

1

Abstract—We present the card game Magic: The Gathering as

an interesting test bed for AI research. We believe that the

complexity of the game offers new challenges in areas such as

search in imperfect information domains and opponent

modelling. Since there are a thousands of possible cards, and

many cards change the rules to some extent, to successfully build

AI for Magic: The Gathering ultimately requires a rather general

form of game intelligence (although we only consider a small

subset of these cards in this paper). We create a range of players

based on stochastic, rule-based and Monte Carlo approaches and

investigate Monte Carlo search with and without the use of a

sophisticated rule-based approach to generate game rollouts. We

also examine the effect of increasing numbers of Monte Carlo

simulations on playing strength and investigate whether Monte

Carlo simulations can enable an otherwise weak player to

overcome a stronger rule-based player. Overall, we show that

Monte Carlo search is a promising avenue for generating a

strong AI player for Magic: The Gathering.

I. INTRODUCTION

agic: The Gathering (M:TG) [1] is a strategic card game

for 2 players. In 1994 it was awarded the Mensa Select

award at the annual Mind Games Competition [2] and in

2005 the manufacturer Hasbro reported that M:TG was its

biggest selling game, outstripping Monopoly, Trivial Pursuit

and Cluedo [3]. Currently M:TG has over 215,000 registered

tournament players worldwide and many more casual players.

The game supports a pro tour which pays out hundreds of

thousands of dollars in prize money to the best players in the

world [4]. Specific sales figures are unavailable but it is

estimated that more that $100 million is spent annually on the

game [5].

Like some of the older, more well known card games such

as Poker and Bridge, M:TG is both stochastic and a game of

imperfect information. Where it differs from other card games

is that it does not use a standard deck of cards but rather uses

cards that have been created specifically for the game. The

cards change the rules of the game in subtle ways and the

interaction between the rules changes on the cards gives rise to

much of the game play. In constructed M:TG, which we

consider here, players are allowed to build a deck of 60 cards

from any of the over 9000 cards that have so far been created

with more being added every year. This breadth of possible

interactions makes creating a strong AI player for M:TG

somewhat akin to creating a player for general game playing

C.D. Ward and P.I. Cowling are with the AI Research Group, School of

Computing, Informatics and Media, University of Bradford BD7 1DP. E-Mail
C.D.Ward or P.I.Cowling@bradford.ac.uk

[6] due to the great differences between games played with

different decks (and hence different rules).

M:TG is not only played with physical cards, In 2002 an

online version of the game was released [7]. The online game

does not provide any AI game players, but provides a

framework that enforces the rules of the game when (human)

players are playing. The flexibility this provides in finding

opponents to play has further increased the popularity of the

game.

M:TG is a superficially simple game to play. The

complexity of the game arises from the many different types

of potential interactions between the individual cards. We

believe that the complexity and popularity of M:TG make it an

interesting subject for AI research in the areas of search in

imperfect information domains, opponent modelling and

general game playing.

In this paper we will be looking at the use of Monte Carlo

search for selecting which cards to play. We will compare the

use of Monte Carlo simulations with a strong rule-based

player (developed by an expert player of M:TG), investigating

how many Monte Carlo simulations are required in order to

significantly improve playing strength. We also investigate the

use of Monte Carlo simulations with a weak (random) player

in order to examine whether with sufficient simulated games

the weak player can overcome an otherwise stronger (rule-

based) player. In this work, we use UCB rather than the more

powerful UCT based Monte Carlo approaches for card

selection. This is due to the nature of the game, and we discuss

the use of UCT for M:TG as a topic for further research.

II. RELATED WORK

Card games typify imperfect information stochastic games.

The combination of hidden information (the other player‟s

hand of cards), plus the element of randomness (from deck

shuffling) make for a very challenging domain for human

players, and for developing AI players [8]. Two of the more

popular cards games for AI research have been Poker and

Bridge [9].

Poker is a complex card game for multiple players, usually

a maximum of 8 at any one time. The game involves aspects

of probabilistic analysis, opponent modelling and potential

deception on the part of the players [10] [11]. Good play at

poker requires the ability to evaluate hand strength correctly

and bet accordingly. Work on AI players in this area has

focused on using sequence simulations in order to play out the

hand multiple times and judge how likely it is to win the pot

[12]. Another important area is the ability to work out how an

opponent is playing so that the player‟s strategy can be

Monte Carlo Search Applied to Card Selection

in Magic: The Gathering

C. D. Ward Member, IEEE, P. I. Cowling Member, IEEE

M

adjusted accordingly. Work on opponent modelling has shown

that Bayesian analysis can used to predict what tactic a player

will use based on their past performance and can also help to

identify when an opponent might be changing their strategy

[13] [14].

Bridge is a strategic card game for 4 players in 2

partnerships. Following suggestions that an AI player would

be able to use Monte Carlo search techniques to play Bridge to

an expert level [15], Ginsberg developed the bridge playing

program GIB [16] which utilises a variety of techniques

including Monte Carlo cardplay algorithms, partition search

[17] and squeaky wheel optimization in order to provide a

layered approach to the whole problem. This has provided a

strong AI player with GIB being the first bridge playing

program that is able to compete at a master level with humans.

Monte Carlo search has proven effective in games where

conventional minimax search approaches fail. Go is a game of

perfect information but unlike other perfect information games

such as Chess [18] and Checkers [19], Go has resisted the use

of brute force search techniques in developing a strong player.

With the failure of conventional search approaches for Go. A

Monte Carlo approach was suggested [20]. Several Monte

Carlo based search strategies have been presented [21]

including combining Monte Carlo and tactical search [22] and

Monte Carlo Tree Search [23]. All of the approaches utilise

the basic premise of Monte Carlo search: rather than

examining all the possible moves that are available at every

step, we consider all the moves that are available at the first

step and then play out the game to the end multiple times

using the position resulting from each of those first moves and

using either a random move selector or pattern generator to

select further moves. The idea is that while we cannot examine

every possible move, the results of simulated games will be

statistically representative of the strength of each move.

An interesting recent development has been that of bandit

based planning [24]. This takes its name from the idea that

given a number of one armed bandit slot machines, how do

you decided which one to play next in order to maximise the

reward over time, given that the results of any individual

bandit trial is stochastic. Kocsis et al [24] took an algorithm

that had been developed to maximise reward over multiple

bandit games and applied it to a tree search in order to find

good moves. An algorithm was presented called UCT (Upper

Confidence Bounds for Trees) that samples each of the

available actions once and then based on the rewards

generated, re-samples selected actions with a probability

designed to maximise the expected reward. The overall effect

is a good representation of the exploration/exploitation

problem in that high reward actions are sampled frequently but

other actions that have had a low reward in the past are still

sampled occasionally. This planning system has been applied

to the game of Go with significant success [25] [26]. Indeed

the results achieved against strong human players point to

UCT representing something of a breakthrough for Computer

Go.

UCT has also proven successful in the development of

General Game Playing agents [27]. The central components of

many AI game players are search and evaluation. Search

allows the ability to forecast where the game is going and

evaluation assesses the strength of intermediate game

positions found during search. In general game playing, there

is no prior domain knowledge to describe the strength of a

game position, this knowledge has to be derived during the

course of the game [28]. The use of Monte Carlo search and

UCT in general game playing is showing success [29] in part

because it relies much less on heuristic based evaluation

functions. CADIAPLAYER [6], a general game playing agent

based on UCT approaches was the winner in both the 2007

and 2008 Association for the Advancement of Artificial

Intelligence General Game Playing competitions [30]

We believe that Monte Carlo search techniques may yield

strong players for the problem of card selection in M:TG, due

to their success in other games, and particularly their

effectiveness in the general game playing domain. The biggest

obstacle in selecting which cards to play is the unknown

information (cards in the opponent‟s hand) and the stochastic

information (what cards will be drawn by the player and the

opponent). Given that the opponent could have any of a large

number of different cards in their hand, any straightforward

search technique would have to deal with an enormous

branching factor (and note that the branching factor is an

important reason why “standard” search techniques did not

yield strong AI Go players). It is very difficult to evaluate

unfinished positions of M:TG (other than by carrying out

game rollouts) which is similar to the problems encountered in

both general game playing and Go (and where Monte Carlo

techniques have shown their effectiveness).

The rest of this paper is structured as follows. Section 3

describes our test environment, which uses a limited selection

of the available card types, and describes the rules of the

game. Section 4 describes the variety of AI players we created

to play in the test environment and Section 5 gives more detail

on the Monte Carlo algorithm used. Section 6 presents our

experimental results. Our conclusions are presented in Section

7 and Section 8 identifies some areas of future work.

III. CREATURE COMBAT: A SUBSET OF M:TG

In the game of Magic: The Gathering each player takes on the

role of a wizard contesting a duel with their opponent. The

player‟s hand of cards represents the spells and resources that

the wizard has available and the players play cards from their

hand in order to either generate resources or play spells with

which to kill their opponent. Each player has a life total and

the player whose life total is reduced to zero first loses the

game. The game consists of multiple varieties of cards and

multiple types of resource, consequently the possible

interactions between the available cards can become extremely

complex. Much of the appeal of Magic arises through

understanding and tactically exploiting the interactions

between your cards, and between your cards and the

opponent‟s cards. For our research we have chosen to retain

the basic structure and turn order mechanics of the game but to

focus on creature combat as the way players interact with each

other. Creature combat is the most important form of

interaction between Magic cards for the majority of decks (and

for essentially all decks played by beginning human players).

By restricting the test environment to only land (resource)

cards and creature (spell) cards we simplify encoding of the

rules (which represents a significant software engineering

problem in practice [31]). In our test version of the game

players have a deck of cards containing only creatures and

land resource cards (of the same, single, colour). The creature

cards in the deck have a range of power and toughness values

denoting how good they at dealing and taking damage,

respectively, and a range of resource costs with, in general,

more powerful creatures having a higher cost. Each turn a

player may put at most one land into play from their hand.

Accumulating sufficient land allows the player to „cast‟ a

creature card from their hand to the play zone which is then

available to attack and defend. Creatures the opponent

controls may be available to defend against this attack

although they are not required to do so, however, creatures

that have attacked on the defending player‟s previous turn are

considered „tapped‟ and therefore are not available for

defensive duties. Creatures can die, and are consequently

removed from play, if they take sufficient damage from an

opponent‟s creatures. Creatures that are not defended against

cause damage to the opponent‟s life total and a player loses

the game if their life total reaches zero.

Structure of a game turn

AP = ActivePlayer;

OP = OpponentPlayer;

Begin Loop

AP.DrawCard();

//The active player decides which creatures to

//attack with

foreach (PotentialAttacker in AP.PlayZone)

 if (IsGoodAttacker(PotentialAttacker))

 AddAttacker(PotentialAttacker);

//If there are some attackers, the opponent decides

//whether they will block each attacker and which of

//their creatures they will use. Combat Encounters

//are then generated for each attacker/blockers

//combination

if(Attackers.Count > 0)

 foreach (PotentialBlocker in OP.PlayZone)

 att = PotentialBlocker.ChooseAttacker();

 if (att ≠ null)

att.AddBlocker (PotentialBocker)

//Each Combat Encounter is then resolved,

//unblocked creatures do damage to the player,

//and blocked creatures do damage to each other. The

//active player decides how to apportion an

//attacking creature’s damage amongst the creatures

//blocking it

foreach(AttackingCreature)

 if(blockers.count == 0)

 OP.TakeDamage(AttackingCreature.power);

 else

AP.AssignDamage(AttackingCreature, blockers)

foreach (blocker in blockers)

if (blocker.damage >= blocker.toughness)

 MovetoGraveyard(blocker)

 if(blockers.SumOfPower >=

AttackingCreature.toughness)

 MovetoGraveyard(AttackingCreature)

//After combat is resolved see if the Opponent

//Player has died.

if (OP.life <= 0)

 AP.WinGame();

 STOP;

//Then the active player decides which cards to play

//from their hand

AP.SelectCardsForPlayZone(AP.Hand);

//Once cards have been played the Active Player and

//Opponent are switched around and a new turn

//begins.

SwitchActivePlayer();

End Loop

Fig. 1: Pseudocode of actions in a typical turn of M:TG.

Fig. 2: Layout of the game area during a typical game

Figure 2 shows a representation of the game area during

play. Each player has a deck of cards, a graveyard where

destroyed cards are placed and a hand of cards that they may

play. The play zone between the two players contains those

cards that have already been played: land cards that provide

resources and creature cards that can be used to attack and

defend.

IV. AI PLAYERS

All our AI players use a deck comprising the same type and

number of cards. This was to focus the experiments on the

effect of the different AI decision processes on player

performance rather than any effects gained from one deck

being inherently stronger than another. The composition of the

deck was chosen to give a good range of creatures ranging

from cheap and small up to expensive and large and with

sufficient land cards that the players would have a good

chance of drawing enough of them to be able to play all of

their creatures throughout the course of a game.

Table 1: Composition of decks used during testing.

The cost of a creature is comprised of a combination of

numbers and letters denoting restrictions on what land cards

are required to pay for it. For example a Craw Wurm which

costs 4RR requires a total of 6 land, 2 of which must

specifically produce R (“red mana”) and 4 more that can

produce any type of resource (“mana”).

Given the structure of the test environment that we have

created, there are three areas where the player is required to

make a decision

1. Deciding with which creatures to attack the

opponent.

2. After having been attacked, deciding how to block

the attacking creatures.

3. Deciding which cards to play from their hand.

Decisions about attacking and blocking are essentially

perfect information decisions (the immediate result of these

decisions can be seen, although their longer term impact is

unclear). All the information about how the opponent can

block is available to the attacker and the defender sees all of

the attacking creatures before making any decisions about how

to block them. In the full game of M:TG both players would

have the opportunity to play cards which affect the outcome of

the combat once attackers and blockers have been decided but

before those decisions are resolved. This ability to play

„tricks‟ was not considered during these tests as it increases

enormously the complexity of the decision making process,

although we will consider this in future work.

Decisions about which cards to play are imperfect

information decisions. The unseen decks of cards are

randomly ordered, and players also have no information about

what might be in the opponent‟s hand and deck. In normal

play there will usually be multiple options for the player about

which cards to play. Whether or not to play a land card,

whether to spend resources to play one expensive creature or

whether to play multiple cheaper creatures. In some occasions

in actual expert play, it is also better to do nothing and wait

and see how the game develops.

The branching factor of the amount of potential plays that

may be possible from a hand of cards is very much dependant

on what stage the game has reached. In the early game the

number of possible decisions will be small as it will usually be

limited to playing a land and/or maybe playing a single small

creature. After about the fourth turn, the number of potential

plays increases rapidly (to around 30) as the player will be

able to play multiple creatures from their hand and exactly

which combination of creatures to play for best effect becomes

an interesting decision. In the late game the number of

potential plays reduces again as the player will likely have

emptied their hand of cards and will be limited to playing the

one card that they draw each turn.

For each of the attack, block and play decisions we

implemented both a random decision process and one that was

based on a knowledge-based approach, capturing the playing

style of an expert human player using a collection of rules.

For attacking the rules use the number of creatures

controlled by each player and a comparison of the relative

power and toughness of those creatures in order to decide

which creatures to attack with. The goal is to try and inflict as

much damage on the opponent as possible without sacrificing

creatures rashly by attacking with weak creatures into strong

defenders.

For blocking the rules attempt to calculate whether it is

more advantageous to not block because the player will do

more damage on the next turn with an attack using all

creatures. If this is not the case then the rules attempt to make

the most profitable blocks in order to minimise both the

amount of damage taken and the number/strength of creatures

lost to combat. The rules attempt to avoid situations where

more defending creatures are destroyed than attacking ones.

The attacking and blocking strategies are somewhat involved,

and rules are not given for reasons of space.

For selecting cards to play there are several potential

strategies that could have been adopted. Some of the options

are

 Maximise the number of creatures the player

controls

 Maximise the total power and / or toughness of

creatures the player controls

 Always play the most expensive creature the player

can afford on any given turn.

The final approach was a combination of these, as follows:

1. If there is a land card in the player’s hand then

play that land.

2. Play creatures in descending cost order (i.e.

using a “greedy knapsack” heuristic).

V. MONTE CARLO SEARCH

In addition to random and rule-based, a third approach for the

decision of which cards to play was to implement a bandit

based Monte Carlo search in order to find the best move. Our

approach utilized the UCB1 algorithm [32]. This algorithm

was motivated by the multi-armed bandit problem, to provide

Number of Cards Name Type Cost Power Toughness

2 Craw_Wurm creature 4RR 6 4

3 Briarthorn creature 3R 3 3

3 Elvish_Infantry creature 1RR 2 3

3 Grizzly_Bear creature 1R 2 2

3 Jackel_Pup creature 1R 2 1

2 Cavern_Thoctar creature 5R 5 5

3 Llanowar_elf creature R 1 1

3 Loxodon_Hierarch creature 3RR 4 4

1 Spiritmonger creature 4RRR 6 6

17 Mountain (produces R) land NA NA NA

a way of maximising the reward of multiple plays of a set of

stochastic bandit machines.

The basic algorithm is as follows

Initialisation: Play each machine once.

Loop: Play machine j that maximizes

𝑥𝑗 + 𝐶
 ln𝑛

𝑛𝑗

where 𝑥𝑗 is the average reward from machine j, C is a constant

in the range 0-1 that controls how diverse the search is. Larger

values giving a more uniform search and smaller values giving

a more selective search, 𝑛𝑗 is the number of times machine j

has been played so far and n=Σi ni is the overall number of

plays done so far.

Motivated by ideas from research into Monte Carlo Go [25]

where the researchers had carried out multiple simulated

games for potential moves in order to try and select the best

move, we created a Monte Carlo approach to M:TG:

1: From the players hand determine all possible legal

combinations of cards that can be played.

2: Play a simulated game to completion for each legal play

using a randomised version of both the players and the

opponent‟s deck in order to represent the unknown

information. Record whether the player wins or loses that

game.

3: Using the UCB algorithm to select which legal play to

investigate, play out further simulated games to completion

randomising both players‟ decks each time.

4: After some arbitrary limit is reached, return the play that

has the greatest number of simulations.

We also considered utilising UCT as alternative to UCB in

order to compare the effectiveness of both approaches.

However, implementation of the UCT algorithm for M:TG is

not straightforward. As part of the game of M:TG, players

draw an unknown card from their deck at the beginning of

each turn. These chance nodes greatly increase the branching

factor of the M:TG game tree in the UCT algorithm. At each

node beyond the first the tree would have to consider the

possibility of drawing any one of the remaining cards in the

player‟s deck. A similar issue arises in backgammon where

search beyond the current move has to consider the stochastic

roll of the dice and all possible moves that can be made as a

result [33]. In M:TG there is no upper limit to how big a

player‟s deck can be, the only restriction is that it must contain

a minimum of 40 cards.

Fig. 3: Illustration of the large branching factor in building a UCT game tree.

A branching factor of the order of 40 for every node in the

game tree quickly becomes unrealistic to search in practice

and that is the best case scenario, larger decks only make the

problem more acute.

Utilising optimisation algorithms such as partition search

[17] would allow us to reduce the size of the branching factor

in the game tree and this is an avenue we shall explore in

future work.

VI. EXPERIMENTAL RESULTS

For the experiments, twelve AI players were created. These

players covered all the possible combinations of random play,

rule-based play and Monte Carlo search for the various

decision points in the game.

AI Players

Table 2: Play strategies for AI players

The Monte Carlo based players were allowed 350 simulated

games in order decide upon the best move to play, following

initial trials. We were able to carry out this many simulations

in about one CPU-second. We will see later that this is a

suitable compromise between playing strength and CPU time.

Experiment 1: Determining whether it is advantageous to play

first or second.

This experiment was carried out in order to determine if there

was any inbuilt advantage within the game to playing first or

second. At the beginning of a game of M:TG a random

method is used to select one of the players. That player then

has the choice of acting as either player 1 or player 2 in the

game. On the first turn of the game player 1 does not draw a

Root Node

Possible Moves

Potential future
moves from these
nodes include all
possible cards
remaining in the
deck

AI Name Attack Strategy Blocking Strategy Card Play Selection

RA_RB_RP Random Random Random

RA_RB_SP Random Random Rule-based

RA_RB_MC Random Random Monte Carlo

RA_SB_RP Random Rule-based Random

RA_SB_SP Random Rule-based Rule-based

RA_SB_MC Random Rule-based Monte Carlo

SA_RB_RP Rule-based Random Random

SA_RB_SP Rule-based Random Rule-based

SA_RB_MC Rule-based Random Monte Carlo

SA_SB_RP Rule-based Rule-based Random

SA_SB_SP Rule-based Rule-based Rule-based

SA_SB_MC Rule-based Rule-based Monte Carlo

Table 4: No. of wins for each AI player after 100 test games as first/second player. Results show the combined number of wins (/200) for the column player. The
table is colour coded with increasing whiteness representing better results.

card from their deck, to offset the tempo advantage gained by

going first. Despite this, the accepted wisdom among players

of the game is that, except in fairly unusual circumstances, it is

in the player‟s best interest to play first.

In the experiment illustrated in table 3, each AI player

played 100 games against itself with both players utilising the

same deck of cards and the number of wins for each player

was recorded. Overall player 1 wins 52% of the games and

player 2 wins 48%. This is not significant enough to suggest

that there is any particular advantage within the game to either

playing position when playing with these decks, and that the

extra card which player 2 has offsets the tempo advantage of

going first in this case, at least for the deck that we are using.

There is a perceived wisdom among M:TG players that certain

types of decks do benefit from acting from particular playing

positions, specifically that decks that contain a higher

preponderance of cheap cards and allow for multiple cards to

be played on earlier turns of the game tend to benefit from

acting first and that decks which contain a higher ratio of more

expensive cards benefit more from playing second.

Table 3: No. of wins out of 100 test games for each player when the same AI

plays as both players

Experiment 2: Do Monte Carlo simulations provide an

advantage in playing strength?

This experiment was carried out in order determine whether

using the Monte Carlo simulations to select which cards to

play does provide any advantage in playing the game. Each AI

played 100 test games against every other AI both as player 1

and player 2.

Table 5: Comparison of % wins for each type of player, where X represents
random (RM), rule-based (SM) and Monte Carlo (MC).

The results of tables 4 and 5 show that there is an advantage

for the Monte Carlo based players over their rule-based

counterparts. The AI players using Monte Carlo approaches

consistently score more game wins than the equivalent rule

based player.

As expected the random players in general perform more

poorly than players using both rule-based and Monte Carlo

approaches. In particular the players using the random attack

algorithm tend to have much poorer scores as the AI player

will attack with creatures that have no chance of damaging the

opponent and will just be destroyed to no effect. However, the

rule based blocking players tend to perform less well than

their random blocking counterparts. We believe that the expert

rules used for the blocking algorithm are too cautious and that

the random blocker, which will tend to block more often even

if the block is not that advantageous will protect the players

life total to a greater extent, enabling the game to go longer

and providing more opportunities to gain a victory.

Experiment 3: Effect of number of simulated games on Monte

Carlo AI performance.

The purpose of this experiment was to investigate the effect of

the Monte Carlo algorithm on AI player‟s performance and to

examine how many Monte Carlo simulations are required

before a significant effect on the strength of the player is seen.

For this experiment the AI using rule-based heuristics on all

aspects of the game (SA_SB_SP) was tested against the AI

using heuristics for attacking and blocking and Monte Carlo

selection for the card selection (SA_SB_MC). Rule-based

players were chosen to remove as much randomness from the

test as possible. Trials were carried out with the Monte Carlo

player allowed varying numbers of simulated games in order

to select which cards to play. Note that when the Monte Carlo

based player has multiple moves that have generated the same

RA_RB_RM RA_RB_SM RA_SB_RM RA_SB_SM SA_RB_RM SA_RB_SM SA_SB_RM SA_SB_SM RA_RB_MC RA_SB_MC SA_RB_MC SA_SB_MC

RA_RB_RM 100 155 59 117 117 171 99 170 152 110 164 165

RA_RB_SM 45 100 29 69 48 120 49 109 93 65 118 117

RA_SB_RM 141 171 100 146 167 189 172 181 187 152 192 190

RA_SB_SM 83 131 54 100 108 169 109 166 153 117 181 173

SA_RB_RM 83 152 33 92 100 161 76 140 132 81 154 135

SA_RB_SM 29 80 11 31 39 100 29 81 73 49 97 83

SA_SB_RM 101 151 28 91 124 171 100 133 163 79 184 176

SA_SB_SM 30 91 19 34 60 119 67 100 104 62 157 164

RA_RB_MC 48 107 13 47 68 127 37 96 100 39 108 90

RA_SB_MC 90 135 48 83 119 151 121 138 161 100 179 169

SA_RB_MC 36 82 8 19 46 103 16 43 92 21 100 41

SA_SB_MC 35 83 10 27 65 117 24 36 110 31 159 100

Avg No. of wins 68 120 34 71 88 142 75 116 127 76 149 134

Player 1 wins Player 2 wins

RA_RB_RP 53 47

RA_RB_SP 53 47

RA_SB_RP 48 52

RA_SB_SP 44 56

SA_RB_RP 63 37

SA_RB_SP 44 56

SA_SB_RP 63 37

SA_SB_SP 49 51

RA_RB_MC 48 52

RA_SB_MC 49 51

SA_RB_MC 54 46

SA_SB_MC 53 47

 % of Random

wins

% of Rule-

based wins

% of MC

wins

% Improvement by

MC approaches over

Rule-based

approaches

RA_RB_X 34 60 64 6.7

RA_SB_X 17 36 38 5.6

SA_RB_X 44 71 75 5.6

SA_SB_X 38 64 67 4.7

reward, it plays one of those moves at random. As the number

of Monte Carlo rollouts tends towards zero simulated games

we expect similar performance to that of the SA_SB_RM

player, which selects a move at random from the legal moves

available to it

Fig. 4: Comparison of Monte Carlo player wins with increasing numbers of

simulated games.

From earlier tests the average number of game wins for the

SA_SB_RM player against the SA_SB_SM player is 33%.,

similar to the number of wins for the SA_SB_MC with 0

simulations at 25%. However it takes very few simulated

game rollouts in order to achieve a significant increase in

performance. With only 10 simulated games the Monte Carlo

based player wins 61% of its games. Increasing the number of

simulations available to the Monte Carlo player continues to

improve its performance with the performance reaching a

plateau of approximately 80% games wins at around 600

simulated games per turn. The results are similar with the

Monte Carlo player acting as either player although there is

significantly more variation in individual results when the

Monte Carlo player is acting as player 2 suggesting that the

player 2 positions may be a bit more susceptible to

fluctuations due to the stochastic nature of the game.

Experiment 4: Can Monte Carlo simulations enable a weak

random player to overcome a stronger rule based player.

The purpose of this experiment was to see whether the use of

Monte Carlo simulations based on a weak (random) player

strategy can enable the weak AI player to beat a stronger rule

based player. AI player RA_RB_MC was tested against AI

player SA_SB_SM in trials of 100 test games with the Monte

Carlo player allowed increasing numbers of simulations in

order to find the best move

It‟s clear from the graph that the use of Monte Carlo

simulations does allow the player, using only random

simulation rollouts to increase its performance to a level where

it beats a more sophisticated player based upon expert rules.

With zero simulations the random player wins only 16% of its

games. This win ratio increases rapidly as more simulations

are allowed approximately doubling to a 35% win ratio at only

10 simulations. At approx. 200 simulations and above the

Monte Carlo player based on random simulation game roll

outs achieves a win rate over 50%. Improvement plateaus at

around that point suggesting that the limit of improvement has

been reached.

Fig. 5: RA_RB_MC player wins in 100 test games with increasing numbers of

simulated games.

VII. CONCLUSION

In this paper we have advanced reasons why we believe

Magic: The Gathering is an interesting test bed for AI games

research. The work we have carried out shows that bandit

based Monte Carlo search can be applied to the problem of

card selection in Magic: The Gathering with some success.

The addition of a Monte Carlo search algorithm to a rule-

based AI player yields a significant increase in playing

strength. We have shown that only a small amount of Monte

Carlo simulations are required to achieve a significant increase

in playing strength and also that Monte Carlo simulations can

be used to enable an otherwise weak random player to

overcome a stronger rule based player.

VIII. FURTHER WORK

Some areas for future work have already been suggested

above, in particular the use of a wider variety of decks and

cards from the very wide selection available. Using these

cards yields research questions related to questions of

producing AI for General Game Playing, especially when the

cards in the opponent‟s deck are unknown.

We discussed above the reasons why the UCT

implementations which have proven so successful for Go need

further investigation before they can be used for Magic: The

Gathering. This is the most pressing question which we will

investigate next.

REFERENCES

[1] Wizards of the Coast. (2009, June) Wizards of the Coast.

[Online]. http://www.wizards.com/Magic/Multiverse

[2] Mensa. (1994) Mensa Mindgames. [Online].

http://mindgames.us.mensa.org/AM/Template.cfm?Secti

on=Winning_Games&Template=/customsource/mindga

mes/winners_list.cfm

[3] Hugo Rifkind. (2005, July) Times Online. [Online].

http://www.timesonline.co.uk/tol/life_and_style/article5

45389.ece?token=null&offset=0&page=1

[4] Wizards of the Coast. (2009, June) Magic: The

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f
ga

m
e

 w
in

s
 o

u
t

o
f

1
0

0
 t

e
st

 g
am

e
s

No. of Simulated Games per turn

% of wins for SA_SB_MC player with increasing numbers of
Monte Carlo simulatons

SA_SB_MC Wins as Player 1 SA_SB_MC Wins as Player 2

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
o

. o
f

ga
m

e
 w

in
s

o
u

t
o

f
1

0
0

 f
o

r
R

A
_

R
B

_
M

C
 p

la
ye

r.

No. of Monte Carlo simulations per turn

Effect of increasing Monte Carlo Simulations on a Random player
against a Rule-Based player

RA_RB_MC wins

http://www.wizards.com/Magic/Multiverse
http://mindgames.us.mensa.org/AM/Template.cfm?Section=Winning_Games&Template=/customsource/mindgames/winners_list.cfm
http://mindgames.us.mensa.org/AM/Template.cfm?Section=Winning_Games&Template=/customsource/mindgames/winners_list.cfm
http://mindgames.us.mensa.org/AM/Template.cfm?Section=Winning_Games&Template=/customsource/mindgames/winners_list.cfm
http://www.timesonline.co.uk/tol/life_and_style/article545389.ece?token=null&offset=0&page=1
http://www.timesonline.co.uk/tol/life_and_style/article545389.ece?token=null&offset=0&page=1

Gathering Pro Tour Honolulu Information. [Online].

http://www.wizards.com/Magic/TCG/Events.aspx?x=mt

gcom/protour/honolulu09-format

[5] G. Giles. (1995) Metroactive - Sonoma County

Independant. [Online].

http://www.metroactive.com/papers/sonoma/11.09.95/m

agic.html

[6] Y. Bjornsson, H. Filmar, "CadiaPlayer: A Simulation-

Based General Game Player," IEEE Transactions on

Computational Intelligence and AI in Games, vol. 1, no.

1, pp. 4-15, March 2009.

[7] Wizards of the Coast. (2009, June) Magic: The

Gathering Online. [Online].

http://www.wizards.com/Magic/Digital/MagicOnline.asp

x

[8] M. Bowling, M. Johanson, N. Burch and D. Szafron,

"Strategy Evaluation in Extensive Games with

Importance Sampling," in Proceedings of the 25th

Annual International Conference on Machine Learning

(ICML), 2008, pp. 72-80.

[9] J. Schaeffer, "A Gamut of Games," AI Magazine, vol.

22, pp. 29-46, 2001.

[10] D. Billings, N. Burch, A. Davidson, J. Schaeffer, T.

Schauenberg, D. Szafron, "Approximating Game-

Theoretic Optimal Strategies for Full-Scale Poker," in

Proceedings of the International Joint Conference on

Artificial Intelligence, 2003, pp. 661-668.

[11] D. Billings, A. Davidson, J. Schaeffer, D. Szafron, "The

Challenge of Poker," Artificial Intelligence Journal, vol.

134 (1-2), pp. 201-240, 2002.

[12] D. Billings, A.Davidson, T. Schauenberg, N. Burch, M.

Bowling, R. Holte, J. Schaeffer, D. Szafron, "Game Tree

Search with Adaptation in Stochastic Imperfect

Information Games," in 4th International Conference on

Computer and Games, vol. 3846, 2006, pp. 21-34.

[13] R.J.S. Baker, P.I. Cowling, "Bayesian Opponent

Modeling in a Simple Poker Environment," in IEEE

Symposium on Computational Intelligence and Games,

2007., 2007, pp. 125-131.

[14] R.J.S. Baker, P. I. Cowling, T. Randall, P. Jiang, "Can

Opponent Models Aid Poker Player Evolution?," in

IEEE Symposium on Computational Intelligence and

Games, 2008, pp. 23-30.

[15] M. Ginsberg, "How Computers will play Bridge," The

Bridge World Magazine, pp. 3-7, June 1996.

[16] M. Ginsberg, "Gib: Imperfect Information in a

Computationally Challenging Game," Journal of

Artificial Intelligence Research, vol. 14, pp. 303-358,

2001.

[17] M. Ginsberg, "Partition Search," in Proceedings of the

Thirteenth National Conference on Artificial Intelligence

and the Eighth Innovative Applications of Artificial

Intelligence Conference, vol. 2, 1996, pp. 228-233.

[18] M. Campbell, A. Joseph Hoane Jr. , F. Hsu, "Deep

Blue," Artificial Intelligence, vol. 134, pp. 57-83, 2002.

[19] J. Schaeffer, One Jump Ahead: Computer Perfection at

Checkers.: Springer, 2008.

[20] B. Brugmann, "Monte Carlo Go," White Paper 1993.

[21] G. Chaslot, J.T. Saito, J. Uiterwijk, B. Bouzy, H.J. Van

der Herik, "Monte Carlo Strategies for Computer Go," in

Proceedings of the 18th Benelux Conference on

Artificial Intelligence, 2006, pp. 83-90.

[22] T. Cazenave, B. Helmstetter, "Combining Tactical

Search and Monte-Carlo in the Game of Go," in

Proceedings of the IEEE Symposium on Computational

Intelligence and Games, 2005, pp. 171 - 175.

[23] G. Chaslot, M. Winands, J Uiterwijk, H. J. Van der

Herik, "Progressive Strategies for Monte Carlo Tree

Search," in Proceedings of the 10th Joint Conference on

Information Sciences (JCIS 2007), 2007, pp. 655-661.

[24] L. Kocsis, C. Szepesvari, "Bandit Based Monte Carlo

Planning," Machine Learning: ECML, vol. 4212, pp.

282-293, 2006.

[25] S. Gelly Y. Wang, "Modifications of UCT and

Sequence-like Simulations for Monte-Carlo Go.," in

Proceedings of the 2007 IEEE Conference on

Computational Intelligence and Games, 2007, pp. 175 -

182.

[26] Chang-Shing Lee, Mei-Hui Wang, G. Chaslot, J-B.

Hoock, A. Rimmel, O. Teytaud, Shang-Rong Tsai,

Shun-Chin Hsu, Tzung-Pei Hong, "The Computational

Intelligence of MoGo Revealed in Taiwan's Computer

Go Tournaments," IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1, no. 1, pp. 73 - 89,

March 2009.

[27] H. Finnsson, Y. Bjornsson, "Simulation-based approach

to general game playing," in Proceedings of the 23rd

AAAI Conference on Artificial Intelligence, 2008, pp.

259-264.

[28] J. Clune, "Heuristic evaluation functions for general

game playing," in Proceedings of the 22nd AAAI

Conference on Artifical Intelligence, 2007, pp. 1134 -

1139.

[29] S. Sharma, Z. Kobti, S. Goodwin, "Knowledge

Generation for Improving Simulations in UCT for

General Game Playing," in AI 2008: Advances in

Artificial Intelligence.: Springer, 2008, pp. 49-55.

[30] M. Genesereth, N. Love, B. Pell, "General Game

Playing: Overview of the AAAI Competition," AI

Magazine, vol. 26, no. 2, pp. 62-72, March 2005.

[31] Jim Ferraiolo. (2004, March) Star City Games. [Online].

http://www.starcitygames.com/php/news/article/6985.ht

ml

[32] P. Auer, N. Cesa-Bianchi, P. Fischer, "Finite-time

Analysis of the Multiarmed Bandit Problem," Machine

Learning, vol. 47, pp. 235-256, 2002.

[33] G. Tesauro, "Temporal Difference Learning and TD-

Gammon," Communications of the ACM, vol. 38, no. 3,

pp. 58-68, March 1995.

http://www.wizards.com/Magic/TCG/Events.aspx?x=mtgcom/protour/honolulu09-format
http://www.wizards.com/Magic/TCG/Events.aspx?x=mtgcom/protour/honolulu09-format
http://www.metroactive.com/papers/sonoma/11.09.95/magic.html
http://www.metroactive.com/papers/sonoma/11.09.95/magic.html
http://www.wizards.com/Magic/Digital/MagicOnline.aspx
http://www.wizards.com/Magic/Digital/MagicOnline.aspx
http://www.starcitygames.com/php/news/article/6985.html
http://www.starcitygames.com/php/news/article/6985.html

