Math 582 Intro to Set Theory Lecture 31

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

April 6, 2009

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 31	April 6, 2009 1 / 1
	Introduction	

Introduction: Cofinalities

The cofinality of a limit ordinal γ is the length of the shortest sequence of smaller ordinals, $\langle \alpha_{\xi} | \xi < \lambda \rangle$, which converges to γ : $\sup \langle \alpha_{\xi} | \xi < \lambda \rangle = \gamma$.

This material is from Section 9.2 of Hrbacek and Jech.

Cardinal exponentiation

Solution When λ is infinite and $2 \le \kappa \le 2^{\lambda}$ then

 $\kappa^{\lambda} = \mathbf{2}^{\lambda}.$

^{ICP} There are further complexities computing κ^{λ} when $\kappa > \lambda$. For example, if we assume GCH then

$$(\aleph_{27})^{\aleph_0} = \aleph_{27} \quad (\aleph_{\omega_1})^{\aleph_0} = \aleph_{\omega_1} \quad \text{but } (\aleph_{\omega})^{\aleph_0} = \aleph_{\omega_1}$$

The property that explains these differences is that \aleph_{ω} has countable cofinality.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 3	April 6, 2009	5 / 1
	Cofinalities		
Cofinality defined			

Definition

If γ is any limit ordinal then the cofinality of λ is

$$cf(\gamma) = \min\{type(X) \mid X \subseteq \gamma \& sup X = \gamma\}$$

- γ is regular iff cf(γ) = γ , and otherwise γ is singular.
 - For any limit ordinal γ, cf(γ) ≥ ω: if X ⊆ γ and X is finite then X has a maximal member, so that sup X < γ.
 - $cf(\omega) = \omega$,
 - $cf(\omega^2) = \omega$: consider $X = \{\omega \cdot n \mid n < \omega\},\$
 - $cf(\aleph_{\omega}) = \omega$: consider $X = {\aleph_n \mid n < \omega}$.
 - ω is regular; ω^2 , \aleph_{ω} are singular.

Computing cofinality

- ① If $A \subseteq \gamma$ and $\sup(A) = \gamma$ then $cf(\gamma) = cf(type(A))$.
- ② $cf(cf(\gamma)) = cf(\gamma)$, so $cf(\gamma)$ is regular.
- $\$ If γ is regular, then γ is a cardinal. So, a cofinality is a cardinal. Note: H+J define regular ordinal to be a cardinal.
- $\circledast \ \omega \leq \mathsf{cf}(\gamma) \leq |\gamma| \leq \gamma.$
- **5** When α is zero or a successor, \aleph_{α} is regular.
- (6) When α is a limit, $cf(\aleph_{\alpha}) = cf(\alpha)$

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 31	April 6, 2009	7 / 1
	Cofinalities		
Examples			

- \aleph_2 is regular (by 5)
- $cf(\alpha + \beta) = cf(\beta)$ (let $A = \{\alpha + \xi \mid \xi < \beta\}$ and apply (1),
- Every limit ordinal below ω₂ has either cofinality ω (such as ω^ω or ω₁ + ω) or cofinality ω₁ (such as ω₁ + ω₁).
- $cf(\aleph_{\omega_1}) = \omega_1$ (by 6), so \aleph_{ω_1} is singular
- Recall the following construction of a cardinal which is a fixed-point of the ℵ-functions:

$$\beta_0 = 0 \qquad \beta_{n+1} = \aleph_{\beta_n}^+$$

Let $\beta = \sup_{n < \omega} \beta_n$. Then $\beta = \aleph_\beta$, and β is a singular cardinal of cofinality ω .

(Lecture 26, slide 15, or H+J, Lemma 9.2.6.)

Proofs

① cf(γ) = cf(type(A)), for any unbounded $A \subseteq \gamma$.

Even the Let $A \subseteq \gamma$ be unbounded in γ and $\alpha = \text{type}(A)$ via the (order-preserving) enumeration $\langle a_{\xi} | \xi < \alpha \rangle$ of A.

Note that α is a limit ordinal since A is unbounded in the limit γ .

- $cf(\gamma) \leq cf(\alpha)$. Any cofinal sequence of α is one of γ .
- ^{ICF} Let *Y* ⊆ *α* be unbounded in *α* of type cf(*α*). Then $\langle a_{\xi} | \xi \in Y \rangle$ is unbounded in *A*.

✓ Therefore, $cf(\gamma) \le type(Y) = cf(\alpha)$.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 31	April 6, 2009 9 / 1
	Cofinalities	
Proofs		

① Let $A \subseteq \gamma$ be unbounded in γ and $\alpha = \text{type}(A)$ via the (order-preserving) enumeration $\langle a_{\xi} | \xi < \alpha \rangle$ of A.

Note that α is a limit ordinal since A is unbounded in the limit γ .

 $cf(\alpha) \leq cf(\gamma)$. When $B = \langle b_{\xi} | \xi < cf(\gamma) \rangle$ is unbounded in γ , define $A' \subseteq A$ unbounded in A by

$$\mathcal{A}' = \langle a'_{\xi} \in \mathcal{A} \mid a'_{\xi} ext{ least in } \mathcal{A} ext{ with } a'_{\xi} > b_{\xi}
angle.$$

Let $Y \subseteq \alpha$ by the indices of A' in A:

$$Y = \{\eta \mid \exists \xi \, a_{\eta} = a'_{\xi}\}.$$

Since *Y* is a cofinal sequence in α ,

$$cf(\alpha) \leq type(Y) \leq type(B) = cf(\gamma)$$

Proofs

(2)
$$cf(cf(\gamma)) = cf(\gamma)$$
.
(2) Let $A \subseteq \gamma$ be unbounded with type(A) = $cf(\gamma)$.
By (1)
 $cf(\gamma) = cf(type(A)) = cf(cf(\gamma))$

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 31	April 6, 2009	11 / 1
	Cofinalities		
Proofs			

(3) If γ is regular, then γ is a cardinal.

Even that $\kappa = |\gamma|$ and show that $\kappa \ge cf(\gamma)$. It follows that $\kappa = cf(\gamma)$: Since γ is regular, $\gamma = cf(\gamma) \le \kappa = |\gamma| \le \gamma$.

^{IGP} Fix $f : \kappa \twoheadrightarrow \gamma$ and define $A \subseteq \kappa$ by

$$\boldsymbol{A} = \{ \eta < \kappa \, \big| \, \forall \xi \left(\xi < \eta \ \rightarrow \ \boldsymbol{f}(\xi) < \boldsymbol{f}(\eta) \right) \}$$

Note that f[A] is unbounded in γ .

Since *f* is increasing in *A*,

$$type(A) = type(f[A])$$

Thus by ①

$$\mathsf{cf}(\gamma) \leq \mathsf{type}(f[A]) = \mathsf{type}(A) \leq \kappa.$$

Proofs

 $\omega \leq cf(\gamma)$ and $|\gamma| \leq \gamma$ are from the definition. $cf(\gamma)$ is regular by @ so a cardinal by @; thus, $cf(\gamma) \leq |\gamma|$.

(5) When α is zero or a successor, \aleph_{α} is regular

 \aleph_0 is regular by ④. Suppose $A \subseteq \aleph_{\beta+1}$ and $|A| \leq \aleph_{\beta}$; then, A is bounded in $\omega_{\beta+1}$: since each $x \in A$ satisfies $|x| \leq \aleph_{\beta}$ we have:

$$|\operatorname{sup}(A)| = |\bigcup A| \leq \sum_{x \in A} |x| \leq \aleph_{\beta} \cdot \aleph_{\beta} = \aleph_{\beta} < \aleph_{\beta+1}$$

So, *A* cannot be a cofinal sequence in $\aleph_{\beta+1}$.

(6) When α is a limit, $cf(\aleph_{\alpha}) = cf(\alpha)$.

Apply ① with $A = \{\aleph_{\xi} \mid \xi < \alpha\}.$

 ✓ This completes all six proofs.

 Kenneth Harris (Math 582)

 Math 582 Intro to Set Theory Lecture 31

 April 6, 2009

Cofinalities

Alternative characterization of cofinality

We give a useful alternative characterization of cofinality:

Theorem

For every infinite cardinal κ , $cf(\kappa)$ is the least ordinal α such that there is a sequence of cardinals $\langle \kappa_{\xi} | \xi < \alpha \rangle$ with

$$\sum_{\xi < \alpha} \kappa_{\xi} = \kappa.$$

13 / 1

Proof of characterization

Let κ be an infinite cardinal and α the least ordinal such that there is a sequence of cardinals $\langle \kappa_{\xi} | \xi < \alpha \rangle$ with

$$\sum_{\xi < \alpha} \kappa_{\xi} = \kappa$$

 $\begin{array}{l} \alpha \leq \mathsf{cf}(\kappa). \ \mathsf{Let} \ \zeta = \mathsf{cf}(\kappa); \ \mathsf{then, \ there \ is \ an \ increasing \ sequence \ of \ ordinals \ \langle \alpha_{\xi} \ \big| \ \xi < \zeta \rangle \ \mathsf{with} \ \kappa = \sup \langle \alpha_{\xi} \ \big| \ \xi < \zeta \rangle. \\ \mathsf{Let} \ \kappa_{\xi} = |\alpha_{\xi}|, \ \mathsf{so} \end{array}$

$$\kappa \leq \sum_{\xi < \zeta} \kappa_{\xi} \leq \zeta \cdot \kappa = \kappa$$

 $cf(\kappa) \leq \alpha$. If $\alpha \geq \kappa$, then $cf(\kappa) \leq \kappa \leq \alpha$. So, suppose $\alpha < \kappa$. Choose a sequence of cardinals $\langle \kappa_{\xi} | \xi < \alpha \rangle$ with

$$\sum_{\xi < \alpha} \kappa_{\xi} = \kappa$$

We will show $\sup \langle \kappa_{\xi} | \xi < \alpha \rangle = \kappa$.

Suppose $\langle \kappa_{\xi} | \xi < \alpha \rangle$ is **not** cofinal in κ ; fix an ordinal $\rho < \kappa$ which bounds these cardinals: $\kappa_{\xi} < \rho$ for all $\xi < \alpha$. Then

$$\sum_{\xi < \alpha} \kappa_{\xi} \leq |\rho| \cdot |\alpha| < \kappa \quad \mathcal{I}.$$

Thus, $\sup \langle \kappa_{\xi} | \xi < \alpha \rangle = \kappa$ and so $cf(\kappa) \le \alpha$.

Characterization of regular and singular

 \mathfrak{B} \mathfrak{K}_{ω} is singular and also the sum of $< \mathfrak{K}_{\omega}$ cardinals of size $< \mathfrak{K}_{\omega}$:

$$\sum_{n<\omega}\aleph_n=\aleph_{\omega}$$

This is distinctive of singular cardinals:

Corollary

Let θ be any infinite cardinal.

- (a) θ is regular iff for any family of cardinals $\langle \kappa_{\xi} | \xi < \gamma \rangle$ with $\kappa_{\xi} < \theta$ (for each $\xi < \gamma$) and $\gamma < \theta$ then $\sum_{\xi < \gamma} \kappa_{\xi} < \theta$.
- (b) θ is singular iff there is an increasing family of cardinals $\langle \kappa_{\xi} | \xi < \gamma \rangle$ with $\kappa_{\xi} < \theta$ (for each $\xi < \gamma$) and $\gamma < \theta$ but $\sum_{\xi < \gamma} \kappa_{\xi} = \theta$.

Kenneth Harris (Math 582)Math 582 Intro to Set Theory Lecture 31April 6, 200917 / 1

Weakly Inaccessible Cardinals

Weakly Inaccessible Cardinals

Every successor cardinal, $\aleph_{\alpha+1}$, is regular. Which limit cardinals are regular? These will have to be cardinals with the property $\kappa = \aleph_{\kappa}$.

Definition

A regular limit cardinal is called a weakly inaccessible cardinal.

We know how to produce fixed points of the \aleph function (see slide 9), but this construction produces singular cardinals. In fact, if κ is weakly inaccessible it must be the κ th fixed point of the aleph function!

 $\left|\left\{\beta < \kappa \,\middle|\, \beta = \aleph_{\beta}\right\}\right| = \kappa$

(It is actually much bigger than this.)

^{III} It is impossible to prove the weakly inaccessible cardinals exist in ZFC. The statement that *There exists weakly inaccessible cardinals* is our first example of a statement of large cardinal existence.