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Abstract 

Russian banks have been strongly influenced by the worldwide financial crisis which 

started in the second half of 2008. This was caused by a combination of domestic, regional 

and international factors. We estimate an early warning model for the Russian crisis. We 

identified 47 Russian banks which failed after September 2008. Using the Bankscope data 

set, we show that balance sheet indicators were informative about possible failures of these 

banks as early as 2006. The early predictive indicators include especially equity, net interest 

revenues, return on average equity, net loans, and loan loss reserves.  
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1. Introduction  

The financial market turbulences in 2008 and 2009 have led to the most severe financial 

crisis since the Great Depression. The crisis has not only affected the stock markets but 

also, to a great extent affected economies around the world causing a worldwide 

recession. These events provide ample evidence of how quickly the trust in the financial 

system can vanish and how difficult it is to restore confidence in the financial markets 

and more importantly among the general public.  

Russia has been affected much more strongly by the worldwide financial crisis than 

the majority of the emerging economies and developing countries (Dreger and Fidrmuc, 

2009). The majority of Russian banks did not directly invest in the U.S. subprime 

market and due to record high oil prices, foreign investors considered Russia to be a 

relatively safe market until the mid of 2008. Eventually, the global financial crisis 

affected Russia in two fundamental ways. The first was the liquidity crisis which 

already had affected the banking sector in the U.S. and in Europe. The second was that 

due to the global economic slowdown the demand for commodities decreased which led 

to a sharp decline of the oil price. In addition the conflict in Georgia increased the 

political instability of Russia which further weakened the confidence of international 

investors. This resulted in a “flight to quality” of international investors which led to 

massive losses on the Russian stock market. In the following months Russia did not 

only experience a severe banking crisis but also, due to the devaluation of the Russian 

ruble, a currency crisis; a so-called twin crisis (Kaminsky and Reinhard, 1999).  

The current financial crisis provides evidence for the economic and social costs that 

can be associated with periods of financial, and in particular banking, distress. 

Therefore the need for reliable early warning models to forecast potential banking crisis 

is more present than ever (Reinhart and Rogoff, 2008). The possibility to detect 

potential banking crises could not only decrease the economic costs but would also 

ensure a safe and sound banking system in which banks are able to perform their 

intermediary role. Given the importance of the subject an extensive literature on the 

prediction of banking crises in general and bank failure prediction in particular has 

evolved. Using a logit regression approach and balance sheet data from 2006 and 2007 

we tried to identify internal factors which influenced the failure of Russian banks during 

the Russian financial crisis of 2008. The results indicate that liquidity plays an 
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important role in bank failure prediction, but also earnings ability and capital adequacy 

turn out to be important determinants of failure. 

The paper is organized as follows. The next section describes the outbreak of the 

financial crisis in Russia in the second half of 2008. Section 3 describes our data set, 

and analyzes factors determining the probability of bank failures in logit models. The 

last section concludes.  

2 The Russian Crisis in 2008/2009 

The first signs of liquidity shortages in the Russian interbank market started to erupt in 

September 2008, after the bankruptcy of Lehman Brothers (Brunnermeier, 2008). As a 

consequence more and more investors sold their assets and the RTS Index continued to 

decline. Due to the increased counterparty risk and loss of confidence between banks 

the liquidity shortages on the interbank market increased. On September 17, the Federal 

Financial Market Service decided to close the exchange for two days to prevent the 

Russian stock market from collapsing. Following these events the interbank lending 

rates increased by 100 basis points. 

 

Figure 1: Russian Financial Developments  
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From July 3 to September 12, 2008, the RTS Index declined by 38% (see Figure 1). 

During this time a high correlation of the RTS Index and the oil price could be observed 

(Sutela, 2008). Figure 1 reveals that as a reaction to the conflict in Georgia, which 

started in August 2008, the RTS Index fell by 6.5%. This fact provides ample evidence 

of how nervous international markets reacted during these turbulent times. Following 

these events the devaluation pressure on the ruble increased. Up to this point Russian 

banks had not yet experienced liquidity shortages.  

Due to the increasing uncertainties on the international financial markets and the 

associated flight to quality, Russia began to experience a sudden stop and a reversal of 

capital flows. In the fourth quarter of 2008 net capital outflows were USD 130.5 billion, 

with USD 56.2 billion from the banking sector and USD 74.3 billion from the non 

banking sector. 

This trend resembles the high short term repayment obligations of Russian banks 

and companies. By mid 2008 Russia’s external debt had risen to USD 527 billion. Bank 

sector debt accounted for 37% and corporate debt for 56% of overall debt (Bogetic, 

2008). Especially small and medium sized banks had relied on short term foreign 

borrowing as a funding source due to their weak deposit base given the dominance of 

state controlled banks. This fact made these banks especially vulnerable to sudden 

changes of capital flows because the refinancing conditions for their foreign loans 

worsened.  

To mitigate the effects of the financial crisis, the Russian government and the 

Central Bank implemented a number of measures to support the Russian banking sector 

with liquidity and the corporate sector with loans. Russian companies, which to a great 

extent had used international financial markets as a source of funding, also faced 

difficulties. The reason for this is that the companies in many cases used shares as 

collateral for their loans. After the stock market had experienced a massive decline the 

value of the collateral decreased in line, which worsened the refinancing capabilities for 

the companies. Given the fact that many companies and banks had taken up loans in 

foreign currency the continuing devaluation of the ruble made loan repayments even 

more expensive. To increase the level of liquidity and confidence in the interbank 

market the Russian Central Bank decided to apply two measures. In a first step the 
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reserve requirements for all bank liabilities were lowered by 4 basis points. This 

measure increased the liquidity level on the interbank market by approximately RUB 

300 billion. In a second step the Central Bank announced that it would compensate 

those banks, with a rating of above BB-/Ba3, for any losses incurred on the interbank 

market. The aim of this measure clearly was to increase the confidence between banks 

on the interbank market. Larger banks no longer had to worry about counterparty risk. 

Previously larger banks were hesitant to lend money to small and medium sized banks 

because they feared possible bankruptcies of these institutions. The Central Bank 

expected that the liquidity in the interbank market would therefore spread more evenly.  

An additional measure to support the banking system and companies was approved 

by the Russian parliament. On 29 September 2008 the Russian parliament adopted the 

law “On additional measures to support the financial system of the Russian Federation”. 

The aim of this law was to provide Russian banks and companies with liquidity to repay 

their foreign loans. For this purpose the Bank for Development and Foreign Economic 

Affairs (VEB) received USD 50 billion from the Russian Central Bank. These funds 

were available for all foreign loans which were shown on the balance sheets before 25 

September 2008.  

However, only those companies which were regarded as being of strategic 

importance for the Russian economy were eligible to apply for these loans. Most of the 

companies whose loans were approved belonged to the aluminum, oil, banking and the 

construction sector. Under the same law the Russian National Welfare Fund, the Oil 

Stabilization Fund of the Russian Federation, was enabled to deposit up to RUB 450 

billion with VEB. VEB used these funds to provide unsecured subordinated loans to 

commercial banks. VEB distributed these loans to the following banks: The majority 

state owned VTB Bank and the state owned Russian Agricultural Bank received RUB 

200 billion and RUB 25 billion. The remaining funds were granted to those banks which 

either had an international rating of B-/B3 and above or a national investment grade 

rating.  

The Central Bank also provided Sberbank with unsecured loans to the amount of 

RUB 500 billion. The initial thought was that these banks would distribute the 

additional liquidity within the banking system. Unfortunately the loans which were 

granted to the state owned banks did not reach the interbank lending market and 
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therefore did not ease the liquidity shortage. The reason was the high concentration of 

the Russian banking system which prevented the liquidity injections of the government 

to spread evenly in the interbank market (Barisitz, 2008).  

Especially small and medium sized banks still were short of liquidity. To solve this 

situation the State Duma passed a new law on 28 October 2008: “On additional 

measures to stabilize the banking system during the period up to 31 December 2011”. 

This law enabled the Russian Deposit Insurance Agency (DIA) to prevent Russian 

banks from going bankrupt. Under this law the DIA was able to choose between 

different bail-out options. It could either find investors for those banks which were on 

the verge of going bankrupt, and assist the investors with the restructuring of the bank 

or, if no investor could be found, the DIA itself could acquire 75% of the bank. For this 

purpose the DIA received RUB 200 billion from the government.  

Initially the government had decided to only support larger banks in case they faced 

liquidity problems. However, after small and medium sized banks had been effectively 

cut off the interbank market and the largest banks were hoarding liquidity the 

government changed its approach. In an atmosphere prone to rumors the difficulties 

which small and medium sized faced could easily cause problems in the entire banking 

sector and could even lead to bank runs. For this reason the government had been 

reluctant to allow even the smallest banks to go bankrupt (Fungáčová and Solanko, 

2008a and 2008b).  

However, the results of these policy measures were limited. From September 29 to 

November 13, 2008, the RTS Index fell by 48% and the oil price by 43%. After the 

massive decline of the RTS Index the Russian government decided to support the 

financial markets. For this reason VEB received resources amounting to RUB 175 

billion from the National Welfare Fund. VEB therefore acted as an investment agent on 

the stock market to prevent a further decline.  

By October 2008, the confidence of the Russian population in the banking system 

seemed to have decreased. In October 2008 the banking system experienced an average 

deposit outflow of around 5-6%. Small and medium sized banks experienced far greater 

deposit outflows of around 10-12%. Even Sberbank faced deposit outflows of 3.2%. 

The reasons why the Russian population withdrew deposits from the banks were 

twofold. Firstly, speculations about possible bank defaults increased. Secondly, after 
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fears of a further devaluation of the ruble increased, the population converted its ruble 

deposits into foreign currency deposits. In just one month the share of foreign currency 

deposits increased from 21.2% to 26.5%. This reaction is even more astonishing when 

one keeps in mind that the government had increased the guarantee on deposits from 

RUB 400 thousand to RUB 700 thousand on October 10, 2008.  

The continuing sharp decline of the oil price contributed to increasing capital 

outflows which in turn led to a further decline of the RTS Index. In addition the decline 

of the oil price fueled expectations that Russia’s current account surplus could turn into 

a deficit, which increased the pressure on the ruble. To fight the devaluation of the ruble 

the Russian Central Bank had used its foreign reserves. Russia’s foreign reserves 

decreased from around USD 600 billion in August to USD 475 billion November. In 

mid November the Central Bank therefore launched a controlled devaluation policy. On 

November 11, the Central Bank widened the basket band, in which the currency could 

trade, from 30.40 to 30.70. Having set this new basket band the Central Bank almost 

spent USD 7 billion on the first day to defend the ruble basket exchange rate at the new 

set level. It has to be noted that the devaluation pressure on the ruble was also elevated 

thru speculative attacks. Among those market participants that speculated against the 

ruble were not only foreign investors but interestingly some of the largest state 

controlled banks. In addition the state controlled banks used those funds they had 

received from the government to stabilize the interbank market for these speculative 

attacks.  

During the period of 11 November to 22 January 2009 the Central Bank of Russia 

gradually devaluated the ruble which was implemented through a regular widening of 

the ruble basket band. This policy resulted in the ruble’s nominal depreciation of almost 

40% against the U.S. dollar and almost 29% against the Euro. The Russian Central 

Bank justified its chosen strategy of gradual ruble devaluation by the need for domestic 

companies and households to adjust to the new exchange rate regime. The gradual ruble 

devaluation strategy appeared to be very costly for the government. Russia’s 

international reserves have decreased from USD 475 billion in November 2008 to USD 

386 billion in January 2009. To mitigate further capital outflows of international 

investors the Russian Central Bank increased its interest rate, at a time when other 

Central Banks cut their rates (Lehmann, 2008).  
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3 Early Warning Model of the Russian Banking Crisis  

3.1 Literature Survey 

Failure prediction models have a long history in corporate finance literature. The basic 

model was developed by Altman (1968). In his study Altman used multivariate 

discriminant analysis to analyze the probability of failure among manufacturing firms. 

The model uses five financial ratios to predict bankruptcy one and two years before the 

firm actually fails or survives. Altman’s results showed that firms with certain financial 

structures (characterized by their financial ratios) have a higher probability of failure 

than firms with different characteristics. Altman’s groundbreaking results led to an 

increased research interest in this field. His model was extended and eventually applied 

to predict bank failures.  

The study of bank failures is important for two reasons. Firstly, understanding the 

factors related to a bank’s failure enables regulatory authorities to manage and supervise 

banks more efficiently. Secondly, the ability to differentiate between sound and troubled 

banks will reduce the expected costs of a bank failure. If a problem bank can be 

detected early enough, actions can be taken to either prevent the bank from failing or to 

minimize the costs to the public. To prevent bank failures regulators are therefore 

interested in developing early warning systems (EWS) in order to identify problem 

banks and to avoid bankruptcies. The current crisis, which started as a banking crisis 

and later evolved into a global financial crisis, exemplifies the importance of bank 

failure prediction models. Not only did the current crisis show how costly the bailout of 

banks can be it also made clear how important it is to maintain a save and sound 

banking system for each and every economy. We will discuss if bank failure prediction 

models might have been able to predict the current Russian banking crisis.  

Martin (1977) applied Altman’s results to predict bank failures. He employed a logit 

model to predict bank failures, using a two year horizon between the statement year of 

the financial ratio data and the observation year, where a bank could either have failed 

or survived. Using all Federal Reserve member banks he identified 58 banks which 

failed during a seven year period in the 1970s. The results of Martin’s study showed 

that different indicators on capital adequacy, liquidity, asset quality and earnings were 
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not only significant, but actually were able to predict bank failure. Martin’s model can 

therefore be described as an early warning system (EWS) for bank failures. Another 

author, Sinkey (1975, 1978) also found evidence, that poor asset quality and low capital 

ratios could best indentify potential problem banks. 

Motivated by these research results, the US Federal Deposit Insurance Corporation 

introduced a bank monitoring system in 1977, to help structure their bank monitoring 

process. This system consisted of 12 financial ratios which can be categorized into the 

following groups. Capital Adequacy (C), Asset Quality (A), Management Competence 

(M), Earnings Ability (E) and Liquidity (L). Hence, the term CAMEL rating was 

created. This rating method allows the regulators to identify potential problem banks. 

The system compares each observed financial ratio with a benchmark. If a particular 

bank does not meet the minimum ratio requirements it is reviewed by the regulators.  

Most of the failure prediction models use variables which can be categorized under 

four of the five CAMEL factors. The variable which is usually missing is the one that 

assesses management quality. In a way this is surprising, because many bank failure 

prediction studies have concluded that the quality and efficiency of bank management 

are the leading causes of failure. Currently, a large number of failure prediction models 

are used, which are based on various types of modeling, such as logit models, survival 

analysis, decision trees, trait recognition and neural networks.  

The health of the banking sector is a prerequisite to increase private savings and 

allocate loans to their most productive use (Hanousek, et al., 2007). This is especially 

important in transition economies, such as Russia (Fungáčová and Weill, 2009). We 

will therefore now briefly outline the results of bank failure prediction models in 

Russia. Kuznetov (2003) applied a logit model to analyze which factors influenced the 

failures of banks during the Russian banking crisis of 1998. He concludes that medium 

sized banks with large investments in government bonds were more likely to survive the 

crisis. The profitability and liquidity of banks turned out to have no influence on the 

probability of failure. Golovan, Karminsky and Peresetsky (2003) are the first to divide 

all Russian banks into clusters and then employ a logit regression to each cluster. Their 

results show that the probability to fail is negatively related to capital adequacy, 

liquidity and the share of government bonds. Lanine and Vennet (2005), using a logit 

and trait recognition model, also studied the banking crisis of 1998 and came to the 
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same conclusion. The study by Konstandina (2006) also applied a logit regression to 

identify potential factors which influence bank failure. According to her results, bank 

efficiency clearly matters. Less efficient banks have a higher chance of failure. Higher 

levels of non-performing loans also bring a higher risk of failure, as well as the holding 

of government securities. Liquidity also appears to be a significant factor that influences 

bank failure. 

3.2 Data description 

The data which is used in this paper was drawn from the Bankscope database. The 

initial sample consisted of 1120 Russian banks. Due to a large number of missing values 

this sample was reduced to 875 banks. Most models which try to predict bank failures 

use balance sheet data to construct financial ratios. These financial ratios are designed to 

reflect the soundness of a bank in several aspects. Given the importance of the subject, 

extensive research has been devoted to the design and identification of such financial 

ratios. As a result over a hundred financial ratios have been constructed based on raw 

balance sheet data. These financial ratios are believed to be more effective explanatory 

variables in identifying problem banks than raw balance sheet data. As mentioned 

before, most of the financial ratios used in existing research can be classified into one of 

the CAMEL categories.  

The explanatory variables include usually the financial ratios belonging to the 

CAMEL categories (Zhao et al., 2009). A bank’s capital base is a crucial explanatory 

variable since it is the last line of defense against losses to uninsured depositors and 

general creditors. Capital adequacy is a measure of the level and quality of a bank’s 

capital base. Asset quality measures the level of risk of a bank’s assets. This is related to 

the quality and diversity of borrowers and their ability to repay loans. Management 

quality is a measure of the quality of a bank’s officers and the efficiency of its 

management structure. Earnings ability is a measure of the performance of a bank and 

the stability of its earnings stream. Liquidity measures a bank’s ability to meet 

unforeseen deposit outflow in a short time. Each of these general characteristics could in 

theory have an impact on a bank’s failure. While bank’s losses on assets are a direct 

cause of its failure, the other characteristics provide measures of the ability of the bank 

to remain operational in spite of losses.  
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Table 1: Descriptive Statistics of Banking Indicators, 2007  

 No Fail Failures Equality test 

 Mean St Dev. Mean St. Dev. F-test p-value

Loan Loss Reserve / Gross Loans  5.709 6.772 4.060 4.778 0.633 0.427

Impaired Loans / Gross Loans  1.885 5.469 3.681 1.961 0.006 0.936

Impaired Loans / Equity 7.871 32.909 22.568 9.143 0.050 0.823

Equity / Total Assets  20.212 13.977 7.282 14.284 6.044 0.014

Equity / Net Loans  50.035 67.970 49.742 31.856 2.380 0.123

Equity / Liabilities  32.891 49.465 11.921 17.673 3.207 0.074

Net Interest Margin  6.908 3.644 1.777 5.730 3.520 0.061

Net Int Rev / Avg Assets  5.959 2.690 1.641 4.764 6.611 0.010

Oth Op Inc / Avg Assets  6.457 6.383 5.347 6.620 0.022 0.883

Non Int Exp / Avg Assets  9.395 7.522 5.075 9.022 0.082 0.775

Return on Average Assets (ROAA)  2.003 3.944 1.014 1.564 0.419 0.518

Return on Average Equity (ROAE)  12.872 12.056 9.717 13.009 0.004 0.948

Cost to Income Ratio  65.837 17.914 23.431 75.482 9.226 0.002

Recurring Earning Power  4.134 3.088 2.468 2.776 6.409 0.012

Net Loans / Total Assets  54.668 19.333 15.970 59.448 2.022 0.155

Net Loans / Tot Dept & Borrowing 80.074 49.315 20.877 76.072 0.222 0.638

Liquid Assets / Tot Dept & Borrowing 49.696 44.103 18.775 32.002 5.428 0.020
 

Keeping this is in mind, we decided to look at 36 financial ratios available in the 

Bankscope database, which are divided into the different CAMEL categories. Following 

earlier literature we did not include ratios which measure management quality. 

Unfortunately, not all of these ratios could be used in the model, due to the fact that 

there was a large number of missing values in the dataset. After controlling for these 

missing values, 17 financial ratios remained (see Table 2).  

A positive (negative) sign indicates that if the financial ratio increases, the 

probability of failure will increase (decline). The ratio of loan loss reserves to gross 

loans indicates the portfolio quality. The higher the ratio the poorer the quality of the 

loan portfolio will be. Hence, we expect a positive sign. The same is true for the other 

two ratios belonging to the asset quality category.  

Better capitalized banks have higher chances of surviving, since their cushion for 

losses is larger. We expect to see a negative sign for the ratio of equity to total assets. 
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The same is true for the ratio equity to net loans, which increases the cushion available 

to absorb losses increases and hence the probability of failure decreases. 

All ratios under the category earnings ability decrease the probability of failure if 

they increase because an increase in any of these ratios is equivalent to higher 

profitability and thus the probability of failure should decrease. The only exception is 

the cost to income ratio. If this ratio increases the general earning power of the bank is 

decreasing. Therefore, we expect that if this ratio increases, the probability of failure 

will increase. The higher the ratio of net loans to total assets, the less liquid a bank will 

be, which in turn should increase the probability of failure. 

The descriptive statistics in Table 1 reveal that especially the following variables 

show major differences between the two groups: equity to total assets, equity to net 

loans, equity to liabilities, net loans to total assets, and the cost to income ratio. 

 

3.3 Definition of Bank Failure  

Enterprises are normally defined as bankrupt when the net worth becomes negative. 

Most bank problems are, however, resolved in some way before the net worth actually 

becomes negative. The current crisis once again showed that it is also reasonable to 

regard a bank as failed if it has either received funds or liquidity from the government. 

Such a government intervention usually happens if the effects of a bank failure on the 

real economy and the banking system in general are unforeseeable. Another option to 

save a bank from actually failing is the compulsory merger with a state controlled bank. 

The Russian government, as mentioned before, used each of the described options to 

stabilize the national banking system. The interventions were mainly carried out by 

government owned or controlled banks such as the Deposit Insurance Agency, 

Sberbank, Vnesheconombank, and the National Reserve Bank. Not only did the 

government act as a stabilizing factor in these turbulent times, privately and publicly 

owned banks also used the opportunity to acquire troubled banks. For the purpose of 

this paper, a bank is therefore considered as failed, if the bank meets one of the 

following conditions: the license of the bank was revoked, direct state bailout, the bank 

received funds or liquidity from a government entity, and compulsory merger or 

takeover. Table 2 lists all identified bank failures with a short description of their cases.  
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Table 2: List of Failed Banks 

Bank Name Acquired By Involvement Date Bankscope 
Svyat bank VEB Direct state bailout 23.09.2008 Yes 
KIT Finance Alrosa  State controlled  10.10.2008 No 
Soyuz Gazenergoprombank State controlled  11.10.2008 Yes 
Globex VEB Direct state bailout 17.10.2008 Yes 
VEFK* DIA Direct state bailout 21.10.2008 Yes 
Sobinbank* Gazenergoprombank State controlled  15.10.2008 Yes 
Severnaya Kazna* Alfa Bank DIA 09.12.2008 Yes 
Russky Bank Razvitiya Otkritie DIA 13.12.2008 No 
Russian Capital Bank Nat. Reserve Bank CBR support 14.01.2009 No 
Elektronika* Nat. Reserve Bank DIA 01.12.2008 Yes 
Gubernsky Bank* Sinara Group DIA 11.11.2008 Yes 
Nizhegorodpromstroybank* Sarovbusinessbank DIA 17.11.2008 Yes 
Bank 24.ru* Probusinessbank DIA 07.12.2008 Yes 
Yarsotsbank* Promsvyazbank CBR support 21.10.2008 No 
Potenzial* Solidarnost Bank DIA 10.11.2008 Yes 
Gasenergobank* Probusinessbank DIA 14.11.2008 Yes 
Bashinvest* Binbank DIA 24.11.2008 Yes 
Moscow Zalogovy Bank Bank of Moscow DIA 29.12.2008 No 
Moskovsky Kapital Nomos Bank DIA 19.12.2008 No 
Nizhniy Novgorod* Promsvyazbank DIA 28.11.2008 Yes 
Russian Develop. Bank DIA DIA 06.11.2008 Yes 
Investment Bank Trust* National Bank Trust  Merger 20.11.2008 Yes 
APR Bank* Onexim Group Merger 24.11.2008 Yes 
MDM Namk* URSA Bank  Merger 03.12.2008 Yes 
Tharkhany Bank Morskoy DIA 22.12.2008 Yes 
Kauri Bank License revoked License revoked 10.02.2009 Yes 
Econats Bank License revoked License revoked 22.12.2008 Yes 
Peace Bank License revoked License revoked 22.12.2008 No 
Bank Eurasia Center License revoked License revoked 22.12.2008 Yes 
Sakhalin Vest* License revoked License revoked 22.12.2008 Yes 
West Bank Premier License revoked License revoked 22.12.2008 No 
Lefco Bank License revoked License revoked 12.11.2008 Yes 
Sibcontact License revoked License revoked 06.02.2009 Yes 
ZelAK Bank License revoked License revoked 18.01.2009 Yes 
Bank Sochi License revoked License revoked 17.11.2008 Yes 
Setevoi Neftyanoy Bank* License revoked License revoked 16.12.2008 Yes 
Agrokhimbank* License revoked License revoked 30.12.2008 Yes 
Baltcreditbank License revoked License revoked 19.12.2008 Yes 
Net Oil Bank License revoked License revoked 19.12.2008 Yes 
Inkasbank* License revoked License revoked 19.02.2009 No 
Sudcombank* License revoked License revoked 19.02.2009 Yes 
Prikamye Bank License revoked License revoked 19.01.2009 Yes 
Uraykombank License revoked License revoked 10.02.2009 Yes 
Integro* License revoked License revoked 27.11.2008 Yes 
Kurganprombank* License revoked License revoked 27.11.2008 Yes 
Gazinvestbank  License revoked License revoked 17.12.2008 Yes 

Source: Deposit Insurance Agency (DIA), Reuters, Interfax, Bloomberg, Renaissance Capital.  

* Banks whose equity is below 5 million EUR. 
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Because the Russian financial crisis started in August 2008 we will focus on those 

banks which met one of the above criteria between August 2008 and February 2009. 

Various researchers mentioned in their papers that it is a challenging task to find reliable 

information about the Russian banking system in general and about Russian banks in 

particular. We experienced similar problems when we tried to find information about 

those banks which failed during that time. Therefore, we do not claim that the list of 

failed banks in Table 2 is complete. If some of the failed banks might be missing it is 

more than likely that these banks resemble so called pocket or highly specialized banks 

whose equity is very small. We will therefore estimate a model in which we exclude 

those banks whose equity is below EUR 5 million. All in all, we were able to find 47 

banks which failed during the analyzed period. Out of this number, nine banks were not 

covered by the Bankscope database. We use slightly different versions of bank failures 

in the sensitivity analysis.  

 

3.4 An Early Warning Model for Russian Banks  

We estimate the failure probabilities for Russian banks  

 ( ) tittiqP ,1, |1 ε+=Ω= − βF ,  (1) 

where matrix F includes several financial ratios from the banks’ balance sheet which 

were discussed above. The results of the logit regression model are displayed in Table 

3. The signs of the coefficients indicate the direction an independent variable has on the 

dependent variable. It can be seen that all variables, except the ratio of loan loss 

reserves to gross loans, which were included in the model are statistically significant in 

the basic specification for 2007. The remaining variables each represent one of the 

CAMEL categories. As expected equity to total assets is negative and significant at the 

5% level and has the expected effect on bank failure. This result is in line with other 

studies. Konstandina (2006) and Männasoo and Mayes (2009) come to the same result. 

Therefore the result shows that better capitalized banks have a lower probability of 

failure because their cushion against asset malfunction is greater. 
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Table 3: Early Crisis Prediction Model for Russian Banks  
 

2007 2006 
License 
revoked 

Equity over 
EUR 5 mill. 

Constant 
Asset Quality: 
Loan Loss Reserves / Gross Loans 
 
Capital Adequacy: 
Equity / Total Assets 
 
Earnings Ability: 
Cost to Income Ratio 
 
Net Interest Revenue / Average Assets 
 
Net Interest Margin 
 
Return on Average Equity 
 
Liquidity: 
Net Loans / Total Assets 
 
 
Number of Observations 
Number of failed banks 
 

-5.792*** 
 

0.044 
(0.033) 

 
-0.053** 
(0.025) 

 
0.037*** 
(0.011) 

-0.265** 
(0.104) 

 
 
 
 
 

0.036** 
(0.012) 

 
875 
34 

-2.422* 
 

0.014 
(0.045) 

 
-0.066** 
(0.028) 

 
 
 

-0.204** 
(0.101) 

 
 

-0.049** 
(0.024) 

 
0.031** 
(0.013) 

 
802 
29 

-8.528*** 
 

0.074* 
(0.038) 

 
-0.054 
(0.034) 

 
0.049*** 
(0.014) 
-0.185 
(0.138) 

 
 
 
 
 

0.045** 
(0.017) 

 
875 
18 

-4.416** 
 

0.019 
(0.046) 

 
-0.053* 
(0.030) 

 
0.031** 
(0.012) 

 
 

-0.075 
(0.112) 

 
 
 

0.006 
(0.015) 

 
543 
20 

 
Omnibus Test of Model Coefficients 
-2 Log Likelihood 
Cox & Snell R Square 
Nagelkerke R Square 
Hosmer and Lemeshow Test 
 

 
0.000*** 
255.958 
0.035 
0.126 
0.145 

 
0.001*** 
229.011 
0.025 
0.094 
0.383 

 
0.001*** 
145.552 
0.023 
0.129 
0.475 

 
0.025** 
171.375 
0.023 
0.081 
0.246 

Predictive Power (Cut Level):  0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05
Specificity in % 67.0 76.0 66.2 76.2 98.2 92.2 60.3 71.8
Sensitivity in % 64.7 52.9 58.6 55.2 52.9 29.4 59.1 40.9
Overall Accuracy (Correct rate) in % 66.9 75.1 66.0 75.4 88.5 91.7 60.2 70.5

Note: The standard errors are reported in brackets. *, **, and *** significant at 10%, 5%, and 1% level.  
 

 

The net interest revenue (Income) to average assets is also negative and highly 

significant and also has the expected effect on bank failure. This result is in line with 

Peresetsky and Karminsky (2008). It indicates that the higher the profitability of a bank, 

the lower is the probability that it will fail. 

Net loans to total assets is positive and significant at the 5% level and has the 

expected effect on bank failure. This result is plausible because the higher this ratio is, 

the higher the risk of potential loan losses is and the less liquid a bank will be. Again 
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this result is in line with Konstandina (2006). Less liquid banks therefore have a higher 

probability of failure.  

Cost to income ratio is highly significant and has the expected positive effect on 

bank failure. An increasing cost to income ratio is either a sign of falling income or 

rising costs; both resulting in a lower income. If this ratio increases, the profitability of 

the bank decreases and therefore the probability of failure increases. Finally, loan loss 

reserves to gross loans are not significant but it keeps the correct sign.  

We have performed several sensitivity tests. First, we estimate the same logit 

regression using balance sheet data for 2006. These results are also displayed in the 

second column of Table 3. The results confirm that all variables, except the ratio of loan 

loss reserves to gross loans, are significant at the 5% level. Again all variables have the 

expected signs.  

Next, we change the definition of bank failure. In this model those banks are 

labelled as failed whose licenses were revoked during the period from August 2008 to 

February 2009. Under the current legislation, the Russian Central Bank is obligated to 

revoke the license of a bank if the capital adequacy ratio falls below 2%. Using this 

definition of bank failure, the number of failed banks dropped from 34 to 18. The results 

of the logit regression for 2007 are presented in the corresponding column in Table 3. In 

this model only three independent variables are significant: the cost to income ratio, the 

ratio of net loans to total assets, and the ratio of loan loss reserves to gross loans. The 

other explanatory variables have the expected effect on bank failure but are not 

significant. The Hosmer and Lemeshow Test1 indicates that the overall fit of this model 

is better than for the previous specifications. 

Finally, we follow Schoors (2007) and exclude those banks from the initial sample 

of 2007 whose equity is below 5 million EUR. The reason for excluding these banks is 

that we want to make sure that we observe “real” banks and not pocket or highly 

specialized small banks. To be able to compare the results of this model with the results 

from the initial model of 2007 we decided to use the same variables as in the initial 

model for 2007. Therefore, we will only present the results of the regression model. 

                                                 
1 The Hosmer and Lemeshow Goodness-of-Fit Test divides subjects into deciles based on predicted 

probabilities, then computes a chi-square from observed and expected frequencies. 



17 

Both the Hosmer and Lemeshow test and the omnibus test of model coefficients2 are 

significant. Due to the new 5 million equity restriction the remaining dataset consists of 

543 banks of which 22 actually failed. In this sensitivity analysis, only two variables are 

significant. These variables are the ratio of equity to total assets and the cost to income 

ratio. Nevertheless, the remaining variables have the expected signs and therefore the 

expected effect on bank failure, which confirms the overall robustness of our early 

warning model for Russia.  

 

3.5 Bank Failure Predictions  

After having identified ratios which affect the probability of failure, the final step tries 

to observe how many of the actual failures and non-failures can be predicted by the 

estimated models. Actually, all discussed specifications are not able to identify any of 

the actually failed banks if we used a cut-value of 0.5. Therefore, we look for the 

optimal cut-value as follows. When classifying a bank into one of the two possible 

categories, failure and non-failure, the following two misclassification problems can 

appear (Hwang et al., 1997): First, a Type I error, P(N|F), occurs, when a failure is 

classified as non-failure, this leads to misclassification costs of C(N|F). Second, a Type 

II error, P(F|N), occurs when a non-failure is classified as failure, resulting in 

misclassification costs of C(F|N). Choosing the prior probabilities or cut value depends 

on the balancing costs of Type I and Type II errors.  

Most published studies (e.g. Barr and Siems, 1996) assert that the cost of 

misclassifying a bank that fails (Type I error) is greater than the cost of misclassifying a 

bank that continues to survive (Type II error). They argue that the cost to perform an 

on-site examination which results in significant operating improvements is less than the 

cost of a bailout of the same bank if it had not been examined and failed. Especially in 

the current situation, where major financial institutions around the world have had to be 

supported with government funds, this argument seems to be reasonable.  

In the base model of 2007, we started with the assumption that the prior 

probabilities and misclassification costs of failure were equally assigned. Therefore, we 

                                                 
2 The omnibus test of model coefficients provides a test of the joint predictive ability of all the covariates 

in the model. 
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chose a cut value of 0.5 (Martin, 1977, and Sinkey, 1975). Applying this cut-level, the 

model did not forecast any of the failed banks. Lowering the cut-level allows more 

banks to be picked up, thereby the Type I error is reduced which on the other hand 

raises the frequency of the Type II error.  

Next, following Demirgüc-Kunt and Detragiache (1998), we set the cut level to 

0.05, 0.04 and 0.02 to identify which of these cut levels leads to the best predictive 

power of the model and, therefore, minimizes the costs of misclassifying banks. As 

discussed previously one has to keep in mind that the costs associated with a Type I 

error are much greater than the costs associated with a Type II error. Hence we analyze 

four different scenarios, where the costs of Type I error to Type II error are: 2:1, 5:1, 

10:1 and 20:1. The 5:1 ratio for example assumes that the cost of misclassifying a bank 

that in fact fails is 5 times the cost of misclassifying a bank that survives. This analysis 

reveals that a cut-level of 0.05 or 0.04 should be selected.  

This decision should however not be made without keeping the overall predictive 

power of the model in mind. The results for the selected cut values can be found in 

Table 3. Using a cut level of 0.05 the overall predictive power of the 2007 model 

reaches 75.1%. In this case 52.9% of those banks which actually failed were predicted. 

This is referred to as the sensitivity of the prediction. Of the non-failed banks 76% were 

correctly classified by the model. This is known as the specificity of the prediction. 

Using a cut level of 0.04 the overall predictive power of the model decreases to 66.9%. 

The percentage of correctly predicted failed banks increases however to 64.7%. 

Therefore, we select the cut-level of 0.05 because this level seems to be a good trade-off 

between the Type I and Type II errors. Hence the model is able to actually predict over 

50% of the actually failed banks.  

For the model using balance sheet data from 2006, the model with a cut value 0.5 is 

again not able to identify any of the actual failures. Table 3 shows the results for the two 

most powerful cut levels, 0.05 and 0.04. As in the model of 2007, we can see that the 

cut-value of 0.05 is sufficient due to the fact that this value seems to be able to balance 

the trade-off between Type I and Type II errors. Furthermore, the overall predictive 

power even increases slightly when compared to the model for 2007. The model for 

2006 is able to predict 55.2% of the actual failures and 76.2% of the non-failures. The 

corresponding predictive powers of the 2007 model are 52.9% and 76.0%, respectively. 
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This result is in line with the results from other studies. Amongst others, Westgaards 

and Wijst (2001) find that the predictive power of the model increases when moving 

from a one year ahead to a two year ahead model. 

Changing the definition of bank failure to “withdrawal of the license”, the overall 

predictive power of the model even reaches 91.7% when using a cut-level of 0.05. 

However, in this case the model is only able to predict 29.4% of the failed banks. 

However, when a cut level of 0.04 is applied, the predictive power is substantially 

improved and the model is able predict 52.9% of the observed failures. The major 

difference to the 2007 model is that the model with the alternative definition of failure is 

able to predict 98.2% of non-failed banks. The overall predictive power of the model 

reaches 88.5%. Compared to the previous models, therefore, this model has by far the 

best overall predictive power.  

Finally, the predictive power of the model which applies the EUR 5 million equity 

restriction turns out to be satisfactory. Similarly to the alternative definition of bank 

failure, the cut level of 0.04 seems to be the appropriate cut-level in this model: Using a 

cut-level of 0.04, the overall predictive power of the model reaches 60.2%. The model is 

able to predict 59.1% of the failed banks and 60.3% of the non-failed banks. However, 

the overall predictive power of the model increases when using a cut level of 0.05 to 

70.5%.  

 

4 Conclusions  

In the second half of 2008, the world has entered into the first recession since the Great 

Recession. The impact of the global financial crisis turned out to be much deeper than 

expected. The impact of the crisis on Russia did not only disclose the structural 

weaknesses of the Russian economy, such as the high dependence on the oil price. The 

crisis also put the banking system in severe distress. Large government interventions 

were needed to mitigate the effects of the financial crisis on the banking system, the 

currency and the general economy. These government measures provide evidence for 

the fact that the financial crisis in Russia was at least partially home-made.  

To summarize the Russian financial crisis it can be noted that four related shocks 

appeared to have transmitted the global crisis to Russia. Firstly, the global credit crisis 

caused a sudden stop and then a reversal in capital flows as investors fled to quality. 
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Secondly, the crisis affected Russia’s banking system which led to a liquidity crisis. 

Thirdly, a sharp drop in the oil price and devaluation pressure on the ruble decreased 

Russia’s foreign reserves. Finally, Russia’s stock market experienced a massive decline 

losing two thirds of its value in less than five month. In general Russia’s policy 

response has been proactive and larger than that of many other G-20 member countries 

and by far greater than the internationally recommended 2% of GDP. However, the 

current financial crisis revealed the structural weaknesses which are inherent in the 

Russian banking system.  

Especially small and medium sized banks were affected by the financial crisis and 

were basically cut off the interbank market. This was due to their weak deposit base, 

given the dominance of either state owned or controlled banks. In addition these banks 

had to rely on international borrowing which exposed them to the reversal in capital 

flows, triggered by the flight to quality of international investors. The Russian banking 

system therefore is in desperate need for restructuring. The results of the bank failure 

prediction model revealed that especially better capitalized banks have a lower 

probability of failure. In addition the results indicate that less liquid banks have a higher 

probability of failure and that the higher the profitability of a bank the lower is the 

probability that it will fail.  

The Russian government could, however, use the developments during the financial 

crisis as a hint to restructure the domestic banking system. The number of 

undercapitalized banks, so called pocket banks, has to be reduced. This could be 

achieved by raising the general capital requirements of banks. In addition the 

government should reduce the amount of related party lending to increase the 

transparency of the banking sector.  
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