SmartSpice Analog Circuit Simulator

Device Models

SmartSpice Background

- Development started in 1986 with 3A1; incorporated major changes and standardized software development on coding rules of 3C.1 and 3D.2 releases
- Objective complete solution to Analog Circuit Simulation requirements
- True C/C++ language architecture to take advantage over the other vendors still based on FORTRAN language
- Final product has the advantage of being compatible with standard Berkeley SPICE syntax and data structures

SmartSpice Background (cont.)

- Rapid acceptance as the industry standard worldwide
- Large customer base
- All major companies have a copy of SmartSpice
- Broad spectrum of users from individuals and Startups to large multinationals.

Device Models

- Supports a comprehensive set of public domain device models
- All models support advanced convergence algorithms, temperature dependencies, gate capacitance models and geometry calculation methods

Device Models (cont.)

Comprehensive set of Intrinic Device Models

MOSFET

- BSIM1, BSIM3v3, BSIM4, BSIM5
- Philips MOSS11, MOS20, EKV, HiSIM
- User Models

Bipolar

- Modified Gummel-Poon, Quasi-RC
- Mextram, VBIC, HICUM, Modella
- Macro Models to include parasitic device effects
- User Models

TFT

- Amorphous and RPI Polysilicon TFT
- MESFET
- Statz, Curtice I & II, TOM-2, TOM-3, TriQuint
- S0I
 - Berkeley SOI, UFSOI
- Diode
 - JunCap
- FRAM
 - Ramtron model

Device Models: BJTs

- LEVEL 1: Modified Gummel-Poon model
- LEVEL 2: Quasi RC (quasi-saturation) model

Bipolar Models

- MEXTRAM (Level=503):
 - Improved modeling of substrate effects and parasitic pnp
 - Improved approximation of distributed high frequency effects in the intrinsic base
- VBIC (Level=5):
 - Temperature dependency for knee currents and intrinsic/extrinsic resistances
 - BVBE model
 - High current roll-off
- HICUM (Level=6): High Current model for high speed applications
 - High collector currents (quasi-sat and saturation)
 - Large-signal transient applications
 - Good fit for SiGe HBTs

MEXTRAM: Major Features

- LEVEL=504
- Modeling of SiGe devices
- Self-heating network
- Improved temperature scaling
- Reformulation of the epilayer model
- Simplified thermal noise model for the variable base resistance
- More flexibility in parameter extraction (additional parameters)
- Much smoother characteristics
- Better monotony in higher derivatives
- New phenomena like tunneling at Base-Emitter junction?

VBIC: Major Features

- Improved Early effect modeling
- Parasitic PNP (substrate current effect)
- Quasi-saturation modeling with modified Kull model
- Constant overlap capacitances
- Weak avalanche model
- Improved depletion and diffusion capacitance
- First order modeling of distributed base
- Improved temperature modeling
- Excess phase network
- Self-heating
- HBT modeling ability

VBIC: Major Features (cont.)

- Reach-through model to limit base-collector depletion capacitance
- Simple Base-Emitter breakdown model
- Fixed collector-substrate oxide capacitance
- Selector to switch to SGP qb formulation
- High current roll-off coefficient
- Separate IS allowed for reverse operation in HBTs
- Additional parameters added to extend temperature mappings
 - temperature dependence of IKF
 - separate coefficients for intrinsic and extrinsic resistances
 - separate activation energy for ISP

VBIC: Additional Effects

- Weak avalanche model
 Based on Kloosterman and De Graaff model (MEXTRAM)
- Base resistance split into intrinsic and extrinsic part
 - Rbi modulated by qb to include depletion pinching and high injection effects
- Parasitic PNP device
 - Based on a partial GP model (no Early effect included)
 - Most important parts are Iccp and Qbcp
 - Rbip modulated by qbp (similarly to Rbi)
- Distributed base (first order approximation)
 - Partitioning of Ibe and qje across Rbi
 - Applies to both AC and DC modeling

HICUM: Major Features

- Accurate description of the high-current operating region
- Distributed modeling of external base-collector region
- Emitter periphery injection and charge storage accounted for
- Bias dependent internal base resistance
- Prediction of temperature and process variations (scalability)
- Parasitic capacitances representing B-E and B-C oxide overlaps
- B-C weak avalanche breakdown and B-E tunneling
- Collector current spreading included in Ic and Qf expressions
- Simple parasitic substrate transistor and RC network
- Self-heating and Non-Quasi-Static effects

Device Models: BJTs

- LEVEL 500: Philips MODELLA model
 - Temperature effect
 - Charge storage effects
 - Excess phase shift for current and storage charges
 - Substrate effects
 - High-injection effects
 - Build-in electric field in base region
 - Bias-dependent early effect
 - low-level non-ideal base currents
 - Hard and quasi-saturation
 - Weak avalanche
 - Hot carrier effects in the collector epilayer
 - Explicit modeling of inactive region

Hetrojunction Bipolar Transistor (HBT) Models

- LEVEL 20: UCSD-HBT model
 - Based on the standard SPICE Gummel-Poon model

Device Models: MOSFETs

- LEVEL 1: Schichman-Hodges model
- LEVEL 2: Modified Schichman-Hodges model
- LEVEL 3: Semi-empirical model
- LEVEL 4: BSIM1
- LEVEL 7: BSIM3

Device Models: MOSFETs

- LEVEL 8: BSIM 3v3 (v3.2.5)
- Physical model based on process parameters
- Provides scalability and accuracy
- Single model provides good fit across all geometries and bias conditions with no binning requirements
- Suitable for both analog and digital applications
- Superb convergence achieved through continuous first and second derivatives

BSIM3 Model

- Developed by UC Berkeley
- Most recent release is BSIM3 Version 3
- Physical and scaleable properties
- Built-in W, L, Nch(x), TOX, XJ, RDS, LDD and T dependencies for drain current and first derivatives
- Support for current and future developments in MOSFET technologies
- Simulation of devices with channel length down to 0.13µ and oxide thickness down to 50A
- Can be used for statistical modeling

BSIM3 Model (cont.)

- Threshold voltage reduction
- Mobility degradation due to gate vertical field
- Non-uniform doping effects
- Carrier velocity saturation and channel length modulation
- Drain induced barrier lowering (DIBL)
- Substrate current induced body effect
- Subthreshold current model
- Single I-V expression describes all operating regions
- Capacitance model for short and narrow geometry devices

BSIM3 Model (cont.)

- Silvaco enhancements to the standard BSIM3 models include:
 - Advanced geometry and scaling models based on the Area Calculation Method
 - Temperature models consistent with other MOSFET models for both the model kernel and models parasitics
 - Multiplier for parallel connected devices
 - Devices outputs, such as terminal currents and device capacitances

BSIM3 Version 3 Implementation

- BSIM3v3 Level 8 (SmartSpice) and Level 81 (Berkeley) produce virtually identical results
- Primary differences:
 - bug fixes
 - SmartSpice standard MOSFET model parameters: ACM, temperature, diode
 - additional parameters for the SmartSpice smooth functions: ABULKIM, NLIM, LAMBLIM, UEFFLIM, SMOOTH
 - additional BSIM3v3 output parameters
 - additional options VZERO and EXPERT

BSIM3 Version 3 Convergence

- Berkeley smooth functions: Vbseff, Vgsteff, Vdseff, Vgs_overlap, Vfb_eff
- SmartSpice smooth functions for Abulk >= 0.01, n >=1, lambda=A1*Vgsteff+A2 <=1, Ngate, ueff
- CONV option (GMIN and DCGMIN stepping algorithms)
- EXPERT option for discontinuity detection
- Convergence properties of BSIM3 Version 3 are better than convergence properties of BSIM3 Version 2

Parameter Check in BSIM3 Model (cont.)

 In the original Berkeley BSIM 3.1 implementation, there are two types of checks - default (unconditional) check, and a check invoked by the parameter PARAMCHK=1:

Default Check	PARAMCHK=1 Check	Corrected Errors:	Corrected Errors:
Fatal errors:	Warnings:	if(CJSW>0.0 CJSWG>0.0){	if(A2 < 0.01)
		{	A2 = 0.01
Leff <= 0.0 Weff <= 0.0 LeffCV <= 0.0 WeffCV <= 0.0 TOX <= 0.0 NLX < -Leff NPEAK <= 0.0 NSUB <= 0.0 NGATE < 0.0	Leff <= 5.0e-8 LeffCV <= 5.0e-8 Weff <= 1.0e-7 WeffCV <= 1.0e-7 TOX < 1.0e-9 NLX < 0.0 NPEAK <= 1.0e15 NPEAK >= 1.0e21 NSUB <= 1.0e14	<pre>if (PD < Weff)</pre>	if(A2 > 1.0) A2 = 1.0 A1 = 0.0 if(RDSW < 0.0) RDSW = 0.0 Rds0 = 0.0 if(Rds0> 0.0 && Rds0 < 0.001) Rds0 = 0.0
NGATE > 1.e25 XJ <= 0.0 DVT1 < 0.0 DVT1W < 0.0 W0 = -Weff DSUB < 0.0 B1 = -Weff CLC < 0.0 DELTA < 0.0 PCLM <= 0.0	NSUB >= 1.0e21 NGATE > 0.0 && <= 1.e18 DVT0 < 0.0 CDSC < 0.0 CDSCD < 0.0 ETA0 < 0.0 fabs(1e-6/(B1+Weff)) > 10 fabs(1e-6/(W0+Weff)) > 10 PDIBLC1 < 0.0 PDIBLC2 < 0.0		if(CGDO < 0.0) CGDO = 0.0 if(CGSO < 0.0) CGSO = 0.0 if(CGBO < 0.0) CGBO = 0.0
DROUT < 0.0 Vsattemp <= 0.0	Vsattemp < 1.0e3		SII V/A

BSIM4 MOSFET Model

- Level=14 : original SmartSpice implementation
- Level=54: compatibility with HSPICE(TM) implementation
- Improvements and additions over BSIM3v3
- Accurate new model of the intrinsic input resistance
- Flexible substrate resistance network
- New accurate channel thermal noise and flicker noise
- NQS model consistent with Rg-based RF model
 - Accurate gate direct tunnelling model
 - Comprehensive geometry-dependent parasitics model
 - Asymmetrical and bias-dependent S/D model
 - More accurate mobility model
 - GIDL current model.
 - Quantum mechanical charge-layer-thickness model
 - Different diode IV and CV characteristics

Device Models: MOSFETs

LEVEL 14 : BSIM4

- Accurate model of the intrinsic input resistance for both RF, high-frequency analog and high-speed digital applications
- Flexible substrate resistance network for RF modeling
- New accurate channel thermal noise model and noise partition model for the induced gate noise
- Non-quasi-static (NQS) model, consistent with the Rg-based RF model and consistent AC model, accounting for the NQS effect in both transconductances and capacitances
- Accurate gate direct tunneling model
- Comprehensive geometry-dependent parasitics model for various source/drain connections and multi-finger devices
- Improved model for steep vertical retrograde doping profiles
- Better model for pocket-implanted devices in Vth, bulk charge effect, and Rout equations

- LEVEL 14 : BSIM4 (continued)
 - Asymmetrical and bias-dependent source/drain resistance, either internal or external to the intrinsic MOSFET
 - Acceptance of either the electrical or physical gate
 - Oxide thickness as the model input at the user's choice in a physically accurate manner
 - Quantum mechanical charge-layer-thickness model for both IV and CV
 - More accurate mobility model for predictive modeling
 - Gate-induced drain leakage (GIDL) current model, available in BSIM for the first time
 - Improved unified flicker (1/f) noise model, smooth over all bias regions and accounting for the bulk charge effect
 - Different diode IV and CV characteristics for source and drain junctions
 - Junction diode breakdown with or without current limiting
 - Gate dielectric constant defined as a model parameter

- LEVEL 55 : BSIM5
 - Built on the well-proven BSIM4
 - Improvements with regard to previous BSIM3v3 and BSIM4:
 - Fully physical and symmetric
 - Improved reciprocity (no negative capacitances)
 - Better model for moderate inversion region
- Better core using as much as possible of BSIM4 features

- LEVEL 11: Philips MOS11 model
 - Dedicated to analog, RF and digital simulation
 - Physics based
 - Based on surface potentials
 - Accurate transition from weak to strong inversion
 - Single equation for the whole operating range
 - Symmetrical
 - Good distortion behavior (accurate description of high-order derivatives)

- LEVEL 20: Philips MOS20 model
 - High-Voltage MOSFET model
 - Especially developed to describe LDMOS, EPMOS and VDMOS models
 - Acts as a replacement for the couple MOS9+MOS30
 - Includes the following effects:
 - Surface potentials computation avoiding smoothing functions between operating regimes
 - Mobility reduction
 - Velocity saturation
 - Drain-Induced Barrier Lowering (DIBL)
 - Static feedback
 - Channel length modulation
 - Weak avalanche current

- LEVEL 44: EKV MOSFET model
 - Simulation of low voltage, low current analog and mixed signal circuits using submicron CMOS technologies
 - EKV model equation is based on single expression, preserves continuity of first and higher order derivatives
 - Includes the following physical effects:
 - Effects of doping profile, substrate effect
 - Modeling of weak, moderate and strong inversion behavior
 - Modeling of mobility effect due to vertical field
 - Short channel effects for velocity saturation, channel length modulation (CLM), source and drain charge-sharing (including for narrow channel widths), reverse short-channel effect (RSCE)
 - Modeling of substrate current due to impact ionization
 - · Quasi-static charge-based dynamic model
 - Thermal and flicker noise modeling

- LEVEL 88: High voltage MOSFET model
 - Forward and reverse mode of operations
 - Asymmetry of all parasitics (diodes and resistances)
 - Bias dependence of external resistances RDS
 - Dependence mobility degradation on Vds
 - Bias dependent VSAT
 - Transconductance Gm reduction in saturation at high Vds

HISIM MOSFET Model

- HiSIM version 1.2.0
- Computes surface potentials, from the drift-diffusion approximation
 - No parameter inter-dependence
 - Easy parameter extraction
 - Low number of parameters
 - Continuity of derivatives
 - One parameter set for all channel lengths

Device Models: MOSFETs

- LEVEL 111: HiSIM MOSFET model
- Computes surface potentials, from the drift-diffusion approximation
 - No parameter inter-dependence
 - Easy parameter extraction
 - Low number of parameters
 - Continuity of derivatives
 - One parameter set for all channel lengths

Thin Film Transistors (TFT) Models

- Amorphous-Silicon TFT models:
 - LEVEL 15: Modified Leroux model
 - Transport by multitraps
 - Channel length modulation (CLM)
 - Exponential localized states density
 - Temperature dependence
 - Overlap resistance Rc

TFT Models - Leroux's Model a-Si (Level 15)

- Leakage current : empirical equation
- Exponential dependence of subthreshold current with vgs
- CLM effect taken into account in saturation region
- Temperature dependence
- Charge-conservation model (fast convergence in transient)
- Transitions with model parameters: VGHIGH, VGLOW
- Simple but well proven model

TFT Models - RPI Models a-Si and poly-Si

- Semi-empirical and unified model to achieve very good convergence
 - Interpolation techniques and smoothing functions (Vdse, Vgte)
 - no transition model parameters
- AC model accurately reproduces capacitance frequency dispersion
- Automatic scaling of model parameters to accurately model a wide range of device geometries
- Numerous industrial collaborations: Xerox, Philips, IBM,
- Recent model

$$I_{drain,unified} = \left(\frac{I_a I_{sub}}{I_a + I_{sub}}\right) + Ileak$$

RPI Polysilicon and Amorphous TFT Models

- Self heating is added to both models via single internal thermal mode.
 Thermal circuit is represented with a thermal resistance and capacitance in parallel
- New charge conservation model based on Leroux's model founded on a single parameter

Thin Film Transistors (TFT) Models

- LEVEL 35: Modified RPI model
 - Unified DC model covers all regimes of operation
 - AC model accurately reproduces frequency dispersion of capacitances
 - Provides automatic scaling of model parameters to accurately model a wide range of device geometries

Thin Film Transistors (TFT) Models (cont.)

- Polysilicon TFT models:
 - LEVEL 16: Modified U.C. Berkeley SPICE 3E1 model
 - Hot carrier
 - Drain induced barrier lowering (DIBL)
 - Channel length modulation (CLM)
 - Thermal generation
 - Gate induced drain leakage (GIDL)

Thin Film Transistors (TFT) Models (cont.)

- LEVEL 36: Modified RPI model
 - Guarantees stability and conversion
 - Unified DC model covers all regimes of operation
 - AC model accurately reproduces frequency dispersion of capacitances
 - Provides automatic scaling of model parameters to accurately model a wide range of device geometries

SOI Model Features

- Continuity of DC current and its derivatives in all regions of operation
- Charge and physical based model
- Charge-conservation models
- Suitable for deep-submicron devices
- Scalable and accurate model
- DC, AC, transient and noise analysis
- Floating body voltage iterated by SPICE engine (determined by body currents)

Advanced SPICE Model Implementation in SmartSpice: SOI Model Objectives

- Dynamic depletion is applied on both I-V and C-V. Charge and Drain current are scaleable with Tbox and Tsi continuously
- Supports external body bias and backgate bias; a total of 6 nodes
- Real floating body simulation in both I-V and C-V Body potential is properly bounded by diode and C-V formulation
- Self heating implementation improved over the alpha version

Advanced SPICE Model Implementation in SmartSpice: SOI Model Objectives (cont.)

- An improved impact ionization current model
- Various diode leakage components and parasitic bipolar current included
- New depletion charge model (EBCI) introduced for better accuracy in capacitive coupling prediction. An improved BSIM3v3 based model is added as well
- Dynamic depletion selector (ddMod) to suit different requirements for SOI technologies
- Single I-V expression as in BSIM3v3.1 to guarantee continuities of Ids,
 Gds and Gm and their derivatives for all bias conditions

SOI Models

- LEVEL 21 : UFS (Florida) SOI model fully depleted:
 - Physically accounts for the charge coupling between the front and the back gates
 - 2-D analysis for the subthreshold region of operation has been added
 - Accumulation of charge in the body has been also added, it can drive dynamic floatingbody bipolar effects
 - Accounts for DC and dynamic floating-body effects in all regions of operation

Berkeley SOI Models: Main Features

- Derived from BSIM3v3 equations (well experienced model)
- Single I-V expression
- Smoothing and clipping functions to unify all regions of operation (vgsteff, vbseff, vdseff, ...)
- Semi-empirical
- Lot of model parameters
- Checking of model parameters
- Dynamic depletion mode
- Design simulated: ring oscillator, sram (~ 1000 transistors)

SOI Models

- LEVEL 25: BSIM3 SOIv1 model derived from BSIM3v3.1
 - Partially Depleted (PD) and fully depleted (FD) devices
 - Dynamic and continuous transitions between PD and FD
- LEVEL 26: BSIM3 SOIv2 fully depleted (FD) model
 - Has improved simulation efficiency and noise modeling
 - Supports external body bias and backgate bias (5 ext nodes)
 - Improved self-heating implementation
 - Single I-V expression as in BSIM3v3 guarantees continuities of Ids, Gm, and Gds and their derivatives for all bias conditions

SOI Models (cont.)

- LEVEL 27: BSIM3 SOlv2 dynamic depletion (DD) model
 - The dynamic depletion approach is applied on both I-V and C-V
 - Charge and drain current are scalable
 - same features as in LEVEL = 26
- LEVEL 29: BSIM3 SOIv2 partially depleted (PD) model
 - Real floating body simulation in both C-V and I-V. The body potential is determined by the balance of all the body current components
 - Enhancements in the threshold voltage and bulk charge formulation of the high positive body bias regime
 - An improved parasitic bipolar current model
 - An improved impact ionization current model

SOI Models (cont.)

- LEVEL 33 : BSIM3 SOIv3
 - Includes Partially and Fully depleted models
 - PD module identical to BSIM3 SOIv2
 - Improved FD module
 - Ideal Fully Depleted model for strongly FD devices (without floating body effect)
 - Non Ideal Fully Depleted model
 - Automatic selection among the above modes
 - New Gate-to-channel and Gate-to-Source/Drain currents
 - New gate resistances model, including RF

SOI Models (cont.)

- LEVEL 32: CEA/LETI model (LETISOI)
 - For modeling the static and dynamic electrical behavior of partially-depleted SOI devices
 - Only uses pure analytical current and charge equations

FRAM Model

- Based on original RAMTRON model
- Three parallel elements: a linear capacitor, a resistor and a current source
- Improved scalability with area
- Improved convergence and accuracy through continuos derivatives
- Parameter clipping for convergence
- Proportion of domains switched

Device Models: Diodes

- LEVEL 1: Standard junction diode model (non geometric model)
- LEVEL 2: Fowler-Nordheim diode model
 - Created as metal-semiconductor or s-m-s
 - The insulator of this type of diode is very thin (about 100 Å), which allows for the tunneling of the carriers
 - Modeling electrically-alterable memory cells and other insulation breakdown devices
 - In many applications, they are in parallel together. The multiplier M is then used to simplify the simulation

Device Models: Diodes (cont.)

- LEVEL 3: Junction diode model (geometric model)
- LEVEL 9: Philips JUNCAP diode model
- LEVEL 500: Philips LEVEL 500 diode model
 - Forward biasing (ideal current, non ideal current including tunneling)
 - Reverse biasing (Trap assisted tunneling, Shockley-Read-Hall generation, band-to-band tunneling, avalanche multiplication)
 - Breakdown
 - Series resistances
 - Charge storage effects
 - temperature scaling rules
 - Noise model for RS and the ideal forward current

Device Models: Diodes (cont.)

- LEVEL 4: RPI VCSEL laser diode
 - Vertical Cavity Surface Emitting Laser
 - Mixed Electronic/Photonic (MEP) simulation: photonic part described in terms of equivalent electrical signal
 - Can be connected to transmission line and optical receiver devices

Device Models: JFETs

- LEVEL 1: Basic SPICE model with Sydney University enhancements
- LEVEL 2: Modified SPICE model with gate modulation of LAMBDA
 - Takes into consideration the dependence of channel length modulation on gate voltage (by means of the model parameter LAM1)

Device Models: MESFETs

- LEVEL 1: JFET model
- LEVEL 2: Statz model
- LEVEL 3: Curtice model
- LEVEL 4: Curtice-Ettenburg model
- LEVEL 5: TriQuint model
- LEVEL 6: Parker Skellern model
- LEVEL 7: TriQuint-2 model

Passive Elements and Independent Sources

- Resistors
- Capacitors
- Inductors
- Mutual inductors and magnetic cores
- Switches
- Independent voltage, current, DC, AC, transient or mixed sources

Transmission Lines

- Lossless Transmission Line
- Berkeley Lossy Transmission Line Model
- Lossy Transmission Line Recursive Convolution Model
- W Element Multiconductor Lossy frequency Dependent Transmission Line (Under development)

Analog Behavioral Modeling

- Analog Behavioral Device
 - Unique SmartSpice device
 - The current through/voltage across can be an arbitrary mathematical expression referencing node voltage and device current
 - The expression can contain the derivative operator
 - Expressions can contain if...then...else conditions
 - Expressions can access the circuit temperature, current, time and current timestep(tstep)
 - Delay-type device can be used to model an ideal delay

Controlled Sources

- Voltage Controlled Voltage Source
- Current Controlled Current Source
- Voltage Controlled Current Source
- Current Controlled Current Source

Conclusion

- The complete set of industry standard models are available
- Berkley compatible syntax form for quick model implementation
- Long history of experience with large customer base and diverse customer applications

