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Why is the evolution of C++ of interest?
• http://www.research.att.com/~bs/applications.html

C++ is used just 
about everywhere
Mars rovers, animation, 
graphics, Photoshop, GUI, 
OS, SDE, compilers, chip 
design, chip manufacturing, 
semiconductor tools, 
finance,  telecommunication, 
most software infrastructure, 
...

20-years old and apparently 
still growing
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ISO Standard C++

• C++ is a general-purpose programming language with a 
bias towards systems programming that
– is a better C
– supports data abstraction
– supports object-oriented programming
– supports generic programming

• A multi-paradigm programming language
(if you must use long words)

– The most effective styles use a combination of techniques

6

Overall Goals

• Make C++ a better language 
for systems programming and 
library building
– Rather than providing specialized 

facilities for a particular sub-community 
(e.g. numeric computation or Windows-
style application development)

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities 

supportive of novices (there will always be more novices than experts)
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C++ ISO Standardization
• Current status

– ISO standard 1998, TC 2003
– Library TR 2005, Performance TR 2005
– C++0x in the works – ‘x’ is scheduled to be ‘9’ (but … C++0xA?)

• Committee Draft September 2008.
• Only official national standards body comment now accepted

– Documents on committee website (search for “WG21” on the web)
• Membership

– 18 nations (this week, 5 to 10 represented at each meeting)
– About 160 active members (~60 at each meeting)

• Process
– formal, slow, bureaucratic, and democratic
– “the worst way, except for all the rest” (apologies to W. Churchill)
– Most work done in “Working Groups” and over the web
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Rules of thumb / Ideals
• Note: integrating features to work in combination is the key

– And the most work
– The whole is much more than the simple sum of its part

• Maintain stability and compatibility
• Prefer libraries to language extensions
• Prefer generality to specialization
• Support both experts and novices
• Increase type safety
• Improve performance and ability to work directly with hardware
• Make only changes that change the way people think
• Fit into the real world
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Maintain stability and compatibility
• “Don’t break my code!”

– There are billions of lines of code “out there”
– There are millions of C++ programmers “out there”

• “Absolutely no incompatibilities” leads to ugliness
– We do introduce new keywords: concept, auto (recycled), decltype, 

constexpr, thread_local, nullptr, axiom
– Example of incompatibility:

static_assert(sizeof(int)<4,"error: small ints");

• “Absolutely no incompatibilities” leads to absurdities
_Bool // C99 boolean type
typedef _Bool bool; // C99 standard library typedef

10

Support both experts and novices
• Example: minor syntax cleanup

vector<list<int>> vl; // note the “missing space”

• Example: simplified iteration
for (auto x : v) cout << x <<'\n';

• Note: Experts don’t easily appreciate the needs of novices
– Example of what we couldn’t get just now

string s = "12.3";
double x = lexical_cast<double>(s); // extract value from string
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Prefer libraries to language extensions

• Libraries deliver more functionality
• Libraries are immediately useful
• Problem: Enthusiasts prefer language features

– see library as 2nd best

• Example: New library components
– std::thread, std::future, …

• Threads ABI; not thread type
– std::unordered_map, std::regex, …

• Not built-in associative array

• Example: Mixed language/library extension
– The new for works for every type with std::begin() and std::end()
– The new initializer lists are based on std::initializer_list<T>

for (auto& x : {y,z,ae,ao,aa}) cout << x <<'\n';

12

Prefer generality to specialization
• Example: Prefer improvements to class and template 

mechanisms over separate new features
– Inherited constructor

template<class T> class Vector : std::vector<T> {
using vector::vector<T>; // inherit all constructors
// …

};
– Move semantics supported by rvalue references

template<class T>  class vector {
// …
void push_back(const T&& x); // move x into vector

// avoid copy if possible
};

• Problem: people love small isolated features
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Increase type safety
• Approximate the unachievable ideal

– Example: Strongly-typed enumerations
enum class Color { red, blue, green };
int x = Color::red; // error: no Color->int conversion
Color y = 7; // error: no int->Color conversion

– Example: Support for general resource management
• std::shared_ptr, std::unique_ptr
• Garbage collection ABI

14

Improve performance and the ability to 
work directly with hardware

• Embedded systems programming is very important
– Example: address array/pointer problems

• array<int,7> s; // fixed-sized array

– Example: Generalized constant expressions (think ROM)
constexpr int abs(int i) { return (0<=i) ? i : -i; }

struct Point {
int x, y;
constexpr Point(int xx, int yy) : x(xx), y(yy) { }

};

constexpr Point p1(1,2); // ok
constexpr Point p2(1,abs(x));  // error unless x is a constant expression
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Make only changes that change
the way people think

• Think/remember: object-oriented programming, 
generic programming, concurrency, …
– But, most people prefer to fiddle with details

• So there are dozens of small improvements
– All useful somewhere
– long long, static_assert, raw literals, thread_local, unicode

types, …
• Example: A null pointer keyword

void f(int);
void f(char*);
f(0); // call f(int);
f(nullptr); // call f(char*);

16

Fit into the real world
• Example: Existing compilers and tools must evolve

– Simple complete replacement is impossible
– Tool chains are huge and expensive
– There are more tools than you can imagine
– C++ exists on many platforms

• So the tool chain problems occur N times
– (for each of M tools)

• Example: Education
– Teachers, courses, and textbooks

• Often mired in 1970s thinking or 1980s OOP Rah Rah
– “We” haven’t completely caught up with C++98!

• “legacy code breeds more legacy code”
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Summary
• A torrent of language proposals

– 49 proposals approved (fortunately, many are rather small)
– No new proposals pending
– 48 proposals rejected plus many “mere suggestions”

• Too few library proposals
– 11 Components from LibraryTR1

• Regular expressions, hashed containers, smart pointers, fixed sized array, 
tuples, …

– Use of C++0x language features
• Move semantics, variadic templates, general constant expressions, initializer-

list constructors
– 3 New component

• Threads, asynchronous message buffer, date and time
• I’m still an optimist

– C++0x will be a better tool than C++98 – much better

18

Areas of language change
• Machine model and concurrency Model

– Threads library (std::thread)
– Atomic ABI
– Thread-local storage (thread_local)
– Asynchronous message buffer (std::future)

• Support for generic programming
– concepts
– uniform initialization
– auto, decltype, lambdas, template aliases, move semantics, variadic

templates, range-for, …
• Etc.

– static_assert
– improved enums
– long long, C99 character types, etc.
– …
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Near future post-C++0x plans

• Library TR2 
– Thread pools, File system manipulation, Networking 

(sockets, TCP, UDP, iostreams across the net, etc.), 
numeric_cast, …

• Language TRs
– Modules (incl. dynamic linking)
– Garbage collection (programmer controlled)

20

C++0x case studies
• Concepts 

– A type system for types, combinations of types, etc. for easier and safer 
use of templates

– computer science
– Part of the better support for generic programming

• Initialization
– A mechanism for more general and uniform initialization
– “computer mechanics”

Note:
most work on language extension is engineering : focuses on 
tradeoffs, usability and (compile-, link-, and run-time) 
performance
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Generic programming:
The language is straining

• The compiler doesn’t know what the user expects 
from template argument types 
– C++98 has no way of specifying

• Much interface specification is in the documentation/comments
• Use requires too many clever tricks and workarounds

– Works beautifully for correct code
• Uncompromising performance is often achieved

– Users are often totally baffled by simple errors
• Amazingly poor error messages
• Late checking (at template instantiation time)

• The notation can be very verbose
– Pages of definitions for things that’s logically simple
– Too hard to write

22

Example of a problem
// standard library algorithm fill():
// assign value to every element of a sequence
template<class Forward_iterator, class V>
void fill(Forward_iterator first, Forward_iterator last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1;

}
}

fill(a,a+N,7); // works for an array
fill(v.begin(), v.end(),8); // works for a vector

fill(0,10,8); // fails spectacularly for a pair of ints
fill(lst.begin(),lst.end(),9); // fails spectacularly for a list!
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What’s right in C++98?

• Parameterization doesn’t require hierarchy
– Less foresight required

• Handles separately developed code
– Handles built-in types beautifully

• Parameterization with non-types
– Notably integers

• Uncompromised efficiency
– Near-perfect inlining

• Compile-time evaluation
– Template instantiation is Turing complete
– The basis for powerful programming techniques

• Template metaprogramming, generative programming

We try to strengthen and enhance what works well

24

C++0x: Concepts
• “a type system for C++ types”

– and for relationships among types
– and for integers, operations, etc.

• Based on
– Search for solutions from 1985 onwards

• Stroustrup (see D&E)
– Lobbying and ideas for language support by Alex Stepanov
– Analysis of design alternatives

• 2003 papers (Stroustrup, Dos Reis)
– Designs by Dos Reis, Gregor, Siek, Stroustrup, …

• Many WG21 documents
– Academic papers:

• POPL 2006 paper, OOPSLA 2006 papers
– Experimental implementations (Gregor, Dos Reis)
– Experimental versions of libraries (Gregor, Siek, …)
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Concept aims
• Direct expression of intent
• Perfect separate checking of template definitions and template uses

– Implying radically better error messages
– We can almost achieve perfection

• Simplify all major current template programming techniques
– Can any part of template meta-programming be better supported?
– Simple tasks are expressed simply

• close to a logical minimum
• Increase expressiveness compared to current template 

programming techniques
– overloading

• No performance degradation compared to current code
• Relatively easy implementation within current compilers

– “just relatively”
• Current template code remains valid

26

Checking of uses
• The checking of use happens immediately at the call 

site and uses only the declaration

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v);    // <<< just a declaration, not definition

fill(0, 9, 99); // error: int is not a Forward_iterator
//           (int has no prefix *)

fill(&v[0], &v[9], 99); // ok: int* is a Forward_iterator
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Checking of implementations
• Checking at the point of definition happens 

immediately at the definition site and involves only 
the definition

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1; // error: + not defined for Forward_iterator

// (instead: use ++first)
}

}

28

Concept maps
// Q: Is int* a forward iterator? 
// A: of course!

// Q: But we just said that every forward iterator had a member type value_type?
// A: So, we must give it one:

template<Value_type T> 
concept_map Forward_iterator<T*> { // T*’s value_type is T

typedef T value_type;
};

// “when we consider T* a Forward_Iterator, the value_type of T* is T
// value type is an associated type of Forward_iterator

• “Concept maps” is a general mechanism for non-intrusive 
mapping of types to requirements
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Expressiveness
• Simplify notation through overloading:

void f(vector<int>& vi, list<int>& lst, Fct cmp)
{

sort(vi); // sort container (vector)
sort(vi, cmp); // sort container (vector) using cmp
sort(lst); // sort container (list)
sort(lst, cmp); // sort container (list) using cmp
sort(vi.begin(), vi.end()); // sort sequence
sort(vi.begin(), vi.end(), cmp); // sort sequence using cmp

}

• Currently, this requires a mess of helper functions and traits
– For this example, some of the traits must be explicit (user visible)

30

Concepts as predicates
• A concept can be seen as a predicate:

– Forward_iterator<T>: Is type T a Forward_iterator?
– Assignable<T::value_type,V>: can we assign a  V to T’s value_type?

• So we can do overload resolution based on simple sets of 
concepts (predicates):

Intersection: ambiguous
Disjoint: independent (ok)

subset: specialization (ok, pick the most specialized)
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Expressiveness
// iterator-based standard sort (with concepts):

template<Random_access_iterator Iter>
requires Comparable<Iter::value_type>

void sort(Iter first, Iter last)
{

// the usual implementation
}

template<Random_access_iterator Iter, Compare Comp>
requires Callable<Comp, Iter::value_type>

void sort(Iter first, Iter last, Comp cmp)
{

// the usual implementation
}

32

Expressiveness
// container-based sort:

template<Container Cont>
requires Comparable<Cont::value_type>

void sort(Cont& c)
{

sort(c.begin(),c.end()); // simply call the iterator version
}

template<Container Cont, Compare Comp>
requires Callable<Comp, Cont::value_type>

void sort(Cont& c, Comp cmp)
{

sort(c.begin(),c.end(),cmp); // simply call the iterator version
}
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Initialization
• Used by everyone “everywhere”

– Highly visible
– Often performance critical

• Complicated
– By years of history 

• C features from 1974 onwards
• “functional style” vs. “assignment style”

– By diverse constraints
– By desire for flexibility/expressiveness

• Homogeneous vs. heterogeneous
• Fixed length vs. variable length
• Variables/objects, functions, types, aliases 

– The initializer-list proposal addresses variables/objects

34

Initializers overview

• The problems
– #1: Irregularity
– #2: Variable length initializer lists
– #3: Narrowing

• The bigger picture
– Uniform initialization syntax and semantics needed

• The solution
– { } uniform initialization
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Problem #1: irregularity
• We can’t use initializer lists except in a few cases

string a[] = { "foo", " bar" }; // ok: initialize array variable
vector<string> v = { "foo", " bar" }; // error: initialize vector variable
void f(string a[]);
f( { "foo", " bar" } ); // error: initializer array argument

• There are four notations and none can be used everywhere
int a = 2; // “assignment style”
int[] aa = { 2, 3 }; // assignment style with list
complex z(1,2); // “functional style” initialization
x = Ptr(y); // “functional style” for conversion/cast/construction

• Sometimes, the syntax is inconsistent/confusing
int a(1); // variable definition
int b(); // function declaration
int b(foo); // variable definition or function declaration

36

Is irregularity a real problem?
• Yes, a major source of confusion and bugs
• Can it be solved by restriction?

– No existing syntax can be used in all cases
int a [] = { 1,2,3 }; // can’t use () here
complex<double> z(1,2); // can’t use { } here
struct S { double x,y; } s = {1,2}; // can’t use ( ) here
int* p = new int(4); // can’t use { } or = here

– No existing syntax has the same semantics in all cases
typedef char* Pchar;
Pchar p(7); // error (good!)
Pchar p = Pchar(7); // “legal” (ouch!)

• Principle violated:
– Uniform support for types (user-defined and built-in)
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Problem #2: list workarounds
• Initialize a vector (using push_back)

– Clumsy and indirect
template<class T> class vector {

// …
void push_back(const T&) { /* … */ }
// …

};

vector<double> v;
v.push_back(1.2); 
v.push_back(2.3);
v.push_back(3.4);

• Important principle (currently violated):
– Support fundamental notions directly
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Problem #2: list workarounds
• Initialize vector (using general iterator constructor)

– Awkward, error-prone, and indirect
– Spurious use of (unsafe) array

template<class T> class vector {
// …
template <class Iter>

vector(Iter first, Iter last) { /* … */ }
// …

};

int a[ ] = { 1.2, 2.3, 3.4 }; // !!!
vector<double> v(a, a+sizeof(a)/sizeof(int)); // !!!

• Important principle (currently violated):
– Support user-defined and built-in types equally well
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C++0x: initializer lists

• An initializer-list constructor
– defines the meaning of an initializer list for a type

template<class T> class vector {
// …
vector(std::initializer_list<T>); // initializer list constructor
// …

};

vector<double> v = { 1, 2, 3.4 };

vector<string> geek_heros = {
"Dahl", "Kernighan", "McIlroy", "Nygaard ", "Ritchie", "Stepanov"

};

40

C++0x: initializer lists
• Not just for templates and constructors

– but std::initializer list is simple – does just one thing well

void f(int, std::initializer_list<int>, int);

f(1, {2,3,4}, 5);
f(42, {1,a,3,b,c,d,x+y,0,g(x+a),0,0,3}, 1066);
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Uniform initialization syntax
• Every form of initialization can accept the { … } syntax

X x1 = X{1,2}; 
X x2 = {1,2}; // the = is optional
X x3{1,2}; 
X* p2 = new X{1,2}; 

struct D : X {
D(int x, int y) :X{x,y} { /* … */ };

};

struct S {
int a[3];
S(int x, int y, int z) :a{x,y,z} { /* … */ }; // solution to old problem

};

42

Uniform initialization semantics

• X { a } constructs the same value in every context
– for all definitions of X and of a’s type

X x1 = X{a}; 
X x3{a}; 
X* p2 = new X{a};
z = X{a}; // use as cast

• X { … } is always an initialization
– X var{} // no operand; default initialization

• Not a function definition like X var();
– X var{a} // one operand

• Never a function definition like X var(a); (if a is a type name)
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Uniform initialization semantics
• X { a } constructs the same value in every context

– { } initialization gives the same result in all places where it is legal
X x{a}; 
X* p = new X{a};
z = X{a}; // use as cast
f({a}); // function argument (of type X)
return {a}; // function return value (function returning X)
…

• X { … } is always an initialization
– X var{} // no operand; default initialization

• Not a function definition like X var();
– X var{a} // one operand

• Never a function definition like X var(a); (if a is a type name)

44

Initialization problem #3: narrowing

• C++98 implicitly truncates
int x = 7.3; // Ouch!
char c = 2001; // Ouch!
int a[] = { 1,2,3.4,5,6 }; // Ouch!

void f1(int); f1(7.3); // Ouch!
void f2(char); f2(2001); // Ouch!
void f3(int[]); f3({ 1,2,3.4,5,6 }); // oh! Another problem

• A leftover from before C had casts!
• Principle violated:

– Type safety
• Solution:

– C++0x { } initialization doesn’t narrow.
• all examples above are caught
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Uniform Initialization
• Example

// …
Table pnone_numbers = {

{ "Donald Duck", 2015551234 },
{ “Mike Doonesbury", 9794566089 },
{ "Kell Dewclaw", 1123581321 }

};
• What is Table?

– a map? An array of structs? A vector of pairs? My own class with a 
constructor? A struct needing aggregate initialization? Something else? 

– We don’t care as long as it can be constructed using a C-string and an 
integer. 

– Those numbers cannot get truncated

46

C++0x examples
// template aliasing (“Currying”):
template<class T> using Vec= std::vector<T,My_alloc<T>>;

// General initializer lists (integrated with containers):
Vec<double> v = { 2.3, 1, 6.7, 4.5 };

// early checking and overloading based on concepts:
sort(v); // sort the vector based on <
sort( {"C", "C++", "Simula", "BCPL"} );  // error: the initializer list is immutable

// type deduction based on initializer and new for loop:
for (auto p = v.begin(); p!=v.end(); ++p) cout<< *p << endl;
for (const auto& x : v) cout<< x << endl;
for (const auto& x : { 1, 2.3 , 4.5, 6.7 } ) cout<< x << endl;
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Core language features

• Memory model (incl. thread_local storage)
• Concepts (a type system for types and values)
• General and unified initialization syntax based on { … } lists
• decltype and auto
• General constant expressions 
• Forwarding and delegating constructors
• “strong” enums (class enum)
• Some (not all) C99 stuff: long long, etc.
• nullptr - Null pointer constant
• Variable-length template parameter lists
• static_assert
• Rvalue references
• …
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Core language features
• …
• New for statement
• Basic unicode support
• Explicit conversion operators
• Raw string literals
• Defaulting and inhibiting common operations
• User-defined literals
• Allow local classes as template parameters
• Lambda expressions
• Annotation syntax
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Library TR

• Hash Tables
• Regular Expressions
• General Purpose Smart Pointers
• Extensible Random Number Facility
• Mathematical Special Functions

• Polymorphic Function Object Wrapper
• Tuple Types
• Type Traits
• Enhanced Member Pointer Adaptor
• Reference Wrapper
• Uniform Method for Computing Function Object Return Types
• Enhanced Binder



26

51

Library
• C++0x

– TR1 (minus mathematical special functions – separate IS)
– Threads
– Atomic operations
– Asynchronous message buffer (“futures”)
– Date and time (“duration”)

• TR2
– Thread pools
– File system
– Networking 
– Extended unicode support
– …
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Performance TR

• The aim of this report is:
– to give the  reader a model of time and space overheads implied by 

use of various C++ language and library features, 
– to debunk widespread myths about performance problems, 
– to present techniques for use of C++ in applications where 

performance matters, and 
– to present techniques for implementing C++ language and standard

library facilities to yield efficient code. 
• Contents

– Language features: overheads and strategies
– Creating efficient libraries
– Using C++ in embedded systems
– Hardware addressing interface


