D.A, GILLIES

OPERATIONALISM*

1. THE OPERATIONALIST VIEWS OF MACH AND BRIDGMAN

We will begin our discussion of operationalism by an account of Mach’s
views, and, in particular, of his famous ‘operationalist’ definition of mass.
This 1s given in the section of Mach’s Science of Mechanics [8] which deals
with Newton. Mach, while professing boundless admiration for Newton,
does not feel that the master’s exposition of the foundations of mechanics
1s entirely satisfactory. He begins his criticism by quoting {8, p. 298]
Newton's definition of mass:

Detinition L. The quantity of any matter is the measure of it by its density and volume

conjointly ... This quantity is what I shall understand by the term mass or body in the
discussions to folfow.

Mach’s comments [8, p. 300]:

Definition 1 1s a... pseudo-definition, The concept of mass is not made clearer by de-
SCribing mass as thn product of the volume into the density as density itseif denotes

stmplv the mass of unit of volume.

This criticism seems entirely valid. Dugas [3, p. 342] attempts to defend
Hewton oa the grounds that Newton was attempting to define mass in
more famliar terms and granted this objective ke could hardly have done
befter. However it is dubious whether ‘density’ is more familiar than
‘mass’, and at all events the definition does not serve the Machian function
of inking the theoretical ¢concept of mass to observables.

Mach 20es5 on to quote Newton's definitions of force (which we will
omit) and the three famous laws which for completeness we will quote:

Law 1. Every body perseveres in its state of rest, or of uniform motion
i g right line, unless it is compelled to change that state by forces impres-
sed thereon.,

Law 2. The aiteration of motion is ever proportional to the motive
force impressed; and is made in the direction of the right line in which
that force is impressed.
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Law 3. Toevery Action thereisalwaysanequal Reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to
contrary parts. Mach has this to say {8, p. 302]:

We readily perceive that Laws ] and 11 are contained in the definitions of force that
nrecede .... The third law apparently contains something new. But ... it is unintelligible
without the correct idea of mass....

We can expand these points as follows. The second faw (in modern nota-
tion P = mf), Mach regards as a definition of force but one which presup-
poses a definition of mass. The first law is merely a special case of the
cecond because if =0, f=0 and only motion in a straight line with
constant velocity is possitle. Thus for Mach the first two laws are defini-
tions. The empirical content of the theory is contained i1 the innocucus
looking third law. Mach's idea is to use the experimental facts which lie
Hehind this law to form a definition of mass. The theory of mechanics Wiii
then follow without circularity.

These ‘facts’ can be stated thus. Suppose we have two bodies which
interact with each other. The form of interaction can be any of a large
number of different kinds. The bodies may collide, they may be connected
by a spring, there may be electrical or magnetic interactions between them,
or finaliy they may be heavenly bodies attracting each other by gravity.
[n all these cases we observe the following faw [&, p. 303}

a. Experimental Proposition. Bodies set op nosite each other induce in each other, under
certain circumstances o be specified by experimental physics, contrary accelerations 1m
the direction of their line of junctiomn.

This is the basic law of Mechanics, and lsads to the fellowing definition
of mass:

b. Definition. The mass-ratio of any two bodies is the negative inverse ratio of the mu-
tually induced accelerations of those bodies.

An early objection to this account was that the preliminary observations
on bodies necessary to establish experimental proposition a could only be
made on an astronomical scale. How then could mechanics be terrestrial
as well as celestial? Mach is much concernad to refute this {8, p. 267}:

H. Streintz’s objection... that a comparison of masses satisfying my definition can be
effected only by astronomical means. I am unable to admit.... Masses produce in each
other accelerations in impact, as weil as when subject to electric and magnetic forces,
and when connected by a string in Atwood’s machine.
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There are, however, further points which need to be established before
the definition of mass can be regarded as adequate.

Let us suppose we have three bodies 4, B and C. We measure the mass-
raito of 4: B, B:C and 4:C using the Machian method. Let us suppose
these come to myg, mye and mye. We obviously require that m =
= M4z Mpc. However, we have not postulated any experimental law that
will ensure that this is the case; that will ensure, in effect, that masses are
comparable. Suppose now that such a law was not true. Then by suitably
arranging three masses we could obtain a perpetual motion machine of a
kind which we know does not exist. This point together with a further
counter to Streintz’s objection is contained in Mach’s experimental prop-
osifion ¢ [8, p. 303]:

The mass-ratios of bodies are independent of the character of the physical states (of the

bodies) that conditions the mutuzl accelerations produced, be those states electrical,
magnetic, or what not; and they remain, moreover, the same whether they are mediate-

lv or immeadiately arrived at.

This second experimental propesition is really little more than an ex-
pansicn and completion of the first. Mach now gives a third experimental
proposition which really is something new. It in effect states that force is
a vector. Since force is iater to be defined in terms of acceleration, it takes

the form:

d. Experimental Proposition. The accelerations wiiich any number of bodies A B v
induce in a body K, are independent of each other. (The principie of the parallelogram
oi forces follows immediately from this.)

Mach now concludes his account by defining:

e. Definition. Moving force is the product of the mass-value into the acceleration in-
duced in that body.

The first question we shall raise concerns Mach’s experimental Droposi-
tions. Comusider for example the crucial experimental proposition a. In
order to check this one would need to cbserve a large number of bodies
interacting in various ways and study the accelerations they produced in
each cther. Had any such observations been made before Newton or had
they been made long after the acceptance of Newtonian mechanics? Cer-
tainly not. Admittedly, now, using various machines and devices, we could
perhaps carry out these gbservations, but the very machines we use would
have been designed in accordance with Newtonian mechanics whose foun-
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dations we are supposed to be checking! Plausible though Mach’s account
seems at first sight, it is not clear on reflection that the experimental basis
is really established without circularity.

Let us now pass from Mach’s operational definition of mass to the more
general formulation of operationalism to be found in Bridgman’s Logic
of Modern Physics [2]. We see in his book the influence of Mach. In fact
Bridgman begins by criticizing the Newtonian notion of absolute time on
the grounds that the Newtonian formulation does not enable us to mea-
sure absolute time. This criticism is almost the same as Mach’s {8, p. 271
following]. It is true that Bridgman quotes Einstein on this point, but, to
some extent, this puts the cart before the horse as Einstein had himself
been greatly influenced by Mach in his rejection of the absolutes.

After these preliminaries, Bridgman comes to his main thesis which he
expands in terms of the concept of length {2, p. 3]:

To find the length of an ohject, we have to perform certain physical operaticn. The
concept of length is thersfore fixed when the operations bv which length is measured are
fixed: that is, the concept of length involves as much as and nothing more than the set
of operations by which length is determined. In general, we mean by any concept
nothing more than a set of operations; the concept 1S Synonymous with the corresponding
set of operations.

Unfortunateiv, Bridgman is not such a systematic thinker as Mach and
he develops his thesis in a confused way. This is shown most clearly in
his treatment of force and mass [2, pp. 102-8]. His first suggestion 1s that
we should define force operationally in terms of a spring balance or more
generally in terms of the deformation of an elastic body. Our next develop-
ment of the force concept invoives considering [2, p. 102): “an isolated
laboratory far out in empty space, where there is no gravitational field.”
In this isolated laboratory, we first encounter the concept of mass. It is
entangled with the force concept, but may later be disentangled. The detalls
of this disentanglement are [2, p. 102]: “very instructive as typical of all
methods in physics, but need not be elaborated here.” Compared with
Mach's lucid account this is sheer muddle.

On the other hand, being an experimental physicist, Bridgman 1s more
concerned with the ways in which measurements are made in practice.
This leads him to make a number of points which Mach did not consider
and which, oddly enough, tell against the operationalist thesis. A first
point is that when we extend a physical concept we have to introduce a
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new operational definition. Mach’s definition of mass would seem to apply
to any masses, but consider now the case of length. We might begin by
defining length in terms of rigid metre sticks. However [2, p. 11}:

1f we want to be able to measure the len gth of bodies moving with higher velocities such
as we find existing in nature (stars or cathode particles), we must adopt another defini-

tion and other operations for measuring length...

Of course our different operational definitions must agree where they
overlap, but there is another complication. Let us take the first simple
extension of the concept of length. Suppose we wish to measure large
terrestial distances of the order of several kilometers., say. We have to
supplement our use of metre sticks with theodolites. Now to use these
instruments we have to make certain theoretical assumptions. For example,
we must assume that light rays move in straight lines and that space is
Euclidean. However, as Bridgman says {2, p. 15]:

But if the seometry of light beams is Euclidean then not only must the angles of a trian-
gle add to two right angles, but there are definite relations between the lengths of the
sides and the angles, and to check these relations the sides should be measured by the
old procedure with a meter stick. Such a check on a large scale has never been attempted
and i1s not feasible.

But if such a check is not even feasible, are we justified in making these
assumptions which lie behind our operational definition?

Finally, even our simple-minded definition in terms of rigid metre rods
has to be subjected to a great many corrections before 1t can be regarded
as adequate {2, p. 10]:

We must... be sure that the temperature of the rod is the standard temperature at which
its length is defined, or else we must make a correction for it: or we must correct for the
gravitational distortion of the rod if we measure a vertical length; or we must be sure
that the rod is not a magnet or is not subject to electrical forces.

But how are we to introduce these corrections? The case becomes worse
if we remember that the concepts involved in the corrections must them-
selves be operationally defined. Does this not lead to a vicicus circle?
Popper for one thinks it does [10, p. 62}:

Against this view {operationalismy), it can be shown that measurements presuppose theo-
ries. There is no measurement without a theory and no operation which can be satis-
factorily described in non-theoretical terms. The attempts to do so are always circular;
for example, the description of the measurement of length needs a (rudimentary) theory
of heat and temperature-measurement; but these in turn involve measurements of length.
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Let us now examine the consequences of all this for the Machian point of
view. As a matter of fact both Mach and Bridgman did at least partially
realise that measurements presuppose theories. We have already men-
tioned Bridgman as asserting that theodolite readings presuppose theories
about light rays and the geometry of space. Mach admittedly would have
baulked at the use of the word theory. He says {8, p. 2717:

All uneasiness will vanish when once we have made clear to ourselves that in the concept
of mass no theory of any kind whatever is contained, but simeply a fact of experience.

On the other hand, be does recognize thai an operational definition of
mass must be based on certain laws (his experimental propositions ¢ and
c}. These ‘facts’ are really universal laws and can justly be referred to as
theories.

We are now in a posttion to define the operationalist position more
precisely, and in future we will use the word ‘operationalism’ only in this
restricted sense. What it amounts to is this: every new concept introduced
into physics must be given an operational definition in terms of experi-
mental procedures, and concepts already defined. The empirical laws
which lie behind these definitions must be established by observations
before introducingthe new concept. Bridgman’s various points aboutexper-
imental! method raise two objections against ‘operationalism’ in this sense.

First of all one single operational definition does not suffice for most
conceprs. As the use of the concept is extended to new fields, it must be
given new operational definitions. It is very difficult tc see how the laws
on which the operational definition is based can be verified without con-
sidering the new coneept ttself. Imagine for example verifying that space
1s Euclidean betore mntroducing the concept of length! We shall call this:
the objection from conceptual extension,

Secondly we have an objection concerned with the correction and im-
provement of methods of measuremeni. Suppose we introduce a naive
definiticn of length in terms of rigid metre rods and employed it to mea-
sure lengths up to say half a kilometre. Then the theodolite method is
discovered. At once it is employed for lengths of more than 50 metres.
Now normally we would say that a more gccurate method of measuring
lengths more than 50 metres had been discovered. On the operationalist
view however this manner of speaking is mnadmissible, We have defined
length by the rigid procedure and the most we can say of another method

;\ metve ye CL
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of measurement is that it gives results in approximate agreement with the
defining procedure for length. It makes no sense to say that the results
given by the alternative method are nearer to the true value of the length
than those given by the defining method. That would be like first defining
a metre as the distance between these two marks on this rod and then say-
ing that more accurate measurement had revealed that the distance was
not a meire,

The situation is the same when we come to consider the ‘corrections’ for
temperature, gravitational and electrical distortions, etc. mentioned
earlier. Suppose again we had defined length in terms of a measuring
procedure using iron rods but without taking temperature corrections into
account, One day bright sunshine falls through the windows of the labora-
tory, heating both the measuring rod and the wooden block being mea-
sured. It is observed that relative to the rod the wooden object has changed
its length from the day before (in fact contracted). However an intelhgent
experimeter then suggests that in fact the measuring rod has expanded
more than the wooden block. He cools down the rod to normal room
temperature and produces a more correct value of the new length of the
block. Indeed he now shows that it has expanded rather than contracted.
But how is this admissible on the operationalist point of view? Length has
been defined by the initial set of procedures and according to this definition
the block must have contracted rather than expanded.

The only line the operationalist can take on this is to say that we have
decided to adopt a new definition of length. Our naive rigid-metal-bar
definition is replaced for distances over 30 metres by a theodolite defint-
tion while in certain other circumstances a temperature correction is
introduced. But the operationalist now has to give an account of how new
definitions are evolved and why we choose to adopt one definition rather
than another. Further, in view of Popper’s point, he has to show that the
new definitions do not involve circularity since many of the correcting
terms must themseives be given operational definttions.

These two objections indicate the grave difficulties which stand in the
way of any systematic operationalist account of the introduction and
development -of the concepts of physics. Mach’s definitton of mass for
example gives only the barest beginnings of such an account. These diffi-
culties are I believe insuperable.

Having criticized operationalism, it is now worth pointing out that it 1s
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an attempt to solve a seritous and difficult problem in the philosophy of
science. This difficulty can be described using the notion of ‘empirical
meaning’ or ‘empirical significancs’. Let us say that a concept has ‘empiri-
cal meaning {or significance)’ if we can assign numerical values to particu-
lar instances of it — if we can, in effect, measure 1t under certain circum-
stances. Thus the concepis of force and mass have empirical meaning
because we can, at least in some cases, measure the masses of bodies and
the forces acting on them. But now we can ask; how can new concepts
acquire significance? If they are not defined 1n terms of observabies or by
means of the methods used to measure them, how do they acquire mean-
ing? This we shall call ‘the problem of conceptual innovation’.

Our method of tackling this problem will be to give a detailed historical
analysis of the introduction of the Newtonan concepts of force and mass.
In the next section (Section 2} we wili begin by outlining the background
xnowledge m astronomy and mechanics against which Newten developad
his theorv. We will then discuss how the theory was tested 1mmitially, paying
particular attenuion to the role played by the new concepts of force and
mass in these tests. Finally we will consider how forces and mass came {o
be measurable. We can tnen, 1 Section 3, generalize from this example to
give a theory of conceptual innovation i the exact sciences. It will be
shown that this theory avoids the difficulties which we have noted mn
operationalism,

2. FORCE AND MASS

Our aim is to stﬁdy the general problem of conceptual innovation by
examining Newton's introduction ot the concepts of ‘force’ and ‘mass’. [t
could first be asked, however: “Is this exampie of conceptual innovation
a genuine one? Did not some idea of “force’ and ‘mass’ exist before
Newton?” Well of course some 1dea of these concepts did exist but very
little, so that the example 15 a surprnisingly good one. We can appeal to the
authority of Mach on this point. He savs {8, p. 236]:

On perusing Newf{on's work the following things strike us at once as the chief advances
beyond (Galileo and Huygens:

{1} The generalization of the idea of force.
(2} The introduction of the concept of mass...

Naturally, however, an appeal to authority is not a very satisfactory
method of argument, so we will attempt a brief survey.
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Let us first take the concept of mass as distinct from weight. In a sense
of course Descartes drew a clear distinction between mass {or quantity of
matter) and weight. He identified matter with spatial extension and thus
quantity of matter was measured by volume. It naturally followed that
quantity of matter was not proportional to weight. Indeed a vessel when
filled with lead or geld would not contain more matter than when ‘empty’,
1.¢. filled with air (Descartes” own example). It seems to me that this con-
cept of ‘quantity of matter’ is too different from Newton’s to be consid-
ered as forerunner of the latter. Some authors have given Huygens the
credit for being the first to distinguish ‘'mass’ and *weight’. In his treatise,
‘De V1 Centrifuga’, Huvgens says: “‘the centrifugal forces of unequal
bodies moved around equal circumferences with the same speed are among
themselves as the weights or solid quantities — inter se sicut mobilium
gravites, seu quantitates solides.”” (quoted from Bell, |, p. 113}, It has been
sugeested that this is the earliest hint of a distinction between mass and
weight. There are also two notes in Huygens' manuscripis of 1668 and

1669, namely [Bell, 1, p. 162}:

{a) Graviiatern sequi quantitatem materiae cohaerentes in quolibet corpore.
(b) Le poids de chaque corps suif precisement la quantité de la matiére qui entre dans
sa composition.

For my part I find the "De Vi Centrifuga’ quotation unconvincing.
Hu}rgens could simpiy be using “solid guantity’ as a synonym for ‘weight’.
The manuscript quotations are more striking. However at all events these
1deas of Huygens can be ignored when taking account of the background
of Newton’s thought. Although the “De Vi Centrifuga’ was composed
around 1639, 1t was not published uil 1703, while the Huvygens’ manu-
scripts were not published till our time.

The third possible claimant to the concept of mass is Kepler. In the
introduction to the Astronomia Nova(1609), he says [quoted from Koestler,
7, p. 342]:

If two stones were placed anywhere in space near to each other, and outside the reach
of force of a third cognate body, then they would come together, after the manner of
magnetic bodies, at an intermediate point, each approaching the other in proportion to
the other’s mass (moles).

This remarkable passage contains already the principle of universal gravi-
tation, but, as Koestler rightly points out, it remained an isolated insight.
Kepler later developed his celestial dynamics on other principles. Thus to
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a first approximation at least we can say that the concept of mass as
distinct from weight is original to Newtomn.

The case of force is not so clear cut. We must admit that in the study of
Statics and Equilibrium a notion of force had evolved, but it was little
more than a slight generalisation of the idea of weight. As Mach says

[8, p. 57]:

Previous to Newton a force was almost untiversally conceived as the pull or pressure ot
a heavy body. The mechanical researches of this period dealt almost exclusively with

heavy bodies.

The two main statical laws that had been discovered at that date, namely
the law of the lever and the law of the inclined plane, can in fact be stated
using only the netion of weight. On the other hand, the idea of weight had
been generalised to give the notion of a tension in a string. This appears,
for example, in the second day of Galileo’s Two New Sciences {Galiieo,
5p. 122).

In 1672, at the end of his Horologium Oscillatorium, Huygens published
13 propositions without proof on centrifugal force. He considers a centrit-
ugal force as a real force which balances the tension in a string 1n the same
way as the weight of a body, We can therefore take Huygens’ concept of
centrifugal force as a generalisation of the previous notion of statical
force. However once again I am inclined to exclude Huygens” work from
an enumeration of the background to Newton’s thought. Admittedly the
13 propositions were published in 1672, long before the Principia. However,
as Herivel has shown in [6], from a consideration of early manu-
scripts, Newton evolved his own ideas of centrifugal force in the period
1666-9 and independently of Huygens.

In dynamics too there had been some notion of force. Galileo had
worked with a concept of impeto — no doubt derived from the medicval
thinkers. But this notion — in so far as it was quantitative — corresponds
more closely to the modern notion of momentum than to the Newtoman
idea of force. Again Kepler has a theory of bands of force or infiuence
emanating from the sun and carrying the planets round like the spokes of
a wheel. However these ideas of Kepler, and indeed of Galileo, were never
put on a quantitative basis and were not needed in the statement of these
authors’ main resuits. I conclude that Newton’s quantitative notion of
dynamical force was indeed original to him. More generaily, we can say
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that we do genuinely have here a case of conceptual innovation and a
careful study of it should tell us a great deal about the way in which new
concepts can be developed.

We can now state the main quantitative results which had been achieved
before Newton in mechanics and astronomy. These were, of course,
Kepler’s and Galileo’s laws. Despite their familiarity it might be worth
repeating them briefly. Kepler's laws are three in number:

(a) Every planet moves in an cllipse with the sun at one focus.

(b) The radius vector from the sun to a planet sweeps out equal areas
1n equal times.

(c) If ais the mean distance from the sun to a planet and T 1s the time of
a full revolution of the planet (the length of the planetary year), then
a’| T* = constant.

The only point worth making about these laws :s that they were mixed
up in Kepler's work with a great deal that was incorrect. In particular, of
course, Kepler had a theory about the relation of the solar system to the
five regular solids, and he considered this theory to be his greatest scientific
achievement — much finer than the 3 laws. It therefore required consider-
able selectivity on Newton’s part to obtain just those three-laws {from
Kepler.

Galiiso’s results can be summarised very convenienily mnto 2 laws,
namely:

(a) Neglecting air resistance freely falling bodies have a constant down-
ward acceleration g.

(b) Neglecting air resistance again, bodies which are smoothly con-
strained to move at angle x to the horizontal {e.g. by an inclined plane)
have an acceleration gsina.

To these main results we may add numercus astronomical observations
concerning the moon, which, as we shall see, proved important.

In this statement I have once again rather over-simplified. Other results
were known in mechanics — for instance the laws of impact. I think, how-
ever, that it is better to omit these as their inclusion would only complicate
the discussion without adding any new point of importance.

We are now in a position to examine how Newton’s theory was checked
against experience prior to its acceptance. In doing so we must not fall
into the error of supposing that we can test out Newton’s laws separately.
Indeed this error was committed by Newton himself because, after each
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law in the Principia, he gives the ‘experimental evidence’ for it. However
in fact the three laws of motion and the law of gravity can, in the first
instance, only be matched against experience all rogether. This I believe 1s
the source of much of the misunderstanding of Newtonian mechanics. In
most of the standard expositions the three laws of motion are first intro-
duced and their consequences for problems of terrestial mechanics are
dealt with. Then in 2 separate section (usually the final chapter or even an
appeadix to the book) the law of gravity is stated and some of 1ts astro-
nomical consequences are mentioned. This conceals the fact that Newton’s
4 laws form a unified cosmological theory and that they were tested outin
the first instance on an astronomical scale. Esseniially the theory was
checked against experience by showing that all the previcus results in
mechanics, i.e. Kepler’s laws, Galileo’s laws, etc., could be shown to hold
in a high degree of approximation if the theory were true. We must now
examine how the concepts of ‘force’ and ‘mass’ were used in this deduction.

Newton’s theory can be summarised in the familiar vector eguations:

P = mf (which contains the 3 laws of motion)

and _
F = (vm;m,/r’ ¥ (the law of gravity)

Let us apply these equations to a planet P, mass mp moving round the sun
5, mass ms. We first neglect the gravitational interactions holding between
the planets themselves. The problem is then reduced to a 2-body problem,
and we obtain that P moves on an ellipse of major semi-axis a, say. If the
period of 1ts orbit 1s T, then

A/t WM =y(m, + m)/An. (1)

We now assume that the mass of the sun is very much greater than that of
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the planet (rng > mp) and so obtamn
a®/T? = ym f4n® (i.e. constant).

This is an approximate version of Kepler's 3rd law. The assumption
my > mp though automatically made and sasily over-looked for this
reason contains the solution to the problem we have been discussing. Do
we need an operationalisi definition of mass at this point? Not at all! We
test out our theory involving masses by making the qualitative physical
assumption that one mass is very much greater than ancther. Moreover
this qualitative assumption is justified by a crude (or intuitive) notion of
mass. If we think of mass as ‘quantity of matier’, then observing that the
sun is very much larger than the planets and making the reasonabie posiu-
late that the density of its matter is at least comparable to that of the
matier in the planets, we obtain that m¢ » mp. So we do notatfirst nesd a
precisely defined notion of mass. A rather crude and intuitive notion of
mass can lead to a qualitative assumption and so to a precise test of a
theory involving an exact idea of mass.

Let us now examine how approximations to Galileo’s laws are obtained.
Write M for the mass of the earth, R for its radius, and m for the massofa
small body at height & above the zarih’s surface. We now have to use
theorem of Newicn’s that we can replace a sphere whose mass 18 distrib-
uted with spherical symmetry by a mass point at the centre of the sphere
for the purpose of calculating gravitational forces. This theorem 1ncicen-
tally was one which gave Newton a great deal of trouble. He only succeeded
in proving it in 1685. It now appears as Principia Book 1 Prop. 76.=
Using it we have that the mass m is, by the law of gravity, acted on by a
force directed towards the centre of the earth and of magnitude
smAMH{R + H)? where y is the universal constant of gravitation. As
R>h we can write this approximately as ymM/R*. Now vM|R? is a
constant for all bodies m(=g, say). Therefore a body m 1s acted on by
a downward force approximately equal to mg. Since P = mf this gives a
downward acceleration of approximately g m free fall. If, on the other
hand, the body is acted on by a smoocth constraint at angle x to the hori-
zontal, the component of the force at angle o is approximately mg sina
(since force is a vector). Therefore the body’s acceleration 1s approXimately
gsinz. In this way, approximations to Galileo’s two laws follow.

It will be noticed that in this derivation too an approximation 1s made

I NTY ey
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~-namely R » h. However thisis not an assumption involving new concepts,
bur a statement involving two quantities which were already quite well-
known. After all, the first measurements of R date back to Eratosthenes,
We see that in this case the laws are derived by completely eliminating the
new concepts in the deduction. It might be asked: could we test ouf a new
theory with new concepts by the following method : make a series of deduc-
tions from the theory in which the new concepts are completely eliminated
and compare the resulis we obtain with experience? I myself do not think
so. We might derive some of our results (like the approximations to
Galileo’s laws) in this way; but I think we need to obtain at least some of
the others by qualitative assumiptions involving new concepts (e.g.
ms > mp). My reason is this. If the new concepts could always be elimi-
nated before a comparison with experience took place, we would be in-
clined to regard the new concepts not as being physical quantities, but
rather as mathematical coefficients introduced to make the calculations
easier. A good exampie of such a ‘mathematical coefficient’ is { — [Hiehas
it is used in the theory of electrical circuits. Here we always write the
current J in the complex form i, exp (— 1)*/% wt. This mathematical device
ereatly simplifies all the calculations. Yet we never give a physical mean-
ing to the imaginary part of the expression. At the end of the calculation
the real part of i, exp(— 1)*/? wt is taken and compared with the experi-
mental findings. However the concept of mass is not in this position.

The deduction of the approximate truth of Kepler’s and Galileo’s laws
provided the main evidence for Newton's theory. However it is interesting
also to consider the test of the theory made by observing the motion of the
moon. This moon-test was in fact Newton'’s first test of the law of gravity,
and in the course of considering it we can examine Newton’s own atutude
to the questions we have just been discussing. The logic of the test (using

modern methods) is as follows:
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[ et the earth £ have radius R and mass M. Let the radius of the moon’s
orbit be g and its period (i.e. the lunar month) be 7. If the moon’s angular
velocity is w its centripetal acceleration is aw?” and the gravitation force on
it is yMm/a®. Therefore, since P = mf,

vMm/fa® = mam*.
But
®=2n/T
Therefore
vM/dn? = a®|T? (2)

On the surface of the earth we have by a previous calculation

yMm/R* = mg.
Therefore
vM =gR*.

Substituting, we obtain
g ={4n*/R*) (a’|T?).

Now all the quantities in the R.H.S. of this equation are known. So we
may calculate the value of g from the equation, and this can be compared
with the value of g observed by means of pendula. When Newton first
nerformed this test (c. 1666), he found a noticeable discrepancy between
the two values of g. This led him to abandon his theory for a while. How-
ever the disagreement was due to a faulty value of the earth’s radius. When
he tried the test again much later (between 1679 and 1684) with a corrected
value of the earth’s radius, it gave agreement within experimental error
and this was one of the factors which stimuiated him to push his work on
the Principia through to its completion.

It looks as if the deduction just made is similar to the deduction of
Galileo’s laws, i.e. the new concepts simply cancel out. However this 1s
not in fact so. The equations are derived on the as'sumptiﬂn that the earth
is fixed. Eppur si muove, and we therefore should substitute for (2) our

Equation (1), 1.e.

(M + m)jdn* = a’|T*.
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To regain (2) and carry through the deduction, we must again assume that
m is negligible compared with M (i.e. mass(earth) » mass(moon)). So the
case 1s really the same as the deduction of the approximation to Kepler’s
3rd law.

We can now examine what Newton himself says abeout this. He describes
the moon-test in Principia Book III Prop. 4, and after giving a deduction
equivalent to our original one (but using his own mathematical methods),

he continues {9, p. 409]:

This calcuius is founded on the hypothesis of the carth’s standing still; for if both earth
and moon move about the sun, and at the same time about their common centre of
gravity, the disitance of the centres of the moon and earth from one another will be
504 semidiameters of the earth: as may be found by a computation from Prop. LX,
Book 1.

Book I, Prop. 60, in eflect introduces the corrected Eguation (1) instead
of the original Equation (2). We can, I think, criticize MNewton’s logic here.
To introduce the corrections he speaks of we need to know the value of the
ratio of the moon’s mass to the earth’s mass. Now this ratio can be calen-
lated once INewton’s theory is assumed by a method which we will explain
in a moment. However, when Newton’s theory i1s being given 1ts first tests
prior to 1ts acceptance, we cannot infroduce the exact correction. In fact,
in order to get the test at all we have to iniroduce the qualitative assump-
tion mass{earth) > mass(moon), as we have already shown.

Similar criticisms can be raised against Newton's general methed in
Book I1I of the Principia. He begins by stating Kepler’s laws, the motions
of the moon and of the satellites of Jupiter and Saturn as Phenomena 1-6.
Then using his rules of reasoning he infers the law of gravity inductively
in Book iIl Props. 1-5 and 6. Finally, assuming the law of gravity, he
derives Kepier's laws deductively in Props. 13-16, but this time he incor-
porates certain corrections. Thus he says at the beginning of Prop. 13
[9, p. 4207
We have discoursed above on these motions from the Phenomena. Now that we know

the principles on which they depend, trom these principles we deduce the motions of
the heavens aq priori.

He then goes on to mention some of the corrections which must be intro-
duced. He claims that broadly speaking [9, p. 421]: “the actions of the
planets one upon another are so very small that thev may be neglected
..... However he goes on to say that Jupiter and Saturn noticeably affect
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one another in conjuction, and that the orbit of the earth 1s (9, p. 422}
“sensibly disturbed by the moon.™

Newton does not realize that these corrections actually vitiate his
inductive-deductive approach. They vitiate it because, as Duhem was the
first to point out in [4], Part If, Ch. VI, Part 4, pp. 190-3, the law of grav-
ity is strictly speaking inconsistent with the phenomena from which it was
supposedly induced. Moreover, it is very impiausible to claim that from
given premises we can induce conciusions which logicallv contradict the
premises. Newton’s approach also conceals the role which the new con-
cepts ‘force’ and ‘mass’ play in the derivation of approximations to
Kepler's and Galileo’s laws. The role we have tried 1o analyse m this
section.

Duhem’s point can be used to provide an additional argument agamst
~ Mach’s philosophy of science. According to Mach, high level mathemati-

cal theories (such as Newtcn’s) are merely summaries of experimental
laws, and are introduced for ‘economy of thought’. Thus presumanly
Newton’s theory is a summary of Kepler’s laws, Galileo’s laws, the laws
of impact, and perhaps other things. But this is not so because Newton’s
theory, far from summarizing e.g. Kepler’s laws, strictly speaking contra-
dicts them. Only a certain approximation to Kepler’s laws follows from
Newton’s theory. We could say that Newton’s theory corrects Kepler’s
original laws; but this is unaccountable on Mach’s position. After this
brief digression, let us complete our account of how new concepts come
to be measurabie.

Once a new theory involving new concepts has passed a number of
preliminary tests, we can accept it provisionally and use it to devise
methods for measuring the values which the new concepts assume in Cer-
tain particular cases. We will now illustrate this in the example of Newton’s
theory which we are considering. First let us consider how the mass of a
nlanet might be measured assuming for the moment that the sun has unit
mass. Let the planet be distant g, from the sun and have orbital period
T,. Then assuming mg > n1p We have as usuai:

ay/Ts = ymg/dn®.

But now suppose the planet has a moon M of mass m,, which 1s distant
a,, from the planet and has orbital period 7. If we assume again that
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mp 2> My, we get as before

ad T =ympfdn?.
Therefore dividing we obtain

mp/mg = (@yfap) (Tp/Th)*.

All the quantities on the R.H.S. of this equation can be determined by
astronomical measurement and so we obtain a value for the ratio mp/mq.
Calculations of this sort are given in the Principia Book III Prop. 8.

For example Mars has a moon Deimos whose period 1s 30.3 hrs. We
hence obtain My, Mgy, = 3.4 x 107 7. Incidentally, this calculation con-
firms our original assumption that mass {Mars) > mass (Sun), but it is
worth noting that 1o make if, we have to assume not only Newton’s theory
but also that mass (Deimos) < mass (Mars).

As regards measuring the masses of terrestial bodies, the case 1s s0
trivial that it 1s hardly worth mentioning. We identify the downward
gravitational force on a body with its weight, But since the downward
force 1s mg and g is constant, we obtain mass oc weight. This gives us a
method of measuring the masses of bodies. The only point worth men-
tionning is that the theory enables us to correct for the variation in g, which
can itself be measured by means of pendula.

We wiil now attempt to generalise from this exampie of Newton’s
theory to obtain a general account of conceptual innovation in the exact
sciences. 1t can then be pointed out that this account avoids the dificulties
inherent in operationalism. These matters will occupy us in the next sec-
f101L.

3. CONCEPTUAL INNOVATION IN THE EXACT SCIENCES

Let us now develop the ideas we have acquired from the case of mechanics
by applying them to the problem of introducing the concept of tempera-
ture. This time we will not attempt an histerical analysis, but confine
ourselves to giving a hypothetical series of theories and tests which would
have enabled a precisely measurable concept of temperature to evolve with-
outcirculanty. Somedetails of the actualhistorymay befoundinRoiler [11].
Our suggestion is that we begin by proposing the following law: ‘For rods
or columns of a Iarge number of different materials 8 oc/, where 0 is the
temperature of the rod or column and 7 its length.” Now the interesting
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thing about this law is that ‘6" and */” both stand for new concepts. We are
not assuming any prior notion of length, for the measurement of length,
as Popper says, “needs a (rudimentary) theory of heat” (Popper [10], p. 62.
Quoted earlier on p. 10). But if both 8 and / are new concepts, how can we
test the law? The case seems altogether hopeless.

It is not, however, as hopeless as it seems. Once again we proceed by
making a series of qualitative assumptions of the form: “In such and such
circumstances the temperature of this body is approximately the same as
the temperature of that body’, ‘the lengths of these two bodies are nearly
the same’, etc. These assumptions enable us to obtain certain results which
can be compared with experience, thereby testing out our law 6 oc . We
will now analyse how this comes about.

Qur first step Is to select two fixed points on the temperature scale. These
are of course melting ice, and boiling water. It is assumed (i) that these
fwo points represent approximately constant temperatures, and (ii) that
any body immersed for a sufficient long time in the melting ice or boiling
water will acquire approximately at least the same temperature as the
melting ice resp. boiling water. Assumption (ii) plays much the same role
as the assumption that m, > m, in the Newtonian case. We can now make
a first crude test on our law. If it is assumed that the constant of propor-
tionality tn §oc!/ differs for different materizals, then we will expect that
rods or columns which have the same length in melting ice {which we can
cali § = 0) will have different lengths in boiling water (8 = 100). This can
pe checked. To do so we need not have a general method of measuring
length but only an ability to check that two lengths are approximately
the same (by putting them end to end), and of judging that one length is
greater than another.

Of course we have not really checked the relation 8 o I, only that length
and temperature vary together and at different rates for different materials.
However-our results show that certain materials, e.g. wood, show very
little vanation even between temperatures as different as O and 100. We
now assume that room temperature varies very much less over a period
of a few weeks than the difference between 0 and 100. So if we fix on some
standard distance, we can construct a rough instrument for measuring
length, viz, a ruler.

We have almost reached a position where 8 oc / can be tested but there
are still difficulties. We need to use materials for which the variation is
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targe, and we have to ensure that although the matenal itself is at various
temperatures the length-measuring instrument, i.e. the ruler, is at room
temperature ( assumed approximately constant throughout the experi-
ment). The way in which these difficulties are overcome is well-known.
We choose for our materials different liquids {mercury, alcohol, efc.)
encased 1n thin tubes of glass, closed at one end and terminating in bulbs
at the other. The bulb is immersed in the melting ice, boiling water, etc.,
but the ruler 1s held against the glass tube at room temperature. It may
now be objected that we can only calibrate the thermometer by assuming
inearity. In fact, however, we can first test out various consequences of
the law 8 ocl. If these are sﬁﬁisﬁed, we assume the law and use 1t for our
calibration. What then are these preliminary tesis?

Let ¢ stand for room temperature, assumed constant throughout the
experiment. Let us consider a particular material, say a column of alcoho],
and suppose that for it 8 = &/ Let us measure its lengths using the ruler
at 0, ¢, 100 and obtain /,, I, /,49. Then

100 = k{196 — o)
i (I
Therefore
t=100(/, — Iy)/({;00 — Io)-

Therefore for all substances, we have (on a given day) 100(/, — 1))/({;00 — )
is approximately constant. We have here a consequence which can be
tested with the crude means at our disposal. Further, we can vary the ex-
periment by taking another fixed point, say the temperature {7) of a mix-
ture of ice, salt and water, and checking that again 100{/, — [))/(/100 — o)
is approximately constant for all materials.

We see that once again no operational definition of length or tempera-
ture 15 necessary. We introduce a hypothesis or theory involving these
concepts, and test it out in certain ways. An instrument for measuring
temperature, viz. the thermometer, is then designed on the basis of the
theory. In order to make the tests we have to add to our theory certain
qualitative assumptions about the new concepts. The only difference from
the Newtoman case 1s that there the qualitative judgments were judgments
of inequality (m, » m,), whereas here they are judgments of equality, viz.
(a) the temperature of certain processes, i.e. melting ice and boiling water,
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is approximately constant; (b) the temperature of two bodies which have
been immersed for a long time in boiling water is approximately the same
and equal to that of the boiling water; and (c) two rods are the same length
(at the temperature in question) if one can be exactly superimposed over
the other.

Let us now pursue the development of the temperature concept a little
further. Having obtained a method of measuring terperature {the mer-
cury thermometer) we can now test some other laws involving tempera-
ture. For example, the gas law PV = RT. This law holds very well for gas
at very low pressures and we may therefore use it to design a very accurate
(though cumbersome) instrument for measuring temperature — the so-
called ideal gas thermometer. We can use this mstrument in turn to test
cut further laws — say the thermocouple effect; and this effect can be used
in its turn to provide a method for measuring smail temperature dif-
forences. Now we come fo an interesting point. Using our thermocoupie,
we can test out one of our original assumptions — say that two bodies im-
mersed in boiling water have the same temperature. We may well find
that this assumption holds only approximately but not exactly., Our new
methods of measurement transcend our original crude ones; but, on the
other hand, the original crude assumptions and methods were necessary

efore the sophisticated and exact methods could be developed.

I have two analogies to illustrate this situation. The first one COnCerns
the process of liquifying a gas. One standard method here is to use the
Joule-Kelvin effect. On the other hand, the Joule-Kelvin effect will only
cool the gas further if it is already at a sufficiently low temperature. Letus
suppose that the gas is initially above this critically temperature. [t must
then be cooled below it, using some method less sophisticated than the
Joule-Kelvin effect. Similarly, we sometimes have {o use a cruder method
of measurement to test out the theories on which a more sophisticated
method of measurement is based. Another analogy is with the method of
finding numerical values for the roots of equations by successive approxi-
mation. Usually there is dn iterative process. We start with some very
crude approximation and by applying a certain procedure we obtain a
better value. This value is then the starting point for a new application of
the procedure etc. After several repetitions we may obtain a very accurate
value but this was only possible because of our initial crude approxima-
tion.

A s
: ;
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There 15 another point worth raising here. We may well discover that
our original crude assumption and crude law (§ oc /) do not hold exactly.
Indeed we will naturally hope to correct them because in so doing we will
have improved on the situation which held before. On the other hand,
suppose that we show that our original laws and assumptions are not just
inexact but wildly wrong. If this turned out to be the case, we would be 1n
an embarrassing situation. A kind of contradiction would have arisen 1n
the notion of temperature and we would have either to abandon the con-
cept completely or reconstruct it painfully from crude beginnings.

We are now in a position to state, in general terms, out theory of con-
ceptual innovation. Let us suppose a new theory is proposed mvolving
new concepts Cy, ..., C,. Our problem was: how do these concepts become
measurable? how do they acquire empirical significance? The answer 18
this. We first test the new theory by deducing from it consequences which
do not involve the new concepts and comparing these consequences with
experience. In some cases the deduction 1s strict and the new concepts are
eliminated by purely logicai moves without making any additiconal assump-
tions. This was the case with Galileo’s laws. However not all the conse-
guences can be obtained in this way, otherwise the new concepts will be
regarded as mathematical auxiliaries similar to (~— 1)"/* rather than as
concepts with physical significance. In general, certain quaklitative assump-
tions of approximate equality or of great inequality in particular physical
situations will be made concerning the new concepts. The originai theory
together with these qualitative assumptions will lead to the conclusion
that certain consequences hold approximately. These consequences are
then matched against the results of experiments past or future. If the new
theory is corroborated by these comparisons, it 1s accepted and methods
for measuring the new concepts are devised on the basis of it. In this way
the concepts acquire empirical significance. At a later stage, the original
theory, or the qualitative assumptions, may be tested using more sophisti-
cated methods of measurement and found to hold only approximately.
The more sophisticated methods could not, however, have been developed
without the previous cruder ones.

At the risk of being a little repetitious, we will now point out that this
theory avoids the difficulties in operationalismm which we noted earher.
The first problem we called the problem of conceptual extension. It was
observed that as a concept is extended into new fields we need new opera-
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tional definitions. The laws on which these new operational definitions
are based must be verified ““before introducing the concept itself.”” The
simple example we gave of this was extending the rigid metre rod defini-
tion of length by using a theodolite. However the theodolite is based on
Euclidean geometry whose truth must apparently be verified before intro-
ducing the concept of length.

Our main disagreement here is that we regard concepts acquiring mean-
ing not through operational definitions, but through their position in a
nexus of theories. An account of the logical reiations of these theories and
of the way we handle them in practice would give us the significance of the
concept. Thus a concept can indeed be extended, not by acquiring new
operational definitions, but rather by becoming involved in a series of new
and more general theories. If we accepted the operationalist view, we could
not suddenly postulate a new theory with new concepts. The new concepts
would only have meaning after they had been coperationally defined. An
operationalist must therefore check the laws on which his definitions are
to be based before introducing the concept. We described earlier Mach’s
attempt to check certain mechanical laws before mtroducing the concept
of mass. In general, however, this programme cannoi be carried through
as we saw from the absurdity of checking Euclidean geometry without
introducing the notion of length. Moreover, from our point of view it 1s
unnecessary. We are quite free to introduce a new undefined concept in
a new theory. Our only problem is then how to test this theory ana this
problem can, as we have seen, be solved.

The second difficulty in operationalism was the question of how the
operationalist could give an account of the correction and improvement
of methods of measurement. We often, for example, speak of ‘discovering
a more accurate method of measuring a concept’ but if the previous meth-
od was the definition of the concept, how is any more accurate method of
measuring it possibie? Again we often introduce corrections for tempera-
ture, gravitational forces, etc. But how can be correct a definition?

This difficulty too disappears as socn as we recognise the primacy of
theories. Methods of measurement are only introduced on the basis of
theories; and there is no reason why starting from a particular set of theo-
ries we should not be able to devise two methods of measurement — one
more accurate than the other. Again our methods of measurement involve
not only the general theories but also certain qualitative assumptions, €.g.
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that temperature variations in the laboratory are negligible. We can always
replace such an assumption by a more sophisticated one, thus ‘correcting’
our previous method of measurement.

Chelsea College, Universiry of London
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NOTES

* A previous version of this paper was read at a meeting of the British Society for the
Philosophy of Science in London. T am grateful to those who offered comments and
criticisms on that occasion — particularly to Prof. 1. Lakatos and Dr. H. Post,

1 A proof of thiz result is given in Rutherford {121, pp. 66-71.

2 A proof using modern methods can be found in Rutherford [12], pp. 25-30.
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