
2.1! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Calls

  Programming interface to the services provided by the OS"

  Typically written in a high-level language (C or C++)"
  Mostly accessed by programs via a high-level

Application Programming Interface (API) rather than
direct system call use"

  Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)"

Note that the system-call names used throughout this
text are generic

2.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example of Standard API

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Call Implementation

  Typically, a number associated with each system call"
  System-call interface maintains a table indexed according to

these numbers"

  The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values"

  The caller need know nothing about how the system call is
implemented"
  Just needs to obey API and understand what OS will do as a

result call"
  Most details of OS interface hidden from programmer by API "

 Managed by run-time support library (set of functions built
into libraries included with compiler)"

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

API – System Call – OS Relationship

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Call Parameter Passing

  Often, more information is required than simply identity of desired
system call"
  Exact type and amount of information vary according to OS

and call"
  Three general methods used to pass parameters to the OS"

  Simplest: pass the parameters in registers"
  In some cases, may be more parameters than registers"

  Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register "
 This approach taken by Linux and Solaris"

  Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system"

  Block and stack methods do not limit the number or length of
parameters being passed"

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Parameter Passing via Table

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Examples of Windows and Unix System Calls

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example: MS-DOS

  Single-tasking"
  Shell invoked when system

booted"
  Simple method to run

program"
  No process created"

  Single memory space"
  Loads program into memory,

overwriting all but the kernel"
  Program exit -> shell

reloaded"

At system startup running a program"

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Example: FreeBSD

  Unix variant"
  Multitasking"
  User login -> invoke user’s choice of

shell"
  Shell executes fork() system call to create

process"
  Executes exec() to load program into

process"
  Shell waits for process to terminate or

continues with user commands"
  Process exits with:"

  code = 0 – no error "
  code > 0 – error code"

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Operating System Structure

  General-purpose OS is very large program"
  Various ways to structure ones"

  Simple structure – MS-DOS"
  More complex -- UNIX"
  Layered – an abstrcation"
  Microkernel -Mach"

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Simple Structure -- MS-DOS

  MS-DOS – written to provide the
most functionality in the least
space"
  Not divided into modules"
  Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated"

2.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Non Simple Structure -- UNIX

 UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts"
  Systems programs"
  The kernel"

 Consists of everything below the system-call interface
and above the physical hardware"

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level"

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Traditional UNIX System Structure

Beyond simple but not fully layered

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Layered Approach

  The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface."

  With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers"

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Microkernel System Structure

  Moves as much from the kernel into user space"
  Mach example of microkernel!

  Mac OS X kernel (Darwin) partly based on Mach"

  Communication takes place between user modules using
message passing"

  Benefits:"
  Easier to extend a microkernel"
  Easier to port the operating system to new architectures"
  More reliable (less code is running in kernel mode)"
  More secure"

  Detriments:"
  Performance overhead of user space to kernel space

communication"

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Modules

  Many modern operating systems implement loadable kernel
modules!
  Uses object-oriented approach"
  Each core component is separate"
  Each talks to the others over known interfaces"
  Each is loadable as needed within the kernel"

  Overall, similar to layers but with more flexible"
  Linux, Solaris, etc"

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Solaris Modular Approach

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Hybrid Systems

  Most modern operating systems are actually not one pure model"
  Hybrid combines multiple approaches to address

performance, security, usability needs"
  Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality"
  Windows mostly monolithic, plus microkernel for different

subsystem personalities!
  Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment"
  Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)"

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

iOS

  Apple mobile OS for iPhone, iPad"
  Structured on Mac OS X, added functionality"
  Does not run OS X applications natively"

 Also runs on different CPU architecture
(ARM vs. Intel)"

  Cocoa Touch Objective-C API for
developing apps"

  Media services layer for graphics, audio,
video"

  Core services provides cloud computing,
databases"

  Core operating system, based on Mac OS X
kernel"

Cocoa Touch

Media Services

Core Services

Core OS

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Android

  Developed by Open Handset Alliance (mostly Google)"
  Open Source"

  Similar stack to IOS"
  Based on Linux kernel but modified"

  Provides process, memory, device-driver management"
  Adds power management "

  Runtime environment includes core set of libraries and Dalvik
virtual machine"
  Apps developed in Java plus Android API"

 Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM"

  Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc"

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

Android Architecture Applications

Application Framework

Android runtime

Core Libraries

Dalvik
virtual machine

Libraries

Linux kernel

SQLite openGL

surface
manager

webkit libc

media
framework

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts Essentials – 2nd Edition!

System Boot

  When power initialized on system, execution starts at a fixed
memory location"
  Firmware ROM used to hold initial boot code"

  Operating system must be made available to hardware so hardware
can start it"
  Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it"
  Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader
from disk"

  Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options"

  Kernel loads and system is then running!

