,
and for the other schemes wupwise: 1.7974 and for
ammp: 0.0319 x 3. Looking at the harmonic mean, the

new scheme improves the performance (although very
little) while the other scheme degrades the performance
(also very little). Even though the performance of wup-
wise is degraded, the new scheme makes the correct de-
cision since the goal is to increase the harmonic mean.

4.4 Effects of Larger Caches

The SPEC2000 benchmark applications do not re-
quire very large caches. To illustrate this, Figure 9 shows
the performance for an 8-MByte L3 cache. Most of the
applications do not run faster with the larger cache as
seen by the performance of the four times larger (4 x 8
MByte) private cache. For a simple comparison, the tim-
ing model is the same as used with the 4-MByte cache.
The proposed scheme actually degrades the performance
for many applications. This is because the proposed
scheme infers constraints in a system that really does not
need any restrictions because the cache size is so large
compared to the requirement.

4.5 Impact of Technology Scaling

As technology gets denser in the future, the clock
cycle will become slightly shorter while the communi-
cation latency is expected to stay the same. We have
run experiments to find the impact of future technology
scaling. The cycle time is assumed to be reduced by
30% for the core, which causes the number of cycles
to be increased for the different caches since much of
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Figure 9. 8 MByte l3 cache.
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Figure 10. The impact of scaling the tech-
nology.

the cache cycle time is due to communication latency:
The latency of the L2 cache is increased from 9 to 11
clock cycles, the latency of the L3 private/shared cache
is increased from 14/19 to 16/24 and the main mem-
ory access time is increased from 258/260 to 330/338
for pure private/shared. The increase in clock cycles is
based on that the cache partitions that are close to the
cores have less increase than the last-level cache since
a shorter communication distance is involved. As the
technology scales, the access to main memory becomes
slower and the shared cache becomes slower. The re-
sults are shown in Figure 10. On average (shown to the
right in the graph) the new scheme has the highest gain.
This is because the new scheme removes most memory
accesses to main memory which becomes increasingly
important.

4.6 Reducing the Number of Shadow Tags

The experiments in the previous sections were done
with four shadow tags for every set to predict marginal
gains of increasing cache size for the cores. However,
it is not necessary to implement shadow tags in all sets.
Our previous work has revealed that monitoring the sets
with the lowest index works well and better than ran-
domly generated subsets or subsets based on prime num-
bers [7]. We have run simulations with shadow tags in
only 1/16 of the sets with the lowest index and found
that the average IPC was increased with 0.1% while the
harmonic IPC was decreased by 0.1%. This means that
the tags with the lowest index represent the whole cache
very well for the new scheme. LRU hits are counted for
in all sets, but the numbers are normalized when com-
pared to shadow tag hits. The cost of monitoring only
1/16 ≈ 6% of the sets is not very high and is discussed
in Section 2.7.

4.7 Comparison with another NUCA Scheme

We implemented a hybrid scheme based on Chang
and Sohi’s work [3]. Their scheme is based on a chip
multiprocessor with private caches. However, when a
cache block is evicted from a private cache it might
get installed in the neighboring cache. To illustrate the
scheme through an example, consider a core a that has
cache a and another core b that has cache b. When core a
loads new data into its private cache, one block is evicted
to make space for the new data. If this block was loaded
by the core that owns the private cache (a), and it is
evicted due to an access by the same core (a), this block
is installed into a random neighboring cache as the most
recently used (MRU). In this case this is cache b since
there are only two caches. If the block that was evicted
from cache a belonged to cache b, it must earlier have
been evicted from cache b, and therefore it is not allo-
cated again. When spilling a cache block from cache a
into cache b, a block from cache b has to be evicted as
well. This block is not allocated in some other caches to
avoid ripple effects.

We call this scheme for ”random replacement” and
compare it against the proposed scheme for memory-
intensive applications in Figure 11. The proposed
scheme in general works better than the random-
replacement scheme. This is not surprising as the
random-replacement scheme works best when not all
cores are competing for the cache resources. Figure 12
shows an experiment with both benchmark categories.
In this case the proposed scheme is not that superior
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Figure 11. Performance of the new scheme
relative to "random replacement".

compared to the random replacement scheme. This is
due to the many applications that do not use the last-
level cache space.

5 Related Work

Recently there has been a significant interest on
NUCA schemes for chip multiprocessors with papers
addressing the sharing of data, migration of cache blocks
and reducing the hit time [2, 3, 6, 9, 16]. Important as-
pects of these works are cache coherence protocols and
duplication of shared cache blocks to reduce access la-
tencies for several cores. Our work is concerned with
optimizing the cache usage per core and is complemen-
tary to these works.

Even though this is the first paper to consider adap-
tive cache partitioning for NUCAs, several of the com-
ponents used are a combination or extension of earlier
described methods. We acknowledge this prior art next.
Suh et al. described a way of partitioning a cache for
multithreaded systems by estimating the best partition
sizes [13, 14]. They counted the hits in the LRU posi-
tion of the cache to predict the number of extra misses
that would occur if the cache size was decreased. A
heuristic used this number combined with the number of
hits in the second LRU position to estimate the number
of cache misses that are avoided if the cache size is in-
creased. We extended this scheme with shadow tags and
counters for estimating the number of hits that would
be avoided by increasing the cache size[7]. The method
presented in [7] increases the precision of the predic-
tions.

In this paper we use the same mechanism, but apply it
to a NUCA organization to control the size of the private
partitions. The previous work considered adjusting the

size of the cache partitions within a shared cache while
we in this paper adjust the shared partition size of the
local last-level caches as well as controlling the number
of blocks per core in the shared partition. The previous
works did not consider a shared partition with variable
size, nor did they look at combining private and shared
caches. Evaluation of cache partitioning in shared chip
multiprocessor caches has also been studied earlier by
Kim et al. [10] for a two-core CMP where a trial and fail
algorithm was applied. Trial and fail as a partitioning
method does not scale well with increasing number of
cores since the solution space grows fast.

Spilling evicted cache blocks to a neighboring cache
was described by [3, 6]. They did not consider putting
constraints on the sharing or methods for protection
from pollution. No mechanism was described for op-
timizing partition sizes. We extend their work by inser-
tion of the constraints on cache usage, divide the cache
space in private and shared partitions and mechanisms
for finding the best partition sizes. As our results show,
the extensions improve performance significantly.

A mechanism for protecting cache blocks within a set
was described by Chiou et al. [4]. Their proposal was to
control which blocks that can be replaced in a set by
software in order to reduce conflicts and pollution. The
scheme was intended for a multi-threaded core with a
single cache. We use the same mechanism to divide the
blocks within a set into two partitions, a private parti-
tion and a shared partition. We then combine the shared
partitions from several caches into a single shared cache
space.

Qureshi et al. independently developed a mechanism
very similar to shadow tags [11]. The only significant
difference is in the selection criteria for the tags and they
have included a formal proof of the concept based on the
assumption that all sets affect performance equally.

6 Conclusion

The performance of multi-core systems relies on an
effective cache system. We have considered improving
the cache system by adapting the cache usage per core
to its needs by protecting its most recently used data in
the last-level cache.

Simulations show that the new scheme has higher
performance in terms of instructions per clock cycle
than private cache organizations because of a higher uti-
lization and potentially larger caches for applications
that benefit from an increased cache size. Compared to
shared caches performance is in general increased due
to (a) lower access time and (b) improved sharing. Hits
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Figure 12. Performance of the new scheme relative to "random replacement".

to the local cache are faster than in a shared cache due
to its smaller size and lower associativity. Each core is
protected from pollution by the other cores and is given
a cache size which minimizes the total number of cache
misses for all cores. Earlier NUCA schemes do not
consider partitioning and protection of cache blocks in
the last-level cache. As technology scales and latency
becomes more dominant, the proposed scheme is pre-
dicted to be even more advantageous because it reduces
the number of cache misses which will be an increas-
ing bottleneck. Even though we have only simulated a
four-core processor, we believe the scheme will scale to
systems with a higher processor count. Additionally, the
proposed scheme only requires modest hardware for im-
plementation.
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