
1

1

A C++0x
overview

Bjarne Stroustrup
Texas A&M University

(and AT&T – Research)
http://www.research.att.com

Post
San Francisco

2

Abstract

75 minutes (plus Q&A)

2

3

Overview
• C++0x

– C++
– Standardization
– Design rules of thumb

• with examples

• Case studies
– Concepts
– Initializer lists

• Q&A

1248 C Compatibility

1246 B Implementation quantities

1224 A Grammar summary

1186 30 Thread support library

116929 Atomic operations library

112728 Regular expressions library

103927 Input/output library

95626 Numerics library

91025 Algorithms library

87324 Iterators library

75823 Containers library

70222 Localization library

66121 Strings library

52220 General utilities library

50419 Diagnostics library

474 18 Language support library

45317 Library introduction

44016 Preprocessing directives

43015 Exception handling

31014 Templates

278 13 Overloading

24812 Special member functions

23611 Member access control

22410 Derived classes

208 9 Classes

175 8 Declarators

134 7 Declarations

123 6 Statements

855 Expressions

79 4 Standard conversions

31 3 Basic concepts

15 2 Lexical conventions

1 1 General

4

Why is the evolution of C++ of interest?
• http://www.research.att.com/~bs/applications.html

C++ is used just
about everywhere
Mars rovers, animation,
graphics, Photoshop, GUI,
OS, SDE, compilers, chip
design, chip manufacturing,
semiconductor tools,
finance, telecommunication,
most software infrastructure,
...

20-years old and apparently
still growing

3

5

ISO Standard C++

• C++ is a general-purpose programming language with a
bias towards systems programming that
– is a better C
– supports data abstraction
– supports object-oriented programming
– supports generic programming

• A multi-paradigm programming language
(if you must use long words)

– The most effective styles use a combination of techniques

6

Overall Goals

• Make C++ a better language
for systems programming and
library building
– Rather than providing specialized

facilities for a particular sub-community
(e.g. numeric computation or Windows-
style application development)

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities

supportive of novices (there will always be more novices than experts)

4

7

C++ ISO Standardization
• Current status

– ISO standard 1998, TC 2003
– Library TR 2005, Performance TR 2005
– C++0x in the works – ‘x’ is scheduled to be ‘9’ (but … C++0xA?)

• Committee Draft September 2008.
• Only official national standards body comment now accepted

– Documents on committee website (search for “WG21” on the web)
• Membership

– 18 nations (this week, 5 to 10 represented at each meeting)
– About 160 active members (~60 at each meeting)

• Process
– formal, slow, bureaucratic, and democratic
– “the worst way, except for all the rest” (apologies to W. Churchill)
– Most work done in “Working Groups” and over the web

8

Rules of thumb / Ideals
• Note: integrating features to work in combination is the key

– And the most work
– The whole is much more than the simple sum of its part

• Maintain stability and compatibility
• Prefer libraries to language extensions
• Prefer generality to specialization
• Support both experts and novices
• Increase type safety
• Improve performance and ability to work directly with hardware
• Make only changes that change the way people think
• Fit into the real world

5

9

Maintain stability and compatibility
• “Don’t break my code!”

– There are billions of lines of code “out there”
– There are millions of C++ programmers “out there”

• “Absolutely no incompatibilities” leads to ugliness
– We do introduce new keywords: concept, auto (recycled), decltype,

constexpr, thread_local, nullptr, axiom
– Example of incompatibility:

static_assert(sizeof(int)<4,"error: small ints");

• “Absolutely no incompatibilities” leads to absurdities
_Bool // C99 boolean type
typedef _Bool bool; // C99 standard library typedef

10

Support both experts and novices
• Example: minor syntax cleanup

vector<list<int>> vl; // note the “missing space”

• Example: simplified iteration
for (auto x : v) cout << x <<'\n';

• Note: Experts don’t easily appreciate the needs of novices
– Example of what we couldn’t get just now

string s = "12.3";
double x = lexical_cast<double>(s); // extract value from string

6

11

Prefer libraries to language extensions

• Libraries deliver more functionality
• Libraries are immediately useful
• Problem: Enthusiasts prefer language features

– see library as 2nd best

• Example: New library components
– std::thread, std::future, …

• Threads ABI; not thread type
– std::unordered_map, std::regex, …

• Not built-in associative array

• Example: Mixed language/library extension
– The new for works for every type with std::begin() and std::end()
– The new initializer lists are based on std::initializer_list<T>

for (auto& x : {y,z,ae,ao,aa}) cout << x <<'\n';

12

Prefer generality to specialization
• Example: Prefer improvements to class and template

mechanisms over separate new features
– Inherited constructor

template<class T> class Vector : std::vector<T> {
using vector::vector<T>; // inherit all constructors
// …

};
– Move semantics supported by rvalue references

template<class T> class vector {
// …
void push_back(const T&& x); // move x into vector

// avoid copy if possible
};

• Problem: people love small isolated features

7

13

Increase type safety
• Approximate the unachievable ideal

– Example: Strongly-typed enumerations
enum class Color { red, blue, green };
int x = Color::red; // error: no Color->int conversion
Color y = 7; // error: no int->Color conversion

– Example: Support for general resource management
• std::shared_ptr, std::unique_ptr
• Garbage collection ABI

14

Improve performance and the ability to
work directly with hardware

• Embedded systems programming is very important
– Example: address array/pointer problems

• array<int,7> s; // fixed-sized array

– Example: Generalized constant expressions (think ROM)
constexpr int abs(int i) { return (0<=i) ? i : -i; }

struct Point {
int x, y;
constexpr Point(int xx, int yy) : x(xx), y(yy) { }

};

constexpr Point p1(1,2); // ok
constexpr Point p2(1,abs(x)); // error unless x is a constant expression

8

15

Make only changes that change
the way people think

• Think/remember: object-oriented programming,
generic programming, concurrency, …
– But, most people prefer to fiddle with details

• So there are dozens of small improvements
– All useful somewhere
– long long, static_assert, raw literals, thread_local, unicode

types, …
• Example: A null pointer keyword

void f(int);
void f(char*);
f(0); // call f(int);
f(nullptr); // call f(char*);

16

Fit into the real world
• Example: Existing compilers and tools must evolve

– Simple complete replacement is impossible
– Tool chains are huge and expensive
– There are more tools than you can imagine
– C++ exists on many platforms

• So the tool chain problems occur N times
– (for each of M tools)

• Example: Education
– Teachers, courses, and textbooks

• Often mired in 1970s thinking or 1980s OOP Rah Rah
– “We” haven’t completely caught up with C++98!

• “legacy code breeds more legacy code”

9

17

Summary
• A torrent of language proposals

– 49 proposals approved (fortunately, many are rather small)
– No new proposals pending
– 48 proposals rejected plus many “mere suggestions”

• Too few library proposals
– 11 Components from LibraryTR1

• Regular expressions, hashed containers, smart pointers, fixed sized array,
tuples, …

– Use of C++0x language features
• Move semantics, variadic templates, general constant expressions, initializer-

list constructors
– 3 New component

• Threads, asynchronous message buffer, date and time
• I’m still an optimist

– C++0x will be a better tool than C++98 – much better

18

Areas of language change
• Machine model and concurrency Model

– Threads library (std::thread)
– Atomic ABI
– Thread-local storage (thread_local)
– Asynchronous message buffer (std::future)

• Support for generic programming
– concepts
– uniform initialization
– auto, decltype, lambdas, template aliases, move semantics, variadic

templates, range-for, …
• Etc.

– static_assert
– improved enums
– long long, C99 character types, etc.
– …

10

19

Near future post-C++0x plans

• Library TR2
– Thread pools, File system manipulation, Networking

(sockets, TCP, UDP, iostreams across the net, etc.),
numeric_cast, …

• Language TRs
– Modules (incl. dynamic linking)
– Garbage collection (programmer controlled)

20

C++0x case studies
• Concepts

– A type system for types, combinations of types, etc. for easier and safer
use of templates

– computer science
– Part of the better support for generic programming

• Initialization
– A mechanism for more general and uniform initialization
– “computer mechanics”

Note:
most work on language extension is engineering : focuses on
tradeoffs, usability and (compile-, link-, and run-time)
performance

11

21

Generic programming:
The language is straining

• The compiler doesn’t know what the user expects
from template argument types
– C++98 has no way of specifying

• Much interface specification is in the documentation/comments
• Use requires too many clever tricks and workarounds

– Works beautifully for correct code
• Uncompromising performance is often achieved

– Users are often totally baffled by simple errors
• Amazingly poor error messages
• Late checking (at template instantiation time)

• The notation can be very verbose
– Pages of definitions for things that’s logically simple
– Too hard to write

22

Example of a problem
// standard library algorithm fill():
// assign value to every element of a sequence
template<class Forward_iterator, class V>
void fill(Forward_iterator first, Forward_iterator last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1;

}
}

fill(a,a+N,7); // works for an array
fill(v.begin(), v.end(),8); // works for a vector

fill(0,10,8); // fails spectacularly for a pair of ints
fill(lst.begin(),lst.end(),9); // fails spectacularly for a list!

12

23

What’s right in C++98?

• Parameterization doesn’t require hierarchy
– Less foresight required

• Handles separately developed code
– Handles built-in types beautifully

• Parameterization with non-types
– Notably integers

• Uncompromised efficiency
– Near-perfect inlining

• Compile-time evaluation
– Template instantiation is Turing complete
– The basis for powerful programming techniques

• Template metaprogramming, generative programming

We try to strengthen and enhance what works well

24

C++0x: Concepts
• “a type system for C++ types”

– and for relationships among types
– and for integers, operations, etc.

• Based on
– Search for solutions from 1985 onwards

• Stroustrup (see D&E)
– Lobbying and ideas for language support by Alex Stepanov
– Analysis of design alternatives

• 2003 papers (Stroustrup, Dos Reis)
– Designs by Dos Reis, Gregor, Siek, Stroustrup, …

• Many WG21 documents
– Academic papers:

• POPL 2006 paper, OOPSLA 2006 papers
– Experimental implementations (Gregor, Dos Reis)
– Experimental versions of libraries (Gregor, Siek, …)

13

25

Concept aims
• Direct expression of intent
• Perfect separate checking of template definitions and template uses

– Implying radically better error messages
– We can almost achieve perfection

• Simplify all major current template programming techniques
– Can any part of template meta-programming be better supported?
– Simple tasks are expressed simply

• close to a logical minimum
• Increase expressiveness compared to current template

programming techniques
– overloading

• No performance degradation compared to current code
• Relatively easy implementation within current compilers

– “just relatively”
• Current template code remains valid

26

Checking of uses
• The checking of use happens immediately at the call

site and uses only the declaration

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v); // <<< just a declaration, not definition

fill(0, 9, 99); // error: int is not a Forward_iterator
// (int has no prefix *)

fill(&v[0], &v[9], 99); // ok: int* is a Forward_iterator

14

27

Checking of implementations
• Checking at the point of definition happens

immediately at the definition site and involves only
the definition

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1; // error: + not defined for Forward_iterator

// (instead: use ++first)
}

}

28

Concept maps
// Q: Is int* a forward iterator?
// A: of course!

// Q: But we just said that every forward iterator had a member type value_type?
// A: So, we must give it one:

template<Value_type T>
concept_map Forward_iterator<T*> { // T*’s value_type is T

typedef T value_type;
};

// “when we consider T* a Forward_Iterator, the value_type of T* is T
// value type is an associated type of Forward_iterator

• “Concept maps” is a general mechanism for non-intrusive
mapping of types to requirements

15

29

Expressiveness
• Simplify notation through overloading:

void f(vector<int>& vi, list<int>& lst, Fct cmp)
{

sort(vi); // sort container (vector)
sort(vi, cmp); // sort container (vector) using cmp
sort(lst); // sort container (list)
sort(lst, cmp); // sort container (list) using cmp
sort(vi.begin(), vi.end()); // sort sequence
sort(vi.begin(), vi.end(), cmp); // sort sequence using cmp

}

• Currently, this requires a mess of helper functions and traits
– For this example, some of the traits must be explicit (user visible)

30

Concepts as predicates
• A concept can be seen as a predicate:

– Forward_iterator<T>: Is type T a Forward_iterator?
– Assignable<T::value_type,V>: can we assign a V to T’s value_type?

• So we can do overload resolution based on simple sets of
concepts (predicates):

Intersection: ambiguous
Disjoint: independent (ok)

subset: specialization (ok, pick the most specialized)

16

31

Expressiveness
// iterator-based standard sort (with concepts):

template<Random_access_iterator Iter>
requires Comparable<Iter::value_type>

void sort(Iter first, Iter last)
{

// the usual implementation
}

template<Random_access_iterator Iter, Compare Comp>
requires Callable<Comp, Iter::value_type>

void sort(Iter first, Iter last, Comp cmp)
{

// the usual implementation
}

32

Expressiveness
// container-based sort:

template<Container Cont>
requires Comparable<Cont::value_type>

void sort(Cont& c)
{

sort(c.begin(),c.end()); // simply call the iterator version
}

template<Container Cont, Compare Comp>
requires Callable<Comp, Cont::value_type>

void sort(Cont& c, Comp cmp)
{

sort(c.begin(),c.end(),cmp); // simply call the iterator version
}

17

33

Initialization
• Used by everyone “everywhere”

– Highly visible
– Often performance critical

• Complicated
– By years of history

• C features from 1974 onwards
• “functional style” vs. “assignment style”

– By diverse constraints
– By desire for flexibility/expressiveness

• Homogeneous vs. heterogeneous
• Fixed length vs. variable length
• Variables/objects, functions, types, aliases

– The initializer-list proposal addresses variables/objects

34

Initializers overview

• The problems
– #1: Irregularity
– #2: Variable length initializer lists
– #3: Narrowing

• The bigger picture
– Uniform initialization syntax and semantics needed

• The solution
– { } uniform initialization

18

35

Problem #1: irregularity
• We can’t use initializer lists except in a few cases

string a[] = { "foo", " bar" }; // ok: initialize array variable
vector<string> v = { "foo", " bar" }; // error: initialize vector variable
void f(string a[]);
f({ "foo", " bar" }); // error: initializer array argument

• There are four notations and none can be used everywhere
int a = 2; // “assignment style”
int[] aa = { 2, 3 }; // assignment style with list
complex z(1,2); // “functional style” initialization
x = Ptr(y); // “functional style” for conversion/cast/construction

• Sometimes, the syntax is inconsistent/confusing
int a(1); // variable definition
int b(); // function declaration
int b(foo); // variable definition or function declaration

36

Is irregularity a real problem?
• Yes, a major source of confusion and bugs
• Can it be solved by restriction?

– No existing syntax can be used in all cases
int a [] = { 1,2,3 }; // can’t use () here
complex<double> z(1,2); // can’t use { } here
struct S { double x,y; } s = {1,2}; // can’t use () here
int* p = new int(4); // can’t use { } or = here

– No existing syntax has the same semantics in all cases
typedef char* Pchar;
Pchar p(7); // error (good!)
Pchar p = Pchar(7); // “legal” (ouch!)

• Principle violated:
– Uniform support for types (user-defined and built-in)

19

37

Problem #2: list workarounds
• Initialize a vector (using push_back)

– Clumsy and indirect
template<class T> class vector {

// …
void push_back(const T&) { /* … */ }
// …

};

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

• Important principle (currently violated):
– Support fundamental notions directly

38

Problem #2: list workarounds
• Initialize vector (using general iterator constructor)

– Awkward, error-prone, and indirect
– Spurious use of (unsafe) array

template<class T> class vector {
// …
template <class Iter>

vector(Iter first, Iter last) { /* … */ }
// …

};

int a[] = { 1.2, 2.3, 3.4 }; // !!!
vector<double> v(a, a+sizeof(a)/sizeof(int)); // !!!

• Important principle (currently violated):
– Support user-defined and built-in types equally well

20

39

C++0x: initializer lists

• An initializer-list constructor
– defines the meaning of an initializer list for a type

template<class T> class vector {
// …
vector(std::initializer_list<T>); // initializer list constructor
// …

};

vector<double> v = { 1, 2, 3.4 };

vector<string> geek_heros = {
"Dahl", "Kernighan", "McIlroy", "Nygaard ", "Ritchie", "Stepanov"

};

40

C++0x: initializer lists
• Not just for templates and constructors

– but std::initializer list is simple – does just one thing well

void f(int, std::initializer_list<int>, int);

f(1, {2,3,4}, 5);
f(42, {1,a,3,b,c,d,x+y,0,g(x+a),0,0,3}, 1066);

21

41

Uniform initialization syntax
• Every form of initialization can accept the { … } syntax

X x1 = X{1,2};
X x2 = {1,2}; // the = is optional
X x3{1,2};
X* p2 = new X{1,2};

struct D : X {
D(int x, int y) :X{x,y} { /* … */ };

};

struct S {
int a[3];
S(int x, int y, int z) :a{x,y,z} { /* … */ }; // solution to old problem

};

42

Uniform initialization semantics

• X { a } constructs the same value in every context
– for all definitions of X and of a’s type

X x1 = X{a};
X x3{a};
X* p2 = new X{a};
z = X{a}; // use as cast

• X { … } is always an initialization
– X var{} // no operand; default initialization

• Not a function definition like X var();
– X var{a} // one operand

• Never a function definition like X var(a); (if a is a type name)

22

43

Uniform initialization semantics
• X { a } constructs the same value in every context

– { } initialization gives the same result in all places where it is legal
X x{a};
X* p = new X{a};
z = X{a}; // use as cast
f({a}); // function argument (of type X)
return {a}; // function return value (function returning X)
…

• X { … } is always an initialization
– X var{} // no operand; default initialization

• Not a function definition like X var();
– X var{a} // one operand

• Never a function definition like X var(a); (if a is a type name)

44

Initialization problem #3: narrowing

• C++98 implicitly truncates
int x = 7.3; // Ouch!
char c = 2001; // Ouch!
int a[] = { 1,2,3.4,5,6 }; // Ouch!

void f1(int); f1(7.3); // Ouch!
void f2(char); f2(2001); // Ouch!
void f3(int[]); f3({ 1,2,3.4,5,6 }); // oh! Another problem

• A leftover from before C had casts!
• Principle violated:

– Type safety
• Solution:

– C++0x { } initialization doesn’t narrow.
• all examples above are caught

23

45

Uniform Initialization
• Example

// …
Table pnone_numbers = {

{ "Donald Duck", 2015551234 },
{ “Mike Doonesbury", 9794566089 },
{ "Kell Dewclaw", 1123581321 }

};
• What is Table?

– a map? An array of structs? A vector of pairs? My own class with a
constructor? A struct needing aggregate initialization? Something else?

– We don’t care as long as it can be constructed using a C-string and an
integer.

– Those numbers cannot get truncated

46

C++0x examples
// template aliasing (“Currying”):
template<class T> using Vec= std::vector<T,My_alloc<T>>;

// General initializer lists (integrated with containers):
Vec<double> v = { 2.3, 1, 6.7, 4.5 };

// early checking and overloading based on concepts:
sort(v); // sort the vector based on <
sort({"C", "C++", "Simula", "BCPL"}); // error: the initializer list is immutable

// type deduction based on initializer and new for loop:
for (auto p = v.begin(); p!=v.end(); ++p) cout<< *p << endl;
for (const auto& x : v) cout<< x << endl;
for (const auto& x : { 1, 2.3 , 4.5, 6.7 }) cout<< x << endl;

24

47

References
• WG21 site:

– All proposals
– All reports

• My site:
– The proposed draft standard
– Gregor, et al: Linguistic support for generic programming. OOPSLA06.
– Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++ Concepts.

POPL06.
– Bjarne Stroustrup: A brief look at C++0x. "Modern C++ design and

programming" conference. November 2005.
– B. Stroustrup: The design of C++0x. C/C++ Users Journal. May 2005.
– B. Stroustrup: C++ in 2005. Extended foreword to Japanese translation of

"The Design and Evolution of C++". January 2005.

48

Core language features

• Memory model (incl. thread_local storage)
• Concepts (a type system for types and values)
• General and unified initialization syntax based on { … } lists
• decltype and auto
• General constant expressions
• Forwarding and delegating constructors
• “strong” enums (class enum)
• Some (not all) C99 stuff: long long, etc.
• nullptr - Null pointer constant
• Variable-length template parameter lists
• static_assert
• Rvalue references
• …

25

49

Core language features
• …
• New for statement
• Basic unicode support
• Explicit conversion operators
• Raw string literals
• Defaulting and inhibiting common operations
• User-defined literals
• Allow local classes as template parameters
• Lambda expressions
• Annotation syntax

50

Library TR

• Hash Tables
• Regular Expressions
• General Purpose Smart Pointers
• Extensible Random Number Facility
• Mathematical Special Functions

• Polymorphic Function Object Wrapper
• Tuple Types
• Type Traits
• Enhanced Member Pointer Adaptor
• Reference Wrapper
• Uniform Method for Computing Function Object Return Types
• Enhanced Binder

26

51

Library
• C++0x

– TR1 (minus mathematical special functions – separate IS)
– Threads
– Atomic operations
– Asynchronous message buffer (“futures”)
– Date and time (“duration”)

• TR2
– Thread pools
– File system
– Networking
– Extended unicode support
– …

52

Performance TR

• The aim of this report is:
– to give the reader a model of time and space overheads implied by

use of various C++ language and library features,
– to debunk widespread myths about performance problems,
– to present techniques for use of C++ in applications where

performance matters, and
– to present techniques for implementing C++ language and standard

library facilities to yield efficient code.
• Contents

– Language features: overheads and strategies
– Creating efficient libraries
– Using C++ in embedded systems
– Hardware addressing interface

