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Abstract. 

 

Indirect branch prediction is likely to become more important in the future because indi-
rect branches tend to be more frequent in object-oriented programs. With indirect branch prediction
misprediction rates of around 25% on current processors, such branches can incur a significant
fraction of branch misses even though indirect branches are less frequent than the more predictable
conditional branches. We investigate the predictability of indirect branches to determine whether
the inferior accuracy of the current indirect branch prediction mechanism (branch target buffers)
results from an intrinsic unpredictability of indirect branches or is caused by suboptimal branch
prediction hardware. Using programs from the SPECint95 suite as well as a suite of C++ applica-
tions, we show that prediction accuracy can exceed 95% on average for these benchmarks, assum-
ing an unlimited hardware budget. This result suggests that better indirect branch prediction hard-
ware can significantly outperform current branch target buffers.

 

1. Introduction

 

Indirect branches, which transfer control to an address (recently) stored in a register, are hard to
predict accurately. Unlike conditional branches, they can have more than two targets, so that
prediction requires a full 32-bit or 64-bit address rather than just a “taken” or “not taken” bit.
Furthermore, their behavior is often directly determined by data loaded from the heap, such as
virtual function pointers in object-oriented programs written in languages such as C++ and Java.
This behavior suggests that such indirect branches may represent a blind spot for branch prediction
strategies such as two-level branch prediction, which are driven by dynamic control flow informa-
tion. 

Indirect branches are quite common in widely used benchmark sets like the SPECint95 suite,
although they occur less frequently than conditional branches. Indirect branches are much more
frequent in object-oriented languages. These languages promote a more polymorphic program-
ming style in which late binding of subroutine invocations is the main instrument for clean,
modular code design. Virtual function tables, the implementation of choice for most C++ and Java
compilers, execute an indirect branch for every polymorphic call. The C++ programs studied here
execute an indirect branch as frequently as once every 50 instructions; other studies [CGZ94] have
shown similar results. Java programs (where all non-static calls are virtual) are likely to use indirect
calls even more frequently.

Current processors improve the performance of indirect branches with a branch target buffer (BTB)
that caches the most recent target address for a particular indirect branch and uses this address to
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predict the outcome of the next execution of this branch. While reasonably useful, BTBs typically
have much lower prediction rates than the best predictors for conditional branches. For example, an
ideal (infinite) BTB achieves an average prediction hit ratio of only 64% on the SPECint95 bench-
marks, whereas the average conditional branch prediction hit ratio can exceed 95% depending on
the prediction scheme used. 

The goal of this study is to determine whether the inferior accuracy of current indirect branch
prediction results from an intrinsic unpredictability of indirect branches or is caused by suboptimal
branch prediction mechanisms. In other words, do BTBs already capture most of the predictability
of indirect branches, or is it worth exploring new indirect branch prediction hardware schemes?

In order to answer this question, we test a variety of indirect branch prediction schemes inspired by
successful conditional branch prediction methods. Our aim is to explore the limits of indirect
branch prediction, and thus we assume unlimited hardware resources in this first stage of research,
so that our results will not be obscured by implementation artifacts such as conflict misses caused
by direct-mapped tables. We test a range of costly, and likely impractical schemes, and combine
them to get a best-case prediction rate. The results show that indirect branch prediction can be
vastly improved over the current hardware-implemented schemes, approaching a prediction rate of
94% for two-level predictors and over 97% for hybrid predictors.

 

1.1  Sources of branch prediction misses

 

Our methodology is geared towards estimating the intrinsic predictability of indirect branches for
a given benchmark. Intuitively, a predictor fails to predict a given branch correctly for one of two
reasons: either the branch has never jumped to the given target before (a compulsory miss), or the
predictor does not capture the behavior of the program accurately. While the former case is
unavoidable unless a default static prediction can be used, a number of factors influence the latter:

• The program may have intrinsically unpredictable behavior, so that the only adequate predictor
is a simulation of the program itself (a variant of the Halting Problem). One of the goals of this
study was to determine the extent of this intrinsic unpredictability.

• The predictor may be blind to those parts of the machine state that influences the branch’s be-
havior. For example, an object-oriented program invoking a method on each element of a poly-
morphic collection of objects can result in unpredictable target sequences because the types of
the objects in the collection (which determine the targets of the call) are invisible to a control-
flow driven branch predictor.

This problem is mitigated by the fact that regularities in the unseen data stream will be ex-
pressed into regularities of the branch target sequences. (If this weren’t the case, then the in-
formation would be useless for branch prediction in the first place.) Therefore, a predictor may
capture this regularity through other information such as the history of previous targets (path-
based prediction [Nair95]). 

• Finally, the predictor may have access to all the relevant machine state influencing the branch,
but may still be unable to capture its regularities adequately. For example, a pattern-based two-
level branch predictor may have history tables that are too small. 
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This last case is hardest to analyze because many factors can contribute to the inability to capture
regularities of the information stream. Capacity and conflict misses arise from implementation
limitations such as relatively small prediction tables or direct-mapped tables. Similarly, path-based
prediction may suffer from path interference or insufficient path lengths. Since we aim to reach the
intrinsic misprediction rate, i.e., the unpredictability inherent in the program itself, we avoid these
sources of inaccuracy by simulating arbitrarily large, fully associative prediction tables and full
instruction addresses as table indices or path history elements. In cases where the ideal organization
is not obvious (e.g., path lengths) we simulate a range of parameter values that is large enough to
ensure that prediction accuracy is not constrained. 

 

2. The benchmarks

 

We used three benchmark suites to evaluate indirect branch prediction schemes. The C++ bench-
mark suite consists of C++ applications that range from 8,000 to 50,000 lines of C++ code each
(see Table 1).
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 We also measured the programs of the SPECint95 benchmark suite (see Table 2)
with the exception of 

 

compress

 

 which executes only 590 branches during a complete run [CGZ94]. 

All programs except 

 

self

 

2

 

 were compiled with GNU gcc 2.7.2 (options -O2 -multrasparc plus static
linking) and run under the 

 

shade

 

 instruction-level simulator [CK93] to obtain traces of all indirect
branches except procedure returns (which were excluded because they can be predicted easily with
a return address stack [KE91]). All programs were run to completion or until six million indirect
branches were executed. We reduced the traces of three of the SPEC benchmarks in order to reduce
simulation time. In all of these cases, the BTB misprediction rate differs by less than 1% (relative)
between the full and truncated traces, and thus we believe that the results obtained with the trun-
cated traces are accurate.

For each benchmark, the tables list the number of indirect branches executed and the percentage of
these branches that corresponds to virtual function calls. For example, only 34% of the indirect
branches in 

 

eqn

 

 are due to virtual function calls; the rest represent indirect calls through function
pointers, indirect branches of 

 

switch

 

 statements, etc. In addition, the tables list the number of
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We are currently expanding our benchmark suite to include additional applications; the final paper will likely include at least two more
applications consisting of over 100,000 lines each.
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self

 

 does not execute correctly when compiled with -O2 and was thus compiled with “-O” optimization. Also, 

 

self

 

 was not fully statically linked;
our experiments exclude instructions executed in dynamically-linked libraries.

 

a

 

estimated (the Self-93 system is 120,000 lines but not all of them are exercised during the benchmark run)

 

Name Description lines of 
code

# of indir. 
branches

% 
virtual

active branch sites

90% 95% 99% 100% 

eqn typesetting program for equations 8,300 296,425 34% 17 23 58 114

idl SunSoft’s IDL compiler (version 1.3) 13,900 1,883,641 93% 6 15 70 543

ixx IDL parser, part of the Fresco X11R6 library 11,600 212,035 47% 31 46 91 203

lcom compiler for hardware description language 14,100 1,737,751 63% 8 17 87 328

porky SUIF 1.0 scalar optimizer 22,900 5,392,890 71% 35 51 89 285

troff GNU groff version 1.09 19,200 1,110,592 74% 19 32 61 161

self Self-93 system 50,000

 

a

 

6,000,000 80% 239 381 756 2658

 

Table 1.  

 

C++ Benchmarks
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indirect branch sites responsible for 90%, 95%, 99%, and 100% of the indirect branches. For
example, only 2 different branch sites execute 95% of the dynamic indirect branches in 

 

go

 

. 

99% of the indirect branches in the C++ and SPEC programs are executed from less than 100 indi-
rect branch sites, except for 

 

self

 

 which contains a much larger number of active indirect branches
(756). Several factors may contribute to this difference, including 

 

self

 

’s larger size its programming
style which is more object-oriented than other C++ programs, many of which make only sparing
use of the object-oriented features of C++. 

The SPECint95 programs are even more dominated by very few indirect branches, with less than
ten interesting branches for all programs except 

 

gcc

 

. Because there are so few distinct indirect
branches in these programs, they are much more sensitive to variations in indirect branch prediction
schemes since a change in the prediction accuracy of a single indirect branch may significantly
affect the overall prediction rate. We have included the SPECint95 programs mostly for compar-
ison purposes since we do not believe that they are very meaningful when evaluating indirect
branch predictors. In effect, the SPEC benchmarks are microbenchmarks as far as indirect branch
prediction is concerned. In our evaluation of indirect branch prediction schemes we will therefore
focus on the behavior of the C++ programs.

 

3. Prediction schemes

3.1  Branch Target Buffer

 

Current processors use a branch target buffer (BTB) to predict indirect branches, and thus we use
BTB as the baseline against which other predictors are compared. When an indirect branch is
fetched, the predictor uses the branch address as a key into a table (the BTB) which stores the last
target address of the branch. (Alternatively, the buffer can store one or more instructions from the
predicted target address to allow branch folding). 

Since we are interested in the limits of predictability, we simulate BTBs with unlimited table size
and perfect conflict resolution (full associativity). However, BTBs with realistic organizations can
come quite close to this ideal BTB: a recent study [DH96] showed that there is no improvement in
prediction rates beyond a BTB size of 256 entries for a suite of similar C++ benchmarks. This result
is not surprising given the relatively small number of relevant indirect branches in these programs.

We consider two variants: “BTB” is a standard BTB which updates its target address after each
branch execution. “BTB-2bc” is a BTB with two-bit counters which updates its target only after

 

Name # of indir. 
branches

% 
virtual

active branch sites

90% 95% 99% 100% 

gcc 864,838 0% 38 56 95 166

go 549,656 0% 2 2 5 14

ijpeg 32,975 0% 3 5 7 60

m88ksim 300,000 0% 3 4 5 17

perl 300,000 0% 6 6 7 27

vortex 3,000,000 0% 6 6 9 37

xlisp 6,000,000 0% 3 3 4 13

 

Table 2.  

 

SPECint95 benchmarks
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two consecutive mispredictions. In conditional branch predictors, the latter strategy is implemented
with a two-bit saturating counter (2bc), hence the name. For an indirect branch, one bit suffices to
indicate whether the entry had a miss the last time it was consulted. We chose to retain the name
“two-bit counter” because its functionality is analogous to two-bit counters for conditional branch
prediction. 

Figure 1 shows the misprediction ratios for BTB and BTB-2bc. The latter performs better in virtu-
ally all cases, most likely because it works better for polymorphic branches that occasionally
switch their target but are dominated by one most frequent target, a situation that is quite frequent
in object-oriented programs [AH96], [D+96]. But even with two-bit counters, BTB accuracy is
quite poor, ranging from median misprediction ratios of 13% in C++ programs to 28% for
SPECint95. (We show both medians and means because the latter are sometimes skewed by
outliers.) BTBs appear to predict virtual function calls better than other indirect branches in C++
programs, as shown by the rightmost two groups in the graph.

Although two-bit counters improve prediction accuracy overall, they do not improve accuracy for
every indirect branch, as is shown by the 

 

perBranch

 

 and 

 

oracle

 

 data. The 

 

perBranch

 

 predictor stat-
ically selects either BTB or BTB-2bc for every indirect branch [LS84][CHP94], and 

 

oracle

 

 dynam-
ically selects between BTB and BTB-2bc assuming a perfect hybrid predictor. That is, for every
indirect branch execution 

 

oracle

 

 selects the correct predictor (if there is one). For the SPEC bench-
marks, 

 

perBranch

 

 and 

 

oracle

 

 show improvements over both BTB and BTB-2bc, indicating that
neither BTB variant is strictly superior to the other.

 

3.2  Two-level prediction for indirect branch paths

 

With BTBs, the table storing the predicted target is accessed using the current branch address as the
index. In two-level branch predictors, the index is a history pattern based on previously executed
branches [YP91], [YP93]. The goal of two-level branch prediction is to map branch execution
patterns to branch targets, allowing the prediction to use past behavior for better prediction. Most
of the variations in two-level predictors come from different answers to two basic questions, which
we treat in the following two sections (see Figure 2).
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Figure 1.  BTB misprediction ratios
T-AVG and T-MED refer to the average or median of the original C++ or SPEC benchmarks. V-AVG/MED refer to the
indirect branches within the C++ benchmarks that correspond to virtual function calls.
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3.2.1  First level: what comprises the history pattern?

 

For conditional branches, a branch history of length 

 

p

 

 consists of the taken/not-taken bits of the 

 

p

 

most recently executed branches of a particular category [YP93]. Categories can be defined in
several ways, leading to different history patterns. One one end of the spectrum of choices, a 

 

global
history

 

 (correlation branch prediction) uses a single history, and all branches are predicted using the
outcome pattern of the 

 

p

 

 most recently executed branches. In contrast, with a 

 

per-address history

 

each branch keeps its own history of its 

 

p

 

 previous invocations, so that branches do not influence
each other’s prediction. Finally, 

 

per-set history

 

 prediction forms a compromise by using a separate
history for each set of branches, where a set may be determined by the branch opcode, a compiler-
assigned branch class, or a particular address range. Thus, with per-set histories a branch is influ-
enced only by the branches in the same set.

In contrast to conditional branches, indirect branches are unconditional on most architectures, i.e.,
they are always taken. Thus, keeping a history of taken/not-taken bits would be ineffective. Instead,
the history must consist of previous target addresses (or bits thereof). Such a path-based history
could also be used to predict conditional branches, but since taken/not-taken bits summarize the
target addresses of a conditional branch more succinctly, conditional branch predictors usually do
not employ target address histories (but see [Nair95]).

In this study, we assume that indirect branch histories consist of full 32-bit target addresses of past
branches. We investigate global histories, per-branch histories, and per-set histories where the set
is determined by address bits of the branch. Bits are numbered from lowest to highest significance,
so bit 0 is the LSB. All branches with the same values in bits 

 

s

 

..31 fall into a set, i.e., a set contains
all branches in a memory region of size 2

 

s

 

 bytes. With this parametrization, a global history corre-
sponds to 

 

s

 

=31 and per-branch histories correspond to 

 

s

 

=0

 

1

 

.

 

1

 

On most architectures, s=1 and s=2 also imply per-branch histories since branch instructions are four bytes long.

p=4

First Level Second Level

8 per-set 
history buffers

 

pattern->target associations

History pattern History table

(pattern not stored)
4 per-set 
history tables

pattern

Figure 2.  Two-level branch predictor
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3.2.2  Second level: how is the history pattern mapped to a target?

 

Given a history pattern, a two-level predictor uses it as an index into a history table that stores
predicted targets. Again, branches may or may not share the same table, allowing for a global
history table where the branch address is not taken into account, or per-set or per-branch history
tables. As before we use the branch address to determine set membership, mapping all indirect
branches with identical address bits 

 

h

 

..31 into the same set. 

 

3.2.3  Path length

 

The path length 

 

p

 

 of a two-level predictor determines the number of branch targets in the history
pattern. Normally, 

 

p

 

 is limited by the maximum size of the history table(s) since the table size is 2

 

p

 

.
We operate with unlimited tables in this study and thus are free to explore a wide range of path
lengths. In theory, longer paths are better since a predictor cannot capture regularities in branch
behavior with a period longer than 

 

p

 

. Shorter paths, however, have the advantage that they adapt
more quickly to new phases in the branch behavior. A long path captures more regularities, but the
“warm-up”-time for long patterns can prevent the predictor from taking advantage of this knowl-
edge before the program behavior changes again. We studied path lengths up to 18bits in order to
investigate both trends and see where they combine for the best prediction rate.

In summary, we simulate the full range of two-level indirect branch prediction parameters (see
Table 3). In addition, since we observed that adding two-bit counters reduces the overall mispre-
diction rate of every tested indirect branch predictor (with very few exceptions), all predictors
include two-bit counters. We will discuss the effect of discarding the counters in section 5.3.

 

4. Results

 

To find the best indirect branch predictors, we first ran an exhaustive simulation using all combi-
nations of 

 

s

 

, 

 

h

 

, and 

 

p

 

 for the C++ suite (excluding 

 

self

 

), resulting in a total of 4,800

 

1

 

 simulations
which took several weeks on multiple UltraSPARC workstations. These runs gave us an overview
of the interesting regions in the parameter space of two-level predictors. We established the limits
beyond which the misprediction rate stops improving and obtained some preliminary values for
path length, history pattern sharing, and history table sharing (

 

p

 

=8, 

 

s

 

=31, 

 

h

 

=0). The misprediction
rate varies smoothly in the three dimensions of the parameter space in the vicinity of the global
minimum (see Figure 3), allowing us to minimize one parameter at a time for the full benchmark
suite while still finding the global minimum. We examined all C++ benchmarks (except 

 

self

 

), and
although there are local minima in the miss rate surface, the global minimum is surrounded by a

 

1

 

We omitted parameter values that are provably identical to others. In particular, the values 0 and 1 as well as 22..30 for s and h are redundant since
no benchmark executable except 

 

self

 

 exceeded 2

 

21

 

 bytes in size, and the difference between s=22 and s=31 was very small for 

 

self

 

.

 

parameter meaning range discussed in ...

s history sharing 0..31 section 4.1

h history table sharing 0..31 section 4.2

p history (path) length 0..18 section 4.3

 

Table 3.  

 

Summary of two-level indirect branch prediction parameters
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relatively smooth area in all directions. Figure 3 shows the miss rate surfaces of two representative
samples (

 

porky

 

’s virtual branches and 

 

troff

 

’s indirect branches). 

 

4.1  First level: History Sharing

 

We first determined the impact of path history sharing. Figure 4 shows the average misprediction
rates for different values of 

 

s

 

, the parameter that determines the size of the partial address set an
indirect branch belongs to. (The appendix contains data for each individual benchmark.) The path
length 

 

p

 

 remained at 8, and each branch had its own history table (

 

h

 

=2). 

In general, a global history outperforms local histories. The average misprediction rate for all
benchmarks declines from 8.4% (per-address paths) down to 6.6% (global path). The C++
programs benefit most from sharing paths, with misprediction rates falling from 8.8% to 5.4%. The
SPEC benchmarks show a curious dip for s=9 (i.e., if branches within 512-byte code regions share
paths). On closer observation, the dip is due to 

 

xlisp 

 

where only three indirect branches are respon-
sible for 95% of the dynamic indirect branch executions. For 

 

xlisp

 

, moving from s=8 to s=9 reduces
mispredictions by a factor of three. Similarly, at s=10 

 

go

 

’s misprediction ratio jumps from 26% to

Figure 3.  Smoothness of parameter space
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two-level predictor for pure indirect traces, path length p=8, per-address history table (h=0), two-bit counters
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33% (

 

go

 

 is dominated by two indirect branches). Similarly, the bump at s=18 and s=19 results from
a transition in the misprediction rate of two benchmarks dominated by 4 and 6 indirect branches.
This result illustrates the difficulty of spotting trends based on averages of “microbenchmarks” (for
the purpose of indirect branch prediction). SPEC’s misprediction rate with a global history is still
nearly minimal, with 7.9% vs. 7.5% in the dip.

We conclude that a global history outperforms per-set histories based on address ranges for indirect
branch prediction. This result indicates a substantial correlation between different branches (i.e.,
inter-branch correlation) in our benchmark suite, a correlation not limited by code distance. If all
that mattered to an indirect branch was its own behavior, shared paths would give higher mispre-
diction rates than per-address paths, since a branch’s own history would be crowded out by the
irrelevant histories of other indirect branches.

Incidentally, a shared path is the fastest to implement in silicon, since the first level of the predictor
does not require a table lookup. 

 

4.2  Second level: History Table Sharing

 

A predictor accesses its prediction table using a combination of the past history and the branch
address as an index. In this section we explore the importance of including the branch address in the
index by varying the number of bits of the branch address to include. In the experiment below, we
include the bits [

 

h

 

..31] of the branch address and measure all meaningful values of 

 

h

 

; recall that 

 

h

 

=2
implies per-branch history tables and 

 

h

 

=31 implies a single shared history table. Figure 5 shows the
average misprediction rates for different values of 

 

h

 

; the path history length 

 

p

 

 remains at 8, and one
path is shared globally between indirect branches (

 

s=31, as found in the previous section).

The average misprediction rate for all benchmarks increases from 6.6% for per-address history
tables to 11.3% for a globally shared history table. Looking at the individual benchmark suites, the
misprediction rate of the C++ programs increases from 5.4% to 8.5%, and that of the SPEC bench-
marks rises from 7.9% to 14.2%. The SPEC average shows a very sharp increase at h=9 and h=10,
resulting from jumps in the misprediction rates of go and xlisp (see the appendix for details). As
discussed before, these programs are dominated by less than a handful of indirect branches. 

Figure 5.  Influence of history table sharing
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These results show that the address of the branch matters, at least for a branch predictor which sees
a pure indirect branch trace. If the history table is indexed by just the global path history (ignoring
the branch address), as with a global table, indirect branches that reside on different control flow
paths after an indirect branch will share and disrupt each others target predictions. In conditional
branch prediction, where the history pattern and the prediction consist of taken/not taken bits, this
effect can sometimes give a lower misprediction rate (positive interference). With indirect
branches, positive interference is very unlikely, and often impossible since two indirect branches or
calls may not even share any common targets. With per-address history tables, each branch on a
different control flow path after an indirect branch builds its own associations between the global
history patterns that reach it and its effective targets, thus improving prediction accuracy.

Now that we have chosen values for path sharing (global) and history table sharing (per-branch),
we will vary the path length in the next section.

4.3  Path length

Figure 6 shows the impact of the history path length on the misprediction rate for all path lengths
from 0 to 18. For per-address history tables, a path length of 0 reduces the two-level predictor to a
BTB predictor, since every indirect branch has exactly one target stored in its single-entry table.

The average misprediction rate drops dramatically from 26.5% for p=0 (BTB) to 7.5% for p=3 and
then gently slopes down to a minimum of 5.9% at path length 6. Then the misprediction rate starts
to rise again and keeps on rising for larger path lengths up to the limit of our testing range at p=18.
All benchmark suites follow this pattern, although the SPECint95 benchmarks show uniformly
higher misprediction rates than the C++ programs.

This result indicates that most regularities in the indirect branch traces have a relatively short
period. In other words, a predictable indirect branch execution is usually correlated with the execu-
tion of a branch less than three to six steps before it. Increasing the path length captures some
longer term correlations, but at path length six cold-start misses begin to negate the advantage of a
longer history. At this point, adding an extra branch target to the path may still allow longer-term
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correlations to be exploited, but on the other hand it will take the branch predictor one step longer
to learn a full new pattern association for every branch that changes its behavior due to a phase tran-
sition in the program.

Apparently, branches representing virtual function calls have shorter average correlation lengths
since their misprediction rate reaches a minimum of 5.4% at path length 4. Thus, if we used a
predictor with p=4 for virtual branches, and p=6 for other indirect branches, the total misprediction
rate would be lower since the combination could avoid the compromise between the two differently
behaved branch classes. We test this hypothesis in the next section. 

5. Variations

In this section we explore further variations, including hybrid predictors that combine multiple path
lengths, predictors that include conditional branches in the history path, and predictors without
two-bit counters.

5.1  Multiple Path Length Hybrid Prediction

Chen et al. [CCM96] use a branch predictor with all path lengths from 1 to p to estimate the limit
of conditional branch prediction. With Prediction by Partial Matching (PPM), a conditional branch
resolution pattern with length p is first looked up in full. If it is not in the history table, the pattern
is successively shortened is shortened by dropping the oldest branch and looked up again until a
match is found (with default values for path length 0). This scheme avoids cold start misses at the
cost of using twice the number of table entries of a standard two-level predictor with path length p.

We can mimic this technique by running several path length predictors in parallel and choosing for
each branch execution the longest predictor with a match. But instead of limiting ourselves to a
particular predictor selector algorithm (sequential search on history pattern inclusion), we go
further and stipulate an oracle that chooses the predictor that correctly predicts the branch target.
The prediction rate of this oracle predictor is an upper bound on the performance of any hybrid
predictor that combines predictors with multiple path lengths. To inject a little bit more realism, we
also stipulate a perBranch predictor which statically (at compile time) chooses one predictor path
length for each branch [LS84], [CHP94]. 

We simulated all possible hybrid predictors consisting of combinations of predictors with path
length p=2, 4, 6, and 8. We also added a BTB (p=0) as a component to the largest hybrid predictor.
Figure 7 shows the misprediction rate of the best hybrid predictors with two, three and four compo-
nents. The lower perBranch misprediction rate shows that some branch sites have intrinsically
shorter correlation path lengths, while the oracle misprediction rate shows that even more branch
sites benefit from shorter path lengths only during certain program phases. Most of the improve-
ment for perBranch predictors is reached with a p=2,8 two-component predictor (5.2% vs. 5.9% for
p=6). Adding p=0,4,6 does not decrease the miss rate much further (4.9%). oracle performs much
better; the best meta-predictor (oracle with p=0,2,4,6,8) reaches an astounding 2.3%. Clearly,
phase transitions for individual branch sites are an important remaining source of misprediction,
but dynamic meta-prediction can remove much of the associated warm-up cost.
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5.2  Mixed conditional/indirect traces

Together, conditional and indirect branches determine the execution path leading to an indirect
branch. So far, we have used only histories of indirect branches; a history containing both condi-
tional and indirect branches may be even better correlated with the next indirect branch target. In
this section we experiment with adding conditional branches to the trace. 

Since the full traces would have exceeded our disk capacity, we used traces that included the 32
preceding conditional branches (encoded as target addresses) for every indirect branch invocation.
For those benchmarks where the full trace was available we verified that the results were not
substantially different from the results we present here. 

Figure 7.  Misprediction rate limits for multiple path length predictors
two-level predictor for pure indirect traces, path length p=8, global shared path (s=31), per-address history tables (h=2), two-bit counters
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Figure 8 shows the average misprediction rate for different values of s. The path length p remained
at 8, and each branch has its own history table (h=2). For per-address history patterns (s=2), the
misprediction rates are identical to that of the predictor running on a pure indirect trace: the condi-
tional branches are filtered out of the pattern because their address differs from the indirect branch.
As h increases, more neighboring conditional and indirect branches contribute to a branch’s history
pattern, the misprediction rate of the SPEC benchmarks increases even though the rate of the pure
indirect trace decreases over this parameter range (see Figure 4). In contrast, the misprediction rate
of the C++ suite decreases to a minimum of 7.1% at s=16. This rate is still higher than that of an
identical predictor running on a pure indirect trace (6.7%). The average of SPEC and C++ reaches
minimum at s=10 with a misprediction rate of 7.1%, which is lower than the 8.5% of an identical
predictor for pure indirect traces, but higher than the 6.6% of a globally shared history. 

We believe the inclusion of conditional branch targets in the history pattern does not pay off
because they crowd out indirect branch targets which correlate well with each other. The SPEC
suite suffers more from conditional branch inclusion because the density of indirect branches is
lower than in the C++ suite, so that even moderate amounts of sharing (s=14) allow conditional
branches to push recently executed indirect branches out of the history pattern.

Figure 9 shows misprediction rates as a function of path length for 32-prefix conditional/indirect
mixed traces1. Comparing the graph to Figure 6, the minimum misprediction rate attained (6.8%)
is higher than that for pure indirect traces (5.9%), and this minimum needs a longer path length
(p=14 instead of p=6). 

We conclude that while conditional branch information may be useful for indirect branch predic-
tion, it appears to be far less relevant than indirect branch information. It may still be possible to use
conditional branch information in a less disruptive way, e.g., in a multiple-stream hybrid predictor.
We plan to investigate this question in the future.

1 We do not show the graph for history table sharing since it leads to the same conclusion as for pure indirect traces: per-address history tables
perform best.

0%

5%

10%

15%

20%

25%

30%

p
=

1

p
=

2

p
=

3

p
=

4

p
=

5

p
=

6

p
=

7

p
=

8

p
=

9

p
=

1
0

p
=

1
1

p
=

1
2

p
=

1
3

p
=

1
4

p
=

1
5

p
=

1
6

p
=

1
7

p
=

1
8

T-AVG-C++
T-AVG-spec
T-AVG-spec/C++
V-AVG-C++

Figure 9.  Misprediction rates as a function of path length for conditional/indirect history

two-level predictor for pure indirect traces, path length p=8, partially shared path (s=10), per-address history tables (h=2), two-bit counters
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5.3  Dropping the two-bit counter rule

All predictors presented so far use the two-bit counter rule, i.e., update their predictions only after
two consecutive misses. We also measured all configurations without two-bit counters. The
resulting graphs look almost identical, except that all the misprediction averages increase by
between 0.5% and 1% across the board. Two-bit counters filter out one-time misses that break the
regularity seen so far; it appears that it is always beneficial to filter out such events. In other words,
the patterns currently stored should only updated by new patterns, and a single event is not a good
enough indication of the start of a new pattern (others have found similar effects [SLM95], [J+96]).
It may be interesting to look at alternative rules such as predictors that only change an association
after three consecutive misses, or only if the target of the second miss was identical to the first one.

6. Related work

Lee and Smith [LS84] describe several forms of BTBs, including a perBranch variant. Jacobson et
al. [J+96] study efficient ways to implement path-based history schemes and observe that BTB hit
rates increase substantially when using a global path history. Their Correlated Task Target Buffer
(CTTB) reached misprediction rates of 18% and 15% for gcc and xlisp with path length 7; our study
found misprediction rates of 12% and 1.5% for p=7. The different results can be explained by
several factors: different benchmark version (SPEC92 vs. SPEC95), inputs, and radically different
architectures (e.g., the multiscalar processor’s history information will likely omit some branches
in the immediate past). Finally, Jacobson et al. include conditional branches in the path histories,
which is probably responsible for the difference in xlisp (in our study, xlisp’s misprediction rate
rises to 12.7% when including conditional branches).

Chang et al. [CHP97] propose an indirect branch prediction scheme realizable in hardware and
simulate the resulting speedups of selected SPECint95 programs for a superscalar processor. The
study explores only a narrow range of prediction schemes but still achieved significant improve-
ments, reducing the misprediction rate of a BTB-2bc by half for gcc and perl to 30.9% and 30.4%
with a Pattern History Tagless Target Cache with configuration gshare(9). This predictor XORs a
global 9-bit history of taken-non taken bits from conditional branches with the branch address, and
uses the result as a key into a globally shared, direct-mapped 512-entry history table. In compar-
ison, the best non-hybrid predictor in our study reached a misprediction ratio of 11.6% for gcc and
0.5% for perl, indicating that substantial improvements may be possible. The technique we tested
that resembles most the predictor proposed by Chang et al. (in spirit, not in implementation cost)
is a two-level predictor with a global path of length p=9 and per-address history tables which
obtained a misprediction rate of 20.9% running on a mixed conditional/indirect trace. This is better
than the hardware-constrained predictor, as expected, since our predictor ignores pattern interfer-
ence and table conflict or capacity misses. These comparisons should be regarded with caution,
however, since the two experiments differed in architectures (HPS vs. SPARC), compilers, and
benchmark inputs.1 Furthermore, as observed before, we believe that the SPECint95 benchmarks
are ill suited for indirect branch studies since their behavior is dominated by very few branches.

Emer and Gloy [EG97] describe several single-level indirect branch predictors based on combina-
tions of the values of PC, SP, register number, and target address, and evaluate their performance on

1 We were unable to obtain the benchmark inputs used by Chang et al. 
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a subset of the SPECint95 programs. For these programs, the best predictor shown achieved a
misprediction ratio of 30%, although the authors allude to a better predictor that achieves 15%. The
latter predictor comes surprisingly close to the misprediction rate of a two-level predictor with p=6
(10.5%), but again we wish to caution that comparisons based on the SPEC programs may not be
meaningful.

Calder and Grunwald proposed the two-bit counter update rule for BTB target addresses [CG94]
and showed that it improved the prediction rate of a suite of C++ programs. Chen et al. [CCM96]
propose PPM prediction for conditional branch prediction and show that a PPM predictor performs
better than a two-level predictor for a similar hardware budget. Chen et al. also establish a correla-
tion between the compression ratio of branch traces and branch miss prediction rate, and suggest
that compression ratios are good indicators of the predictability of a trace. The gzip compression
rates of our pure indirect traces for all benchmarks had a correlation of 0.9 with the indirect branch
prediction rates of a two-level predictor with path length p=8.; the correlation of a BTB with either
of these was 0.4. 

Nair [Nair95] introduced path-based branch correlation for conditional branches and showed that
a path-based predictor with two-bit partial addresses attained prediction rates similar to a pattern-
based predictor with taken/not taken bits (for similar hardware budgets). 

Many predictors in this study were inspired by conditional branch predictors. We refer to [USS97]
for a recent general overview, to [YP93] for the classification of two-level predictors used in this
paper, and [ECP96] for recent hybrid prediction results.

7. Conclusions and future work

We have explored the limits of predictability of indirect branches. The results show that there is a
large potential for improvement in indirect branch prediction. The best non-hybrid predictor, two-
level prediction with a global shared path of length 6 and per-address history tables, attains a
misprediction rate of 5.9% on average for a suite of programs consisting of large C++ applications
and SPECint95, a four-fold improvement over an ideal BTB with two-bit counter update rule which
reaches 26%. 

The substantial differences in behavior between C++ programs and SPECint95, as well as the
extremely small number of relevant branches in SPECint95 (except for gcc) suggest that the SPEC
programs should not be used as the primary benchmark suite for evaluating indirect branch predic-
tion mechanisms.

We also show that hybrid predictors allow further improvements. A combination of two-level
predictors with different path lengths appears promising; this form of hybrid prediction avoids the
“cold start” overhead of long paths while allowing long-range correlations to be exploited. In our
test case (2,4,6 and 8 path length components), “perBranch” static meta-prediction already reduces
the misprediction rate from 5.9% to 4.9%. The best meta-predictor measured, an oracle that
chooses the correct component predictor (if any) reaches an astounding 2.3% misprediction rate. 

We have also explored some areas of the design space of predictors that were sub-optimal. In
particular, we found that:
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• including conditional branch targets in the history pattern lowers prediction performance by
pushing the more relevant indirect branch information out of the history buffer; and 

• updating targets on every miss lowers the prediction rate in virtually every case, compared to
two-bit counters.

7.1  Future work

We plan to further explore the indirect branch prediction scheme design space in three directions: 

• Realistic predictors may be derived by constraining the most promising prediction schemes
while preserving as much of their predictive power as possible. 

• Better combinations of existing and new component predictors for hybrid predictors (including
exploring ways of utilizing conditional branch information) may further reduce mispredictions.

• A predictor could predict not only the target of a branch but also the address of the next indirect
branch to be executed. This disambiguates branches that lie on different conditional branch
control flow paths but share the same indirect branch path, and allows a predictor to run, in prin-
ciple, arbitrarily far ahead of execution.
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Appendix A Detailed Data

Figure 10 shows the misprediction rates for the individual C++ and SPECint95 benchmarks.
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Figure 10.  Individual benchmark results
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 p=8,h=2,s= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 31

eqn 19.0 19.0 19.0 19.0 18.8 18.4 18.6 18.6 18.7 18.8 19.1 15.7 15.6 15.2 15.1 14.1 12.3 12.3 12.3 12.3 12.3

idl 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.5

ixx 9.6 9.6 9.6 9.5 9.7 9.7 9.8 10.1 10.5 10.6 10.2 9.7 9.5 9.0 7.3 6.9 5.6 5.6 5.6 5.6 5.6

lcom 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.3 2.4 2.4 2.3 2.2 2.1 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8

porky 10.1 10.1 10.1 10.1 10.1 10.1 9.1 8.8 8.5 8.0 8.0 8.0 8.0 7.5 7.1 6.7 5.7 3.7 3.7 3.7 3.7

troff 12.7 12.7 12.7 12.7 12.5 12.3 12.1 12.1 12.1 12.1 12.0 11.9 10.1 10.1 8.0 7.8 7.3 7.3 7.3 7.3 7.3

self 7.4 7.4 7.4 7.2 7.0 7.1 7.2 7.2 7.5 7.5 7.9 7.5 7.4 7.3 7.2 7.2 6.8 6.8 6.7 6.6 6.3

T-AVG-C++ 8.8 8.8 8.8 8.8 8.7 8.6 8.5 8.5 8.6 8.6 8.6 7.9 7.6 7.4 6.7 6.4 5.7 5.4 5.4 5.4 5.3

T-MED-C++ 9.6 9.6 9.6 9.5 9.7 9.7 9.1 8.8 8.5 8.0 8.0 8.0 8.0 7.5 7.2 6.9 5.7 5.6 5.6 5.6 5.6

gcc 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.1 17.7 16.8 16.4 15.2 14.8 14.6 13.9 13.3 13.2 12.8 12.8

go 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 32.7 32.7 32.7 32.7 32.7 32.7 33.1 33.1 33.1 33.1 33.1 33.1 33.1

ijpeg 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7

perl 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.6 0.6

m88ksim 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 3.9 3.9 3.9 3.9 3.9

vortex 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.2 5.2 5.4 5.4 5.3 5.5 3.2 3.2 3.2

xlisp 4.6 4.6 4.6 4.6 4.6 4.4 4.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3

T-AVG-spec 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.5 8.5 8.4 8.3 8.2 8.1 7.9 8.0 7.9 8.4 8.3 8.0 7.9 7.9

T-MED-spec 4.6 4.6 4.6 4.6 4.6 4.4 4.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 3.9 3.9 3.2 3.2 3.2

T-AVG-TOT 8.4 8.4 8.4 8.4 8.3 8.3 8.2 8.0 8.5 8.5 8.5 8.1 7.9 7.6 7.3 7.2 7.0 6.9 6.7 6.7 6.6

T-MED-TOT 6.4 6.4 6.4 6.2 6.2 6.2 6.2 6.2 6.4 6.4 6.6 6.4 6.3 6.2 6.3 6.1 5.5 4.7 3.8 3.8 3.8

Table 4.  Path history sharing misprediction rate in %

p=8,s=31,h= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 31

eqn 12.3 12.3 12.3 12.3 12.3 12.3 12.8 12.8 12.9 12.9 12.9 14.8 14.8 14.9 16.3 16.3 18.0 18.0 18.0 18.0 18.0

idl 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9

ixx 5.6 5.6 5.6 5.6 5.6 5.6 6.0 6.0 6.0 6.3 6.4 6.5 6.8 7.4 7.9 8.5 9.5 9.1 9.1 9.1 9.1

lcom 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.1 2.1 5.8 5.9 5.9 5.9 5.9

porky 3.7 3.7 3.7 3.7 3.8 4.0 4.3 4.5 4.9 5.2 5.2 5.2 5.2 5.3 5.8 5.9 6.8 8.2 8.2 8.2 8.2

troff 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.5 7.6 7.7 7.8 7.9 8.2 8.8 8.8 8.8 8.8

self 6.3 6.3 6.3 6.4 6.4 6.4 6.5 6.6 6.9 7.0 7.0 7.1 7.1 7.2 7.3 7.5 7.8 7.8 7.9 8.1 8.4

T-AVG-C++ 5.4 5.4 5.4 5.4 5.4 5.4 5.6 5.6 5.8 5.9 5.9 6.2 6.3 6.5 6.8 7.0 8.1 8.4 8.4 8.4 8.5

T-MED-C++ 5.6 5.6 5.6 5.6 5.6 5.6 6.0 6.0 6.0 6.3 6.4 6.5 6.8 7.2 7.3 7.5 7.8 8.2 8.2 8.2 8.4

gcc 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13.2 13.5 13.6 13.9 14.3 14.6 14.9 15.2 15.4 15.4 16.1 16.1

go 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7

ijpeg 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

perl 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7

m88ksim 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

vortex 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.5 3.6 6.4 6.4 6.4

xlisp 1.3 1.3 1.3 1.3 1.3 1.6 1.6 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5

T-AVG-spec 7.9 7.9 7.9 7.9 7.9 8.0 8.0 10.0 13.2 13.3 13.3 13.3 13.4 13.4 13.5 13.5 13.6 13.7 14.1 14.2 14.2

T-MED-spec 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 6.4 6.4 6.4

T-AVG-TOT 6.6 6.6 6.6 6.6 6.6 6.7 6.8 7.8 9.5 9.6 9.6 9.8 9.8 9.9 10.2 10.3 10.9 11.0 11.2 11.3 11.3

T-MED-TOT 3.8 3.8 3.8 3.8 3.9 4.0 4.1 5.2 5.4 5.8 5.8 5.9 6.0 6.3 6.6 6.7 7.3 8.0 8.0 8.1 8.3

Table 5.  History table sharing misprediction rate in %
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s=31,h=2,p= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

eqn 34.8 21.3 17.2 15.3 13.9 12.6 11.9 12.1 12.3 12.7 13.5 14.4 15.4 16.3 17.4 18.6 19.8 20.9 22.1

idl 2.4 1.5 1.0 0.6 0.6 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7

ixx 45.7 13.4 10.3 8.2 6.9 5.5 5.5 5.4 5.6 5.8 6.2 6.7 7.0 7.6 8.2 8.8 9.4 10.1 10.8

lcom 4.3 2.3 1.7 1.3 1.3 1.3 1.4 1.6 1.8 1.9 2.1 2.3 2.5 2.6 2.8 3.0 3.1 3.3 3.5

porky 20.8 12.2 7.8 5.9 4.8 4.2 4.0 3.9 3.7 3.7 3.6 3.6 3.6 3.7 3.7 3.8 3.9 4.0 4.2

troff 13.7 9.5 8.3 7.3 7.2 7.1 7.2 7.2 7.3 7.4 7.6 7.8 8.0 8.3 8.7 9.2 9.7 10.3 10.9

self 10.9 9.6 8.5 7.0 6.6 6.6 6.4 6.3 6.3 6.2 6.3 6.5 6.7 7.0 7.2 7.6 7.9 8.3 8.7

T-AVG-C++ 18.9 10.0 7.8 6.5 5.9 5.4 5.3 5.3 5.4 5.5 5.7 6.0 6.3 6.6 7.0 7.4 7.8 8.2 8.7

T-MED-C++ 13.7 9.6 8.3 7.0 6.6 5.5 5.5 5.4 5.6 5.8 6.2 6.5 6.7 7.0 7.2 7.6 7.9 8.3 8.7

gcc 65.7 34.6 22.1 15.6 13.0 11.8 11.6 12.0 12.8 13.7 14.8 16.0 17.2 18.4 19.6 20.8 22.1 23.3 24.6

go 29.3 23.1 20.9 20.4 20.4 21.0 22.8 26.5 33.1 42.1 51.9 60.9 68.7 75.4 81.1 85.7 89.2 91.7 93.3

ijpeg 1.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9

perl 31.8 22.7 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8

m88ksim 76.4 36.0 26.6 14.4 13.4 10.6 3.1 3.9 3.9 2.1 2.1 2.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2

vortex 20.2 10.6 12.1 6.1 5.8 5.7 6.3 7.4 3.2 3.5 3.4 3.1 3.1 2.7 2.5 2.4 2.5 2.4 2.4

xlisp 13.5 8.3 7.0 2.1 1.5 1.5 1.4 1.4 1.3 1.2 1.2 1.1 1.1 1.0 0.9 0.8 0.8 0.8 0.8

T-AVG-spec 34.0 19.4 12.8 8.5 7.9 7.4 6.6 7.5 7.9 9.1 10.7 12.1 13.1 14.2 15.1 15.9 16.6 17.2 17.6

T-MED-spec 29.3 22.7 12.1 6.1 5.8 5.7 3.1 3.9 3.2 2.1 2.1 2.1 1.1 1.0 0.9 0.9 0.9 0.9 0.9

T-AVG-TOT 26.5 14.7 10.3 7.5 6.9 6.4 5.9 6.4 6.6 7.3 8.2 9.0 9.7 10.4 11.0 11.6 12.2 12.7 13.1

T-MED-TOT 20.5 11.4 8.4 6.5 6.2 5.6 4.8 4.6 3.8 3.6 3.5 3.4 3.4 3.2 3.3 3.4 3.5 3.7 3.8

Table 6.  Path length misprediction rate in %


