
8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 1 of 18file:///Users/piumarta/src/idst/doc/canvas.html

Lessphic: A disposable, light-weight graphical environment for
FoNC

$Id: canvas.html.in 330 2006-07-22 02:47:43Z piumarta $
last updated for idst-5.8 release

Contents:

1 Introduction
2 Geometry
3 Colour
4 Shapes
5 Canvas
6 Views
6.1 ComposableView and CompositeView
6.2 TransformView
6.3 View
6.4 ShapedView
6.5 Drawing
6.6 Properties
6.7 Discussion
7 Events
7.1 Event handling
7.2 View-specific event handling
7.2.1 Example
8 Typefaces, Fonts and Glyphs
8.1 Typeface
8.2 Font
8.3 Glyph
8.4 Metrics
8.4.1 Glyph metrics
8.4.2 Font metrics
9 Character maps
10 Text
11 Layout
12 Resources

1 Introduction
This document describes a graphical system whose only purpose is to bootstrap the FoNC programming environment. It deals only with the
2-D vector graphics subset of the system. A description of the 3-D support will be added later if necessary.

Please, please replace the system described herein at your earliest convenience with something infinitely better (maybe using generalised
relationships and constraints rather than hard-wired structure).

I'm very sorry about the name, but it was the only obvious choice.

2 Geometry
Any Number can represent an angle. All angles are in radians, increasing anti-clockwise relative to the positive x-axis (which is at absolute
angle zero).

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 2 of 18file:///Users/piumarta/src/idst/doc/canvas.html

The Point is the primitive unit of geometry and provides similar protocol to the points implemented by Smalltalk. The default coordinate
system has x increasing to the right and y increasing upwards. For physical surfaces (such as windows) the origin is mapped to the bottom-
left which places the entire surface in non-negative coordinates.

Note: Integral coordinates address the boundaries between pixels (not the pixels themselves). This means that rectangular fills aligned on
integral coordinates will have sharp edges, but stroked single-pixel horizontal or vertical lines at integral coordinates will paint pixels on
both sides of the boundary coincident with the line. To make sharp lines either use a line width of 2 or transform the coordinate system by
0.5@0.5 before using a line width of 1.

3 Colour
Colour responds to the following messages to create a new object representing four channels of red, green, blue and alpha:

Colour withR: r G: g B: b A: a
Colour withH: h S: s B: b A: a

All four arguments are numbers between 0 and 1. The final (alpha) argument is optional and defaults to 1 if omitted.

Colours respond to at least the following messages:

r
g
b
a

answer the receiver's red, green, blue or alpha channel, respectively.

mixedWith: aColour ratio: aFraction
answers a new Colour formed by mixing aFraction of the receiver with 1 - aFraction of aColour.

lighter
darker

answer a new Colour formed by mixing the receiver in equal proportions with white or black, respectively.

red
green
blue
yellow
magenta
cyan
black
darkGrey
grey
lightGrey
white

answer a predefined Colour with alpha of 1. After the primary and secondary colours in the above list are 0, 25, 50, 75
and 100 percent greys.

4 Shapes
A Shape is (literally or conceptually) a collection of contours (often just line segments described by a set of vertices). Shapes implement
protocol to enumerate, edit, and transform their vertices. Since they are a fundamental part of the graphical system all Shapes respond to
the following messages:

pathOn: aCanvas
appends a path to aCanvas (using the protocol described in the Canvas section) appropriate to the visual representation
of the receiver.

bounds
answers the smallest Rectangle (whose sides are parallel to the receiver's coordinate axes) encompassing the path

file:///Users/piumarta/src/idst/doc/canvas.html#Canvas

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 3 of 18file:///Users/piumarta/src/idst/doc/canvas.html

appropriate to the visual representation of the receiver.

Polygon provides simple generic Shape as a set of Points representing vertices joined by line segments. Polygons can contain any
number of vertices an are implicitly closed.

Rectangle provides an optimised representation for Shapes that are Polygons with four vertices and whose line segments are parallel to
the coordinate axes; they store an origin and corner Point. A Rectangle is normal when the corner is not less than (below or to the left
of) the origin.

5 Canvas
aCanvas newPath

Clears the current path (if any) and current position (if any) from the canvas.

aCanvas moveTo: aPoint
Moves the current position to aPoint without extending the current path.

aCanvas moveBy: aPoint
Moves the current position to the vector sum of the current position and aPoint without extending the current path.

aCanvas lineTo: aPoint
Extends the current path with a line segment from the current position to aPoint. The current position becomes
aPoint.

aCanvas lineBy: aPoint
Extends the current path with a line segment from the current position to the vector sum of the current position and
aPoint. The current position is incremented by aPoint.

aCanvas rectangle: aRectangle
Convenience method that extends the current path with a closed rectangle. The current position becomes the origin of
aRectangle.

aCanvas curveThrough: aPoint through: bPoint to: cPoint
If there is no current position then the current position is set to aPoint. The current path is then extended with a cubic
Bézier spline from the current position to cPoint with control points at bPoint and cPoint. The current position
becomes cPoint.

aCanvas arc: aPoint radius: r from: a1 to: a2
aCanvas arcNegative: aPoint radius: r from: a1 to: a2

Extends the current path with a circular (in user space) arc, centred at aPoint with radius r, bounded by the radials a1
and a2 expressed in radians anticlockwise from the positive X axis. The first form sweeps the arc through increasing
angles; the second form sweeps through decreasing angles. If there is a cuurent point before this operation then a line
segment is first drawn from it to the first point on the arc's circumference. After the operation the current position
becomes the final point on the arc's circumference.

aCanvas setSource: pixelSource
Sets the source of pixel values for subsequent drawing operations (stroke, fill) to pixelSource. The
pixelSource can be any object mapping coordinates to pixel values. Colours are already supported, answering a
constant pixel value for all coordinates. Gradient fills and images are planned but not yet implemented.

aCanvas setStrokeWidth: aNumber
aCanvas getStrokeWidth

Sets or retrieves the line width currently in effect for stroke operations. The default stroke width is 2. (This ensures that
vertical and horizontal lines with integral coordinates generate sharp lines with pixels that are fully-on, since integral
coordinates address boundaries between pixels and not the pixels themselves.)

aCanvas stroke
Strokes current path according to the current line width. The current path and point are cleared from the canvas.

aCanvas fill

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 4 of 18file:///Users/piumarta/src/idst/doc/canvas.html

Closes the current path if necessary (by adding a line segment from the current position to the first point of the path) and
then fills the interior of the path with the current source colour. The current path and point are cleared from the canvas.

aCanvas setClipRectangle: aRectangle
Sets a clipping rectangle within which all subsequent drawing takes place. Any existing clipping region is replaced. Note
that this operation may (or may not) destroy the current path.

aCanvas clearClipRectangle
Clears the current clipping rectangle, if any.

aCanvas identityMatrix
Sets the current transformation to the identity matrix, causing user and device coordinates to coincide.

aCanvas rotate: angle
Rotates (by modifying the current transformation matrix) the user space coordinate system about the current origin by the
given angle, measured in radians. Positive angles correspond to anticlockise rotation.

aCanvas translate: aPoint
Translates the user space coordinate system, moving the new origin to aPoint (relative to the old origin).

aCanvas scale: aPoint
Scales the user space coordinate system by aPoint.

aCanvas userToDevice: aPoint
Answers the coordinate in device space corresponding to the user space coordinate aPoint.

aCanvas deviceToUser: aPoint
Answers the coordinate in user space correspinding to the device coordinate aPoint.

aCanvas save
Pushes the current canvas state (transformation matrix, source colour, line width, current path and point) onto a per-
canvas stack of saved states.

aCanvas restore
Restores a previously-saved canvas state (transformation matrix, source colour, line width, current path and point) by
popping the topmost state from the per-canvas stack of saved states.

aCanvas destroy
Releases all resources associated with aCanvas. Note that these resources may or may not be 'weakly' associated with
the canvas. A client cannot rely on garbage collection to automatically recover these resources and should assume that
continually creating new canvases for some physical medium, without destroying every on of them in a timely fashion,
will result in unbounded resource consumption and eventual failure due to starvation. (Garbage-collected systems that
have support for finalisation might choose to send this message from within a finaliser.)

Note that canvases provide no facilities whatsoever for rendering text. It is the client's responsibility to decompose glyphs (representing
character shapes within a typeface) into stroked and/or filled paths constructed from the move, line, curve and arc operations described
above.

6 Views
The graphics system is ultimately concerned only with Canvasses and Shapes. Interactive interface components do however impose
some additional structure. This structure is provided by encapsulating Shapes whithin the nodes of a rooted graph of interconnected views.

6.1 ComposableView and CompositeView

ComposableView represents an edge in the graph, maintaining a one-to-one relationship between a 'dominant' container (a
CompositeView) and a 'subordinate' contents collection (also a CompositeView) of composable views.

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 5 of 18file:///Users/piumarta/src/idst/doc/canvas.html

A CompositeView is the collection of 'subordinate' ComposableViews that are stored in some other 'dominant'
ComposableView. It supports a many-to-many relationship between any number of 'dominant' ComposableViews (all sharing the
same CompositeView) and indirectly its 'subordinate' ComposableViews).

Subordinate ComposableViews are added to a CompositeView by seding it addFirst: or addLast:. Sending addFirst:
places the new view at the 'front' of the z-order, 'above' all other views; addLast: places the new view at the 'back', 'behind' the other
views.

Both CompositeView and ComposableView respond to the following collection-like messages:

addFirst: aComposableView
adds aComposableView to the receiver's subordinate views (in front of all others, if stacking order is significant).

addLast: aComposableView
adds aComposableView to the receiver's subordinate views (behind of all others, if stacking order is significant).

add: aComposableView
is synonymous with addFirst:.

When sent to a ComposableView the above messages are forwarded immediately to the CompositeView that holds its subordinate
views.

Note that ComposableViews are Links and CompositeViews are LinkedLists. A ComposableView can therefore obtain its
predecessor (prevLink) and successor (nextLink) views directly, without recourse to its dominant CompositeView.

6.2 TransformView

A TransformView has no graphical representation. It is a kind of ComposableView and therefore contains other views. Its purpose is
to transform the coordinate system of its contents relative to that of its container, according to its stored transformation Matrix. The
transformation is reversible and coordinates can be propagated (with appropriate transformation) either from container to contents or from
contents to container.

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 6 of 18file:///Users/piumarta/src/idst/doc/canvas.html

For example, when traversing the view graph to draw on a canvas the TransformView will transform the canvas' coordinate system
before drawing each of its content views. In the other direction, when propagating geometric information (such as damage regions) from its
contents up to its container, the TransformView transforms all coordinates by the inverse of its transformation Matrix.

TransformView reponds to new; the resulting object can have any number of ComposableViews added to it. For convenience,
ComposableView responds to transformView by creating a new TransformView and immediately adding itself. For example,
the following two expressions have precisely the same effect:

(aView := TransformView new) add: subView.
aView := subView transformView.

Note that there is no requirement to use TransformViews. An application can choose to ignore them entirely and build a view graph in
which all bounds are represented in global coordinates. This might, however, require new types of view to be defined to store the view's
(global) origin (which would otherwise be supplied implicitly by a TransformView's translation). It would also preclude the sharing of
subgraphs to create duplicated graphical representations at different locations, scales or rotations.

6.3 View

This is an abstract type storing the graphical characteristics that will be used to fill (fillColour) and/or stroke (strokeColour and
strokeWidth) a path.

Concrete subtypes must implement pathOn: and bounds to describe the shape that must be drawn.

6.4 ShapedView

This is a kind of View that provides bounds and pathOn: trivially by forwarding them to a stored Shape (which might typically be a
Rectangle or Polygon).

Other than responding to pathOn: and bounds (as must all Shapes) there are no constraints on the complexity of the shape.
ShapeViews are kinds of ComposableView and can therefore contain subordinate CompositeViews.

ShapedView responds to the constructor withShape: aShape. They can also be created implicitly by sending any Shape the
message shapedView. For example, the following two expressions have precisely the same effect:

aShape := ShapedView withShape: (0@0 corner: 100@100).
aShape := (0@0 corner: 100@100) shapedView.

Note that the shape can be anything from a simple geometric figure to a complex compound shape made up of many 'sub-shapes'. If it is a
compound shape then any hierarchical (or other) structure within the shape is completely independent of the graph of views of which its
ShapedView is part.

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 7 of 18file:///Users/piumarta/src/idst/doc/canvas.html

Note also that a ShapedView (or its stored Shape) is neither required (by convention) nor constrained (by clipping, for example) to
draw strictly within its bounds. The bounds reported by a ShapedView are used only to determine if it needs to be redraw for a given
damaged region. Drawing outside the reported bounds, while not forbidden, is however dangerous because of the risks of either not being
asked to redraw (when in fact the graphical representatin has been damaged) or inadvertently drawing over the bounds of an unrelated view
that will not be asked to redraw itself (and thus damaging its graphical representation 'permanently').

6.5 Drawing

All views implement the message drawOn: aCanvas in: aRectangle.

CompositeView enumerates its subordinate views and forwards the message to any whose bounds intersect aRectangle.

TransformView transforms aRectangle and then forwards the message, with the transformed rectangle, to its
CompositeView.

View tries to draw a graphical representation of itself on the canvas. If fillColour is not nil then the view sends itself
pathOn: aCanvas, sets the canvas' source colour to its fillColour and then immediately fills the path on the canvas. It then
forwards the drawOn:in: message to its subordinate CompositeView. Finally, if strokeColour is not nil then the view
sends itself pathOn: aCanvas, sets the canvas' source colour to its strokeColour and then immediately strokes the path on
the canvas. (The pathOn: method is not implemented by View and must be supplied by a concrete subtype of which the receiver is
a member.)

ShapedView implements pathOn: by forwarding the message to its shape.

The bounds message is handled accordingly:

CompositeView enumerates its subordinate views and builds the smallest Rectangle encompassing their individual bounds.

TransformView applies the inverse of its transformation to the bounds answered by its subordinate CompositeView.

ShapedView just forwards the message to its shape.

6.6 Properties

Each View maintains a set of named properties. These can be used to decorate the view graph with arbitrary per-object information. All
Views respond to the following messages:

propertyAt: aKey ifAbsent: errorBlock
propertyAt: aKey

answers the receiver's property named by aKey if it exists, otherwise answers the value of errorBlock (if specified)
or nil (if errorBlock is not specified).

propertyAt: aKey put: anObject
associates anObject with the receiver as a property named by aKey.

removeProperty: aKey
removes any association in the receiver named by aKey. No error is signaled if aKey does not name a property of the
receiver.

6.7 Discussion

In many graphics frameworks each node in the tree structure provides both a graphical representation (e.g., a background fill) and
substructure (e.g., buttons, lines of text, etc.). In contrast, Lessphic deliberately separates graphical properties (ComposableView) and
aggregation (CompositeView) into two distinct kinds of node within the graph. ComposableViews can provide graphical content
and/or coordinate system transformations but they cannot aggregate multiple subordinate views into a more complex structure.
CompositeViews aggregate many subordinate views into a more complex, logically single, structure but cannot (in and of themselves)
perform any coordinate transforms on their contents (or directly provide graphical content).

This was done to minimuse the confusion that usually arises when trying to share substructure between multiple dominant 'parent' views.
For example, a user interface component will almost always be a TransformView on a CompositeView whose contents draw the
various parts of the component. A layout algorithm places the component within the user interface by modifying the TransformView's

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 8 of 18file:///Users/piumarta/src/idst/doc/canvas.html

matrix with apporpriate translations. Another TransformView can be created and made to share the same CompositeView.

The result is that two copies of a single structure will be visible. Each copy behaves (display, interaction, etc.) normally and neither is
'privileged' or distinguishable in any way from the other. Each will however have completely independent placement (and other
transformations) applied. One obvious use for this is to create miniature views of larger components (or even entire windows) in which
(unless deliberately disabled) display updates and user interactions are fully functional. Another obvious use is the convers: a 'magnifying
glass' onto the contents of any view in which display update and user interaction work exactly as in the original (un-magnified) view.

It might sometimes help to turn the relationship between a ComposableView and its CompositeView (containing all of its
subordinate ComposableViews) 'inside-out' and think about things like this:

(The leaves of the graph will therefore all be empty CompositeViews.)

7 Events
Events are represented by objects of the following types:

Event : Object (context handled globalPosition localPosition)
 PointerEvent : Event (state)
 PointerMotionEvent : PointerEvent ()
 ButtonEvent : PointerEvent (button)
 PointerDownEvent : ButtonEvent ()
 PointerUpEvent : ButtonEvent ()
 KeyEvent : Event (state key ucs4)
 KeyDownEvent : KeyEvent ()
 KeyRepeatEvent : KeyEvent ()

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 9 of 18file:///Users/piumarta/src/idst/doc/canvas.html

 KeyUpEvent : KeyEvent ()

The common members are set as follows for all events:

context
is ignored by the trivial default event dispatch mechanism. A top-level window might set context to an object that
globally manages events as part of the implementation of pointer grabs, focus control, etc.

handled
is nil until an event has been handled. By convention handled is set to the object (usually a view) that took
responsibility for the event.

globalPosition
is a Point, in window coordinates, associated with the event.

localPosition
is a Point, in view coordinates, associated with the event.

The type-specific members are set as follows:

PointerEvent
The state contains an integer bitmap of modifier keys that were active at the time the event was generated.

ButtonEvent
The button contains an integer identifying the particular button that was pressed or released.

KeyEvent
The state is an integer bitmap of modifier keys that were active at the time the event was generated. The key contains
a raw integer code identifying the particular key that was pressed, repeated or released; for control keys (enter, tab,
escape, cursor movement, etc.) the key is encoded in ASCII. For printable characters and ASCII control keys ucs4 is
the ISO 10646 code point associated with the key, otherwise nil. For modifier keys (shift, control, etc.) the key will be
set to the corresponding X11 KeySym (regardless of platform, and whose value is guaranteed to be outside the range of
ASCII codes) and ucs4 will be nil.

7.1 Event handling

Any ComposableView can elect to handle an event by (overriding and) answering non-nil to any of the following (event-specific)
messages:

pointerMotionEvent: theEvent
pointerDownEvent: theEvent
pointerUpEvent: theEvent
keyDownEvent: theEvent
keyRepeatEvent: theEvent
keyUpEvent: theEvent

ComposableView provides default implementations that immediate answer nil in response to any of these messages. A view that
handles an event in one of the above messages should answer non-nil; the answer will be stored as the handled propery of theEvent
and the traversal of the view graph (see below) terminated.

The above messages are sent during a preorder traversal (frontmost first in z-order within CompositeViews) of the view graph, starting
at the root, by (recursively) sending handleEvent: theEvent at: aPoint to each view. The locally-transformed position of
theEvent is tracked in aPoint, updating the localPosition stored in the theEvent whenever the traversal passes a
TransformView. (After updating localPosition, if necessary, handleEvent:at: sends theEvent dispatchTo: self
which is overridden by each event subtype to double-dispatch one of the event-specific messages listed above back to the view.)

For convenience, a view (presumably the root) can be sent handleEvent: theEvent which will initiate the above recursive traversal
in that view with aPoint initialised from the globalPosition stored in theEvent.

7.2 View-specific event handling

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 10 of 18file:///Users/piumarta/src/idst/doc/canvas.html

The above message-based event handling mechanism obviously does not distinguish between different views of the same type. Limited
support for view-specific (per-instance) event handling is provided through the property mechanism (see Properties).

As the dispatch mechanism is traversing the graph, before the event is dispatched in a particualr ComposasbleView that view is checked
to see if it satisfies two conditions:

1. the event's localPosition is within the view's bounds; and
2. the view has a property named by the type of event being dispatched.

If the view satisfies both of these conditions then the value of the property named by the event type must be a block expecting two
arguments. The block is evaluated passing the view and the event (in that order) as arguments. If the block answers non-nil then the event
has been handled; if the block answers nil then the dispatch mechanism continues as described in the previous section.

7.2.1 Example

A short example might help to illustrate these mechanisms. Consider a type World that is a kind of View attached to a top-level window.
The World might set up its initial contents to include just a short text message:

World setup
[
 | text |
 self fillColour: Colour white.
 self add: (text := 'Hello, world' asCompositeView transformView translate: 100@100).
 text
 propertyAt: #pointerDownEvent
 put: [:view :event | self startDragging: view at: event position].
]

The World's setup method adds a block as a property to the text view named pointerDownEvent. When a
PointerDownEvent being dispatched within the World reaches text, and that event's localPosition is within text's
bounds, then the block is evaluated. (Note that the self within the block refers to the World, not to the view that triggered the event.)
The net effect is that when a mouse button is pressed 'over' the text view, the World is sent a startDragging:at: message with
the text and the event's position as arguments:

World startDragging: textView at: textPosition
[
 self
 propertyAt: #pointerMotionEvent
 put: [:view :event |
 textView translate: textView translation + event position - textPosition.
 textPosition := event position.
 self redraw];
 propertyAt: #pointerUpEvent
 put: [:view :event |
 self
 removeProperty: #pointerMotionEvent;
 removeProperty: #pointerUpEvent]
]

The World responds by setting itself up to intercept all pointer motion events, changing the textView's transformation to 'track' mouse
movement in response to all PointerMotionEvents. When the pointer is released, the World's pointerUpEvent block simply
removes the tracking behaviour (the pointerMotionEvent and pointerUpEvent properties) from the World, placing it back in
its initial state.

8 Typefaces, Fonts and Glyphs
First a few terms must be defined.

A family is a single design for the visual representation of a set of printable characters. The family specifies the overall style of the
font: times, helvetica, courier, etc.
A shape is a variation in form within a family: roman, italic, etc.

file:///Users/piumarta/src/idst/doc/canvas.html#Properties

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 11 of 18file:///Users/piumarta/src/idst/doc/canvas.html

A series is a variation in weight within a family: light, bold, etc.
A typeface is a particular combination of font family, shape and series.
A font is a particular typeface at a fixed size: 10pt, 24pt, etc.
A glyph is the shape of a single character within a particular font.

8.1 Typeface

A new Typeface is created from the name of its family with the message:

Typeface family: familyNameString
Typeface family: familyNameString ifAbsent: errorBlock

The familyNameString might be 'times' or 'helvetica'.

The following messages answer Typefaces with the indicated characteristics:

Typeface serif
a member of a serifed family (each beam finishing with a decorative stroke) such as Times, Palatino or Century
Schoolbook.

Typeface sans
a member of a non-serifed family (each beam finishing 'cleanly') such as Helvetica, Avant Garde or Geneva.

Typeface mono
a member of a monospaced family (all characters having the same hAdvance) such as Courier, Lucida Typewriter or
Monaco.

Typical requests for Typefaces might therefore resemble

bodyFace := Typeface family: 'times' ifAbsent: [Typeface serif].
headingFace := Typeface family: 'helvetica' ifAbsent: [Typeface sans].
codeFace := Typeface family: 'courier' ifAbsent: [Typeface mono]

A Typeface is created with a default series and shape, usually 'medium-roman'. To create a Typeface in a particular family with a
non-default shape and/or series, specify all three parameters at once:

myFace := Typeface
 family: 'times' series: 'bold' shape: 'roman'
 ifAbsent: [Typeface serif bold].

A Typeface responds to the messages family, series and shape with the names for those parameters that precisely describe the
receiver.

Given a Typeface, another one differing only in family, series or shape can be created with the following messages:

aTypeface family: familyName
where familyName can be 'serif', 'sans', 'mono', or the name of any locally-available family (dependent on
your particular installation). Some common substitutions ('serif' for 'times', 'sans' for 'helvetica', etc.) will be made
automatically if the exact typeface requested is unavailable.

aTypeface series: seriesName
where seriesName can be 'light', 'medium', 'bold' or 'black'. Some common substitutions ('bold' for
'black', or any weight to its immediate neighbour) will be made automatically if the exact typeface requested is
unavailable.

Typeface shape: shapeName
where shapeName can be 'roman', 'italic', 'sloped', or the name of a shape specific to the particular
family. (Modern typefaces often contain faux italics made from sloped roman glyphs and glibly labeled 'oblique' or
'slanted' rather than 'sloped'. All three names names are acceptable and will differentiate between typefaces if installed
with one name rather than another, but in general they all mean 'sloped' are are treated as synomymous when making
shape substitutions.) Some rational substitutions ('italic' for 'sloped' and vice versa, for example) will be made
automatically if the exact typeface requested is unavailable.

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 12 of 18file:///Users/piumarta/src/idst/doc/canvas.html

A change of family, series or shape can be made by sending a Typeface one of the following convenience messages:

serif
sans
mono

to change family,

light
medium
bold
black

to change series, or

roman
italic
sloped

to change shape.

For example:

titleFace := Typeface sans bold italic.

A Typeface responds to two additional messages:

name
answers a String that encodes the family, series and shape of the receiver.

metrics
answers the receiver's FontMetrics. (Note that the FontMetrics associated with a TypeFace are always
presented in unscaled (integer) font units and are intended for sophisticated clients that need to determine the exact point
size of Font that will satisfy some layout constraint. See FontMetrics below for more information on the contents of the
FontMetrics object.)

characterMap
answers the receiver's CharacterMap.

The prototype bound to the name Typeface is a fully-initialised Typeface object with default family, series and shape ('serif-medium-
roman').

8.2 Font

A Font is created by fixing a Typeface at a particular point size.

titleFont := Typeface sans bold italic pointSize: 24.

A Font provides information about itself in response to the following messages:

typeface
answers the Typeface from which the receiver was created.

pointSize
answers the point size of the receiver.

metrics
answers the receiver's FontMetrics.

A Font can be mutated into another related Font with the following messages:

family: familyName
answers a Font similar to the receiver (same series, shape and point size) but whose typeface belongs to the given
familyName.

file:///Users/piumarta/src/idst/doc/canvas.html#FontMetrics

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 13 of 18file:///Users/piumarta/src/idst/doc/canvas.html

series: seriesName
answers a Font similar to the receiver (same family, shape and point size) but whose typeface has a style corresponding
to the given seriesName.

shape: shapeName
answers a Font similar to the receiver (same family, series and point size) but whose typeface has a style corresponding
to the given shapeName.

pointSize: newPointSize
answers a Font similar to the receiver (same typeface) but scaled to the given newPointSize.

As with Typefaces a Font responds to the following convenience messages that change family, series or shape to one of the standard
values: serif, sans, mono, light, medium, bold, black, roman, italic, and sloped.

The prototype bound to the name Font is a fully-initialised Font object: the default Typeface (see above) at 12 points.

8.3 Glyph

A Glyph can be obtained from a Font in one of two ways:

aFont glyphAt: codePoint ifAbsent: errorBlock
answers the glyph at the given code point (numeric index) or the value of errorBlock if the codePoint lies outside
the legal range for the receiver. The first 127 code points typically coincide with ASCII. The first 256 code points
typically coincide with the ISO8859-15 (aka Latin 9).

aFont glyphNamed: glyphName ifAbsent: errorBlock
answers the glyph with the given Unicode glyphName or the value of errorBlock if no glyph with the given name
exists. (For example, the first three non-control characters, with code points 32 through 35, are named 'space',
'exclam', 'quotedbl' and 'numbersign').

aFont glyphAt: codePoint
aFont glyphNamed: glyphName

answer as above unless the glyph does not exist within the receiver in which case they answer the glyph #'.notdef'
(code point zero).

Given a Glyph you can find out where it came from by asking it for its font, codePoint and name.

Glyphs respond to the usual typeface and style changing messages:

aGlyph font: newFont
answers the glyph at the same code point as the receiver in the newFont.

aGlyph family: familyName
aGlyph series: seriesName
aGlyph shape: shapeName

answers the Glyph at the same code point as the receiver in a Font related to the receiver's Font (and at the same
point size) but differing in family, series or shape.

aGlyph pointSize: newPointSize
answers a Glyph with the same code point and typeface as the receiver but from a Font scaled to newPointSize

Glyphs are Shapes and respond to bounds and pathOn:. They can be attached to a ShapedView, (and respond appropriately to
shapedView) just like any other Shape.

8.4 Metrics

Glyph and font metrics provide information needed for laying out text, determining the screen coordinates covered by a particular glyph
when rendered, and so on.

8.4.1 Glyph metrics

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 14 of 18file:///Users/piumarta/src/idst/doc/canvas.html

Each Glyph provides information about the following properties:

width, height and bounds
define the smallest rectangle that encompasses the painted area of the glyph.

ascent
is the height of the glyph's ascender (the painted area above the baseline).

descent
is the height of the glyph's descender (the painted area below the baseline).

hBearingX
is the horizontal distance from the reference point to the left edge of the painted area of the glyph when layed out
horizontally.

hBearingY
is the vertical distance from the reference point to the top edge of the painted area of the glyph for horizontally layed-out
text.

hBearing
is a Point combining hBearingX and hBearingY.

hAdvance
is the horizontal distance between the glyph's reference point and that of the next glyph on the line (ignoring kerning)
when laying out text horizontally.

vBearingX
vBearingY
vBearing
vAdvance

are the bearing and advance distances for the receiver when text is being layed out vertically (rather than horizontally).

GlyphMetrics are expressed in points; there are 72 points in one inch.

Note that if dimensions are to be accurately represented then each Canvas must scale its coordinate system according to the physical
resolution of the destination device before rendering Glyphs. For a typical LCD screen at 116 dpi its Canvas would scale the coordinate

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 15 of 18file:///Users/piumarta/src/idst/doc/canvas.html

system by a factor of 116/72 (approximately 1.61) before rendering a Glyph.

8.4.2 Font metrics

A Font provides information about maxima and minima of various metrics aggregated over all glyphs within it:

size
is the number of glyphs within the font.

unitsPerEm
is the length equal to the type size (one em) expressed in whichever units are relevant for the receiver: font units for a
Typeface, and points for Fonts and Glyphs. (One em is normally the minimum distance between baselines, yielding
lines that are 'set solid'. Any additional space between baselines is leading.)

width and height

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 16 of 18file:///Users/piumarta/src/idst/doc/canvas.html

are the width and height of the smallest rectangle that encompasses the bounding boxes of all glyphs in the font.

bbMinX, bbMaxX, bbMinY and bbMaxY
are the horizontal and vertical limits, relative to the reference point, of the smallest rectangle that encompasses the
bounding boxes of every glyph in the font. Note that ascent and descent will not necessarily be the same as
bbMaxY and bbMinY since the latter might include space for any 'absolute minimum external leading' incorporated
explicitly by the font designer for aesthetic reasons.

ascender and descender
are the maximum height above the baseline of the tallest ascender, and the maximum depth below the baseline of the
deepest descender, of all glyphs in the font.

hAdvanceMax and vAdvanceMax
are the maximum hAdvance and vAdvance of all glyphs in the font.

A Font will also recommend the placement and thickness of a horizontal rule for underlining:

underlinePosition
is the distance from the baseline to the bottom of the underline rule.

underlineDepth
is the depth of the underline rule.

When associated with a Font, FontMetrics are expressed in points. There are 72 points in one inch.

When associated with a Typeface, FontMetrics are expressed in integral font units. The resolution is not fixed, but there are usually
2048 font units in one em (a length equal to the type size of a font). Metrics for Fonts and Glyphs are derived from those for their
Typeface by scaling the latter's dimensions (in font units) to points for layout and rendering. This places a typeface-dependent upper
bound on the resolution of all metrics, whether or not they have been scaled from font units to points.

9 Character maps
Each Typeface has an associated CharacterMap that associates glyph names with integer code points. It can be retrieved by sending
characterMap to the Typeface.

A CharacterMap responds to the following messages:

nameAtCodePoint: codePoint ifAbsent: errorBlock
answers the name (a Symbol) corresponding to the integer codePoint, or the value of errorBlock if the
codePoint is not defined by the receiver.

codePointAtName: name ifAbsent: errorBlock
answers the integer code point corresponding to the given name (a String or Symbol), or the value of
errorBlock if the name is not known to the receiver.

nameAtCodePoint: codePoint
codePointAtName: name

are as above, but return the name '.notdef' or codePoint zero (respectively) if the argument is not defined in the receiver.
(By convention most typefaces place the glyph '.notdef' at codePoint zero, whose shape is either empty or the small
rectangle often seen when trying to display an 'unprintable' character.)

includesName: name
includesCodePoint: codePoint

answer non-nil if the argument is defined in the receiver.

Pre-defined CharacterMaps are provided via the following messages:

CharacterMap iso8859_15
answers a map corresponding to the 8-bit ISO8859-15 (aka Latin-9) character set.

CharacterMap default

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 17 of 18file:///Users/piumarta/src/idst/doc/canvas.html

answers the platform (or locale) default map (currently hard-wired to ISO8859-15, because I'm a Western-European
tyrant).

New CharacterMaps can be created and manipulated using the following messages:

CharacterMap new
answers an empty CharacterMap ready to be populated with the following messages.

aCharacterMap at: codePoint put: name
associates the integer codePoint with the given name asSymbol, and vice-versa, in the receiver.

aCharacterMap addNames: nameArray
enumerates nameArray (which must contain only Symbols or Strings representing names and SmallIntegers
representing code points) adding each name to the receiver's maps at successive code points. The first name is placed at
code point zero. If a SmallInteger code point occurs in the array then the 'current code point' is set to its value,
facilitating sparsely-populated name arrays and/or the construction of maps from multiple independent arrays each
covering a particular range of characters.

CharacterMap withNames: nameArray
is a convenience method that answers a new CharacterMap initialised from nameArray as described for
addNames:.

CharacterMaps are sparse; given sufficient boredom a map covering the whole of Unicode could be produced.

10 Text
There is no 'special' type of view for dealing explicitly with text. A stored line of 'text' within a graph of views is structurally a
CompositeView containing several TransformViews (as many as there are characters in the 'text') each of which contains one
ShapeView whose shape happens to be a Glyph.

This is a huge simplification (and generalisation) compared to a system in which text is 'special', and might even seem inconsistent with the
quantity and quality of information contained in glyph and font metrics. However, the intention is to provide the necessary information for
high-quality text and page layout without dictating any mechanisms (or optimisations, neither space nor speed). The one mechanism that is
provided for 'retained text' is the simplest one that can possibly work (even though far from the most space efficient).

For example: if, in the above structure, each TransformView's transformation moves the origin to the right by the hAdvance of its
predecessor's subordinate Glyph then a 'line of text' will be rendered. Preiodically resetting the horizontal component of the
transformations will yield a 'paragraph'. Juggling the translations of TransformViews whose glyph is whitespace so that the rightmost
hAdvances (before resetting the horizontal translation) coincide with the available width will yield a filled and justified 'paragraph'.

That being said, a few convenience methods are nonetheless provided for the impatient and the lazy:

sString asCompositeViewWithFont: aFont
aString asCompositeView

for a string of size N answers a CompositeView containing N TransformViews each of which contains a single
ShapeView whose fillColour is black and whose shape is a Glyph from aFont. The code points of
successive Glyphs correspond to the characters in aString. After the first TransformView (which has no
transformation) each successive TransformView moves the origin right by the hAdvance of the Glyph subordinate
to the preceding TransformView (in other words, the text is arranged in a line and ready to be rendered onto a light
background). The second form (in which aFont is omitted) obtains Glyphs from the default Font.

aCompositeView asString
answers a String whose contents are the codePoints of any Glyphs within the receiver. (Non-Glyphs are
discarded and therefore a CompositeView that contains only non-Glyph Shapes will answer this message with an
empty String.) Note that

aString asCompositeView asString

should always answer (a verbatim copy of) aString.

aCanvas string: aString font: aFont

8/30/07 03:32 Lessphic: A disposable, light-weight graphical environment for FoNC

Page 18 of 18file:///Users/piumarta/src/idst/doc/canvas.html

aCanvas string: aString
extends the current path of the receiver with the paths of the Glyphs in aFont whose code points correspond to
successive characters in aString. The first Glyph's reference point is placed at the origin. Succeeding reference points
are translated along the positive x axis by the hAdvance of the preceding Glyph. No line breaking is attempted:
carriage returns and line feeds in aString will be rendered like any other character (with typeface-dependent results).
The second form (in which aFont is omitted) obtains Glyphs from the default Font.

11 Layout
The built-in minimalist layout mechanism has the following objectives:

To be the simplest mechanism that can 'intelligently' position an arbitrary admixture of Shapes.
To do approximately 'the right thing' when some (or all) of those Shapes are Glyphs (i.e., text). The result will not be publication
quality but will be sufficient for trouble-free editing of simple text (code, etc.) and for constructing user interface components.
To be easily and selectively replaceable by more sophisticated layout engines.

12 Resources
The FoNC mailing list: http://vpri.org/mailman/listinfo/fonc.

http://vpri.org/mailman/listinfo/fonc

