T System Calls

B Programming interface to the services provided by the OS
B Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than

direct system call use

B Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

\

SN
> \

- S

/ <

A ‘v‘;‘i

N »

\\

Operating System Concepts Essentials — 2"¢ Edition 2.1 Silberschatz, Galvin and Gagne ©2013

7 Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size-t data types (among other
things). The parameters passed to read () are as follows:
¢ int fd—the file descriptor to be read
® void *buf-—a buffer where the data will be read into
¢ size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Operating System Concepts Essentials — 2n¢ Edition 2.2 Silberschatz, Galvin and Gagne ©2013

Q} /‘mwv».‘

=37 System Call Implementation

B Typically, a number associated with each system call

® System-call interface maintains a table indexed according to
these numbers

B The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

B The caller need know nothing about how the system call is
implemented

® Just needs to obey APl and understand what OS will do as a
result call

® Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

Operating System Concepts Essentials — 2" Edition 23 Silberschatz, Galvin and Gagne ©2013

{

5% API - System Call - OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
Implementation
i » of open ()
. system calll

return

Operating System Concepts Essentials — 2n¢ Edition 2.4 Silberschatz, Galvin and Gagne ©2013

=
- ,_WGN,&

%7 System Call Parameter Passing

B Often, more information is required than simply identity of desired
system call

® Exact type and amount of information vary according to OS
and call

B Three general methods used to pass parameters to the OS
® Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

® Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register

» This approach taken by Linux and Solaris

® Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

® Block and stack methods do not limit the number or length of
parameters being passed

Operating System Concepts Essentials — 2" Edition 25 Silberschatz, Galvin and Gagne ©2013

4%’ Parameter Passing via Table

L

—> X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 = > call 13

user program

operating system

Operating System Concepts Essentials — 2" Edition 2.6 Silberschatz, Galvin and Gagne ©2013

| =

,:f\cml‘

g v/
oy

| QW

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit ()
WaitForSingleObject() wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer() alarm()
Sleep() sleep()
Communication CreatePipe() pipe O
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

Operating System Concepts Essentials — 2" Edition

2.7

Silberschatz, Galvin and Gagne ©2013

7 Example: MS-DOS

W
&\

B Single-tasking

B Shell invoked when system

booted free memory
B Simple method to run
program free memory
® No process created process

B Single memory space

B Loads program into memory,

. command
OVGFWFItlng all but the kernel interpreter command
) interpreter
B Program exit -> shell S o,
reloaded e
(a) (b)
At system startup running a program

Operating System Concepts Essentials — 2" Edition 2.8 Silberschatz, Galvin and Gagne ©2013

- i
S Example: FreeBSD
M Unix variant
B Multitasking process D
B User login -> invoke user’ s choice of
shell free memory
B Shell executes fork() system call to create
process process C
® Executes exec() to load program into
process :
® Shell waits for process to terminate or e plie ey
continues with user commands
® code =0 —-no error
® code >0 — error code
kernel

Operating System Concepts Essentials — 2" Edition 29 Silberschatz, Galvin and Gagne ©2013

%’ Operating System Structure

B General-purpose OS is very large program
B Various ways to structure ones

® Simple structure — MS-DOS

® More complex -- UNIX

® Layered — an abstrcation

® Microkernel -Mach

Operating System Concepts Essentials — 2" Edition 2.10 Silberschatz, Galvin and Gagne ©2013

%%?}' Simple Structure -- MS-DOS

B MS-DOS — written to provide the
most functionality in the least
space

® Not divided into modules

® Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

Operating System Concepts Essentials — 2" Edition 2.1

application program

resident system program

ROM BIOS device drivers ’

Silberschatz, Galvin and Gagne ©2013

ﬁ«;;i Non Simple Structure -- UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

® Systems programs
® The kernel

» Consists of everything below the system-call interface
and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Operating System Concepts Essentials — 2"¢ Edition 2.12 Silberschatz, Galvin and Gagne ©2013

(&L NS

g%’ Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

kernel interface to the hardware

— signals terminal file system CPU scheduling
g) handling swapping block I/O page replacement
N character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts Essentials — 2" Edition 2.13

A
& ;)\“\\

3 \)

A Ai“‘h‘

Silberschatz, Galvin and Gagne ©2013

T 'ﬂ""’h-k

e Layered Approach

L\
s\

B The operating system is divided I
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

user interface

layer O
hardware

B With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

Operating System Concepts Essentials — 2" Edition 2.14 Silberschatz, Galvin and Gagne ©2013

T 'ﬂ""’h-k

" Microkernel System Structure

L\
s\

B Moves as much from the kernel into user space
B Mach example of microkernel
® Mac OS X kernel (Darwin) partly based on Mach

B Communication takes place between user modules using
message passing

B Benefits:
® Easier to extend a microkernel
® Easier to port the operating system to new architectures
® More reliable (less code is running in kernel mode)
® More secure
B Detriments:

® Performance overhead of user space to kernel space
communication

Operating System Concepts Essentials — 2" Edition 2.15 Silberschatz, Galvin and Gagne ©2013

;‘”t p,ff“"'"”l "
4% Microkernel System Structure

Application File Device user
Program System Driver mode

N A N A

messages messages

CPU
scheduling

memory
managment

kernel
mode

Interprocess
Communication

A microkernel i

hardware

Operating System Concepts Essentials — 2" Edition 2.16 Silberschatz, Galvin and Gagne ©2013

: ™
Py

(&L NS

Modules

B Many modern operating systems implement loadable kernel
modules

® Uses object-oriented approach

® Each core component is separate

® Each talks to the others over known interfaces

® Eachis loadable as needed within the kernel
B Overall, similar to layers but with more flexible

® Linux, Solaris, etc

Operating System Concepts Essentials — 2" Edition 2.17 Silberschatz, Galvin and Gagne ©2013

o Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel loadable
system calls

miscellaneous
modules

executable
formats

STREAMS
modules

Operating System Concepts Essentials — 2n¢ Edition 2.18 Silberschatz, Galvin and Gagne ©2013

=
- ,\mﬂu,k

o Hybrid Systems

B Most modern operating systems are actually not one pure model

® Hybrid combines multiple approaches to address
performance, security, usability needs

® Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of functionality

® Windows mostly monolithic, plus microkernel for different
subsystem personalities

B Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa
programming environment

® Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus 1/O kit and dynamically loadable modules (called
kernel extensions)

Operating System Concepts Essentials — 2" Edition 2.19 Silberschatz, Galvin and Gagne ©2013

=

ot Mac OS X Structure

| S\

ical interf
graphical user interface Aapa

application environments and services

Cos >

kernel environment

BSD

Mach

I/0O kit kernel extensions

Operating System Concepts Essentials — 2" Edition 2.20 Silberschatz, Galvin and Gagne ©2013

P -
- 03

B Apple mobile OS for iPhone, iPad
® Structured on Mac OS X, added functionality
® Does not run OS X applications natively

» Also runs on different CPU architecture Cocoa Touch
(ARM vs. Intel)
® Cocoa Touch Obijective-C API for Media Services

developing apps

e Media services layer for graphics, audio, Core Services

video

Core OS

® Core services provides cloud computing,
databases

® Core operating system, based on Mac OS X
kernel

Operating System Concepts Essentials — 2"¢ Edition 2.21 Silberschatz, Galvin and Gagne ©2013

o
/ 4

| P y
) i
W i
S s

=

[
,_WGN,&

Android

Developed by Open Handset Alliance (mostly Google)
® Open Source

Similar stack to 10S

Based on Linux kernel but modified
® Provides process, memory, device-driver management
® Adds power management

Runtime environment includes core set of libraries and Dalvik
virtual machine

® Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

Operating System Concepts Essentials — 2" Edition 2.22 Silberschatz, Galvin and Gagne ©2013

g Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
surface media .
fram " Dalvik
manager amewo virtual machine
webkit libc

Operating System Concepts Essentials — 2" Edition 2.23 Silberschatz, Galvin and Gagne ©2013

G System Boot

B When power initialized on system, execution starts at a fixed
memory location

® Firmware ROM used to hold initial boot code

B Operating system must be made available to hardware so hardware
can start it

® Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

® Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

B Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

B Kernel loads and system is then running

Operating System Concepts Essentials — 2" Edition 2.24 Silberschatz, Galvin and Gagne ©2013

