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Abstract—We present the card game Magic: The Gathering as 

an interesting test bed for AI research. We believe that the 

complexity of the game offers new challenges in areas such as 

search in imperfect information domains and opponent 

modelling. Since there are a thousands of possible cards, and 

many cards change the rules to some extent, to successfully build 

AI for Magic: The Gathering ultimately requires a rather general 

form of game intelligence (although we only consider a small 

subset of these cards in this paper). We create a range of players 

based on stochastic, rule-based and Monte Carlo approaches and 

investigate Monte Carlo search with and without the use of a 

sophisticated rule-based approach to generate game rollouts. We 

also examine the effect of increasing numbers of Monte Carlo 

simulations on playing strength and investigate whether Monte 

Carlo simulations can enable an otherwise weak player to 

overcome a stronger rule-based player. Overall, we show that 

Monte Carlo search is a promising avenue for generating a 

strong AI player for Magic: The Gathering. 

  

I. INTRODUCTION 

agic: The Gathering (M:TG) [1] is a strategic card game 

for 2 players. In 1994 it was awarded the Mensa Select 

award at the annual Mind Games Competition [2] and in 

2005 the manufacturer Hasbro reported that M:TG was its 

biggest selling game, outstripping Monopoly, Trivial Pursuit 

and Cluedo [3]. Currently M:TG has over 215,000 registered 

tournament players worldwide and many more casual players. 

The game supports a pro tour which pays out hundreds of 

thousands of dollars in prize money to the best players in the 

world [4]. Specific sales figures are unavailable but it is 

estimated that more that $100 million is spent annually on the 

game [5]. 

Like some of the older, more well known card games such 

as Poker and Bridge, M:TG is both stochastic and a game of 

imperfect information. Where it differs from other card games 

is that it does not use a standard deck of cards but rather uses 

cards that have been created specifically for the game. The 

cards change the rules of the game in subtle ways and the 

interaction between the rules changes on the cards gives rise to 

much of the game play. In constructed M:TG, which we 

consider here, players are allowed to build a deck of 60 cards 

from any of the over 9000 cards that have so far been created 

with more being added every year. This breadth of possible 

interactions makes creating a strong AI player for M:TG 

somewhat akin to creating a player for general game playing 
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[6] due to the great differences between games played with 

different decks (and hence different rules). 

M:TG is not only played with physical cards, In 2002 an 

online version of the game was released [7]. The online game 

does not provide any AI game players, but provides a 

framework that enforces the rules of the game when (human) 

players are playing. The flexibility this provides in finding 

opponents to play has further increased the popularity of the 

game.  

M:TG is a superficially simple game to play. The 

complexity of the game arises from the many different types 

of potential interactions between the individual cards. We 

believe that the complexity and popularity of M:TG make it an 

interesting subject for AI research in the areas of search in 

imperfect information domains, opponent modelling and 

general game playing.  

In this paper we will be looking at the use of Monte Carlo 

search for selecting which cards to play. We will compare the 

use of Monte Carlo simulations with a strong rule-based 

player (developed by an expert player of M:TG), investigating 

how many Monte Carlo simulations are required in order to 

significantly improve playing strength. We also investigate the 

use of Monte Carlo simulations with a weak (random) player 

in order to examine whether with sufficient simulated games 

the weak player can overcome an otherwise stronger (rule-

based) player. In this work, we use UCB rather than the more 

powerful UCT based Monte Carlo approaches for card 

selection. This is due to the nature of the game, and we discuss 

the use of UCT for M:TG as a topic for further research. 

II. RELATED WORK 

Card games typify imperfect information stochastic games. 

The combination of hidden information (the other player‟s 

hand of cards), plus the element of randomness (from deck 

shuffling) make for a very challenging domain for human 

players, and for developing AI players [8]. Two of the more 

popular cards games for AI research have been Poker and 

Bridge [9]. 

Poker is a complex card game for multiple players, usually 

a maximum of 8 at any one time.  The game involves aspects 

of probabilistic analysis, opponent modelling and potential 

deception on the part of the players [10] [11]. Good play at 

poker requires the ability to evaluate hand strength correctly 

and bet accordingly. Work on AI players in this area has 

focused on using sequence simulations in order to play out the 

hand multiple times and judge how likely it is to win the pot 

[12]. Another important area is the ability to work out how an 

opponent is playing so that the player‟s strategy can be 
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adjusted accordingly. Work on opponent modelling has shown 

that Bayesian analysis can used to predict what tactic a player 

will use based on their past performance and can also help to 

identify when an opponent might be changing their strategy 

[13] [14].  

Bridge is a strategic card game for 4 players in 2 

partnerships. Following suggestions that an AI player would 

be able to use Monte Carlo search techniques to play Bridge to 

an expert level [15], Ginsberg developed the bridge playing 

program GIB [16] which utilises a variety of techniques 

including Monte Carlo cardplay algorithms, partition search 

[17] and squeaky wheel optimization in order to provide a 

layered approach to the whole problem. This has provided a 

strong AI player with GIB being the first bridge playing 

program that is able to compete at a master level with humans. 

Monte Carlo search has proven effective in games where 

conventional minimax search approaches fail. Go is a game of 

perfect information but unlike other perfect information games 

such as Chess [18] and Checkers [19], Go has resisted the use 

of brute force search techniques in developing a strong player. 

With the failure of conventional search approaches for Go. A 

Monte Carlo approach was suggested [20]. Several Monte 

Carlo based search strategies have been presented [21] 

including combining Monte Carlo and tactical search [22] and 

Monte Carlo Tree Search [23]. All of the approaches utilise 

the basic premise of Monte Carlo search: rather than 

examining all the possible moves that are available at every 

step, we consider all the moves that are available at the first 

step and then play out the game to the end multiple times 

using the position resulting from each of those first moves and 

using either a random move selector or pattern generator to 

select further moves. The idea is that while we cannot examine 

every possible move, the results of simulated games will be 

statistically representative of the strength of each move.  

An interesting recent development has been that of bandit 

based planning [24]. This takes its name from the idea that 

given a number of one armed bandit slot machines, how do 

you decided which one to play next in order to maximise the 

reward over time, given that the results of any individual 

bandit trial is stochastic. Kocsis et al [24] took an algorithm 

that had been developed to maximise reward over multiple 

bandit games and applied it to a tree search in order to find 

good moves. An algorithm was presented called UCT (Upper 

Confidence Bounds for Trees) that samples each of the 

available actions once and then based on the rewards 

generated, re-samples selected actions with a probability 

designed to maximise the expected reward. The overall effect 

is a good representation of the exploration/exploitation 

problem in that high reward actions are sampled frequently but 

other actions that have had a low reward in the past are still 

sampled occasionally. This planning system has been applied 

to the game of Go with significant success [25] [26]. Indeed 

the results achieved against strong human players point to 

UCT representing something of a breakthrough for Computer 

Go. 

UCT has also proven successful in the development of 

General Game Playing agents [27]. The central components of 

many AI game players are search and evaluation. Search 

allows the ability to forecast where the game is going and 

evaluation assesses the strength of intermediate game 

positions found during search. In general game playing, there 

is no prior domain knowledge to describe the strength of a 

game position, this knowledge has to be derived during the 

course of the game [28]. The use of Monte Carlo search and 

UCT in general game playing is showing success [29] in part 

because it relies much less on heuristic based evaluation 

functions. CADIAPLAYER [6], a general game playing agent 

based on UCT approaches was the winner in both the 2007 

and 2008 Association for the Advancement of Artificial 

Intelligence General Game Playing competitions [30] 

We believe that Monte Carlo search techniques may yield 

strong players for the problem of card selection in M:TG, due 

to their success in other games, and particularly their 

effectiveness in the general game playing domain. The biggest 

obstacle in selecting which cards to play is the unknown 

information (cards in the opponent‟s hand) and the stochastic 

information (what cards will be drawn by the player and the 

opponent). Given that the opponent could have any of a large 

number of different cards in their hand, any straightforward 

search technique would have to deal with an enormous 

branching factor (and note that the branching factor is an 

important reason why “standard” search techniques did not 

yield strong AI Go players). It is very difficult to evaluate 

unfinished positions of M:TG (other than by carrying out 

game rollouts) which is similar to the problems encountered in 

both general game playing and Go (and where Monte Carlo 

techniques have shown their effectiveness). 

The rest of this paper is structured as follows. Section 3 

describes our test environment, which uses a limited selection 

of the available card types, and describes the rules of the 

game. Section 4 describes the variety of AI players we created 

to play in the test environment and Section 5 gives more detail 

on the Monte Carlo algorithm used. Section 6 presents our 

experimental results. Our conclusions are presented in Section 

7 and Section 8 identifies some areas of future work. 

III. CREATURE COMBAT: A SUBSET OF M:TG 

In the game of Magic: The Gathering each player takes on the 

role of a wizard contesting a duel with their opponent. The 

player‟s hand of cards represents the spells and resources that 

the wizard has available and the players play cards from their 

hand in order to either generate resources or play spells with 

which to kill their opponent. Each player has a life total and 

the player whose life total is reduced to zero first loses the 

game. The game consists of multiple varieties of cards and 

multiple types of resource, consequently the possible 

interactions between the available cards can become extremely 

complex. Much of the appeal of Magic arises through 

understanding and tactically exploiting the interactions 

between your cards, and between your cards and the 

opponent‟s cards.  For our research we have chosen to retain 

the basic structure and turn order mechanics of the game but to 

focus on creature combat as the way players interact with each 

other. Creature combat is the most important form of 

interaction between Magic cards for the majority of decks (and 

for essentially all decks played by beginning human players). 

By restricting the test environment to only land (resource) 

cards and creature (spell) cards we simplify encoding of the 

rules (which represents a significant software engineering 



 

problem in practice [31]). In our test version of the game 

players have a deck of cards containing only creatures and 

land resource cards (of the same, single, colour). The creature 

cards in the deck have a range of power and toughness values 

denoting how good they at dealing and taking damage, 

respectively, and a range of resource costs with, in general, 

more powerful creatures having a higher cost. Each turn a 

player may put at most one land into play from their hand. 

Accumulating sufficient land allows the player to „cast‟ a 

creature card from their hand to the play zone which is then 

available to attack and defend.  Creatures the opponent 

controls may be available to defend against this attack 

although they are not required to do so, however, creatures 

that have attacked on the defending player‟s previous turn are 

considered „tapped‟ and therefore are not available for 

defensive duties. Creatures can die, and are consequently 

removed from play, if they take sufficient damage from an 

opponent‟s creatures. Creatures that are not defended against 

cause damage to the opponent‟s life total and a player loses 

the game if their life total reaches zero. 

Structure of a game turn 

 
AP = ActivePlayer; 

OP = OpponentPlayer; 

 

Begin Loop 

 

AP.DrawCard(); 

 

//The active player decides which creatures to 

//attack with 

 

foreach (PotentialAttacker in AP.PlayZone) 

 if (IsGoodAttacker(PotentialAttacker)) 

  AddAttacker(PotentialAttacker); 

 

//If there are some attackers, the opponent decides 

//whether they will block each attacker and which of 

//their creatures they will use. Combat Encounters 

//are then generated for each attacker/blockers 

//combination 

 

if(Attackers.Count > 0) 

 foreach (PotentialBlocker in OP.PlayZone) 

  att = PotentialBlocker.ChooseAttacker(); 

  if (att ≠ null) 

att.AddBlocker (PotentialBocker) 

  

//Each Combat Encounter is then resolved, 

//unblocked creatures do damage to the player, 

//and blocked creatures do damage to each other. The 

//active player decides how to apportion an 

//attacking creature’s damage amongst the creatures 

//blocking it 

 

foreach(AttackingCreature) 

 if(blockers.count == 0) 

  OP.TakeDamage(AttackingCreature.power); 

 else 

AP.AssignDamage(AttackingCreature, blockers) 

foreach (blocker in blockers) 

if (blocker.damage >= blocker.toughness) 

 MovetoGraveyard(blocker) 

  if(blockers.SumOfPower >= 

AttackingCreature.toughness) 

   MovetoGraveyard(AttackingCreature) 

 

//After combat is resolved see if the Opponent 

//Player has died.  

 

if (OP.life <= 0) 

 AP.WinGame(); 

 STOP; 

 

//Then the active player decides which cards to play 

//from their hand 

 

AP.SelectCardsForPlayZone(AP.Hand); 

 

//Once cards have been played the Active Player and 

//Opponent are switched around and a new turn 

//begins. 

 

SwitchActivePlayer(); 

 

End Loop 

 

Fig. 1: Pseudocode of actions in a typical turn of M:TG. 

 

 
Fig. 2: Layout of the game area during a typical game 
 

Figure 2 shows a representation of the game area during 

play. Each player has a deck of cards, a graveyard where 

destroyed cards are placed and a hand of cards that they may 

play. The play zone between the two players contains those 

cards that have already been played: land cards that provide 

resources and creature cards that can be used to attack and 

defend. 



 

IV. AI PLAYERS 

All our AI players use a deck comprising the same type and 

number of cards. This was to focus the experiments on the 

effect of the different AI decision processes on player 

performance rather than any effects gained from one deck 

being inherently stronger than another. The composition of the 

deck was chosen to give a good range of creatures ranging 

from cheap and small up to expensive and large and with 

sufficient land cards that the players would have a good 

chance of drawing enough of them to be able to play all of 

their creatures throughout the course of a game. 

 

 
Table 1: Composition of decks used during testing. 
 

The cost of a creature is comprised of a combination of 

numbers and letters denoting restrictions on what land cards 

are required to pay for it. For example a Craw Wurm which 

costs 4RR requires a total of 6 land, 2 of which must 

specifically produce R (“red mana”) and 4 more that can 

produce any type of resource (“mana”). 

Given the structure of the test environment that we have 

created, there are three areas where the player is required to 

make a decision 

 

1. Deciding with which creatures to attack the 

opponent. 

2. After having been attacked, deciding how to block 

the attacking creatures. 

3. Deciding which cards to play from their hand. 

 

Decisions about attacking and blocking are essentially 

perfect information decisions (the immediate result of these 

decisions can be seen, although their longer term impact is 

unclear). All the information about how the opponent can 

block is available to the attacker and the defender sees all of 

the attacking creatures before making any decisions about how 

to block them. In the full game of M:TG both players would 

have the opportunity to play cards which affect the outcome of 

the combat once attackers and blockers have been decided but 

before those decisions are resolved. This ability to play 

„tricks‟ was not considered during these tests as it increases 

enormously the complexity of the decision making process, 

although we will consider this in future work. 

Decisions about which cards to play are imperfect 

information decisions. The unseen decks of cards are 

randomly ordered, and players also have no information about 

what might be in the opponent‟s hand and deck. In normal 

play there will usually be multiple options for the player about 

which cards to play. Whether or not to play a land card, 

whether to spend resources to play one expensive creature or 

whether to play multiple cheaper creatures. In some occasions 

in actual expert play, it is also better to do nothing and wait 

and see how the game develops. 

The branching factor of the amount of potential plays that 

may be possible from a hand of cards is very much dependant 

on what stage the game has reached. In the early game the 

number of possible decisions will be small as it will usually be 

limited to playing a land and/or maybe playing a single small 

creature. After about the fourth turn, the number of potential 

plays increases rapidly (to around 30) as the player will be 

able to play multiple creatures from their hand and exactly 

which combination of creatures to play for best effect becomes 

an interesting decision. In the late game the number of 

potential plays reduces again as the player will likely have 

emptied their hand of cards and will be limited to playing the 

one card that they draw each turn. 

For each of the attack, block and play decisions we 

implemented both a random decision process and one that was 

based on a knowledge-based approach, capturing the playing 

style of an expert human player using a collection of rules.  

For attacking the rules use the number of creatures 

controlled by each player and a comparison of the relative 

power and toughness of those creatures in order to decide 

which creatures to attack with. The goal is to try and inflict as 

much damage on the opponent as possible without sacrificing 

creatures rashly by attacking with weak creatures into strong 

defenders.  

For blocking the rules attempt to calculate whether it is 

more advantageous to not block because the player will do 

more damage on the next turn with an attack using all 

creatures. If this is not the case then the rules attempt to make 

the most profitable blocks in order to minimise both the 

amount of damage taken and the number/strength of creatures 

lost to combat. The rules attempt to avoid situations where 

more defending creatures are destroyed than attacking ones. 

The attacking and blocking strategies are somewhat involved, 

and rules are not given for reasons of space. 

For selecting cards to play there are several potential 

strategies that could have been adopted. Some of the options 

are 

  Maximise the number of creatures the player 

controls 

  Maximise the total power  and / or toughness of 

creatures the player controls 

 Always play the most expensive creature the player 

can afford on any given turn. 

The final approach was a combination of these, as follows: 

 
1. If there is a land card in the player’s hand then 

play that land. 

 

2. Play creatures in descending cost order (i.e. 

using a “greedy knapsack” heuristic). 

V.  MONTE CARLO SEARCH 

In addition to random and rule-based, a third approach for the 

decision of which cards to play was to implement a bandit 

based Monte Carlo search in order to find the best move. Our 

approach utilized the UCB1 algorithm [32]. This algorithm 

was motivated by the multi-armed bandit problem, to provide 

Number of Cards Name Type Cost Power Toughness

2 Craw_Wurm creature 4RR 6 4

3 Briarthorn creature 3R 3 3

3 Elvish_Infantry creature 1RR 2 3

3 Grizzly_Bear creature 1R 2 2

3 Jackel_Pup creature 1R 2 1

2 Cavern_Thoctar creature 5R 5 5

3 Llanowar_elf creature R 1 1

3 Loxodon_Hierarch creature 3RR 4 4

1 Spiritmonger creature 4RRR 6 6

17 Mountain (produces R) land NA NA NA



 

a way of maximising the reward of multiple plays of a set of 

stochastic bandit machines. 

 

The basic algorithm is as follows 

 

Initialisation: Play each machine once. 

 

Loop: Play machine j that maximizes 

 

𝑥𝑗 + 𝐶 
 ln𝑛

𝑛𝑗
 

  

where 𝑥𝑗  is the average reward from machine j, C is a constant 

in the range 0-1 that controls how diverse the search is. Larger 

values giving a more uniform search and smaller values giving 

a more selective search, 𝑛𝑗  is the number of times machine j 

has been played so far and n=Σi ni is the overall number of 

plays done so far. 

Motivated by ideas from research into Monte Carlo Go [25] 

where the researchers had carried out multiple simulated 

games for potential moves in order to try and select the best 

move, we created a Monte Carlo approach to M:TG: 

 

1: From the players hand determine all possible legal 

combinations of cards that can be played. 

 

2: Play a simulated game to completion for each legal play 

using a randomised version of both the players and the 

opponent‟s deck in order to represent the unknown 

information. Record whether the player wins or loses that 

game. 

 

3: Using the UCB algorithm to select which legal play to 

investigate, play out further simulated games to completion 

randomising both players‟ decks each time. 

 

4: After some arbitrary limit is reached, return the play that 

has the greatest number of simulations. 

 

We also considered utilising UCT as alternative to UCB in 

order to compare the effectiveness of both approaches. 

However, implementation of the UCT algorithm for M:TG is 

not straightforward. As part of the game of M:TG, players 

draw an unknown card from their deck at the beginning of 

each turn. These chance nodes greatly increase the branching 

factor of the M:TG game tree in the UCT algorithm. At each 

node beyond the first the tree would have to consider the 

possibility of drawing any one of the remaining cards in the 

player‟s deck. A similar issue arises in backgammon where 

search beyond the current move has to consider the stochastic 

roll of the dice and all possible moves that can be made as a 

result [33]. In M:TG there is no upper limit to how big a 

player‟s deck can be, the only restriction is that it must contain 

a minimum of  40 cards.   

 
Fig. 3: Illustration of the large branching factor in building a UCT game tree. 

 

A branching factor of the order of 40 for every node in the 

game tree quickly becomes unrealistic to search in practice 

and that is the best case scenario, larger decks only make the 

problem more acute. 

Utilising optimisation algorithms such as partition search 

[17] would allow us to reduce the size of the branching factor 

in the game tree and this is an avenue we shall explore in 

future work. 

VI. EXPERIMENTAL RESULTS 

For the experiments, twelve AI players were created. These 

players covered all the possible combinations of random play, 

rule-based play and Monte Carlo search for the various 

decision points in the game. 

AI Players 

 
Table 2: Play strategies for AI players 

 

The Monte Carlo based players were allowed 350 simulated 

games in order decide upon the best move to play, following 

initial trials. We were able to carry out this many simulations 

in about one CPU-second. We will see later that this is a 

suitable compromise between playing strength and CPU time. 

  

Experiment 1: Determining whether it is advantageous to play 

first or second.  

 

This experiment was carried out in order to determine if there 

was any inbuilt advantage within the game to playing first or 

second. At the beginning of a game of M:TG a random 

method is used to select one of the players. That player then 

has the choice of acting as either player 1 or player 2 in the 

game. On the first turn of the game player 1 does not draw a 

Root Node

Possible Moves

Potential future 
moves from these 
nodes include all 
possible cards 
remaining in the 
deck

AI Name Attack Strategy Blocking Strategy Card Play Selection

RA_RB_RP Random Random Random

RA_RB_SP Random Random Rule-based

RA_RB_MC Random Random Monte Carlo

RA_SB_RP Random Rule-based Random

RA_SB_SP Random Rule-based Rule-based

RA_SB_MC Random Rule-based Monte Carlo

SA_RB_RP Rule-based Random Random

SA_RB_SP Rule-based Random Rule-based

SA_RB_MC Rule-based Random Monte Carlo

SA_SB_RP Rule-based Rule-based Random

SA_SB_SP Rule-based Rule-based Rule-based

SA_SB_MC Rule-based Rule-based Monte Carlo



 

 

 
Table 4: No. of wins for each AI player after 100 test games as first/second player. Results show the combined number of wins (/200) for the column player. The 
table is colour coded with increasing whiteness representing better results. 

 

card from their deck, to offset the tempo advantage gained by 

going first. Despite this, the accepted wisdom among players 

of the game is that, except in fairly unusual circumstances, it is 

in the player‟s best interest to play first.  

In the experiment illustrated in table 3, each AI player 

played 100 games against itself with both players utilising the 

same deck of cards and the number of wins for each player 

was recorded. Overall player 1 wins 52% of the games and 

player 2 wins 48%. This is not significant enough to suggest 

that there is any particular advantage within the game to either 

playing position when playing with these decks, and that the 

extra card which player 2 has offsets the tempo advantage of 

going first in this case, at least for the deck that we are using. 

There is a perceived wisdom among M:TG players that certain 

types of decks do benefit from acting from particular playing 

positions, specifically that decks that contain a higher 

preponderance of cheap cards and allow for multiple cards to 

be played on earlier turns of the game tend to benefit from 

acting first and that decks which contain a higher ratio of more 

expensive cards benefit more from playing second.  

 

 
Table 3: No. of wins out of 100 test games for each player when the same AI 

plays as both players 

 

Experiment 2: Do Monte Carlo simulations provide an 

advantage in playing strength? 

 

This experiment was carried out in order determine whether 

using the Monte Carlo simulations to select which cards to 

play does provide any advantage in playing the game. Each AI 

played 100 test games against every other AI both as player 1 

and player 2.  

 

 
Table 5: Comparison of %  wins for each type of player, where X represents 
random (RM), rule-based (SM) and Monte Carlo (MC). 

 

The results of tables 4 and 5 show that there is an advantage 

for the Monte Carlo based players over their rule-based 

counterparts. The AI players using Monte Carlo approaches 

consistently score more game wins than the equivalent rule 

based player. 

As expected the random players in general perform more 

poorly than players using both rule-based and Monte Carlo 

approaches. In particular the players using the random attack 

algorithm tend to have much poorer scores as the AI player 

will attack with creatures that have no chance of damaging the 

opponent and will just be destroyed to no effect. However, the 

rule based blocking players tend to perform less well than 

their random blocking counterparts. We believe that the expert 

rules used for the blocking algorithm are too cautious and that 

the random blocker, which will tend to block more often even 

if the block is not that advantageous will protect the players 

life total to a greater extent, enabling the game to go longer 

and providing more opportunities to gain a victory. 

 

Experiment 3: Effect of number of simulated games on Monte 

Carlo AI performance. 

 

The purpose of this experiment was to investigate the effect of 

the Monte Carlo algorithm on AI player‟s performance and to 

examine how many Monte Carlo simulations are required 

before a significant effect on the strength of the player is seen. 

For this experiment the AI using rule-based heuristics on all 

aspects of the game (SA_SB_SP) was tested against the AI 

using heuristics for attacking and blocking and Monte Carlo 

selection for the card selection (SA_SB_MC). Rule-based 

players were chosen to remove as much randomness from the 

test as possible. Trials were carried out with the Monte Carlo 

player allowed varying numbers of simulated games in order 

to select which cards to play. Note that when the Monte Carlo 

based player has multiple moves that have generated the same 

RA_RB_RM RA_RB_SM RA_SB_RM RA_SB_SM SA_RB_RM SA_RB_SM SA_SB_RM SA_SB_SM RA_RB_MC RA_SB_MC SA_RB_MC SA_SB_MC

RA_RB_RM 100 155 59 117 117 171 99 170 152 110 164 165

RA_RB_SM 45 100 29 69 48 120 49 109 93 65 118 117

RA_SB_RM 141 171 100 146 167 189 172 181 187 152 192 190

RA_SB_SM 83 131 54 100 108 169 109 166 153 117 181 173

SA_RB_RM 83 152 33 92 100 161 76 140 132 81 154 135

SA_RB_SM 29 80 11 31 39 100 29 81 73 49 97 83

SA_SB_RM 101 151 28 91 124 171 100 133 163 79 184 176

SA_SB_SM 30 91 19 34 60 119 67 100 104 62 157 164

RA_RB_MC 48 107 13 47 68 127 37 96 100 39 108 90

RA_SB_MC 90 135 48 83 119 151 121 138 161 100 179 169

SA_RB_MC 36 82 8 19 46 103 16 43 92 21 100 41

SA_SB_MC 35 83 10 27 65 117 24 36 110 31 159 100

Avg No. of wins 68 120 34 71 88 142 75 116 127 76 149 134

Player 1 wins Player 2 wins

RA_RB_RP 53 47

RA_RB_SP 53 47

RA_SB_RP 48 52

RA_SB_SP 44 56

SA_RB_RP 63 37

SA_RB_SP 44 56

SA_SB_RP 63 37

SA_SB_SP 49 51

RA_RB_MC 48 52

RA_SB_MC 49 51

SA_RB_MC 54 46

SA_SB_MC 53 47

 % of Random 

wins

% of Rule-

based wins

% of  MC 

wins

% Improvement by 

MC approaches over 

Rule-based 

approaches

RA_RB_X 34 60 64 6.7

RA_SB_X 17 36 38 5.6

SA_RB_X 44 71 75 5.6

SA_SB_X 38 64 67 4.7



 

reward, it plays one of those moves at random. As the number 

of Monte Carlo rollouts tends towards zero simulated games 

we expect similar performance to that of the SA_SB_RM 

player, which selects a move at random from the legal moves 

available to it 

 
Fig. 4: Comparison of Monte Carlo player wins with increasing numbers of 

simulated games. 
 

From earlier tests the average number of game wins for the 

SA_SB_RM player against the SA_SB_SM player is 33%., 

similar to the number of wins for the SA_SB_MC with 0 

simulations at 25%. However it takes very few simulated 

game rollouts in order to achieve a significant increase in 

performance. With only 10 simulated games the Monte Carlo 

based player wins 61% of its games. Increasing the number of 

simulations available to the Monte Carlo player continues to 

improve its performance with the performance reaching a 

plateau of approximately 80% games wins at around 600 

simulated games per turn. The results are similar with the 

Monte Carlo player acting as either player although there is 

significantly more variation in individual results when the 

Monte Carlo player is acting as player 2 suggesting that the 

player 2 positions may be a bit more susceptible to 

fluctuations due to the stochastic nature of the game.  

 

Experiment 4: Can Monte Carlo simulations enable a weak 

random player to overcome a stronger rule based player. 

 

The purpose of this experiment was to see whether the use of 

Monte Carlo simulations based on a weak (random) player 

strategy can enable the weak AI player to beat a stronger rule 

based player. AI player RA_RB_MC was tested against AI 

player SA_SB_SM in trials of 100 test games with the Monte 

Carlo player allowed increasing numbers of simulations in 

order to find the best move 

It‟s clear from the graph that the use of Monte Carlo 

simulations does allow the player, using only random 

simulation rollouts to increase its performance to a level where 

it beats a more sophisticated player based upon expert rules. 

With zero simulations the random player wins only 16% of its 

games. This win ratio increases rapidly as more simulations 

are allowed approximately doubling to a 35% win ratio at only 

10 simulations. At approx. 200 simulations and above the 

Monte Carlo player based on random simulation game roll 

outs achieves a win rate over 50%. Improvement plateaus at 

around that point suggesting that the limit of improvement has 

been reached. 

 
Fig. 5: RA_RB_MC player wins in 100 test games with increasing numbers of 

simulated games. 

VII. CONCLUSION 

In this paper we have advanced reasons why we believe 

Magic: The Gathering is an interesting test bed for AI games 

research. The work we have carried out shows that bandit 

based Monte Carlo search can be applied to the problem of 

card selection in Magic: The Gathering with some success. 

The addition of a Monte Carlo search algorithm to a rule-

based AI player yields a significant increase in playing 

strength. We have shown that only a small amount of Monte 

Carlo simulations are required to achieve a significant increase 

in playing strength and also that Monte Carlo simulations can 

be used to enable an otherwise weak random player to 

overcome a stronger rule based player. 

VIII. FURTHER WORK 

Some areas for future work have already been suggested 

above, in particular the use of a wider variety of decks and 

cards from the very wide selection available. Using these 

cards yields research questions related to questions of 

producing AI for General Game Playing, especially when the 

cards in the opponent‟s deck are unknown. 

We discussed above the reasons why the UCT 

implementations which have proven so successful for Go need 

further investigation before they can be used for Magic: The 

Gathering. This is the most pressing question which we will 

investigate next. 
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