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Memristor-Based Multilayer Neural Networks With
Online Gradient Descent Training

Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar Kvatinsky

Abstract— Learning in multilayer neural networks (MNNs)
relies on continuous updating of large matrices of synaptic
weights by local rules. Such locality can be exploited for massive
parallelism when implementing MNNs in hardware. However,
these update rules require a multiply and accumulate operation
for each synaptic weight, which is challenging to implement
compactly using CMOS. In this paper, a method for performing
these update operations simultaneously (incremental outer prod-
ucts) using memristor-based arrays is proposed. The method is
based on the fact that, approximately, given a voltage pulse, the
conductivity of a memristor will increment proportionally to the
pulse duration multiplied by the pulse magnitude if the increment
is sufficiently small. The proposed method uses a synaptic circuit
composed of a small number of components per synapse: one
memristor and two CMOS transistors. This circuit is expected
to consume between 2% and 8% of the area and static power
of previous CMOS-only hardware alternatives. Such a circuit
can compactly implement hardware MNNs trainable by scalable
algorithms based on online gradient descent (e.g., backpropaga-
tion). The utility and robustness of the proposed memristor-based
circuit are demonstrated on standard supervised learning tasks.

Index Terms— Backpropagation, hardware, memristive
systems, memristor, multilayer neural networks (MNNs),
stochastic gradient descent, synapse.

I. INTRODUCTION

MULTILAYER neural networks (MNNs) have been
recently incorporated into numerous commercial prod-

ucts and services such as mobile devices and cloud computing.
For realistic large scale learning tasks, MNNs can perform
impressively well and produce state-of-the-art results when
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massive computational power is available [1]–[3] (see [4] for
related press). However, such computational intensity limits
their usability due to area and power requirements. New
dedicated hardware design approach must therefore be devel-
oped to overcome these limitations. It was recently suggested
that such new types of specialized hardware are essential for
real progress toward building intelligent machines [5].

MNNs utilize large matrices of values termed synaptic
weights. These matrices are continuously updated during the
operation of the system, and are constantly being used to
interpret new data. The power of MNNs mainly stems from
the learning rules used for updating the weights. These rules
are usually local, in the sense that they depend only on
information available at the site of the synapse. A canonical
example for a local learning rule is the backpropagation
algorithm, an efficient implementation of online gradient
descent, which is commonly used to train MNNs [6]. The
locality of backpropagation stems from the chain rule used
to calculate the gradients. Similar locality appears in many
other learning rules used to train neural networks and various
machine learning (ML) algorithms.

Implementing ML algorithms such as backpropagation
on conventional general-purpose digital hardware
(i.e., von Neumann architecture) is highly inefficient.
A primary reason for this is the physical separation between
the memory arrays used to store the values of the synaptic
weights and the arithmetic module used to compute the update
rules. General-purpose architecture actually eliminates the
advantage of these learning rules—their locality. This locality
allows highly efficient parallel computation, as demonstrated
by biological brains.

To overcome the inefficiency of general-purpose hardware,
numerous dedicated hardware designs, based on
CMOS technology, have been proposed in the past two
decades [7, and references therein]. These designs perform
online learning tasks in MNNs using massively parallel
synaptic arrays, where each synapse stores a synaptic weight
and updates it locally. However, so far, these designs are not
commonly used for practical large-scale applications, and it is
not clear whether they could be scaled up, since each synapse
requires too much power and area (Section VII). This issue
of scalability possibly casts doubt on the entire field [8].

Recently, it has been suggested [9]– [10] that scalable
hardware implementations of neural networks may become
possible if a novel device, the memristor [11]–[14], is
used. A memristor is a resistor with a varying history-
dependent resistance. It is a passive analog device with
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activation-dependent dynamics, which makes it ideal for
registering and updating of synaptic weights. Furthermore,
its relatively small size enables integration of memory
with the computing circuit [15] and allows a compact and
efficient architecture for learning algorithms, as well as other
neural-network-related applications ([16]–[18], and references
therein), which will not be discussed here.

Most previous implementations of learning rules using
memristor arrays have been limited to spiking neurons and foc-
used on spike-timing-dependent plasticity (STDP) [19]–[26].
Applications of STDP are usually aimed to explain biological
neuroscience results. At this point, however, it is not clear
how useful is the STDP algorithmically. For example, the
convergence of STDP-based learning is not guaranteed for
general inputs [27]. Other learning systems [28]–[30] that
rely on memristor arrays are limited to single-layer neural
networks (SNNs) with a few inputs per neuron. To the best of
the authors’ knowledge, the learning rules used in the above
memristor-based designs are not yet competitive and have not
been used for large-scale problems, which is precisely where
dedicated hardware is required.

A recent memristor array design [31] implemented the
scalable perceptron algorithm [32]. This algorithm can be
potentially used to train SNNs with binary outputs on very
large datasets. However, training general MNNs (which are
much more powerful than SNNs [33]) cannot be performed
using the perceptron algorithm. Scalable training of MNNs
requires the backpropagation algorithm. This is special form
of online gradient descent, which is generally very effective in
large-scale problems [34]. Importantly, it can achieve state-of-
the-art-results on large datasets when executed with massive
computational power [3], [35].

To date, no circuit has been suggested to utilize memristors
for implementing such scalable online learning in MNNs.
Interestingly, it was recently shown [36], [37] that memristors
could be used to implement MNNs trained by backpropagation
in a chip-in-a-loop setting, where the weight update calculation
is performed using a host computer. However, it remained
an open question whether the learning itself, which is a
major computational bottleneck, could also be done online
(i.e., completely implemented using hardware) with efficient
massively parallel memristor arrays. The main challenge for
general synaptic array circuit design arises from the nature of
learning rules such as backpropagation: practically, all of them
contain a multiplicative term [38], which is hard to implement
in compact and scalable hardware.

In this paper, a novel and general scheme to design hardware
for online gradient descent learning rules is presented. The
proposed scheme uses a memristor as a memory element to
store the weight and temporal encoding as a mechanism to
perform a multiplication operation. The proposed design uses
a single memristor and two CMOS transistors per synapse and,
therefore, requires 2%–8% of the area and static power of the
previously proposed CMOS-only circuits.

Using this proposed scheme, for the first time, it is possible
to implement a memristor-based hardware MNN capable of
online learning (using the scalable backpropgation algorithm).
The functionality of such a hardware MNN circuit utilizing

the memristive synapse array is demonstrated numerically on
standard supervised learning tasks. On all datasets, the circuit
performs as well as the software algorithm. Introducing noise
levels of about 10% and parameter variability of about 30%
only mildly reduced the performance of the circuit, due to the
inherent robustness of online gradient descent (Fig. 5). The
proposed design may therefore allow the use of specialized
hardware for MNNs, as well as other ML algorithms, rather
than the currently used general-purpose architecture.

The remainder of this paper is organized as follows.
In Section II, a basic background on memristors and online
gradient descent learning is given. In Section III, the proposed
circuit is described for efficient implementation of SNNs in
hardware. In Section IV, a modification of the proposed circuit
is used to implement a general MNN. In Section V, the
sources of noise and variation in the circuit are estimated.
In Section VI, the circuit operation and learning capabilities
are evaluated numerically, demonstrating that it can be used
to implement MNNs trainable with online gradient descent.
In Section VII, the novelty of the proposed circuit is discussed,
as well as possible generalizations, and in Section VIII,
this paper is summarized. The supplementary material [39]
includes detailed circuit schematics, code, and an appendix
with additional technicalities.

II. PRELIMINARIES

For convenience, a basic background information on
memristors and online gradient descent learning is given in this
section. For simplicity, the second part is focused on a simple
example of the adaline algorithm—a linear SNN trained using
mean square error (MSE).

A. Memristor

The memristor was originally proposed [11], [12] as
the missing fourth fundamental passive circuit element.
Memristors are basically resistors with varying resistance,
where their resistance changes according to time integral of
the current through the device, or alternatively, the integrated
voltage upon the device. In the classical representation, the
conductance of a memristor G depends directly on the integral
over time of the voltage upon the device, sometimes referred
to as flux. Formally, a memristor obeys the following:

i(t) = G(s(t))v(t) (1)

ṡ(t) = v(t). (2)

A generalization of the memristor model 1, 2, which is called
a memristive system, was proposed in [40]. In memristive
devices, s is a general state variable, rather than an integral of
the voltage. Such memristive models, which are more com-
monly used to model actual physical devices [14], [41], [42],
are discussed in [Appendix A, 39].

For the sake of generality and simplicity, in the following
sections, it is assumed that the variations in the value of s(t)
are restricted to be small so that G(s(t)) can be linearized
around some point s∗, and the conductivity of the memristor
is given, to first order, by

G(s(t)) = ḡ + ĝs(t) (3)
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where ĝ = [dG(s)/ds]s=s∗ and ḡ = G(s∗) − ĝs∗. Such a
linearization is formally justified if sufficiently small inputs
are used, so s does not stray far from the fixed point
(i.e., 2ĝ/[d2G(s)/ds2]s=s∗ � |s(t)−s∗|, so second-order con-
tributions are negligible). The operation in such a small signal
region is demonstrated numerically in [Appendix D, 39], for
a family of physical memristive device technologies. The only
(rather mild) assumption is that G(s) is differentiable near s∗.

Note that despite this linearization, the memristor is still a
nonlinear component, since [from (1) and (3)] i(t) = ḡv(t)+
ĝs(t)v(t). Importantly, this nonlinear product s(t)v(t) under-
lies the key role of the memristor in the proposed design,
where an input signal v(t) is being multiplied by an adjustable
internal value s(t). Thus, the memristor enables an efficient
implementation of trainable MNNs in hardware, as explained
below.

B. Online Gradient Descent Learning

The field of ML is dedicated to the construction and study of
systems that can be learned from data. For example, consider
the following supervised learning task. Assume a learning
system that operates on K discrete presentations of inputs
(trials), indexed by k = 1, 2, . . . , K . For brevity, the indexing
of iteration number is sometimes suppressed, where it is clear
from the context. On each trial k, the system receives empirical
data, a pair of two real column vectors of sizes M and N: a
pattern x(k) ∈ R

M and a desired label d(k) ∈ R
N , with all pairs

sharing the same desired relation d(k) = f(x(k)). Note that
two distinct patterns can have the same label. The objective
of the system is to estimate (learn) the function f(·) using the
empirical data.

As a simple example, suppose W is a tunable N ×M matrix
of parameters, and consider the estimator

r(k) = W(k)x(k) (4)

or

r (k)
n =

∑

m

W (k)
nm x (k)

m (5)

which is a SNN. The result of the estimator r = Wx should
aim to predict the right desired labels d = f(x) for new unseen
patterns x. To solve this problem, W is tuned to minimize
some measure of error between the estimated and desired
labels, over a K0-long subset of the empirical data, called
the training set (for which k = 1, . . . , K0). For example, if
we define the error vector

y(k) � d(k) − r(k) (6)

then a common measure is MSE

MSE �
K0∑

k=1

‖y(k)‖2. (7)

Other error measures can be also be used. The performance
of the resulting estimator is then tested over a different subset,
called the test set (k = K0 + 1, . . . , K ).

As explained in the introduction, a reasonable iterative
algorithm for minimizing objective (7) (i.e., updating W,

where initially W is arbitrarily chosen) is the following online
gradient descent (also called stochastic gradient descent)
iteration:

W(k+1) = W(k) − 1

2
η∇W(k)‖y(k)‖2 (8)

where the 1/2 coefficient is written for mathematical
convenience, η is the learning rate, a (usually small) positive
constant, and at each iteration k, a single empirical sample x(k)

is chosen randomly and presented at the input of the system.
Using the chain rule (4), (6), we have ∇W(k)‖y(k)‖2 =
−2(d(k) − W(k)x(k))(x(k))�. Therefore, defining �W(k) �
W(k+1) − W(k) and (·)� to be the transpose operation,
we obtain the outer product

�W(k) = ηy(k)(x(k))� (9)

or

W (k+1)
nm = W (k)

nm + ηx (k)
m y(k)

n . (10)

Specifically, this update rule is called the adaline
algorithm [43], used in adaptive signal processing and
control [44]. The parameters of more complicated estimators
can also be similarly tuned (trained), using online gradient
descent or similar methods. Specifically, MNNs (Section IV)
are commonly being trained using backpropagation, which is
an efficient form of online gradient descent [6]. Importantly,
note that the update rule in (10) is local, i.e., the change
in the synaptic weight W (k)

nm depends only on the related

components of input (x (k)
m ) and error (y(k)

n ). This local
update, which ubiquitously appears in neural network training
(e.g., backpropagation and the perceptron learning rule [32])
and other ML algorithms [45]–[47], enables a massively
parallel hardware design, as explained in Section III.

Such massively parallel designs are needed, since
for large N and M , learning systems usually become
computationally prohibitive in both time and memory space.
For example, in the simple adaline algorithm, the main com-
putational burden in each iteration comes from (4) and (9),
where the number of operations (addition and multiplication)
is of order O(M · N). Commonly, these steps have become
the main computational bottleneck in executing MNNs (and
related ML algorithms) in software. Other algorithmic steps,
such as (6) here, include either O(M) or O(N) operations and,
therefore, have a negligible computational complexity, lower
than O(M + N).

III. CIRCUIT DESIGN

Next, dedicated analog hardware for implementing online
gradient descent learning is described. For simplicity, this
section is focused on simple linear SNNs trained using adaline,
as described in Section II. Later, in Section IV, the circuit
is modified to implement general MNNs, trained using back-
propagation. The derivations are rigorously done using a single
controlled approximation (14) and no heuristics (i.e., unproven
methods which can damage performance), thus creating a
precisely defined mapping between a mathematical learning
system and a hardware learning system. Readers who do not
wish to go through the detailed derivations, can get the general
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Fig. 1. Simple adaline learning task, with the proposed synaptic grid circuit
executing (4) and (9), which are the main computational bottlenecks in the
algorithm.

Fig. 2. Synaptic grid (N ×M) circuit architecture scheme. Every (n, m) node
in the grid is a memristor-based synapse that receives voltage input from the
shared um , ūm and the en lines and outputs Inm current on the on lines. These
output lines receive total current arriving from all the synapses on the nth row
and are grounded.

idea from the following overview (Section III-A) together
with Figs. 1–4.

A. Circuit Overview

To implement these learning systems, a grid of artificial
synapses is constructed, where each synapse stores a single
synaptic weight Wnm . The grid is a large N × M array of
synapses, where the synapses operate simultaneously, each
performing a simple local operation. This synaptic grid circuit
carries the main computational load in ML algorithms by
implementing the two computational bottlenecks, (5) and (10),
in a massively parallel way. This matrix×vector product in (5)
is done using a resistive grid (of memristors), implementing
multiplication through Ohm’s law and addition through current
summation. The vector×vector outer product in (10) is done
using the fact that given a voltage pulse, the conductivity
of a memristor will increment proportionally to the pulse
duration multiplied by the pulse magnitude. Using this method,
multiplication requires only two transistors per synapse. Thus,
together with auxiliary circuits that handle a negligible amount
of O(M + N) additional operations, these arrays can be used
to construct efficient learning systems. These systems perform

Fig. 3. Memristor-based synapse. (a) Schematic of a single memristive
synapse (without the n and m indices). The synapse receives input voltages
u and ū = −u, an enable signal e, and output current I . (b) Read and write
protocols—incoming signals in a single synapse and the increments in the
synaptic weight s, as determined by (27). T = Twr + Trd.

massive parallelization of the bottleneck O(N · M) operations
(4) and (9) over many computational units—the synapses.

Similarly to the adaline algorithm described in Section II,
the circuit operates on discrete presentations of inputs (trials)
(Fig. 1). On each trial k, the circuit receives an input vector
x(k) ∈ [−A, A]M and an error vector y(k) ∈ [−A, A]N

(where A is a bound on both the input and error) and produces
a result output vector r(k) ∈ R

N , which depends on the input
by (4), where the matrix W(k) ∈ R

N×M , called the synaptic
weight matrix, is stored in the system. In addition, on each
step, the circuit updates W(k) according to (9). This circuit can
be used to implement ML algorithms. For example, as shown
in Fig. 1, the simple adaline algorithm can be implemented
using the circuit, with training enabled on k = 1, . . . , K0. The
implementation of the backpropagation algorithm is shown
in Fig. 4 and explained in Section IV.

B. Circuit Architecture

1) Synaptic Grid: The synaptic grid system described
in Fig. 1 is implemented by the circuit shown in Fig. 2,
where the components of all vectors are shown as individual
signals. Each gray cell in Fig. 2 is a synaptic circuit (artificial
synapse) using a memristor [described in Fig. 3(a)]. The
synapses are arranged in a 2-D N × M grid array as shown
in Fig. 2, where each synapse is indexed by (n, m), with
m ∈ {1, . . . , M} and n ∈ {1, . . . , N}. Each (n, m) synapse
receives two inputs um, um , an enable signal en , and produces
an output current Inm . Each column of synapses in the array
(the mth column) shares two vertical input lines um and um ,
both connected to a column input interface. The voltage signals
um and um (∀m) are generated by the column input interfaces
from the components of the input signal x, upon presentation.
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Fig. 4. (a) Structure of a MNN with the neurons in each layer (circles) and the synaptic connectivity weights (arrows). (b) Implementation of a MNN with
on-line backpropagation training with MSE measure (7), using a slightly modified version of the original circuit (Fig. 2). Each circuit performs (23) and (28)
(as in Fig. 1), together with the additional operation (31). The function boxes denote the operation of either σ(·) (neuronal activation function) or σ ′(·)
(its derivative) on the input, and the × box denotes a component-wise product. The symbol ∅ (don’t care) denotes an unused output. For detailed circuit
schematics, see [39].

Each row of synapses in the array (the nth row) shares the
horizontal enable line en and output line on , where en is
connected to a row input interface and on is connected to a
row output interface. The voltage (pulse) signal on the enable
line en (∀n) is generated by the row input interfaces from the
error signal y, upon presentation. The row output interfaces
keep the on lines grounded (to zero voltage) and convert the
total current from all the synapses in the row going to the
ground,

∑
m Inm , to the output signal rn .

2) Artificial Synapse: The proposed memristive synapse
is composed of a single memristor, connected to a shared
terminal of two MOSFET transistors (p-type and n-type), as
shown schematically in Fig. 3(a) (without the n, m indices).
These terminals act as drain or source, interchangeably,
depending on the input, similarly to the CMOS transistors
in transmission gates. Recall that the memristor dynamics
are given by (1)–(3), with s(t) being the state variable of
the memristor and G(s(t)) = ḡ + ĝs(t) its conductivity.
In addition, the current of the n-type transistor in the linear
region is, ideally

I = K

(
(VGS − VT )VDS − 1

2
V 2

DS

)
(11)

where VGS is the gate–source voltage, VT is the threshold
voltage, VDS is the drain–source voltage, and K is the

conduction parameter of the transistors. When VGS < VT , the
current is cutoff (I = 0). Similarly, the current of the p-type
transistor in the linear region is

I = −K

(
(VGS + VT )VDS − 1

2
V 2

DS

)
(12)

where for simplicity, we assumed that the parameters K and
VT are equal for both transistors. Note that for notational
simplicity, the parameter VT in (12) has a different sign than
in the usual definition. When VGS > −VT , the current is
cutoff (I = 0).

The synapse receives three voltage input signals: u and
ū = −u are connected, respectively, to a terminal of the n-type
and p-type transistors and an enable signal e is connected to
the gate of both transistors. The enable signal can have a value
of 0, VDD, or −VDD (with VDD > VT ) and have a pulse shape
of varying duration, as explained below. The output of the
synapse is a current I to the grounded line o. The magnitude
of the input signal u(t) and the circuit parameters are set so
they fulfill the following.

1) We assume (somewhat unusually) that

−VT < u(t) < VT . (13)

2) We assume that [recall (1)]

K (VDD − 2VT ) � G(s(t)). (14)
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From the first assumption (13), we assume the following
conditions.

1) If e = 0 (i.e., the gate is grounded), both transistors are
nonconducting (in the cutoff region). In this case, I = 0
in the output, the voltage across the memristor is zero,
and the state variable does not change.

2) If e = VDD, the n-type transistor is conducting
in the linear region while the p-type transistor is
nonconducting.

3) If e = −VDD, the p-type transistor is conducting
in the linear region while the n-type transistor is
nonconducting.

To satisfy (13), the proper value of u(t) is chosen (15).
From the second assumption, (14), if e = ±VDD,

when in the linear region, both transistors have relatively
high conductivity as compared with the conductivity of the
memristor. Therefore, in that case, the voltage on the memris-
tor is approximately ±u. Note (14) is a reasonable assumption,
as shown in [48]. If not (e.g., if the memristor conductivity
is very high), instead one can use an alternative design, as
described in [Appendix B, 39].

C. Circuit Operation

The operation of the circuit in each trial (a single presen-
tation of a specific input) is composed of two phases. First,
in the computing phase (read), the output current from all the
synapses is summed and adjusted to produce an arithmetic
operation r = Wx from (4). Second, in the updating phase
(write), the synaptic weights are incremented according to the
update rule �W = ηyx� from (9). In the proposed design,
for each synapse, the synaptic weight Wnm is stored using
snm , the memristor state variable of the (n, m) synapse. The
parallel read and write operations are achieved by applying
simultaneous voltage signals on the inputs um and enable
signals en (∀n, m). The signals and their effect on the state
variable are shown in Fig. 3(b).

1) Computation Phase (Read): During each read phase, a
vector x is given and encoded in u and ū component-wise by
the column input interfaces for a duration of Trd, ∀m : um(t) =
axm = −ūm(t), where a is a positive constant converting xm ,
a unitless number, to voltage. Recall that A is the maximal
value of |xm |, so

a A < VT (15)

as required in (13). In addition, the row input interfaces
produce voltage signal on the en lines, ∀n

en(t) =
{

VDD, if 0 ≤ t < 0.5Trd

−VDD, if 0.5Trd ≤ t ≤ Trd.
(16)

From (2), the total change in the internal state variable is,
therefore, ∀n, m

�snm =
ˆ 0.5Trd

0
(axm)dt +

ˆ Trd

0.5Trd

(−axm)dt = 0. (17)

The zero net change in the value of snm between the times of 0
and Trd implements a nondestructive read, as common in many

memory devices. To minimize inaccuracies, the row output
interface samples the output current at time 0+ (immediately
after time zero). This is done before the conductance of the
memristor is significantly changed from its value before the
read phase. Using (3), the output current of the synapse to
the on line at the time is thus

Inm = a(ḡ + ĝsnm)xm . (18)

Therefore, the total current in each output line on is equal to
the sum of the individual currents produced by the synapses
driving that line

on =
∑

m

Inm = a
∑

m

(ḡ + ĝsnm )xm . (19)

The row output interface measures the output current on and
outputs

rn = c(on − oref) (20)

where c is a constant converting the current units of on to a
unit-less number rn and

oref = aḡ
∑

m

xm . (21)

Defining

Wnm = acĝsnm (22)

we obtain

r = Wx (23)

as desired.
2) Update Phase (Write): During each write phase, of

duration of Twr, u and ū maintain their values from the read
phase, while the signal e changes. In this phase, the row input
interfaces encode e componentwise, ∀n

en(t) =
{

sign(yn)VDD, if 0 ≤ t − Trd ≤ b|yn|
0, if b|yn| < t − Trd < Twr.

(24)

The interpretation of (24) is that en is a pulse with a magnitude
VDD, the same sign as yn , and a duration b|yn| (where b is
a constant converting yn , a unitless number, to time units).
Recall that A is the maximal value of |yn|, so we require that

Twr > b A. (25)

The total change in the internal state is therefore

�snm =
ˆ Trd+b|yn |

Trd

(asign(yn)xm)dt (26)

= abxm yn. (27)

Using (22), the desired update rule for the synaptic weights
is, therefore, obtained as

�W = ηyx� (28)

where η = a2bcĝ.
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IV. MULTILAYER NEURAL NETWORK CIRCUIT

So far, the circuit operation was exemplified on a SNN with
the simple adaline algorithm. In this section, it is explained
how, with a few adjustments, the proposed circuit can be used
to implement backpropagation on a general MNN.

Recall the context of the supervised learning setup detailed
in Section II, where x ∈ R

M is a given pattern and d ∈ R
N is

a desired label. Consider a double layer MNN estimator of d,
of the form

r = W2σ(W1x)

with W1 ∈ R
H×M (H is some integer) and W2 ∈ R

N×H

being the two parameter matrices and where σ is some
nonlinear (usually sigmoid) function operating component
wise [i.e., (σ (x))i = σ(xi )]. Such a double layer MNN, with
H hidden neurons, can approximate any target function with
arbitrary precision [33]. Denote by

r1 = W1x ∈ R
H ; r2 = r = W2σ(r1) ∈ R

N (29)

the output of each layer. Suppose we again use MSE to
quantify the error between d and r. In the backpropagation
algorithm, each update of the parameter matrices is given by
an online gradient descent step, which can be directly derived
from [6, eq. (8)] [note the similarity with (9)]

�W1 = ηy1x�
1 ; �W2 = ηy2x�

2 (30)

with x2 � σ(r1), y2 � d − r2, x1 � x and y1 � (W�
2 y2) ×

σ ′(r1), where here (a×b)i � ai bi , a component-wise product,
and (σ ′(x))i = dσ(xi )/dxi . Implementing such an algorithm
requires a minor modification of the proposed circuit, that
is, it should have an additional inverted output W�y. Once
this modification is made to the circuit, by cascading such
circuits, it is straightforward to implement the backpropagation
algorithm for two layers or more, as shown in Fig. 4. For
each layer, a synaptic grid circuit stores the corresponding
weight matrix, performs a matrix-vector product as in (29),
and updates the weight matrix as in (30). This last operation
requires the additional output

δ � W�y (31)

in each synaptic grid circuit (except the first). We assume that
the synaptic circuit has dimensions M×N (with a slight abuse
of notation, since M and N should be different for each layer).
The additional output (31) can be generated by the circuit
in an additional read phase with the duration Trd, between
the original read and write phases, in which the original role
of the input and output lines is inverted. In this phase, the
n-type MOS (nMOS) transistor is ON, i.e., ∀n, en = VDD
and the former output on lines are given the following voltage
signal (again, used for a nondestructive read):

on =
{

ayn, if Trd ≤ t < 1.5Trd

−ayn, if 1.5Trd ≤ t ≤ 2Trd.
(32)

The Inm current now flows to the (original input) um terminal,
which is grounded and shared ∀n. The sum of all the currents

is measured at time T +
rd by the column interface (before it goes

into ground)

um =
∑

n

Inm = a
∑

n

(ḡ + ĝsnm)yn. (33)

The total current on um at time Trd is the output

δm = c(um − uref ) (34)

where uref = aḡ
∑

n yn . Thus, from (22)

δm =
∑

n

Wnm yn (35)

as required.
Finally, note that it is straightforward to use a different error

function instead of MSE. For example, in a MNN, recall that
in the last layer

y = d − r = −1

2
∇r ‖d − r‖2.

If a different error function E(r, d) is required, one should
simply replace this with

y � −α∇r E(r, d) (36)

where α is some constant that can be used to tune the learning
rate. For example, one could use instead a cross entropy error
function

E(r, d) = −
∑

i

di ln ri (37)

which is more effective for classification tasks, in which d is
a binary vector [49]. To implement this change in the MNN
circuit (Fig. 4), the subtractor should be simply replaced with
some other module.

V. SOURCES OF NOISE AND VARIABILITY

Usually, analog computation suffers from reduced robust-
ness to noise as compared with digital computation [50].
ML algorithms are, however, inherently robust to noise, which
is a key element in the set of problems they are designed
to solve. For example, gradient descent is quite robust to
perturbations, as intuitively demonstrated in Fig. 5. This
suggests that the effects of intrinsic noise on the perfor-
mance of the analog circuit are relatively small. These effects
largely depend on the specific circuit implementation (e.g., the
CMOS process). Particularly, memristor technology is not
mature yet and memristors have not been fully characterized.
Therefore, to check the robustness of the circuit, crude esti-
mation of the magnitude of noise and variability has been
used in this section. This estimation is based on known
sources of noise and variability, which are less dependent
on the specific implementation. In Section VI, the alleged
robustness of the circuit would be evaluated by simulating
the circuit in the presence of these noise and variation
sources.
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Fig. 5. Robustness of gradient descent. Consider a simple 2 → 1 SNN
(inset) with a single input x and desired output d (repeatedly presented).
As demonstrated schematically in this figure, training the SNN using gradient
descent on the MSE E(w1, w2) = (w1x1 +w2x2 − d)2 will tend to decrease
this error until it converges to some fixed point (generally, a local minimum of
the MSE). Schematically, the gradient direction (red arrows) can be arbitrarily
varied within a relatively wide range (green triangles), on each iteration, and
this will not prevent this convergence.

A. Noise

When one of the transistors is enabled (e(t) = ±VDD), then
the current is affected by intrinsic thermal noise sources in the
transistors and memristor of each synapse. This noise affects
the operation of the circuit during the write and read phases.
Current fluctuations on a device due to thermal origin can be
approximated by a white noise signal I (t) with zero mean
(〈I (t)〉 = 0) and autocorrelation 〈I (t)I (t ′)〉 = σ 2δ(t − t ′),
where δ(·) is Dirac’s delta function and σ 2 = 2 kT̃g (where
k is Boltzmann’s constant, T̃ is the temperature, and g is the
conductance of the device). For 65 nm transistors (parameters
taken from IBMs 10LPe/10RFe process [51]), the character-
istic conductivity is g1 ∼ 10−4 �−1. Therefore, for I1(t), the
thermal current source of the transistors at room temperature,
we have σ 2

1 ∼ 10−24 A2 s. Assume that the memristor
characteristic conductivity g2 = εg1, so for the thermal current
source of the memristor, σ 2

2 = εσ 2
1 . Note that from (14), we

have ε � 1, and the resistance of the transistor is much smaller
than that of the memristor. The total voltage on the memristor
is thus

VM (t) = g1

g1 + g2
u(t) + (g1 + g2)

−1(I1(t) − I2(t))

= 1

1 + ε
u(t) + ξ(t)

where ξ(t) = (g−1
1 /1 + ε)(I1(t)− I2(t)). Since different ther-

mal noise sources are uncorrelated, we have 〈I1(t)I2(t ′)〉 = 0,
and so 〈ξ(t)ξ(t ′)〉 ∼ σ 2

ξ δ(t − t ′) with

σ 2
ξ = 1

g2
1(1 + ε)2

(〈
I 2
1 (t)

〉 + 〈
I 2
2 (t)

〉)

= σ 2
1 + σ 2

2

g2
1(1 + ε)2

(38)

≈ g−2
1 σ 2

1 = 2kT̃ g−1
1 ∼ 10−16 V2s.

Fig. 6. Noise model for an artificial synapse. (a) During the operation, only
one transistor is conducting (assume it is the n-type transistor). (b) Thermal
noise in a small-signal model: the transistor is converted to a resistor (g1) in
parallel to current source (I1), the memristor is converted to a resistor (g2)
in parallel to current source (I2), and the effects of the sources are summed
linearly.

The equivalent circuit, including the sources of noise, is shown
in Fig. 6. Assuming the circuit minimal trial duration is
T = 10 ns, the root MSE due to thermal noise is bounded
above by

ET ∼
√√√√

〈(
1

T

ˆ T

0
dξ(t)

)2〉

= T −1/2σξ ∼ 10−4V .

Noise in the inputs u, ū, and e also exists. According
to [52], the relative noise in the power supply of the u/ū
inputs is approximately 10% in the worst case. Applying
u = ax effectively gives an input of ax + ET + Eu , where
|Eu| ≤ 0.1a|x |. The absolute noise level in duration of
e should be smaller than T min

clk ∼ 2 · 10−10 s, assuming a digital
implementation of pulsewidth modulation with T min

clk being the
shortest clock cycle currently available. On every write cycle
e = ±VDD is, therefore, applied for a duration of b|y| + Ee

(instead of b|y|), where |Ee| < T min
clk .

B. Parameter Variability

A common estimation of the variability in
memristor parameters is a coefficient of variation
(CV = standard deviation/mean) of a few percent [53].
In this paper, the circuit is also evaluated with considerably
larger variability (CV ∼ 30%), in addition to the noise
sources, as described in Section V-A. The variability in the
parameters of the memristors is modeled by sampling each
memristor conductance parameter ĝ independently from a
uniform distribution between 0.5 and 1.5 of the original
(nonrandom) value of ĝ. When running the algorithm in
software, these variations are equivalent to corresponding
changes in the synaptic weights W or the learning rate η
in the algorithm. Note that the variability in the transistor
parameters is not considered, since these can affect the
circuit operation only if (13) or (14) are invalidated. This
can happen, however, only if the values of K or VT vary in
orders of magnitude, which is unlikely.

VI. CIRCUIT EVALUATION

In this section, the proposed synaptic grid circuit is
implemented in a simulated physical model (Section VI-A).
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Fig. 7. Synaptic 2 × 2 grid circuit simulation, during ten operation cycles. Top: circuit inputs (x1, x2) and result outputs (r1, r2). Middle and bottom:
voltage (solid black) and conductance (dashed red) change for each memristor in the grid. Note that the conductance of the (n, m) memristor indeed changes
proportionally to xm yn following (27). Simulation was done using SimElectronics, with the inputs as in (39) and (40), and the circuit parameters as in Table I.
Similar results were obtained using SPICE with linear ion drift memristor model and CMOS 0.18 μm process, as shown in [Appendix D, 39].

First, the basic functionality of a toy example, a 2 × 2
circuit, is demonstrated (Section VI-B). Then (Section VI-C)
using standard supervised learning datasets, the implemen-
tation of SNNs and MNNs using this synaptic grid cir-
cuit is demonstrated, including its robustness to noise and
variation.

A. Software Implementation

Recall that the synaptic grid circuit (implementing the boxes
in Figs. 1 and 4) operates in discrete time trials, and receives
at each trial two vector inputs x and y, updates an internally
stored synaptic matrix W (according to �W = ηyx�), and
outputs the vector r = Wx (optionally, it outputs also the
vector δ = W�y).

The physical model of the circuit is implemented both in
SPICE and SimElectronics [54]. Both are software tools that
enable physical circuit simulation of memristors and MOSFET
devices. The SPICE model is described in [Appendix D, 39].

Next, the SimElectronics synaptic grid circuit model is
described. Exactly the same model (at different sizes of grid)
is used for all numerical evaluations in Sections VI-C. The
circuit parameters appear in Table I, with the parameters of
the (ideal) transistors kept at their defaults. Note VT of the
pMOS is defined here with an opposite sign to the usual
definition. The memristor model is implemented using (1)–
(3) with parameters taken from the experimental data [55,
Fig. 2]. As shown schematically in Fig. 2, the circuit imple-
mentation consists of a synapse-grid and the interface blocks.
The interface units were implemented using a few standard
CMOS and logic components, as can be seen in the detailed
schematics (available in [39] as an HTML file, which may
be opened using Firefox). The circuit operated synchronously
using global control signals supplied externally. The circuit

TABLE I

CIRCUIT PARAMETERS

inputs x and y and output r were kept constant in each trial
using sample and hold units.

B. Basic Functionality

First, the basic operation of the proposed synaptic grid
circuit is examined numerically in a toy example.

A small 2×2 synaptic grid circuit is simulated for time 10 T
(10 read-write cycles) with a simple piecewise constant input

x = (x1, x2) = (0.8,−0.4) · sign(t − 5T ) (39)

and a constant input

y = (y1, y2) = (0.2,−0.1). (40)

In Fig. 7, the resulting circuit outputs are shown, together with
the memristors’ voltages and conductances. The correct basic
operation of the circuit is verified.
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TABLE II

LEARNING PARAMETERS FOR EACH DATASET

1) In the first read cycle, the memristors are used to
generate the output (23). The voltage trace on the (n, m)
memristor is a ±axm bipolar pulse, as expected
from (16). This results in a nondestructive (a zero net
change in conductance), as expected from (17).

2) In the second read cycle, the memristors are used to
generate the output (35). The voltage trace on the
(n, m) memristor is a ±ayn bipolar pulse [as expected
from (32)], again resulting in a nondestructive read.

3) In the write cycle, the stored weights are incremented
according to (28). As expected from (24), the (n, m)
memristor is subjected to a voltage pulse of amplitude
sign(yn)axm with duration b|yn|. Furthermore, there
is an ĝabxm yn increment in memristor conductance
following (27).

4) In the output of the circuit is rn = ∑
m acĝsnm xm

following (5), and (18)–(23).

C. Learning Performance

The synaptic grid circuit model is used to implement a SNN
and a MNN, trainable by the online gradient descent algorithm.
To demonstrate that the algorithm is indeed implemented
correctly by the proposed circuit, the circuit performance has
been compared to an algorithmic implementation of the MNNs
in (MATLAB) software. Two standard tasks are used:

1) the Wisconsin Breast Cancer diagnosis task [56]
(linearly separable);

2) the Iris classification task [56] (not linearly separable).
The first task was evaluated using an SNN circuit, similarly
to Fig. 1. Note this task has only a single output (yes/no),
so the synaptic grid (Fig. 2) has only a single row. The
second task is evaluated on a two-layer MNN circuit, similarly
to Fig. 4. The learning parameters are described in Table II.
Fig. 8 shows the training error (performance during training
phase) of the following:

1) the algorithm;
2) the proposed circuit (implementing the algorithm);
3) the circuit, with about 10% noise and 30% variability

(Section V).
In addition, Table III shows the test error—the error estimated
on the test set after training was over (The standard deviation
(Std) was calculated as (Pe(1 − Pe)/Ntest)

1/2, with Ntest being
the number of samples in the test set and Pe being the test
error). On each of the two tasks, the training performance
(i.e., on the training set) of the circuit and the algorithm
similarly improves, finally reaching a similar test error. These
results indicate that the proposed circuit design can precisely

Fig. 8. Circuit evaluation—training error for two datasets.
(a) Task 1—Wisconsin breast cancer diagnosis. (b) Task 2—Iris classification.

TABLE III

CIRCUIT EVALUATION—TEST ERROR (MEAN ± STD) FOR

(a) ALGORITHM, (b) CIRCUIT, AND (c) CIRCUIT WITH

NOISE AND VARIABILITY

implement MNNs trainable with online gradient descent, as
expected, from the derivations in Section III. Moreover, the
circuit exhibits considerable robustness, as its performance
is only mildly affected by significant levels of noise and
variation.

Implementation Details: The SNN and the MNN were
implemented using the (SimElectronics) synaptic grid circuit
model, which was described in Section VI-A. The detailed
schematics of the two-layer MNN model are again given
in [39] (as an HTML file, which may be opened using Firefox),
and also in the code. All simulations are done using a desktop
computer with core i7 930 processor, a Windows 8.1 operating
system, and a MATLAB 2013b environment. Each circuit
simulation takes about one day to complete (note the software
implementation of the circuit does not exploit the parallel
operation of the circuit hardware). For both tasks, we used
the standard training and testing procedures [6]. For each
k sample from the dataset, the attributes are converted to a
M-long vector x(k), and each label is converted to a N-long
binary vector d(k). The training set is repeatedly presented,
with samples at random order. The inputs mean was sub-
tracted, and they were normalized as recommended by [6],
with additional rescaling done in dataset 1, to ensure that
the inputs fall within the circuit specification 1, i.e., meet the
requirement specified by (13). The performance was averaged
over 10 repetitions (of training and testing) and the training
error was also averaged over the previous 20 samples.
The initial weights were sampled independently from a sym-
metric uniform distribution. For both tasks, in the output layer,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOUDRY et al.: MEMRISTOR-BASED MULTILAYER NEURAL NETWORKS 11

a softmax activation function was used

(σ (x))i = exi

∑N
j=1 ex j

together with a Cross entropy error (37) since this combination
is known to improve performance [57]. In task 2, in the
two-layer MNN, the neuronal activation functions in the first
(hidden) layer were set as

σ(xi ) = 1.7159 tanh

(
2xi

3

)

as recommended in [6]. Other parameters are given
in Tables I and II. In addition to the inputs from the previous
layer, the commonly used bias input is implemented in the
standard way (i.e., at each circuit, the neuronal input x is
extended with an additional component equal to a constant
one).

VII. DISCUSSION

As explained in Sections II and IV, two major computational
bottlenecks of MNNs and many ML algorithms, are given by
a matrix × vector product operation (4) and a vector × vector
outer product operation (9). Both are of order O(M · N),
where M and N are the sizes of the input and output
vectors. In this paper, the proposed circuit is designed specifi-
cally to deal with these bottlenecks using memristor arrays.
This design has a relatively small number of components
in each array element—one memristor and two transistors.
The physical grid-like structure of the arrays implements the
matrix×vector product operation (4) using analog summation
of currents, while the memristor (nonlinear) dynamics enable
us to perform the vector×vector outer product operation (10),
using time × voltage encoding paradigm. The idea to use a
resistive grid to perform matrix × vector product operation
is not new (e.g., [58]). The main novelty of this paper is
the use of memristors together with time × voltage encoding,
which allows us to perform a mathematically accurate
vector × vector outer product operation in the learning rule
using a small number of components.

A. Previous CMOS-Based Designs

As mentioned in the introduction, CMOS hardware designs
that specifically implement online learning algorithms remain
an unfulfilled promise at this point.

The main incentive for existing hardware solutions is the
inherent inefficiency in implementing these algorithms in
software running on general-purpose hardware (e.g., CPUs,
digital signal processors, and GPUs). However, squeezing
the required circuit for both the computation and the update
phases (two configurable multipliers, for the matrix × vector
product and vector × vector outer product, and a memory
element to store the synaptic weight) into an array cell has
proven to be a hard task, using currently available CMOS
technology. Off-chip or chip-in-the-loop design architectures
[67, Table I] have been suggested in many cases as a way
around this design barrier. These designs, however, generally
deal with the computational bottleneck of the matrix × vector

TABLE IV

HARDWARE DESIGNS OF ARTIFICIAL SYNAPSES IMPLEMENTING

SCALABLE ONLINE LEARNING ALGORITHMS

product operation in the computation phase, rather than the
computational bottleneck of the vector × vector outer product
operation in the update phase. In addition, these solutions are
only useful in cases where the training is not continuous and
is done in a predeployment phase or in special reconfigura-
tion phases during the operation. Other designs implement
nonstandard (e.g., perturbation algorithms [68]) or specifically
tailored learning algorithms (e.g., modified backpropagation
for spiking neurons [69]). However, it remains to be seen
whether such algorithms are indeed scalable.

Hardware designs of artificial synaptic arrays that are
capable of implementing common (scalable) online gradient-
descent-based learning, are listed in Table IV. For large
arrays (i.e., large M and N), the effective transistor count per
synapse (where resistors and capacitors were also counted as
transistors) is approximately proportional to the required area
and average static power usage of the circuit.

The smallest synaptic circuit [59] includes two transistors
similarly to our design, but requires the (rather unusual) use of
UV illumination during its operation and has the disadvantage
of having volatile weights decaying within minutes. The
next device [60] includes six transistors per synapse, but the
update rule can only increase the synaptic weights, which
makes the device unusable for practical purposes. The next
device [62], [70] suggested a grid design using the CMOS
Gilbert multipliers, resulting in 39 transistors per synapse.
In a similar design [63], 52 transistors are used. Both these
devices use capacitive elements for analog memory and suffer
from the limitation of having volatile weights, vanishing
after training has stopped. Therefore, they require constant
retraining (practically acting as refresh). Such retraining is
required also in each startup or, alternatively, reading out the
weights into an auxiliary memory—a solution that requires a
mechanism for reading out the synaptic weights. The larger
design in [64] (92 transistors) also has weight decay, but with
a slow hours-long timescale. The device in [65] (83 transistors
and an unspecified weight unit that stores the weights) does not
report to have weight decay, apparently since digital storage
is used. This is also true for [66] (150 transistors).
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B. Memristor-Based Designs: Expected
Benefits and Technical Issues

The proposed memristor-based design should resolve the
main obstacles of the above CMOS-based designs, and provide
a compact nonvolatile [71] circuit. Area and power consump-
tion are expected to be reduced by a factor of 13–50, in
comparison with standard CMOS technology, if a memristor
is counted as an additional transistor (although it is actually
more compact). Maybe the most convincing evidence for
the limitations of the CMOS-based designs is the fact that
although most of these designs are two decades old, they
have not been incorporated into commercial products. It is
fair only to mention at this point that while our design
is purely theoretical and based on speculative technology,
the above reviewed designs are based on mature technology
and have overcome obstacles all the way to manufacturing.
However, a physical implementation of a memristor-based
neural network should be feasible, as was demonstrated in a
recent work [31]—where a different memristor-based design
was manufactured and tested.

The hardware design in [31] of a SNN with binary outputs
demonstrated a successful online training using the popular
perceptron algorithm. The current proposed design allows
more flexibility, since it can be used to train general MNNs
(considered to be much more powerful than SNNs [33]) using
the scalable online gradient descent algorithm (backpropaga-
tion). In addition, the current proposed design can be also used
to implement the perceptron algorithm (used in [31]), since
it is very similar to the Adaline algorithm (Fig. 1). Due to
this similarity, both designs should encounter similar technical
issues in a concrete implementation.

Encouragingly, the memristor-based neural network circuit
in [31] is able to achieve good performance, despite of the
following issues: 1) noisy memristor dynamics affect the
accuracy of the weight update; 2) variations in memristor para-
meters generate similar variations in the learning rates (here η);
and 3) the nonlinearity of the conductivity [here G(s(t))]
can have a saturating effect on the weights (resulting in
bounded weights). Overcoming issues 1) and 2) suggests that
training MNNs should be relatively robust to noise and vari-
ations, as argued here (Fig. 5) and demonstrated numerically
(Fig. 8 and Table III). Overcoming issue (3) suggests that the
saturating effect of the nonlinearity G(s(t)) on the weights is
not catastrophic. This could be related again to the robustness
of gradient descent (Fig. 5). Moreover, bounding the weights
magnitude can be desirable and various regularization methods
are commonly used to achieve this effect in MNNs. More
specifically, a saturating nonlinearity on the weights can even
improve performance [72]. Other types of nonlinearity may
also be beneficial [73].

C. Circuit Modifications and Generalizations

The specific parameters that were used for the circuit evalua-
tion (Table I) are not strictly necessary for the proper execution
of the proposed design and are only used to demonstrate its
applicability. For example, it is straightforward to show that
K , VT , and ḡ have little effect [as long as (13) and (14) hold],

and different values of ĝ can be adjusted for by rescaling the
constant c, which appears in (20) and (34). This is important
since the feasible range of parameters for the memristive
devices is still not well characterized and it seems to be quite
broad. For example, the values of the memristive timescales
range from picoseconds [74] to milliseconds [55]. Here, the
parameters were taken from a millisecond-timescale memristor
[55]. The actual speed of the proposed circuit would critically
depend on the timescales of commercially available memristor
devices.

Additional important modifications of the proposed circuit
are straightforward. In [Appendix A, 39], it is explained how
to modify the circuit to work with more realistic memristive
devices [40, 14], instead of the classical memristor model [11],
given a few conditions. In [Appendix C, 39], it is shown that
it is possible to reduce the transistor count from two to one,
at the price of doubling the duration of the write phase. Other
useful modifications of circuit are also possible. For example,
the input x may be allowed to receive different values during
the read and write operations. In addition, it is straightforward
to replace the simple outer product update rule in (10) by more
general update rules of the form

W (k+1)
nm = W (k)

nm + η
∑

i, j

fi
(
y(k)

n

)
g j

(
x (k)

m

)

where fi , g j are some functions. Finally, it is possible to
adaptively modify the learning rate η during training [e.g., by
modifying α in (36)].

VIII. CONCLUSION

A novel method to implement scalable online gradient
descent learning in multilayer neural networks through local
update rules is proposed based on the emerging memristor
technology. The proposed method is based on an artificial
synapse using one memristor to store the synaptic weight and
two CMOS transistors to control the circuit. The correctness
of the proposed synapse structure exhibits a similar accuracy
to its equivalent software implementation, while the proposed
structure shows high robustness and immunity to noise and
parameter variability.

Such circuits may be used to implement large-scale online
learning in multilayer neural networks, as well as other learn-
ing systems. The circuit is estimated to be significantly smaller
than existing CMOS-only designs, opening the opportunity for
massive parallelism with millions of adaptive synapses on a
single integrated circuit, operating with low static power and
good robustness. Such brain-like properties may give a signifi-
cant boost to the field of neural networks and learning systems.
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[35] D. Cireşan and U. Meier, “Deep, big, simple neural nets for handwritten
digit recognition,” Neural Comput., vol. 22, no. 12, pp. 3207–3220,
Nov. 2010.

[36] S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, “Memristor bridge
synapse-based neural network and its learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 9, pp. 1426–1435, Sep. 2012.

[37] R. Hasan and T. M. Taha, “Enabling back propagation training of
memristor crossbar neuromorphic processors,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Beijing, China, Jul. 2014, pp. 21–28.

[38] Z. Vasilkoski et al., “Review of stability properties of neural plasticity
rules for implementation on memristive neuromorphic hardware,” in
Proc. Int. Joint Conf. Neural Netw., San Jose, CA, USA, Jul./Aug. 2011,
pp. 2563–2569.

[39] The Supplementary Material. [Online]. Available:
http://ieeexplore.ieee.org.

[40] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.

[41] M. D. Pickett et al., “Switching dynamics in titanium dioxide memristive
devices,” J. Appl. Phys., vol. 106, no. 7, p. 074508, 2009.

[42] J. Strachan et al., “State dynamics and modeling of tantalum oxide
memristors,” IEEE Trans. Electron Devices, vol. 60, no. 7,
pp. 2194–2202, Jul. 2013.

[43] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” Stanford
Electron. Labs, Stanford Univ., Stanford, CA, USA, Tech. Rep., 1960.

[44] B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1985.

[45] E. Oja, “Simplified neuron model as a principal component analyzer,”
J. Math. Biol., vol. 15, no. 3, pp. 267–273, Nov. 1982.

[46] C. M. Bishop, Pattern Recognition and Machine Learning. Singapore:
Springer-Verlag, 2006.

[47] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1,
pp. 3–30, Oct. 2010.

[48] S. Kvatinsky, N. Wald, E. Satat, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[49] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford Univ. Press, 1995.

[50] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics
to neurobiology,” Neural Comput., vol. 10, no. 7, pp. 1601–1638,
Oct. 1998.

[51] The Mosis Service. [Online]. Available: http://www.mosis.com, accessed
Nov. 21, 2012.

[52] G. Huang, D. C. Sekar, A. Naeemi, K. Shakeri, and J. D. Meindl,
“Compact physical models for power supply noise and chip/package
co-design of gigascale integration,” in Proc. IEEE 57th Electron.
Compon. Technol. Conf. (ECTC), Sparks, NV, USA, May/Jun. 2007,
pp. 1659–1666.

[53] M. Hu, H. Li, Y. Chen, X. Wang, and R. E. Pino, “Geometry variations
analysis of TiO2 thin-film and spintronic memristors,” in Proc. 16th
Asia South Pacific Design Autom. Conf., Yokohama, Japan, Jan. 2011,
pp. 25–30.

[54] SimElectronics. [Online]. Available: http://www.mathworks.com/
products/simelectronics/, accessed Nov. 21, 2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[55] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu,
“Synaptic behaviors and modeling of a metal oxide memristive device,”
Appl. Phys. A, vol. 102, no. 4, pp. 857–863, Feb. 2011.

[56] K. Bache and M. Lichman. (2013). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[57] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convo-
lutional neural networks applied to visual document analysis,” in Proc.
7th Int. Conf. Document Anal. Recognit., vol. 1. Edinburgh, Scotland,
Aug. 2003, pp. 958–963.

[58] D. B. Strukov and K. K. Likharev, “Reconfigurable nano-crossbar archi-
tectures,” in Nanoelectronics and Information Technology, R. Waser, Ed.
New York, NY, USA: Wiley, 2012, pp. 543–562.

[59] G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, “Analysis and veri-
fication of an analog VLSI incremental outer-product learning system,”
IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 488–497, May 1992.

[60] H. C. Card, C. R. Schneider, and W. R. Moore, “Hebbian plasticity in
MOS synapses,” IEE Proc. F, Radar Signal Process., vol. 138, no. 1,
pp. 13–16, Feb. 1991.

[61] C. Schneider and H. Card, “Analogue CMOS Hebbian synapses,”
Electron. Lett., vol. 27, no. 9, pp. 785–786, Apr. 1991.

[62] H. C. Card, C. R. Schneider, and R. S. Schneider, “Learning capacitive
weights in analog CMOS neural networks,” J. VLSI Signal Process. Syst.
Signal, Image Video Technol., vol. 8, no. 3, pp. 209–225, Oct. 1994.

[63] M. Valle, D. D. Caviglia, and G. M. Bisio, “An experimental analog
VLSI neural network with on-chip back-propagation learning,” Analog
Integr. Circuits Signal Process., vol. 9, no. 3, pp. 231–245, Apr. 1996.

[64] T. Morie and Y. Amemiya, “An all-analog expandable neural net-
work LSI with on-chip backpropagation learning,” IEEE J. Solid-State
Circuits, vol. 29, no. 9, pp. 1086–1093, Sep. 1994.

[65] C. Lu, B.-X. Shi, and L. Chen, “An on-chip BP learning neural network
with ideal neuron characteristics and learning rate adaptation,” Analog
Integr. Circuits Signal Process., vol. 31, no. 1, pp. 55–62, Apr. 2002.

[66] T. Shima, T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita, and T. Iida,
“Neuro chips with on-chip back-propagation and/or Hebbian learning,”
IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1868–1876, Dec. 1992.

[67] C. S. Lindsey and T. Lindblad, “Survey of neural network hardware,”
Proc. SPIE, vol. 2492, pp. 1194–1205, Apr. 1995.

[68] G. Cauwenberghs, “A learning analog neural network chip with
continuous-time recurrent dynamics,” in Proc. NIPS, Golden, CO, USA,
Nov. 1994, pp. 858–865.

[69] H. Eguchi, T. Furuta, H. Horiguchi, S. Oteki, and T. Kitaguchi, “Neural
network LSI chip with on-chip learning,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Seattle, WA, USA, Jul. 1991, pp. 453–456.

[70] C. Schneider and H. Card, “CMOS implementation of analog
Hebbian synaptic learning circuits,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), vol. i. Seattle, WA, USA, vol. 1, Jul. 1991,
pp. 437–442.

[71] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, p. 075201, Feb. 2012.

[72] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with continuous
or discrete weights,” in Proc. NIPS, Montreal, QC, Canada, Dec. 2014,
pp. 963–971.

[73] M. Milev and M. Hristov, “Analog implementation of ANN with inherent
quadratic nonlinearity of the synapses,” IEEE Trans. Neural Netw.,
vol. 14, no. 5, pp. 1187–1200, Sep. 2003.

[74] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,”
Nanotechnology, vol. 22, no. 48, p. 485203, Dec. 2011.

Daniel Soudry received the B.Sc. degree in electri-
cal engineering and physics and the Ph.D. degree
in electrical engineering from the Technion-Israel
Institute of Technology, Haifa, Israel, in 2008 and
2013, respectively.

He is currently a Gruss Lipper Post-Doctoral
Fellow with the Department of Statistics, Center of
Theoretical Neuroscience, and the Grossman Center
for the Statistics of Mind, Columbia University,
New York, NY, USA. His current research interests
include modeling the nervous system and its com-

ponents, Bayesian methods for neural data analysis and inference in neural
networks, and hardware implementation of neural systems.

Dotan Di Castro received the B.Sc., M.Sc., and
Ph.D. degrees from the Technion-Israel Institute of
Technology, Haifa, Israel, in 2003, 2006, and 2010,
respectively.

He was with IBM Research Labs, Haifa, from
2000 to 2004, He was involved in several startup
companies from 2009 to 2013. He is currently
with Yahoo! Labs, Haifa, where he is investigating
information processing in very large scale systems.
His current research interests include machine learn-
ing (in particular, reinforcement learning), computer

vision, and large-scale hierarchical learning systems.

Asaf Gal received the B.Sc. degree in physics and
electrical engineering from the Technion-Israel Insti-
tute of Technology, Haifa, Israel, in 2004, and the
Ph.D. degree in computational neuroscience from the
Hebrew University of Jerusalem, Jerusalem, Israel,
in 2013.

He is currently a Clore Post-Doctoral Fellow with
the Department of Physics of Complex Systems,
Weizmann Institute of Science, Rehovot 76100,
Israel. His current research interests include theo-
retically oriented study of biological systems, bio-

physics, and the application of complex systems science to experiments in
biology.

Avinoam Kolodny received the Ph.D. degree in
microelectronics from the Technion-Israel Institute
of Technology (Technion), Haifa, Israel, in 1980.

He joined Intel Corporation, Santa Clara, CA,
USA, where he was involved in research and devel-
opment in the areas of device physics, very large
scale integration (VLSI) circuits, electronic design
automation, and organizational development. He has
been a member of the Faculty of Electrical Engineer-
ing with Technion since 2000. His current research
interests include interconnects in VLSI systems, at

both physical and architectural levels.

Shahar Kvatinsky received the B.Sc. degree in
computer engineering and applied physics and the
M.B.A. degree from the Hebrew University of
Jerusalem, Jerusalem, Israel, in 2009 and 2010,
respectively, and the Ph.D. degree in electrical engi-
neering from the Technion-Israel Institute of Tech-
nology, Haifa, Israel, in 2014.

He was with Intel Corporation, Santa Clara, CA,
USA, as a Circuit Designer, from 2006 to 2009. He
is currently a Post-Doctoral Research Fellow with
Stanford University, Stanford, CA, USA. His current

research interests include circuits and architectures with emerging memory
technologies and design of energy efficient architectures.


