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Abstract

 

As is the case with most health care program evaluations, disease manage-
ment (DM) programs typically follow an observational study design, indi-
cating that randomization to treatment or control was not performed. The
foremost limitation of observational studies, compared to randomized stud-
ies, is that the only biases that can be controlled for are those associated
with observed variables. Hidden bias refers to all those unobserved cova-
riates that may distort the conclusions of the study. This paper introduces a
sensitivity analysis that is used to determine the magnitude of hidden bias
necessary to alter the conclusion that a DM program intervention was
indeed effective.

 

Introduction

 

Randomization is the great equalizer of research
study design. The key idea is that by allowing each
suitable individual equal probability of receiving
treatment or control, all variability is distributed
equally between the two groups (e.g. Cochran 1965;
Rosenbaum 2002; Wilson & MacDowell 2003). Vari-
ability comes in two forms; 

 

Observed covariates

 

 or
characteristics are tangible data points available to
the analyst via sources such as claims, medical
records, member files, or survey reports. 

 

Unobserved
covariates

 

 are all other characteristics not captured
or recorded.

While observed covariates are used for ensuring
that subjects assigned to the two groups are similar
on baseline characteristics (i.e. age, sex, disease sta-
tus, etc.), it is left to the process of randomization to
ensure that unobserved characteristics are similar in
both groups as well. Why is it so important that treat-

ment cases and controls be comparable on all base-
line characteristics? It is simply to ensure that any
differences found in outcome measures be attribut-
able to the program intervention and not biased by
baseline differences in study group characteristics.

Disease management (DM), as defined by the
Disease Management Association of America
(2004), is a system of coordinated interventions and
communications for populations with conditions in
which patient self-care efforts are significant. DM
programs were developed under the assumption
that by augmenting the traditional episodic medical
care system with services and support between
doctor visits,  the overall cost of health care could
be reduced. For many chronic diseases, such as
diabetes, asthma, and congestive heart failure, there
is much opportunity to improve the quality and con-
sistency of care. DM programs were developed to
assist doctors and their patients in identifying and
closing those gaps in care.
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Although disease management has been in exist-
ence for over a decade, there is still much uncertainty
as  to  its  effectiveness  in  improving  health  status
and reducing medical cost. The vast majority of DM
program evaluations follow an observational study
design, without randomization to treatment or con-
trol. Given that DM programs are limited to the use
of these designs owing to cost, time and logistical
constraints, it is imperative that the inherent threats
to validity are reduced, controlled for, or at the very
least, the magnitude of their impact estimated (e.g.
Linden 

 

et al

 

. 2003a). Several research-based tech-
niques with applicability to DM have recently been
introduced to the DM evaluation discussion (Linden

 

et al

 

. 2003b,c, 2004a,b,c,d,e, 2005a,b,c,d). The prevail-
ing theme in these papers is that there are many
observational study designs and statistical methods
available for reducing or controlling threats to valid-
ity that can be applied to the evaluation of DM pro-
grams. However, as indicated earlier, the limitation
of observational studies compared to randomly
assigned studies is that the only biases that can be
controlled for are those that can be observed. The
more observed covariates that can be found to match
cases and controls on, the more confident one can be
that the two groups are comparable. However, if
important characteristics have not been included in
the matching process there may be concern that the
groups are not comparable, and thus, outcomes may
be distorted because of these unobserved covariates.
This threat to validity is referred to as hidden bias.
While it is impossible to control for hidden bias, esti-
mation of its magnitude should be considered com-
mon practice in DM program evaluations. This type
of assessment provides the consumer with more con-
fidence in the study findings.

This paper introduces methods for assessing the
consequences of hidden bias in DM program, evalu-
ations. Examples with discussion will be provided so
that these techniques can be easily replicated in DM
program evaluations.

 

Study design and hidden bias

 

In order to better explain the impact of hidden bias in
observational studies, a comparison of three relevant
research designs is presented in Table 1 and briefly
explained below:

 

Randomized controlled trial (RCT)

 

The randomized controlled trial (RCT) is an experi-
mental design in which distribution of observed cova-
riates occurs by screening subjects to meet study
eligibility criteria, and then randomly assigning those
eligible individuals to either treatment or control
before study commencement. Similarly, the random
assignment acts to evenly distribute unobserved
covariates, and as a result, the outcomes can be con-
sidered a relatively unbiased estimate of the true
treatment effect (assuming that no confounding
effects occurred during the intervention, influencing
the results). This type of study design is rarely used to
evaluate disease management program effectiveness
(Linden & Roberts 2005).

 

Total population-based approach

 

This method is the most ubiquitous evaluation design
currently used in DM (e.g. Linden 

 

et al.

 

 2003a). In
contrast to the RCT, all individuals suitable for par-
ticipation in the program are invited to enrol, and

 

Table 1 Characteristics of the randomized trial and two observational study designs

 

Characteristic
Randomized

controlled trial
Population-based

approach
Case–control

study

 

Design type Experimental Observational Observational
Assignment to treatment Prospective/random Retro-/non-random Retro-/non-random
Distribution of observed covariates Balanced Unbalanced Balanced
Control of unobserved covariates? Yes No No
Susceptibility to biased outcomes due to selection? Unbiased High Low
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none are assigned to a comparable control group. As
a result, participants may differ significantly in some
unobserved way from those who were not asked to
participate, refused to participate, or not identified as
suitable for program inclusion. To further confuse the
issue, all members of the population with the given
disease are used in the analysis, regardless of whether
they were program participants or not. This popula-
tion’s change in the outcome measure is compared to
the population’s experience in the year prior to
program commencement. Therefore, for the purpose
of analysis, ‘assignment’ to the diseased population
occurs retrospectively, when all members of the
population have been identified (along with their
corresponding prior year ‘control’ population).

Critics may argue that comparing the entire popu-
lation, pre- and post-population (as compared to just
program participants), distributes covariates equally
among the groups. However this approach does not
control for bias because of the following reasons; (a)
if the program is thought to be the driver of improved
outcomes for the entire diseased population, then
bias in selecting program participants does, in fact,
impact outcomes, and (b), population characteristics
may change year after year, as a result of aging,
health plan turnover, etc., thereby adding another
level of bias to the study. At the end of the day, there
may be enough bias to raise concerns about the valid-
ity of the study findings. (Linden 

 

et al

 

. 2003a).

 

Case-control study

 

The case-control study, in which program partici-
pants are matched to suitable non-program mem-
bers, remains the best practical method for
controlling for observed bias (Linden 

 

et al

 

. 2005b).
Using this technique, program participants are
matched retrospectively to controls on several
observed baseline characteristics. Even though innu-
merable variables can be used in the matching pro-
cess, validity of the outcomes may still be questioned
because of the concern that hidden bias may be large
enough to nullify those results.

 

Estimating the magnitude of hidden bias

 

While it is impossible to measure the scope or impact
of hidden bias (what is unknown cannot be mea-
sured), it is certainly possible, and recommended, to

provide an estimate of the magnitude of hidden bias
necessary to invalidate the study findings. Cornfield

 

et al

 

. (1959) has been credited with being the first
study to measure sensitivity to hidden bias (e.g.
Rosenbaum 2002). In this 1959 investigation, the
authors developed a model estimating the size of
hidden bias necessary to invalidate the relationship
between smoking and lung cancer. They concluded
that hidden bias alone would have to be a near per-
fect predictor of lung cancer and about 10 times more
prevalent in smokers than non-smokers. That a vari-
able such as this exists is highly unlikely.

Many procedures and permutations for estimating
hidden bias have been developed since that bench-
mark study was first introduced, although fundamen-
tally they are all very similar, and only a few are
noted here (Bross 1967; Schlesselmann 1978; Rosen-
baum 1987; Manski 1990; Gastwirth 

 

et al

 

. 1998). In
the present paper, Rosenbaum’s (1987; 2002) tech-
nique for estimating sensitivity to hidden bias in
matched pairs with continuous outcome variables
will be presented because most outcome measures in
DM are continuous (e.g. costs, hospital admissions,
emergency department visits, etc.). Rosenbaum
(1988, 1989, 1991, 2002; Rosenbaum & Krieger 1990)
have similarly developed tests for other types of out-
come variables such as for unmatched groups with
continuous outcomes, censored survival times, paired
binary data, matched binary data, and matched
binary data with multiple controls.

Conceptually, the basic premise of the sensitivity
analysis is that subjects in observational studies differ
from those in RCTs in their recruitment to the treat-
ment group. While in a RCT all individuals have a 50/
50 chance of being assigned to the treatment group,
selection bias is commonplace in observational stud-
ies. A perfect example of this bias in DM occurs in
the enrolment process. Typically, individuals at high-
est risk or with highest severity of illness are targeted
for program participation, thereby creating a treat-
ment group dissimilar from the population from
whence they were drawn. Moreover, those individu-
als that choose to enrol may be different from their
peers with the same level of risk or severity, owing
to higher motivation or differing belief systems. In
short, it is safe to presume that program participants
differ from non-participants in both observed and
unobserved ways. The sensitivity analysis provides
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estimates for how far these hidden characteristics
must diverge from the 50/50 split of an RCT to raise
concerns about the validity of the study findings. It
also implies that this unknown variable is highly cor-
related with the outcome measure, so that varying
levels of this bias estimated in the treatment group
will impact the outcome accordingly.

Rosenbaum (1987, 2002) used the parameter 

 

w

 

 to
represent the odds of receiving treatment. In an RCT,
all subjects have the same odds of receiving treat-
ment, so 

 

w

 

 

 

=

 

 1. Conversely, in an observational study,
a 

 

w

 

 

 

=

 

 2 indicates that one subject is twice as likely as
another to receive treatment, and so on. As outside of
an RCT 

 

w

 

 is an unknown quantity, an array of 

 

w

 

 esti-
mates are provided in order to give a sense of the
magnitude needed to explain away the relationship
between participation in the program and achieve-
ment of the desired outcome (i.e. lowered admit rate,
ED visit rate, costs, etc.).  In the sensitivity analysis,

 

P

 

-values are given to indicate the upper and lower
bounds for each measure of 

 

w

 

. Presenting a range of
significance levels is necessary to estimate the scope

of any potential hidden bias. As the value of 

 

w

 

increases, the bounds of 

 

P

 

-values widen. The 

 

w

 

 at
which an upper bound 

 

P

 

-value meets the cut-off level
for significance (typically set at 

 

a

 

 

 

>

 

 0.05) is consid-
ered the minimum size of hidden bias that would be
required to invalidate the study findings.

 

Applying sensitivity analysis to hidden bias in 
disease management

 

In this section, an example will be used to illustrate
the methodology for performing a sensitivity analysis
to hidden bias. As the outcome variable in this exam-
ple is continuous (dollars), the Wilcoxon signed-rank
statistic is used. This test is a good choice for cost data
which may have a skewed distribution. A simulated
data set was created to represent a hypothetical eval-
uation of a DM program effectiveness in reducing
costs. Table 2 presents the steps necessary to obtain
the 

 

T

 

-value of the positive ranks, required for calcu-
lating both the Wilcoxon signed-rank statistic (Wil-
coxon 1945) as well as the bound estimates for values

 

Table 2 A hypothetical comparison of changes in cost between DM program participants and matched controls using 
the procedure to obtain the 

 

T

 

-score for positive ranks

 

Pair

 

 

 

DM case Control Difference
Absolute
difference

Absolute
rank

Relative
rank

Positive
rank

 

1 47 367 9 230 38 137 38 137 19 19 19
2 47 831 18 759 29 072 29 072 17 17 17
3 2 403 4 370

 

-

 

1 967 1 967 3

 

-

 

3
4 7 537 5 092 2 445 2 445 5 5 5
5 30 721 4 181 26 540 26 540 16 16 16
6 18 228 17 349  879  879 1 1 1
7 23 785 2 034 21 751 21 751 13 13 13
8  294 2 869

 

-

 

2 575 2 575 6

 

-

 

6
9 45 003 1 507 43 496 43 496 20 20 20

10 29 159 10 419 18 740 18 740 12 12 12
11 25 042 1 388 23 654 23 654 14 14 14
12 40 628 5 721 34 907 34 907 18 18 18
13 8 387 5 538 2 849 2 849 7 7 7
14 28 912 16 394 12 518 12 518 10 10 10
15 3 020 1 208 1 812 1 812 2 2 2
16 18 120 9 113 9 007 9 007 8 8 8
17 17 883 19 938

 

-

 

2 055 2 055 4

 

-

 

4
18 36 559 18 729 17 830 17 830 11 11 11
19 4 737 16 334

 

-

 

11 597 11 597 9

 

-

 

9
20 30 016 3 822 26 194 26 194 15 15 15

Means 23 282 8 700 14 582

 

T

 

–positive scores 188
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of 

 

w

 

. The data are for 20 matched pairs of program
participants and their non-program controls. The
number and type of baseline characteristics used in
the matching process is not a factor in performing
this sensitivity analysis to hidden bias. Linden 

 

et al

 

.
(2005b) provides additional guidance on the dev-
elopment of non-program matched control groups.
The values represent the difference in costs between
baseline and the end of the first measurement year.
To make the example more dramatic, a large dispar-
ity was intentionally created in the outcomes to show
that the DM program was successful in reducing
costs as compared to controls (mean savings was
$23 282 in the program cases as opposed to only
$8700 in the matched controls).

Obtaining the 

 

T

 

-value of the positive ranks
requires the following steps: (1) calculate the differ-
ence in values between each pair, (2) convert the dif-
ferences into absolute values, (3) determine the rank
of each absolute value in the data set, (4) restore the
original positive or negative sign to the ranked value,
and (5) calculate the sum of the positive ranks (which
is the 

 

T

 

-value).
Upon determination of the 

 

T

 

-value, minimum and
maximum significance levels for the signed-rank test
at each values of 

 

w

 

 can be calculated using the
following formulae (Rosenbaum 1987, 2002):

(1)

(2)

(3)

p plower upper=
+

=
+

1
1 1w

w
w

,

E p
n n

=
+( )1

2

V p p
n n n

= -( ) +( ) +( )
1

1 2 1
6

 

(4)

 

p

 

lower

 

 and 

 

p

 

upper

 

 represent the probability range of
being assigned to the treatment group. In an RCT

 

w

 

 

 

=

 

 1, therefore Eq. 1 results in both lower and upper
probabilities of 0.50. In other words, any given indi-
vidual has a 50/50 chance of being assigned to the
treatment group. At higher values of 

 

w

 

, the range of
probabilities expands accordingly. 

 

E

 

 is the expected

 

T

 

-value assuming the null hypothesis of no difference
in the matched pairs, V is the variance of the 

 

T

 

-value,
and 

 

Z

 

 is the statistic used to test the null hypothesis
that there is no difference in matched pairs.

Table 3 illustrates the sensitivity analysis derived
from the above formulae for the hypothetical 20
matched pairs. The upper and lower 

 

P

 

-value when

 

w

 

 

 

=

 

 1 is 0.001 (as the probability of receiving treat-
ment is 50/50, both upper and lower values are the
same). This 

 

P

 

-value is identical to that of an RCT, as
tests of statistical significance presume that samples
are randomly drawn from a population and thereby
assume a normal distribution.

Following the significance levels for each value of

 

w

 

, we see that the upper-bound 

 

P

 

-value surpasses the
conventional 0.05 level somewhere between 

 

w

 

 

 

=

 

 2
and 

 

w

 

 

 

=

 

 3 (upper-bounds are 0.029 and 0.094, respec-
tively). This analysis suggests that our study findings
becomes sensitive to hidden bias somewhere in the
range of 

 

w

 

 

 

=

 

 2 and 3. Stated another way, these
results suggest that DM program participants would
need to be 2 to 3 times more likely to possess hidden
traits or factors than their matched controls in order
to change our conclusion that the program interven-
tion lead to significant cost savings. This indicates

Z
T E

V
=

-

 

Table 3 Illustration of a sensitivity analysis performed on a sample of 20 matched pairs with 

 

T

 

 of positive 
signed-ranks 

 

=

 

 188

 

Range

 

w

 

 

 

=

 

 1

 

w

 

 

 

=

 

 2

 

w

 

 

 

=

 

 3

 

w = 4 w = 5 

l U l U I u I u I u

p 0.50 0.50 0.33 0.67 0.25 0.75 0.20 0.80 0.17 0.83
E 105 105 70 140 52.5 157.5 42 168 35 175
V 717.5 717.5 637.8 637.8 538.1 538.1 496.0 496.0 398.6 398.6
Z 3.10 3.10 4.67 1.90 5.84 1.31 6.56 0.90 7.66 0.65
P (1 tailed) 0.001 0.001 0.000 0.029 0.000 0.094 0.000 0.185 0.000 0.257

p, probability of assignment to treatment; E, expected T-value under the null hypothesis; V, variance of the T-value; Z, z statistic; and P, the sig-
nificance level. The range of values is given for lower (l) and upper (u) values of each w.
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that these findings are insensitive to small amounts of
bias and require moderately high levels of bias to
alter our conclusions.

While there is no standard ‘cut-off’ point for w in
which one can declare unequivocally that the con-
cern of hidden bias is large enough to invalidate the
study findings, Rosenbaum (1987) provides the fol-
lowing guidance:

Informally, in testing in an observational study
against a one-sided alternative that treatment A
is superior, an unobserved covariate U would
need to increase the odds of assignment to treat-
ment A by more than 50%, that is w = 1.5, before
altering the qualitative impression that treat-
ment A is superior; however, that impression
would be open to question if it were plausible
that an unobserved U exists which doubled
(w = 2), or tripled (w = 3) the odds of assignment
to treatment A.

In relative terms, the present findings represent a
departure from a RCT on the magnitude of 2 to 3
times (with w = 1 equalling an RCT). Intuitively, this
is far enough away from 1 to lessen our concerns
about the influence of hidden bias on the study
results. Conversely, if the invalidating hidden bias
was found to be w < 1.5, we would be more inclined
to believe that hidden bias poses a serious threat to
the validity of the study interpretation. While not
providing a definitive answer, performing this analy-
sis quantifies the risk that the results achieved were
caused not by the intervention, but by some unac-
counted for differences between program partici-
pants and non-participants.

Developing a table for estimating the impact of
hidden bias is good for illustration purposes, but a
more precise method would be to perform an itera-
tive process to identify the exact w at which the
upper-bound P-value approaches or equals 0.05. A
sample algorithm written for visual basic is provided
in Appendix I. Using this method, the exact value
of w in our example was determined to be w = 2.23
(<0.0001 and 0.05, for lower and upper P-values
respectively).

Conclusions

The impact of hidden bias may be substantial in
DM where suitable individuals are not randomly

assigned to participation or non-participation in the
program. This paper introduced a sensitivity analysis
that is used to determine the magnitude of hidden
bias necessary to alter the conclusion that a DM
program’s intervention was indeed effective. In this
analysis it is determined what the odds are that a
participant will have a particular unobserved charac-
teristic that their matched control does not have. It
is also assumed that this unobserved characteristic is
highly predictive of the outcome, so that the more
program enrolees having this characteristic the
higher the likelihood of achieving the desired
outcome.

While it is impossible to control for hidden bias,
estimation of its magnitude required to invalidate the
conclusions should be considered common practice
in DM program evaluations. This type of assessment
provides more confidence in the study findings.
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Appendix I

Sub-routine to derive exact w-value level where 
upper bound P-value = 0.05

SampleSize = Number of matched pairs
TScore = T of positive sign-ranked values

NewOdds = 1 (starts the loop with w = 1)

Do Until Phigh ≥0.049

LowP = 1/(1 + NewOdds)
HighP = NewOdds/(1 + NewOdds)
ELow = LowP ¥ ((SampleSize ¥ (SampleSize +

1))/(2)

EHigh = HighP ¥ ((SampleSize ¥ (SampleSize +
1))/(2)

VarLow = (LowP ¥ (1 - LowP)) ¥
(SampleSize ¥ ((SampleSize + 1) ¥
(2 ¥ SampleSize + 1))/6)

VarHigh = (HighP ¥ (1 - HighP)) ¥
(SampleSize ¥ ((SampleSize + 1) ¥
(2 ¥ SampleSize + 1))/6)

DevLow = (Tscore - ELow)/Sqr(VarLow)
DevHigh = (Tscore - EHigh)/Sqr(VarHigh)
PLow = 1 - NormSDist(DevLow)
PHigh = 1 - NormSDist(DevHigh)
NewOdds = NewOdds + 0.001

Loop

http://www.dmaa.org/PDFs/Evaluation_
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Appendix II

Most of the non-parametric statistical tests neces-
sary to conduct sensitivity analyses for hidden bias
are readily found in most statistical software pack-
ages. The analysis reported in this paper using
Wilcoxon signed-rank test statistic was initially gen-
erated using XLStat (Addinsoft 2004) for Excel.

This is an Excel add-in, similar to the data analysis
package that comes built-in to the program. There-
fore, users familiar with Excel will find this program
easy to use without much instruction. However,
there are also several stand-alone programs to
choose from, and depending on how many addi-
tional functions the analyst requires, the costs vary
tremendously.


