1/f Noise, Telegraph Noise

Tobias Märkl

November 16, 2009

1/f Noise, Telegraph Noise

T. Märkl

/f Noise ntro to 1/f Occurrence Properties Other Noises Origin

RTN

Intro Occurrence Properties

ummary

Content

- 1 1/f Noise
 - Introduction to 1/f Noise
 - Occurrence of 1/f Noise
 - Statistical Properties
 - Comparison to Other Types of Noise
 - Origin of 1/f Noise
 - Applications of 1/f Noise
- 2 Random Telegraph Noise
 - Introduction to Random Telegraph Noise
 - Occurrence
 - General Properties
 - Sources of RTN
- 3 Summary
- 4 Bibliography

T. Märkl

tro to 1/f ccurrence roperties ther Noises

Applications RTN

> tro ccurrence roperties

ummary

1/f Noise, Telegraph Noise

T. Märkl

1/f Noise

Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTI

Intro
Occurrence
Properties
Sources

ummarv

- In 1925, J. B. Johnson examined fluctuations in electron emission from a heated filament
- For decreasing frequencies in low frequency regime, the fluctuation strength increased
- So far only white noise had been observed (W. Schottky, 1918)
- This low frequency noise obeys a power law (noise intensity $\sim 1/f^{\gamma}, \gamma \geq 0$)

Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

ntro Occurrence Properties

Summary

Classification:

Spectral density function of power law noise can be decomposed into different parts:

$$S(f) = c_0 f^0 + c_{-1} f^{-1} + c_{-2} f^{-2} + \dots$$

- This is <u>not</u> an approximation; every term represents different type of noise!
- Most important terms are f^0 , f^{-1} and f^{-2}
- (there are systems, where also $f^{-\frac{1}{2}}$ or $f^{-\frac{3}{2}}$ appear)

Intro to 1/f
Occurrence

Occurrence
Properties
Other Noises
Origin
Applications

RTN

ro currence operties

ummary

Names and Terminology

Other common names for 1/f noise in literature:

- 1/f type noise, $S(f) \sim f^{\gamma}$, with $\gamma \approx -1$
- low frequency noise
- pink noise (analogy to optic spectra)
- excess noise
- flicker noise

What do we mean by "low frequencies"?

 $1/{\rm f}$ type noise is typically dominant below corner frequency $f_c \lesssim 10^2...10^6$ Hz.

T. Märkl

Intro to 1/f

occurrence roperties

Origin Applications

RTN

Intro Occurren

ummary

Occurrence of 1/f Noise

Where does 1/f noise occur? What quantities are affected? – Answer: Almost everything you can imagine!

Examples:

- measured quantities of electric circuits and components (I, U, R)
- frequency of quartz crystal oscillators; affects time measurement precision
- rate of traffic flow on highways
- astronomy: number of sunspots apart from regular cycles, light intensity of stellar objects (e.g. quasars)
- loudness and pitch of music and speech
- economic and financial data
- biological systems
- and many, many more...

T. Märkl

1/f Noise Intro to 1/f Occurrence Properties Other Noises

Applications RTN

> tro ccurrence roperties

ımmary

Paradox of infinite power:

• variance = total power contained in fluctuations of x

$$\sigma_x^2(f_l, f_h) = \int_{f_l}^{f_h} S_x(f) df \sim \ln \frac{f_h}{f_l}$$

- ⇒ total power diverges at both frequency limits $f_l \rightarrow 0$ and $f_h \rightarrow \infty$
- this paradox has not yet been resolved!
- upper limit not a problem, since f_h never accessible to measurement due to dominant white noise
- for lower limit, no cutoff frequency was ever observed; analyses have shown no deviations down to 10^{-6.3}Hz in operational amplifiers [Caloyannides, 1974]

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

ntro Occurrenc Properties

ummary

Consider measurement with finite frequency bandwidth between f_1 and f_2 , $f_2 \gg f_1$:

Correlation function is then

$$rac{\psi_{\mathsf{X}}(t)}{\sigma_{\mathsf{X}}^2} pprox 1 - rac{1}{\ln f_2/f_1} [C + \ln(2\pi f_2 t)], \qquad C = ext{ constant}$$

 $ightarrow \psi_{\mbox{\tiny X}}(t)$ is very slowly (logarithmically) decaying with time

system has a very long memory \Leftrightarrow present state strongly dependent on the past

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

ntro Occurrenc Properties

ımmary

I. IVIAIKI

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin

Applications RTN

> Intro Occurrence Properties

ummary

ibliography

Comparison of white noise, pink noise and red noise:

Let's look at and listen to some signals (from http://whitenoisemp3s.com, length: 1 second)

• White noise $(\gamma = 0)$; constant variance, correlation function is $\sim \delta(t)$

■ Pink noise $(\gamma = -1)$; variance increases like $1 + \ln(t/\tau)$, correlation function decreases only slowly

■ Red noise ($\gamma = -2$, "Random Walk"); variance increases linearly with time, constant correlation function

Spectral density functions of above noise samples:

- notice log-scale on both axes \rightarrow slope gives exponent γ
- different power law behavior of noise samples is apparent
- numerical analysis confirms exponents that are suggested by creator

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

Properties Sources

Summary

What causes 1/f noise?

- fundamentally different systems exhibit 1/f noise ⇒ highly improbable that identical mechanism causes noise in all of them
- however, mechanism gives rise to similar or identical mathematical properties
- for most systems, origin of 1/f noise is completely unknown or at least subject to (controversal) debate
- for some systems, there exist theories; none of them capable of explaining all details

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Intro Occurrer Properti

ummary

Any resistance shows fluctuations, often with 1/f ls this due to temperature fluctuations?

$$S_R(f) \stackrel{?}{=} S_T(f) \cdot \left(\frac{\partial R}{\partial T}\right)^2$$

- A model by [Voss & Clarke, 1976] for temperature fluctuations as source of resistance 1/f noise was investigated in wide temperature range (100 600K) [Eberhard & Horn, 1977] but finally refuted
- Others, too, [Scofield, 1981] found no dependence of voltage 1/f noise on temperature fluctuations in thermally coupled thin metal films
- lacktriangle \Rightarrow temperature fluctuations are unlike to cause 1/f noise!

Consider fluctuations of resistance itself, then...

Intro to 1/f
Occurrence
Properties
Other Noises

Origin
Applications
RTN

(I IV Intro

Occurrenc Properties

Jources

The Hooge parameter α

In an effort to systematically collect data on 1/f noise, F. H. Hooge introduced empirical relation:

$$\frac{S_R}{R^2} = \frac{\alpha}{fN}$$

lpha: normalized measure for relative noise; N: number of conductance electrons. First estimates gave $lpha \approx 2 \cdot 10^{-3}$.

Since noise heavily depends on sample preparation (growing, doping, surface properties, contacting), α is only meaningful, if samples are somehow similar!

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Occurrent Properties

ummary

A few comments are necessary:

- noise is bulk effect, not surface effect
- specimen should be rather homogeneous
- lacktriangle ightarrow relation between lpha and electron mobility μ was found

(remember mobility: $\mu \vec{E} = \vec{v_D}$)

Why are we interested in μ ? The conductivity can be written as

$$\sigma = \mathbf{q} \cdot \mathbf{n} \cdot \boldsymbol{\mu}$$

T. Märkl

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Occurrence Properties

ummary

Does resistance fluctuation come from electron number or mobility?

Again, several experiments were performed. Analyses of the effect of Δn and $\Delta \mu$ on α showed that experimental results were much better described by mobility fluctuations.

Noise obeying the Hooge relation is also called α noise. Further investigation showed that it is caused by lattice scattering.

Since electron mobility is linked to lattice vibrations through scattering, one could finally interpret 1/f-like conductivity noise as phonon number fluctuations.

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro Occurrence Properties

ummary

Is there anything useful that we can do with 1/f noise? Yes, there is:

- remember: 1/f noise power $\sim \ln \frac{f_h}{f_l}$
- for constant frequency ratio we get constant power
 ⇔ every decade contains same amount of power
- used for calibration of high fidelity audio equipment (too heavy load for high frequency speakers with white noise)

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro Occurren Propertie

ummary

Random Telegraph Noise

image from http://www.trueller-snacks.de

1/f Noise, Telegraph Noise

T. Märkl

F Noise tro to 1/f courrence operties ther Noises igin

RTN

Intro Occurrence Properties

ummary

Do you like Popcorn?

What is random telegraph noise?

- commonly used to describe resistance fluctuations that show random switching between several, often only two, <u>discrete</u> values
- in literature you will often find: "Random Telegraph Noise" (RTN) or "Random Telegraph Signal" (RTS)
- also termed "burst noise" or "popcorn noise"
- signal resembles telegraph signals with two different "states" – ON and OFF

T. Märkl

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro

ccurrence operties

ummary

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro Occurrence Properties

ummarv

ibliography

RTN often occurs in very small specimen of:

- semiconductor components, e.g. MOSFETs, p-n junctions and resistors (electrical quantities: U, I, R)
- metal contacts, e.g. nanobridges, metal-insulator-metal tunnel junctions
- quantum dots (light intensity)

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro Occurrence Properties

ummanı

Bibliography

Examples of some experiments:

- MOSFETs: length scales $0.1 \dots 1 \mu m$ [Ralls et al., 1984]
- Cu nanobridges: volume $V = 40...8000nm^3$, width 3...40nm [Ralls & Buhrmann, 1988]
- tunnel junctions: active cross-section $A=0.03\dots 2\mu m^2$, thickness $d\sim 1nm$ [Farmer, 1987]

Some general properties

T. Märkl

Let's look at the temporal behaviour!

- time between switching processes is random but signal values are time-independent
- time scale of actual switching process much shorter than time interval during which system remains in one state
- future state of system only depends on present state, not on history ⇔ system has no "long-term memory"

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro Occurrence Properties

ummary

Statistical Properties

Consider a two level fluctuation of quantity x:

 w_1, w_2 : probability of finding system in state (1) or (2);

 $au^{-1}=$ total rate of transitions between (1) and (2)

correlation function:

$$\psi_{x}(t) = \Theta(t)w_{1}w_{2}(x_{1} - x_{2})^{2}e^{-t/\tau}$$

spectral density function (Lorentzian shape):

$$S_x(f) = 4w_1w_2(x_1 - x_2)^2 \frac{\tau}{1 + (2\pi f)^2 \tau^2}$$

mathematical tool to describe RTN: discrete Markov processes

T. Märkl

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Occurrence Properties

ummary

What causes RTN?

In general, different mechanisms \rightarrow let's look at an example: MOSFETs

Drain (D)

Silicon di Oxide insulation

No channel

Source Substrate (SS)

n doped region

substrate

Source (S)

Parin (D)

Parin (D)

What is a MOSFET?

- <u>Metal-Oxide-Semiconductor Field</u> <u>Effect Transistor</u>
- left: MOSFET schematically, 1) without and 2) with applied voltage G–SS
- gate voltage leads to bending of band structure, crossing of Fermi level
- ⇒ channel at interface with free charge carriers
- source—drain current can be controlled by voltage at gate, not by current!

T. Märkl

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Intro
Occurrence
Properties
Sources

ummary

- \blacksquare fluctuations between constant discrete values \Rightarrow assume single electron processes
- electrons are captured and released again by "traps" (e.g. impurities, lattice defects) in nearby oxide layer, within few Å from interface
- trapping and releasing causes conduction electron number N to change by 1
- (electrostatic field of trapped electrons changes mobility of other electrons in addition to number fluctuations, magnitude difficult to estimate)

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Intro
Occurrenc
Properties
Sources

ummary

Consequences of number fluctuations ΔN

- \blacksquare number fluctuations $\Delta \textit{N}$ directly affect conductivity $\sigma = \textit{nq}\,\mu$
- result: current through structure changes
- lacktriangle amplitude of fluctuation: $\Delta R/R = \Delta N/N$

MOSFETs [Ralls et al., 1984]: $\Delta R/R \sim 10^{-3} \Rightarrow N \lesssim 1000.$

Ratio RTN vs. background noise: $\Delta R/R_{backgr}=3\dots 100$

In larger systems, RTN disappears and often 1/f noise arises – is it caused by number fluctuations after all?

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Intro
Occurrence
Properties
Sources

ummary

1/f Noise, Telegraph Noise

T. Märkl

Intro to 1/f Occurrence Properties

Other Noise Origin Applications

RTN

Occurrence Properties

Summary

ibliography

Summary

1/f Noise

- occurs almost everywhere, universal type of noise
- not well understood or explained, unresolved fundamental problems
- 1/f type noise in resistance of semiconductors described by empirical relation and can be attributed to mobility fluctuations

RTN

- random switching
- observed in very small structures
- interesting statistics, system has no long-term memory
- single electron trapping processes likely to cause RTN in MOSFETs

between discrete values

Applications

Summary

1/f Noise, Telegraph Noise

T. Märkl

Intro to 1/f Occurrence

Other Noises
Origin

RTN

Intro Occurrence Properties

Summary

 ${\sf Bibliography}$

[Kogan] Kogan, "Electronic Noise and Fluctuations in Solids", Cambridge University Press, 1996

[Web resource] http://www.nslij-genetics.org/wli/1fnoise/

[Hooge, 1994] Hooge, "1/f Noise Sources", IEEE

Transactions on Electron Devices, Vol. 41, No. 11,
November 1994

[Hooge, 1981] Hooge, Kleinpenning, Vandamme, "Experimental Studies on 1/f Noise" Rep. Prog. Phys., Vol. 44, pp. 479-532, 1981

[Caloyannides, 1974] Caloyannides, "Microcycle Spectral Estimates of 1/f Noise in Semiconductors", J. Appl. Phys., Vol. 45, No. 1, pp. 307-316, 1974

I/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises

Applications RTN

> ntro Occurrence Properties

ummary

[Eberhard & Horn, 1977] Eberhard, Horn, "Temperature Dependence of 1/f Noise in Silver and Copper", *Phys. Rev. Lett., Vol. 39, No. 10, p. 643, 1977*

[Voss & Clarke, 1976] Voss, Clarke, "Flicker (1/f) Noise: Equilibrium Temperature and Resistance Fluctuations", Phys. Rev. B, Vol. 13, No. 2, p. 556, 1976

[Keshner, 1982] Keshner, "1/f Noise", Proceedings of the IEEE, Vol. 70, No. 3, March 1982

[Scofield, 1981] Scofield, Darling, Webb, "Exclusion of Temperature Fluctuations as the Source of 1/f Noise in Metal Films", *Phys. Rev. B, Vol 28, No. 12, p. 7450, 1981*

1/f Noise Intro to 1/f Occurrence Properties Other Noises Origin Applications

RTN

Occurren Propertie

ummary

[Kleinpenning, 1990] Kleinpenning, "On 1/f Noise and Random Telegraph Noise in Very Small Electronic Devices", *Physica B, Vol. 164, pp. 331-334, 1990*

[Uren, 1985] Uren, Day, Kirton, "1/f and Random Telegraph Noise in Silicon Metal-Oxide-Semiconductor Field-Effect Transistors", Appl. Phys. Lett., Vol. 47, pp. 1195-1197, 1985

[Yuzhelevski, 2000] Yuzhelevski, Yuzhelevski, Jung, "Random telegraph noise analysis in time domain", Review of Scientific Instruments, Vol. 71, No. 4, p. 1682, 2000

[Ralls & Buhrmann, 1988] Ralls, Buhrmann, "Defect Interactions and Noise in Metallic Nanoconstrictions", Phys. Rev. Lett., Vol. 60, No. 23, p. 2434, 1988 1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

Intro Occurren Propertie

ımmary

[Ralls et al., 1984] Ralls, Skocpol, Jackel et al., "Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f) Noise" *Phys. Rev. Lett., Vol. 52, No. 3, p. 228, 1984*

[Farmer, 1987] Farmer, Rogers, Buhrmann, "Localized-State Interactions in Metal-Oxide-Semiconductor Tunnel Diodes", *Phys. Rev. Lett., Vol. 58, No. 21, p. 2255, 1987*

1/f Noise
Intro to 1/f
Occurrence
Properties
Other Noises
Origin
Applications

RTN

ntro Occurrence Properties

ummary