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Abstract

In the 21%° century, as free form design gains popularity, free-form
grid shells are becoming a universal structural solution, enabling
merger of structure and facade into a single layer - a skin [31]. The
subject of the presented work is the optimization of grid structures
over some predefined free form shape, with the goal of generating
a stable and statically efficient structure. It is shown how combin-
ing design and FEM software in an iterative, Genetic Algorithms
based, optimization process, stress and displacements in grid shell
structures can be significantly reduced, whereby material can be
saved and stability enhanced.

Within this research, design and static analysis software are
combined in order to perform a statical optimization of grid shells,
generated over a given free form surface. A plug-in for Rhinoceros
3D (software based on NURBS [44] geometry representation) is de-
veloped, that uses Genetic Algorithms as an optimization method
and implements automated iterative calls to Oasys GSA (commer-
cial FEM static analysis software) in order to generate a statically
optimal grid shell. To make this possible, within this research some
new types of automatic grid generation are developed. Voronoi
diagrams [11] were used together with the adapted Force-Density
method [38] to develop a new type of grid structure that we called
Voronax. In the presented work it was shown that, using the same
free form surface, and using the same number of joints and struc-
tural members, we can generate much more efficient grid shells,
when compared to the standard (uniform) grid structures, simply
by modifying the structural grid, i.e., rearranging the structural
members of the grid shell.

The work presented offers an explanation of the entire method
and how it can be constructed. The results of the experiments
are there to prove its efficiency and credibility. Once it is proved
that the method works, its application can take various forms and
be left to the creativity of the user and the requirements of the
specific project.

IX






Zusammenfassung

Motivation

Die Produktion von Bauteilen durch CNC (Computer Numerical
Control) - gesteuerte Maschinen revolutionierte, gegen Ende des 20.
Jahrhunderts, den architektonischen Entwurf. Tragwerke mussten
nicht mehr vereinfacht werden, um so viele gleiche Elemente wie
moglich zu erhalten. Heutzutage konnen Gebaude mit Tausenden
verschiedener (einzigartiger) Trag- oder Fassadenelemente zu akzept-
ablen Kosten gebaut werden, indem der ganze Prozess automa-
tisiert wird. Die Automatisierung bezieht sich in diesem Fall auf die
Programmierungstechniken, die automatische Zeichnung, statische
Berechnung und Herstellung individueller Elemente moglich macht,
wo der "manuelle” Prozess (ein Teil nach dem anderen) zu viel
Zeit in Anspruch nehmen wiirde. Diese Revolution im Herstel-
lungsprozess erlaubte eine groflere Freiheit im Entwurf. So genan-
nte Freiformen, wie sie hauptséchlich im Industriedesign verwendet
werden, konnten nun auch in der Architektur zu erschwinglichen
Kosten eingesetzt werden. Die Tatsache, dass die Generierung der
Struktur auf Basis freier Formen zu lauter Einzelstiicken fiihrt, ist
nicht langer ein Hemmnis. Aber mit der Freiheit kommt die Ver-
antwortung und die Frage effizienten Entwerfens freier Formen ist
die Grundlage der vorgelegten Forschung.

Die Gitterschale ist eine Tragstruktur, bei welcher man versucht,
das Verhalten einer Schale mit der Gitterform zu kombinieren. Die
Krifte sollen axial (mit so wenig Biegung wie moglich) tiber die
Oberflache verteilt werden und gleichzeitig soll dies mit einer Git-
terstruktur geschehen, weil diese vorgefertigt und einfach zusam-
mengesetzt werden kann. Dies erweist sich als gute Losung, da
Gitterschalen grofie Distanzen mit einer leichten einlagigen Kon-
struktion iiberspannen konnen. Das Gitter, das tiblicherweise aus
Stahlelementen besteht, ist oft mit Glas gedeckt, hoch transparent
und somit geeignet fiir Dachkonstruktionen (Freiform-Dachkonstru-
ktionen), wie in Bild 0.1 zu sehen. Gitterschalen werden gegenwértig
meist so entworfen, dass die Stébe gleichméBig verteilt werden (wie
in den Beispielen in Bild 0.1). Aber schon die Intuition sagt uns,
dass fiir eine unregelmaflige Form die beste und statisch wirksamste
Verteilung nicht regelméafig sein kann. Auch Tragwerkslosungen,
die man in der Natur findet, zeigen uns, wie die Dichte in tragenden
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Bild 0.1: left-Great Court, British Museum, London, 2000
center-Sun Valley, EXPO Shanghai, China, 2010
right-Septemberplein 18, Eindhoven, Niederlande, 2008.

Elementen an die entsprechenden Einfliisse von auflen angepasst ist
und so der Materialeinsatz gering gehalten wird. Dies ist der Punkt,
an dem die Idee fiir diese Arbeit geboren wurde.

Da wir nicht mehr durch den Zwang zur Uniformitat der Bauteile
eingeschrankt werden (sie konnen alle einmalig sein) gehen wir
mit enormen Mengen moglicher Losungen um, z.B. mogliche Git-
terschalenkonstruktionen, die tiber freie Formen generiert werden
kénnen. So war die Frage, wie man eine automatisierte Methode
der Optimierung programmieren kénnte, die die beste Anordnung
der Tragelemente in einer Freiform ermittelt. Zusatzlich wurde
entschieden, diese Forschung auf die Gitterschalen-Optimierung fir
eine vordefinierte Freiform zu beschranken. Fiir diese Entscheidung
gibt es zwei Grinde: Erstens zeigt die Erfahrung, dass Architek-
tinnen und Architekten nicht méchten, dass die Form ausschlielich
von konstruktiven Bedingungen bestimmt wird. Zweitens wurde
im Bereich der Formfindung bereits viel Forschung betrieben, nur
ein Teil ist noch weniger erforscht, die geometrische und topologis-
che Optimierung von Konstruktionen fiir eine vorgegebene Form.
Dieser Bereich sollte nun erschlossen werden.

Methode

Da die Methode automatisiert werden sollte, musste eine Art von
Software geschrieben werden. Und da der Auftrag lautete, die
statische Wirksamkeit zu verbessern, musste eine FE (Finite Ele-
mente) Methode zur statischen Berechnung in den Prozess integri-
ert werden. Dies wurde durch das Schreiben eines Plug-ins in der
Computersprache C++ fiir eine NURBS-Geometrie-basierte Soft-
ware namens Rhinoceros 3D erreicht. Das Plug-in korrespondiert
mit der kommerziellen Software OASYS GSA. Als grundlegende
Optimierungsmethode wurden Genetische Algorithmen (GAs) ge-
wahlt, da diese als am besten geeignete Optimierungstechnik fiir
diese Problemstellung gelten. Es handelt sich hierbei um eine sto-
chastische Methode basierend auf einem Evolutionsprinzip, die bei
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nicht-linearen und mehrkriteriellen Optimierungsproblemen effek-
tiv ist. Bei jeder Optimierung werden alle Losungen in spezifis-
chen Files aufgezeichnet, die die Zeichnung aller generierten Gitter-
schalen moglich macht, ebenso das Extrahieren von Graphen, die
den Fortschritt (Konvergenz) des Optimierungsprozesses zeigen.

Ergebnisse

In dieser Forschung wurde die Software so aufgebaut, dass sie eine
umfassende Definition des Problems ermdglicht. Sie ist so angelegt,
dass der zukiinftige Nutzer verschiedene Parameter definieren kann:
Oberflache, Gitter, Stiitzen, Lasten, Materialeigenschaften, Quer-

schnitt-Eigenschaften, Optimierungszielvorgabe (Fitnessfunktion),
Randbedingungen (Straffunktion) und verschiedene GA Parameter.
All dies ist in Bild 0.2 dargestellt. Ziel war es, die Erweiterung der

surface pattern support load material section fitness penalty GA

min probabifity
. max :
o= ;!=
in population
.ih! mm )
Sl ]
, ;m'::’ - h!;’t’_lﬁing
" *
- L |

5
Bild 0.2: Die Eingabemoglichkeiten

Software einfach zu machen, so dass neue Modi der genannten Fest-
setzungen ohne Probleme importiert werden konnen. Nachdem die
Eingabeparameter gewahlt sind, folgt der Optimierungsprozess der
Zielvorgabe und nahert sich der optimalen Konstruktionslosung an.
Im Rahmen dieser Arbeit wurden Hunderte von Experimenten mit
unterschiedlichen Parametern durchgefithrt und einige von ihnen
wurden dazu genutzt, den Grundgedanken hinter diesem Projekt
und die Wirksamkeit der Methode darzustellen.

Die Versuche zeigen, wie durch einfaches Umordnen der Stabe
substantielle Unterschiede in der statischen Wirksamkeit erreicht
werden konnen. Man sieht, wie unterschiedliche Gitterschalenkon-
struktionen, die iiber einigen vordefinierten Formen generiert wer-
den, mit der gleichen Anzahl von Knoten und Stdben, z.B. sehr
unterschiedlichen Belastungen und Verformungen ausgesetzt sind;
und wie die vorgeschlagene Methode genutzt werden kann, unter
den moglichen Losungen die optimale Struktur zu finden. Das Ziel
war nicht, jede mogliche Kombination von Eingabeeinstellungen zu
testen, da es praktisch eine unbegrenzte Anzahl von Moglichkeiten
gibt, die erdacht und kombiniert werden konnen. Das ist etwas, was
von Projekt zu Projekt in der Realitat differiert. Stattdessen lag der
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Schwerpunkt auf dem Nachweis, dass diese Methode mit jeglicher
Eingabekombination funktioniert und sich der optimalen Losung
entsprechend definierten Kriterien und in festgesetzten Grenzen
anndhert. Diese Arbeit bietet eine Erklarung dieser Methode an
und zeigt, wie man sie konstruiert. Die Versuchsergebnisse dienen
als Beweis der Wirksamkeit und Glaubwiirdigkeit. Nach dem Nach-
weis der Funktionsfahigkeit kann die Methode je nach Kreativitat
des Nutzers und der auftretenden Anforderungen auf unterschiedli-
chste Weise angewandt werden.

Innovation

Beim Aufbau der Optimierungssoftware wurden viele niitzliche Me-
thoden geschaffen und programmiert. Zum Beispiel ist die au-
tomatische Generierung eines Gitters (Netzes) iiber einer Freiform
mit Hilfe von Voronoi-Diagrammen einer der entwickelten Routi-
nen dieser Forschung. Ein auf Kraft-Dichte-Methode basierender
Relaxationsprozess wurde in C++ geschrieben und dann so er-
weitert, dass er bei jeder Art von Netz funktioniert (jeder Art
von Graph) und so die Relaxation einer Gitterstruktur erlaubt,
wahrend sie in einer vorgegebenen Oberflache bleibt. Zuséatzlich,
die Einbindung der FEM-Software und verschiedene Methoden fiir
die wirkungsvolle Nutzung von Genetischen Algorithmen (Fitness-
funktion, Straffunktion, Fitness-Skalierung usw.) waren innova-
tiver Teil dieser Forschung und wurden der entwickelten Software
beigesteuert.
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Introduction

1.1 Free Form Design

The straight line belongs to man, the curved line
belongs to God.
Antonio Gaudi [32]

1.1.1 Goals and Capabilities

Inspiration in a design process often comes from Nature. Philo-
sophically speaking, it is not possible for it to emerge from any
other source. Galileo Galilei makes that point when he says, “For
that which we imagine must be either something already seen or a
composite of things and part of things seen at different times” [15].
Everything we know about the world is derived from the percep-
tion the human being has of its surroundings. Every experience
gets written into our brains over the 5-sense conductor, leaving us
incapable to draw inspiration from something that is beyond our
comprehension or our knowledge. If that is so, in order to talk
about structural design, we have to start with the structural char-
acteristics of the surrounding world. One look around will show
us that Nature knows no right angle, nor does it use straight lines.
Although there are lots of similarities between species of different
life forms, it uses no repetition of basic structural elements for the
sake of production costs. Actually every structural part of natural
systems is unique, however big or small it is.

One glance at the human history and structural design in archi-
tecture shows a constant use of straight lines, orthogonal connec-
tions and as much repetition of elements as possible. This contrast
has a pretty straightforward and reasonable justification. Many
systems people made were and still are inspired and influenced by
Nature, but the degree of its simplification and abstraction always
depended on knowledge, production ability and resources. Because
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of the lack of technology enabling the copying of Nature in an ex-
act manner, the main principles were extracted and simplified. In
order to use most of the tree trunks, they were cut longitudinal,
thus producing straight wooden boards. Iron and steel were cast
and rolled into straight beams because it was easier. In the XVII
century Renatus Cartesius, better known as René Descartes, de-
fines a Cartesian coordinate system for space representation, where
the rectilinear convention was logical and easy to plan. Natural
systems of primary and secondary structures were reproduced with
simplified elements like columns, beams and ribs. Due to the uni-
form effect of gravitation, force slabs were built planar, for people
to be able to walk on them. Experience and intuition indicated that
longitudinal elements are best exploited when the gravity force acts
upon them parallel to their longer axis (causing axial pressure and
tension, instead of bending), which made a logical development of
vertical walls and columns as basic bearing structural elements.

Everything fitted, and the complexity of building structures was
mostly kept in those limits. Monumentality was achieved by vary-
ing the number and size of the elements. Although rectilinear sys-
tem evolved into a rule in architecture, there have always been
exceptions throughout history (Figure 1.1), and as technology de-
velopment progressed they became more frequent. In the last two
centuries those deviations from established norms of beauty and
proportion, and the world of Euclidean geometry, were referred to
by Rafael Moneo as “forgotten geometries lost to us because of the
difficulties of their representation” [31].

Figure 1.1: left-Larabanga Mosque (mud), Ghana, 1421.
center-Transfiguration church (wood), Kizhi Island, Russia, 1714.
right-Traditional Chinese roof

The question is if that ubiquitous rectilinear architecture made
people perceive free forms as odd. Because we are born into geo-
metrically controlled houses and cities, we are used to the idea that
rectilinear solutions are optimal precisely due to their simplicity. If
the simplicity is something desirable or if “simplicity is the ultimate
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sophistication” as Leonardo Da Vinci claimed [50], then the degree
and level of simplification is where the problem lies and in the fact
that its definition has constantly changed throughout history. As
science goes from centimeters and millimeters over nanometers to
unknown depths of elementary particles, in every field of research
there is an expansion, branching and division into smaller, simpler
elements that build the system. The definition of simple suddenly
becomes blurry and it has to be carefully weighed up for each prob-
lem.

Make everything as simple as possible,
but not simpler.
Albert Einstein [33]

Following that principle of constant division, straight lines can
be divided and combined into polylines. By letting lengths of poly-
line parts converge toward zero, smooth natural curves can be ob-
tained. Similarly, we can connect plane surfaces, multiply them and
let their areas incline toward zero to form a continuous free-from
surface (Figure 1.2). We are expanding the range of our possibil-
ities and we are always able to choose the degree of simplification
at the cost of production expenses.

1.1.2 Why free form?

If everything in Nature is made out of free (irregular) forms, we
can only ask ourselves why that is the case. The reason is that
all structures are reactions to the forces in Nature acting upon
them, or as D’Arcy phrased it, “The form of an object is a diagram
of forces” [55]. Since those forces are highly complex, irregular
and non-uniform, structural systems adjusted themselves to resist
those influences in the best possible way. In exploring what the best
possible way means for Nature, it was realized that throughout the
years of evolution it attempts to minimize material and minimize
potential energy in its creations, “for it will profit the individual not
to have its nutriment wasted on building up a useless structure” [10].
When drawing a parallel to the structural design, it is important
to mention that Nature’s optimization of structures has a certain
dimension of robustness and safety coefficient. An interesting thing
is the actual risk assessment of Nature that can be further explored
for structural optimization techniques.

We should certainly not be so fortunate if our bony
skeleton was made fail-safe against frontal impacts by a
heavy motorbike. At least all kinds of movement sports
would then no longer be an unmixed pleasure. The suf-
fering, pain and depression known by everyone who has
had a serious mechanical accident - all that counts for

: / /// . /

Figure 1.2: From line to
spline, from plane to surface
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Figure 1.3: Complex influ-
ences require complex form

nothing in Nature. The suffering of the individual is
readily paid as the price for the efficiency of the species.
That’s why trees and bones fracture!

Claus Mattheck [39]

Challenges in architecture do have a parallel in Nature, since
they are both trying to resolve the problem of optimal design for
the protection and survival of living beings. In order to materialize
these thoughts in terms of buildings, some of the criteria that should
define form and structure have to be considered. First, there are
external influences, like gravitation, sun, wind, snow, etc. A build-
ing should be intended to protect us from the destructive external
influences and enable comprehension and taming of their energy.
Second, there are user requirements, expressed as different human
functions or needs. The interior of the building should be condi-
tioned by complex combination of multiple functions as well as ven-
tilation, air conditioning and energy saving requirements. Third,
there is a creativity factor that is multiplied with free forms.

Creativity is a term not known by Nature. Nature’s variety
is a searching technique to find a better solution according to dif-
ferent criteria, i.e., a solution that will survive. In order to de-
scribe this evolutionary process in Nature and draw a parallel to
our mental processes that involve the discovery of new ideas, peo-
ple defined the notion of creativity. But much more important, the
notion of Beauty evolved into a science of proportions and design
rules, whereas Beauty is also a term not known by Nature. We use
it to describe something that gives us a perceptual experience of
pleasure, hence something that is optimal for some specific set of
conditions (objective or subjective).

Combining external and internal, non-uniform influences, we
have to agree that geometrical simplification principally doesn’t
lead to the minimal energy and minimal material solution. People
inclined toward those spatial answers over the years for several rea-
sons. An obvious one were the productions costs, followed by an
extreme simplification of functional needs. Namely, gravity was one
of the most important external forces and therefore considered as
the dominant structural factor. Simplified functional organization
fitted into the rectilinear system. That is how simple boxes were
formed, whereas many other external or internal influences had to
fit into those boundaries, defined by only a few factors which were
taken into consideration. One of the ways to express creativity was
the use of ornament, a pure decoration, made to imitate Nature’s
complexity and achieve Beauty, thereby having no functional jus-
tification. There was still a lot of room for architects to express
their creativity but the structural system was often there to limit
the imagination.



1.2. Grid Shell as a Structural System

1.1.3 Free Form Today

The cylinder, pyramid, cube, prism and sphere were
not only the essential forms of the Egyptian, Greek and
Roman architecture, as dryly observed by Le Corbus-
er, but were also universal geometric primitives of the
digital solid modeling software of the late twentieth cen-
tury. They are no longer seen, however, as some kind of
unique isolated archetype, but as special cases of quadratic
parametric surfaces.

Branko Kolarevic [31]

In the 215 century, gravity is not as difficult an adversary as
it used to be. Other environmental aspects started influencing the
design of a modern building. The wind’s power was embraced with
smooth, aerodynamically designed, surfaces and the use of CFD
(Computational Fluid Dynamics) analysis was used as a tool to de-
sign resistant and stable buildings. It was realized that energy gains
could be highly influenced by the shape and organization of struc-
tures and the choice of materials. The rectilinear organization was
often reconsidered and fluent and dynamic spaces became popular.
With CNC machines it was possible to mill, bend, print or cast dif-
ferent materials to give almost any shape and enable manufacturing
process that recognizes “no substantial difference any more in cost
of producing 1000 unique objects or 1000 identical ones” [31]. So
we are ready to climb one step up toward the natural structural
systems. The technology exists and the principles that will enable
us to use it in the best way possible have to be established.

1.2 Grid Shell as a Structural System

1.2.1 Development of Grid Shells

The categorization of structural systems can be made in numerous
ways using different approaches, based on various criteria, like the Q
shape, position, material, etc.[12]. For the sake of explanation of
grid shell genesis and its advantages, a simple geometrical approach
will be used. Considering the type of the force flow, i.e., the shape
of the elements, systems in the history of structural design can be
very roughly divided into linear and surface ones. If one dimension “JX
B

Figure 1.4: Linear system

is much bigger than other two (Figure 1.4), the element can be &

considered as linear (columns, beams, etc.). If the element has two A
dimensions relatively proportional and much bigger than the third By ¥ A § \
one it is a surface element (Figure 1.5), allowing force to disperse P P

in two dimensions throughout the element (walls,slabs,etc.).
According to their orientation in space, elements could be ver-
tical, like columns and walls, or horizontal, like beams, ribs and Figure 1.5: Surface system
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Figure 1.6: Model demon-
strating the efficiency of a
double-curved shell made
from thin plastic compared to
a similar plastic sheet acting
as a wide flat beam over the
same span. The load on the
shell is 30 times the load on
the flat sheet [5]

slabs. Elements under slope were used mainly for roof structures,
thus developing different names but still having the same principle
for the distribution of load forces over one or two dimensions. A
different combination of both systems is seen throughout history,
changing as the technology and the discovery of new materials did.
From the columns in Luxor, over Le Corbusier’s open plan toward
emergence of skyscrapers at the beginning of 20** century, the linear
system progression is quite obvious. The parallel development and
integration of surface elements also experienced change in material,
but kept the principle.

However, straight and flat elements were not as efficient as
curved ones. Heinz Isler (1926-2009), a Swiss Engineer, used a
simple experiment (depicted in Figure 1.6) to show that a curved
plastic element can resist more then 30 times greater load then
the same element when it is flat [5]. Throughout the history those
arched structures were made from masonry or some form of un-
reinforced concrete, materials strong in compression but relatively
weak in tension [5]. A very nice example is the Persian monument
Taq-i Kisra, with a 37 meters high central arch-dome, built in 540
AD (shown in Figure 1.7). The arch spans 26m and it was made
out of bricks without centring (the supporting structure) and with
the use of a quick drying cement [48]. A better solution were cast
materials, and in Ancient Rome there were some versions of con-
crete: a mixture of lime mortar, volcanic sand, water and small
stones (cementa) [13]. To this day, the largest unreinforced solid
concrete dome in the world is the Roman Pantheon shown in Figure
1.7. It spans 43.3m with a thickness that represents only 2.8% of
its diameter. Brian Cotterell and Johan Kamminga in Mechanics
of Pre-industrial Technology, have examined this and some other
domes (like Augustan Temple of Mercury and Santa Sophia) and
concluded that a hemispherical dome could guaranty stability if it
was thicker than 2.1% of its radius [6].

s LT T

Figure 1.7: left- Taq-i Kisra, Persian monument, 540 AD
right-Pantheon, Rome, 126 AD

Curved structures - shells - developed further with the intro-
duction of reinforced concrete in the 19" century, material strong
in both compression and tension. Due to the fact that it was cast,
it was a homogeneous material with an even distribution of force,
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thus enabling the transformation of flat slabs into shell structures.
Distribution of loading pressure over a continual surface was an
idea that managed to span up to 50m with only 10cm thick con-
crete shells, thus having the span/thickness ratio in the region of
500 to 1 [5]. Cast shell structures were quite an advancement be-
cause the principle of shaping the beam to follow momentum lines,
thus creating arches, could now be implemented to surface ele-
ments (Figure 1.8). Following the force diagram, concrete shells
were almost without moment, hence distributing the forces axi-
ally through the shell. Immense tenuity was then achieved due
to smart shape design and the high pressure resistance of con-
crete. People like E. Torroja(1899-1961), F. Candela (1910-1997),
H. Isler(1926-2009), P.L.Nervi(1891-1979), O. Arup(1895-1988)or
N. Esquillan(1902-198) are responsible for beautiful shell structures
around the world (some of them shown in Figure 1.9), demonstrat-
ing their possibilities. Still, the method had big restrictions. Due

- |
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Figure 1.9: left-Valencia Oceanographic, F.Candela, 2002.
center-Sidney Opera House, O.Arup, 1973.
right-CNIT Paris, N.Esquillan, 1958.

to the small thickness of shells, they carry the loads mainly through
membrane forces and aren’t able to resist large out-of-plane bend-
ing forces. One way to design a concrete shell was to generate it as
a specific part of a sphere, the part that experiences only pressure.
The delimitation of the two parts of the sphere, where pressure be-
comes tension, was experimentally established (Figure 1.10). There
were other ways of finding the appropriate form, like the use of phys-
ical models that Heinz Isler and Frei Otto performed, that ensured
that the bending moments are minimal. Anyway, the shapes were
limited and the problems of cost were big, because it was usual that
formwork and falsework represent around 50% of the total cost of
the shell, even when the shuttering was reused several times [5].
The development of reinforced concrete shell structures ran par-
allel to that of grid shells. The basic idea was to combine linear
systems with shell structures by tessellating the surface and divid-
ing it into fields. The result was a space structure of connected
linear elements. This way materials as steel or wood could have
been used and, with the clever surface division and node design,

Figure 1.8: Shell, distribut-
ing forces in all directions

Figure 1.10: Pressure and
tension in sphere shaped shell
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take over pressure and tension forces. It was basically a mix be-
tween a grid structure and a continuum shell, an evolution of truss
structures into spatially curved grids. Pier Luigi Nervi was one of
the engineers that successfully combined grid with shell, but maybe
the best example that demonstrates their fusion is Torroja’s Fron-
ton Recoletos, built in Madrid in 1935 (Figure 1.11), where the roof
is made as a combination of a concrete shell and a triangular grid
shell.
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Figure 1.11: Fronton Recoletos, Eduardo Torroja, Madrid, Spain,
1935.

Materials more appropriate for grid shells, due to the prefabri-
cation possibilities, were iron and steel. Among the first success-
ful attempts in making a steel grid shell were the ones of Johann
Schwedler and Vladimir Shukhov. Schwedler developed a Schwedler
cupola, that was able to span distances of 25-45m [30]. Its first ap-
plication was as a steel roof for the gas holder of the Imperial Con-
tinental Gas Association in 1863 (Figure 1.12). Another pioneer of
grid shell structures, as they are recognized today, was a Russian
engineer Vladimir Shukhov. He built a double curved quadran-
gular roof structures covering exhibit pavilions at the All-Russia
industrial and art exhibition in 1897 (Figure 1.12). Others slowly
followed them and developed it into an art.

Figure 1.12: left-Schwedler cupola, J. W. Schwedler, Berlin, 1863
right- Exhibit pavillion, V. Shukhov, Vyksa, Russia, 1897.
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Buckminster Fuller

Humanitarian and energy-saving approaches lead one of the great-
est minds of the 20® century, Buckminster Fuller, to popularize
geodesic domes. Since the sphere is a geometrical shape that en-
closes the greatest volume with least surface, he advocated its use in
form of triangulated grid shell structures. They enabled great spans
with single layer lightweight grid and titillated the imagination of
architects and visionaries like himself.

Geodesic structures opened up the ability of humans
to build unlimited-diameter clear-span spherical struc-
tures. By 1958 I had built a clear-span geodesic hemi-
spherical dome of 384-foot diameter. Since then they
have gone to 700 feet in diameter, and they will keep on
growing in clear-span size at an ever faster rate until we
enclose whole cities.

Buckminster Fuller [14]

He showed that shape and form, as well as geometrical dispo-
sition of the constituting elements, play a great role in structural
design and that high level of prefabrication can be used to create
very light and stable structures. Although advocating simple and
mainly familiar things, Fuller combined them and strengthened the
idea of lightweight design thus inspiring many others to come.

Max Mengeringhausen
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Figure 1.15: MERO system, prefabricated elements

What was welcomed in Fuller’s structures was that the con-
struction of geometrically primitive shapes (like sphere), enabled
effective prefabrication. A very high degree of repetition of mem-
bers and joints made the production easy and cheap. That was
also the idea of Dr.-Ing. Max Mengeringhausen, who developed
a so-called MERO system (MEngeringhausen ROhrbauweise, or
Mengeringhausen’s tubular structures). With standardized joints,

Figure 1.13: Buckminster
Fuller

Figure 1.14: The Biosphere
- 76m in diameter, B. Fuller,
Montreal, Canada, 1967.
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Figure 1.16: Frei Otto

MERO turned grid and truss structures into one of the cheapest
and most effective systems for spanning large distances, thus popu-
larizing them immensely. Soon, a wide variety of solutions for truss
element prefabrication appeared and conquered the market.

Frei Otto

Frei Otto is a German architect who founded the well known In-
stitute for Lightweight Structures at the University of Stuttgart
in 1964 and led it until his retirement. Like Fuller, he turned to
Nature in quest for answers. His soap film models used for form
finding are famous as well as the experimental approach in the field
of hanging (cable-net) structures. He used the Nature’s minimal
surface principle to design cable-net structures for the West Ger-
man Pavilion at the Montreal Expo in 1967 and the roof of the
1972 Munich Olympic Arena. Double curvature was once again
employed but this time with tension in the structural members.

Figure 1.17: left-Multihalle, F.Otto, Mannheim, Germany, 1975.
center-Catenary model at Casa Mila, A. Gaudi, Barcelona, Spain, 1910.
right-Gateway Arc, E. Saarinen, St.Louis, Missouri, USA, 1965.

In year 1975, architects Carlfried Mutschler and Joachim Langner
together with Frei Otto built a double-curved wooden shell struc-
ture known as the Multihalle, for the Bundesgartenschau (National
garden exhibition) 1975 in Mannheim (Figure 1.17 (a)). The shape
of the object was found using hanging models. Inversion of hang-
ing cloth or membrane is “for three-dimensional problems what the
catenary line is for two-dimensional arches” [5]. The principle was
not new, even the example of Taq-i Kisra shows the application of
the same catenary method [20]. One century before Otto, follow-
ing less sophisticated attempts of Heinrich Huebsch and Giovanni
Poleni, Antonio Gaudi’s experiments intended to show that the op-
timal shape of a structure under pressure is obtained by inverting
of a suspended cable net (Figure 1.17 (b)). Thus Gaudi popularized
the use of catenaries, which always produced very effective shapes
(if we forget multi-objective optimization and concentrate on gravi-
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tation as the basic and main influence). Figure 1.17 (c) shows Eero
Saarinen’s Gateway Arc in St.Louis, Missouri, the form of which
is determined by hyperbolic cosine function. Since its thickness
changes, it was not a pure catenary but a form of a weighted cate-
nary generated by Dr. Hannskarl Bandel (1925-1933), a German-
American structural engineer [7].

As mentioned, the method was used extensively by Frei Otto
at his institute, and Multihalle Mannheim is an actual product of
such studies. Built in 1975 it expressed a new way of thinking and
presented new possibilities in free form structural design. It showed
that a clever shape optimization can lead to solutions with greater
span and less material, a true lightweight architecture.

1.2.2 FEM and CNC

After the Second World War, the FEM (Finite Element Method)
of static analysis started to develop and it brought about the rev-
olution in all spheres of engineering, enabling experts to calculate
the force distribution of extremely complicated systems. The main
breakthrough in this field happened from middle to late 1950s
through the work of John Argyris, who was appointed a profes-
sor at the Technical University of Stuttgart (today University of
Stuttgart) and director of the Institute for Statics and Dynamics
of Aerospace Structures in 1953 [29], and his cooperation with Ray
W. Clough at Berkley. FEM is a numerical method for finding
approximate solutions of partial differential equations and integral
equations, hence for large structures, calculations were not possi-
ble without the computer. Throughout years FEM evolved into a
software that today enables visualization of stresses and displace-
ments in structure and wide range of static and dynamic analysis.
Since the design and static analysis of very complex structures were
possible, the question of their production arose.

At the end of the 20™ century, CNC (Computer Numerical
Controlled) machines were introduced to the building industry and
started to be used widely. The first free form grid shells with con-
trolled and precise design of their members started to emerge. A
perfect example is the roof of DZ Bank in Berlin finished in 2001,
designed by Frank Gehry (Figure 1.18). Schlaich Bergermann &
Partner office did the structural design of the roof using a trian-
gulated mesh to divide the free form surface, resulting in unique
stainless steel rods and unique joints. Limits were pushed again
and new visions appeared. If there are no more restrictions by the
prefabrication of members, and all of them can be unique, it means
that the form of grid shells is finally free and that possibilities mul-
tiplied enormously.

Figure 1.18: DZ Bank, F.
Gehry and SBP, Berlin, Ger-
many, 2001
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Figure 1.19: Skin - struc-
ture and facade of the 18
Septemberplein in Eindhoven,
Netherlands, designed by
M.Fuksas, roof structure by
Knippers Helbig, finished in
2008.
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1.2.3 Application of Grid Shells

Always when new tools become available the question of their proper
usage arises. New technology broadens our perspective and enlarges
our responsibility at the same time. Today, the possibilities we have
are mainly used for a shape driven design, using new methods for
sculptural expressiveness. The work of architects like F. Gehry,
M.Fuksas or Z.Hadid is a great illustration of the principle. For
structural designers that can be seen as an advantage, since the
challenges are bigger and the need for creative solutions inspires
new ideas.

Grid shells therefore distinguish themselves as the most general
structural system, applicable to different forms. Although used
mainly for roofs today, it is not limited to them and it is spread-
ing slowly into all parts of a building. The modernistic skeleton
is a system that strongly divides the structure from the facade,
something that is a very rough simplification of Nature’s primary
and secondary elements. On our way to a more effective approach,
a reasonable direction to take is the unification of structure and
skin, thus enabling optimal use of space and much broader design
possibilities.

The building envelope is increasingly being explored
for its potential to reunify the skin and structure in op-
position to the binary logics of the Modernistic think-
ing. The structure becomes embedded or subsumed into
the skin, as in semimonocoque and monocoque struc-
tures... The principal idea is to conflate the structure and
the skin into one element.

Branko Kolarevic [31]

Considering the merger of facade and structure, and the possi-
bility of manufacturing and assembling different unique parts, we
entered the 21% century with much more freedom. In the following
chapter it will be explained how that freedom is materialized and
what its advantages and obstacles are.
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In the history of free form shaped architecture, the main accent
has been on the quest for the optimal form. The mentioned work
of Gaudi, Fuller and Otto demonstrates that. Different methods,
physical and mathematical, were used to find the shape that would
minimize stresses and enable greater spans. This enormous research
activity is recognized under the name of form finding and the basic
idea has led to the development of new techniques, like the Force-
Density method that is used in research and will be addressed in
Section 3.2.

The research presented is confined to grid shells designed over
a predefined surface, which means that it presupposes an already
determined shape and offers a structural solution based on it. This
approach of structural design, without alteration of shape, was cho-
sen for two main reasons.

The first reason is based on experience, which showed that ar-
chitects today embrace the possibilities offered to them by new
materials and new production methods and therefore don’t want
to be constrained to statically optimal forms. If they were, their
design freedom would be drastically diminished. It is important to
remember that the bearing structure is only a part of a building
and does not, or should not, define the form alone. Function must
be combined with it to find an optimal design solution. Since the
function differs from object to object, depending on the needs or
geographical location, and the creativity of the designer comes into
play, we gain unique buildings, the shape of which can be very dif-
ferent from the statically optimal ones. This way of thinking could
have hardly been justified in the past, due to the high costs, which
leads us to the second reason for the research approach presented.

The second reason relies on the aforementioned new techniques
of analysis and production. Grid shells can provide structural solu-
tions for extremely imaginative shapes. Although it must be admit-
ted that a statically optimal shape will generally cost less, nowadays
the difference in costs is small enough to allow us to choose greater
freedom in design. Today we are witnesses of a shape driven ar-

13
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chitecture, buildings as sculptures that demand structural solutions
that don’t change their shape. Structural constraints slowly retreat
and leave more space for creativity and functional optimization.

2.1 Grid Shell Design Methods

Taking a defined shape, sculpted in space, there are two basic ap-
proaches to structural design. On the one hand, the geometry of
the grid shell has to be optimized. It has to be optically acceptable,
and it has to satisfy some of the prefabrication conditions. Those
conditions can refer, for example, to the size of the glass tiles that
cover some roof structure, or the maximal and minimal acceptable
length of a structural member. Whatever the conditions are, their
fulfillment can be recognized as the Geometrical approach.

On the other hand, static analysis can lead to statical opti-
mization of some structural solution. Whether the grid structure
represents a clearly visible roof or a hidden secondary structure of
some nontransparent facade, it can be optimized according to the
static conditions and requirements. This type of approach will be
referred to as the Statical approach.

2.1.1 Geometrical Approach

To create the grid from a surface we tessellate it. The basic idea
of tessellation is to create a polygon mesh by dividing the surface
into discreet fields (Figure 2.1). A polygon mesh is a specific struc-
ture in computer graphics. According to its definition it consists
of faces bounded by edges, that become structural members of the
grid shell, and vertices, that represent joints of the members. The
areas bounded by structural members will therefore, from now on,
be referred to as faces, or later on as cells. In structural design so
far, size and shape of the faces were highly restricted due to the
material properties and manufacturing possibilities. As grid shells
were (and mainly still are) used for roof structures, the covering
material properties are an important factor when considering the
size of the faces and edges, i.e., tile area and length of the struc-
tural members. Since glass is mainly used for its transparency,
its manufacturing and static characteristics limited the mesh edge
to "3m. Experience additionally showed that, when building steel
grid shells; the best material usage (considering the glass limits)
was with 2m-3m long structural members for triangular grids, and
1.5m-2m for quadrangular grids. Considering geometry and topol-
ogy of the mesh, different patterns (different mesh face polygons)
were thereby used for the tessellation. One of the ubiquitous ap-
proaches involves triangulation of surfaces, thus creating triangu-
lated meshes, i.e., triangulated grid shells.
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Triangular Grid

An additional condition that the covering system imposed on the
shape of faces is planarity. Namely, the production costs of double
curved glass (or any other material) panels were always simply too
high in comparison to single curved or flat elements. Since every
triangle is by definition planar, surfaces were mainly divided into
triangles, creating triangular meshes. The sides of each triangle
were designed to fit the 2-3m length and numerous projects around
the world emerged exemplifying the application of this system.

Projection There are several ways to design a triangular grid
shell. In the project for the Westfield mall in London, structural
design of the grid shell roof, over 17.000m? of free from surface, was
done by the Knippers Helbig office in Stuttgart [22]. The shape
was designed together with the architect as a double curved surface
and the task was to offer a structural solution bounded to that
surface. Since the curvature of the surface was moderate, the simple
projection method was applied (Figure 2.2). A planar triangulated
polygon mesh was projected vertically to the surface and therefore
made production easier, since the angles between the members in
every node were 60°in the horizontal (XY') plane. In that way, only
the slope of each of the 8500 members differed and only one angle
had to be adjusted. At the time it made production costs lower but
still ended up as a structure with unique members and nodes.

oy —~-
Figure 2.2: Westfield Shop-
ping Center, London White
Relaxation From the simple projection method we move to more  City, completed in 2007.
advanced techniques that were used in the project of MyZiel mall ArChit_eCtS‘ Buchan Group I?‘
in Frankfurt (Figure 2.3). It was designed by Massimiliano Fuksas ~ ternational, Structural Engi-
office in Rome and Knippers Helbig office did the structural design neering:Knippers Helbig
of the 13.000m? free form glass roof [22]. Following the Buckmin-
ster Fuller’s sphere division principle, the surface was divided into
big triangles. This is done in order to establish the basic line di-
rections. Each of those triangles was then subdivided into smaller
ones to gain a basic triangulated mesh. At the end, mesh relaz-
ation techniques were applied in order to get smooth and optically
acceptable structure.
The matter of relazation requires a short digression. Namely, in
the year 1971 Linkwitz and Schek developed a new formulation for
finding the equilibrium of forces in cable network structures [38],
in the generation of the 1972 Munich Olympic Games stadium roof
design. The principle was named Force-Density method (Kraft-
Dichte Methode) and it will be explained in more detail in Section
3.3.1, together with the principles of its application in the grid shell
design field nowadays. For now it is important to notice the effect
it produces.

15
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Figure 2.4: Design pro-
cess of the EXPO Shanghai
Sun Valleys, from large trian-
gles (up), their division (mid-
dle) to relaxation of the grid
(down)
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Figure 2.3: MyZeil, Frankfurt, Germany, completed in 2008.
Architect:M. Fuksas, Structural Engineering:Knippers Helbig

Controlled relaxation The relazation techniques were applied
at a higher level of complexity for another structural design of Knip-
pers Helbig office. It was the EXPO Axis, a 1km long membrane
roof in Shanghai and the focus is on so called Sun Valleys - 41.5m
high funnel-like structures made as triangulated single layer grid
shells [51]. As with the MyZiel roof, the structure was divided into
large triangles only to be subdivided further into smaller ones. The
relazation method (explained in Section 3.3.1) was then applied to
smoothen the grid with some additional adjustments. This three-
step process is depicted in Figure 2.4. Since the huge membrane
roof had to be connected to each of the six different Sun Valleys,
the areas where that occurred should have had a greater density in
order to take over the immense tension forces. This was managed
with the control of the tension factor of the members around the
critical points, therefore pulling the mesh closer to them and cre-
ating a greater density in those areas, thus enabling better static
response. This is explained in Section 3.3.2 and depicted in Fig-
ure 3.16, and the use of tension factors is explained thoroughly
in Section 3.3.1 together with the relaxation method. For now it
is important to notice that the relaxation technique can be con-
trolled and finely tuned to suit a number of geometrical or statical
conditions.

Experience with various aforementioned grid shells was an ac-
tual inspiration, the initial spark to investigate further possibilities
of their optimization. It triggered the need to search for meth-
ods beyond the trial and error techniques that were used, and to
see how the whole process can be automated. Before the innova-
tive methods are explained, the subject of grid shells with different
polygonal structures will be briefly addressed.
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Figure 2.5: One of six Sun Valleys for EXPO 2010, Shanghai, China
SBA Architects and Knippers Helbig Advanced Engineering [51]

Quadrilateral Grid

Until now, the alternatives for triangular meshes were mainly the
quadrilateral ones. They had the advantage of being lighter and
less complicated to build, due to the simpler joints. In the triangu-
lated meshes, joints had to be designed to transfer the forces of 6
different members connected in one point. Quadrilateral grid struc-
tures have joints with only 4 members, but this simplification led
to new problems. The first one was stability, due to the transfer
from highly rigid triangle to movable rectangles, the stability of the
whole structure came into question. It was realized that the buck-
ling of complete system presents a very big danger in a lightweight
grid shell design. As structures became lighter, due to the smart
use of FEM analysis software, buckling, i.e., stability of the system
moved up on the ladder and became the primary condition. As it
can be seen in numerous buildings with quadrilateral grid shells,
there are steel cables (bracings) spanned over the diagonals of the
quadrilateral to basically transform them into a triangular grid.
However, that is not always the case, and one of the fine examples
is the Cabot Circus shopping mall roof in Bristol, shown in Figure
2.6 [25]. Here the quadrilateral grid shell is constructed without
the bracings, showing that they are not always a necessity.

Another problem with quadrilateral grid shells was a geometri-
cal one. Used for roof structures, covered with glass, planarity of
mesh faces had to be ensured. Planar quad meshes can be achieved
in several ways. One way is by translating a polygon against an-
other polygon, resulting in quadrilaterals with two pairs of parallel
sides, as shown in Figure 2.7. The parallelism of two pairs of op-
posite sides ensures the planarity of the quadrangles. Rotational
surfaces, such as cone or hyperboloid can also be represented as
planar quad meshes, known as rotational PQ mesh [17].

Other, geometrically more complicated methods, involve conju-
gate curve networks and subdivision methods [17, 49]. The more

Figure 2.7: Quadrilateral
mesh, where translation en-
sures planarity of faces
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Figure 2.8: Example of a
free form surface whose prin-
cipal curvature lines are not
suitable as the basis for the
layout of a planar quad mesh
[17]

Figure 2.9: Buckyball
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Figure 2.6: Cabot Circus, Bristol, England, Schlaich Bergerman &
Partners, 2008. [25]

complicated the surface is, the less possible planar quad solutions
there are. The limits are therefore substantial, since there are
usually only few possible planar quadrilateral solutions for a free
form surface, that are often not statically and optically acceptable.
Sometimes the principle curvature lines can hardly be translated
into a sensible grid, as in the example shown in Figure 2.8. Those
limits can make us ask, why we are focusing on solutions that meet
the demands of old and rigid materials instead of trying to over-
come those restrictions. Some visionary thinking has to be done to
prepare us for the coming of new materials with new performance
ranges, where the curvature of faces will not be a problem.

N-gon Grids

There are sphere tessellation methods that can be described as
cutting the sphere with planes. Transferring them to free form
surfaces, they show the generation of polygon meshes mainly com-
posed of hexagons and pentagons, the shape of which depends on
the concavity and convexity of the surface [17]. The cutting method
was developed from the planarity condition and the grid structure
depends heavily on the free form shape, thus making the system
not applicable to surfaces with large curvature changes. In Figure
2.9, an example of a buckyball, named after Buckminster Fuller,
is shown. This is one of numerous possible patterns of dividing
spheres or planes (which are then transferable to open surfaces).
Some of those regular n-gon grid structures will be addressed in
Section 5.2 and it will be shown how they can be used for free
form surface tessellation. A nice example of hexagonal structure
is also the Eden Project in St Blazey (UK), designed by Nicholas
Grimshaw, shown in Figure 2.10.

Along with new solutions, the limit of planarity will probably
be transcended by new materials and CNC production of double
curved elements, but until then, the planarity condition remains
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Figure 2.10: Eden Project, St Blazey, Cornwall, UK, Nicholas
Grimshaw, 2001. [52]

one of the important factors in grid shell design, often limiting
the statical optimization. The difficulties concerning the stability
of structures, i.e., the problem of mobility of rectangles, pentagons,
hexagons or any kind of n-gons, can be resolved in future with more
intelligent joint design that will be able to take over the forces in a
way that insures the stability of the whole structure. Several imag-
inable scenarios are possible when the development of new materials
is considered, especially when their elastic limit is investigated. The
condition of rigidity of structures can then be reconsidered and the
structures could maybe breathe and move. Moving in that direc-
tion, the clever combination of materials and their geometry has to
be extensively explored.

2.1.2 Statical Approach

So far, the geometrical approach for grid shell design has been de-
scribed. It was pointed out above that certain adjustments of the
grid density had to be made for the EXPO Axis project, in order
to optimize the structure statically. That is a small example of how
geometry has to be altered to fit statical conditions. Theoretically,
the design process can be solely guided by the statical behavior of
the structure, but in practise it is always a combination of opti-
cal and statical conditions, as well as manufacturing constraints.
However to find an acceptable solution, combined cross-sectional,
geometrical and topological optimization is usually performed. In
the field of free form structural design today, optimizations have
one thing in common - the use of the trial and error approach.
Grid shells are optimized optically and after a smooth and ac-
ceptable mesh is obtained the cross-sectional optimization is per-
formed in a slow, non-automated iterative process. There is a lot of
research done in geometrical and topological optimization of truss
structures [56, 2, 57, 26, 23| and aforementioned cross-sectional op-
timization of grid shells [2, 34, 34]. However, when it comes to free
form design, the research mostly turns to form finding and geomet-
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rical optimization of existing triangular or quadrilateral structures
by the small movement of their nodes and orientation of their mem-
bers [56].

When it comes to comprehensive design of grid shells over a pre-
defined free from surface to fit the static, optical and manufacturing
conditions in the best possible way, people often rely on experience
and intuition, ending up with a trial and error method that is, due
to the strict deadlines, limited to a small number of attempts. The
goal of the statical approach is to find a structure that will use
minimal amount of material and satisfy static conditions, like per-
missible stress or stability. Respectively, to answer what structure
within specific boundaries (like a predefined surface in this case)
requires minimum material, i.e., minimum cost and maximum per-
formance, an appropriate method has to be developed that will
enable thorough examination of the search space.

The rigidity of the joints in a grid structure, and their beam el-
ement composition, makes the design much more complicated than
truss structure design (where the elements are pin-joined, i.e., take
over only axial forces). The design of the grid shell beam element
has to account for three moments and three axial forces. Therefore
it requires an engineer to choose a combination of cross-section size
and shape in a way that insures that the moment of inertia and
cross-sectional surface can resist all the forces as well as satisfy the
buckling conditions. Considering the entire structure with possi-
bly several thousand members, the interdependence between them
gets extremely complicated. The number of possible combinations
and variables, i.e., the gigantic search space, is exactly the reason
why the geometrical and topological optimization of these struc-
tures presents quite a challenge. In the following chapters it will
be shown how the static analysis approach can be applied in a free
form grid shell design.

2.2 Structural Optimization

Regardless of the approach, grid shell design, or any kind of design,
is a process of optimization. Every decision making begins with a
creation and selection of some solutions that are picked and altered
according to some set of objectives. In structural engineering it
basically comes down to optical and statical conditions that, as it
is already emphasized, should always be considered together. Opti-
mization in structural engineering should always be multi-objective
and restrained, and the challenge is to incorporate as many objec-
tives as possible, and examine the search space in as much detail
as possible to find a set of acceptable solutions.
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2.2.1 Basic Terms

In order to simplify the whole process, some of the basic terms
of structural optimization will be explained. In every structural
optimization we have to define what we can change in order to
find the optimal solution. This leads to the definition of a set of
design variables. The next step is to define the problem, a goal,
that should be pursued by changing those variables. That goal
comes in the form of objective functions. In structural engineering,
a number of restrictions have to be considered. Conditions like
material properties, production costs and possibilities, etc. have
to be kept in mind, and an optimal solution has to meet these
conditions. They are defined as a set of constraints that limit the
search space to feasible solutions. After these basic definitions, a
method of optimization has to be chosen, or developed, that will
give us the best solution in the shortest time.

Degree of freedom - design variables

The structure’s freedom to transform is always expressed over de-
sign variables, often denoted by a vector x = (z1, 22, 23...,2,). In
structural design the choice of possible variables can be narrowed
down to: material properties, cross-sections of structural members,
geometry and topology of the structure. These parameters can be
defined as continuous or discontinuous, regarding the values they
can have. If the parameters are continuous it is assumed they can
take any value in a specific range, while discontinuous variables can
only have isolated values. Although optimization processes are usu-
ally simplified by making all variables continuous, a good example
of a discontinuous one is the cross-section, as we are often able to
choose only the ones offered by the manufacturer. Choosing the ap-
propriate variables is the first step toward a successful optimization
process and will be addressed in Section 4.2.

Problem formulation - objective function

After the participants in the game are selected, the goal has to be
chosen, an objective expressed as a function f(z) or set of func-
tions f(x) = [fi(x), fa(x), ..., fm(2z)]. They are called objective
functions, and depending on their number, an optimization can be
single-objective or multi-objective. In the research presented, both
of these optimization types will be addressed in more detail in Sec-
tion 4.3. The objective function is usually a simple mathematical
definition of a term we want to minimize or maximize. In structural
engineering it mainly describes a minimization problem.
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Constraints

In the optimization process, a set of constraints is taken into ac-
count to define the feasibility of the solution. It can be visualized
as bounding the infinite search space, thus creating a finite search
space where the optimal solution has to be found. If we generalize
structural design problems as minimizations of functions, the gen-
eral form of the function with constraints would be:

Minimize:
f(@),x = (21,22, 23,...,7) (2.1)
under constraints:
gi(z)>0 , i=1,... K (2.2)
hi(z)=0 , j=1,...P (2.3)

Here g; and h; are inequality and equality constraints and they
represent the limits of our design solutions, i.e., the borders of our
search space. There can be more than one constraint (up to K
or P) that eventually help in the distinction between feasible and
infeasible solutions. The feasibility in structural design is usually
rigidly strict. Restrictions can refer to yield stress of a material, or
production capabilities, for example. The application of constraints
in grid shell optimization is explained in much more detail in Section
4.4.

2.2.2 Optimization Types

Following the design variable selection, four main directions in
structural optimization can be distinguished:

1. Material Optimization
2. Cross-sectional Optimization
3. Geometry optimization
4. Topology optimization

The research described in the following chapters does not ad-
dress material and cross-sectional optimization. One of the rea-
sons is that those problems are relatively easy to describe in the
form of mathematical functions, making them suitable for calculus
based methods. Since lots of research is already done in that field,
the idea was to turn to less explored geometrical and topological
optimization of grid shell structures. The number of possible ge-
ometries and topologies is enormous and therefore the search space
is much bigger than in the first two mentioned optimizations. An
additional problem is the large number of variables that have to
be considered, leading to multi-objective and non-linear optimiza-
tion. Such problems are mainly impossible to represent in the form
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of continuous differential functions and therefore different methods
for their solution have to be considered. In the following sections,
possible optimization techniques will be presented with the brief
explanation of their advantages and disadvantages.

2.2.3 Calculus Based Optimization Techniques

Calculus based methods use calculus, as the name implies, to solve
mathematically defined objective functions. If the problem is rep-
resented as a nonlinear function of single or multiple design vari-
ables, the solution is to find extremes of that function. The basic
differentiation can be made between constrained and unconstrained
methods. The methods will simply be mentioned in order to show
their diversity and basic approach.

Unconstrained Methods The problems that can be presented
as a function of one variable can be easily solved by searching the
extremes of the function i.e. its minimum and maximum. In order
to extract the needed values, different methods can be used and the
basic categories are zeroth, first and second order methods.

Zeroth order methods use only the value of the function and try
to find the solution through a series of function evaluations, usually
applying iterative interpolation processes. For one variable func-
tions, the Bracketing method, Quadratic Interpolation, Fibonacci
and the Golden Section Search, etc. are used. For multiple variable
functions methods like the Sequential Simplex Method and Powell’s
Conjugate Gradient Method are often applied [19].

First order methods use not only the values of the function but
also its first derivatives with respect to their variables. One of the
most applied first order methods are the Bisection Method and the
Davidon’s Cubic Interpolation method, and they use derivatives of
the function to find its minimum. With multiple variable functions
they span over several different Conjugate Gradient techniques like
Beale’s and Fletcher-Reeves” method [19].

Second order methods use first and second derivatives of the
function, aside from its values. In one variable and multiple variable
functions, Newton’s method is one of the most efficient, leading to
development of other, Quasi-Newton, techniques.

Constrained Methods The methods described above belong to
the unconstrained optimization methods. As structural optimiza-
tion problems have to satisfy a number of limits and conditions, like
maximum displacement, buckling load factor limits or frequency
constraints, calculations become much more complex. The opti-
mization then turns to new mathematical areas of Lagrange Mul-
tipliers, Quadratic and Nonlinear programming, reduced Gradient
Methods and the usage of penalty functions.
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Applicability of Calculus Based Techniques

The techniques mentioned above require a problem that can be
presented as a function of one or multiple variables. To guarantee
a good solution, the function should preferably be unimodal and
continuous and for the use of more effective first and second order
methods, the function has to be differentiable. Design variables
have to be continuous or otherwise isolated values make the search
space discontinuous and disjointed and the derivative information is
either not defined or useless. Another common disadvantage is the
difficulty of distinguishing between the global and the local mini-
mum of the function and it happens very often that they converge
to one of the local minima depending on the search starting point
[19].

Since the structural optimization of a grid shell over a specific
free form surface is a highly nonlinear process, with discrete design
variables, that can hardly be presented as a unimodal, continuous
and differentiable functions, rising popularity of stochastic methods
proves their suitability for the aforementioned task.

2.2.4 Stochastic Methods

Since the real world of search is fraught with dis-
continuities and vast multimodal. . . It comes as no sur-
prise that methods depending upon the restrictive re-
quirements of continuity and derivative existence are
unsuitable for all but a very limited problem domain.

David Goldberg

Talking about the stochastic search, we can start with enumer-
ative optimization methods, where every point in the search space
is analyzed. They don’t differ much from pure random searches,
which do the same thing with a random choice of points in a search
space. Although those two principles are very logical from a human,
trial and error point of view, they are highly inefficient and, with
multi-modal and multi-variable search space, the time to find an
optimal solution is simply not acceptable. In the field of stochastic
search, we can recognize a large number of other techniques in-
cluding perturbation, hill climbing, simulated annealing as well as
Swarm Algorithms, whose usage is slowly becoming significant in
the field of architecture and structural engineering. However, for
the sake of brevity, all mentioned stochastic methods will not be
addressed here. Instead, we will concentrate on Genetic Algorithms
and Evolution Strategies. Let us consider in what ways Genetic Al-
gorithms are better for the purpose of grid shell optimization than
any of the aforementioned (calculus based or stochastic) methods.
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Genetic Algorithms (GAs)

Probabilistic methods of optimization rely on random selection fac-
tors and probabilistic decision. The most effective of them are
Genetic Algorithms and Evolution Strategies that come from the
naturally observed phenomena. The difference between those two
is often vague, as they both rely on the collective learning paradigm
and implement the same principles of population, mutation, recom-
bination and selection [53]. The basic principle is extracted from
Nature and its selection method. Charles Darwin, in his book On
the Origin of Species, describes extensively the principles of natural
selection, thus defining the ground rules of Evolution.

If during the long course of ages and under varying
conditions of life, organic beings vary at all in the sev-
eral parts of their organization, and I think this cannot
be disputed; if there be, owing to the high geometrical
powers of increase of each species, at some age, season,
or year, a severe struggle for life, and this certainly can-
not be disputed; then, considering the infinite complex-
ity of the relations of all organic beings to each other
and to their conditions of existence, causing an infinite
diversity in structure, constitution, and habits, to be ad-
vantageous to them, I think it would be a most extraordi-
nary fact if no variation ever had occurred useful to each
being’s own welfare, in the same way as so many varia-
tions have occurred useful to man. But if variations use-
ful to any organic being do occur, assuredly individuals
thus characterized will have the best chance of being pre-
served in the struggle for life; and from the strong prin-
ciple of inheritance they will tend to produce offspring
similarly characterized. This principle of preservation,
I have called, for the sake of brevity, Natural Selection.

Charles Darwin [10]

Since the appearance of the first amoebas, life was sustained
through reproduction, i.e., multiplication. In this process, Nature
started introducing small random mutations. Those mutations in-
troduced diversity and, in combination with the environment, were
responsible for the creation of unique individuals. Each of the new-
borns was alive for a different amount of time and some of them
reproduced more than the others. Eventually, the ones that lived
longer and reproduced more, passed their genetic information to
their offspring, thus enabling the survival of their specie. British
philosopher Herbert Spencer used Darwin’s idea and made parallels
to the capitalistic economy, thus coining the term survival of the
fittest [9]. That principle, where the best designs survive and bad
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ones disappear is the basic idea behind the optimization with Ge-
netic Algorithms. Their development is not surprising at all, since
if we think about it, every design process, happening in our minds,
follows the same logic. Every time we try to think of some ac-
ceptable design solution we: 1.Generate a set of random solutions,
2.Select some of them, 3.Alter them, 4.Combine them to develop a
new set of solutions, 5.Repeat 2-4 until we find a satisfactory de-
sign. That is exactly how Genetic Algorithms work and the process
described has one to one correspondence with GAs in the form of:
1.Generation, 2.Selection, 3.Mutation and 4.Crossover. Therefore
it is clear that every design process is an optimization and its results
depend on our ability to choose the best solution from all possible
solutions.
Computational implementations of evolution started in the 1950s.

In the 1960s Ingo Rechenberg defined the Evolution Strategies (ESs)
and used them as an optimization technique to solve engineering
problems [45]. Following the same principles of evolution, in 1975
professor John Holland published a book called Adaptation in Nat-
ural and Artificial Systems [21]. It is referred to as the primary
monograph on the topic of Genetic Algorithms and it is definitely
responsible for their popularization. His work was continued suc-
cessfully by his student David Goldberg [16].

Genetic algorithms (GAs) are an accepted system of
optimization suitable for multi-objective and highly non-
linear optimizations. It is a stochastic method that is
however no simple random walk. GAs efficiently exploit
historical information to speculate on new search points
with expected improved performance.

David Goldberg [16]

As Goldberg points out, Genetic Algorithms are not a simple
random search. Probably the most difficult part to explain is how
and why that is true. That is the question that will be answered
easily after presenting the characteristics of GAs and the way of
their application for grid shell design in Chapters 4 and 5. It will
be shown that, although based on an initial random choice of so-
lutions in the search space, and additional random influences of
crossover and mutation, the method does converge very fast to a
global optimum, if the problem is described appropriately and the
functions and GAs settings are intelligently tuned. Their search
doesn’t have a single starting point but a population of points,
which ensures a better coverage of the search space. The size of the
population determines the coverage and it can be defined according
to the problem.

GAs do not work with parameters directly. There is a system
of coding that enables a large number of parameters for a single
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problem to be combined into a finite-length string. In that way a
difficult or in some cases impossible mathematical definition of a
set of parameters enables their definition and optimization.

GAs do not require that the problem be presented as a contin-
uous differential function, since they do not work with derivatives.
Instead, they use an objective function (payoff information) which
enables us to address a much larger set of problems and, maybe
even more importantly, easily upgrade the system.

GAs differ in their use of probabilistic rules, not deterministic
ones. With the rise of quantum mechanics we are more open to the
notion of chance playing an important role in the world around us.
The evolution process is therefore seen as a probabilistic interaction
between the different environmental variations and it is applied in
such a manner for the structural optimization. Charles Darwin
showed that Nature uses random mutation and in that way creates
a huge variety of designs [10]. As time goes by only the fittest
survive and in that way optimize the design. This is a very simple
principle that can be applied in structural engineering efficiently.

Comparison of Genetic Algorithms and
Evolution Strategies

We’ll make a brief digression to address the question of GAs and
ESs. Namely, it is often confusing to determine differences between
those two techniques, since they are based on the same principles
and on the conceptual level those differences tend to disappear. An
additional reason for confusion is that in practice it is very common
to combine those two techniques in order to come up with a good
optimization process. In the research presented that is also the
case.

What they have in common are the principles of population, mu-
tation, recombination and selection, as it was already mentioned.
They differ only in their implementation. The main difference is in
the coding of a chromosome. GAs work in general on fixed-sized
bitstrings and ESs work on real-valued vectors. In other terms,
GAs work with the Genotype level of individuals and ESs with the
Phenotype level of individuals [53]. GAs are more artificial, whereas
ESs tend to imitate the process of natural selection with a smaller
measure of mathematical simplification. There are a lot of other
minor variations in selection, mutation and reproduction that are
not so significant, since every method has a version that can be
implemented with both strategies. So there is no need to go into
unnecessary detail. A thorough explanation of our implementation
can be found in Chapter 4, where all the terms that may seem
abstract now will be clarified with the demonstration of their ap-
plication. It will be seen that GAs can be considered as the base
method of our research, with some coding and reproduction meth-
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ods taken from ESs. But generally, there is no reason to make clear
distinctions. Both principles are Fvolution methods, with lots of
variations in implementation that can be set up to response to a
specific problem. Nevertheless, since the research is based mostly
on processes typical for Genetic Algorithms, they will be referred to
as the basic principle used, throughout all of the following chapters.



3

From Surface to Grid

Considering the topic - free form grid shell design - the use of free
form and grid have to be addressed in more detail. A short expla-
nation of NURBS is offered as a basic mathematical tool for surface
representation. The genesis of grid structures is then presented in
the form of different tessellation techniques. Namely, Voronoi and
Voronax diagrams together with some other possibilities will be
shown, and the principles and methods of their application for grid
shell design will be demonstrated.

3.1 NURBS

3.1.1 Design

Contemporary free form shaped buildings have manufacturing prin-
ciples with the roots in the aeronautical and ship-building industry.
The majority of construction methods in free form architecture to-
day (taking Frank O. Gehry’s buildings as an example) is made
with the help of vast experience in ship, aeronautical and car in-
dustry. Aside from manufacturing methods, the software able to
represent free form surfaces, with mathematical precision, was ini-
tially developed for ship and car bodies.

Pierre Bézier, an employee of Renault, and Paul de Casteljau
from Citroén, pioneered the principle in the 1950s with the polyno-
mial representation of curves. From Bézier splines the problem was
generalized to create non uniform, rational B-Splines and was even-
tually developed into Non Uniform Rational Basis Spline surfaces,
or NURBS surfaces.

Due to the fact that it is possible to represent practically any
shape with the use of NURBS, they entered the CAD world in the
80’s and prospered very fast to become the main tool today for the
geometrical representation of free form in all fields of design.

The research presented is made with the help of Rhinoceros 3D
software, a commercial NURBS based 3D modeling tool. One of
the creators (Lowell Walmsley) once said to me, “We made it for

Figure 3.1: up-Guggenheim
Museum, F.O.Gehry, Bilbao,
Spain, 1997
down-Citroen DS, Seriesl
(1955-1962)
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Power based curve of degree 2,
parabolic arc
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the industrial designers. We never imagined it would be used for
houses, shopping malls or even airports”.

3.1.2 Mathematics

Putting all the design advantages aside, the mathematical descrip-
tion of NURBS surfaces will be used to explain why their paramet-
ric definition makes them perfect for the research presented. The
detailed mathematical description is highly complex and therefore,
an attempt will be made to sum it up into a short history of the
development of free form geometrical representation. The com-
prehension of polynomial and parametric nature is important for
the further understanding of arguments for their application. To
make it as simple as possible, an evolution from straight lines to
NURBS curves will be shown. We will start with the parametric
definition of a curve, and see how that parameter (u for curve and
u, v for surface) remains as a constant factor in all functions, while
they are expanded with the addition of new variables, like weights,
knots, etc.. Although every method along the way can be easily
expanded from curve to surface definition, for the sake of brevity,
that expansion will be addressed only when NURBS geometry is
clarified.

Power Basis Curve

In a simple straight line definition, a distinction is made between
explicit form y = max + b and parametric form r = zg + au,y =
Yo + bu,z = zp + cu . If an independent parameter u is created,
the function of a curve in space can be represented over coordi-
nates x,y, z which are then expressed over that parameter. The
parameter is defined inside a specific interval [a, b], usually [0, 1].

Clu) = (x(u),y(u) , a<u<b (3.1)

From here an nth degree power basis curve is defined as:

Clu) = (z(u), y(u), 2(u)) = Zau , 0<u<1 (3.2)

where a; = (x;,y;, z;) are vectors. To illustrate that, in Figure 3.2
and 3.3 curves of degree 1 and 2 are shown and it is clear how the
change of parameter u from 0 to 1 gives all the points on the curve.

Bézier Curves

Since the power basis curve is unnatural for interactive shape de-
sign, Bézier curves were developed as a mathematically equivalent
form, yet more suitable for geometric modeling, i.e., manipulation
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of the shape with the use of computer. The general form of an nth
degree Bézier curve is:

C(u) = iBm(u)Pl , 0<u<1 (3.3)

Two important ingredients are introduced here. First, P: as a
vector of control points and second, a basis function B;, n(u). The
P; is represented over coordinates in space P; = (z;, v, 2;) and basis
functions are known as Bernstein polynomials of degree n:

n!
~dl(n —i)!
For the sake of brevity a detailed definition must be avoided and
a simple example (Figure 3.4) of a cubic (3'9 degree) Bézier curve
will make things clearer. Degree 1 would be a straight line, degree
2 a parabolic arc, and if degree n = 3 the expression is:

B (u) u'(l—u)"" , 0<u<l (3.4)

C(u) = (1 —u)*Py+3u(l —u)*P, + 3u*(1 — u) Py + u*P3.

Py, P, P, and P3 represent control points, and the polygon
between them represents the approximate shape of the curve. By
simply changing the parameter u from 0 to 1 and importing that
value into the Equation 3.1.2, we get all the points on the depicted
curve. One of the numerically stable ways to evaluate Bernstein
polynomials in a recursive manner is a De Casteljaus’s algorithm.
It is based on a simple principle of recursive subdivisions of line
segments. In Figure 3.5 it is shown how the curve is formed when
parameter u travels from 0 to 1, defining along the way a division
point of all the lines that connect the control points. That means
that if, for example, u = 0.3, we define points on all lines with that
ratio (Py+ 0.3P;, P, + 0.3P,,...), and on all the new created lines
too, until we get the single point (marked yellow) that belongs to
the Bézier curve.

P, Py

Figure 3.5: De Casteljau’s recursive algorithm

Rational Bézier Curves

Since Bézier Curves cannot be used to precisely represent conic sec-
tions (like circles, ellipses, hyperbolas, spheres, etc.) using polyno-
mials, rational functions are implemented, introducing the concept

Figure 3.4: 3" degree Bézier
curve
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Figure 3.6: Circle arc, de-
fined with the help of weights
added to Bézier curve
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of weight. If there is a weight vector {w;}, the nth degree rational
Bézier curve can be expressed as:

_ Z?:O Bi,n(@Piwi
Z?:o Bi,n(u)wz‘ ’

In this way simple conical sections, like circle, could be repre-
sented as shown in Figure 3.6. We basically just added another
factor (a number) that will pull the curve toward the control point
(that is why it is called weight), thus correcting the curves and
giving us an additional control. By manipulating weights we have
more control in design.

C(u)

0<u<l1 (3.5)

B-Spline Basis Function

To go further in generalization, the restrictions of rational Bézier
curves were considered. The main downside was that they consist
only of just one polynomial or rational segment. A curve through
n data points therefore needs an n — 1 degree Bézier curve, mak-
ing it complex and numerically instable [44]. The solution was to
use piecewise polynomial curves, which overcome some of the draw-
backs of regular Bézier curves. The curve is then basically divided
into k segments and a vector of breakpoints U = {u;},0 < i < k
between those segments is constituted. It is called knot vector and
breakpoints are called knots. The knot vector determines where
the polynomials start and stop in the parameter range as the curve
is drawn. In Figure 3.7 a piecewise polynomial function is shown,
with 3 polynomial segments in Bézier form. This method of rep-

w, -0 1, u, U, -1
Figure 3.7: Piecewise polynomial function

resentation still had problems with continuity and representation.
To solve those problems, a generalization of Bézier curves is made,
with the help of B-Splines basis functions. The definition of ¢th
B-Spline basis function of p-degree (order p+ 1) over a knot vector
U=A{uy,...,un,} is expressed as:
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Nio(u) 1 ifw <u<u (3.6)
solu) = .
0 0 otherwise
U — Uy Uitpt1 — U
N; =— N, ,_ — T N1, 3.7
»(1) Uy — P 1(u) + Uirprt — Ui L 1(u) (3.7

A B-Spline function therefore consists of n Bézier curve seg-
ments with C? continuity, thus enabling the conversion of any
Bézier curve to a B-spline and vice versa.

B-Spline Curves

Now, we have seen that a B-Spline Basis function basically combines
n Bézier curves into one expression. Pretty straightforward, a B-
Spline basis function is then used to define a B-Spline curve. So
combining it with control points, a pth-degree B-Spline curve can
be represented as:

C(u) = ZNivp(u)Pi , a<u<b (3.8)
=0
There Pi is again a control point vector and {N; ,(u)} represents
pth degree B-Spline basis functions, defined over a specific non-
periodic (and non-uniform) knot vector U:

U={a,...,a,Upi1, . Un—p-1,0,...,b}

This flexibility in the knot vector mapping (0,0,0,1,4,4,5,7,8,11,11,11)
is what the phrase non-uniform in NURBS refers to. A uniform
knot vector, e.g., [0, %, %, g, %, 1] would ensure the distances between
knot values to be equal.

Rational B-Spline Curves and Surfaces

Since B-Spline curves are still polynomial curves that cannot rep-
resent many useful simple curves such as circles and ellipses, a gen-
eralization of B-Splines led to Rational B-Splines. By introducing
rational functions and weight, like in the example of rational Bézier
curves, a general definition for a pth degree NURBS Curve is ob-
tained:

_ > io Nip(w) Pw

> io Nip(ww; ’

Where control points { Pi} , weights {w;} and {N; ,(u)} define a
pth degree B-Spline basis function over a specific non-periodic and
nonuniform knot vector U.

Going from curve to surface is relatively simple. We only have to
import another parameter v for the second direction, together with

C(u)

a<u<b (3.9)
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its own B-Spline basis function and its own knot vector. And when
another dimension is added, we expand the definition and finally
create a NURBS surface of degree p in the u direction and degree
q in the v direction as a piecewise rational polynomial function:

> ico 2 jeo Nip(w)Njq(v) Pijwi

S(u,v) = - — , 0 <,
(u,0) > im0 2o Nip(W)Njg(v)wi

Now {Pi,j} represents a network of control points in two di-
rections (¢,7), {w;;} represents their weights and there are non-
rational B-Spline basis functions in two directions {N;,(u)} and
{N,,(v)} defined over two knot vectors U and V. In Figure 3.8
there is a simple graphical representation of a NURBS surface and
its control points.

y "
Pog _aSeeea >
P a 2
N (\} 0’:. _:-_%gs.- ,-" i _‘_,4:.1 1,3
! -~ ]
; ! ==P
1 Por ‘ P
P . iPu
L 4 }f‘l ..... 7 e Pul
Poo ' Pag® v
]
Papss
Pib
Njq(u) -

Figure 3.8: NURBS surface defined over v and v parameters with the
help of a control point network

So Why NURBS?

The brief analysis of NURBS curves and surfaces was made to show
that, apart from the huge design advantages and ubiquitous appli-
cation, any kind of spatial free form surface can be represented as
a polynomial function of two independent parameters v and v. Re-
spectively, any point on the surface has a unique v and v value and
therefore the 2D tessellation technique can be used for the division
of spatial surfaces. Transformation from zy to uv coordinates, and
vice versa, is computationally pretty straightforward. In the follow-
ing chapters it will be explained how this characteristic enables the
usage of 2D Voronoi diagram algorithms to form a great range of
grid shell solutions over a predefined free form NURBS surface. Ad-
ditionally, it will be shown how a variety of 2D tessellation patterns
can be easily applied to define a grid over any NURBS surface.
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3.2 Voronoi Diagram

3.2.1 Definition

Named after Ukrainian mathematician Georgy Voronoi, the Voronoi
diagram is a system of space decomposition, also known as Voronoi
decomposition or Voronoi tessellation. In some cases it is referred
to as Dirichlet tessellation, named after the German mathematician
Johann Peter Gustav Lejeune Dirichlet, who used the diagrams in
his studies 50 years before Voronoi, but the Ukrainian mathemati-
cian defined general n-dimensional case in 1908 and therefore holds
the credit.

If there is a set of points P = {p1, ps, ..., p,} in the plane (called
sites or Voronoi seed) and if dist(p,q) is the Euclidean distance
between two points in space, then the Voronoi diagram of P, or
Vor(P), can be defined as the subdivision of the plane into n cells,
one for each point in P, with the property that some point ¢ lies
in the cell corresponding to a site p; if and only if dist(q,p;) <
dist(q,p;) for each p; € P and j # i [11].

In simple terms, for a set of points a plane is divided into Voronoi
cells in a way that each cell belongs to a specific point (site) and
that every point in that cell is closer to that site than any other.
The border lines between cells are bisectors. Every point on one
bisector is at an equal distance from the two neighboring sites.
Those border lines between cells form the Voronoi Diagram. An
example of the plane subdivision with the Voronoi diagram for 9
points is depicted in Figure 3.9, and the Voronoi diagram with the
larger set of points in Figure 3.10.

3.2.2 Why the Voronoi Diagram

Nature

Voronoi diagram appears all around in Nature. At the microscopic
level, it is recognized in the basic principle of cell division. At the
macroscopic level, the pattern on a giraffe’s skin or the tessellation
of a turtle shell can be easily identified as having the same prin-
ciple. The familiar pictures of cracks in the dry earth are also a
result of scattered points of contraction resulting in cracks dividing
the earth into Voronoi cells. This is depicted in Chapter 6, where
the connections between natural and Voronoi-based structures are
presented.

Cell Approach

Working with cells, not grid lines, turns out to give more freedom
when considering how to generate a grid structure over some free
form surface. The network of lines is a finite graph and, as already

S
=9

Figure 3.9: Voronoi diagram

Figure 3.10: Voronoi dia-
gram for random set of points
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familiar from graph theory, graphs are defined by wvertices and their
connections. In order to realize patterns and possibilities of connec-
tions between random points, different constraints regarding grid
shell structures have to be considered. For example, no two mem-
bers should cross each other. That one simple condition introduces
a high level of complexity, sometimes solvable (like Delaunay tri-
angulation for triangular grids), but generally making subdivision
of surfaces into acceptable n-gon meshes a very difficult task. It is
often easier to design a polygon mesh when it is observed as a group
of faces (fields, cells) then as a connected system of lines. We can
experiment with different cell size and different density, thus trying
to find an optimal configuration without thinking about grid lines
and their connectivity.

An additional property is that the average number of edges of
a Voronoi cell is less than six [24], which is usually structurally ac-
ceptable. In Section 3.1, the parametric nature of NURBS surfaces
was explained, and it was stated that a relatively simple algorithm
for 2D Voronoi tessellation based on the seed points can be easily
mapped to a NURBS surface topology over uv parameters. In this
way, a 2D Voronoi algorithm can be applied to generate a grid shell
over some spatial free form surface. With the careful planting of
Voronoi seeds, any kind of grid can be generated, regular or irregu-
lar. It is possible to build triangular, quadrangular, hexagonal grids
and to combine them (Figure 3.11), but also very free, natural-like,
Voronoi diagrams as the one in Figure 3.10 are also possible.

Figure 3.11: Voronoi diagram for geometrically regular set of points

The combination of the Voronoi diagram and NURBS surfaces
for the design of grid shells will be described in detail in Section
4.2. Before that, it is important to mention the basic algorithm
that was implemented.
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Fortune’s Sweep Line Algorithm

Computation of the Voronoi Diagram can be done in a relatively
simple way, where for each point p; the common intersection of
the half planes h(P;, P;), where j # i, is found. This algorithm is
however very inefficient, needing O(nlogn) time for each Voronoi
cell, thus O(n?logn) to compute the whole diagram.

Steven Fortune developed an algorithm that computes the whole
Voronoi diagram in O(nlogn) time, using one of the standard tech-
niques in Computational Geometry - the sweep line method [11].
Hence, the method known as Fortune’s sweep line algorithm is used
in the research.

The strategy of this method is to sweep a straight line from
left to right (or top to bottom) over a plane containing a set of
sites (points). Since the parabola represents a set of points equidis-
tant from an observed site and a line, for each site on the front, a
complex so-called beachline is created at every stage of the sweep
line movement. Now, as the line progresses, the intersections be-
tween beachline parabolas actually draw the Voronoi diagram. The
moment parabolic arcs disappear from the beach line, vertices of
Voronoi diagram are created.

A detailed description of the algorithm and some solutions for
a set of special cases is offered in [11]. In Figure 3.12, a three step
progress is shown for three sites. Parabolas define equal distances
between points and sweep line (yellow), blue lines represent the
emerging Voronoi Diagram and the red point is a newly created
Voronoi vertex. As mentioned, points on the NURBS surface are
basically mapped to the XY plane, according to their uv param-
eters, and after the Voronoi diagram is computed, its vertices are
mapped back onto the surface. The mapping will be addressed in
more detail in Chapter 4.

voronoi vertex

sweep line
sweep line
sweep line

Figure 3.12: Fortune’s sweep line algorithm
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Delaunay triangulation

Having a set of points in plane P, we can connect them to create
a triangulation of the plane. If the circumcircle of any triangle of
the network is empty, i.e., doesn’t contain any other point, then
the triangulation is called a Delaunay triangulation. Fortunately
there is a one-to-one correspondence between the bounded cells
and the vertices of Vor(P) that makes its dual graph - Delaunay
graph DG(P), from which we obtain a Delaunay triangulation by
adding edges [11]. That means that any Voronoi diagram can be
triangulated, by connecting its seed, thus having all the properties
of a Delaunay triangulation. Nodes of this graph are sites of the
Voronoi diagram and it has an edge between two sites if their cor-
responding cells share an edge. A small example is shown in Figure
3.13, where the points represent sites, dashed lines represents the
Voronoi diagram and full lines its dual graph, the Delaunay trian-
gulation. This method of division was invented by, and named after
a Russian mathematician Boris Delaunay [11] in 1934 and some of
the characteristics of such plane division are:

1. No two edges ever cross each other - it is a plane graph.

2. The circumcircle of any triangle in a Delaunay triangulation
contains no point of P in its interior.

3. Any Delaunay triangulation of P maximizes the minimum
angle over all triangulations of P.

4. Each vertex has on average six surrounding triangles.

Delaunay triangulation is considered as a tessellation method
for the research since it has a number of good properties that can
be useful in a grid shell design. It is however used in a small num-
ber of experiments because triangular grid shells are heavily studied
and applied so far, hence there is not much more space left for inno-
vation. The detailed proof of properties and a detailed description
of the Delaunay triangulation can be found in [11, 24].

In Section 5.4 it will be demonstrated why there were a small
number of optimizations done with Delaunay triangulated grids.
The results of such optimizations could hardly be interpreted, i.e.,
the practical use of such optimizations showed to be small. One of
the goals of future research is to investigate this further and to be
able to do optimizations with Delaunay triangulated grids that will
result in optically and statically acceptable solutions.

3.3 Voronax

Thinking about ways to alter the Voronoi diagram and adjust it to
fit our goal of optimization, an iterative version of the Force Density
method was developed, as part of the presented research, to relax
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the grid structure while keeping it on the surface. Voronax is one
of the most important and innovative parts of the work introduced.
It is offered as a new system for grid shell design, but much more
important, it can be used as a guide to show the best distribution
of grid shell structural members over a given surface. The Voronax
grid can be examined to see how the member density is distributed.
In that way, a pattern of behavior can be extracted, making us
realize how to distribute structural members over a predefined free
form surface to gain an optimal solution. An explanation of the
Force Density method and Voronax generation follows, together
with its implementation and the argumentation for its use.

3.3.1 Force Density method
History

The method was developed while searching for the analytical so-
lution that would describe experiments done by Frei Otto, for the
cable-net roof design of the 1972 Munich Olympic Games stadium
[27, 35]. Since the physical models couldn’t be precise enough to
estimate the final form and eventually derive the cutting pattern
for a cable net, Linkwitz and Scheck [38] formulated a system of
equilibrium of forces in 1971 that was named the Force Density

method (Kraft-Dichte Methode).

Method

It is stated that pin-joint network structures assume the state of
equilibrium when internal forces ¢ and external forces s are bal-
anced. Figure 3.14 demonstrates the principle found in one struc-
tural joint.

The internal cable forces are defined as t,,ty,t.,t5. In order
to decompose forces of member a into three main axes, force ¢, is
multiplied by cos(a, ), cos(a,y) and cos(a,z). The cosine values
can therefore be defined as the projection of lengths in form (x,, —
x;)/a for the member a and its x component. This is then done for
all cables in one joint (¢, %y, t., tq5). In order to solve the system,
some initial values of the internal forces have to be established.
They are referred to as tension factors and will be addressed in the
next section. The force P acting in joint ¢ is hence decomposed
into three components p,, p,, p. and we get the following system of
equations:

Figure 3.14: One joint in the
structure with P as a resulting
force from all connected mem-
bers
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Solving the system gives the resulting force P;, and after the
assembly of the system of equations for the whole structure, forces
in all joints can be calculated in order to move the structure into
the state of equilibrium. The system of equations assembled in that
way is extremely sparse and can be solved efficiently with different
methods (like Conjugate Gradient method). More about that can
be found in [37, 36].

3.3.2 Constrained Force Density Method

How can a search tool for minimal surface solution in cable-net and
membrane structures be used for a free form grid shell design? In
Section 2.1 it was mentioned that relazation method was used for
the MyZeil project in Frankfurt [22], and also for the EXPO project
in Shanghai [51]. An explanation of the ways that Force Density
method was adjusted for the purpose of grid shell design follows.

Tension factor

Grid shells are also network structures, and they differ from cable-
net structures in that their members can take over pressure (in
addition to tension). However, that doesn’t change the situation
greatly, since the resulting force in every joint can still be found,
and an equilibrium state can still be assumed to be the balance of
internal and external forces. It was mentioned that in order to find a
solution, initial forces have to be given. Those forces were presented
above as tension factors, assigned to each bar in the structure.
Their values have meaning, however, only in comparison to other
member values and are therefore relative. The structure with a
tension factor of 1 or a tension factor of 100 in all of its members
has the same isotropic property. This value can be represented as
the prestress value in the cable-net structure. To demonstrate the
effect it produces, a relaxed structure, with fixed corners, where all
the cables have the same tension value, is shown in Figure 3.15 (b),
and in 3.15 (c¢) the same structure with the values of edge cables
10 times higher is given as an example. Figure 3.15 (a) shows the
grid before the application of the relaxation algorithm.

In that sense, in the funnel-like structures of the EXPO Axis in
Shanghai, the structural members near the membrane roof connec-
tions were given higher tension factors, thus pulling the structure
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Figure 3.15: Mesh relaxation

toward them and resulting in statical optimization, depicted in Fig-
ure 3.16. On the left (a), part of the relaxed mesh with a uniform
tension factor (10) is shown. Then we the see the same structure
relaxed with the tension factor of members in the center (marked
dark blue) enlarged to the value of 15. And in the third version (c),
we can see a relaxed structure with factor 20 in the central mem-
bers, 15 in members surrounding them and factor 10 in the outer
members. The mesh is therefore pulled toward the center point.

(a) (®)

Figure 3.16: up - One Sun Valley, EXPO 2010, Shanghai, with the
areas where the grid was pulled and down - the abstraction of the pulling
method

Now, it is clear that any set of forces can be added to the equa-
tions. For example, in each node an additional vertical force can be
applied to simulate the gravitational effect, or a horizontal force to
simulate wind. The system can therefore be solved to gain equilib-
rium in the structure for any set of external and internal influences.
Talking about boundary conditions, any node in the structure can
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additionally be fixed in space or linked to some free form curve or
surface as we will see.

For the research presented, the focus is on the geometrical ad-
vantages of relaxed structures. Hence, the tension factors were
always set to be uniform without any external forces. That was
enough to ensure the advantages needed, i.e., the creation of smooth
and uniform grid. Experimenting with different sets of boundary
conditions wouldn’t be important for the description of the method
and the proof of its efficiency. But all design variables that are
involved in the optimization process, as well as this one, can be
researched in much more detail. Each one has the ability to be
branched out and be formulated in an infinite number of ways.
However, that possibility is important when a specific project is
observed, and when the exact conditions and needs are known.
That is why the fundamentals of the optimization algorithm will
be set here, and the possibilities will be explained, without going
into numerous experiments just to show that it can be done.

Iterative Process and Surface Constraint

In order to keep the structure on the predefined surface, a different
approach from the mathematical solution of system of equations
had to be implemented. Namely, not as precise, but very effective,
an iterative algorithm was used. Assuming the same principle of
equilibrium, the goal is to geometrically arrive at the solution of
minimum potential energy in the system. Figure 3.17 shows the
principle where one node is observed and a resulting force from the
connected members is acting upon it. What happens is that, for
the observed node, a resulting vector is calculated from the tensions
in its members (as shown in Equation 3.11). Tensions are vectors,
with their values and directions. If some external forces affected the
node additionally, they would just be added into the calculation.
The node then moves in the direction of the resulting vector, as
that is its natural way to reduce potential energy. That happens in
successive iterations and the resulting vector gets shortened with
the specific limitation decay factor.

unrelaxed relaxed

Figure 3.17: Iterative Force Density method

A single iteration for the whole structure consists of the move-
ment of all nodes in the direction of the resulting force R (calcu-
lated from its neighboring points) and for the distance represented
by the value of this vector. After a specific number of iterations,
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the accuracy of which can be easily controlled, the structure moves
toward the equilibrium state. It is very important to mention that
the method is not as precise as the mathematical solution and is
sensitive, in the sense that the initial state can influence the final
result. Therefore, the closer the initial state is to the equilibrium
state, the more precise the solutions are.

With this iterative method however, the introduction of con-
straints is pretty easy and straightforward. Each node in the struc-
ture can be affected by one of three modes of constraints. It can
be free, fixed or linked to some curve or surface. Since the research
tries to define a method of grid shell optimization over a given free
form shape, all the nodes are either restrained to the surface or to
the edge curves. If the node is linked to a curve or surface object,
it is repeatedly pulled onto it, following the shortest path. There-
fore, after each iteration, each vertex of the structure is pulled onto
the surface, keeping the topology of the structure intact. Pulling
of the vertex basically refers to an algorithm that finds the short-
est distance between the point and the observed NURBS curve or
surface. The principle of finding that shortest distance, i.e., the
point on the surface at which the normal goes through the pulled
point, is represented in Figure 3.18. It can be seen that to find the
shortest path, we have to find the point on the surface in which the
surface normal goes through the pulled point. Mathematically, the
surface normal is defined as the cross product of the two tangent
vectors, obtained as partial derivatives of the intersecting U and V'
isocurves at the observed point.

D]]

J/ \

Figure 3.18: Keeping the grid on the surface by pulling its joints

3.3.3 Voronoi to Voronax
Getting Free From the Mesh

In the examples above, a mesh structure was used for an implemen-
tation of relaxation algorithms. In computational geometry meshes
are data structures with node (vertez) and face information. Each
vertex is defined over its unique number and coordinates that define
its place in Euclidean space. Each mesh face has its number too
and an array of vertices that define its borders. From this array,
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face edges can be extracted, considering the order of vertices. The
orientation of a face can be determined depending on the clock-
wise or counterclockwise progress of the vertices. Mainly due to
the rendering algorithms, in most CAD programs mesh faces are
limited to 4 points, therefore enabling the creation of triangular
and quadrangular meshes. In that way, a light ray, bouncing from
it, could be easily interpolated and calculated for all points on the
face according to the 3 or 4 face vertices. Additionally, for grid shell
design, the tessellation of surfaces into triangles and quadrangles is
what was needed, so they were mainly modeled as polygon meshes.

Since the Voronoi diagram has cells with more than 4 edges, the
constrained force density algorithm had to be expanded to work for
any graph, i.e., for any connected system of points.

Graph relaxation

In Figure 3.19(a) we see a simple 2D graph, made out of 23 con-
nected points. In Figure 3.19(b), the same graph is relaxed, thus
assuming an equilibrium state. On the right hand side, the same
graph is shown relaxed, but with the tension factor doubled in the
green members, thus showing how easily the relaxation process can
be used as a design tool and how it can be controlled to achieve dif-
ferent solutions. The relaxation of a graph could be done without
constraints (link to a surface or a curve), as depicted in Figure 3.19,
but our goal is to relax generated Voronoi diagrams while keeping
them on the predefined surface. Those types of structure, developed

e Y X X X
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Figure 3.19: Graph relaxation

as a part of this research, are named Voronax structures (Voronoi
+ Relax). Voronax, or VorX(P), can therefore be defined as a
relaxed Voronoi diagram structure. Relaxation of graphs works in
the same way as mesh relaxation. The only difference is that the
number of members connecting in one joint is not fixed and it can
be bigger than four. That is why we first have to analyze each joint
in the structure, to see how many members are connected to each.
Then we have to calculate the resulting vector for each joint, us-
ing the length of its belonging members and their tension factors.
When we have the resulting vectors, we continue with the iterative
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relaxation process as described before. This method is used to relax
Voronoi structures, keeping the grid on the predefined surface with
the already explained pulling system, ending up with Voronax grid
structures.

3.3.4 Why Relaxed Meshes Are Better Than
Unrelaxed ones

Having shown the basic principles and the upsides of the method,
its applications will be briefly considered. The application of the
relaxation method results in geometrically smooth grid structures.
The human eye has a remarkable pattern recognition ability and
incredible precision of error detection when it comes to grid struc-
tures. It is therefore very important to be careful in any kind of
tile design. One approach is to arrange the tiles of some structure
in a way in which they don’t form long guide lines. If they do, then
the lines must be smooth and continuous, in order to satisfy optical
conditions. In Figure 3.20, an example of two grid shells is shown
to demonstrate the idea. In the BMW Welt building (a), in the
upper part of the hyperboloid, the lines of the structure are broken
and not continuous. In the MyZeil grid shell roof example, on the
right, it is clear that structural lines are smooth and continuous.
This is the effect gained with the use of relaxation methods. In
the process of finding the equilibrium state of some structure, it
makes the angles between its members change in relation to their
neighboring ones, thus changing gradually and resulting in smooth
transitions in the grid.

Figure 3.20: Discontinous grid lines and relaxed continuous grid lines

3.3.5 Why Voronax Is Better Than Voronoi

Voronoi structures suffer large length deviations of their members.
Although the differences in cell size can be relatively controlled by
adjusting the distance between the seed points, huge differences in
member length is something that cannot be avoided that easily.
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However, Voronax fixes the problem. One of the basic rules in
Nature is uniform distribution of stress in search of equilibrium
and minimum potential energy. That is why after relaxation (which
has the same goal) is performed, member lengths are much more
uniform, and so are the angles between them, therefore resulting in
less distorted polygons. The difference can be seen in Figure 3.21,
where a Voronoi grid structure is shown together with the relaxed,
Voronax version.

Voronax

Figure 3.21: Voronoi and Voronax

The Voronoi diagram has an interesting property considering
its cells. Namely, an average polygon in a Voronoi structure has
less then 6 edges and Voronax keeps that property since it doesn’t
change the topology of the initial Voronoi structure. Voronoi cells
are always convex polygons which is another advantage and good
reason for their application in grid shell design. However, angles
in those polygons are not uniform and large differences can occur.
It can be easily seen that Voronoi polygons are distorted. In the
relaxing process that problem is also solved and Voronax structures
have convex polygons with much more uniform angles. In Chapter
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6 the basic difference between Voronoi-like and Voronax-like struc-
tures that we find in Nature will be explained. Structures that grow
slowly and cannot adjust their structure easily in time are basically
Voronoi like structures. Foam is a nice example of an adjustable
structure that finds an equilibrium at every moment in time, and
that is exactly what Voronax structures do.

So far we have seen how we can generate a large variety of grid
structures, regular and irregular, over a given predefined free form
surface. It was shown how relaxation algorithms can be used to
obtain smooth and optimized grid shells. The Voronax principle
was introduced, resulting in a structure that has many good prop-
erties, suitable for structural design, and especially for structural
optimization, as it will be demonstrated in the following chapters.
That being said, in the following chapter the details of our Genetic
Algorithms application will be presented and eventually the results
of the experiments done with it.
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Genetic Algorithms

So far, NURBS geometries were described, as well as Evolution-
based optimization techniques. New surface tessellation methods
were shown, with the use of Voronoi diagrams, together with newly
presented Voronax structures. All these elements can be used and
combined into a software that helps designing free form grid shells.
To be specific, explained methods are materialized in the form of
a plug-in for Rhinoceros 3D software, written in C++ language.
For the FEM analysis, Oasys GSA Analysis software was used and
called automatically from the C++ code with the use of OLE Au-
tomation. In the following sections, the structure of the complete
algorithm and the implementation of Genetic Algorithms will be
presented, thus giving form and shape to terms such as selection,
mutation or crossover.

4.1 Algorithm

The explanation of the implemented algorithms will be divided into
sections, according to the different GAs routines. After the basic
conceptual structure is shown, selection, mutation and reproduction
(crossover) techniques will be discussed together with other aspects
of grid shell representation and evaluation, in an Evolution-based
optimization process. Before describing the whole GAs process, it
is very important that the notion of chromosome is clarified. Its
definition and application for the research will be explained in de-
tail in the following section, but for now, it is important to mention
that in Genetic Algorithms each individual is represented through
a unique chromosome. It is basically an array of numbers, a coded
string, that can be used to easily manipulate individuals, combine
them, mutate them and eventually store them. It is important to
comprehend this, so that the following explanation of the basic algo-
rithm structure, as well as the storing of chromosomes, don’t seem
abstract. The beauty of programming is precisely that absence of
abstract notions. Everything has to have a physical description,
that eventually has to be broken down into Os and 1s.
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4.1.1 Basic Structure

If we simplify things to the basic level, we can recognize three ele-
mental parts of the whole process: 1. Information input, 2. Opti-
mization process and 3. Information output.

Input

The first step of the optimization is the selection of a predefined
NURBS surface, designed in Rhinoceros 3D. Then the Windows
dialog opens up and enables the user to tune his optimization pro-
cess. To avoid vagueness, an actual Windows dialog from the cre-
ated plug-in is shown in Appendix A, with the explanation of some
standard values used for the experiments. Dialogs are different for
different surface tessellations (quadrangular, Voronoi, etc.), because
they work with different sets of geometrical input data. Therefore
the most complicated and the most efficient pattern - Voronax -
is chosen for the representation in the appendix. Here at the be-
ginning, the input data will only be listed and briefly described,
because some of the terms will still be abstract. In the following
sections and chapters they will all be addressed and their applica-
tion will be explained. We start now with the basic categorization
of input data into: 1. GAs specific variables, 2. Geometrical vari-
ables and 3. Evaluation variables.

GAs Specific Variables These are the variables that define ba-
sic GAs parameters. We have crossover probability and mutation
probability that define the chance of an individual to be combined
with another one or to be mutated, and they will be addressed in
the following Sections 4.1.3 and 4.1.4. Generation size and maxi-
mum number of generations determine how many individuals will
be generated in each generation and after how many generations
should the optimization process stop. The number of generations
is not so important at the beginning, since it is always possible
to take the last generation and continue the optimization process
until it converges. That is why the possibility of choosing random
generation or trt generation exists in the dialog. Choosing one op-
tion, we can define the zeroth(initial) generation, to be randomly
generated or imported from a prepared tzt file. Very important
input information is the chromosome length. It can be defined by
the user directly or indirectly over some other geometric variables,
which will all be explained in the following sections. For now, it is
important to remember that the chromosome length can be defined
at the beginning, and that it then directly determines the number
of Voronoi seeds used for the grid structure generation, and from
there the number of structural members of each generated grid shell
in the optimization process.
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Geometric Variables These are the variables that define the
geometric properties of the grid shell. Namely, the basic pattern
is chosen at the very beginning, and in the case of Voronoi-based
patterns (Voronoi, Voronax, Delaunay) we can define how many
Voronoi points (seed) we want on the surface (in field) or on the
surface edges (points on edge U, points on edge V). For other pat-
terns, like quadrangular or hexagonal, this definition looks a bit
different and it will be clarified in more detail in Section 4.2.2, with
the explanation of decoding functions. The geometry can be ad-
ditionally controlled with parameters like minimal allele distance,
which in this case defines the minimal distance between Voronoi
seed points. This prevents very small Voronoi and Voronax cells,
and also prevents duplicated points which can lead to program er-
rors. Since Voronoi-defined structures can share the same input
data, it is clear that the choice between Voronoi, Voronax or De-
launay structure can be defined in the same dialog.

Evaluation Variables These are the variables used for the eval-
uation of the solution, i.e., generated grid shell. They mainly refer
to physical characteristics needed for FEM analysis, like material,
cross-sections, load, support, etc., and the definition of different
objective and constraint functions. Fitness functions and Penalty
functions will be thoroughly explained in Sections 4.3 and 4.4, and
there it will be clarified how the aforementioned variables affect the
entire optimization process.

Optimization process

A simplified graphical representation of the process is shown in
Figure 4.2, deprived of all additional extensive branching that goes
out of every presented part. A more elaborated scheme is shown
in Appendix B, where the structure of the actual plug-in code is
graphically represented.

\ . ~ B Yes .
Start —| Initialization —«» — @ — " » End

< |
S

Figure 4.2: Basic GAs Loop

No

After the initial generation is randomly created (or imported),
all its individuals are evaluated, i.e., their fitness is determined.
The process then enters a loop for a defined number of genera-
tions. In this loop, a selection is made to choose the individuals for
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breeding, based on their fitness. Chosen individuals are then bred
(crossed), mutated and evaluated again, thus prepared for the next
iteration. The process stops after a predefined number of genera-
tions. The code can be easily altered to stop when a specific fitness
value is reached, but experience showed that it is better to con-
tinue with the optimization until we are sure that the acceptable
convergence has been reached. The processes of selection, crossover
and mutation will be explained in the following sections, and the
evaluation process, as the most important and most complicated
one will be addressed in Sections 4.3, 4.4 and 4.5.

Output

For the potential analysis of all solutions in the entire generated
population, after the optimization process was completed, infor-
mation had to be kept in separated files. In the research, three
different text files were generated during the process and they con-
tain information that can easily be extracted and analyzed. The
examples of some actual generated files are presented in Appendix

A.

File 1 : GAs General Description This is a file containing
all of the basic information about the optimization parameters and
about the individuals in population. That information consists of
their number, rank in the generation, fitness value, scaled fitness
value, etc.

File 2 : Solution Chromosomes In the Chapter 4.2 it will be
explained how the chromosome works and what it looks like. For
now, it is only important to mention that in GAs each individual
(grid shell) is represented through a unique chromosome, stored in
this second file. That means that each individual from the entire
generated population (which sometimes reaches 40.000 individuals)
can be extracted from this file, graphically represented (drawn in
space) and then examined separately. This file can also be used to
extract the last generation. Afterward that generation can be used
as an initial generation (instead of the randomly created one) at the
beginning of the process. In that way we can break and continue
the optimization at will, however many times we want, and the
algorithm will continue to make progress as if it never stopped.

File 3 : Graph Information Every optimization process can be
very effectively evaluated and examined by looking at the progress
of the specific values throughout generations. This file contains
information about each generation that enables us to draw graphs
of their progress. Those values are: 1. The maximum fitness value
in a generation, 2. The minimum fitness value in a generation, 3.
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Average fitness in a generation, 4. Sum of all fitness values in a
generation.

Clarification

A small digression is needed to avoid confusion. In Figure 4.3 there
is a graphical representation of the 11 steps that are performed
to transform an individual chromosome into a grid shell structure
and evaluate it. Basically all of these steps are repeated for each
individual solution in every generation. A list of sections where ex-
planations for each individual step can be found is on the left. First,
the basic GAs procedures (Selection, Crossover, Mutation) will be
addressed, to show what the optimization process algorithmically
does. Each of those steps works with chromosomes (explained in
Section 4.2.1), as basic representations of individual grid shells. De-
tailed explanation of steps 4-11 follows right after the presentation
of the basic GAs methods. Therefore, everything that is not clear
in the first part will definitely be clarified in the second part, and
the complete procedure will be covered in this chapter.

- F
5{3(1 10115

Select Parents SELECTION
4.1.2 Selecting individuals to participate in the next generation
) Produce a child .
4.1.3 2 Combining the selected inviduals to create new ones CROSSOVER
Mutate and Fix Chromosome
L ! 3 Random mutation of individuals to introduce diversity MUTATION
Checking if chromosome can be decoded, and fixing errors
Becoas GENERATION
4.2.2 4 Transform the chromosome into the points on the surface
499 5 Calculate Voronoi
(3.2.2) Generate Voronoi Diagram from the obtained points
499 6 Relax structure
(3.3.3) Use relaxation to generate Voronax grid from the Voronoi diagram
49 Prepare for FEM
4.2.3 Automatic definition of: nodes, elements, supports, loads, etc.
FEM Static Analysis
Automatic call to the FEM software to perform the static analysis
4.3 Evaluate EVALUATION
11 9 Retreive data from the FEM software
04 b—d  Calculate fitness value according to the chosen fitness function
4 Penalize
4.4 ; : ;
Calculate error value according to the chosen penalty functions
133 1 1 Get Final Fitness Value
s Calculate final value using fitness scaling techniques

Figure 4.3: All the operations performed on one individual grid shell
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4.1.2 Selection

In Genetic Algorithms, the process of selection chooses individu-
als of one generation for crossover (breeding), according to their
fitness. By giving fitter solutions greater chances of survival, it
is responsible for the convergence of the entire process toward the
best fitness solution. In order to imitate the process of Natural
selection, different methods have been developed in the history of
GAs optimization. Some of the less used methods include tourna-
ment selection and ranking. These strategies are so-called elitist
strategies, since they only allow the small number of best solutions
(elite) to survive. In a tournament selection, a tournament type of
competition is simulated between individuals in one generation, in
which their fitness determines their chances for winning. Only a
small number of winners are then chosen to participate in the next
generation. The ranking technique is similar, all individuals in one
generation are ranked according to their fitness and only a couple
of top ranking individuals are used for reproduction. These meth-
ods enable fast convergence at the expense of modest exploration
of the search space. In simple terms, they are fast but not so effi-
cient, with a large probability of convergence to the local optimum
of some specified function.

A method used in the research, and the most ubiquitous one
in GAs application, is the roulette selection method. Roulette se-
lection doesn’t kill any of the solutions. Instead, it gives them all
a chance of survival, proportional to their fitness. In this way the
variety of solutions is bigger and the good information (genetic ma-
terial) from bad individuals can be preserved. The name comes
from the basic algorithm that can be presented easily as a roulette
wheel as depicted in Figure 4.4.

weakest individual
smallest share of the wheel

selection point

fittest individual
largest share of the wheel

Figure 4.4: Roulette Wheel Selection

If we denote n as the number of individuals in one generation,
x; as the ith individual of that generation, and f(x;) as the fitness
value of that individual, then we can express the possibility p(z;)
of the individual to be chosen for reproduction as:
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f(zi)

P = S ) “1)
If the generation has 5 individuals, we fix one selection point
and rotate the wheel 5 times. The individuals that have the larger
fitness value, thus covering a greater surface of the wheel, will have
a better chance of being selected. This is a system that relies on
probability, a random spin of the wheel, and it is sometimes hard to
comprehend its reliability. But after a huge number of experiments,
it is clear that the system of chance works and selects individuals
exactly proportionately to their fitness value. To be clear, at the
end of the selection process, it means that some individuals will be
chosen several times, and some will not be chosen at all. In that
way good solutions are multiplied and the survival of their genetic

information is ensured.

4.1.3 Crossover

After the selection process is done, the selected individuals are
ready for reproduction. Some of them will just be copied into the
next, new generation, and some of them are crossed. The crossing
of individuals is performed in order to expedite convergence and
diversity of solutions. It is an act of combining chromosomes from
two parents in order to create two children. This process has several
phases.

The pairs for breeding are initially randomly chosen, from the
selected generation. This is one of the reasons the number of in-
dividuals in a generation should be even, so that they can all pair
up. When the pairs are chosen, the crossover probability factor de-
termines their chance of being bred, i.e., crossed. If the parents are
not crossed, they are simply copied into the next generation. The
crossover probability factor has to be well tuned in order to enable
pure replication of good solutions on one side and still allow the ex-
ploration of the search space by combining them on the other. That
always depends on the problem, and experience has shown that the
best factor is around 0.6, meaning that 60% of the individuals in
a newly created generation are crossed in order to produce new,
different solutions, and 40% of the individuals are just copied in
order to support the survival of the fittest.

Crossover can be done in many ways, and that choice can have
some effect on the convergence. Namely, Genetic Algorithms are
successful precisely because of the fact that they converge to a
global optimum instead of being a simple random walk. One of
the factors that enable convergence is the crossing process that
produces children with the genetic material of their parents. In
that way, fitter parents will most likely (but not always) produce
a fit child. By explaining the possible methods, the principle will
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be clearer. Crossing is performed on chromosomes, which fully
represent the individuals, as their genotype.

One point crossover

In Genetic algorithms, one point crossover is the most ubiquitous
crossover method. A randomly defined position along the chromo-
some string k is introduced. It is always between 1 and the string
length, leaving minimum one gene on the left or on the right of it.
Two new chromosomes are then created by swapping all the char-
acters between positions k£ + 1 and [, as shown in Figure 4.5. Now,
it is clear that the first part of the chromosome is not changed,
therefore enabling genetic information of the parent to be passed
on to the child, and the changed part enables diversity and explo-
ration of the search space. This method is extremely suitable for
binary coding of the chromosomes, since the position of the gene
(locus) plays an important role. The coding of the chromosome in
GAs is usually made in such a way that the influence of the gene is
the greatest in the first locus and diminishes the further it moves
away from it. Therefore an inheritance factor is big with this type
of crossover and typical GAs binary coding. That means that the
children will be very similar to their parents, and it is mentioned
several times that this similarity is always a trade off between fast
convergence and a good exploration of the search space [16].

parent 1 k=4 child 1

WAl 0.0 (LU0 JAlO0 00
>
Ol 000 O L LLO

parent 2 child 2

@)

ey

Figure 4.5: One Point Crossover

Two and more point’s crossover

Respectively two (or more) point crossover has two or more division
points where the chromosome is divided into parts. The process
differs from one point crossover only by the number of chromosome
parts that are exchanged. By multiplying those parts we eventually
come to a situation where every gene in one chromosome can be
exchanged with another one. Of course, if we exchange all of them
that would only lead to swapping the parents. That is why new
probability factor is introduced, to control that swapping, which
leads to the so-called uniform crossover.
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Uniform crossover

This is a method more ubiquitous in the Evolution strategies. There,
a similar version called discrete recombination is used. In our re-
search, we don’t use GAs standard binary coding. Instead, we
use real-valued chromosome, borrowed from ESs, and therefore a
uniform crossover is much more suitable. Why real-valued chro-
mosome is used and how it is applied will be explained in Chapter
4.2. For now it is enough to mention that in the binary coding
the locus of the gene, i.e., its position is very important. A binary
coded chromosome 000111 is therefore very different from 111000
in a standard GAs coding. In the real-valued chromosome used
in research, position of the gene is irrelevant, and a chromosome
3-14-35-45 is the same as 35-13-45-3. This is not a general rule,
since the position can be accounted and have influence on the indi-
vidual. But for the purposes of this research, that additional effort
was not needed. The crossing method used in the research is there-
fore shown in Figure 4.6. Each allele of both parents is swapped
with the corresponding allele of the other parent with a probability
factor of 0.5. In that way each parent allele has a 50% chance of
being replaced with the one from the other parent. The process
is repeated twice for the generation of each child. The probability
factor can be changed and it is inversely proportional to the inher-
itance factor, i.e., the smaller it is, the larger part of the observed
parent will simply be copied, i.e., inherited.

parent 1 child 1

XX XX XXX P X XALLIXIIX
YA 50% chance WA

WANANANANARANAED JEN'AD GN'AN'AR'AD 40,4

parent 2 child 2

Figure 4.6: Uniform Crossover

4.1.4 Mutation

Sometimes the diversity enabled by the crossing of individuals is
not enough to explore the whole search space, and the optimization
process is in danger of easily converging to some local minimum or
maximum. In order to strengthen the diversity of the population,
an additional factor is introduced, known as mutation. It is just
a simple imitation of the mutation that happens in Nature all the
time, with a relatively small probability.

Mutation is a change, or an error in a genome, whose role in
natural genetics is the cause of some confusion when it comes to
reasons of its existence. The best explanation is the introduction of
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diversity, in search of the optimal design. In artificial genetics it has
a secondary role, and it represents a random alteration of the single
chromosome alleles. We implement the method by changing some
random gene value, replacing it with a random generated value.
The chances of mutation happening are regulated with the muta-
tion probability factor. It is usually very small, around 0.01, thus
leaving a 1% chance for some gene to be changed, and it should be
appropriately tuned, depending on the length of the chromosome
and the size of the population.The simple mutation process is de-
picted in Figure 4.7, where it can be seen how one gene value in
a chromosome is randomly picked and then switched with a ran-
domly generated value to result in a mutated chromosome. The

original chromosome mutated chromosome
XXXXXXX » XXXXXXX

mutate with m% chance YA

I new random value

Figure 4.7: Mutation

mutation probability factor, together with the crossover probabil-
ity factor, can be used to control the convergence and search space
exploration, and experience can lead to the best tuning for a spe-
cific problem. The tunings mostly used in the research are shown
in Appendix A.

4.2 Grid Shell Genotype and Phenotype

4.2.1 Chromosome

Humans are diploid organisms, having always two homologous copies
of the same chromosome. That, considering quick adaptation of or-
ganisms to environmental conditions, is the characteristic that can
lead to many advantages in life. However, in structural optimiza-
tion, there is no need for that kind of complexity for now, and in
this research all the individuals, i.e., grid shells, are represented
with a single chromosome, therefore acting as haploid organisms.
In artificial genetics, the chromosome is constructed as a string,
an array of numbers. In Genetic Algorithms, a binary representa-
tion of individuals is normally assumed, building the chromosomes
only out of 0Os and 1s. But this is the point where we use the chro-
mosome construction typical for Evolution Strategies and represent
them as an array of real numbers A = {ay,as, ..., a,}, as shown in
Figure 4.8. For i = {1,...,n}, each gene a; of the chromosome has
a value in a specific range x = [0,m]. Here, n represents the size
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of the chromosome and z the range of the gene, where the upper
limit, m, is in our examples set to 1.

chromosome

‘ gene ‘
1 ;
d; aZ‘_ d3 La4 _asd_has ayw é‘,

gene value (allele)

Figure 4.8: Chromosome

There are possibilities to represent a grid shell structure with the
binary chromosome. In the application of GAs for the optimization
of truss structures that is mainly done with the use of incident
matrices [56]. However, for our purposes, a more convenient way
is to use real number alleles and in that way borrow the principle
from the Evolution Strategies.

Setting a real number value for every gene raises the question of
their range and the method of their application. This is where the
parametric representation of NURBS surfaces shows its advantages.
In order to represent a grid shell as a function of u and v parameters
of the surface, the logical thing to do is to use the chromosome as
a string of these parameters. However, the domain of NURBS sur-
faces, i.e., their UV domain, can differ according to the method of
their design. So, to make the method generally applicable, a value
between 0 and 1 is set for each allele of the chromosome. Taking
two alleles a; and a; from a chromosome A = {a;,as,...,a,}, we
can represent any point on the surface over u and v parameters,
scaling them to a value between 0 and 1, as shown in Figure 4.9
and following equations:

u=a;(U—Us) , v=a;(V.-V;) , 0<aq;a; <1 (4.2)

where Uy, U, and V, V, are the surface start and end domains. With
the use of different decoding functions the numbers in a chromosome
are used as u and v parameters to generate points on the surface.
This points are later used for the construction of Voronoi diagrams.
In this research the size of the chromosome was always fixed. That
means that the number of generated points on the surface is the
same for every individual in one optimization process. The purpose
of this was to enable easy comparison between grid shells, since the
solutions had relatively the same number of structural members.
This can be seen as the limitation of the process, but the software
can be easily changed to work with different chromosome sizes. For
the purpose of this research, which is to prove the efficiency of
the proposed method, this was not necessary, but it is one of the
possibilities that will be investigated in the future.

v

Vs ; 5
Us u .'1; 0.5 a=0.85 Ue

Figure 4.9: UV coordinates

on the NURBS surface
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4.2.2 Decoding Functions

In Genetic Algorithms, the process of creating a chromosome rep-
resentation is called coding, since any kind of individual solution is
represented in the form of a code. It was shown how the system
of coding basically refers to the creation of arrays of real numbers,
the chromosomes. And those are only numbers until some decoding
process is performed, thus making phenotype out of the genotype.
In order to create an individual and eventually evaluate it, we have
to read the chromosome and use a set of defined rules to make an
organism out of it.

The decoding function is something that can be very creatively
approached and it therefore has an immense number of possible
solutions. It represents a bridge between chromosome and an indi-
vidual and it is a set of rules regulating that transformation. Since
the chromosome is a simplification of an organism, so it can make
the inheritance of information and breeding relatively simple, it is
decoding that holds the key to what will come out of it, and it is
decoding that decides what kind of an organism we will have at the
end. In our case, decoding transforms a chromosome string into a
grid shell. In this research, the focus is on the grid shells generated
with the help of Voronoi diagrams, and in that sense, the decoding
process can be divided into two main parts: 1. From chromosome
to Voronoi seed and 2. From Voronoi seed to grid shell.

From Chromosome to Voronoi Seed

The first step is to convert chromosome alleles into Voronoi seed
scattered on the surface. This can done be in a number of ways,
producing different kinds of grids. Some of the decoding functions
applied in the research will now be presented.

Quadrangular decoding It is possible to generate a quadran-
gular grid shell over any NURBS surface by planting Voronoi seed
in the center of every quad. Figure 4.10 shows the creation of 49
points out of the chromosome depicted in the upper part. The in-
put data needed to do the decoding is the size of the chromosome
and the division point, regulating the number of seed in u and v
direction. With that information the chromosome can be easily
read and developed into a group of Voronoi seed on the surface, as
shown in Figure 4.10. By dividing the chromosome in two sections,
we can make a rectangular net, thus enabling a grid shell structure
with 91 structural members and 96 points to be represented with
a small chromosome with only 14 genes. The creation of the grid
shell from Voronoi seed will be explained in the next step.
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Figure 4.10: Quadrangular Voronoi Disposition

Triangular and Hexagonal Decoding In Figure 4.11 we can
see how the same chromosome from the previous example can be
used to develop a different pattern. A blue dashed line is used
to indicate the triangular disposition of Voronoi seed in this case.
What is interesting is that the same disposition of points can be
used to create triangular and hexagonal meshes only by making
different choices in the second step, i.e., choices between Delaunay
triangulation and Voronoi diagram. This is depicted in Figures 4.19
and 4.15, but it will be clearer after the second step is described.
However, the partition of the chromosome is more complicated in
this case. It can be seen that additional points are added on the
edges to ensure that structural members cover the whole area. Like
in the quadrangular decoding system, input data consist of the size
of the chromosome and the division point regulating the number of
seed in the v and v direction.
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Figure 4.11: Triangular Voronoi Disposition
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Voronoi and Voronax Decoding Voronoi and Voronax share
the same decoding system where the partitioning of a chromosome
can be done as shown in Figure 4.12. Actually, that is the sim-
plified system, where the chromosome is partitioned to u and v
coordinates, like in the previous examples. Each Voronoi seed on
the surface is represented with two coordinates and therefore needs
two separate genes. This system gives us much larger freedom,
since every point is independent from the others, but at the cost
of computer memory and speed, since the chromosomes have to be
much longer.

0.10 0.34 0.39 0.51 0.68 0.87 0.95 0.12 0.21 0.27 0.45 0.71 0.78 0.90
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Figure 4.12: Irregular Voronoi disposition

It is shown in Appendix A that in order to gain more control
of the generated grid shells, some additional information is needed,
which requires alteration of the chromosome. Namely, the user has
to provide the number of points on the U edge (7), on the V' edge
(7), and the number of points within the surface (k). The size of the
chromosome structured in that way is 2(i+ 7 + k), since every point
has to be represented with two parameters. This, more complex,
chromosome and its decoding are shown in Figure 4.13. It can be
seen how it is partitioned into genes that refer to the points on
the U edge (Uy,U;), points on the V edge (Vp, V1) and points on
the surface with their u coordinates (I N,) and v coordinates (IN,).
Edge points are necessary when the Delaunay triangulation is used,
but their use in Voronoi and Voronax structures is also welcomed
since in that way we can set a specific number of members on each
of the boundary edges.

From Voronoi Seed to Grid Shell

In the second step, every combination of seed can be turned into a
grid shell in three different ways, resulting in different types of grid
shells. We can easily calculate the Voronoi diagram using the points



4.2. Grid Shell Genotype and Phenotype

Uo Vo U Ui Vi VN
U1
S e—0—© ©
O Q
O @)
\ ® @)
Vo P V1
Vi - @ @) ®
u ; @)

o U @

Uo

Figure 4.13: Irregular Voronoi disposition with edge points

from the first step with Fortune’s 2D algorithm since all points on
the surface are defined with two uv coordinates. But we can also
go further and relax the Voronoi structure to gain Voronax. The
third possibility is to go with the Voronoi diagram’s dual graph -
Delaunay triangulation, and it will be shown how the same set of
points on the surface can be used to generate those three different
types of grid shells.

Voronoi Diagram Converting a set of points into a Voronoi di-
agram is described in Section 3.2. Therefore Voronoi seed gained
from the quadrangular decoding function, shown in Figure 4.10,
yield a grid shell presented in Figure 4.14. Also, the Voronoi seed
used in Figure 4.11 can be transformed into a hexagonal grid shell
by applying the Voronoi diagram algorithm, as shown in Figure
4.15. In the aforementioned Figure 3.11, in the section where the
Voronoi diagram properties are presented, we have seen an example
of a regular hexagonal grid. Here however, a deliberately distorted
hexagon grid is shown to illustrate the idea of diversity that can be
achieved with Voronoi in a polygon structure . This diversity is nec-
essary in the search of the best solution. One of the strong points
that can be extracted further from this figure is the senselessness of
restricting ourselves to one type of polygon in a pattern. Voronoi
and Voronax structures represent the liberation from that uniform
thinking, and allow a huge variety of polygons to be combined in
one grid. Eventually, in Figure 4.16, a random Voronoi structure
can be seen, achieved with the application of Voronoi calculation
in this second step.

Voronax Diagram The same set of points converted into a Voro-
noi diagram can be relazed as shown in Section 3.3. Therefore by
applying this type of decoding, in the second part of the process,

] || L] el
[ ] e|le| @ e LI
® eo|e| @ L] eo|e
L LAE BN L ele
L e|®| @ e ale
] [ NE NN L] e|e
L LAE BN L ele

Figure 4.14: Quadrangular
grid

Figure 4.15: Hexagonal grid
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instead of Voronoi derived grid shells in Figure 4.16 we can get
relaxed, Voronax grid shells, as shown in Figure 4.17.

Voronoi seed Voronoi structure

&
&

Figure 4.16: Voronoi structure

Voronoi structure Voronax structure

Figure 4.17: Voronax structure

It was mentioned that there is a lot of creative freedom in the
use of relaxation techniques. On the example of Shanghai EXPO
it was demonstrated how the manipulation of tension factors can
redistribute grid density to fit some of the statical or optical con-
ditions. It was also explained how the constrained method process
works by keeping the points on the surface, or linking them to it.
That is a matter of choice, and in the applied Force-Density method
we can chose to set any point of the structure to be fixed, free in
space or linked. If the point is fized it simply doesn’t change its
position during the whole relaxation process. If it is free in space
then it can move freely in all three axes during the process. Finally
points can be linked to any kind of curve or surface (as explained
in Section 3.3.2), allowing the point to move only along that curve
or surface during the process. Since this research is constrained to
predefined shapes, the grid nodes were always linked to the sur-
face or edge curves. A possibility was left for the user to constrain
the boundary nodes of the Voronax structure to the edge curves,
instead of fixing them. In that way the edge nodes of the struc-
ture can move along the surface edges in the relaxation process.
In Figure 4.18 it is demonstrated how the same structure looks
when it is relaxed with fixed and movable points on the edges. The
comparison of the nodes on the edges (marked with black circles)
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shows us the different disposition of the structural members on the
boundaries. Colored fields show how the same polygons look in
both versions. One of the main advantages is that structural mem-
bers on the borders now tend to define the right angle with the
surface edge, which is the statically favorable disposition. Other
advantages belong to the uniformly distributed angles in polygons
and uniform member lengths, what comes from the less restrained
relaxation process. For the sake of clarity, all the methods are de-
picted in 2D, but it is clear that using the parametric nature of
NURBS surfaces, everything described can and does happen in 3D,
i.e., over some spatial free form surfaces. That will be obvious when
the results are presented and grid shells are optimized over given
free form surfaces. For now, there are a few more steps left in the
explanation of the entire method.

Voronax structure Voronax structure
with fixed points on the edges with movable points on the edges

» » - * » * - * o -

Figure 4.18: Differences in Voronax structures

Delaunay Triangulation Any set of points in plane, or on a
parametrically defined surface in our case, can be connected in a
triangulated system as shown in 4.19. In the figure we can see
the example where the points from Figure 4.11 are turned into a
triangular grid using the Delaunay triangulation method. Some
of the characteristics of Delaunay, like the circumcircle condition,
are the cause of its irregularity, i.e., of the switching between ver-
tical and horizontal lines, but that can be useful for the diversity
of triangulated grid solutions. Back in Figure 3.11, a triangular
grid generated by a Voronoi diagram (not Delaunay) was showed,
but it makes more sense to use Delaunay for automatic generation.
One way to improve Delaunay triangulated grid is to relax it. In
the same way that Voronoi can be relaxed to create Voronax, in
the lower part of Figure 4.19 there is an example of the relaxed
Delaunay grid, which will be referred to as Delaunaz. It has more
equal triangles, i.e., triangles with similar edge lengths and similar
angles.

Even if the straightforward creation of triangular grids in this
way looks ideal for the optimization of triangulated grid shells, the
optimization algorithm with Delaunay and Delaunax triangulation
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Figure 4.20: An example of
a statically efficient but opti-
cally unacceptable and unin-
terpretable solution of an op-
timization process done with
the Delaunay decoding func-
tion
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Figure 4.19: Delaunay triangulation and Delaunax grid

often converges to a solution that is optically not acceptable and
can hardly be interpreted. The problem is that the optimizations
cannot be taken for granted. Their intention has to be recognized
in order to abstract the principle and apply it according to many
other conditions (like aesthetic) that have to be respected in an
architectural project. In Section 5.2.2 this will be emphasized once
more, and it will be shown how sometimes Voronax pattern can be
more efficiently used to abstract the principle from the optimal re-
sult that the Genetic Algorithms offer. In the future more research
has to be done to get an optically acceptable grid with the statical
optimization of triangular grid shells working with the Delaunay
(and Delaunax) decoding directly. Figure 4.20 illustrates a grid
shell generated over a free form surface that shows one of the ef-
fective solutions generated by the Genetic Algorithms with the use
of Delaunay decoding function. The grid is optically unacceptable
and cannot be used to extract some principle that can be used to
design a statically effective triangulated grid shell.

4.2.3 FEM Setup

When the grid shell’s geometrical structure is defined and fixed, it
has to be prepared for statical analysis and evaluation. For that
to be possible, a set of physical properties has to be defined, in
order to transform the initial linear representation into a spatial
steel structure.
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Material and Section

This research is restricted to steel structures, and the material is
therefore not taken as a design variable but as a constant. How-
ever, the purpose of the whole system is to be easily expanded and
the material can easily be changed for any optimization process.
Hence, with very little effort, the material can become another de-
sign variable, if its choice is not definite at the beginning. Material
constants used in optimization processes are the standard ones for
steel. Young’s modulus was set to £ = 210G Pa with the standard
Poisson’s ratio of 0.3 and specific weight of 78.5K N/m?.

For most experiments, cross-sections of structural members were
fixed and equal for all the members. The Dialog in Appendix A
shows that different types of sections can be defined. In the re-
search, that choice was always made in a way that the material
is exploited enough without going over the yield limits. That was
estimated according to the load combinations, span of the whole
structure and number of structural members, i.e., average length
of one member. The choice of making the member sections fixed
was also made due to the fact that the main point of the research
is geometrical and topological optimization. The choice of different
sections also does not affect the solution in great manner, as long as
all member sections are the same. This was confirmed with several
experiments where the sections were changed but the results of the
optimization processes were the same. Nevertheless, the method
can be very easily expanded by inclusion of different cross-sections
as design variables. In that way, we are multiplying the size of the
search space with the number of possible cross-sections. It is cer-
tainly something that will be implemented in future research, but
for the successful proof of efficiency of the entire method described
it wasn’t necessary.

In modern practice, the most common section used in free form
grid shell design is a hollow rectangular one, mostly composed of 4
welded plates. The hollow rectangle section is used in the research,
with different sizes, chosen according to how the load, span and
number of elements, i.e., maximal stresses affect them. In Figure
4.21, there is a list of section types, with their properties, that
were mainly used in the research, although there were also a lot
of experiments done with I-shaped and circular profiles. Again, it
has to be emphasized that experience showed that the choice of
cross-section does not play an important role in geometrical and
topological optimization, as long as they are all set to be equal. If
they all vary, that is a different story, with an enormously enlarged
search space.
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Steel nr|h (mm)|b (mm)| t (mm) | A (m2) Iy (m?) I, (m4) J (m9)
Rectangular
1| 200 70 10 0.005 2.238-005 | 3.84E-006 1.03E-005
21 170 70 10 0.0042 1.45E-005 | 3.29E-006 8.37E-006
t 31 140 70 10 0.0038 8.80E-006 | 2.75E-006 | 6.40E-006
h 4| 110 70 10 0.0032 4.72E-006 | 2.20E-006 | 4.50E-006
5| 170 70 10 0.0024 1.486-006 | 1.48E-006 2.16E-006
b

Figure 4.21: Sections

Support combination

For static analysis, certain nodes in a grid shell have to be restrained
from moving. The user can therefore define a specific combination
of support, a set of functions that define which nodes will be re-
strained and the degree of their restraint. In Appendix A it can be
seen that the possibility of defining a support combination type ex-
ists in the Dialog, and in Figure 4.22, several support combinations
used in the research are categorized. The single letters (x,y, ) rep-

Lype abstraction restriction type abstraction restriction
X @ XX® | X® XX
all 4 edees Ve Yve 2 Ve vve
all 4 edges |ye® Y 2 edges Yoy
1 i@ 7@ 9 A A )
X® XX@ X® XXe@
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‘3 ; o points : S
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X@ XXO
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r all 4 edges |7~
l-) 28 7720

Figure 4.22: Support combinations

resent the movement, i.e., the restriction of the movement along
those axes in space, and the double letters (zx,yy, zz) represent
the restriction of the rotation around those axes. As it can be seen,
most of the types restrict the nodes completely, but that can easily
be changed. The table illustrates the diversity that can be achieved
with the arrangement of the supported areas, but new definitions
of support combinations can be easily imported with new function
definitions, according to the specific project requirements.

In the experiments, the selection of nodes that will be restrained
was mainly limited to the ones on the edge of the surface (type 1),
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since that is mainly the case in practice. Besides that one, several
other support combinations are examined, like the ones where only
the nodes on the V' side or on the U side of a surface are restrained,
or only the corners are fixed, etc. as it can be seen in Figure 4.22.

In practice, it often happens that the roof structure has columns
or walls at specific points of the surface that it can use for support.
Algorithmically, that can be solved with the definition of some area
(As) on the surface, over its u and v parameters, where the struc-
ture can be supported as it is depicted in Figure 4.23. Should a
node in a generated solution fall into that area it will be automati-
cally restrained, with a predefined degree. Solutions with additional
support will then be favorable since they will have a better fitness.
That induces a magnetic effect, and the optimization process will
be pulled toward the area of search space with that type of solution.

Apart from the fact that we can choose which nodes will be
restrained, the degree of restraint is of great importance as well.
It is possible to neutralize the movement and the rotation of each
node in all (x,y, z) directions, but also to partially restrain them
in one or two directions. This can change the results significantly,
since the distribution of forces in the entire structure can be shifted.
There are a number of reasons why this often has to be considered
in practice, sometimes only for the sake of optimization, as playing
with different restraint types and force distributions can lead to a
better solution. But sometimes it is allowed to transfer only part of
the forces to some supporting columns or walls, as it was the case
in the roof above the Great Court in the British Museum designed
by Foster & Partners (Figure 4.24).

Figure 4.24: Roof over the Great Court of the British Museum, Lon-
don, Foster+Partners, 2000.

On the perimeter (marked green), the building could take the
vertical forces from the roof structure, but not the horizontal ones.
Therefore, a steel girder was developed along the edges of the Great
Court, which was movable, i.e., wasn’t restrained in the x and y di-
rections. In that way only the vertical loads were transfered and
the grid shell had to take over the additional stress. Support type
5, for example, shown in Figure 4.22, was made in such a way that

Figure 4.23: Support com-
bination with the column area
in the middle of the surface
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the nodes are only restrained along the vertical direction (rotations
around x, y and z axis are allowed) therefore letting the structure
take over moments and horizontal forces, simulating a similar sit-
uation as in the British Museum. The results of the experiments
with that support type will be shown in the next chapter, and we
will see how the choice of joint restrain yields different solutions.

Figure 4.25: Different support combinations

The implementation of the restrictions is relatively easy. The
presented algorithm works by evaluating each joint in the structure
and determining its parametric position on the NURBS surface. If
the joint falls into the area defined to be restrained by the support
functions, it will be restrained according to the support type that
is selected.

Loading Combination

Combination of loads acting upon a structure can also be defined
by the user. Dead and live loads can affect a structure with dif-
ferent force magnitude, direction and different spatial distribution.
Therefore a set of functions is applied that can define the load type.
There is an infinite number of load combinations for which a struc-
ture can be tested. In engineering practice, experience leads to the
right choice of unfavorable combinations, thus trying to test the
structure for the worst possible scenarios. That is always strongly
linked not only to the structure itself, but to the environmental
conditions too. Several different load combinations were made to
show how an optimization process behaves according to them, and
to prove that it is logically influenced by them. In that way, we have
proof that this part of the process works, and that it can always be
easily expanded, i.e., branched, resulting in more complicated and
more sophisticated input data. The precision of the geometrical
distribution of load, its magnitude or type can always be improved.
In the research, several load types like gravity, snow and horizontal
load as well as their combination were used, as it will be seen when
the results of the experiments are presented.

Gravity Loading Applying a load automatically to some gener-
ated grid shell structure can be a complex task. The gravitational
load in grid shell structures usually takes the weight of structural
members (steel in our case) and the cover material. For covering, as



4.3. Fitness Functions

most ubiquitous in roof structures, glass is chosen with the weight
of 0.6 K N/m?, which corresponds to double glazing with two 12mm
glass plates.

When grid structures are generated automatically, especially
irregular ones like Voronoi or Voronax, all the polygons have to be
recognized somehow in order to simulate their glazing and apply
the loads on the surface. The surface load is then transfered to the
joints, according to the shape of each polygon and its centroid as
depicted in Figure 4.26. More about the details of different load
combinations will be shown in Section 5.3.

The Fortune’s Sweep Line Algorithm used to generate our struc-
tures does not provide cell information and therefore a separate al-
gorithm had to be developed to recognize each structural polygon,
so that the loads can be appropriately applied. This turned out
to be an interesting problem, the solution to which is described in
Appendix C, as its explanation would be out of context here and
probably a confusing digression.

Nevertheless, after the algorithm gathers all the information
needed, the weight of the steel members and glass surfaces is calcu-
lated automatically and additional load is added according to the
chosen load type. The surface of the Voronax polygons is always
approximated, since they are usually non-flat, i.e., double-curved.
Some of the load types introduce nodal loading, but mostly they
are restrained to standard vertical (gravity, snow) and horizontal
loads. Loading combinations are something that always has to be
tested in a number of different ways according to the specific char-
acteristic of the structure and its environment. Hence, the software
is open for an easy upgrade of any kind of load combination, and
the results of the ones used in experiments will show how the op-
timization process converges differently according to the load type,
magnitude and direction.

Figure 4.26: Surface load
is divided and transfered to
joints, punctually

Evaluation

After the geometry of the grid shell is defined and prepared for static
analysis, its evaluation can be made. Evaluation in GAs is done
with the help of fitness functions. They are a set of instructions used
to estimate an individual solution. The composition of a fitness
function is the actual process of goal definition and it decides what
the objective of the whole optimization process is. As it is the most
important part of GAs, a thorough description follows.

4.3 Fitness Functions

What is the value of a grid shell structure? Which of several so-
lutions is better? The answers to those questions depend on the
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perspective, i.e., on the criteria chosen to evaluate a given struc-
ture. One specifically defined criterion leads to a single-objective
optimization. As the name suggests, each solution in the process
gets evaluated according to one aspect, which can be a function of
several different variables. An objective is then usually expressed
in terms of minimization or maximization of that value. Single-
objective optimization will be addressed in Sections 4.3.1 and 4.3.2.
Sometimes the solution has to be evaluated according to several
criteria. In those cases, different objectives are set, which very
often collide with each other. That leads to a multi-objective opti-
mization, common in structural engineering. How multi-objective
optimization is applied will be shown in Section 4.5. One more,
very important subject also has to be discussed, as it is inevitable
in structural design. Namely, in structural optimization, single-
objective optimization alone does not make much sense, as there
are always lots of restrictions that have to be taken into account,
such as maximum stress allowed or maximal cross section of the
member, etc. Those restrictions in GAs come in the form of penalty
functions and they will be explained in detail in Section 4.4.

Fitness functions in our grid shell optimization are divided into
optical and statical ones. The first, smaller, group of functions is
made to satisfy geometrical conditions, like lengths of the members,
or size of the cells. The latter one is represented by functions which
evaluate each grid shell according to the results of the FEM static
analysis.

4.3.1 Geometrical (Optical) Functions

Here, the functions that mainly take the geometry of the grid into
consideration will be discussed. The geometry is important for
the architectural expression but it also has to satisfy conditions
imposed by fabrication possibilities. That is why the functions that
are trying to optimize a structure according to different geometrical
conditions and restrictions can be defined.

Every structural design is a simplification of an architectural
form, trying to combine the shape and supporting elements, thus
enabling the whole object to resist forces acting upon it. In that
manner, a free form grid shell is a discretization of a surface into
finite elements, i.e., structural members. Some variables that are
chosen to participate in the optimization will first be presented and
then one of the optical fitness functions will be explained in detail.

Possible Variables

There is always great freedom in the definition of the geometrical
properties of a structure that we want to be observe and evaluate.
Creativity can come from different project requirements. For now,
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some of the standard geometrical characteristics will be addressed,
since their use is sufficient to show how the method works and to
prove its validity.

members cells joints

Figure 4.27: Grid shell structural characteristics

Structural Members The structural members of a grid shell
can, and in free form structures mostly do, have different lengths
and cross sections. Great differences between them often leave an
unpleasant visual impression and are therefore something that has
been mainly avoided so far. A Genetic Algorithms based tool can
set some constraints, or even define the whole fitness functions to
evaluate different optical aspects of the structure. It can be a per-
fect guide, by proposing a number of solutions that can be used for
further processing.

Two main characteristics of a structural member are its length
and its section. A huge number of functions can be defined, that
regulate their size and proportion. For example, if cross sections
are one of the design variables, we can use a function that would
allow the connection of two members only when their sections are
connectible, i.e., when the difference in their shape and size is in
predefined boundaries. Much more interesting for the whole struc-
ture are the lengths. Namely, we can easily set constraints in form
of a penalty function and define the minimum and maximum mem-
ber length allowed. The final solution will then be within those
boundaries, as it will be shown with the explanation of penalty
functions and in the results of the experiments where those restric-
tions were used. Similarly, the relationship between member sizes
can be regulated as we will see in the Average Length Deviation
fitness function.

Cells In Appendix C a method, developed in this research, is de-
scribed that recognizes all the polygons in an irregular structure,
such as Voronoi or Voronax. That information can be used to set fit-
ness functions or penalty functions to control those polygons. One
of the first and most obvious applications is to set the limitation
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on the polygon size, i.e., cell’s area. We can easily define the mini-
mal or maximal surface area that one polygon can have, and that is
one of the main penalty functions used in the research experiments.
However, more sophisticated evaluations can be used to set objec-
tives or restrictions. The number of sides in polygons, maximal or
minimal angles, are also something that can be controlled. There
is always the possibility of combining all those characteristics into
some complex functions if the project requires it.

Joints The number of members connecting in one joint can differ
from 3 to n in a grid shell. With triangular, quadrangular, hexag-
onal,etc. structures, where the number of connections in one joint
is always the same, joints that don’t fit the pattern are quickly
noticed. The human eye has a remarkable ability to recognize pat-
terns and a single deviation from an established pattern is always
a problem. Sometimes, due to design and static problems, joints
like that are not avoidable. The shape of the joints can therefore
be controlled with functions not only according to the number of
members they connect, but also according to the angles at which
they connect. Angles between the members in a joint are a huge fac-
tor for an optically acceptable design. Additionally, if the sections
differ, complex functions can be made that restrict combinations
of angles and sections that are not physically possible. A set of
manufacturing conditions, which are generally strict for joints, can
be imposed in that way.

Guide Lines Voronoi structures look extremely non-regular. One
can not extract continuous lines or paths and therefore see such
a structure as a collection of cells scattered all over the surface.
A similar effect can be achieved with triangular, quadrangular or
hexagonal structures when they form a grid with irregular shapes
and connections, i.e, when cells have different sizes and angles.

On the other hand, we are used to the regulated triangular and
quadrangular structures where the network is formed with distinc-
tive guide lines or paths. In such grid shells, the angles between cells
and members become the most important factor, as the smoothness
of those paths contributes the most to the structure’s visual ap-
pearance. In Section 3.3.5, the advantage of relaxed grids is shown
resulting in greater smoothness. Therefore kinks in grid structures
can be resolved with the application of the Force-Density method
or with complicated constraints, controlling the paths formed. In
Figure 4.28 a part of the MyZeil roof structure is shown where it
can be clearly seen how the relaxation process kept the guide lines
smooth. The constraint control can get very complex and is there-
fore not thoroughly researched and addressed. Instead, the focus
is more on the structures where the smooth paths don’t exist, and
don’t present a problem, like Voronax structures. Nevertheless, the
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subject of pattern beauty, the rules in its proportions, cell distribu-
tion, polygon shape etc. is extremely interesting and deserves more
exploration in the future.

Average Length Deviation - Fitness function

In one of the most common grid shell design approaches,the focus
is on trying to keep the shape and size of structural members as
similar as possible. Using this approach in the research, a geometri-
cal fitness function that considers the length of structural members
is developed. It is however not intended to serve as a main fitness
function but as a shared one in a multi-objective optimization and,
much more important, to be applied as a penalty function con-
straint as it will be explained in Chapter 4.4. If a certain project
only required optical optimization, this would be an easy task, since
optical functions are much simpler and work much faster then the
statical ones.

The total length of n members in a grid structure, where [; is
the single length of the 7th member, can be presented as a function:

fil) = Z l; (4.3)

Therefore an average member length f! (I;) can be calculated as:

l n lz
flglt) = £ = 2l (4.4

Now, an ideal structure, based on the criteria of the described
fitness function, would be the one where all members have lengths
equal to févg. Since that is not possible with free form shapes, the
deviation factor D, that represents the total amount of difference
between the member lengths and the average length, can be defined.
Respectively, if the grid shell structure is a vector of parameters x,
the fitness function is defined as:

Minimize:

f(x):D:Z|fl_fclwg| (45)
1=0

Optical functions are easy to implement and very fast algo-
rithms, since they don’t communicate with other programs. An
optimization process with 10000 individuals, e.g., 200 generations
with 50 individuals in each generation, can be executed in a few
seconds.

Although a number of different optical evaluations is possible,
the Average Length Deviation is the only one implemented as a
fitness function. In Section 4.4 its implementation as a constraint
will be addressed as well as some other optical constraints. Primary
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functions should be, and in this research are, the ones that evaluate
grid shells according to their static eligibility.

Results

In Figure 4.29 there is an example of an optimization process per-
formed using Average Length Deviation as a single fitness function,
without any constraints. Different patterns are explored and the

generation 0 generation 395

quadrangular
voronax

generation 0 — o y | _ & generation 560

Figure 4.29: Optimization with quadrangular and Voronax pattern,
showing the convergence toward the solution in which all members have
the same length

difference between one representative solution from the first gen-
eration and one from the advanced generations is demonstrated.
Each generation consisted of 50 individuals. With the rectangular
pattern (up), the restriction of movement of structural members is
much greater, and therefore the solution is generally found quickly.
With Voronax (down), there are more possibilities and the opti-
mization process needs more generations, but it is clear that it
converges toward the good solution, i.e., toward the solution where
all members have similar length. Just as a short remark, one should
not be confused by different cell sizes in the Voronax example. The
fitness function doesn’t regulate their size, only the length of the
members. So two cells can differ very much in size, but if one has
5 and the other 9 bounding members, they can still have the same
length. The graphs and detailed analysis is left out here, because
this is only a small introduction for the elaborate analysis of differ-
ent experiments which follows in the next chapter.



4.3. Fitness Functions

Geometrical (Optical) Function as a Proof of GAs Effi-
ciency

In order to demonstrate the credibility and efficiency of a GAs
optimization process, two assumptions have to be verified. First of
all, it has to be shown that, given a fitness function, the process
converges toward the best solution, taking that fitness criteria into
consideration. Secondly, it has to be proven that the fitness function
considered is defined adequately, i.e., that the goal set is the right
one.

In optical functions the second requirement is fulfilled, as the
results can be seen optically and the conclusion can be drawn easily.
If the Average Length Deviation function produces results showed
in Figure 4.29 after only 500-600 generations, it can be seen that it
converges properly. After a number of experiments, with the same
convergence results, the conclusion is that the first condition, cred-
ibility, is satisfied and that the optimization process does converge
to an optimal solution. With static functions, the only concern left
then is if the objective functions are good, i.e., do serve the purpose
of obtaining lighter and more stable grid shells.

4.3.2 Statical Functions

Since the optical functions have been demonstrated, as well as the
effectiveness of the GAs optimization, it is time to discuss the core
of the whole research. The core is composed of functions that use
FEM static analysis to calculate displacement and stresses in the
structure, as well as its stability, i.e., buckling resistance. The
results of those functions will be used in our grid shell optimizations
over a given free form surface.

Objective

It was already mentioned that the distinction between design and
optimization doesn’t really exist. Every design process follows an
optimization philosophy, and similarly, a structural design is by
itself always an optimization procedure. At the beginning, the en-
gineer faces a number of different, usually randomly created, solu-
tions and by picking and modifying some of them, a good solution
eventually emerges. The evaluation of a structure in every step of
that process follows a set of goals and those standard goals will be
used to create fitness functions in our research.

A statical fitness function has to define a statical objective that
will be followed in the grid shell design. One of the basic structural
behaviors in Nature are the minimization of material and the min-
imization of potential energy. The same objectives are also used
in structural design. Trying to minimize the use of material and
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overcome bigger spans and heights at the same time, has to be ex-
pressed in different terms. Stress generated in the structure by ex-
ternal forces is a first and obvious choice for minimization, since the
reduction of stress directly leads to material reduction. Of course,
there are lots of other factors that have to be considered, like dis-
placements or buckling of a structure for example. All that can
be used to creatively construct a fitness function according to the
requirements of the design goal. Some of the basic fitness functions
will now be demonstrated and their application will be explained.
The results of the different optimization processes, that use the
functions described here, will be presented in the next chapter.

Minimizing Von Mises stresses

If we want to design a structure that can resist all the external and
internal forces in the best possible way, we have to reduce stress
in the structure, which leads to the effective and economical use
of material. A steel beam can resist forces that act axially upon
it with much less material than forces that cause bending. This
simple fact leads to the conclusion that an arrangement of struc-
tural elements should be made in such a way that it minimizes the
bending moment, and that is a form of geometrical optimization.
If the position of a member can affect the stress induced, first we
have to see how to calculate that stress and then how to find the
best position.

Given the free form surface, the chromosome, a specific decod-
ing function and all other design parameters, a grid shell is gener-
ated over that surface. The support and load combination design
variables together with sections and material information lead to
linear FEM static analysis of the grid shell. Due to the constrained
joints (not pin-joined like in truss structures) every node has six de-
grees of freedom, i.e ,transfers three axial forces and three moments.
Hence, Figure 4.30 shows a beam element that experiences different
distributions of all three forces and three moments throughout its
volume.

The beam resists the moments Mx, My, M z with its moments of
inertia Iz, Iy, [z and the axial forces with the corresponding cross-
sectional surfaces. The trick is to determine the minimal cross-
section that has the moment of inertia to resist the largest moments
and enough cross-sectional surface to resist the largest axial force.
That usually leads to an optimization process known as sensitivity
analysis. However, in the optimization techniques, the stress that
combines all stresses into a single value is used to simplify things.
That value is called Von Mises stress and it defines the critical value
of the material before it starts to yield. It is therefore also known
as the Von Mises yield criterion and it states that although none
of the individual stresses are large enough to cause yielding, their
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combination can. Yielding therefore occurs when the elastic limit
is reached, i.e., it is the lowest stress at which permanent (plastic)
deformation can be measured.

Op = \/03 +02+ 02— 0,0y — 0,0, — 0,0, + 372, + 372,372,
(4.6)
The definition of Von Mises stress and its precise calculation
can get complex and confusing, which can be seen from its general
expression in Equation 4.6. In this research a simpler way to calcu-
late Von Mises stress is applied, and with the intention of making
things as clear as possible, only that version will be explained. For
steel beam elements, with symmetrical cross-sections, some simpli-
fications are possible when we want to rationalize the approach.
Namely, the Von Mises stress depends on the axial forces, bend-
ing moments, shear forces and the torsional moment. The shear
stresses can be combined through thickness shear stresses 71 and 7,
and the axial forces and bending moments are combined to form
oo

n=V.,JA, , m=V,/A, (4.7)
N M, M
— | = 4 Y4 2 4.
T =L W, WZ| (48)

The Von Mises stress is then calculated as:

oy = \/agx + 37¢ + 372 (4.9)

Now, the Von Mises stresses change along the beam, but due to
the nature of a grid shell structure and concentration of load in the
nodes, the extremes are mainly at the beam ends. Therefore in the
research, for each beam, 0,y and o, are calculated, representing
the Von Mises stress in the endpoints of the beam (shown in Figure
4.30 down). The aim of the fitness function is therefore to minimize
the total amount of stress and the developed function is represented
like this:

Minimize:
n
F@) = [ovio+ 0ui1] (4.10)
i=0
where 0, ;0 and o0, ;; represent Von Mises stress in two end points
of an ¢th beam in the grid shell structure x with n beam elements.
For the calculation of Von Mises stress the orientation of the

member, i.e., the rotation of its cross-section has to be considered.
In Section 5.5 an algorithm that rotates the structural members
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Figure 4.31: Shear forces
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to orient them correctly is described. However, in most of the
optimizations that was not implemented and they are performed
with all members vertically oriented (in the positive z direction) or
with tubular sections where the rotation makes no difference.

This was done to simplify the process. First of all, it was men-
tioned that the main goal of this research is to propose an efficient
method for the design and optimization of free form grid shells.
The experiments shown in the following chapters are there to prove
that efficiency. Hence, it makes no difference if the members are
oriented or not, because the optimization process can offer an opti-
mal solution according to either of those two options. The process
is concerned with converging to an optimal solution regardless of
the input settings. Therefore the nature of those settings should
not and does not affect the efficiency of the optimization process.
Additionally, the orientation of members in a Voronax grid (as ex-
plained in Section 5.5) cannot be taken for granted because the
Voronax cells are not planar, and the rotation of the members is
only approximative and the proper orientation is arguable.

Figure 4.32: Three options for the cross-section of structural members
used in the research

Another reason to simplify the process (and save a lot of com-
puting time) was a very small difference in the evaluations of grid
shells used in the experiment when their members are oriented or
not. In Section 5.5 it is demonstrated that the differences in fitness
values are between 0%-3% for the Minimize Von Mises stresses fit-
ness function used in experiments, which basically means that the
orientation wouldn’t affect the process substantially.

Deviation From Average Stress

Klaus Mattheck defines the axiom of uniform stress like this, “..there
can be only one good mechanical design, namely the one in which
there are neither weak places(locally high stresses) nor underloaded
zones(useless ballast). In the final analysis this means that for a
given operating load the stresses must be completely uniform every-
where in the component, i.e., the load is fairly distributed.” [39].
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A fitness function based on that idea is developed to compare
the results with the Minimize Von Mises Stresses fitness function,
to prove the axiom of uniform stress, and therefore strengthen the
choice of one solution. Since we defined the Von Mises stress in a
beam element in Equation 4.9, then there is an average Von Mises
stress in the structure:

avg __ Z?:O [O-U7i70 + UUJJ] (4 11)
v Qn .
where the average stress refers to the stress in one end of the beam.
That is why the number of beam elements in the structure n is
doubled.

From there a deviation D is defined that represents the dif-
ference between stresses in one end of each beam element and an
average stress. Respectively the fitness function is defined as fol-
lows:

g

Minimize:

n 1
fl@)=D=> > loi; — o (4.12)
i=0 j=0
Most of the time, the results are similar to the ones from the
Minimization of Von Mises Stress fitness function, as it will be
briefly presented in the next chapter.

Maximize Load Factor

Grid shells belong to the class of lightweight structures. That means
that they are able to overcome wide spans with a relatively small
dead load. One of the goals of geometry and topology optimization
is to enable the structure to carry loads by normal forces mainly,
i.e, with an optimal use of material and the cross-sectional surface
of the structural member. Since the loads create mainly compres-
sion forces in the grid shell, and the members are very slim, one of
the greatest problems is their stability and buckling is one of the
key factors in such realizations [54]. Even when the stresses in the
elements are far below the limit and there is no danger of buck-
ling of the single members, the whole structure can still collapse.
Hence, a grid shell shows stability failure similar to slab structures
or to continuum shells even when the two modes are combined [4].
In this research, the focus was maintained on global instability, but
other problems considering local instability and member buckling
can easily be examined in the form of similar fitness functions. In
this fitness function the effect of geometrical imperfections has also
been left out. They play an important role in structural design of
shell-like structures since buckling loads are much reduced in many
cases due to it [54]. However, imperfections have greater influence
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Figure 4.33: Displacement
vector

82

on dome-like structures where the compression forces are high. In
this research we are dealing with free form surfaces where the per-
cent of bending induced stress is much bigger then the tension or
compression induced stresses. Additionally, the consideration of as-
pects like this represents an expansion of the method, but it is not
necessary to prove its efficiency. The optimizing process can work
as well regardless of the input settings, i.e., whether the geomet-
rical imperfections are included in the static analysis or not. The
algorithmic expansions of this kind are therefore left for some fu-
ture research and possible application on specific projects with the
requirement that the imperfections are taken into consideration.

The buckling analysis for the whole structure refers to the es-
timation of a critical buckling load, an Eulerian buckling load, at
which it becomes unstable and deforms into different buckled mode
shapes, or etgenmodes. So we can use the automatic load increment
analysis to calculate the buckling load factor (BLF) A, that repre-
sents a ratio of the buckling loads and applied loads. To be more
specific, its value multiplied by applied loads results in a buckling
load, i.e., the load under which the structure becomes unstable. In
order to do this, it is assumed that the differential stiffness matrix
is a linear function of the applied load. At the point of buckling,
the determinant of the sum of the elastic stiffness K, and critical
differential (geometrical) stiffness K, is zero [42].

[K.] + A[K,] =0 (4.13)

It is then logical that the fitness function should try to maximize
A in order to obtain the most stable solution. However, the Load
factor is best used in Penalty functions as will be explained in the
next chapter.

Minimize Displacements

The stability of the structure is strongly connected to its stiffness.
Namely, the stiffness can be determined according to the displace-
ments of the structural joints. The bigger the displacements are,
the weaker the structure is, and the stresses in members, trying to
resist those transformations, are higher. From this perspective, in
search of the structure with the smallest deflection, another fitness
function is developed. If the structure has n joints, and each joint
can move, i.e., be displaced in three directions z,y, z (Figure 4.33),
then the displacement vector d; for each joint is calculated as:

di = | x} +y? + 2} (4.14)

and the fitness function is constructed here as a minimization of
the sum of all displacement vectors in the complete grid structure
x:



4.3. Fitness Functions

Minimize:
flo) =Y di (4.15)

Other Fitness Functions

All of the fitness functions are developed and programmed within
the research, although the basic idea of using the minimization of
stress, deformation, etc. is a known concept in structural optimiza-
tion. The four described static fitness functions are the ones used
extensively in the research. FEach one of them can be extended
and altered easily to pursue some different objectives. Some exper-
iments were done with other parameters, like eigenfrequency and
modal stiffness, trying to find an optimal structure considering its
dynamic behavior. However, instead of describing each of the used
and possible techniques, the results will show that the whole GAs
optimization method leads to interesting and important results and
that it can be expanded easily to fit any objective. The goal in the
research is to perform optimizations with a proper number of dif-
ferent and representative fitness functions in order to prove that
the method works. When that is proven, it means that any kind
of fitness function, i.e., any kind of input data combination will
converge to an optimal solution according to those settings.

4.3.3 Fitness Scaling

Depending on the different fitness functions, different values are
obtained, and in a multi-objective optimization, for example, some
system has to be made to compare those evaluations. More im-
portantly, they have to be scaled in order to enable the selection
method to be effective. The reason for scaling, what its usual forms
are and how it is applied in the research will now be described.

Why Scaling?

Every individual in one generation has a chance of being reproduced
according to its own fitness. The better its fitness is, the more
chances it has of being reproduced, therefore enabling the survival
of the fittest principle to be applied. For example, we can imag-
ine that we have a generation of 5 individuals with fitness values:
1100,1200,1300,1400,1500 (without going into the fitness function
specifications, since it is not relevant for this explanation). If no
scaling was performed, we would add all values and calculate the
share of each one in the generation. The percentages, i.e., chances
of their survival would then respectively be : 17%, 18.5%, 20%,
21.5%, 23%. If we let the roulette selection method pick the indi-
viduals, they would all have more or less the same chance, because
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the differences are not substantial. And the bigger the real value
of the fitness function is, the smaller the differences become.

The second problem can occur when solutions are extraordi-
narily good or extraordinarily bad. They can totally disturb the
balance and assign chances of survival that do not contribute to
fair competition. If left to the normal selection rule (Equation 4.1),
the extraordinary individuals would take over a significant propor-
tion of the finite population and this is undesirable, a leading cause
of premature convergence [16]. Namely, let us consider a genera-
tion with 7 individuals with following fitness values: 58,2,3,3,5,6,6.
There is one extraordinary big value (58) in comparison to the oth-
ers, and that individual will have 70% chance of being selected.
One can say that is acceptable, since that individual is much better
than the others. That is true, but it causes the differences be-
tween the other individuals to be very small (2.4%, 3.6%, 3.6%,
6%, 7.2%, 7.2%), more importantly, it kills them immediately by
selecting only the fittest individual. That is not good, since it leads
to elitist selection, therefore preventing diversity and, as already
mentioned, leading to premature convergence. Experience showed
that the introduction of diversity is one of the most important fac-
tors in GAs (as well as in Natural Selection), while searching for the
global optimum [16]. That is why the thorough exploration of the
search space should be supported as much as possible. A similar
thing happens when one individual has a very small fitness value
and its chances of survival should be enhanced somehow.

Standard Fitness Scaling Methods

There are different ways to transform the values obtained from the
fitness function to some reasonable numbers, which can be used to
determine each individual’s chances of survival [47]. Those methods
can be constructed in various ways according to the coding method
and the range of values coming from functions. For example, one
of the simple ones, and not really effective is linear rank scaling
[3]. The individuals are ranked according to their fitness value
and then assigned a value that corresponds to their rank. The
shortcoming of this method is that it is not precise and it doesn’t
assign chances proportional to fitness as it should. Additionally it
doesn’t make the corrections needed to solve the aforementioned
problem of extraordinary individuals. There are also other ranking
methods [47, 3] which will not be discussed here, since they were
not found suitable for the purposes of this research.

One of the standard fitness scaling methods in GAs and most
ubiquitous is linear scaling [16], that can express the relation be-
tween scaled fitness f° and raw fitness f as:

F=af+b (4.16)
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The point here is to make average scaled fitness f;,, and average

raw fitness f,.4 equal, and to scale the maximal and minimal fitness
to some reasonable value. Usually that value, for maximal fitness,
is set to 2, as it can be seen in Figure 4.34. This method has
its own advantages and faults, and it usually gets expanded by a
number of factors that influence the values of a and b, so that the
optimization converges properly. However, since this exact method
is not used in the research, it will not be explained in detail. For the
optimization processes in the presented research a simplified version
of fitness scaling was developed, which was totally satisfactory and
resulted in an acceptable convergence.

Simplified Method Developed For the Research

To avoid the problem of large real values, the idea was to scale
all the solution fitnesses to a value between 0 and 1. If we have a
fitness value as a result of fitness function f(z;), for n individuals
in one generation, we can denote the maximal fitness and minimal
fitness as faer and fn, and the difference between them as d =
fmaz — fmin- In order to transform and calculate the scaled value
f#(z;) for each individual, the next operation has to be performed:

] , fori =0ton
0 otherwise

fo(a) = {—f@” FnlBLf f(2) # foin ()
(4.17)

In this way the worst individual will have value 0, the best one
will have 1, and the others will be scaled to values between 0 and
1. With the values from the example above, scaled fitnesses would
be as shown in Figure 4.35. The worst has zero chance of being
selected for reproduction, and the other individuals are added up

for the roulette selection.

Figure 4.35: Fitness scaling

This system works when the fittest individual is the one with
the largest real value. However in most cases in structural design
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Figure 4.34: Linear scaling
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we are dealing with minimization and therefore some changes have
to be made to invert the process and set the individual with the
lowest value to be the best (1), and the individual with the highest
value to be the worst (have 0 for a scaled value). This is done
in a very simple manner, by subtracting the scaled value from 1:

s () = 1— f*(x). In that way everything is reversed and in
the next section, when penalty functions are addressed, it will be
explained how fitness scaling is expanded when the solutions are
divided into feasible and infeasible ones.

In grid shell design, and with the fitness functions used, there
was no need for complex fitness scaling procedures. The first prob-
lem of large real values had to be solved, but the second problem of
extraordinary individuals could hardly occur, as such large varia-
tions in values were rarely possible. Even when they were, the elitist
selection that would occur at that point couldn’t hurt the explo-
ration of the search space that much, since diversity was supported
by a clever adjustment of mutation and crossover probabilities. Fit-
ness scaling, as everything else, can be easily altered and improved,
but for the sake of this discussion and the proof of the efficiency of
the method, the fitness scaling used was more than satisfactory.

4.4 Penalty Functions

Unconstrained optimization is something that can hardly be applied
in structural design. Whatever the objective is, there is always a
number of constraints that need to be imposed, considering mate-
rial properties and production capabilities. In Genetic Algorithms
constraints are applied in the form of penalty functions. The name
comes from penalization, introduced into the evaluation system and
used to reduce the fitness values of infeasible solutions, proportion-
ally to the degree of the constraint violation. The implementa-
tion of penalization can have the form of equality and inequality
constraints [19] and therefore an optimization problem is usually
expressed as:

Minimize (or maximize):

f(z) , = (21,29,...,2p) € RP (4.18)

under constraints:

gi(x) >0 , hi(x)=0 (4.19)

As mentioned before, x represents a design vector, with design
variables of D structural components, and g¢;(z) and h;(z) are the
equality and inequality constraints of an individual solution. In sim-
pler terms, x is our individual that is always represented as a collec-
tion of different structural components, like: number of elements,
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number of nodes, material, section type, etc. This information can
be predefined or vary during the optimization. Either way, they
are the design parameters or variables, or vector of components
that together define our individual solution. Equality constraints
demand that solutions have some exact value. For example, the
constraint for horizontal displacement in specific nodes has to be
zero. This type of restriction is rarely used in structural optimiza-
tion. Most commonly used are inequality constraints that set an
upper or lower limit of the value of some specific penalty function
and it will now be shown how they are implemented in our GAs
optimization process.

4.4.1 Method

In structural design there are limitations that are rigidly defined.
The material has limitations, often revised using the safety coeffi-
cients and resulting in a value that cannot be exceeded. For ex-
ample, the usual yielding limit for construction steel is around 240
M Pa and that is one of the limitations that can be introduced.
The method is constructed in such a way that the user can choose
any of the available penalty functions or a combination of them,
and define the limit value for any of them. This can be seen in the
explanation of the typical user dialog in Appendix A. Individual
penalty functions will be described a little bit later. First, the gen-
eral structure of the penalization algorithm developed within this
research has to be addressed.

Feasibility If one or several penalty functions are defined, each
individual solution can be marked as feasible or infeasible. If the
solution doesn’t violate any constraints it is feasible, and if it does
it is infeasible. Graphically it can be represented as in Figure 4.36,
where the attempt is made to illustrate that the feasible solutions
usually represent only a part of the whole search space. Of course,
the penalty functions must be set in a reasonable way to be effective.
If the restrictions are too loose, it can happen that the whole search
space is feasible. And vice versa, if the constraints are too tight it
might happen that no part of the search space is feasible. Neither
of the two problems can cause difficulties in the developed software,
since the optimization process can produce results in both cases as
it will be shown, but for optimal results they should be avoided.
The constraint, i.e., limit value can represent some lower limit
but it is usually set as an upper limit of stress, length, area, etc. A
limit value can play the role of a death penalty [40] in a way that
it simply eliminates the infeasible solutions from further reproduc-
tion by giving them no chance of survival. That is however bad
for two reasons. First, the optimization becomes elitist, which, as
mentioned before, results in poor exploration of the search space.

search space

infeasible

\ 4

Figure 4.36: Search space
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Second, infeasible solutions can be on the border of infeasibility
and therefore have very good genetic material, that can be used to
produce children with good fitness values. Keeping those solutions
alive makes the optimization process more robust and faster. That
is why in this research they are penalized and evaluated according
to their error.

Error In Appendix B, where the data structure of an individual
in our GAs optimization is showed, it can be seen that there is
a piece of information about the individual’s feasibility, as well as
additional information about the size of its error. If the solution
is infeasible, it is important to measure how much it violates the
constraints in order to evaluate it appropriately. That violation is
referred to here as an error. Figure 4.37 is trying to illustrate the
effect which we want to produce. We want to create a magnetic
effect that attracts the solutions to the feasible search space area.
That can be done by evaluating them in such a way that the feasible
solution values depend on their fitness, and infeasible ones on the
size of their error. The closer the solution is to the center, the
higher it should be evaluated and the higher its survival chances
should be.

The easiest way to demonstrate what an error is, is to use an
actual example of constraint. Let us imagine that we defined that
no member in a grid shell structure should exceed the length of
5m. Let there be 5 members that exceed that limit and have the
following lengths: 6m,7m.,8m,9m,10m. We can then add up the
lengths that exceed the prescribed limit. So after calculating the
error, 1 +2 4+ 3+ 4 4+ 5, we can say that the grid structure, i.e.,
individual in an optimization process, has an error value of 15. If
several different constraints are introduced, they are simply added
up. Sometimes when there are several constraints and their values
differ too much, some type of scaling has to be performed to bring
them to some proportional level. Usually that is not necessary,
since our goal is to enter the feasible search space where there are no
errors at all. Once the optimization process enters it, the magnetic
effect keeps the optimization process inside and we don’t have to
bother with infeasible solutions.

It can easily be seen that the error calculation is specific, and
depends on the type of penalty function. Actually, the error calcu-
lation is, in a way, the algorithmic definition of a constraint. When
the individual penalty functions used in the research are presented
(Section 4.4.3), the methods of error calculation developed within
this research will be additionally explained.

Feasibility Factor When we have the information for each in-
dividual in a generation, about its feasibility and its error, we can
go to the next step of penalization. This next phase is integrated
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into the fitness scaling functions and expands them to achieve the
magnetic effect shown in Figure 4.37. Powell and Skolnick [8] re-
mapped fitness values of both feasible and infeasible individuals
in such a way that all feasible solutions have higher fitness than
any infeasible solutions. This concept assumes the superiority of
feasible solutions. The assumption rarely holds since it always hap-
pens that some infeasible individuals process very good genes that
can be very valuable for later generations. That is why these indi-
viduals are preferable during the evolution than many low fitness
feasible solutions. It is therefore necessary to allow some infeasible
individuals to have higher fitness than some feasible solutions [43].
Taking this into consideration a following method is developed for
this research.

Figure 4.38 shows the applied principle and introduction of the
feasibility factor. It was explained how all the solutions are scaled
to values between 0 and 1, so that the selection process can be
effective. The feasibility factor ¢ also has a value between 0 and
1 and it determines the space into which infeasible solutions will
be scaled. To be more specific, the best infeasible solution (min-
imal error solution) will have the scaled value determined by the
feasibility factor, as can be seen in the figure.

_ feasible solutions

e ZER\

|
/5 @fﬂemihilit}' factor
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AN/ //|'

infeasible solutions

Figure 4.38: Expanded Fitness Scaling developed and used in the
research

We'll denote the value of the ith individual in the generation,
after the fitness scaling function is applied, as f*(x;), and the penal-
ized value, after the penalization is done, as fP(x;). If the feasible
part of the search space is F and the infeasible one I, then the
revised function can be expressed as:

fo(z;) ifzeF
p ZT;) = ~ 4.20
f(w) {ffnf(xz) ifrel ( )

where f; (7;) represents the scaling function for infeasible solu-
tions. This function depends on the error function f.,,, made ac-
cording to the type of penalty chosen to calculate the excess over
the prescribed limits. After the error is calculated, the fitness scal-
ing function is altered to distinct between feasible and infeasible
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solutions. The application directly follows the form expressed in
Equation 4.20. If the solution exceeds no limits it is feasible and
scaled normally as described in Section 4.3.3. If the solution how-
ever violates restrictions and has a positive error value, it is marked
as infeasible f;,; and scaled as follows:

: O — (PG ) o () # f3
ing (i) = fderr . (4.21)

[0) otherwise
This is similar to the fitness scaling function used in Equation
4.17. The difference is that instead of the fitness value, an error
value was used here. Respectively f™"(x;) represents the infeasi-

err

ble individual with minimal error and d.,, the difference between
maximal and minimal error in the generation d,, = fI* — :ﬁﬁ”
Since the minimal error solution is the best infeasible one, the value
calculated was subtracted from 1 in order to make the solution with
a smaller error have bigger values, thus bigger chances of survival.
At the end, the value is multiplied by ¢, to limit the infeasible so-
lutions and give them a smaller chance of survival than the feasible
ones. In the case of fo..(x;) = f™"(z;), we have our best infeasible
solution and we assign it the maximal value, defined by feasibility

factor ¢. This calculation is performed for all infeasible solutions.

4.4.2 Application

As always, the process is not as complicated as it looks when ex-
pressed mathematically, and it will be demonstrated with a small
example. Let us turn to the grid shell optimization again where the
size of each member is limited to 5m, and imagine we have a gener-
ation of 10 grid shell individuals from which 6 are feasible, and 4 are
not. The 6 feasible ones will be scaled normally and will have scaled
values between 0 and 1 as described before. We will define the error
of each of the 4 infeasible grid shells as follows: 5,10,15,20. We have

min — 5 and fm%* = 20 and therefore d.,, = 20 —5 = 15. If we set
the feasibility factor to be ¢ = 0.6, for example, we can calculate the
fitness values. The solution with error 5 is the best infeasible solu-
tion (fery(z;) = fM"(x;)) and will a have value of 0.6. The solution
with value 20 is the worst infeasible solution and will have, after
calculating 0.6(1—((20—5)/15)), a value of 0, and therefore have no
chance of survival. For the individual with an error of 10 the scaled
value will be 0.6(1 — ((10 — 5)/15)) = 0.396, and for the individual
with an error of 15 the scaled value will be 0.6(1 — ((15—5)/15)) =
0.198. It is clear how the solutions are ranked according to their
error in a way that the individuals with smaller error have bigger
chance of survival: 5(0.6),10(0.396), 15(0.198),20(0.00). Since the

feasible solutions are scaled to values between 0 and 1, there will
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be at least one solution with the scaled value of 1 that will have
the most chances of survival, thus supporting the reproduction of
feasible solutions.

Sometimes, when the restrictions are rigid, it can happen that
all solutions in a generation are infeasible. Furthermore this can
last for many generations, as it will be seen later in the examples.
The optimization process then converges toward a minimal error
solution until it generates a feasible solution. Once the feasible in-
dividuals are created, the solutions converge to an optimal solution
inside that area. In Figure 4.39 two graphs are shown, that rep-
resent the progress of the average fitness value in a generation, in
two optimization processes that try to minimize the stress in the
structure. The graph on the left is an optimization process with
very loose penalty functions and it converges almost immediately
to a global optimum. The graph on the right however has rigid
limitations and generates only the infeasible solutions for almost
250 generations. Then it finally finds the feasible part of the search
space and converges inside of it. The irregularity of the graph in
the first 250 generations shows how the algorithm doesn’t allow the
convergence, and struggles until it generates feasible solutions.

stress [GPa) stress [GPa|
searching for feasible solution
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Figure 4.39: The magnetic effect of the penalty functions

Adaptivity The method applied in the research belongs to the
static penalty function methods, meaning that the penalty settings
are made at the beginning of the process and do not depend on the
current generation number [40]. The feasibility factor is set at the
beginning, to some reasonable value like 0.5 or 0.6. In that way
it works satisfactorily, keeping the infeasible solutions below that
limit and allowing the optimization process to converge fast inside
the feasible area of the search space, once the solutions inside that
area are generated. As with every part of GAs, this can be even
more optimized, and one way to do that is to let the feasibility
factor vary and adapt itself throughout the generations [40, 43, 28].
In adaptive penalty function methods information gathered from
the search process is used to control the amount of penalty added
to infeasible individuals.

One way to do this depends on the number of infeasible solu-
tions in the generation, and it should set the feasibility factor to
be proportional to the share of feasible solutions in the generation.
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Namely, the more feasible solutions available, the bigger the fea-
sibility factor should be, allowing the small number of infeasible
solutions to be competitive. Therefore a following method is pro-
posed here only in theory and will be experimented with in future
research. If there are f+i individuals in a generation, where f rep-
resents the number of feasible ones and ¢ the number of infeasible
ones, then the feasibility factor can be expressed as:

6= { (4.22)

Again, additional factors can be introduced that can set the
lower and upper limits of ¢, but we are not going to go into that
much detail. The effect of the adaptive factor on the whole op-
timization process is very small, as it has already been said that
once the process gets inside the feasible search space, most of the
solutions are feasible and the treatment of the infeasible ones is not
important.

4.4.3 Examples

Logic dictates that the introduction of penalties must have some
trade-off. Namely, the fitness of the best acceptable individual must
lose some of its value, since the best solution without restrictions
is usually out of the feasible part of the search space. This will
be clear after some results of the experiments are shown and com-
pared. In Chapter 5 the effect of the fitness functions, together
with penalization, will be explained in much more detail. However,
here we will jump ahead a little bit and try to show small examples
of the application of some penalty functions together with their
description.

Minimum and Maximum Member Length

Manufacturing conditions, as well as some design intentions, can
lead to the limitation of the structural members’ lengths. One grid
shell individual can have n members, each one with the length ;.
We will introduce the penalty limit p = 5m that determines the
feasibility of our solution. To calculate the error we check all the
members and sum up their constraint violation e;:

n

ferr = Z €; (423)

=0

but we calculate e; only if the member exceeds the prescribed limit:

l; — if [;
A (4.24)
0 otherwise
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When we want the lower limit, i.e., for members not to be
shorter than some length, e; is calculated like this:

1 ifl
=P HE=P (4.25)
0 otherwise

In Figure 4.40 we can see a small example of an optimiza-
tion process done without penalty functions (left) and the result
of an optimization with limited member length (right). A free form

stress [GPa) stress [GPa]

1007, average fitness '™ % average fitness

no penalty W/ Wy ey, MAX member: 5m
W/ .
h'-.__“ ."f_ S """\_.,\__
10.75 T "'"""""""—“.._v_—-'_-—‘_,...'_-_l2.15 »\_4\
|generations 3(=] ﬁg |generations 8=D 1[{5
fitness : 10.12 GPa fitness 10.92 GPa

30m A

no penalty max member length: 5m
load support fitness decoding section
gravity all edges minimize Rectangular Rec
restrained Von Mises pattern 140,70,10,10

Figure 4.40: Effects of penalty functions, limited member length

30x16m surface was used, with a 420-member grid shell generated
over it, and the minimization of Von Mises stress is used as a fit-
ness function. Other conditions, like load buckling factor, were not
taken into consideration in this example since the idea is to show
the effect of one constraint with single fitness function. The opti-
mization is done over a rectangle pattern where the members can
only move along the edges, thus forming a rigid, straight-line, grid.
However, this is enough to show the effects of penalization. As
shown in the table on the bottom of the figure, the applied load
was self-weight of the structural members, all nodes on the edges
were restrained from movement and rotation and members have a
vertically oriented (parallel to the global z axis) rectangular cross
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section. The graph on the left shows how after 65 generations (each
consisting of 50 individuals) the optimization process converges to
an optimal solution. Beneath the graph we can see its intention
to stiffen the middle part, thus creating basically primary and sec-
ondary elements, i.e., a central beam and ribs. The ribs are very
long (marked red), more then 10m, and it is reasonable to ask the
algorithm what would the result be if the length of each member
was limited to 5m. The graph on the right shows the results, and
it can be clearly seen that we need more generations (165 in this
case) for the algorithm to find a good feasible solution among the
huge number of infeasible ones. The graph indicates the struggle for
almost 100 generations until it finds the feasible search space and
starts to go down. It is also clear that the convergence would soon
be achieved in the next 50 or 100 generations. The best grid shell
generated in the last (165") generation is shown underneath and it
can be seen that the limitations were respected and that the longest
members do not exceed 5m. As mentioned, there is a trade of in
fitness, but very small one. Namely the fitness of the best feasible
solution, i.e., the total amount of Von Mises stress is 10.12G Pa and
the fitness of the best infeasible solution is 10.92G Pa. Those values
would go down as the process continues but, as in most cases, the
infeasible solution would have a slightly better, i.e., smaller value.
The important thing to mention is that the restrained process still
keeps the same intention of stiffening the middle bearer, but it does
it within that one prescribed length limitation.

Minimum and Maximum Cell Area

In Appendix C an algorithm, constructed to gain the information
about cells (structural polygons), is explained. With that informa-
tion we can control the size and shape of the cell . We can limit the
number of its sides, or the maximal and minimal angle between its
members, but the most ubiquitous constraint used is the limitation
of the cell area. Similar to the last example, the error can be cal-
culated as the sum of the differences (e;) between all cell areas and
the limit value. If there are n cells we can refer to a single cell area
as [; and we don’t have to write new equations since they are the
same as 4.23, 4.24 and 4.25 if p represents the limit. In that way
we can predetermine the minimal and maximal cell area.

With the same surface as in the previous example, in Figure
4.41 we can see two optimization processes with Voronax pattern
and 110 Voronoi seed, resulting in 330 structural members in the
two solutions presented. The applied load was self-weight of the
structural members and surface load of 1K' N/m? transferred over
the cells to the structural joints. All nodes on the edges were re-
strained from movement and rotation and members have a verti-
cally oriented rectangular cross section. Here, there are two addi-
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Figure 4.41: Effects of penalty functions, limited cell area

tional graphs, that show the convergence of the best fitness solution
in the generation. They show clearly the struggle of the optimiza-
tion process when it comes to penalization. This comes from the
newly created infeasible solutions that appear in each generation
and disturb the convergence. Nevertheless, convergence does ap-
pear, it only needs more time, i.e., more generations. On the left,
there is a nice convergence and we can see how the smaller cells
move toward the supported edges to stiffen those parts that are un-
der the biggest stress. Doing that, they relieve the middle convex
part by generating extremely large cells there (marked red). On
the right we can see what happens when we restrain the size of the
cell. For around 100 generations the process mostly generates in-
feasible solutions, but then it finally finds the feasible search space
and converges toward the best solution inside it. One of the best
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solutions demonstrates the effects of imposed constraints and shows
the trade-off in fitness value that comes from it.

Easily Expandable

Penalty functions can be combined, and the dialog in Appendix
A shows that, in our research, combinations of 3 functions were
used. This is however not limited, and as many penalty functions
as needed can be combined. Easily enough, new functions can be
defined according to the specific demands of the project. All that
has to be done is to define a new function that will calculate the
error if the solution is marked as infeasible, and the expanded fitness
scaling function will take care of the rest.

More effects of penalty functions will be demonstrated in the
next chapter, together with various fitness functions. It will be
shown how for a small trade-off in fitness we can direct the conver-
gence and control the process easily.

4.5 Multi-Objective Optimization

Penalty functions allow us to influence an optimization process with
several factors. However, there is always one main objective, and
different restrictions are used to set the boundaries of the search
space where an optimal solution should be found. The process is
therefore single-objective, but limited. In structural design it is
sometimes interesting to see what would happen if more objectives
were considered at the same time. That leads to a multi-objective
(MO) optimization problem.

Sometimes the different goals that we are trying to achieve in
structural optimization lead to the same tendency, i.e., the struc-
ture with better fitness according to one objective is better ac-
cording to the second one too. This happens rarely, and therefore
is not that interesting. What is much more challenging is to op-
timize some structure according to objectives that have different
tendencies. Then, there is always a trade-off between them and the
solution that satisfies all the objectives in the best possible way is
impossible to achieve.

Speaking in general terms, our fitness function f(z) now be-
comes a vector of functions f = (fi(z), fo(x),..., fu(x)) and our
goal is to find the aforementioned design vector x = (x1, z2,...,xp)
that represents the solution which optimizes f. Of course, penalty
functions can be used normally to limit the search space even if the
optimization is multi-objective. The constraints only have to be set
more carefully.

In economics, there are lots of players with different goals (ob-
jectives). There is a theory, developed and used to mathematically
capture behavior in strategic situations, in which an individual’s
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success in making choices depends on the choices of others, called
Game theory. It is mainly used in economics, but the basic princi-
ples of it can be applied in other spheres of science like engineering,
political sciences, international relations, computer science, philoso-
phy, evolutionary biology, etc. One of the famous concepts of Game
theory is the Nash equilibrium, developed by John Nash in 1951 at
The Princeton University [41]. It is made with the exact intention
of finding a solution that would be satisfactory for all players at
the same time. However, the Nash equilibrium finds an equilib-
rium point where no player has interest to change its position, but
that point doesn’t necessarily represent the best solution for all the
players. That is why another principle from Game theory is gen-
erally used in multi-objective structural optimization - the Pareto
Optimum.

4.5.1 Pareto Optimum

The method was developed by Vilfredo Federico Damaso Pareto,
an Italian economist, at the beginning of the 20" century [1]. He
used it mainly for studies in economic efficiency, but the general
principle can be applied to any conflict situation. The method will
now be explained for two objectives optimization along with its
expansion for three objectives. The principle can be then followed
to expand the algorithm for more than 3 goals.

Pareto Optimization With Two Objectives

Let the first objective function (fitness function) be denoted as f;
and the second one as f;. We can then construct a diagram as
shown in Figure 4.42. For now, let both fitness functions represent
a minimization problem. If the gray area represents our search
space and the blue dot represents an ideal solution i( f1, f2), we can
mark the part of the search space where we would like to find our
solution with the blue line.

The blue line represents the Pareto frontier, a line on which the
set of choices would be Pareto efficient. Depending on the shape
of the Pareto frontier we can make distinctions between solutions
with a strong and a weak trade-off between the objectives. As it is
depicted in Figure 4.43, it is obvious that the trade-off depends on
the distance that the solutions will have from the ideal point. Nat-
urally, the generated solutions are always inside the search space,
and rarely on the border as shown in previous figures. So the Pareto
frontier has to be formed out of available solutions.

Pareto Frontier The question of evaluating solutions, and deter-
mining a Pareto frontier from the set of available solutions, remains

4
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Figure 4.42: Pareto frontier

97



4. Genetic Algorithms

98

search space

search space

weak trade-off

Frial-%

fl.ulin

f:i.l:uin

[.1.1I'.ill

Figure 4.43: Strong and weak trade-off

unresolved. The easiest way to resolve it is to construct a simple ex-
ample. Let us imagine a minimization process where one generation
has 10 solutions with two values for each of the fitness functions,
as depicted in the diagram in Figure 4.44. The position of each
solution on the graph is determined by those two values. Now we
introduce the notion of domination from the Game theory. It is
stated that the solution is on the Pareto frontier if it is not strictly
dominated by any other solution. If we compare two solutions, the
first strictly dominates the second one if none of its values are in-
ferior to the corresponding values of the second one, and if at least
one of its fitness values is better (smaller in a minimization, big-
ger in a maximization) than the corresponding one in the second
solution. For example, in Figure 4.44 we have marked solutions:
A(3,9), B(5,4), C(6,6), where the first number represents the value
of the first fitness function and the second number the value of the
second fitness function. If we compare solutions A and B we can
see that A has a better fitness value resulting from the first fit-
ness function, and solution B is better than A when evaluated by
the second fitness function. Therefore it cannot be said that one
solution strictly dominates the other. If we compare B and C it
is clear that solution B dominates solution C, since it is better in
both fitness functions, i.e., has smaller value and therefore is closer
to the ideal solution. Since solution C is strictly dominated by at
least one solution (B in this case) it is not on the Pareto frontier.
All the solutions represented with blue points are not dominated by
any other and do represent the Pareto frontier. All green solutions
are, like solution C, dominated by at least one other solution.

Application

The application of the method of determining the Pareto frontier
can be creatively determined in a number of different ways. For
the presented research a version of this method is developed which
relies on scaling methods similar to the ones that we’ve seen in the
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Figure 4.44: Pareto frontier (blue) and other solutions in the genera-
tion (green)

penalization process. In each generation the solutions were sorted
out by different chances of survival being assigned to them.

Initially, it is determined if the solution is dominated by any
other solution or if it is on the Pareto frontier. Algorithmically
that is an easy task that needs a maximum O(m(n?)) computing
time, where m represents the number of objectives in the optimiza-
tion and n the number of individuals in the observed generation.
We simply check each individual and compare its fitness values with
every other individual in the generation. If there is at least one solu-
tion that has all fitness values better, then the observed individual
is dominated and it is not on the Pareto frontier. If there is no in-
dividual with overall better values, then the considered individual
is not dominated and it is on the Pareto frontier.

Similar to the feasibility factor, the factor of domination ¢ is
introduced here. We know in advance that dominating solutions
represent a minority in a generation, and therefore all of them need
to have a bigger chance of survival than any dominated solution.
Solutions on the frontier will be scaled to values between § and 1,
whereas the dominated solutions will be scaled to values between
0 and ¢, as shown in Figure 4.45. In that way we can preserve
the small number of good solutions by giving them higher chances
of survival and forcing the optimization process to generate indi-
viduals closer to the ideal point, from one generation to the next
generation.

In Appendix B it can be seen that the data structure of each
individual in a MO optimization includes additional information
about its domination. Namely, every individual is marked as dom-
inated or not, and the distance between it and the ideal point 7 is

99



4. Genetic Algorithms

f2 A

fi

Figure 4.46: Distances from

ideal point

100

ldommatmg solutlonb
max \ min
dist dist

& @ factor of domination

R NN\ 7

dominated solutions ‘
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also known. It was explained before that the ideal point represents
an ideal solution which would represent the best possible fitness
value for all objectives. The closer the point is to this ideal point,
the better it should be evaluated, and the bigger its chances for sur-
vival should be. To visualize this, Figure 4.46 shows the distances
from the ideal point to the solution. This idea is used to expand
the fitness scaling function for MO optimization.

If there are n individuals in one generation, they can belong to
the frontier P or not, and therefore be scaled appropriately. If we
denote the multi-objective scaling function as f,,,(x;), the scaling
of solutions on the Pareto frontier as f,¢(z;) and the ones that are
dominated as fgom(x;) then:

fmo(l'i) - {fpf(mz) ifzeP (426)

faom(x;) otherwise

The ideal point in a minimization problem is at the point where
all objectives are theoretically minimal, i.e., have 0 value. In a
two objective case, this means that the distances from the point
of origin will be calculated and denoted as [; for each individual.
Like in the penalization, [,,,, and [,,;, are determined and their
difference is calculated d = l,,4z — lmin. The Pareto frontier scaling
function can then be expressed as:

£ (o) = {6 A== (=) il b))

1 otherwise

First, the solution is scaled to a value between 0 and 1 accord-
ing to its distance from the ideal point: ll_l% Then the value
is subtracted from 1 because we want the solutions at smaller dis-
tances to have greater value: 1 — (H%) Now that we have values
between 0 and 1, we scale them further to values between 0 and
(1—6) adding it to the equation: (1 —4)(1 — (“=k=i)). In the end
we want to shift them to values between § and 1 and we get the
final form: § + ((1 —6)(1 — (H%))) If we have the best solution
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(minimal distance from ideal point), we scale it automatically to 1.
The process is depicted in Figure 4.47.

o4 min dist — [0] 0]——1|0

_—

1-8

_—s

frontier solutions
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> max dist — |1 1 L1

Figure 4.47: Scaling of fitness values of the solutions on the Pareto
frontier

With the dominated solutions we do the same thing, only with-
out the last step and instead of 1—¢§ we scale them to values between
0 and 0:

) (4.28)
) otherwise

fdom<xi> = {

nin dist — [0] [(0]———— [0

dominated solutions

=

[ max dist — |1 1
Figure 4.48: Scaling of dominated solutions

After scaling is performed, the optimization algorithm continues
as usual. With the method described, it will always try to converge
toward the ideal points and get as close to it as it can. Naturally, in
two-objective optimization the position of the ideal point depends
on the type of fitness function. Since each one can be minimized
or maximized, there are 4 possible positions of the ideal point, as
depicted in Figure 4.49.

More Than Two Objectives

There can be more than two objectives, and for 3 fitness functions,
where all of them are supposed to be minimized, the Pareto frontier
can be depicted as in Figure 4.50. For a higher number of goals it is
hard to analyze MO optimization graphically, but all the principles
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Figure 4.49: Possible positions of an ideal solution

remain the same. The results of the MO optimization experiments
will be presented in the next chapter, together with all other results.

Additional Scaling

The multi-objective optimization developed and used in the re-
search is explained. However, this method, as every other, can
be easily expanded and finely tuned to respond to specific require-
ments. For example, we can introduce additional factors that would
prefer the solutions closer to one objective, if we find one fitness
Figure 4.50: Pareto frontier function more important than the other. That is however not im-
with 3 objectives portant for the proof of the efficiency of the whole GAs optimization
that is presented here, and will be left to future research.
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Results

The main structure of the algorithm has been presented so far, and
most of its parts are explained in as much detail as seemed rea-
sonable and required to understand the whole process. The really
interesting part comes with the application of Genetic Algorithms
and with the comparison of the results. The comparison of out-
comes with different GAs settings will show how the optimization
can be directed and controlled, but it will also supply an additional
proof that the method works efficiently. It will be interesting to see
how, after only a few experiments, simple conclusions can be made
in order to predict the outcomes of other optimization processes.
That is exactly what the goal was from the beginning - to develop
a new type of intuition in free form structural design. Later on, the
results will be compared to structures in Nature in order to demon-
strate that with this method we are now thinking the same, and
that once we are deliberated from manufacturing restrictions we
can come closer to building structures as beautiful and as efficient
as natural ones.

The best way to show the effects of the GAs optimization is to
change one of the parameters and keep all others fixed. Out of many
components that can vary, several of the most important ones are
chosen. Namely, the results of GAs structural optimizations will be
presented, made according to the different: fitness functions (in sin-
gle and multi-objective optimization), patterns, load and support
combinations.

In each of the following sections there will be a set of input
data presented at the beginning, i.e., the information about the
most important parameters of the optimization process, with spe-
cial emphasis on the study of its effects. The input data is basically
divided into 3 categories as shown in Figure 5.1: GAs specific data,
Pattern specific data and Fitness data. GAs specific data regulate
the process with different probability factors, and determine the
size of the population. Pattern specific data determine the size of
the chromosome, i.e., the number of Voronoi seed and therefore the
number of joints and structural members in the grid shell. Fit-
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ness data holds the information about different settings (including
Penalty functions) that are decisive in the process of evaluation.

GA Pattern Fitness
e chromosome size e decoding function e fitness function
e number of individuals L-nr of FOLOROL seed e support type
e number of generations L.nr of nodes e Joad type
] s b 1 7 =
& Lonr of members i
crossover probability sk . secti pe
® CIOSSOVer. Pl ilit; e minimal seed distance @ section. fype
e mutation probability e penalty function
Ltype L-limit

Figure 5.1: Input data

Every optimization process holds information that can be used
afterward to recreate and draw the entire population of individual
solutions or extract the graphs, that show the progress of the entire
optimization process. The 4 graphs illustrated in Figure 5.2 rep-
resent the progress of the: 1.Maximal fitness value in generation,
2. Minimal fitness value in generation , 3. Average fitness value
in generation, 4. Sum of all fitness values in generation. Out of
those, two are usually more important, i.e., Minimal fitness value
and Average fitness value. That is why in all experiments they
will accompany the figures, to demonstrate the convergence of each
GAs optimization process.

fitness fitness
[ _ max fitness L. min fitness
r-..,—;_u II“-"-_"!'::I".*
“H-\;‘w '__! .
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Figure 5.2: Optimization graphs

In order to demonstrate the innovations in this research, so-
lutions will mainly be compared to the regular structure, i.e., the
structure with uniformly distributed structural members, since that
is the way they are usually designed nowadays, and that is some-
thing that can be improved. Since the polygons in Voronax struc-
tures have an average of 6 edges, they are usually compared to
a regular hexagonal structure. The information obtained from a
Voronax optimization will be used to optimize triangular and quad-



rangular structures as well, and they will also be compared to their
uniform versions.

In each optimization process there are random solutions, gener-
ated at the beginning, with the bad fitness values, that naturally
disappear after a few generations. Those solutions are not the worst
possible ones, but simply the worst in the entire generated popu-
lation. Generally, the regular solution will have a fitness value
somewhere between the best and the worst, as depicted in Figure
5.3. In the same figure there is an area, marked blue, where we
basically look for our design solution, and, as it will be shown in
the following sections, we can decide upon one solution according
to the different restrictions and our design aspirations.

fitness value
A

design
space
W, —— (T — b
worst generated regular best generated
solution solution solution

Figure 5.3: Optimal design is somewhere between the regular and the
best fitness structure

Additionally, our goal is to extract a pattern of behavior that
appears when we look at the entire population of solutions. In
other words, we will try to read the intention of the optimization
process, to see how the change in the geometrical disposition of
structural members affects the statical behavior of the grid shell.
Experimenting with different settings allowed us to determine the
interesting ways of achieving that.

We can, for example, do the same experiment twice with dif-
ferent load settings. First, we apply normal gravitational load,
applying the weight of the steel members and the weight of the
glass (or any other material) that covers the cells. Then, we do
the same experiment without the glass,; i.e., only with the weight
of the steel structural members. Since the glass is basically a con-
stant surface load over the entire free form shape (regardless of the
member disposition), it only stabilizes the grid, not allowing the
creation of great differences in cell size or member lengths. With
the experiments without the glass load, the solutions are geomet-
rically more extreme, but the most important thing is that both
experiments usually show the same intention, and when it is not
clear what it is in the first optimization process, we can use the
second one to confirm it. This will be clear when the actual ex-
periments are shown, but it is important to give an example of the
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creativity involved in the interpretation of the optimization results.
Naturally, the gains with the experiments with only member load
are bigger. For example, in some cases the best offered solution has
a b times smaller total amount of Von Mises stress then the reg-
ular structure, and sometimes a 10 times smaller total amount of
displacement. As depicted in Figure 5.4, the gains with the surface
load are a bit smaller, but still substantial. It cannot be gener-
ally estimated how big the benefits of an optimization like this are,
since it heavily depends on the free form shape, pattern and the
fitness function. Experience showed that the more curved the form
is, and the larger the freedom in geometrical distribution of mem-
bers is, the more we can profit from the structural optimization. In
some cases it comes as a surprise to see that, without changing the
shape or the number of structural joints and members, but only
by changing their geometrical disposition over that shape, we can
achieve structures with several times less stress or displacement,
or with multiple enhancement of stability. However, the optimiza-
tion depends on choice of the pattern. Triangular structures, due
to their rigidness, have the ability to remain stable and perform
good according to different load cases. With n-gon patterns (like
Voronax) the optimizations are done usually for one load combi-
nation and the effects of sudden changes in load magnitude and
direction would have to be additionally investigated.

fitness fitness

only steel glass + steel
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Figure 5.4: Different gains from different load settings

Every aspect of the optimization process presented so far can be
constructed in a very complex manner. The choice is made however
not to create confusion or prove the enormous possibilities of the
method by demonstrating that complexity. Hopefully, from all the
proofs and explanations offered, it will be clear what tremendous
creativity can be expressed in the definition of every part of the
code. We will however concentrate on restrained optimizations,
with simplified surfaces and parameters, in order to prove, beyond
any doubt, that the process gives an optimal solution directed by
the user and the information provided by them. The examples will
therefore show intuitively reasonable results and convince us to
trust the method when we have complicated surfaces and complex
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parameters where our intuition cannot help us. The development
of new intuition will then come as a side effect.

5.1 Different Fitness Functions

We start with results of the fitness functions described in the pre-
vious chapter. In the following sections, most of the experiments
were carried out with relatively simple free form shapes in order to
clearly see the effects of the optimization process, thus proving its
efficiency. However, in order to support the statement that a grid
structure over any NURBS surface can be optimized, in this first
section we introduce a slightly more complex surface (Figure 5.5),
21m wide and 33m long. Every NURBS surface is represented over
its uv parameters and therefore can be optimized with the proposed
method. The parameters used here will generally also be used in
most of the experiments in the following sections, with differences
in pattern, as well as load and support combinations, when those
are the variables the effects of which are investigated. In the op-
timization procedures each generation had 50 individual solutions,
and the number of generations varied according to the problem.
All the GAs parameters, like mutation and crossover probabilities,
were determined so that they can produce the best convergence
of the optimization process, according to the conclusions drawn
from many other testings. As it can be seen in the table in Figure
5.5, gravitational load is used in all experiments in this section, i.e.,
self-weight of the steel structural members (vertically oriented) and
surface load of 1K N/m? in the vertical, —z direction, transferred
over the cells to the structural joints. Joints on the 4 edges of the
surface are restrained from movement and rotation in all directions.

33m

number of individuals | 50
number of generations | 200 - 550
crossover probability | 0.6
mutation probability | 0.001

decoding function voronax

nr of voronoi seed 150

load type gravity + 1KN/m2 -Z
support type all edges restrained
section type Rec 140.70.10,10

Figure 5.5: Surface and parameters
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All members are assigned identically, vertically oriented, rect-
angular section, and 150 Voronoi seed produced grid shell solutions
with 455-465 structural members. It is important to mention that
in all of the experiments the self-weight of the grid structure re-
mains approximately the same. The applied surface load is always
uniformly dispersed over the entire shape, and the sum of all mem-
ber lengths (hence weights) differs by maximum 5% for different
solutions with the same number of structural members. Therefore,
the optimization goal can be stated as - trying to minimize or max-
imize a specific value, while keeping the weight, i.e., the total mass
of the structure, the same.

The goal here is to demonstrate the differences and similarities
in solutions generated by different fitness functions. That is why in
this section, we will concentrate mostly on the one grid structure
type, namely the Voronax structure. The optimization of the other
grid shell types, like triangular or quadrangular, will be addressed
in more detail in the following sections. The main difference that
has to be considered is that triangular grids are categorically dif-
ferent, since, as mentioned before, they are rigid and show good
performance with different load combinations.

5.1.1 Sum of Von Mises Stresses

In Section 4.3.2 it was described how the fitness value of this par-
ticular fitness function is calculated. We determine the Von Mises
stress at each end of every structural member in the grid shell, sum
them all up, and then try to minimize that value.

In Figure 5.6 a set of different optimization results is shown,
trying to depict how one simple analysis process, that will even-
tually lead to an optimal final solution, can look. This is however
a simplified procedure, limited to a few tests that can be done in
one or two days. For a project with a specific fixed free form, we
can do many tests with different parameters, combined with thor-
ough static analysis, to obtain an optimal grid structure. We can
choose different patterns, a suitable number of structural members
and their disposition. Here is where we start with the optimization
process, depicted at the top of the figure (a), with 150 Voronoi seed
and without any restrictions (penalty functions) in order to show
clearly the effects of a single-objective optimization and extract the
intention of the Genetic Algorithm easily. Initial observation of the
graphs shows a steady convergence of the average solution and best
solution in one generation, although it is clear that if we continued
the process, the curve would continue to go down slowly. For us
however, those 330 generations are enough to read the intention of
the process and see where it strives to go. One look at the fitness
values shows that the best generated solution (110G Pa) has an al-
most 3 times smaller fitness value (sum of all Von Mises stresses)
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than one of the randomly generated solutions from the first gen-
eration (304.1GPa), and twice less stress than the solution with
uniformly distributed members (204.9G Pa). All solutions have the
same number of structural members - 460. Before we start to ana-
lyze the grid, we can look at the best solution from the experiment
done with the weight of the structural members only (without the
glass load), depicted in the framed area bellow. We can use this to
clearly see the intention of the GAs process. When the best solution
from that process is evaluated with the surface load, we see that it
is very close to the optimal solution value (115.7G Pa), but here we
can easily see why. As expected, cell density was increased near the
supported edges, since those are the areas with the largest stresses.
However, there is an additional stiffening of the area marked red. It
seems to be a very important point, that stabilizes the convex part,
with the help of additional increased density around its basis. If we
analyze the deformation of the quadrangular structure (as seen in
the figure), we can notice that it is exactly in that area where the
greatest deformations occur, so the reason for which the algorithm
stiffened that part is understandable. We also witness the stiffening
of the corners, a pattern that will appear in almost all experiments,
making it obvious that the GAs process uses the corner’s naturally
rigid shape to stabilise the structure when it has the opportunity.
The logical conclusion is that the biggest deformations extend along
the middle of the surface and therefore produce large stresses. Mov-
ing the members toward the edges results in smaller deformations
and the formation of extremely big cells in that middle area.

The inclusion of the load buckling factor as a penalty function
was avoided here. The cell sizes were used because they can vividly
show how the penalty functions affect the optimization process.
Nevertheless, three solutions have their Load Buckling Factor value
(marked as LBF next to the solution) to show that the extreme grid
is unstable (LBF:0.83) but it can be used to read the intention. Fur-
thermore, the more regular grid, restricted with penalty function,
shows that it naturally has a bigger Load Buckling Factor Value
(LBF:1.35)

In the best solutions we can see some oversized cells that are
generally not acceptable in grid shell design. So we can try to do the
optimization with restricted cell size (Figure 5.6 (b)). The process
with this particular penalty function displays a similar convergence
to an optimal solution after 330 generations, and again the similar
pattern emerges, where the density along the edges is increased to
stabilize the entire structure and result in less stress. As with the
unrestrained solution, we see the formation of a belt between the
concave and the convex part, thus completing the circle around the
basis of the convex part (this method of surrounding the convex
parts, i.e., stiffening it with increased cell density, will be also rec-
ognized in other experiments in the following sections). To check
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Figure 5.6: Analysis of a surface
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this assumption, another optimization was carried out with more
Voronoi seed - 250 (Figure 5.6 (¢)). And looking again at the cells
marked green, we can actually see that the creation of the belt zone
repeats to stiffen up the structure. This belt is in this case a part of
a girder formation, spanning the surface from left to right, making
a sort of a secondary rib structure.

The information obtained can be used to create our own solu-
tions, depicted in Figure 5.7, with Voronoi seed on the left and the
resulting Voronax structure on the right of each solution. Designing

150 points - design attempts
5L

153.7 GPa 179.0 GPa 163.8 GPa

oravity all edges minimize Voronax rec
' [=]

d ) load support fitness decoding section
restrained Von Mises pattern 140.70,10.10

Figure 5.7: Voronax grids designed according to the recommendations
from the optimization process

the structure, we can always bear in mind that we can go even be-
low 110G Pa for the whole grid, and that we can (and usually must)
deviate from this value in order to satisfy some other restrictions,
like cell size or member lengths. Whatever the cell disposition is,
when designing manually we always have to watch out for the di-
rection of members, since they are best exploited when they are
parallel to the forces acting upon them.

An interesting comparison can be made with the rectangle pat-
tern (Figure 5.8) to show how the same principles which we obtained
from the optimization process with the Voronax structure can be
applied to different patterns. Even with very little rearrangement

W 1552 GPa I 851 GPa
load support fitness decoding section
gravity all edges minimize Rectangular rec

restrained Von Mises pattern 140,70,10,10

Figure 5.8: Rectangle pattern, worst - regular - best solution
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of structural members, while keeping the number of members the
same, the gains are obvious, i.e., the stress in the entire structure
decreases considerably. We can see that in the solution on the
right the zone behind the convex part is stiffened up, as well as
the crossover zone, where convex goes to concave. The longitudinal
members are also rearranged and shifted a bit toward the edges, as
the Voronax experiment taught us. And we got stress reduction in
the entire structure from 85.1G Pa in a regular one to 55.1GPa in
the optimized one. The point here is that the movement of mem-
bers in this quadrangular pattern is very restricted. Only complete
lines could move, without the disturbance or rectangular member
disposition (as described in 4.2.2). Still, this small alteration led
to the 35% stress reduction, and the more freedom in pattern and
member movement we have (like with the Voronax pattern) the
greater the gains are.

If the optimization is performed with Delaunax pattern (relaxed
Delaunay triangulation), we have the gains in statical efficiency, but
the results are hardly interpretable. Figure 5.9 shows the optimiza-
tion results with the same input settings (except for the pattern),
where two Delaunax solutions have 525, vertically oriented, steel
structural members, and the uniform triangulated one in the mid-
dle has 520 members. The optimization shows a good convergence,
and the best solution that has 2.5 times less Von Mises stress then
the worst generated solution and 50% less stress then the uniform
grid. It shows larger cell density around the convex part and the
concave part near the supported edge. However, as mentioned be-
fore and explained more in the next chapter, the Delaunay and
Delaunax optimization results are hard to interpret, and that is
one of the areas that should, and will be investigated in the future.
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restrained Von Mises pattern 140,70,10,10

Figure 5.9: Delaunax pattern, worst - regular - best solution

Deviation From Average Stress In Section 4.3.2 a fitness func-
tion based on Mattheck’s aziom of uniform stress was explained.
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There is no sense in going into the details of the experiments done
with it, since the results are generally similar to the ones from
the optimization process that minimizes stress. As mentioned, in
most cases uniform distribution of stress leads to minimal stress so-
lutions. In free form grid structures uniform distribution of stress
shouldn’t be confused with uniform distribution of structural mem-
bers. With solid models (like in Klaus Mattheck’s experiments), it
is fairly easy to achieve a good design. A grid shell over a pre-
defined free form surface is very restrained, and can never evolve
into a state of uniform stress, and in most cases not even come
close. That is why this fitness function is created to compare the
results, and maybe to be used in some specific projects where uni-
formity is of particular importance. In Figure 5.10 there is a short
optimization process that shows a similar tendency to the previous
fitness function. All settings, except for the fitness function, are
the same. Self-weight of the structural members and surface load
of 1IKN/m? are applied, nodes on all 4 edges are fully restrained
and members have vertically oriented rectangular cross-sections:
140,70,10,10. The results show that density is enlarged near the
edges (near the support) and around the convex part of the sur-
face, as in the previous experiment. Load Buckling Factor of the
best generated solution is 1.158.
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Figure 5.10: Deviation from average stress

5.1.2 Sum of Displacements

We can sum up all the displacements, from all joints, in one grid
structure and try to minimize that value, as described in Section
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4.3.2. In that way we can let the GAs optimization process search
for the stiffest structure. Since stresses basically come from prevent-
ing deformations, the results from this fitness function are similar
to the ones from the minimization of Von Misses stress. Figure
5.11 shows that clearly. The optimization process has the same
settings, self-weight of the structural members and surface load of
1K N/m? nodes on all 4 edges fully restrained and members with
vertically oriented rectangular cross-sections. A similar pattern oc-
curs, in which the structure is stiffened near the edges and around
the convex part (marked green). The extremely large cell on the
crossover from the convex to the concave part is a clear indication
that the greatest displacements happen exactly at that point. We
also learned from this and previous experiments, that we can solve
the problem of large deformation areas through two different ap-
proaches. We can leave it as open as possible with the creation
of bigger cells, like in this example. But, we can also stiffen up
that area, with the creation of a belt, like in the example with the
minimization of Von Mises stress.

displacement [m] displacement [m]

s15] average fitness %41, best fitness

load support fitness decoding section
gravity all edges Sum of Voronax rec
restrained  Displacements pattern 140,70,10,10

Figure 5.11: Minimize displacements

It is interesting to see the enormous differences in displacements,
i.e., stiffness of the worst generated solution, regular solution and
the best proposed one. The best offered grid shell has a more than
six times smaller amount of displacements than one of the bad, ran-
domly generated solutions, and almost four times less displacement
than the regular structure. That shows that there is more than
enough room in that design space to make a structure that is far
more efficient than it is done nowadays.
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5.1.3 Load Buckling Factor

The stability of grid structures is something more sensitive than
other aspects, in terms of the geometry of the grid. Namely, very
small differences in geometry can lead to very different load buckling
factors. This means that small changes in member disposition can
make the whole structure become unstable and buckle. The reason
for this is that the buckling of one weak spot or even one single
member can lead to a chain reaction that destabilizes the entire
grid shell. In Figure 5.12 there are results from the optimization
process with the same surface and parameters as in the previous
examples, but with the fitness function that tries to maximize the
Load Buckling Factor. Although a logical use for the Load Buckling

load buckling factor load buckling factor
191 511
'ﬂmm- 41#"&' of 'H“H i lq'fJ‘
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o

load support fitness decoding section
gravity all edges maximize Load Voronax rec
restrained  Buckling Factor pattern 140,70,10.10

Figure 5.12: Maximize Load buckling factor

Factor is to set is as the penalty function in the stress or deformation
minimization, here the opportunity is used to show that it can
be used as a fitness function as well, especially for multi-objective
optimization explained in the following section. The graphs in the
figure show how wunstable this process is. The goal is to achieve
the largest factor possible (as explained in 4.3.2), and the curve in
the graphs is expectedly rising, but its instability proves that very
small differences in the generated solutions result in very different
factor values. From this experiment (as from many others) it can be
concluded that regularity is actually good for stability. In the best
solution, the denser cells are marked in green to show that we can
hardly detect any pattern or intention, as one does with other fitness
functions. The differences between the worst and the best generated
solution cannot be clearly stated, yet the latter has a load buckling
factor which is twice as large and therefore a lot more stable. The
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small difference in the fitness value (load buckling factor) between
the regular structure and the best generated solution additionally
proves that an uniform distribution of cells and members is good for
stability, although the difference in values shows that the regular
structure is not ideal and can be improved.

The settings in the FEM software used for this experiment were
set to Modal Buckling. Since the fitness function is easily con-
structed and can include any setting that can be made in the FEM
software, other options, like member buckling, can be incorporated
into the optimization process and investigated. The analysis of fit-
ness functions and the possibilities of their creation is, however, not
the purpose of this research. The goal is to propose and describe an
effective method for structural optimization of free form grid shells.
Therefore, the construction of the fitness function is only a branch
of that method and can be modified and constructed by the user
according to the conditions of the specific architectural project.

In the results obtained from multi-objective optimization it will
be shown how to combine this with other fitness functions. That
would also be the advice on how to handle the results gained from
the optimization with this fitness function - to combine it. In grid
shell design we should determine some value, some indicator of
stability (it doesn’t have to be the load buckling factor, it can come
from precise dynamic calculations), and then optimize the structure
by keeping it stable, always above that value. From that we can
easily conclude that the penalty function would be an ideal solution.
Of course in order to achieve greater stability (not only keep it
above some limit), we can turn to multi-objective optimization, the
explanation of which follows.

5.1.4 Multi-Objective Optimization

After the explanation of the Pareto optimum application in Section
4.5, some results will now be presented. We will see two examples
of optimization processes with two objectives at once. In both cases
it will be shown what happens to the second objective when we do
a single-objective optimization and then how that changes with the
application of the Pareto optimum.

Von Mises Stress and Load Buckling Factor

The combination of stress reduction and stability enhancement is
probably the most important goal to achieve in structural design.
What makes it a difficult task is that the two objectives in some
cases do not go along with each other. To prove this statement, an
experiment was made with the single-objective optimization where
the goal was to minimize the Von Mises stresses, and at the same
time to check the alterations in the load buckling factor throughout
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generations. The load consists again out of self-weight of the struc-
tural members and 1K N/m? surface load. Structural joints along
the edges are restrained from all movement and rotation and steel
members have vertical rectangular cross-section: 140,70,10,10. In
Figure 5.13 there are two graphs, showing the progress of the GAs
optimization process. As seen before, the Von Mises stress decays
expectedly, with a good convergence, but on the second graph we
see that the load buckling factor decays as well.
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Figure 5.13: Progress of the average stress and average load factor in
a single-objective optimization

This is exactly the opposite of what we want to achieve. In
Figure 5.14 we can see what happens with the application of the
Pareto method. As mentioned before, the load factor produces
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Figure 5.14: Two-objective optimization, Von Mises stress and Load
buckling factor

instable diagrams anyway, since the slight changes in structure can
result in big differences in load factors. However, in comparison
to the single-objective optimization, the ascending progress of the
load factor is clearly distinguishable here. Also, there is a noticeable
trade-off in the minimal amount of stress after 200 generations, i.e.,
it goes from 121.3G' Pa in the single-objective optimization to the
136.2G Pa in the multi-objective one. But it is a small price to pay
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to gain a load factor rise from 2.2 to 4.25. It is always up to the
designer to choose the trade-off between several objective functions.
The important thing is that the automatized GAs method, with
the help of Pareto optimum, offers a group of solutions that are
good in both objectives. In Figure 5.14, one of the solutions is
showed, that has one of the best fitness values considering both
fitness functions. It has a distinguishable edge-stiffening pattern
that we encountered in the experiments with the minimization of
Von Mises stress, but with more regular cell sizes, that enhance
stability and the load buckling factor. With the combination of
single-objective and multi-objective optimization we can therefore
prove the intentions of the process, by seeing it as a merger of two
different optimal solutions. That leads us to the next experiment,
where the merger is geometrically more obvious.

Von Mises Stress and Average Length Deviation

How the geometrical restrictions, like member length, cell size,
etc., are best applied with the use of penalty functions has been
explained and demonstrated. However, we can use the Average
Length Deviation fitness function in a multi-objective analysis to
demonstrate the effectiveness of the Pareto method and to graphi-
cally see how the solution of a multi-objective optimization can be a
merger of two single-objective optimums. In Figure 5.15, the graphs
show a constant decay of both fitness values, which is good, since
our goal is to minimize both fitness functions. Under the graphs, on
the left, we see the results of single-objective optimization processes
with the two fitness functions. We remember that the minimiza-
tion of stress shifts smaller cells to the edges and around the convex
part of the surface. The Average Length Deviation fitness function
assigns the best fitness value to the regular (uniform) structure.
After the process offers us thousands of solutions we can start the
design game. On the right of the figure we see two solutions of our
multi-objective optimization, each with a best (minimal) value for
one of the two fitness functions. However, in both cases when the
solution has optimal value according to one fitness function it is
not satisfactory according to the other function. That is why we
can chose a solution that tries to minimize that trade-off between
functions, i.e., that is sufficiently good in both functions, like the
solution shown in the middle of the figure. In this example, the
individual was picked manually from one of the latest generations,
by comparing the fitness values. The solution can be a compromise,
and we get to decide how much of one objective we want to sacrifice
in order for the other to profit.
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Figure 5.15: Two-objective optimization, Von Mises stress and Aver-
age length deviation

Conclusion

It is important not to observe these examples in terms of real build-
ing structures. Every real project will have many boundaries that
have to be respected, starting with the grid pattern. The examples
are here to show that within those boundaries there is always some
space left for optimization. Within those boundaries, the multi-
objective approach finds the solution that obviously does converge
to an optimal structure according to more objectives. The trade-off
depends on the compatibility of functions. In both of our examples,
they were incompatible, therefore resulting in a strong trade off. In
the first example we saw that stress increases from the optimal
110G Pa to 136G Pa, or even to 188G Pa in the second example. It
was shown that the method works, and the specific project require-
ments can guide us to make choices that will finally influence our
grid structure in the way we want it. The GAs are there to point
us to the optimal solution according to the settings that we have
chosen, and the engineer can then use the information he has to
design an optimal structure.
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5.2 Patterns

This section will focus on the explanation of the general use of
Voronax structures. Namely, it will be demonstrated how Voronax
can be used as a basic pattern in GAs, in order to show us what
the optimal structure should look like. After the optimization pro-
cess, we can use all the generated individuals to see how the grid
shell evolved and to understand its behavior throughout genera-
tions. The geometrical development of the grid, i.e., the change
in cell density over the surface in the course of time is meant by
behavior. The density information can then be used as a guide to
create individual solutions. Those solutions can follow the guide
lines provided by the Genetic Algorithms, but how far we want to
follow them is a personal choice, relative to fitness, i.e., material,
i.e., cost. The pattern is something that is left to the designer to
decide upon, since different density can be produced with infinite
number of various pattern combinations. Additionally, relaxation
process with controlled tension factors can be used to adjust the
density as advised by the GAs optimization process.

It will be shown how the orientation of the connected structural
members has a great influence on the grid structures with regu-
lar patterns. Some methods of the structural path generation will
be proposed. It will be demonstrated how they can be combined
with the density information we get from Voronax optimization to
create statically efficient grid shells. All the examples and compar-
isons will be there to point out different possibilities. Since there
is an infinite number of pattern combinations, there is an infinite
number of design possibilities. However, Genetic Algorithms and
the member orientation methods can show us the appropriate way
to implement these possibilities.
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Figure 5.16: Surface and parameters

First, we start with the 30x30m surface depicted in Figure 5.16,
with standard parameters (shown in the table) that were used with
most of the experiments. As in the previous section, a gravita-
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tional (dead) load is used, i.e., the self-weight of the steel struc-
tural members and a 1K N/m? surface load (glass). All members
have vertically oriented rectangular cross-section and all the joints
on the surface edges are restrained from movement and rotation in
all directions. Each generated grid shell has between 455 and 465
structural members. An optimization process offers its best solu-
tion in form of a Voronax structure. We will use that to create
our own Voronax grid shells, and then use the same knowledge to
develop grid shells with different patterns.

5.2.1 Start With Voronax

The results of the GAs optimization process with the Voronax pat-
tern, gravitational load (members+glass) and joints on all four fully
restrained edges are to be found in Figure 5.17. The graphs show a
very nice convergence of the best and the average solution. Again,
the best generated grid (83.6GPa) has almost two times smaller
amount of stress then one of the randomly generated grid shells in
the first generation. It can also be seen in this case that the regular
solution is very bad (138G Pa), and that it has a fitness value very
close to the worst generated grid (148G Pa).
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Figure 5.17: Voronax pattern

Intuition would imply that for a symmetrical shape and a sym-
metrical load the optimal structure should also be symmetrical. Ge-
netic Algorithms in this experiment (repeated several times) show
the intention of making a slightly asymmetrical solution. Namely,
the intention of the algorithm will be discussed in the following
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section, but here it has to be said that a fact that an asymmetri-
cal solution was optimal cannot be explained with certainty here.
One explanation is that the algorithm would eventually converge to
symmetrical solution. However, when applied to different patterns
(as shown in the following section with the triangular grid) making
an asymmetrical density disposition, as advised by the algorithm,
also generates less stress in the structure. This question is there-
fore an interesting subject for research and it is left open for future
investigation.

The opportunity will be used here to compare this solution with
a quadrangular grid shell. If we generate it in a way that it has
similar number of structural members (as depicted in Figure 5.18),
and we use the same load and restraints, we can compare the results.

: 455 @ members : 450
stress A : 9.04 GPa & &S stress A : 19.8 GPa
stress B : 83.6 GPa Q stress B : 90.0 GPa

load support fitness decoding section
gravity all edges minimize Voronax, Rec
restrained Von Mises Rectangular 140,70,10,10

Figure 5.18: Comparison of Voronax and quadrangular grid shell

First we will apply only the self-weight of the structural mem-
bers and mark the results as stress A. In the lower part of the
figure, deformations of both structures can be seen. In the regu-
lar structure, the largest deformations occur in the middle. In the
Voronax structure, thanks to the greater cell density in the center
and the formation of the cross-formed bearing zones, deformations
in the middle are minimized. That leads to the reduction of the
total amount of stress in all structural members from 19.8G Pa to
9.04G Pa. However, if we add the surface load of 1K N/m? to the
load of the steel structural members, we see a small difference in
the generated amount of Von Mises stress, 83.6G' Pa and 90.0G Pa
under stress B.

This experiment shows how it cannot easily be determined which
pattern is better, i.e., it cannot be said that the Voronax pattern
will always show better performance then some other, reqular one,
or vice versa. Experience showed that the greater the surface curva-
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ture and the complexity is, the more Voronax is effective. It cannot
be forgotten that the quadrangular grid has 4-member joints which
makes it additionally stiffer than the Voronax. In spite of that, such
as in this case, the change in density can make Voronax more effi-
cient. If we had a flat rectangular surface, it makes no sense (besides
the pure design justification) to apply Voronax, since the rectan-
gular pattern would respond much better. However, with strong
curvatures, regular patterns would have to be heavily distorted in
order to be optimized, thus disturbing the smooth structural paths
and being unacceptable optically. With the Voronax pattern and
its polygonal cell structure, we have additional freedom to adjust
the density of the cells to fit the demands.

This example demonstrates how the different load combinations
can also influence the efficiency of the structure. As a matter of fact,
all other factors, like support combination, material, cross-sections,
etc. can influence the stability and the generated stress in the grid.
The multiple connected small members in the Voronax structure
can be combined into one member for example, which would be
in its favor. This comparison should therefore not be taken for
granted, but only as an example of how a comparison can look
when the grid is designed. What is certain is that if we choose one
pattern, we can use GAs to generate statically optimal geometry,
and if we don’t know which pattern to choose, we can use GAS
to see what the optimal solutions with different patterns are, and
make our decision according to the differences.

5.2.2 Recognizing The Intention

When we have the results, we have to realize what it is that makes
the best solution better than the others. Instead of taking the re-
sults for granted, it is better to use them as a guide to alter the
design to fit our aims. In Figure 5.19, on the left, we can see the
basic intention that we can extract from the previous experiment.
Here, as in the large number of examples with similar surfaces, we

Figure 5.19: Intention of the optimization process
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can recognize the stiffening of the central part. It is clear that the
dense cells extend from the edge to the edge to create a central spine
(marked dark green). Another set of dense cells extends from the
center in two other directions to form a cross (light green), thus fol-
lowing the convex parts of the surface and making a primary bearing
zone. Since the nodes on the edges are restrained, greater density
is generated there (marked blue) with members perpendicular to
the edges to take the load in the best possible way. Naturally, the
GAs do not miss the chance to stiffen up the corners, since their
naturally rigid shape is suitable for stiffening the whole structure.
If we look at the deformation visualization (on the right side of the
same figure), it is clear that the GAs process generated larger cells
in the areas of the greatest deflection. Those areas should therefore
be lighter and they should rely upon the cross, i.e., the primary
bearing zone.

Check With the Quadrangular Grid

In order to check if the intention is correct, an optimization process
with the rectangular pattern is made. In Figure 5.20 we can see
that it follows the similar logic. The self-weight of the steel struc-

1T un%
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worst \WW —— regular [

- 25%
312.0 GPa 288.6 GPa 217 GPa
load support fitness decoding section
gravity all edges minimize Rectangular Rec

restrained Von Mises pattern 140.70,10,10

Figure 5.20: Rectangular pattern optimization

tural members and a 1K N/m? surface load (glass) is used again.
All of the structural members have the same vertically oriented
rectangular cross-section and all the joints on the surface edges are
fully restrained. Since the quadrangular decoding is restrictive, the
number of structural members in all generated solutions is the same.
As it can be seen in the figure, the best generated solution stiffens
up the middle convex part, making a cross. Even with the very
restricted movement of the members (only whole rows can move,
as explained in Section 4.2.2), substantial reduction of Von Mises
stresses is achieved. It is consequently our decision, based on the
aims and possibilities, how much to deviate from the regular struc-
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ture, moving toward the optimal one. In any case, the direction
that we ought to follow is clear.

Check With the Triangular Grid

We can perform optimizations directly with triangulated grids, us-
ing Delaunay and Delaunax triangulation as explained in Section
4.2.2. However, they end up with a solution, the intention of which
cannot be read. Although the performed experiments converge
nicely, there is no logic which can been derived from the optimal
solution. The optimization of this kind cannot give ready to build
solutions. It serves as a support tool, a recommendation. We should
be able to extract a principle from it that can be used to design an
efficient structure. If that principle, or pattern of behavior, cannot
be extracted and abstracted, then the optimal solutions from the
optimization process cannot be properly used in architecture.
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Figure 5.21: Influence of the member orientation on the total gener-
ated Von Mises stress

The upper part of Figure 5.21 is the result of an optimization
process where the Delaunay triangulation and Delaunax were used
as a chromosome decoding method (with all other settings staying
the same as in the Voronax optimization). The graphs show the
progress of the average fitness value for 400 and more generations,
and it can be easily seen, for example, that with the Delaunay the
optimization process converges very early. Almost 350 generations
of mutation and crossover didn’t change the optimal solution. The
Delaunay grid shell, depicted from the top (next to the graph),
is one of the best generated solutions. But the grid in the picture
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obviously cannot be an acceptable solution from the production and
the design point of view. Much more important, we cannot learn
anything from it, i.e., we can’t extract information that we could use
for the grid shell design over that same NURBS surface. Delaunax
solution would be more acceptable due to its relaxed geometry.
Even though some pattern of behavior can be recognized, like the
slight stiffening of the corners and the middle of the surface, it is not
enough to abstract a principle. It is very important for triangular
grids to control the design manually because the structural paths
formed by the grid members have to be smooth to ensure a better
distribution of forces. There is a possibility that a combination
of penalty functions that control aesthetic aspects of the grid can
be implemented to improve the optimization process, but that is a
complex matter that will be explored in future research.

There is a better approach in the lower part of the Figure 5.21,
using the Voronax structure and the intention we recognized from
the best generated solution. If we use the relaxation techniques
described earlier, and give the members in the middle a larger ten-
sion factor, the relaxation process will pull the triangles toward
the middle to form a cross. This, very small rearrangement of the
structural members, can decrease the total amount of generated
Von Mises stress in the structure by 8%. Considering the shape
of the surface, from the designer’s point of view, it could be said
that the optimized structure looks even more interesting. Consid-
ering the manufacturing possibilities, the solution has 1-3m long
members which is absolutely acceptable. This optimization has a
relatively small gain, but it is the minimal amount of the rearrange-
ment that could be done, to take the regular grid structure and pull
the members toward the middle a little. Additionally, we are dis-
torting the rigid, straight structural paths that triangular structure
has, and later it will be shown how that can influence the solution
greatly.

At this point it has to be said that the idea of taking an optimal
Voronax grid and making a triangular grid directly out of it also
doesn’t bring good results. Figure 5.22 illustrates the best and
worst solution generated from the optimization described at the
beginning of this section. Extracting a triangular grid from them
directly gives neither optically acceptable nor statically efficient
structure.

5.2.3 Design Our Own Grid Shell

Now that we know the logic that we have to follow in order to gain
efficiency, we can make our own Voronax structure. The exam-
ples in Figure 5.23 show three manually created structures, using
the information gained from the previously described optimization
process. The structures were generated by simple manual definition
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Figure 5.22: Direct extraction of a triangular grid from the Voronax
solution doesn’t give acceptable results. A principle has to be extracted
and then applied

of the points on the surface, as shown at the top of the figure, keep-
ing in mind that the density has to follow the spine and the cross. If
we look at the fitness (total stress amount) values (109 — 116G Pa)
we can see that it is still much better then the uniform solution
presented at the beginning (134G Pa), but it is also a lot worse
then the best offered structure (83.6G'Pa). This shows that we are

150 points 150 points 150 points

fitness 111.3 GPa

Figure 5.23: The intention
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on the right track, i.e., that we read the intention properly, but
that we can go a lot further in optimizing it. In any case, the con-
clusion remains the same. With the change in the disposition of
structural members and adjustments of their density, we can op-
timize the structure greatly. Instead of using penalty functions to
avoid oversized cells, we can also manually insert new points, or
move existing ones, thus playing easily with the density (something
barely possible with the regular patterns). Talking about patterns,
there is basically an infinite number of polygon combinations that
can be used to form a grid structure. Using the basic xy to wv
transformation, we can apply any of the 2D tessellation techniques,
like the ones depicted in Figure 5.24 for example.

Using the same information obtained from the optimization pro-
cess, few examples will be used to try to recall the fact that the
pattern is not a decisive part of a statical optimization. Whatever
geometrical paradigm we choose, it can be optimized. This can be
done by deletion or movement of the members, as well as with the
controlled grid relaxation, i.e., the usage of different tension factors.
In Figure 5.25 there are manually generated solutions with patterns
the members of which are simply deleted, but also solutions where
the relaxation is used to adjust the structural density so it can fit
into our spine and cross paradigm.

Figure 5.24: Some examples
of the large variety of 2d tes-
sellation possibilities
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5.2.4 About the Orientation of I
the Structural Members - oo 3 L
- Paths and Guide Lines 13.08 GPa

It is clear in the Voronax pattern that it is the density which is
adjustable to get to the statically optimal structure. Furthermore,
if we look at the regular patterns, it becomes clear that the direc-
tion of the structural members is another very important factor in
the grid shell design. (That the direction of structural members §
can also play an important role in the Voronax structures will be [l J 1 Jd
demonstrated in the next section.) A very simple comparison of the :

two vertical triangular grids, depicted in Figure 5.26, shows that, in 12.15 GPa
this example by changing the orientation of the triangles, we have
8% stress reduction.

Quadrangular and triangular grid shells have their cells usu-
ally connected in such a way that they form distinguishable paths.
Those paths are basically a system of interconnected polygonal
curves, that ensures the rigidness and greater stability of the struc-  Figure 5.26: Influence of the
ture. If we observe our grid shell from that perspective, we can member orientation on the to-
think about new ways of increasing statical efficiency. We know  tal generated Von Mises stress
that the bending of the grid shell structural members creates larger
stresses then the axial forces. Therefore, our goal is to minimize
the bending moments and we can do that by orienting the members
to be parallel with the main forces. In the example of the triangu-
lar wall, the more efficient one has vertical paths that are parallel
to the gravitational load (marked red). In this way, axial stress is
enlarged at the cost of the bending stress, which then results in the
smaller total amount of Von Mises stress.

With the vertical wall we can determine the direction of the
members intuitively. With free form shapes it is not always clear
how to define those basic paths in the grid.

The distribution of forces is too complex to be simplified easily,
and it depends on many other factors (like the position of the bear-
ing points and the distribution of loads, for example). But in order
to optimize our grid structure by changing the orientation of the
structural members we can use the principle stress trajectories of-
fered by an FEM software to help us define our structural paths. To
avoid a large digression, in order to obtain the trajectories we will
analyze our surface as a shell structure, supported on all four edges.

NURBS surface is first transformed into a mesh. Material is set to
concrete, thickness to 10cm and the FEM analysis is performed in
Sofistik (commercial FEM analysis software).

The entire experiment is depicted in Figure 5.27. In the upper
half we can see the trajectories of the maximal Von Mises stress,
calculated with Sofistik. It can be seen that a smooth paths can
be extracted from the directions of the maximal Von Mises stress.

This is depicted in the figure, on the lower right quarter of the
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surface. Since the surface is symmetrical with respect to the x and
y axis, this quarter is reflected twice in order to get a full path grid,
as shown in the figure.

This information can be used to design the grid, as the one de-
picted in the lower part of the figure. We can then compare that
structure with the uniform quadrangular one. For comparison pur-
poses, the regular quadrangular grid was generated with the similar
number of structural members and with the same, vertically ori-
ented, rectangular cross-section (140,70,10,10). As in the previous
experiments, the self-weight of structural members and 1K N/m?
glass load is applied. All the structural joints on the edges are fully
restrained from movement and rotation.

It can be seen that the total amount of Von Mises stress is
almost twice smaller in the optimized structure. But, what was
attempted here was to increase the stress generated by axial forces
at the cost of the stress generated by bending, in order to decrease
the total amount of Von Mises stress. We can test if this was the
case by calculating the portion of the Von Mises stress generated
by normal (axial) forces (N/A) and the portion generated by the
bending moments (M, /W,, M,/W,). If we do that, we can see that,
in the regular structure, the bending forces cause 89% of the total
stress, and the axial forces only 9%. With our optimized struc-
ture, the portion of the stress generated with the axial forces rises
to 31%, causing the total stress to be much smaller. Von Mises
stress depends on the member cross-section and this distribution
of stress can look differently. But since both grids are generated
with a similar number of structural members, that have the same
cross-section, this comparison between two structures can be made
in order to show the increment of axially generated stress in com-
parison to bending stress.

This was an example of how the orientation of structural mem-
bers can influence the statical efficiency of the grid shell. These
methods can be combined with the different cell density in order to
gain statically optimized structures. That has to be carefully done,
and with regular structures there is usually a significant trade-off
between those two aspects. This trade off can be nicely seen in
the analysis of the portion of the Westfield Mall roof in London
[22]. In Figure 5.28, on the left, there is a triangular structure as it
was built in 2007. This orientation of triangles proved to be very
good. Underneath the existing solution, marked as bad orientation,
we can see how rotation of triangles can significantly increase the
generated stress. The main problem we have in this case is that,
if we want to change the density of a triangular structure, we have
to distort the structural paths. In the same figure, at the top, we
can see a result of the GAs optimization process with the Voronax
pattern. Smaller cells are painted with 2 shades of red to mark the
intention, extracted from the best offered solution after 1450 gener-
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maximal Von Mises stress
trajectories

Number of structural members: 1884
Von Mises stress:

127.0 cpa
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Figure 5.27: The use of principal stress trajectories for the statically
efficient design of free form grid shells
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Figure 5.28: Portion of the Westfield Mall roof in London, possible
optimization

ations (72.500 generated individual grid shells). That information
is used to relax the structure and get an optimized solution depicted
on the right. In order to transfer the intention from the Voronax
optimal grid to a triangular grid we have to be creative and combine
the knowledge we have. If we simply made the triangles denser in
the areas where the Voronax cells are smaller, that would heavily
distort the triangular grid, and destroy the paths, thus increasing
the generated stress instead of decreasing it. It can be seen that
the bigger cells are generated in the middle and the smaller cells
near the support and across the concave part of the waves. Having
that in mind, a uniform triangular structure is relaxed and resulted
in the grid shell depicted on the right side. The density disposition
in this solution is good, but the paths are changed, and that is
the reason why the gain is only 3%. However, the gain is 18% in
comparison to the structure with differently oriented triangles. So,
although the choice of the uniform triangular structure proved to
be good for this particular example, it can be seen that in the de-
sign process the change of paths and density can lead to substantial
differences in statical efficiency.

It is important to realize that it makes no difference if we got
3% or 10% less stress in this experiment. Since every project is
unique, this doesn’t mean that with some other surface and support
combination we couldn’t get 20% stress reduction. All the tests are
here to show that the change in the density and the structural paths
changes the overall statical efficiency, and more importantly, it is
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shown how to change them, in order to optimize the structure. The
proposed methods in this research are not there to give a ready, best
of the best solution. They are there to help design the best grid
shell by choosing and combining different patterns and arranging
them in a statically efficient way. This research shows an efficient
method for this purpose, keeping in mind that every project is
unique, and that it can be done in many different ways, respecting
different constraints.
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5.3 Load

Our basic task in structural engineering is to design a structure
that will resist all the forces acting upon it. Those influences come
from the self-weight and the environment. Whether they represent
the snow, wind, thermal dilatations, earthquake, etc. they can all
be represented as spatial forces applied as loads in the FEM static
analysis. Single structure has to be tested for the large number
of different load combinations. According to the shape and en-
vironmental conditions, an engineer usually tries to think of the
worst case scenario, i.e., the worst possible combination of loads
that could occur at the same time. Using the knowledge and expe-
rience gained from many tests, an optimal structure that responds
adequately can then be chosen. The comprehensive thinking be-
hind this process is something that we still cannot simulate with
the use of computer, but what we can do is offer an optimal solu-
tion for each of the load combinations that an engineer wants to
consider. We can automatize something that they would generally
do manually (one step at a time).

In Appendix A it can be seen that, in our GAs application,
user has to define a load combination (Load Type) applied on the
structure. For the research, large number of loads were tested, since
their definition and expansion in the code is easy. Any combination
of a dead and a live load can be applied, but in order to show the
effects of the optimization process, we will try to keep it simple
and restrained. It is important to see how the optimization process
converges toward different results according to the single loads. All
optimizations in this section are done over the 30z30m surface,
shown in Figure 5.29, with the basic settings shown in the table.
The only thing that will be changed is the load type, in order to
see how it effects the optimization process. It can be seen that

14m 30m
number of individuals | 50
number of generations | 350 - 550
crossover probability | 0.6
mutation probability | 0.001
decoding function VOronax
nr of voronoi seed 150
fitness function min Von Mises stress

support type all edges restrained
section type Rec 140,70.10.10

Figure 5.29: Surface and parameters
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the fitness function used is the Sum of all Von Mises stresses in
the structure. The cross-section used is rectangular and support
is along the edges of the surface. In order to show only the effect
of different loads, without the interference of other variables and
factors, no restrictions (penalties) are used and therefore some of
the solutions will have oversized and undersized members and cells.
The curvature of the surface is very small, and proportionally, the
profits from the optimizations will not be as big as in the other
sections.

5.3.1 Case 1 : Gravitational Load

We start with the basic, vertical, gravitational load. Each member
in the structure has its own weight, calculated with the help of its
cross-sectional surface A, length [ and material specific weight p,
which is in this case p = 75K N/m? for steel. The dead load of steel
structural members is then ¢ = pAI[KN/m], and the simplified
scheme of the member load is shown in Figure 5.30. In Appendix
C the complex algorithm of cell definition is described, and that
information is used to calculate the surface of each cell and apply
load over it. In this first example, the load applied is 1K N/m?,
and it is transfered to the nodes as shown in Figure 5.31. For each
cell in the structure the center point is calculated. Part of the cell
area is then assigned to each node and multiplied with the surface
load.

Figure 5.31: Surface load

Results Finally we get to the first results of the optimization
process (shown in Figure 5.33), for the gravitational load applied
on our predefined surface. We can see that there can be several
different optimal solutions according to the input parameters that
we set. As always, we start with one of the bad solutions and the
regular one so we can compare their fitness values to the optimized
structures. Beneath them, on the left, we can see the result of the
first test, done only with the gravity load from steel members. One
of the best offered structures shows a clear intention, i.e., dense cells

Figure 5.30: Linear load
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in the middle and in the corners. In this experiment, the best solu-
tion had 4 times lower stress then the uniform hexagonal solution.
The solution is optimized only with the weight of the structural
members, but here it is evaluated with the glass load in order to
compare it with other solutions. Therefore, with the glass load ap-
plied the generated stress is 42.7G'Pa, and that is a 30% reduction
in comparison to the regular structure. We go further and do the
GAs optimization with glass load applied (depicted in the middle),
and we see a clear intention by leaving the middle part open, thus
avoiding the great displacements in that area. This solution of-
fers a 50% reduction of stress. And if we repeat the experiment,
this time with limited cell size, we get a solution on the right side,
that has 43% smaller amount of the total Von Mises stress in the
grid then the uniform structure. When we compare all three op-
timizations, we can see that the intention can sometimes be easily
recognized and sometimes vague. But all the solutions show better
performances when compared to the regular structure and we can
use them to create our own structure, following the guide lines they
provided. The information obtained from the Voronax optimization
can be used to optimize a quadrangular structure, for example, as
depicted down in the same Figure 5.33. In the middle there is a
uniform quadrangular grid shell. Left of it we see an optimized ver-
sion, done with the help of stress trajectories, as explained in the
previous section. Additionally, there is a small opening in the cen-
ter, and the members around it are denser, an intention that can be
extracted from the first two Voronax optimizations. That brought
almost 20% reduction of the total Von Mises stress, and almost
40% reduction of total displacements. As expected, the percentage
of the stress generated by axial forces goes from 21% in the regular
grid to 34% in this optimized one. On the right there is a grid
shell where the regular grid is only slightly changed, according to
the first Voronax optimization. The paths remained straight, but
the density was increased in the middle to create the X formation,
and the corners were made a little bit denser. This led to 5% stress
reduction, and a 20% smaller sum of displacements.

deformed

Figure 5.32: Deformations of the best and the worst solution
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load support fitness decoding section
gravity all edges minimize Voronax Rec
restrained Von Mises pattern 140,70,10,10
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Figure 5.33: Gravitational load results
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Conclusion It can be concluded, in a surface with corners, that
for our predefined surface and gravitational load, the corners and
the edges have to be stiffer (regardless of the pattern geometry that
we use). (With different surfaces there are different GAs recommen-
dations to be followed). Then we have to deal with the center part
where the displacements are big. We can do this by stiffening that
area, or leaving it open, according to the other conditions that we
have. In the first case it is interesting to see how the weight in the
middle area is enlarged (with greater density), but the stiffness it
brings to the structure compensates for that and results with the
smaller amount of stress. This can be nicely seen in Figure 5.32
where the comparison is made between the deformations in the op-
timal and the worst generated solution. The stiffened center in the
better grid makes it deform very little in the middle, thus resulting
in smaller total displacement. When there are more solutions pos-
sible, like in this case, testing different load combinations can make
us decide which of the offered solutions is more acceptable.
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5.3.2 Case 2 : Horizontal Load

The second load type which should be examined is horizontal load.
In this case we have gravitational load, applied using the weight of
the structural members, and the horizontal load applied as the sur-
face load, transfered from the cells to the structural joints like in the
case of vertical load (as shown in Figure 5.34). The load was kept
at 1 KN/m? and it is applied on the structure from the right (ob-
served from the top). This type of load is artificially created only for
the purpose of showing the effects it produces, i.e., in order to prove
that the GAs optimization converges toward a proper solution. All
the generated individuals in the optimization have the joints on
the edges fully restrained and steel structural members with the
vertically oriented rectangular cross-sections (140,70,10,10).

Results In Figure 5.35 the graphs show convergence of the aver-
age and the best fitness throughout 350 generations. The graphs
indicate that the convergence did not achieve its minimum and it
is certain that in the next 100-200 generations it would continue
to find solutions with smaller amounts of stress. However, the best
result obtained from generation 341 shows clearly what the ten-
dency of the optimization process is. Underneath the graphs there

stress [GPa) stress [GPa]
102 98.3
| average fitness best fitness

8Lz 4.1

|generations 150 3=50 |generations 1=5(] 350

stress: 36.7 GPa [FHURDIK KR = stress: 35.1 GPa
KN N oy AV
> b ?r( -
TSN VAVA (A 't T 5%
P v, h—
ST pr “'\1\"
load support fitness decoding section
horizontal all edges minimize Voronax Rec
load restrained Von Mises pattern 140.70,10,10

Figure 5.35: Horizontal load results

Figure 5.34: Horizontal sur-

face load
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Figure 5.36: Horizontal load
deformation
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is the worst, randomly generated solution, obtained from genera-
tion 1 and the best solution from generation 341. We know that the
best use of steel members can be achieved when we minimize the
bending moment and maximize axial stress. That is exactly what
the Genetic Algorithms have done in this case. The load is coming
from the right (depicted with big arrows) and in order to resist it,
we can see how a large number of members answered by positioning
parallel to it. The whole structure stretched horizontally and thus
prevented large horizontal deformations, i.e., minimized the total
stress. In the same Figure 5.35 we see how the member orientation
affects a simple triangular structure. By simply rotating the trian-
gles, so that they create distinguishable structural paths parallel to
the wind force, we get 5% stress reduction.

Conclusion The structure loaded with single one-sided load has
to resist it with parallel member disposition. The members on the
edges, where the stresses are the largest (with restrained joints),
have to be dense and parallel to the load forces. The structure has
to be stiffened in a way that it resist the horizontal deformation in
the load force direction, as depicted in Figure 5.36.

Naturally, we don’t need Genetic Algorithms to tell us that the
optimal disposition of members is the one where the load direction
is parallel to their longitudinal axis. But these experiments are
made to prove that GAs provide efficient and logical results, so we
can believe that they offer us the optimal solution, once we cannot
determine it intuitively.

5.3.3 Case 3 : Partial Load

One more interesting load case is relatively standard in the defi-
nition of the worst case scenarios. Namely, the structure has to
be able to resist uneven load. In order to define the load case that
affects only a part of the surface, we can turn to the surface domain
for help. It was already explained how every point on a NURBS sur-
face has a 2-parameter definition. Figure 5.37 depicts the surface,
and if we can simply impose the condition that the joint should be
on the right half in order to be loaded, we can define our partial
load. If we denote a single joint in the structure as j(u,v) and its u
parameter on the surface as j, then the condition for that joint to
be loaded can be expressed as j, > (ustart —uend)/2, where ustart
and uend are the end values of the surface domain in U direction.
With that condition we load only the joints that are in the green
area of the surface, shown on the right in Figure 5.37.

Results When the conditions are not so simple, and the geomet-
rical solution of the grid shell doesn’t have one strong optimum,
we need more generations to achieve a definite convergence. In
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Figure 5.37: Definition of partial load

this example 615 generations were generated (30750 individual grid
shells) and two graphs in Figure 5.39 show the convergence of the
average and the best fitness solutions. From the graphs it is clear
that the optimization process hasn’t definitely converged and that
it would continue to be reduced in search of the minimal stress
structure. Nevertheless, we can take one of the best solutions and
easily extract the pattern of behavior, i.e., the tendency that the
algorithm shows. In Figure 5.38 our best solution is depicted in the
undeformed state (with forces acting only upon the right half of the
joints) and in the deformed state. Due to the shape of the surface
and uneven load, it is obvious that the structure deflects on the
loaded side and bulges on the left, the unloaded side. Using that
fact, we can find an explanation for why the best solution offered in
Figure 5.39 (obtained from generation 596) looks as it does. The
Genetic Algorithms obviously tried to stiffen up the left side. In
the process they realized that the corners are the stiffest part of the
structure and shifted small cells to the upper left corner to stiffen
up the whole structure, thus generating fitter individuals. The in-
tention of this GAs optimization process is open for discussion, but
the fact remains that among 30750 individuals generated, the pro-
cess does converge toward an optimal solution, and that the offered
grid shell structure does have minimal total stress in comparison to
all of the others. In this case it is also very interesting to see that
the uniform structure (179G Pa) shows bad performance even in
comparison to the worst randomly generated structure (176G Pa).
Thorough examination of whole generations can remarkably show
the tendency, and the development of the grid shells toward one
single optimum.

Just to show that this case is also transferable to a regular struc-
ture, in the same figure we see a uniform quadrangular grid on the
left, and an optimized grid, according to the Voronax optimization
intention, on the right. Naturally, the surface load over one half of
the surface is practically never the main load to consider, but this

deformed

Figure 5.38: Partial load de-
formation
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stress: 235 GPa BT — stress: 188 GPa

displ.: 15.8 m - 2 displ.: 10.0 m
load support fitness decoding section
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partial load  restrained Von Mises Rectangular  140,70,10,10

Figure 5.39: Optimizaion with partial load - surface load over the right
half of the surface

is another example that shows that the intention of the Voronax
optimization process can be used to increase the statical efficiency
of the regular grid shell.

Conclusion If we have a surface and we are supposed to design
a grid shell structure over it that is unequally loaded, we have to
observe the deformation it produces and stiffen it up in the ar-
eas where the stresses are the largest. With simple surfaces, like
the one demonstrated in our example, that can be sometimes intu-
itively determined, but in complicated free form structures we can
determine the right cell and member disposition with the help of
Genetic Algorithms. As always, this information can be used to
generate a structure with a different pattern, if the tendency is rec-
ognized and cleverly used. In symmetrical surfaces and loads like
this, the algorithm converges toward one solution, but it is clear
that the concentration of small cells in the lower left corner would
have the same effect. That is why this should be used as a support
tool by an engineer, since the machines do not have that ability of
comprehensive thinking ... yet.
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5.3.4 Multiple Load Cases Comparison

At the end of this section, it makes sense to analyze how a surface,
optimized according to the one load case, behaves in respect to
other load cases. One of the arguments in favor of regular structures
is that their uniformity is good for that change of loads (snow,
wind, etc.). The same surface will be used for this comparison,
although its shape has a very small curvature. (It is important
to keep this in mind, because the more deformed the free form
shape is, the bigger the gains from the optimization are and the
less suitable the uniform structure becomes) In Figure 5.40 there
is a table with the grid shell optimized for gravitational load (with
the restricted cell size), compared with the regular, uniform one.
Besides the Von Mises stress reduction, two other load cases are
examined here too - wind from the right and snow on the right
half of the surface. The optimized structure performs a bit worse
in the second case (because of the reduced members parallel to the
force direction), but better in the third one. It is very hard to
draw general conclusions out of experiments like this. The results
will vary from project to project, depending on the shape, pattern,
fitness function, etc. The more curved the surface is, the more we
will profit from irreqular structures. Already in the next section,
where the experiments with a free form vertical wall are performed,
we will see very large differences in stress values. But comparison
depicted in Figure 5.40 is just another example of one possible step
in the design process that can be performed in search of the optimal
design.

load case

gravity S
vertical | 333 GPal — 43% SRR [ ]58.3 GPa

wind
horizontal

89.1 GPal | - 3% |86.4 GPa

snow
uneven | 155 GPa | — 15% B | 1182 GPa

Figure 5.40: Comparison of 3 load cases for optimized and regular
structure
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5.4 Support

The principle of different supports was already mentioned in the last
chapter, and some of the used support combinations were presented
in Figure 4.22. Now we will see how the results of an optimization
process with different restraints look like. For this purpose, a free
form 30230m vertical wall was designed, depicted in Figure 5.41.
Grids are generated with 150 Voronoi seed, i.e., they always have
between 455 and 465 structural members that now have circular
cross-sections. The total amount of Von Mises stress is used as
the fitness function and the standard crossover and mutation prob-
ability factors are used - 0.6 and 0.001. Each generation has 50
individuals and up to 600 generations were generated for single op-
timization processes.

The load used was a combination of gravitational load (self-
weight of the structure) and horizontal load of 1K N/m? transferred
to the structural joints (as in the previous section, Figure 5.34).
This type of load comes from the intention to have a vertical posi-
tion of the surface, which should remind of the fact that free from
surfaces do not have to only be roof structures and that they are
very suitable for facades or envelopes for the entire buildings. In
order to apply the horizontal load, a simulation of the wind would
be appropriate. But the wind acts perpendicular to the surface,
and since the cells are not planar, it was difficult to accurately de-
fine the angle and the magnitude of the wind force. Therefore, the
surface of the cell is calculated and load is transferred to the joints
acting in the —y direction. The fact that the load is not one of
the standard ones applied in the static analysis, doesn’t affect the
efficiency of the optimization process. The optimal solution given is
the optimal solution for that load combination, and that is all that’s
needed to show how the method works and how the results can be
analyzed. The purpose of the experiments in this chapter is to see
how results differ with different support combinations, and the load
type is not important as long it is the same for all examples, which
it is.

number of individuals | 50
number of generations | 350 - 550
crossover probability | 0.6
mutation probability | 0.001

decoding function VOronax

nr of voronoi seed 150

fitness function Von Mises stress
load type gravity + horizontal
section type CHS 193 x 5.0

Figure 5.41: Support surface and parameters
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5.4.1 Case 1 : All Edges

The standard all edges support combination (used in most of the
other experiments) will be presented first, with its effects on our
free form vertical wall. All edges simply means that all joints on
each of the four surface edges are restrained from movement and
rotation in all directions, as it can be seen in Figure 5.42, marked
red. Gravity and horizontal load are applied as explained above
and structural members have a circular hollow cross-section: CHS
193x5.0 .

Results In Figure 5.44, we start with the graphs that show nice
convergence after 550 generations, i.e., 27500 generated individu-
als. The total amount of Von Mises stress in the worst, randomly
created solution, is almost three times bigger then the amount in
the best one. As always, that depends on the load intensity and the
curvature. As the forces grow bigger so does the difference between
offered solutions. Respectively, when compared to the results from
the last section (where the gains were in the range of 10-50%), here
we have much more deformed shape and therefore almost 300%
difference between the worst and the best solution. In Figure 5.44
we also see two regular hexagonal solutions with fitness values of
99G Pa and 101G Pa. The difference between them is in the mem-
ber orientation, but they have the same number of Voronoi seed
and the same number of structural members. We can see how the
best solution outperforms them (according to this fitness function)
considerably with 38.1GPa of total Von Mises stress amount, i.e.,
62% stress reduction. The total displacement is six times smaller
in the best generated solution (2.22m) than in the worst generated
one (13.43m).

Since the joints on the edges are constrained, the largest de-
formations occur in the middle of the surface along the concave
diagonal. Three distinctive characteristics can be detected on the
best solution offered. First, convex parts (painted green) are re-
lieved with the formation of big cells, i.e., lesser density. Second,
in order to take the forces over from them and stabilize the whole
structure, around both of the convex bulges there is a belt of dense
cells (painted red). Third, the concave diagonal is covered with
cells that follow its curvature (painted yellow). Since the upper
left and lower right part are stabilized, the horizontal forces try to
stretch the diagonal. The yellow cells are then also stretched in a
way that enables them to take over those tension forces by following
the curvature, thus setting the members parallel to the forces. We
can check the percentage of the stress generated with the normal
forces and the bending moments, to see if the orientation of struc-
tural members is better in the optimized solution. Indeed, in the
worst generated solution axial stress participates in the total Von

Figure 5.42: Case 1: All
edges restrained with horizon-
tal load

deformed undeformed

Figure 5.43: Case 1:Defor-
mation from horizontal load
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Mises stress with 3%, whereas in the optimized structure, the stress
generated from axial forces rises to 10%.

If we put one generation (50 individuals) in a row and look
through the solutions, we gain a nice clue about the direction in
which we should think. In the middle of Figure 5.44 it is shown
what happens when we look through generations 1 and 523 of this
optimization process. We cannot conclude much from the first,
randomly generated generation, but we do have an idea of the op-
timal structure which could be reached when we look through the
generation 523.

We can use this information and try to design a structure with
the quadrangular grid, as depicted down in the same Figure 5.44.
On the left is a standard uniform quadrangular structure with the
51G Pa total amount of generated Von Mises stress (with the same
load and support settings as in the experiment above). On the right
we see what a structure can look like with the similar number of
structural members, arranged according to the intention recognized
in the Voronax optimization process. Underneath the grid shell
visualizations we see reductions in stress and the displacements
which take place. The optimized structure has a 13% smaller total
Von Mises stress, 25% smaller displacements, and a slightly better
load buckling factor (which makes it 18% more buckling resistant).

Now, it is hard to say that the grid on the right is pretty, and
it can hardly be accepted as a final solution. But the prettiness
was not the goal in this experiment. The optical beauty of the grid
shell can be achieved with relaxation tools and careful member
rearrangement. This experiment shows that the density and the
path information obtained from a Voronax optimization can be
used to find a statically efficient arrangement of structural members
with different patterns. Considering the fact that we can combine
triangles, quadrangles, hexagons, or any kind of n-gons in one grid
shell, there are an infinite number of solutions that we can generate
over some predefined NURBS surface.

Conclusion When designing a structure over a given surface with
a clearly emphasized convex and concave parts, we have to observe
the curvature carefully, in order to obtain an optimal design. We
cannot know immediately what the compensations will be if we
strengthen different parts. That is why we can use these optimiza-
tion tools until we develop an intuition for that. Examining the
best offered solution, or looking through the latest generation, we
can extract the density and path information applicable to grid
shells with various patterns.
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stress [GPal stress [GPa]
109 106
average fitness 4 best fitness
416 381
|generations 23[) 5:5{] |generations 2:50 550

stress: 112.8 GPa stress: 38.1 GPa
i ment: 2.22 m

displacement: 13.43 m

101 GPa

WOrSH

load |gravity + horizontal
fitness | minimize Von ,\liﬁt.‘ﬁl
decoding AT pattern I
| section | CHS 193 x 5.0
I 5[![_)_1_)01‘[ :u]l I'df:'.f‘-‘i rest 1'.*:'111(*(_?

generation 1

gravity + horizontal surface load gravity + horizontal surface load
structural members: 840 structural members: 825
stress: 51 GPa -13% stress: 44 GPa
displacement: 2.44 m - 25% displacement: 1.84 m

load buckling factor: 22 +18% load buckling factor: 26

Figure 5.44: Results with the structure fixed on all four edges
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Figure 5.45: Case 2: Bot-
tom edge restrained with hor-
izontal load
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5.4.2 Case 2 : One Edge

In this second example, the same free form wall will be observed,
but this time supported only at the lower edge. In Figure 5.45 is a
visualization of that support setting. Since the stresses created are
larger in this case, the surface was scaled down to 21z21m and the
same circular hollow section (CHS 193x5.0) is used. The scaling
was done only to get more realistic stresses in structural members,
but the size of the nominal values doesn’t affect the optimization
process. Even if the optimization is done with all material limits
highly exceeded, it shows the same convergence and offers the same
optimal solutions. All of the other settings (load case, Voronoi seed,
etc.) are the same as in the previous example.

Results In Figure 5.46 we can see that, as expected, the density
shifts a little bit downward, i.e., toward the support. This is logical,
since the stresses in this cantilever disposition are naturally the
largest in the area where the joints are restrained. Still, it keeps
the concave diagonal and stiffness around the convex parts, with
a larger member density, in order to stabilize the entire structure.
That is why the convex parts in the lower right and upper left
corner have bigger cells again. They simply rely on the denser
parts. There are no penalty functions here and that is why there
are a couple of extremely big cells at the top (painted yellow), but
with few restrictions that can easily be avoided. The worst solution
surprisingly does have a similar disposition as the best one, but due
to the big density at the top and the right, the stress generated
is much bigger. This shows clearly that very small differences in
geometry can produce big differences in stress amount, and in this
case our best solution has more than 3 times smaller total amount
of Von Mises stress that the worst generated one, i.e., 110G Pa
opposed to 359G Pa. Regular hexagonal structures show as bad
performance as the worst generated solution, with 342G Pa and

336G Pa.

Figure 5.46 also shows a uniform quadrangular structure on the
left. Since the disposition of the grid density is similar to the previ-
ous experiment (with all four edges restrained) the same optimized
quadrangular grid is used for comparison in this case as well. In
this case it would probably be profitable to make the polygons on
the top even larger. Those kinds of tunings can be made according
to the specific requirements of a project. Here, it is only important
to see that in this case we can use the Voronax information to opti-
mize a grid with different pattern combination as well. The amount
of generated stress in the solution on the right is 24% smaller and
the total amount of displacement is reduced by 11%.
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stress: 206 GPa - 24% stress: 225 GPa
displacement: 96.6 m -11% displacement: 86.1 m

Figure 5.46: Results with the structure fixed only at the bottom

Conclusion If we have a cantilever situation, i.e., the structure is
only supported at the one end, there has to be an extremely clever
compensation between density of the members on both ends of the
structure. Basically we always need more density in the vicinity of
the restricted joints, but we do not want the deformations on the
other end to be too large. That is why we can use GAs to get a
balanced distribution and use penalty functions to avoid oversized
cells and members. Additionally, as in the previous example, we
always have to consider the curvature of the free form surface to
get an optimal design. A look through the generation 530 is shown
in Figure 5.47, where it can be seen how the GAs increased density
of the cells in the middle to stabilize the entire structure. It is a
result that comes from a distorted shape and something that we
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could hardly intuitively take as an optimal design, although it is
(in this case) the minimal stress solution.

5.4.3 Case 3 : Partial Support

Different combinations of supports were tried out on the vertical
wall, but they all showed the similar tendency, strengthening the
structure around the convex parts and adapting the diagonal mem-
bers to the curvature. That comes from the fact that the strong
curvature of the free form surface is in this case much superior
as a factor in comparison to the support combination. Therefore,
tests with different supports will have similar optimal geometrical
solutions. That is why another surface will be used to show what
happens if the support is partitioned. In fact, to make the effect
clear, we’ll use a 21x21m rectangle flat surface. The cross-section
of the structural members used in these experiments is also CHS
193 x 5.0.

Figure 5.47: Case 2: Gener-
ation 530

Results There are two cases, 3a and 3b, one with nodes re-
strained in the corners and the other with restrained nodes in the
middle of each edge, as shown in Figure 5.48. Next to the solutions,

generation 350
0" - @ . Gl

o

119 GPa

reguar

Case 3a
generatioq’ 360

64 GPa

rear

Figure 5.48: Results from cases 3a and 3b

the 50 individuals of one generation are lined up, to show the con-
vergence toward optimal solution. In the case 3a, the look through
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generation 350 is shown, and in case 3b we can see the convergence
of all individuals in generation 360. An interesting pattern of be-
havior can be seen in these two offered solutions, where the areas
that cannot rely on the support are denser and therefore stiffened

up.

Conclusion Intuition can sometimes mislead us in thinking that
we can stabilize the structure by increasing the density near the
restraints. Especially since that is true in some cases, which can
be seen in some of the previous sections. However, the grid shell
solutions with least stress, in this case, are clearly the ones where
there is a reasonable amount of members in the restrained area and
a larger density in the parts where the largest deformations would
occur. Interestingly, the center part in both cases has bigger cells,
stabilized with the O-shaped formation of denser cells in case 3a
and X-shape formation in case 3b. Again, the oversized cells can
be easily controlled with penalty functions, but our goal is to read
the intention and design our own structure afterward, according
to the guide lines that GAs provided. Another interesting fact is
that if we remember the worst solution from the first example in
the previous section, depicted in Figure 5.33, it looks similar to our
best solution in the 3a case here, i.e., it has the same O-shaped
formation of denser cells. That shows how sensitive the structure
can be according to the shape and factors like load or restraint.
By changing restraints from 4 edges to 4 corners we get completely
different optimal geometrical grid disposition and that is something
that can hardly be manually and intuitively determined, especially
when designing a structure over heavily curved free form surfaces.

5.4.4 Case 4 : All Edges - Movable

In order to demonstrate what happens when the joints on the edges
are free to rotate or move, and the grid shell has to take over addi-
tional stress, we can see the results of an optimization process using
the stretched, bridge-like surface. A simple shape is used again, and
the advantage is that the results can be clearly demonstrated. The
only negative aspect is that, due to the small curvature, the gains
will not be substantial (as in the Section 5.3). But that does not get
in the way of demonstrating the efficiency of the method. The load
applied here is gravitational, i.e., self-weight of the structure (steel
members + 1K N/m? glass load). Cross-sections of the structural
members are rectangular (140,70,10,10) and vertically oriented.

Results In Figure 5.49 there are two columns. On the left are
the results of the experiments made with the joints on the two
ends of our bridge surface restrained from all movements. The
results of the optimizations done with the joints restrained only in
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y and z direction, i.e., the joints are free to move in longitudinal(z),
direction and to rotate in all 3 directions, are to be found in the
right hand column.

On the left, we start with the worst generated solution and
the optimal solution from generation 608. In the optimal one, the
structure is stiffened up near the supported edges as well as in the
middle. The deformation pictures can be very helpful in this case.
From the deformation of the solution with fixed edges (in the top
view) we can see how the structure escapes sideways. The zone
in the middle is denser, to prevent that movement. Beneath the
deformations, we can see the graph, showing a nice convergence of
average fitness after 612 generations. In this experiment, it is inter-
esting to see that the regular hexagonal structure shows worse per-
formance (108G Pa) than the worst generated solution (77.3GPa).
Bellow the depicted hexagonal structure, there is a design attempt.
Namely, following the intention, extracted from the best offered
solution (depicted in green in the figure), there is a grid structure
manually designed. It shows that the fitness value is close to the
best one offered. That means that the intention is read properly
and that we should move in that direction to find an acceptable
solution.

On the right is an experiment done with the joints that were free
to rotate in all directions and move in the z direction. All of the
other settings are the same as in the experiment on the left. The
best solution looks different here. The deformation shows that there
is no more buckling in the middle, and that the important thing is
to enlarge the density near the supported edges, in order to take
over the large horizontal displacements. The graph shows a nice
convergence of the average fitness and beneath the graph we can see
the intention of the GAs algorithm. To test if we read the intention
right, we can suggest a design, like the one depicted on the bottom
of the right hand column. Interestingly, the proposed solution is
even better (380G Pa) than the best generated one (407G Pa). That
means that the intention was read properly and that GAs helped
us to design a much more acceptable solution (according to the
Minimize Von Mises stresses fitness function) than the regular one.
Again, the regular structure shows a very bad performance (575),
i.e., again worse than the worst generated solution (545G Pa).

Conclusion The gains in these experiments are not that big, due
to the small curvature of the surface. Nevertheless, it can be seen
how small changes in every aspect of the construction (joint re-
straint in this case) can result in different optimal grid structures.
In the engineering practice, one would have to test different cases
manually, and would therefore be limited to very few experiments.
GAs on the other hand can test thousands of solutions for each of
the different settings.
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Figure 5.49: Analysis of different joint restraints
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5.5 Different Sections

The possible variation of the structural member cross-section type
is going to be addressed in this section. Since the main purpose of
the presented research is to demonstrate and explain the method
of free form grid shell structural optimization, the choice of the
cross-section doesn’t have a large influence. This means that the
effectiveness of the proposed optimization system doesn’t depend
on the shape of the cross-section of the individual grids, i.e., it
works for any section type and size selected at the beginning of the
process.

One additional aspect has to be considered, and that is the ori-
entation of structural members. When they are not tubes (circular
cross-section), then the stress generated depends on their orienta-
tion, i.e., rotation around their longest axis. In most of the experi-
ments presented so far, grid shells are generated with all members
with vertically oriented rectangular cross-section (member’s local
z axis is parallel to the global z axis), although the orienting (ro-
tating) method of members according to their position was imple-
mented as an option in the algorithm. Two reasons why that was
not used will be shortly explained, but first the algorithm of the
method will be described.

The aforementioned method, of dividing the angle between the
neighbouring cells in half, is used to implement the orientation in
the software. The process is depicted in Figure 5.50. Since the

Figure 5.50: Orientation of structural members according to the non-
planar neighbouring cells

cells are not planar, the approximation of the angle of member
rotation is used with the help of the cell centroid. In Appendix
C the method of cell recognition is described, and the calculation
of centroid for each cell. The centroids are then connected with
each other and with the middle of the member longitudinal axis
to create a triangle. Then the triangle angle at that middle point
is divided in half, thus providing an orientation point - red point
in the figure. The coordinates of that point in space are used as
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input data for the FEM software which then rotates and orients the
structural member according to it.

First reason for not implementing the orientation is the correct-
ness, or the precision, of that attempt. Namely, every structural
member divides two faces (cells), two triangles, quadrangles or n-
gons in a Voronax structure. If those two faces are planar, then
there is only one correct orientation of the member, i.e., in a way
that its local z axis (Figure 5.51) divides the angle between cells
in half. If the cells are not planar, then it is debatable what the
right rotation should be. This is something that has to be solved in
the future, if the development of grid shells with non-planar faces
continues. When a number of acceptable solutions is acquired, it
will be easy to import them into the existing algorithms and ex-
pand the proposed optimization method to generate individual grid
solutions with properly oriented structural members.

The second reason is one which has already been emphasized
many times. It is the fact that the proposed method works regard-
less of the orientation of the structural members. Whatever the
initials settings are, GAs will converge toward an optimal solution
defined by those settings. It is not the intention to try every pos-
sible combination of those settings, but to prove that the method
works for any combination. Then, in the future, every part of the
algorithm can be expanded and changed without the effect on the
efficiency of the optimization.

Therefore, since the proper orientation of members costs a lot
of computing time to do something that is debatable, and since it
doesn’t affect the proof of the efficiency of the proposed method
(which is the purpose of this research), it is avoided.

Nevertheless, several grid shells that were generated by the Ge-
netic Algorithms were tested with vertically oriented members and
with rotated members according to the method just described. The
total amount of Von Mises stress is then calculated for both op-
tions and compared. With most of the grid shells the difference in
the Von Mises stress generated was in the range of 0%-5%. This
doesn’t mean that we can say that all results from the optimizations
done with oriented (rotated) members hold for vertically oriented
and vice versa. This just implies that the orientation of structural
members in the experiments performed shows a much smaller sig-
nificance, i.e., a smaller effect on the generated stress, then the
grid density. Therefore, for most of the optimizations performed
we can say that the results hold for grids with both oriented and
non-oriented members. As an example, in Figure 5.52 is an optimal
structure from the Section 5.1, the stress of which is calculated with
vertically oriented and rotated members. The difference between
solutions is around 3%, which is the average difference.

It was already explained why we are concentrating only on geo-
metrical and topological optimization here (and not on the material

Figure 5.51: Proper orienta-
tion of the structural member
according to the planar neigh-

bouring cells
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Vertically oriented members Oriented (rotated) members

Von Mises stres: 110 GPa +3% Von Mises stres: 113.1 GPa
load support fitness decoding section
gravity all edges minimize Voronax Ree

restrained Von Mises pattern 140,70,10,10

Figure 5.52: Comparison of the same grid shell with vertically ori-
ented (left) and rotated members (right). The small black squares in
the middle of the structural members on the right are software’s (GSA)
markings of the cross-sectional rotation

and cross-sectional optimization). In the performed experiments,
the cross-sections used were chosen according to the span and the
number of structural members, so that the average stress in one
structural member is reasonable. In most of the experiments an
attempt was made to keep the average Von Mises stress in one
member below 100M Pa. But, for example, we could try to do
several optimizations with different cross-sections too see if the re-
sults would change, and if the nominal value of the generated stress
changes something. This was done for several surfaces, and the re-
sults showed that there are basically no differences. When trying
to minimize the stress in the structure, the end result was always
the convergence toward the same geometrical pattern. In Figure
5.53 are the results of three optimizations, done with three differ-
ent IPE steel profiles (IPE 140, IPE 100 and IPE 80). In all three
optimization processes we have a nice convergence after 350 gen-
erations and on the right side we see the optimal offered solution
for each attempt. Naturally, as the cross-sections grow smaller, the
generated Von Mises stress becomes larger, but the geometrical dis-
position remains the same. Regardless of the cross-section size, the
minimal stress solution in all three cases has greater cell density in
the middle and in the corners.
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Figure 5.53: Three GAs optimization processes with different steel
cross-sections

5.6 Summary

In the last four sections, the application of GAs optimization pro-
cess was demonstrated, using some simple examples. It was at-
tempted to prove that the process converges to an optimal solution,
according to the parameters and conditions that we set. Definition
of those parameters comes with the experience, and engineers learn
from practice what type of the worst case scenarios should they
analyze in order to achieve an acceptable structural solution. But
once the questions are formed, instead of trying out a few different
combinations manually, we can let GAs test tens of thousands of
solutions for us and give us an optimal answer to that question.

The examined variables (fitness, pattern, load, support) were
chosen since they nicely demonstrate the variation of optimal so-
lutions according to different input settings. If the specific project
requires different variables to be investigated, the presented plug-
in application can always consider other parameters or easily de-
fine new ones. Genetic Algorithms work with genome information
and fitness evaluation, and it was shown how every grid structure
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can easily be transformed into a chromosome, and how there are
no limitations in developing our own system of evaluation (fitness
function).

Everything presented so far has one clear goal. That goal is
to demonstrate that if we have some predefined free form NURBS
surface, and we are supposed to design a grid shell over it, there
is always a lot of space for the statical optimization of that grid
structure. A very important fact, that there is practically no more
cost difference in producing identical or unique structural members,
made it possible to think about the best geometrical disposition
of the grid. In the examples presented, an attempt was made to
show that the gains from the geometrical alterations can be big and
that there is always a substantially large design space that contains
the solutions that are statically favorable when compared with the
standard uniform grids.

The focus of the described research is not on the results but on
the method. Experiments and their results are used to prove the
efficiency of the proposed method. The reason for this is the gen-
erality of the described optimization system. Namely, the number
of possible combinations of input parameters (shape, grid pattern,
material, cross-section, load combination, support combination, fit-
ness function, penalty function, GA parameters,etc.) is too big in
order to try them all out. Therefore it was reasonable to concen-
trate on the algorithm itself, and to make a number of experiments
sufficient to prove that the optimization converges toward the op-
timal solution according to input settings, i.e., offers a grid shell
solution statically more efficient then the standard uniformly dis-
tributed grid shells used nowadays.

Since the GAs optimization process is inspired by Nature and
its selection method, it makes sense to compare the end results, our
artificial structures, with the structures that Nature produces. In
the next chapter we will see how the described methods move us
one step closer to the Nature’s highly optimized structural systems.



6

Nature

In previous chapters it was shown how Nature’s basic rule of selec-
tion can be combined with computers in order to get an answer to
different questions that start with: “What is the optimal ... 7. Tt
will be useful to turn shortly to the forms generated in Nature in
order to draw some parallels between natural and artificial struc-
tures. Direct comparison would not be an easy task, since the
fitness functions in structural design of buildings and living crea-
tures can be quite different. The most obvious difference is that
in Nature, structures are usually dynamic, optimized for different
motions, and in architecture we deal mostly with non-movable sys-
tems. In deployable structures, GAs can be used as effectively,
but the fitness functions would become more complex, and that is
something that will surely be a part of future research. That will be
another step forward to getting closer to the Nature’s engineering
skills.

Natura non facit saltus [10]

A very important characteristic of our natural environment is suit-
ably summed up in: Nature does not make a leap. Nature doesn’t
know anything, it tries. Each and every one of its creations is in-
fluenced by a large number of factors from its environment, and
therefore basically randomly (accidentally) altered. Natural selec-
tion preserves the better design and relies on inheritance. Now the
big question is, whether we have surpassed Nature and do not use
any random alteration, or whether our comprehensive knowledge
and intelligence is just an illusion and we are basically using the
same principle of inheritance? We rely on what we know and then
try something new with small alterations, thus probably mistaking
all the accumulated skills from the beginning of mankind for an
illusion of conscious and comprehensive thinking.

The explanation for Voronoi-like structures came out of this
continuous process of alterations. The basic principle of cell division
at the microlevel, depicted in Figure 6.1, shows how every cell in
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Nature has its own centroid according to which it tries to define
its form. The geometry is then influenced by its size and strength
(material properties) and by the neighbouring particles and their
centroid and volume. It can be seen how the Voronoi diagram
basically represents a graphical explanation of structure formation
in Nature.

o HEB

Figure 6.1: Simplified graphical representation of Mitosis, cell division
process, depicting a natural formation of Voronoi diagram

Figure 6.2 shows a beehive, the perfect example of Nature’s op-
timization process converging to an optimal structure. It is a struc-
ture that can hold the greatest possible amount of honey, with the
least possible consumption of precious wax. We can recognize the
hexagonal pattern, made by bees that stand of the same relative
distance from each other and try to sweep equal spheres. If each
bee represents a Voronoi seed, this can be seen as a regular Voronoi
structure with hexagonal disposition. For irregular Voronoi struc-
tures we can refer to the leaf structures or insect wings (Figure
6.3), as beautiful examples of structurally optimized designs, with
definition of primary, secondary and tertiary elements.

If we look at the foam structures (Figure 6.4), we can basi-
cally explain the inception of the idea that lies behind the Voronax
structure. Foam is the attempt of the thin films to trap the gas
in the best possible way, i.e. minimizing work and material. Since
sphere is a shape that can contain the largest possible volume with
least surface, they are formed next to each other, fighting for space
(the spheres in 3D are analog to the circles in 2D). This fighting
is actually a relaxation process where each cell tries to minimize
its potential energy. Searching for the least material (and maximal
volume) solution, they iteratively rearrange to form a system of
convex cells, following the similar principles that we used to create
Voronax structures from Voronoi diagrams.

Natura nihil frustra facit [10]

This sentence, written in Latin, means Nature does nothing in vain.
The concept was discussed in the first chapters when we talked
about Nature’s minimum material and minimum potential energy,
that we also use in structural optimization. But even here, the most
important of all questions has to be asked: Why?



Figure 6.3: Different examples of the Voronoi pattern in Nature:
Dragon fly wing (up) and leaf structure (down)

Figure 6.4: Foam(left) and Voronax (right)

Charles Darwin can help us in resolving that when he says,
“...natural selection is continually trying to economize in every part
of the organization. If under changed conditions of life a structure
before useful becomes less useful, any diminution, however slight,
in its development, will be seized on by natural selection, for it will
profit the individual not to have its nutriment wasted in building up
a useless structure.” [10]. The optimized design survives, the waste
of material and energy leads to extinction. There were lots of bad
Nature’s designs in Earth’s history that simply do not exist any
more. Darwin continues, “...we should bear in mind that animals
displaying early transitional grades of the structure will seldom con-
tinue to exist to the present day, for they will have been supplanted
by the very process of perfection through natural selection.” [10].
This beautiful simplicity justifies our goal, and explains our urge

163



6. Nature

164

to optimize, i.e., to design.

Radiolarians are microorganisms with mineral skeletons that
can help us draw some parallel between Nature and our optimized
grid shell structures. We can try to compare some diatoms and
radiolarians (Figure 6.5), perfected throughout years, with some
of our artificially optimized structures. The diatoms and radio-

Figure 6.5: Two diatoms (left, middle) and a radiolarian (right) with
the larger cell density in the center and on the edges, like in several of
our experiments

larian depicted are illustrations of Ernst Haeckl, made in the 19"
century [18]. These comparisons are interesting especially because
they show how every structure in Nature has some grid pattern,
on a macro or micro level, and that they are all actually a form of
Voronoi or Voronax structures. We can see in this example how the
depicted radiolarians followed the same stiffening of the center part
and the edge-cells that we had in several of our examples. That
is however something that cannot be taken for granted, since ra-
diolarians have to satisfy a much larger number of conditions and
objectives then just minimization of stress.

It is clear that every animal or human skeleton is an exam-
ple of Nature’s structural optimization. If we remember one of
the previous examples, done with the rectangular pattern, as well
as Voronax structures from Section 5.2, it is clearly distinguishable
that the GAs try to define primary (spine) and secondary elements.
An easy parallel can be then drawn to the animal skeletons but
also to the leaf structure or insect wings. It is apparent that the
uniform allocation of structural members does not offer optimal so-
lutions and that grouping them together shows far better results.
This is another very important clue that has been used by engineers
throughout history which can be confirmed with our GAs optimiza-
tion processes. In Figure 6.6 we can see an interesting comparison
of one diatom, a turtle skeleton and an optimal solution offered by
our GAs algorithm with the rectangular pattern.



H

diatom turtle skeleton GAs optimization

Figure 6.6: Diatom, turtle shell and GAs artificial solution
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7

Conclusions

In this final conclusion, an attempt will be made to sum up every-
thing presented so far. The advantages of the proposed optimiza-
tion method will once again be emphasized. Advantages and flaws
of the Voronax structures will be brought to attention. Finally,
some of the plans for future research will be discussed, along with
the expansion possibilities of the developed methods. The list of
innovations and methods developed in this research will first of all
be recapitulated.

Innovations

Design of the free form grid shell, from a geometrical point of view,
is not an easy task and usually involves many steps of manual work.
In this research it was shown how an zy — uv transformation can
be used to define an algorithm that generates a grid structure over
any NURBS surface. It was demonstrated how, with the use of
Voronoi diagram, we can input a few parameters and automatically
generate a triangular, quadrangular, hexagonal, or natural Voronoi
structure.

After showing how the Force Density Method can be used in
the grid shell design, in this research this method was expanded
to work for any kind of grid structure (any kind of graph). It
was explained how to construct an algorithm that will relax a grid
structure (2D or 3D) in space, or by keeping it on some predefined
free form surface. This method was used to develop a new type of
grid structure. Voronoi diagrams, generated over a NURBS surface,
were relaxed, restrained to the surface, and the resulting structure
was named Voronax. It was explained what structural advantages
this structure has, compared to the Voronoi, and how they can be
used for the grid shell optimization.

The results obtained from the optimization processes showed
how the design software and static analysis software can be suc-
cessfully combined. It was proven that iterative algorithms, which
generate and examine tens of thousands of structures in a matter
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of hours, can be made. One complete procedure for a grid struc-
ture in our GAs optimization algorithm has many steps: 1. Select
the parents, 2. Produce a child, 3. Mutate and fix unacceptable
chromosome 4. Decode the chromosome (get Voronoi points on
the surface), 5. Calculate Voronoi diagram from Voronoi points, 6.
Relax Voronoi diagram over the NURBS surface to gain Voronax
structure, 7. Prepare Voronax structure for FEM analysis (de-
fine nodes, elements, cross sections, support, loads), 8. Analyze
structure (FEM calculation), 9. Evaluate structure (calculate fit-
ness according to the chosen fitness function and data from FEM
analysis), 10. Calculate error (according to the penalty functions)
11.Combine fitness value and error within the final fitness scaling.
Eleven steps, yet all this is done in 1-2 seconds per grid shell, in
an average experiment for a grid structure with around 500 struc-
tural members, with a Core2 Duo Intel processor, working on 2.4
GHz and 4GB of RAM memory. Most of that time is used for the
Voronoi-Voronax relaxation process, the speed (precision) of which
can be easily controlled. If we think about the exponential growth
of the processor speed, we can imagine that we will perform opti-
mization processes, that we did in 10 hours now, in real-time one
day soon.

It was shown how the Genetic Algorithms, as a known and ac-
cepted optimization method, can be used to optimize free form grid
shells. It was explained how to do that in detail, and the steady
convergence of every optimization process demonstrated its effec-
tiveness. It was discussed how every aspect can be expanded and
what parameters can be controlled for fine tuning of every optimiza-
tion. We saw how a structural system can always be represented in
form of a chromosome, and that structure can always be evaluated
in an infinite number of ways. Those two ingredients are all we
need to achieve convergence toward some optimal solution.

In order to compare grid shell structures, new methods of eval-
uation were developed. It was shown how, combining design and
FEM software, we can automatically add all the Von Mises stresses
in the structural members, or calculate total displacement in all
joints, so that we can compare the entire grid shells.

Maybe the most important achievement is the comparative anal-
ysis of different types of grid shells. It was shown how the density
of the grid, the orientation of structural members and the creation
of structural paths, can influence the statical efficiency of the struc-
ture. Not only for a single type of grid shell, but also what influence
those characteristics have on different types of grid structures gen-
erated over the same surface. Therefore, for someone who wants to
design a grid shell over some free form surface, it is clearer what the
trade-offs are, how they can approach the concept, and how they
could design a statically optimal structure using different patterns,
or combining them. This comparison is general, and cannot be de-



scribed with exact numbers, since the statical efficiency depends
on many factors, like the shape of the surface, load and support
combination, material and cross-section of the members, stiffness
of the joints, etc. However, this research helped to gain a better
understanding of different grid shell types, and to start classifying
them, like depicted in Figure 7.1. The values in the table reflect the
conclusions that can be drawn from the experiments done within
the presented research, i.e., with the surfaces and parameters pre-
sented so far. Therefore the gains can probably be even larger with
different settings and different surfaces.
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combining all of the patterns can lead to the optimal solution,
considering statical and optical aspects,
as well as production costs

Figure 7.1: Characteristics of different grid shell types, generated over
different free form surfaces. The table reflects conclusions drawn from
the optimizations performed as a part of the presented research.

We can see that the more structural members can move (like in
the Voronax structure) the larger the gains from the optimization
can be, in generated stress or total displacement. If we generate dif-
ferent types of grids with the same number of structural members,
then the triangular grid shell will always have a smaller amount
of generated Von Mises stress then the Voronax structure, and the
performance of the quadrangular structure will depend on the con-
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ditions. The importance of the structural paths is naturally the
largest where there are three basic directions in the grid (triangu-
lar grid), less important with two directions (quadrangular grid),
and in the Voronax structures the density of the cells is decisive,
since no structural paths are formed. The complexity of the joints
(and the cost of their production) rises with the number of mem-
bers connected in them, and also the stiffness and stability of the
structure. Eventually, with the use of the optimization methods
presented in this research, a mixture of all patterns in one grid
could be the best solution for a given free form shape.

Summary

Grid shell structures that were generated in our experiments should
be seen as a proof that, for different set of input parameters, it is
always possible to optimize geometry and topology of a structure
and gain statically more efficient systems. The efficiency of the op-
timization does not depend on the art of the input parameters. We
have seen that the gains can be achieved with any kind of pattern,
whether it was triangular, quadrangular, hexagonal or Voronax. In
the same manner, for every type of support or load combination
there is always a space, here referred to as design space, in which
we can find our solution. Genetic Algorithms can offer a solution
that is at the border of that design space. In that way it gives us
a direction in which we can move in order to achieve an optimal
design (according to specific criteria). We can then choose how
close are we going to approach it, respecting different restrictions
that are common in architecture. With some standard spans, loads
and member cross-sections, we saw that we can generate structures
that have even 4 or 5 times less total amount of stress, and up
to 10 times smaller amount of joint displacements, only with the
geometrical rearrangement of structural members.

We have seen that evaluation comes in a form of fitness func-
tion. It is usually a mathematical function that combines different
parameters into one value used to compare different individual so-
lutions. There is an infinite number of possibilities to define them,
and that is the freedom that GAs offer and their main advantage.
In our research, some of the basic goals were investigated, like min-
imization of stress and displacement, or enhancement of stability.
However, it was made clear, that in conjunction with the FEM soft-
ware, we can easily define our own, original and creative, specific
functions for single-objective or multi-objective optimization. It
was additionally shown that any restriction, that comes from man-
ufacturing possibilities, cost differences, design reasons, etc., can be
imposed on our solution with the use of penalty functions. In that
way, it can offer a solution within any set of boundaries that we

define.



Another important factor in engineering practice is intuition.
That is however nothing more then a large accumulated experience
that we use to make conclusions and find optimal solutions. Soft-
ware applications, like the presented GAs optimization method, will
make us gather the experience, learn how to design structures over
free form shapes and, eventually, that will lead to the development
of something that we can call an engineer’s intuition for free form
structural design. It is interesting to see how even with the simplest
experiments it is very hard to guess what the optimal solution is
at the beginning, but once the GAs offer their fittest individual it
is obvious that it is the right solution. In some cases it is not that
obvious, but it still leads to the gathering of knowledge and experi-
ence that will help us deal with free form geometry in architecture
much better than we did so far.

Voronax - The Bio-Grid structure

We can say now with certainty that grid shells will have a very
broad application with the unification of structure and facade and
with the expansion of free form architecture. With Voronax struc-
tures we can easily adjust density and therefore have more freedom
in optimizing them statically. With uniform, regular pattern struc-
tures there are big restrictions, since they always form guide lines
(structural paths) that have to be smooth in order to look nice. In
Voronax structures they don’t exist and the rearrangement of cells
to fit statical conditions doesn’t hurt the structure optically, and it
always gives it an authentic Natural look.

On the other hand, the non-existence of the structural paths
gives Voronax often worse statical performance in comparison to
the regular ones. Additionally, Voronax structure optimized for
one load combination doesn’t necessarily behave well with other
loads. Therefore, it is fair to say that in the larger part of the
experiments, the total amount of Von Mises stress of an optimized
Voronax structure was much bigger than in a uniform triangulated
grid shell. That was expected because of the large stiffness that
rigid triangles bring to the structure. Joints with six members are
also one of the reasons why the triangular structure performs bet-
ter. However, when the production costs are considered, it is less
complicated to manufacture joints with 4 members, or even 3 mem-
bers connected. That difference in cost has to be considered when
choosing a suitable pattern for our grid shell. When compared to
quadrangular grids, there were cases when Voronax had less total
amount of stress, and cases where quadrangular grid was better, de-
pending on the shape and the input parameters. That is why it is
hard to imagine Voronax replacing regular structures immediately.
Their use would have to be justified with the design intentions.
With the steel structural members and production technologies to-
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day, if we want the cheapest and the most effective structure, it
looks like the Voronax loses the competition with a triangular grid
shell for now. That is why the focus of this research is not on in-
troducing Voronax structures as a replacement for all others grid
solutions. The focus is on using them to show how a grid structure
over some predefined free form surface can be optimized, regardless
of the grid pattern. The aim is to show that if we change the grid
density, if we rearrange structural members, we can increase sta-
bility or save material. And with the help of Voronax and Genetic
Algorithms we can see how that rearrangement should look and use
it for any pattern.

A few attempts were shown where the optimization with the
triangular (Delaunay triangulation and Delaunax) or quadrangu-
lar pattern was performed, directly, without the help of Voronax.
But the intentions were not easily readable. The regular patterns
are simply too rigid and restrictive and cannot generate different
densities as easily as Voronax can. The solutions offered are also
not ready to use, because they are usually optically not acceptable.
Regular patterns are optically very sensitive, forming different guide
lines and paths, and therefore have to be designed carefully and usu-
ally manually. Doing an optimization with the Voronax pattern,
and then transferring that knowledge to the grid we want to build,
proved to be a much more efficient method. Voronax pattern always
shows a clear picture of the optimal density disposition, and then
we can even mix several patterns in the design process. We can
leave the triangular structure where it is needed to stiffen up the
grid and switch to quadrangles, pentagons, hexagons, etc. where
the Voronax optimization resulted in smaller cell density. We can
also quickly evaluate our grids in a matter of seconds, thus speeding
up the testing process.

One can wonder then, why Nature didn’t develop triangular
structures, since they are better than the irregular Voronoi pattern.
Nature uses fiber materials which are more efficient than isotropic
materials. It also usually optimized its structures by starting with
a solid model, and than deleting material until it developed into
a grid. The connections formed in that way are practically cast,
and therefore they are much stiffer than the joints we can achieve
with steel connections. The conclusion can be made that, with
that level of material efficiency, triangular structures, with their
dense structure and 6-member joints, would be a waste of material.
A much lighter, Voronoi or Voronax, type of structure could then
take the pressure and the tension efficiently. Therefore there is a
big chance that, with the development of new materials and the
development of Nature inspired structures, the time of Voronax
structures will come, and on its way there are two main obstacles:
Face planarity and Stability.



About Face Planarity

In free form grid shell design there has been a lot of research done
in order to find geometrical solutions with planar faces (planar grid
polygons). It was one of the reasons why grid shells were mostly
triangulated (since triangle is always planar), and why the shape
was limited to translational surfaces when we wanted to create a
quadrangular grid. There is also a respectively easy way to obtain
a hexagonal and pentagonal structure by cutting the surface with
planes. All that is done so that we can make flat glass panels and
cover our grid shell roof structure with them. The production of
single-curved and double-curved glass tiles was avoided due to great
costs.

The largest problem with face planarity is that when we have
that condition, statical optimization is very restrained. If we opti-
mize triangular structures, as shown, the gains are small in com-
parison to the other ones. With quadrangular structures, we are
limited to a small number of planar face solutions, and statical
optimization becomes even more limited. With planar hexagonal
meshes, there is practically no room for the change of grid density,
since the planarity condition is too geometrically restrictive.

With Voronax structures over free form surfaces, almost all cells
would have to be covered with double curved elements. It would
make no sense to optimize the structure according to the curva-
ture of the cell surface for two reasons. First, the process would
lead to the optimal solution with greater density of the cells in the
areas with large curvature, and smaller density in the areas with
small curvature (or flat areas). That however leads to an optical
optimization, and can hardly be combined with the statical one.
Even if we did that, the second reason against it is that we would
still end up with solely double curved panels. From the production
point of view, that wouldn’t make any difference, since the panels
would all have respectively small (and similar) curvature and their
production costs would be the same.

Unfortunately, the conclusion has to be made that, with the
materials and production capabilities today, flat panels and statical
optimization do not go hand in hand very well. But there are new
solution in sight.

Solution First of all, it is important to remind ourselves that the
structure and facade are becoming unified into one single-layered
skin. The grid shell structures are therefore becoming an universal
structural system that offers an enwvelope for the entire building.
As such, there are lots of other facade materials that can cover
the structure. If we take metal, for example, the costs of double
curved panel production are not that big in comparison to glass,
making Voronax structures acceptable. Especially if we use Genetic
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Algorithms to optimize the structure and reduce costs by reducing
the material needed.

Second, the method for production of double curved glass will
also become cheaper and acceptable as the technology is developed.
But more importantly, we are witnessing the development of new
materials, like textile and plastic ones. One example is the success-
ful use of ETFE (Ethylene tetrafluoroethylene) that has no problem
with double curvature or cell size, as it can be seen in Figure 7.2
(left) on the Water Cube project by Herzog & de Meuron (although
ETFE is still no replacement for glass due to different physical and
optical characteristics). In the same figure, on the right, we can
see a 202200m facade of the Vienna Airport car park, covered with
Stamisol FT 381 printed textile. Those examples represent only a
few possible solutions from many to come. That is why, instead of
spending our energy to fit our structural solutions into the bound-
aries defined by manufacturing conditions, we can use it to create
new manufacturing methods and develop new materials.

Figure 7.2: New materials suitable for free form grid structures

About Stability

Since triangle is the stiffest form, triangular grid shells are the most
stable ones. Quadrangular grid structures are therefore very often
stabilized with diagonal bracings, to prevent skewing of the rectan-
gle. The solution for the problem of stability lies in the clever joint
design.

Solution In a free form grid shell structure, joints (nodes) are
the most complicated parts to solve, geometrically and statically.
The joints used today in steel free form grid structures are also
extremely complicated and expensive to produce. A significant re-
search has to be done to develop new geometrical solutions and to
test new materials. The joint is the most important part of a grid
shell and clever solution could increase stability, making structures
like Voronax acceptable. Voronoi and Voronax grids generally have
joints where only 3 members meet, which is easier to produce than



the 6-member joint of the triangular grid, but the stability con-
dition is a great challenge that has to be met. There are some
examples of successful Voronoi-like structures, as shown in the ex-
ample of Water Cube (Figure 7.3), but their statical efficiency is
still debatable. With the arrival of new materials, like the fiber re-
inforced ones, we will be able to make stiffer connections that would
prevent torsion and skewing in single-layered grid shells. With the
parametric programming, considering the fact that the joints in free
form structure are all unique anyway, we can develop tools that will
parametrically design the geometry of each joint to meet the forces
in the best possible way. All of this is a very interesting matter and
will be subject of future research.

The Future

Up until the recent past, FEM analysis of any structure was a com-
plicated task that needed lots of preparation and calculation time.
Today, with the exponential growth of the processor speed, not only
can we calculate complicated structures in a matter of seconds, but
we can create an iterative process that can do that millions of times.
In those iterative algorithms the future of structural design is being
born. As mentioned before, our part will only be to ask the question
right, and the answer will be given by a machine. It is irrelevant
what kind of optimization algorithms will be used, but for now the
stochastic ones, like Genetic Algorithms, promise a lot. One of the
main reasons is their generality, i.e., applicability to practically any
optimization problem. It was proven that, if they are set properly,
they can be extremely efficient.

Most of the possible applications of the merger of graphics and
static analysis have not yet been investigated, and surely offer so-
lutions beyond our imagination. It opens up huge possibilities,
and represents the future of structural design. Many procedures
performed by engineers manually, can now be automatized. Com-
puters can be used to generate thousands or millions of possible
combinations and solutions, something that we as human beings
could never process. The only thing that we have to do is ask the
question properly (which is not an easy task!) and then we can use
different optimization methods to get the answers.

As mentioned before, a large effort will be directed toward
smart, parametric solution of the joint geometry. Parallel to that,
new materials have to be tested and applied in the grid shell struc-
tural design.

As far as the optimization of single-layered grid shell structures
with the use of Genetic Algorithms goes, this is just the begin-
ning. Every single aspect of the application written is made in
a way that it can be expanded easily. For example, the coding
and decoding part can be altered to comprehend any kind of 3D

Figure
Beijing,
Meuron

7.3:  Water Cube,
2008, Herzog & de
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structure. We can imagine an optimization of the structure for the
entire free-formed skyscraper, or even an optimization of the fiber
and molecular structure in materials (with the further development
on nanotechnology). This can be done with simple alterations of
the presented method. Deployable structures are becoming more
popular, and with the proper set of dynamic fitness functions we
can generate beautiful and efficient bio-structures, that will be able
to transform and adjust to the environment conditions, as well as
plants or animals can.

The tools that we have today are slowly starting to get ahead
of us. Breakthroughs in science are challenging our imagination
every day. Buckminster Fuller wrote about new inventions and how
they have to wait 50 years until they get applied in the building
industry [14]. T think that time-span is getting shorter and shorter
now. New generations of architects and engineers, that have to
know programming languages as well as they know mathematics or
art history, are being educated right now. The future of structural
engineering is in their hands.



Appendix A

Application

A.1 User Dialog

In order to illustrate somewhat abstractly written explanations, we
can see how the dialog in our application looks like. Namely, we’ll
take the most complicated dialog for Voronax structures, and we
will see how it looks when the optimization process is performed
and the solutions can be drawn and examined. Other patterns, like
triangular, quadrangular or hexagonal, have their own, similar but
simpler, dialogs. The Voronax dialog is presented in Figure A.1.

e © T - s
Spedific Rec2 Sett
o Axae Fitness Function Settings
Voronoi or Voronax Initial Population
PontsInFeld 0 Object Function Type 0
@) Voronaol @ Random
Points On Edge U 1] Cross Section Type 1]
Voronax Txt
Points On v l0 Support Type 0
oin Edge v
Load Case 0
Minimal Allele Distance Edge  0.01 Minimal Allele Distance Fieldd  0.01
Standard GA Settings Penalty Functions
== VORX e
Popuiation Sze 10 Penalty Type  Limit Value
Max number of generations 10 1 0 1]
Crossover Probabiity 0.6 Crossover Method 0 2
Mutation Probabiity 0.01 3
[awew |

Figure A.1: Voronax Dialog

Without going into the detailed explanation of each aspect, be-
cause that has already been done, a global overview is offered. In
the upper left corner we can see the information about the num-
ber of nodes on the surface and on the U and V surface edge,
that our generated solutions will have. Underneath, a minimal
allele distance on the surface and on the edge defines the mini-
mal distance that two Voronoi points can have. If, in the genera-
tion process, points with smaller distances are generated, the code
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changes the problematic point until it fits the constraints. In the
lower left corner we can see the standard GAs settings. Popula-
tion size determines the number of individuals in one generation.
Then we can define the number of generations we want to generate
and crossover and mutation probability. On their right, there is a
space to define the crossover type, but in almost all experiments
the uniform crossover is used, since it showed the best results. In
the upper middle part we can see the definition of the pattern. We
can choose Voronoi, Voronax or Delaunay, since they are all based
on the same principle of Voronoi diagram generation. Other pat-
terns, as mentioned, have separate, simplified dialogs. Next to the
pattern definition we can see the choice for initial population. If we
check random, the zeroth generation will be randomly created. If
we check tzt, the generation will be imported from a prepared file,
with the chromosomes of the individuals for one entire generation.
This is used to continue optimization processes. Whenever the pro-
cess ends, we can extract the last generation and start again from
there, thus continuing the optimization process as if it had never
been interrupted.

On the right upper side we see the evaluation settings. Every
setting has a number, a code, that represents a specific set of param-
eters. Object function type refers to the fitness function defined,
and underneath it are the section type, the support type and load
case types. In Figure A.2 there are four tables that present some
of the codes for different fitness functions, cross-sections, support
and load types, used in our experiments.

fitness function cross-section type support type load type
0] Sum Von Mises 0 | IPE 140 0 all 4 sides 0 |gravity - G
1 | Average Von Mises 1 | IPE 100 1| only U sides 1 |G4nodes, Z.-1 KN/m2
2 | Average Length 2 | IPE 80 2| 4 corners 2 |G4nodes, ¥.-1 KN/m2
3 | Sum of Moments 3 | REC 200,70,10,10 || 3| 4 mid-points 3 |G+nodes, X.-1 KN/m?2
4 | Sum of Displacements|| 4 | REC 140,70.10,10 || 4| 4 sides, pinned || 4 |G4surface, Z-1 KN/m2
5 | Load Buckling Factor || 5 | REC 110,70,10,10 || 5| one U side 5 |G+half surface, Z
6 | Frequency 6 | REC 70,70,10,10 6| U sides, z free || 6 |wind , X, -3 KN/m2

Figure A.2: Examples of the coding of some of the fitness, cross-
section,support and load types used in the experiments

Finally, in the bottom right corner, penalty functions are de-
fined. We can chose 1, 2, or 3 functions and for each one we can
choose the type and its limit value. By clicking Breed, we are asked
for the names of 3 files where the data should be saved and the
algorithm starts.



A.2. Export Files

A.2 Export Files

In Section 4.1.1 it was explained how the output data of the opti-
mization process consist out of 3 separated files. Without repeating
the description of the files, the following Figures A.3, A.4, and A.5
show small cutouts. The general file has all of the information
about the optimization process at the beginning, followed by a list
of all generations and all individuals in those generations with their
fitness value, rank and scaled fitness value, as shown in Figure A.3.
The chromosome file (Figure A.4) consists of arrays of positive real
numbers that are later used in the decoding functions to be trans-
formed into structures. The graph file (Figure A.5) is pretty simple,
it has the number of generations at the beginning with the number
of individuals in one generation and the size of the chromosome
to know how to draw the graphs. After those first three numbers,
there are four values for each successive generation, i.e., maximal
fitness value, minimal fitness value, average fitness value and sum
of all fitnesses in one generation.

Figure A.3: GAs general description

Figure A.4: Solution chromosomes

Figure A.5: Graph informa-

tion

179



A. Application

180

A.3 Draw Results

After the optimization process is done, and all three files are filled
with data containing the information needed to reproduce any of
the solutions, we can see how we can extract and draw our solutions.
In Figure A.6 there is a dialog used for drawing the individual grid
shells.

s B e e

population

Figure A.7: Population, Generation, Individual

In the upper part it can be seen that we can choose the pat-
tern. This is important, because if we want the chromosome to be
decoded properly we have to choose the right pattern. In that way
we are actually choosing the decoding function. Top right shows
that in the case of Voronax we have to define the number of points
on the surface and on the edges as it was defined in the optimiza-
tion process, so that the chromosome is properly decoded. In the
middle of the dialog, there is a second aspect of decoding. It is
important to remember that every set of points can be generated
as Voronoi, Voronax or Delaunay. The pattern determines just the



A.3. Draw Results

disposition of points (Voronoi seed), gained after the decoding of
the chromosome, but we need additional information that tells us
if we want to generate Voronoi from those points, Voronax, or if we
want to connect the seed to obtain Delaunay triangulation.

On the right of the dialog we can chose if we want to draw the
entire population, one generation or one individual, as depicted in
Figure A.7.
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Appendix B

Code Structure

The complete software consists of thousands of code lines. But in
order to illustrate how it works, the basic individual’s data structure
and the global algorithm scheme will be explained here.

B.1 Software and Methods Used

The complete algorithm is written in form of a plug-in for Rhinoceros
3D. Rhinoceros (Rhino) is a commercial software that uses NURBS
geometrical representation and it is one of the best programs for
the design of free form shapes, thus used mainly nowadays for the
design of free form architecture. The program has its own program-
ming language called Rhinoscript, based on VBA (Visual Basic for
Applications) but for our purposes it was to slow and not flexible
enough. The second option that Rhino offers is to write a plug-
in in VB.NET or Visual C4++. Since the Rhinoceros is actually
written in Visual C++-, the idea was to write a plug-in using the
C++ language thus achieving the best performance by calling all
the Rhinoceros functions directly.

When that was settled, the FEM static analysis had to be in-
cluded. The decision was made to use the Oasys GSA Analysis
commercial program. It offers an easy way of calling its basic func-
tion with the use of OLE Automation. That is a mechanism that
provides an infrastructure whereby applications can access and ma-
nipulate shared automation objects that are exported by other ap-
plications, in this case GSA Analysis. Basically, it was possible
to call the program directly from our C++ code, analyze struc-
ture and read the results, repeating that step in our GAs iterative
optimization process.
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B.2 Data Structures

B.2.1 Individual

Every individual is represented as a complex structure of infor-
mations. All the functions that act upon individuals change those
values throughout the process and use them for all GAs operations,
including the generation of output files. Figure B.1 shows the char-
acteristics of one individual, i.e., the data types used to hold the
needed information. On the right of the figure there is a short,

Individual Grid Shell C++ data types

r ~

double®  chromosome double  double-precision floating point value
int parent 1 double™ pointer to an array of doubles

int parent 2 int integer value

double  fitness 1 bool boolean data type : true or false
double  fitness 2

double  scaled fitness

double  error 1 ‘

double error 2

double  error 3 .

int rank ﬁ &
bool feasibility t
bool pareto r

L J

Figure B.1: Individual’s data structure

basic explanation of C++ data types applied (detailed explanation
of the types can be found in [46]). As we can see, first there is
an array of numbers representing the chromosome as described in
section 4.2. Information about individual’s parents follows. The
integer values are actually their identification numbers which come
from their position in the generation. The fitness values follow. In
this case there are two, representing the individual that can be used
for two-objective optimization. This can vary from 1 to n, depend-
ing on how many fitness functions we want to include into the GAs
process. The same is valid for errors, since there can be any number
of them. FEach individual holds the information about how much
it exceeds the limit prescribed by every penalty function defined.
If the solution is penalized or not, depends on the information in
bool feasibility that describes each individual as feasible or infeasi-
ble (true or false). Between the fitness values and the error values
we see a double data type holding the scaled fitness value. In the
case of multi-objective optimization there is also only one value (as
in the single-objective optimization), since, as described in Section
4.5, we scale the fitness according to its domination state, consid-
ering all fitness functions at once. Information about that state is
kept in the bool pareto, helping us know how to scale the individual,
i.e, as dominating or dominated solution. The integer value rank is
calculated after all of the solutions in one generation are compared
and ranked. This can be used in different selection procedures.



B.2. Data Structures

However, in the research, the rank didn’t find any particular use,
since the selection methods based on it are elitist, and therefore
avoided, as described in Section 4.1.2.

B.2.2 The Algorithm

In Figure B.2 there is a simplified scheme of the entire GAs opti-
mization process. The part on the left (painted yellow) represents
the main function. After the input information is supplied over the
dialog, the initial generation is generated and evaluated (initialize).
The process then enters a loop where, as described in Section 4.1.1,
selection, crossover and mutation are performed (generate). Fit-
ness scaling follows together with the calculation of statistics (best
fitness, worst fitness, average fitness, sum of fitness) and writing of
data into the text files (report).

START
\

l: STATISTICS

DIALOG N
s— [_creare [ evaruare |
SCALING

I Al 4
GENERATE (EET) (EEhCtel | EESSSEU

CROSS MUTATE [
STATISTICS EVALUATE

SCALING
REPORT

END

— PN

GET DATA
FITNESS CALCULATION
ERROR CALCULATION PENALIZE

RETURN FITNESS

Figure B.2: Algorithm structure

Now let’s look at the parts right of the main function. Fix allele
refers to fixing of all the errors that can happen in a chromosome,
i.e., in the values of its genes (alleles). One of the common errors,
for example, is the generation of double values that would result in
double Voronoi points, thus leading to errors in the algorithm that
calculates the Voronoi diagram. Therefore, there are functions that
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check the chromosomes and fix them if they have to. If the position
of values is important, the chromosome can be sorted at this point
and values can be arranged from the smallest to the largest or vice
versa. However, in our research, as explained in Section 4.2.1, the
position of genes in the chromosome made no difference.

The evaluation implies a call to an object function that leads to
decoding (described in Section 4.2.2) and finally a set of functions
described in the figure as Get FEM. In the right lower corner of the
Figure B.2 the names of those functions are listed. In preparation
of the model for FEM analysis we have to use the generated grid
shell structure that comes from the decoding functions and turn it
into a FEM model. We set and numerate the nodes automatically
out of the grid’s points and structural elements out of its generated
lines. Then we set the load and support according to the chosen
type and let the program do the FEM analysis. Afterward, the data
needed for the calculation of the fitness value are obtained (stress,
deformation, buckling factor, etc.) and the fitness value (or values)
is calculated. The error calculation follows, and the functions re-
turns both of the values (fitness and error). They continue their
way to the fitness scaling in the main function, and the process
repeats then by starting selection again.

That would be a brief explanation of the process. It shows how
all the steps, described thoroughly so far, fit into one big picture.



Appendix C

Cell Recognition

For the definition of the surface load, like glass weight, snow, etc. we
need the information about the cells in our structure. In a polygon
mesh data structure that information is automatically available,
but since we are dealing with structures consisting of polygons with
more then 4 edges, an additional algorithm had to be made to
collect that data. The algorithm, constructed for this research, can
be roughly divided in two parts: collecting node information and
circling.

Getting Node Information

The first step is to collect the information about connections in
the structure. Each node , as well as every member, have numbers
assigned to them. The idea is to observe each node and collect the
information about the members connected to it, as shown in Figure
C.1. With the algorithm that compares all the points with all the
member ends, we can gather the required data.

node | members

1 88 78 87
2 94 95 7

3)| 7 8 9

Figure C.1: Gathering connection information

Circle Around

After we have all the connections, we have to check if there are
nodes with less then three connections. Those cases would imply
that there is some error, and the algorithm would stop, since the
results wouldn’t be correct. When the structure is checked, next
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D=0 i

Figure C.2: Polygon orien-
tation
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step can be performed, i.e., an algorithm that starts from each
point and circles around to define each cell. This can be done
with the help of 2D determinant. Namely, three points in a plane
i = (ig,iy),] = (JusJy), k = (ks, k) are defined with their z,y
coordinates and using that information, we can calculate their de-
terminant:

1 iy iy
D=1 j. j (C.1)
1 ky ky

If the determinant is 0, then all three points lie on one line.
If the determinant is negative, then the point array shows clock-
wise orientation (negatively oriented), and if the determinant is
positive, points show counterclockwise orientation (positively ori-
ented), as depicted in Figure C.2. If we know that all nodes in our
structure can be defined over their uv parameters as i = (iy, ,),j =
(Jus Jv), k = (ku, ky), we can use this 2D algorithm to determine the
orientation of every three point group in the grid.

If we have a situation as depicted in Figure C.3, we can start
from node 1, take one of its connections (2 for example) and search
for a point that gives a clockwise direction. We check the node 4,
conclude that it is counterclockwise, and go to the node 3 which
satisfies our condition. Then we start from node 2 and repeat the
process thus getting new array 2,3,7. This is continued until the
third point in a group (7,9,1) is recognized as a starting point (1)
and the cell is complete.

4

?[no 2 used half-members
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Figure C.3: Cell information

Each member in the grid, with endpoints A and B, can be
represented by two half-members, or joint of two vectors AB and
BA. Each of those half-members in the structure belongs to one cell
only, and by marking them in a specific manner, we can ensure that
there are no doubled cells. If the half-member is marked as used,
that means that the cell that it belongs to is already recognized and
that it is not necessary to continue with circle around algorithm.
Of course, if AB is used, that doesn’t mean that BA can’t be used.
This is all possible only with convex polygons, but luckily one of



the main characteristics of Voronoi and Voronax diagrams is that
they are always convex.

Each cell holds the information about its nodes and it can use
them to estimate the surface and assign to each node its part.
Therefore, each node i in the cell has a certain surface area A;,
expressed in m?, which is then multiplied with the load applied on
that surface.

Figure C.4: Surface partition

In the cases where there are more than three connections in one
point (which is rare for Voronax structures) we only have to check
which one has the bigger value for its determinant (or smaller angle)
and take that point as the next one in our circle around algorithm,
since that point belongs to the inner polygon. Everything else re-
mains the same. Figure C.5, on the left, shows one of the optimized
grids used in the experiments. The net created by recognizing the
cells, and drawing a mesh over them, is shown on the right. This
demonstrates that the algorithm can basically detect cells of a grid
structure with any combination of pattern, generated over a free
form NURBS surface.
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Figure C.5: Face recognition works for any type of grid shell
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