UNEXPECTED IRREGULARITIES IN THE
DISTRIBUTION OF PRIME NUMBERS

ANDREW GRANVILLE

In 1849 the Swiss mathematician ENCKE wrote to GAUSS, asking whether he had
ever considered trying to estimate 7(z), the number of primes up to z, by some
sort of ‘smooth’ function. On Christmas Eve 1849, GAUSS replied that “he had
pondered this problem as a boy” and had come to the conclusion that “at around
x, the primes occur with density 1/logz.” Thus, he concluded, m(x) could be
approximated by

ode :
Liw) = [ o= ot +0(L3>.
o logt logz  log“x log” x

Comparing GAUSS’s guess to the best data available today (due to RIVAT), we
have:

x m(x) [Li(z) — w(z)]
10% 5761455 754
10° 50847534 1701
1010 455052511 3104
10t 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
10%° 29844570422669 1052619
10%6 | 279238341033925 3214632
1017 | 2623557157654233 7956589
1018 | 24739954287740860 21949555

The number of primes, 7(z), up to z.

This data certainly seems to support GAUSS’s prediction, since Li(z)—m(x) appears
to be no bigger than a small power of 7(z). In 1859, RIEMANN, in a now famous
memoir, illustrated how the question of estimating 7(x) could be turned into a
question in analysis: Define ((s) := Y, -, n~® for Re(s) > 1, and then analytically
continue ¢(s) to the rest of the complex plane. We have, for sufficiently large ,

(1) 2% < max |7(y) — Li(y)| < 2°7° where b:= sup f.
yse ¢(B+im)=0
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The (as yet unproven) Riemann Hypothesis (RH) asserts that b = 1/2 (in fact
that 3 = 1/2 whenever {(8+iv) = 0 with 0 < 3 < 1) leading to the sharp estimate

(2a) 7(z) = Li(z)+O0(z?logz) .

It was not until 1896 that HADAMARD and DE LA VALLEE POUSSIN independently
proved that 8 < 1 whenever ((8 + iy) = 0, which implies The Prime Number
Theorem: that is, GAUSS’s prediction that

T

w(x) ~ Li(z) ~ gz’

In 1914, LiTTLEWOOD showed, unconditionally, that

. logloglogx
_ — 1/2 2505064
(2b) m(x) — Li(z) = Q4 (x Tog 7 ,

the first proven ‘irregularities’ in the distribution of primes®.

Since GAUSS’s vague ‘density assertion’ was so prescient, CRAMER [4] decided,
in 1936, to interpret (GAUSS’s statement more formally in terms of probability
theory, to try to make further predictions about the distribution of prime numbers:
Let Z3, Z3,... be a sequence of independent random variables with

1
logn

Prob(Z, =1) = and Prob(Z, =0) = 1

logn

Let S be the space of sequences T' = 29, 23, ... and, for each x > 2 define

mr(z) = Z Zn -

2<n<z

The sequence P = 7y, 73, ..., where m,, = 1 if and only if n is prime, belongs to
S. CRAMER wrote: “In many cases it is possible to prove that, with probability
1, a certain relation R holds for sequences in S ... Of course we cannot in general
conclude that R holds for the particular sequence P, but results suggested in
this way may sometimes afterwards be rigorously proved by other methods.” For
example CRAMER was able to show, with probability 1, that

' loglog
L ~y 2T ——
ol (o) - 1) ~ |2 S

which corresponds well with the estimates in (2); and if true for T = P implies
RH, by (1).

GAUSS’s assertion was really about primes in short intervals, and so is best
applied to w(z+y)—7(z), where y is “small” compared to 2. The binomial random

1f(z) = Q4 (g9(x)) means that there exists a constant ¢ > 0 such that f(z+) > cg(z+) and
f(z—) < —cg(z—) for certain arbitrarily large values of z+.
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variables Z,, are more-or-less the same for all integers n in such an interval. If we
take y = Alog = so that the ‘expected’ number of primes, A, in the interval is fixed
then we would expect that the number of primes in such intervals should follow
a Poisson distribution. Indeed, we can prove that for any fixed A > 0 and integer
k > 0, we have

(3) #{integers © < X : wp(z+ Aogz) —np(x) =k} ~e " —

as X — oo, with probability 1 for T' € S. In 1976, GALLACHER [11] showed that
this holds for the sequence of primes (that is, for P) under the assumption of
a reasonable “uniform” version of HARDY AND LITTLEWOOD’s Prime k-tuplets
conjecture [14]. This conjecture is the case where we take each f;(z) to be a linear
polynomial in SCHINZEL AND SIERPINSKIs [22]

Hypothesis H. Let F' = {f1(x), f2(x),... , fr(x)} be a set of irreducible polyno-
mials with integer coefficients. Then the number of integers n < x for which each
|fj(n)| is prime is

T

log | fu(x)|log | f2()]. . . log | fi ()]

where Cp= [] (1—”F;p)>/<1—]—17>k,

p prime

mr(x) = {Cr +o(1)}

and wp(p) counts the number of integers n, in the range 1 < n < p, for which
fin)f2(n) ... fe(n) =0 (mod p)* -°.

Estimates analogous to (2a) should hold for the number of primes in intervals
of various lengths, if we believe that what almost always occurs in S, should also
hold for P. Specifically, if 10log? z < y < z then

(4) mr(z+y) —mr(z) = Li(z +y) - Li(z) + O(y"/?)

with probability 1 for 7" € S. In 1943 SELBERG [23] showed that primes do, on the
whole, behave like this by proving, under the assumption of RH, that

Y
log

(5) m(z +y) — mw(z) ~

for ‘almost all’ integers x, provided y/ logZz — 00 as © — 0.
MONTGOMERY [17] has shown that one can deduce estimates about primes
in short intervals by understanding local distribution properties of the zeros of

C(s):

2Elementary results on prime ideals guarantee that the product defining Cr converges if
the primes are taken in ascending order.

3The asymptotic formula proposed here for 7 (x) has a ‘local part’ Cr, which has a factor
corresponding to each rational prime p, and an ‘analytic part’ /], log|fi(«)|. This reminds one
of formulae which arise when counting points on varieties.
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Pair Correlation Conjecture (PC). Assume RH. For any fized o > 0, the
average number of zeros 1/2 4+ iv" of ((s) ‘close’ to a given zero 1/2 + iy, that is
with v < v < v+ 2na/log(|y| + 1), is

(60) N/Oa{l— (Sﬁg“)z}du.

Inspired by the work of MONTGOMERY and others, GOLDSTON [12] showed that
(6a) holds for any fixed o > 0 if and only if for any fixed 8 > 0,

o e g) e 5 s

where ¢(z) := 37 .. ., logp. Since (6b) is predicted by CRAMER’s model, thus so is
PC. DysoN predicted an analogous density function for the correlation of n-tuples
of zeros of ((s),* which presumably may be shown to be equivalent to estimates
for primes in short intervals, and thus be predicted by CRAMER’s model.

CRAMER’s model does seem to accurately predict what we already believe to
be true about primes for more substantial reasons®. To be sure, one can find small
discrepancies® but the probabilistic model usually gives one a strong indication
of the truth. CRAMER made one conjecture, based on his model, which does not
seem to be attackable by other methods: If py =2 <pys =3 <p3 =5 < ... is the
sequence of prime numbers then

max (Ppi1— Pn) ~ log? z.
pn<w

This statement (or the weaker O(log? x)) is known as ‘Cramér’s Conjecture’; there
is some computational evidence to support it:

Dn Pt —Dn | (Pnt1 —Dn)/10g” P
31397 72 6715
370261 112 6812
2010733 148 7025

20831323 210 7394
25056082087 456 7953
2614941710599 652 7975
19581334192423 778 8177

Record-breaking gaps between primes, up to 104

4Based somewhat surprisingly on the fact that (6a) also describes the distribution of eigen-
values of random Hermitian matrices, which arise in physics as models for various naturally
occurring quanta. The ‘Fourier transforms’ of these pair correlation and n-tuple correlation con-
jectures for the zeros of ((s), are now known to hold in a natural restricted range, under the
assumption of RH (see [17] and [21])

5Though HARDY AND LITTLEWOOD [14] remarked thus on probabilistic models: “Proba-
bility is not a notion of pure mathematics, but of philosophy or physics”

6As has been independently pointed out to me by SELBERG, MONTGOMERY and PINTZ:
for example, PINTZ noted that the mean square of |¢(y) — y| for y < z, is > x2°~¢ (with b as in
(1)), in fact < = assuming RH, whereas the probabilistic model predicts < zlogz.
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In 1985 MAIER [16] surprisingly proved that, despite SELBERG showing (5)
holds ‘almost all’ the time when y = logB x (assuming RH) for fixed B > 2, it
cannot hold all of the time for such y. This not only radically contradicts what
is predicted by the probabilistic model, but also what most researchers in the
field had believed to be true, whether or not they had faith in the probabilistic
model. Specifically, MAIER showed the existence of a constant dp > 0 such that
for occasional, but arbitrarily large, values of z; and z_,

m(zy +logPay) —m(zy) > (140p)log® tay ,
B-1
T_.

(7)

and m(x_ +logPz )—m(z ) < (1—0p)log

Outline of the Proof. There are ~ ¢ 7z/log z integers < xz, all of whose prime
factors are > z, provided z is not too large. Among these we have all but 7(z)
of the primes < z, and so the probability that a randomly chosen such integer is
prime is ~ e log z/logx. Thus in a specific interval (z, 2 + y] we should ‘expect’
~ e7®log z/ log x primes, where ® is the number of integers in the interval that are
free of prime factors < z. Now if we can select our interval so that ® % e~ 7y/log z
then our new prediction is not the same as that in (5).
If z is divisible by P =[] ., p then
Y

log z

O=(y,z):=#{1<n<y: pn=p>z} ~w)

for y = 2" with u fixed (see [3]), where w(u) = 0 if 0 < u < 1 and satisfies
the differential-delay equation ww(u) = 1 + fluilw(t)dt if u > 1. Obviously
limy oo w(u) = e~ 7. IWANIEC showed that w(u) — e~ 7 oscillates, crossing zero
either once or twice in every interval of length 1. Thus if we fix © > B, chosen
so that w(u) > e~ or < e~ 7 (as befits the case of (7)), select y = log? z and
z = y1/*, and ‘adjust’ z so that it is divisible by P, then we expect (5) to be false.

To convert this heuristic into a proof, MAIER considered a progression of
intervals of the form (rP,rP + y], with R < r < 2R for a suitable value of R.
Visualizing this as a ‘matrix’, with each such interval represented by a different
row, we see that the primes in the matrix are all contained in those columns j for
which (j, P) = 1.

RP+1 RP +2 RP +3 e RP+y
(R+1)P+1 (R+1)P+2 (R+1)P+3 -+ (R+1)P+y

(R+2)P+1 (R+2)P+2 :

(i,7)th entry :

(R+3)P+1 (R eiP ]

2R—1)P+1 (2R—1)P+2 - .-« (2R—=1)P+y

The ‘Maier Matrix’ for n(z +y) — m(x)
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Now, for any integer ¢ > 1, the primes are roughly equi-distributed amongst those
arithmetic progressions a (mod ¢) with (a,q) = 1: in fact up to  we expect that
the number of such primes

1@
(8) 71'(.7,‘,(], ) d)(Q)

If so, then the number of primes in the jth column, when (j, P) = 1, is

1
m(2X; P,j) = 7(X; P,j) ~ =

5(P) log X where X = RP.

To get the total number of primes in the matrix we sum over all such 7, and then
we can deduce that, on average, a row contains

®(y,z) 1 RP ~ w(u) y P 1 ~ ¢Tw(u) y
R ¢(P)logRP log z ¢(P) log RP log RP

primes. MAIER’s result follows provided we can prove a suitable estimate in (8)

In general, it is desirable to have an estimate like (8) when z is not too large
compared to ¢. It has been proved that (8) holds uniformly for

i) All ¢ <log? z and all (a, q) =1, for any fixed B > 0 (SIEGEL-WALFISZ).

i) All ¢ < /z/log>™ 2 and all (a,q) = 1, assuming GRH”. In fact (8) then
holds with error term O (/@ log®(qz)).

iii) Almost all ¢ < v/z/log?** z and all (a, ¢) = 1 (BOMBIERI-VINOGRADOV)®,

iv) Almost all ¢ < 2'/2t°() with (¢,a) = 1, for fixed a # 0 (BOMBIERI-
FRIEDLANDER-IWANIEC, FOUVRY)

v) Almost all ¢ < z/1log®"™® z and almost all (a,¢) = 1 (BARBAN-DAVENPORT-
HALBERSTAM, MONTCOMERY, HOOLEY).

Thus, when GRH is true, we get a good enough estimate in (8) with R = P?
to complete MAIER’s proof. However MAIER, in the spirit of the BOMBIERI-
VINOGRADOV Theorem, showed how to pick a ‘good’ value for P (see [8, Prop.
2]), so that (8) is off by, at worst, an insignificant factor when R is a large, but
fixed, power of P (thus proving his result unconditionally).

In [15], HILDEBRAND AND MAIER extended the range for y in the proof above,
establishing that there are arbitrarily large values of = for which (4) fails to hold for
some y > exp ((log 2)1/37¢); and, assuming GRH, for some y > exp ((log x)1/275)_
Moreover they show that such intervals (x,z 4+ y] occur within every interval
[X,2X].°

It is plausible that (5) holds uniformly if log v/ loglogx — oo as  — oo; and
that (4) holds uniformly for T = P if y > exp ((logz)'/?*¢) (at least, we can’t

"The Generalized Riemann Hypothesis (GRH) states that if 8-+iv is a zero of any Dirichlet
L-function then g < 1/2

8This result is often referred to as ‘GRH on average’

9A far better localization than those obtained in any proof of (2b).
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disprove these statements as yet). We conjecture, presumably safely, that (4) and
(5) hold uniformly when y > z°.

One can show that there are more than x/exp ((logz)°?) integers z4+ < z
satisfying the unexpected inequalities in (7). Although this may not be enough
to upset (6b), it surely guarantees that the error term there will not be as small
might have been hoped. Thus we should not expect the pair correlation conjecture
to hold with as much uniformity as might have been believed. Evidence that this is
so may be seen in the computations represented by [19, Figures 2.3.1,2,3]: The pair
correlation function for the nearest 10® zeros to the 10*2th zero fits well with (6a)
for @ < .8 and then has larger amplitude for .8 < a < 3; also, the pair correlation
function for the nearest 8 x 10° zeros to the 102°th zero fits well with (6a) for
a < 3 and then has larger amplitude for 3 < a < 5.

MAIER’s work suggests that CRAMER’s model should be adjusted to take
into account divisibility of n by ‘small’ primes!?. It is plausible to define ‘small’ to
mean those primes up to a fixed power of logn. Then we are led to conjecture that
there are infinitely many primes p, with ppi1 — pn > 2¢77 log? pp, contradicting
CRAMER’s conjecture!!!

If we analyze the distribution of primes in arithmetic progressions using a
suitable analogue of CRAMER’s model, then we would expect (8), and even

/ cq,a) = @ i 1/20 T
®) r(esq.a) = ¢(q)+o<(q) log(q )) ,

to hold uniformly when (a,q) =1 in the range

9) qSQZx/logBm,

for any fixed B > 2. However the method of MAIER is easily adapted to show
that neither (8) nor (8) cannot hold in at least part of the range (9): For any
fixed B > 0 there exists a constant g > 0 such that for any modulus ¢, with ‘not
too many small prime factors’, there exist arithmetic progressions a1 (mod ¢) and
values 24 € [¢(q) log? ¢, 2¢(q) log? q] such that

m(x_)

#(q)

m(z4)

?(q)

(10) 7w(zy5q,a4) > (14+6B) and w(z_;q,a_) < (1—4p)

100ne has to be careful about the meaning of ‘small’ here, since if we were to take into
account the divisibility of n by all primes up to /7, then we would conclude that there are ~
e~ Yz /log x primes up to x.

111t is unclear what the ‘correct conjecture’ here should be since, to get at it with this
approach, we would need more precise information on ‘sifting limits’ than is currently available.
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The proof is much as before, though now using a modified ‘Maier matrix’:

RP RP+g¢ RP +2q RP +yq
(R+1)P (R+1)P+q (R+1)P+2¢ --- (R+1)P+yq

(R+2)P (R+2)P+q :

(i,7)th entry :

(R+3)P (R+49)P + jq

(2R—1)P (2R—1)P+g . o @R—1)P+yg

The Maier Matrix for 7(yq; q,a)

The BOMBIERI-VINOGRADOV Theorem is usually stated in a stronger form
than above: For any given A > 0, there exists a value B = B(A) > 0 such that

(11) max max

#(q) log™ z

where Q = /z/log? x. It is possible [6] to take the same values of R and P in
the Maier matrix above for many different values of ¢, and thus deduce that there
exist arbitrarily large values of a and z for which

(12) > {W(I;q,a)—%} > 5

Q<qL2Q
(g,a)=1

thus refuting the conjecture that for any given A > 0, (11) should hold in the
range (9) for some B = B(A) > 0. In [7] we showed that (11) even fails with

Q = x/exp ((4 - ¢)(loglogz)?/(logloglog z)) .

We also showed that (8") cannot hold for every integer a, prime to ¢, for
i) Any ¢ > z/exp ((logz)'/5~=).
ii) Any ¢ > 2/ exp ((logz)'/3¢) which has < 1.5logloglog ¢ distinct prime
factors < log ¢.2
iif) Almost any ¢ € (y,2y], for any y > 2/ exp ((logz)'/27%).
Moreover, under the assumption of GRH we can improve the values 1/5 and 1/3
in (i) and (ii), respectively, to 1/3 and 1/2.
It seems plausible that (8) holds uniformly if log(z/q)/loglogq — oo as
q — oo; and that (11) holds uniformly for @ < z/exp ((logz)/?*¢). At least we
can’t disprove these statements as yet, though we might play it safe and conjecture
only that they hold uniformly for ¢, Q < z'~=.

12Which, by the TURAN-KUBILIUS inequality, includes ‘almost all’ integers.
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Notice that in the proof described above, the values of a increase with z,
leaving open the possibility that (8) might hold uniformly for all (a,q) = 1 in the
range (9) if we fix a.'> However, in [8] we observed that when a is fixed one can
suitably modify the Maier matrix, by forcing the elements of the second column
to all be divisible by P:

1 1+ (RP-1) 1+2(RP—1) 1+y(RP 1)
1 1+(R+1)P-1) 142((R+1)P-1) -+ 1+y(R+1)P—-1)
1 1+((R+2)P-1) :

(i,7)th entry :
1+ j((R+i)P—1)

1 1+((2R;1)P71) 1+y((2R;1)P71)

The Maier Matrix for 7(yq;q,1)

Notice that the jth column here is now part of an arithmetic progression with
a varying modulus, namely 1 — j (mod jP). With this type of Maier matrix we
can deduce that, for almost all 0 < |a| < z/log? z (including all fixed a # 0),
there exist ¢ € (z/log® x,2x/log® z], coprime to a, for which (8) does not hold.
However (8) cannot be false too often (like in (12)), since this would contradict
the BARBAN-DAVENPORT-HALBERSTAM Theorem. So for which a is (8) frequently
false? It turns out that the answer depends on the number of prime factors of a:
In [10], extending the results of [2], we show that for any given A > 1 there exists
a value B = B(A) > 0 such that, for any Q < z/log? z and any integer a which
satsfies 0 < |a| <  and has < loglog = distinct prime factors!*, we have

m(2;q,a) — (@) L
" <%<%:<2Q{ (r:.0) ¢(Q)} < logz’

On the other hand, for every given A, B > 0, there exists Q < z/ logB x and an
integer a which satisfies 0 < |a] < 2 and has < (loglogz)5/5%¢ distinct prime
factors, for which (13) does not hold (and assuming GRH we may replace 6/5+ ¢
here by 1+ ¢).

Finding primes in (z,z + y] is equivalent to finding integers n < y for which f(n)
is prime, where f(t) is the polynomial ¢ + z. Similarly, finding primes < a which
belong to the arithmetic progression a (mod ¢), is equivalent to finding integers
n <y := x/q for which f(n) is prime, where f(t) is the polynomial gt + a. Define
the height, h(f), of a given polynomial f(t) = >, ¢;t" to be h(f) := />, ¢2. In the

13Which would be consistent with the BARBAN-DAVENPORT-HALBERSTAM Theorem.
14which includes almost all integers a once the inexplicit constant here is > 1 (by a famous
result of HARDY AND RAMANUJAN).
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cases above, in which the degree is always 1, we proved that we do not always get
the asymptotically expected number of prime values f(n) with n < y = log? h(f),
for any fixed B > 0. In [9] we showed that this is true for polynomials of arbitrary
degree d, which is somewhat ironic since it is not known that any polynomial of
degree > 2 takes on infinitely many prime values, nor that the prime values are ever
‘well-distributed’. NAIR AND PERELLI [18] showed that some of the polynomials
Fgr(n) = n? + RP attain more than, and others attain less than, the number of
prime values expected in such a range, by considering the following Maier matrix:

Fr(1) Fr(2) Fr(3) - Fr(y)
Fria(1)  Fpii(2) Fri1(3) o Fpia(y)
Fri2(1)  Fpi2(2) :
Frys(1) (Z’j};}if(r;t)ry :

FQR;l(l) FQR;l(Q) FQR;l(y)

The Maier Matrix for mp(y)

Notice that the jth column here is part of the arithmetic progression j¢ (mod P).

Using Maier matrices it is possible to prove ‘bad equi-distribution’ results
for primes in other interesting sequences, such as the values of binary quadratic
forms, and of prime pairs. For example, if we fix B > 0 then, once z is sufficiently
large, there exists a positive integer k < log z such that there are at least 1 + dp
times as many prime pairs p,p + 2k, with z < p < z + logP z, as we would
expect from assuming that the estimate in Hypothesis H holds uniformly for n <
log” h((t + 2)(t + (x + 2K))) -

We have now seen that the asymptotic formula in Hypothesis H fails when
x is an arbitrary fixed power of log h(F)(:= )", logh(f;)), for many different non-
trivial examples F'. Presumably the asymptotic formula does hold uniformly as
log x/loglog h(F') — oo. However, to be safe, we only make the following predic-
tion:

Conjecture. Fiz e > 0 and positive integer k. The asymptotic formula in Hy-
pothesis H holds uniformly for x > h(F)® as h(F) — oo.

Our work here shows that the ‘random-like’ behaviour exhibited by primes in many
situations does not carry over to all situations. It remains to discover a model that
will always accurately predict how primes are distributed, since it seems that minor
modifications of CRAMER’s model will not do. We thus agree that:

“It is evident that the primes are randomly distributed but, unfortunately,
we don’t know what ‘random’ means.” — R.C. VAUGHAN (February 1990).
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FINAL REMARKS

Armed with MAIER’s ideas it seems possible to construct incorrect conclusions
from, more-or-less, any variant of CRAMER’s model. This flawed model may still
be used to make conjectures about the distribution of primes, but one should be
very cautious of such predictions!

There are no more than O(z?/ log®? x) arithmetic progressions a (mod q),
withl1 <a<gqg<uz/ log? 2 and (a,q) = 1, for which (8) fails, by the BARBAN-
DAVENPORT-HALBERSTAM Theorem. However our methods here may be used to
show that (8) does fail for more than z?/exp ((logx)?) such arithmetic progres-
sions.

Maier’s matrix has been used in other problems too: KONYAGIN recently used
it to find unusually large gaps between consecutive primes. MAIER used it to find
long sequences of consecutive primes, in which there are longer than average gaps
between each pair. SHIU has used it to show that every arithmetic progression a

(mod ¢) with (a,q) =1 contains arbitrarily long strings of consecutive primes.

BALOG [1] has recently shown that the prime k-tuplets conjecture holds ‘on
average’ (in the sense of the BOMBIERI-VINOGRADOV Theorem ).

As we saw in the table above, Li(z) > () for all x < 10'®. However (2b)
implies that this inequality does not persist for ever; indeed, it is reversed for some
x < 1037 (TE RIELE). Recently, however, RUBINSTEIN AND SARNAK [20]!6 showed
that it does hold more often than not, in the sense that there exists a constant
§ ~ 1/(4-10%) such that the (logarithmically scaled) proportion of x for which
m(x) >Li(z) exists and equals 0. Such biases may also be observed in arithmetic
progressions, in that there are ‘more’ primes belonging to arithmetic progressions
that are quadratic non-residues than those that are quadratic residues. In particu-
lar they prove that 7(z;4,3) > 7(z;4,1) for a (logarithmically scaled) proportion
0.9959... of the time.

Delicate questions concerning the distribution of prime numbers still seem to be
very mysterious. It may be that by taking into account divisibility by small primes
we can obtain a very accurate picture; or it may be that there are other phenomena,
disturbing the equi-distribution of primes, that await discovery ...

“Mathematicians have tried in vain to discover some order in the sequence
of prime numbers but we have every reason to believe that there are some
mysteries which the human mind will never penetrate.”
L. EULER (1770).

ACKNOWLEDGEMENTS: I'd like to thank Red Alford, Nigel Boston, John Friedlan-
der, Dan Goldston, Ken Ono, Carl Pomerance and Trevor Wooley for their helpful
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15Which was improved to the exact analogue of (11) by MIKAWA for k = 2, and by KAWADA
for all k > 1.

16 Al] of their results are proved assuming appropriate conjectures such as RH, GRH, and
that the zeros of the relevant L-functions are linearly independent over Q.
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