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Abstract. We present a final status of all problems from Wernick’s list of tri-
angle construction problems published in 1982 and with a number of unknown
status until recently. Our results were obtained by a computer-based system
for checking constructibility. We also developed a system for finding elegant
constructions for solvable problems and for verifying their correctness. These
systems helped in resolving problems open for decades, showing the power of
modern computer systems in areas such as symbolic computation, problem solv-
ing, and theorem proving.

1. Introduction

In 1982, Wernick presented a list of straightedge and compass construction prob-
lems [23] (many of these problems were considered along the centuries, before
this list was compiled). Each of them is a triangle location problem: the task is
to construct a triangle ABC starting from three located points selected from the
following set of sixteen characteristic points:

e A, B, C, O: three vertices and circumcenter;

e M,, My, M., GG: the side midpoints and centroid;

e H,, Hy, H., H: three feet of altitudes and orthocenter;

e T,, Ty, T, I. three feet of the internal angles bisectors and incenter.

There are 560 triples of the above points, but Wernick’s list consists only of 139
significantly different non-trivial problems. The triple {A, B, C'} is trivial and,
for instance, the problems {A, B, M,}, {A, B, My}, {B,C, My}, {B,C, M.},
{A,C, M,}, and {A,C, M.} are considered to be symmetric (i.e., analogous).
Wernick divided the problems into four categories:

Redundant problems:. if there is a point in the given triple such that it is
uniquely determined and constructible from the remaining two points, we
say that the problem is redundant (and we denote it by R). For instance,
the triple { A, B, M.} is redundant — given points A and B, the point M.
is uniquely determined.

L ocus dependent problems: if there exists the required triangle ABC (not
a way to construct it, but the triangle itself) only for given points meeting
certain constraints, then we say that the problem is locus dependent (and
we denote it by L). All such problems in Wernick’s list have infinitely
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many solutions. For instance, for the problem { A, B, O}, the point O has
to belong to the perpendicular bisector of AB, otherwise the corresponding
triangle ABC does not exist.

Solvable problems: if there is a construction of the required triangle ABC
(whenever it exists, while it does not exist only in some special cases)
starting with the given points, we say that the problem is solvable or con-
structible (and we denote it by S).

Unsolvable problems: if for some given points the required triangle ABC
exists, but it is not constructible, then we say that the problem is unsolvable
or unconstructible (and we denote it by U).

In the original list, the problem 102 was erroneously marked Sinstead of L [18]
and the problem 108 was erroneously marked U instead of S [20]. Wernick’s list
left 41 problems unresolved/unclassified, but the update from 1996 [18] left only
20 of them. Meanwhile, the problems 90, 109, 110, 111 [21], and 138 [22] were
proved to be unsolvable. We are not aware of published solutions for remaining 15
unsolved problems (although there are indications that eight more were resolved
[25]). Some of the problems were additionally considered for simpler solutions,
like the problem 43 [1, 5], the problem 57 [24], and the problem 58 [4, 21]. So-
lutions for 59 solvable problems can be found on the Internet [21]. The status for
all these problems was determined by ad-hoc attempts, with no systematic solving
procedures or computer support involved.

Recently, we developed computer-based systems for checking constructibility
for all problems from Wernick’s list [20] and for finding constructions for solvable
problems [16, 17, 13]. Thanks to the former system, we were able to fill-in all
remaining slots in Wernick’s list and now the status for all 139 problems is known.
They are given in Table 1: there are 74 S problems, 39 U problems, 3 R problems,
and 23 L problems. The problems are associated with references to the papers
resolving their status (for the problems with no references, the status was given in
the original Wernick’s paper). More on these two systems is given in the following
two sections.

2. Computer-Assisted Resolving of Unconstructible Problems

Our first method relies on algebraization of geometric constructions and Galois’
results about straightedge and compass constructions of numbers. Let us first recall
some classical results.

Let F' be a field extension of QQ, and G a field extension of F'. A number in
G is straightedge and compass constructible in F' if and only if it is equal to an
expression using only numbers in F, arithmetic operations and square radicals.
Such a number is algebraic in £, and its degree over F' is a power of two. This
result is known as Wantzel’s result and is often used to prove that a number is not
straightedge and compass constructible (for instance, in the demonstration of the
impossibility of angle trisection using only straightedge and compass). The con-
jecture which states the opposite direction is generally false. This is why we also
use a stronger result which is a consequence of Galois theory: an algebraic number
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1. ABO L 48. A Ha 1 S 9. M, G, T, S

2. A B, M, S 49. A, Hy, H. S 95. Ml G, T, U [19]
3. AB M. R 50. A, Hy, H L 9. M, G, I S [19]
4 ABG S 5. A Hp, Ta S 97. M, Ha, Hy S

5 A B H, L 52. A, Hy, Tp L 98. Mg, Ho H L

6. A B H, L 53. A, Hy, T, S 99. M, H, Ta L

7. AB H S 54. A, Hy, I S 100. Ma, Ha T, U [18]
8. A BT, S 55. A, H,Ta S 101. Mg, HaiI S

9. A B, T. L 56. A, H, Ty, U [18] || 102. M, Hy, He L

10. A B, 1 S 57. A H,1 S 8] |[103. Mg, Hy,, H S

11. 4,0, M, S 58. A T, Tp S [18] |[ 104 Mg, Hy, Ta S

2. 4,0, M, L 59. A, Ta, 1 L 105. M, Hy Ty S

13. A 0,G S 60. ATy, Te S 106. Ma, Hy, T. U [18]
4. A0 H, S 61. A, Ty, I S 107. Ma, Hy, I U [18]
5. A4,0,H, S 62. O, Ma, M, S 108. Ma, H,Ta S [20]
16. 4,0 H S 63. O, Ma, G S 109. M., H. T, U [21]
17. 4,0, T, S 64. O, M., Ha L 110. M, H, I U [20]
8. A O, T, S 65. O, Ma, H, S 1L M, To T, U [21]
19. A0 1 S 66. O, Ma, H S 112. Maq, 1ol S

20. A, M., M, S 67. O, Ma,Ta L 113. Ma, Ty, T. U [20]
2. A M, G R 68. O,Ma, T, U [18] || 114. M, T»,I U [18]
22. A M, H, L 69. O, Ma, 1 S 115. G, H, H, U [18]
23. A, M, H, S 70. O, G, Hq S 116. G, Ha H S

24, A M., H S 7. O,G, H R 117. G, Ha Ta S

25. A, M, Ta S 72. 0,G, Ta U [18] || 118. G.Ha, T, U [20]
26. A, M, T, U [18] | 73. O,G,I U [18] || 119. G, Ha, I S [20]
27. A M, I S [18] |74 O, H, H, U [i8] || 120. G H, T, U [18]
28. A M, M, S 75. O, H, H S L. G H I U [18]
29. A, M, G S 76. O, Ha Ta S 122. G, Ta, Tp U [20]
30. A M, H, L 77. O, Ha, Ty U [20] || 123. G.Ta 1 U [20]
3l. A, M, H, L 78. O, Hg, I U [20] || 124. H,, Hy, He S

32. A, M, H. L 79. O, H, T4 U [18] || 125. Ha, Hy,, H S

33. A M, H S 80. O, H,1 U [18] || 126. H,, Hy, To S

34. A My T, S 8l. O, Ta, Ty U [20] || 127. H,, Hy T. U [20]
35. A, M, T, L 82. O, Ta, 1 S [18] |[ 128. Ha, Hp,, I U [20]
36. A, M, T. S 83. Mg, My, M. S 129. H,, H, T, L

37. A, M, I S 84. Mg, My, G S 130. H,, H,7, U [18]
38. AG H, L 85. Mg, My, Hy, S 1381. H,, H, I S [19]
39. AG H, S 86. Mg, My, He S 132. H,, 1o, 1, U [20]
0. A, G H S 87. Mg, My, H S [18] || 133. Ha, Ta, I S

4. A G, T. S 88. Mg, My, To U [18] || 134. Ha T, T. U [20]
2. A G, T U [18] || 89. Ma, My, T. U [18] || 135. Ha, Ty, I U [20]
3. A, G I S [18] [[90. Ma, M,, I U [21] || 136. H, Ta, T U [20]
44. A H, H, S 91. M, G, H, L 137. H,Ta, 1 U [20]
5. A H, H L 92. M, G, Hy, S 138. Ta, Ty, Te U [22]
46. A H, T, L 93. M., G, H S 139. Ta, T, I S

47. A H, T, S

Table 1. The definitive status of all Wernick’s problems

on F'is constructible if and only if the splitting field of its minimal polynomial is
an extension of degree 2™ for some m over F. This is equivalent to the fact that
the cardinal of the Galois group of the minimal polynomial is also 2.
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A point is straightedge and compass constructible from a set 55 of points if its
coordinates are constructible on the extension of Q containing the coordinates of
the points of B. It is obvious that one of the points from 5 can have coordinates
(0,0), and another one can have coordinates (k,0) where k is a given number.
With Wernick’s corpus, B contains three points, two of them can be fixed this way,
whereas the third one must have free coordinates (a, b) in order to consider the
generic case.

Let us also give a more precise meaning of the labels annotating the problems in
Wernick’s corpus. A problem has status Sor U if it has solutions in the Euclidean
plane, regardless constructibility using straightedge and compass: it has label Sif it
is straightedge and compass constructible, and label U (unconstructible) otherwise.
The labels R and L correspond to over-constrained problems and are easy to check
by using algebraic tools. We will not discuss this matter further within this text.

The general idea of the method consists of the following steps:

e translate the considered problem into a polynomial system,
e use regular chains to obtain a disjunction of irreducible polynomial sys-
tems,
e use Wantzel’s result or Galois theory to prove constructibility or uncon-
structibility.
We made this pipeline automatic through an implementation in Maple [11] which
offers several powerful tools like the regular chains and the computation of Galois
group of a polynomial up to degree 9.
Actually, this idea is used in two different ways:

e First, we try to prove that the problem is not constructible: for this, we
consider a witness, that is an example of triangle which is a solution of an
instance of the problem with rational coordinates for the given points and
we apply the method to this example. If this example is not constructible,
then the problem is not solvable by straightedge and compass. We im-
plemented a routine for automatically producing witness candidates and
checking the whole list for unconstructibility.

o If the first method fails to prove the unconstructibility of the problem (for
several witness candidates), we apply the method on the parametric prob-
lem which represents the general case. The calculi are much harder but
complete: if each Galois group has a power of 2 as order, then the problem
is constructible. And then, it is theoretically possible to extract a con-
struction [2, 8], but it is very difficult to obtain and even for the simplest
problems, the generic construction is geometrically unappealing. See, for
instance, the problem 108 below.

Example 1. We prove the unconstructibility of the problem 122: {G, Ty, Tp}
by choosing the coordinates 7;(0,0), 1,(4,0) and G(2,1). Each of these points
givesrise to two polynomial equations involving coordinates of points A(x 4,y4),
B(zp,yp), and C(zc,yc). The triangularization process for this system of 6
equations gives two systems containing the following disqualifying equations:
P(yc) =yt — 6y2, — 5ly2 — 24yc + 36
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the splitting field of which is of order 24, meaning that even if the degree of the
polynomial is 4, it is not solvable by square radicals, and

P(yc) = 2701y2, — 12871y + 43008yc — 28224

with degree 3. Therefore, this problemis not constructible.

Example 2. In the problem 108, the given points are 7,,, H and M,, we use the
coordinates (0, 0) for 7,, (1,0) for M,, and parametric coordinates (a, b) for H.
The triangularization of the corresponding polynomial system gives the following
system:

zo+xzp—2=0

—a2—byA+:BQB—|—2a—23:B =0

yc =0
yp =0
za—a=0

a® +abys —a® +y4 =0
which is obviously constructible (all the equations have degree at most 2) and
moreover, it is simple enough to solve with square radicals, for instance y4 =
(a/2)(—b =+ Vb? — 4a + 4), and to trandlate the formulas into a straightedge and
compass construction that mimics the computation (Figure 1). Recall that it is
possible to perform additions, multiplications, divisions and root extract by using
ruler and compass constructions.

This construction might not be elegant, but it is perfectly valid. A new challenge
might beto find appealing geometric constructions for problems 108 and 119 (see
below).

[N

—6
=7
Figure 1. Geometric translation in GeoGebra of the system given in Example 2.

Parameters a and b correspond to the free point H: this point can be moved and
the figure is transformed accordingly.

IThe GeoGebra figure can be found at url https://sites.google.com/site/
pascalschreck/adgl4
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In Appendix, we list relevant polynomials for all the problems with unknown
status in [20].

3. Computer-Assisted Solving of Constructible Problems

Our second system, ArgoTriCS, equipped with relevant geometry knowledge,
pursues very different aims. It is capable of solving almost all solvable problems
from Wernick’s list: 66 out of 74 [16, 15, 13]. The system was implemented in
PROLOG, has around 6000 lines of code, while the solving times span from a cou-
ple of milliseconds to more than an hour. The longest generated construction is the
construction for the problem 101: {M,, H,,I} — it consists of 14 steps (mostly
compound construction steps, such as construction of the midpoint of a segment).
The system also detects if the problem is redundant or locus dependent. The system
produces a construction in a natural language form, and in the format of a dynamic
geometry tool GCLC [9], so corresponding illustrations can be also automatically
generated. The next example shows an automatically generated solution for the
problem 25 : {A, M,,T,} (along with non-degenerate conditions and determina-
tion conditions), while the corresponding illustration is given in Figure 2.

A

Figure 2. Illustration for the problem 25 (left) and for the problem 84 (right)

Example 3. Given points A, M,, and T,, construct the triangle ABC.

(1) Using the point A and the point T, construct a line s,, (rule W02);

(2) Using the point M, and the point T, construct a line a (rule W02);

(3) Using the point M, and the line a, construct a line m,, (rule W10b),

(4) Using the line m,, and the line s,, construct a point N, (rule W03),

(5) Using the point A and the point N, construct a line m(AN,) (rule W14);

(6) Using the line m(AN,) and the line m,, construct a point O (rule W03);

(7) Using the point A and the point O, construct a circle k(O, C') (rule W06);

(8) Using the circle k(O, C') and the line a, construct a point C' and a point B
(rule W04).

Non-degenerate conditions: line a and circle k(O, C) intersect; points A and O
are not the same; lines m(AN,) and m,, are not parallel; lines m, and s, are not
parallel.
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Determination conditions: lines m(AN,) and m,, are not the same; points A
and N, are not the same; lines m, and s, are not the same; points M, and T, are
not the same; points A and T, are not the same.

Unlike other systems for automatically solving construction problems, the sys-
tem ArgoTriCS also considers correctness of the constructions generated and in-
vokes automated geometry theorem provers — OpenGeoProver [12] and the provers
built in the GCLC tool. Each construction generates three theorems — one for each
given point; for instance, if the point G is given, then it should be proved that G is
indeed the centroid of the constructed triangle ABC'. So, for 92 problems solved
by ArgoTriCS (66 S problems, and all L and R problems), there are 276 theorems
(some of them trivial — if a triangle vertex is given). Out of 276 theorems, 194 were
successfully proved by at least one prover. In addition, for all problems involving
only the points A, B, C, M,, M,, M., G, we generated machine verifiable proofs
for the correctness of constructions — proofs verified by the proof assistant Isabelle
[19]. The next example gives an automatically generated solution for the problem
84 : {M,, M, G}, illustrated in Figure 2.

Example 4. Given points M,, My, and GG, construct the triangle ABC.

(1) Using the point M, and the point G, construct a point A (rule W01),
(2) Using the point M, and the point G, construct a point B (rule WO01);
(3) Using the point M, and the point B, construct a point C' (rule W01).

No non-degenerate conditions.
No determination conditions.

For this problem, the central theorem proved formally within the Isabelle proof
assistant, with a help of automated theorem provers, is the following:

VM, My, G.
—collinear(Mg, My, G) < 3A, B, C.(midpoint(M,, B, C)A\
midpoint(My, A, C) A centroid(G, A, B,C) A —collinear(A, B, C))

The system ArgoTriCS was used for automatically generating a compendium?
of all problems from the extended Wernick’s list (for all 560 triples of characteristic
problems) — spanning around 3000 pages, and also an on line encyclopedia with
animated solutions for all solved problems [14].

4, Conclusions and Future Work

In this paper we presented the final version of Wernick’s list — a list of triangle
location problems, presented in 1982 and with a number of construction prob-
lems with unknown statuses until recently. These updates were produced by our
computer-based systems, while for almost all solvable problems our system can
produce elegant constructions with associated illustrations. These results show the

2Available online from: http://www.matf.bg.ac.rs/~vesnap/compendium
wernick.pdf
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power of modern computer systems in areas such as symbolic computation, prob-
lem solving and theorem proving.

For future work, we are planning to consider, in analogy, other corpora of trian-
gle construction problems — location problems involving additional points [3] or
construction problems based on various geometrical quantities [10, 6, 7].
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Appendix: Summary of our results

We recall here the results used in [20], by giving coordinates of the characteris-
tic points of the problem, and then the last equation of the systems obtained after
triangularization using the Maple implementation of regular chains. Fortunately,
testing the last equation was enough for the open problems.

Wernick 77: O, H,, Ty
Coordinates: (0,0), (—1,—3) and (—3,0).
84349y + 668100y + 908434y5 — 6940782y — 32743501y% — 63643476y
— 72253168y — 56499066y4 — 25568010,

the splitting field of which has degree 8! = 40320 which is not a power of 2: this problem is not
RC-constructible.

Wernick 78 : I, O, H,
Coordinates: (0, 0), (0,1),(—1,—3).
P(yc) = 325y% + 2050y% — T5ys: — 11256y2 + 7749y + 8964ys: — 107730y2:
+ 160380yc — 14580,

the splitting field of which has degree %’5 = 384 which is not a power of 2. Therefore, this problem
is not RC-constructible.

Wernick 81: O, T, Ty
Coordinates: (0,0), (—1,—3) and (—3,0).

P(yc) = 5202928809y¢. + 34323168906y + 64988457138y¢, — 168831818766y

— 1131189431845y% — 2336530456944ye, — 2257027274736y
— 1030105859328yc — 178376649984,

the splitting field of which has degree 8! = 40320. Therefore, this problem is not RC-constructible.

Wernick 113: T, Ty, M,

Coordinates: (0, 0), (2,2) and (4, 0). We get two systems, for the first one we have the polynomial:
P(yc) = 25y2 — 94y + 160yc — 128

and for the second one:

P(yc) = 3yd — 10y + 60yc — 72.

Therefore, this problem is not RC-constructible.
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Wernick 118: Ty, Ha, G
Coordinates 73 (0, 0), Hq(6,0) and G(4, 3):

P(yc) = y2 + 136y — 848y + 14112y% — 52164yc + 52488.
Therefore, this problem is not RC-constructible.

Wernick 1191, H,, G

When choosing coordinates (0, 0) for I, (1, —2) for H, and (1, 1) for G, we obtain two systems.
The second one corresponds to non real solutions, and the first one contains the following polynomial
of degree 4:

P(yc) = 289yd — 86Tyd — 57528y% — 99144y — 41472,

the splitting field of which has degree 8 over Q. This result does not mean that the problem is
RC-constructible. In order to prove its RC-constructibility, we have to take parameters a and b as
coordinates for one of the three points and then compute its Galois group. The triangularization
produces a huge system displayed with more than 400 lines and the coefficient of the degree 4 term
of the irreducible polynomial we want to test is :

19683a” — 59049a° + (787320% 4 61236)a” + (—183708b” — 20412)a®
+ (118098b* + 166212b> — 4374)a” + (—196830b* — 72900b> 4 2754)a*
+ (787320° + 148716b" + 10692b° + 324)a” + (—787320° — 61236b" + 35646 — 108)a”
+ (19683b° + 437400° 4 18954b* — 756b° — 21)a — 6561b° — 8748b° — 3078b* — 108b* — 1.
Maple is powerful enough to compute Galois’ group of this huge parameterized polynomial and find:
24T3, {7 D(4)"},” —,8,{7(13)7,”(1234)"}

From this result, we can conclude that the problem is RC-constructible.

We confirm that result by using Gao and Chou’s method [8]. This method leads to heavy compu-
tations but allows, in principle, to extract a RC-construction. Unfortunately, it is almost impossible
for this concrete problem. The equation of degree 3 considered in that method is huge: this is, for
the sake of illustration, just the coefficients for the term of degree 3:

12754584a" + 76527504a b + 191318760a°b* + 255091680a”b° + 191318760a°b°
+ 76527504a°b'° 4 12754584ab'? — 552698644 — 2806008484 '°b* — 573956280a°b"
— 595213920a°b° — 318864600a*b® — 76527504ab"° — 4251528b' + 935336164
+ 416649744a°b% + 7312628160 b" + 629226144a°b° + 263594736a°b° + 42515280ab"°
— 72748368a'® — 314613072ab” — 515852064a°b* — 387361440a*b° — 121877136a°b°
— 8503056b'° + 18108360a° + 115263648a"b* + 214465968a°b* + 155574432a°b°
+ 38263752ab® + 8030664a° — 4408992a°b> — 48813840a"b" — 422003524°b°
— 5826168b° — 4269024a” — 11547360a°b” + 1469664a°b* + 9867744ab® — 536544a°
+ 23094720 0% + 2869344a°b* — 14696646° + 355752a° + 618192a°b* — 390744ab*
+ 55080a" — 89424a°b* — 71928b" — 99364° — 24624ab® — 3024a” — 1296b> — 264a — 8.
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Wernick 122: Ty, T, G
With coordinates 75 (0,0), T,(4,0) and G(2, 1), we get two systems containing the disqualifying
equations:

P(yc) = y& — 6ye — 51y — 24yc + 36
the splitting field of which is of order 24 and

P(yc) = 2701y — 1287192 + 43008y — 28224
Therefore, this problem is not RC-constructible.

Wernick 123: I, T, G
With the coordinates (0, 0), (4, 0) and (2, 1), we obtain three irreducible triangular systems, but the
last one does not have real solutions. The first one contains the polynomial:

P(yc) = 9859652 — 533172y¢ + 1934365y2 — 2612838y2. + 541114y¢ + 2325666y
+ 16272992 — 3815532yc + 1555848
the Galois group of which is:
” 8T44?7’ ” [24]S(4)?7’ ” _ 777 384’ ” (48)7) , ” (18) (45)7) , ” (1238) (4567)77
And the second one
P(yc) = 458 — 36y% + 192y% — 61292 + 81y2 + 2025y — 3402

Therefore, this problem is not RC-constructible.

Wernick 127: T, Hy, H,
Coordinates (0, 0), (0, —6) and (6, —2).
P(yc) = 8125y8 + 146484y2, 4 830844y2 + 1715040yc + 1049760

The splitting field of which has degree 24 over Q. Therefore, this problem is not RC-constructible.

Wernick 128: T., Hy, H,
Coordinates (0, 0), (0, —6) and (6, —2).

P(yc) = 8125y% + 146484y2, + 830844y% + 1715040yc + 1049760
which is not RC-resolvable since its splitting field has degree 24. Therefore, this problem is not
RC-constructible.

Wernick 132: T,, Ty, Ha
Coordinates (0, 0), (4,0), and (-1, 3).

P(yc) = 9825y8 — 72620y8 + 691848y — 403200y + 1442880y¢: + 10886400yc
— 15552000.

Therefore, this problem is not RC-constructible.

Wernick 134: T., Ty, H,
Coordinates (0,0), (0,2) and (2, 1).
P(yc) = 524475y — 5345280y¢ + 24048076y — 62358704y2 + 102412544y¢,
— 109631360y5 + 75046720y% — 30134400y 4 5432000,

the Galois group of which is of order 384. Therefore, this problem is not RC-constructible.
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Wernick 135: I, Ty, H,
With points 1(0,0), T3(0,2) and H,(2,—1), we get two systems. In the first one, we have the
polynomial:
P(yc) =58968ys — 194436y + 453056y8 — 311496y2: + 319980y — 526960y
+ 466030y% — 210025yc + 28000,
the splitting field of which has degree 40320.
And we have in the second one:

P(yc) = 5722 — 1624y + 2088y, + 2532y% — 585yc + 1200
Therefore, this problem is not RC-constructible.

Wernick 136: T,, T, H
With points 7,,(0,0), T5(4,0) and H (2, —1), we get two systems. The first one contains the poly-
nomial:

P(yc) = 15y¢ — 8y — 148y2 — 32yc + 192
the splitting field of which has degree 24. And we have in the second one:

P(yc) = 570592 + 25412y2% + 12288yc — 9216.
Therefore, this problem is not RC-constructible.

Wernick 137: 1,7, H

Coordinates (0,0), (a, b) and (0, —2). We take parameters as coordinates of T;, as we thought that
the problem was constructible. We obtain two systems after more than 6 hours of computation. The
following polynomial in y 4 is the last equation of the first component

(9a* + (18b% + 36b — 12)a” + 9b" + 36b° 4 84b” 4 96b + 64)y4
+ (18a™ + (78b + 192b + 48)a® + 60b* + 1920 4 352b° + 288b + 128)y%
+ ((30b 4 36)a* + (300 + 160b° + 256b + 96)a” + 148b* + 384b° 4 528b° + 320b + 64)y%
+ ((24b + 24)a* + (96b” + 224b + 160b + 32)a”® + 160b" + 352b° + 320b° + 128b)y.a
+ (24b° + 24b)a” + (80b® + 11207 4 32b)a” + 64b" + 1280° + 640,

the Galois group of which is:

,74T577 , 775(4)777 ” 77’ 247 ” (14))7 , 9 (24)77 , k2l (34)77 .

The second system provides an equation of degree 3. We can then conclude that this problem is not
RC-constructible.
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