
2.1! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Calls

  Programming interface to the services provided by the OS"

  Typically written in a high-level language (C or C++)"
  Mostly accessed by programs via a high-level

Application Programming Interface (API) rather than
direct system call use"

  Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)"

Note that the system-call names used throughout this
text are generic

2.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example of Standard API

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Call Implementation

  Typically, a number associated with each system call"
  System-call interface maintains a table indexed according to

these numbers"

  The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values"

  The caller need know nothing about how the system call is
implemented"
  Just needs to obey API and understand what OS will do as a

result call"
  Most details of OS interface hidden from programmer by API "

 Managed by run-time support library (set of functions built
into libraries included with compiler)"

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

API – System Call – OS Relationship

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Call Parameter Passing

  Often, more information is required than simply identity of desired
system call"
  Exact type and amount of information vary according to OS

and call"
  Three general methods used to pass parameters to the OS"

  Simplest: pass the parameters in registers"
  In some cases, may be more parameters than registers"

  Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register "
 This approach taken by Linux and Solaris"

  Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system"

  Block and stack methods do not limit the number or length of
parameters being passed"

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Parameter Passing via Table

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Examples of Windows and Unix System Calls

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example: MS-DOS

  Single-tasking"
  Shell invoked when system

booted"
  Simple method to run

program"
  No process created"

  Single memory space"
  Loads program into memory,

overwriting all but the kernel"
  Program exit -> shell

reloaded"

At system startup running a program"

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example: FreeBSD

  Unix variant"
  Multitasking"
  User login -> invoke user’s choice of

shell"
  Shell executes fork() system call to create

process"
  Executes exec() to load program into

process"
  Shell waits for process to terminate or

continues with user commands"
  Process exits with:"

  code = 0 – no error "
  code > 0 – error code"

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Operating System Structure

  General-purpose OS is very large program"
  Various ways to structure ones"

  Simple structure – MS-DOS"
  More complex -- UNIX"
  Layered – an abstrcation"
  Microkernel -Mach"

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Simple Structure -- MS-DOS

  MS-DOS – written to provide the
most functionality in the least
space"
  Not divided into modules"
  Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated"

2.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Non Simple Structure -- UNIX

 UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts"
  Systems programs"
  The kernel"

 Consists of everything below the system-call interface
and above the physical hardware"

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level"

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Traditional UNIX System Structure

Beyond simple but not fully layered

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Layered Approach

  The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface."

  With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers"

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Microkernel System Structure

  Moves as much from the kernel into user space"
  Mach example of microkernel!

  Mac OS X kernel (Darwin) partly based on Mach"

  Communication takes place between user modules using
message passing"

  Benefits:"
  Easier to extend a microkernel"
  Easier to port the operating system to new architectures"
  More reliable (less code is running in kernel mode)"
  More secure"

  Detriments:"
  Performance overhead of user space to kernel space

communication"

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Modules

  Many modern operating systems implement loadable kernel
modules!
  Uses object-oriented approach"
  Each core component is separate"
  Each talks to the others over known interfaces"
  Each is loadable as needed within the kernel"

  Overall, similar to layers but with more flexible"
  Linux, Solaris, etc"

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Solaris Modular Approach

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Hybrid Systems

  Most modern operating systems are actually not one pure model"
  Hybrid combines multiple approaches to address

performance, security, usability needs"
  Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality"
  Windows mostly monolithic, plus microkernel for different

subsystem personalities!
  Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment"
  Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)"

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

iOS

  Apple mobile OS for iPhone, iPad"
  Structured on Mac OS X, added functionality"
  Does not run OS X applications natively"

 Also runs on different CPU architecture
(ARM vs. Intel)"

  Cocoa Touch Objective-C API for
developing apps"

  Media services layer for graphics, audio,
video"

  Core services provides cloud computing,
databases"

  Core operating system, based on Mac OS X
kernel"

Cocoa Touch

Media Services

Core Services

Core OS

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Android

  Developed by Open Handset Alliance (mostly Google)"
  Open Source"

  Similar stack to IOS"
  Based on Linux kernel but modified"

  Provides process, memory, device-driver management"
  Adds power management "

  Runtime environment includes core set of libraries and Dalvik
virtual machine"
  Apps developed in Java plus Android API"

 Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM"

  Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc"

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Android Architecture Applications

Application Framework

Android runtime

Core Libraries

Dalvik
virtual machine

Libraries

Linux kernel

SQLite openGL

surface
manager

webkit libc

media
framework

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Boot

  When power initialized on system, execution starts at a fixed
memory location"
  Firmware ROM used to hold initial boot code"

  Operating system must be made available to hardware so hardware
can start it"
  Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it"
  Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader
from disk"

  Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options"

  Kernel loads and system is then running!

