’

—~—

Language Reference

DYALOC

The tool of thought for expert programming

Version 13.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2011 by Dyalog Limited.

All rights reserved.

Version 13.0

First Edition April 2011

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:
SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Overview

CHAPTER 1 INtroductioncoumnnmmmnmnnnnssnssssssssssssesssssssssssssessssenes 1
CHAPTER 2 Defined Functions & Operatorsccocourmrmereresessssssssssenenens 61
CHAPTER 3 Object Oriented Programingcocounenmesensssesessssessssssennns 133
CHAPTER 4 Primitive FUNCLIONS ... 207
CHAPTER 5 Primitive Operators...........coornmmenmssssmssssssssssssessssssssssssssses 315
CHAPTER 6 System Functions & Variables...........ccocourunensrrenessssesessssennns 347
CHAPTER 7 System Commands..........coceerevenenmmrmrnmsmssssssssssssssesesesssssssnsnes 621
CHAPTER 8 Error MeSSagescccouuenrmmssmnsssmsssnsssessssssssssssssessssssssssssenss 647
Appendices: PCRE Specifications..........cccocvereremmnenesessssnsnsnsnenesesesssssssnsnens 679
SYMDBOIIC INAEXvrviirriiri s ——— 689

Alphabetic INeX......ccoeirirercs s 693

Contents v

Contents

CHAPTER 1 INtroduCtioncccoummnsmmnmsssmmnsssnensssssssssesssssssssssssssssssssssssesass 1
WOTKSPACES ..ttt ettt ettt et et e s et et et e eneeeneeeneenes 1
INAIMESPACES. ..ottt ettt ettt et e bbbt e bt e a e e bt e sat e e bt e e sbteesateessteenbteenaeeens 2
AATTAY S 1o eteeette ettt ettt et e et e st e et e e st e e eab e e et e e e bt e e bt e et ee e bt e e bt e e tb e e naeeenbeennneeanbeennraens 4
Le@Al NAIMIES ...ocvviiiiieeiiciiecieeie ettt ettt et e et e esaeesaeeseesseesseenseesseessesssesseesnas 7
Specification Of VariabIesccvevuieiieiiiiiiieciecie ettt 7
VECTOT NOLALION ...ttt ettt sttt ettt ettt b et es et e e naesbeebeeneeneens 8
RESTIUCTUIING ATTAYS ..vveevvieiiiieeiiieeieeeteeette et teeteeetee et eeteeebeeebeesbaeeseesseeesseeesseennneens 9
DISPIAY OF ATTAYS ...veevvieeiieiiectiecie ettt ettt ettt teesbeebeeraeeraesreesseebeesseenneas 10
Prototypes and Fill TtemSoooeiiiiiiiiieiie e 14
EXPIESSIONS ..ttt ettt ettt ettt b e sttt et et bbbt 16
FUNCHIONS ...ttt ettt ettt et e e e e ste s aaeeneeese e teenseenneas 17
(0155 1107 4O UUTUOP PO UPPUPRRRP 20
COMPIEX NUIMDETSvevieiieiieiieit ettt ettt e e e sbeeteeseesneesseesseenseenseaneens 22
128 Bit Decimal Floating-Point SUPPOTIt.......cccoiiiririiieiininireneeeececeese e 26
NAMESPACE SYNTAX 1.vveeuvieeiiieiiie ettt eteeeteeeieeetee et eeteesteeebeesnbaessseesnseessseesseessseesnseennns 31
TRICAAS. c.. ettt ettt et 43
EXternal Variables.........c.ooioiioiiiiiiii e 57
COMPONENE FlES 1..uvieiiieeiiieciieciie ettt et et ebe e e baeenbeeesaeeneeas 58
AUXIHATY PTOCESSOTS ...vieitieiiiieeiiieeiee ettt ettt e et ete e ebaeenbeeebaeebeeensaeenseesnseeenneas 58
MIGEation LEVEeiiiiiiiiiciiece ettt et et ettt e 58
KEY £0 NOTALIOM ...ttt sttt 59
CHAPTER 2 Defined Functions & Operatorsccceevevenenmsrrenesesessssssssnenes 61
Canonical RePresSentationccevcieieieiienienieeie et eee et e e sttt ae e seeesseenseeseeneeas 61
1Y 04 5T B 117 QPSPPSR 62
STALEINENIES ...ttt ettt sttt ettt e eae ettt eae e et 64
Global & LoCal NAMESoeiuieiiiiiiiiiie ettt sttt 65
INAIMETISTS. ..ottt ettt ettt et see e se et et e st e et sbe e b eees 67
Function Declaration Statementsc.cceveerieiiieiieieniereseee e 68

Access Statementooeeeeeieiriiiiiiiiis TACCESS i 68

Attribute Statement............ceeeeeeeeeiiennnenn. tAttribute 69

Implements Statement..........coeeveeeieiinnnee :Implements ..o, 70

Signature Statement.........cccoovvevuvveeieeennnn. :Signature 70
CONLIOL SEIUCTUIES ...ttt ettt sttt ettt et seee bt e teenseenneas 72

If Statementoeeeeeeeeeeiieieee e $If DeXP i 74

While Statement.........cccvvveeereiiiiiiinnnneen. tWhile beXp .. 71

Repeat Statement.........oeeeeeveieieiiiiiiiiinnnes tRepeat .. 79

FOr Statement.........eceveeereeerveeeneeenineenns :For var :In[Each] aexp.... 81

Select Statement.........ccceeeeeeeeieiirniiinnnes :Select aexpuiiiiiiis 83

With Statementcoevvvvveieneeeieeennnninnnnn. tWith obj 85

Hold Statementcooevvvvieiiiiiiiie tHold tkns . 86

Trap Statement.........oeeecvveeeeeeeiiiniinnenee. :Trap ecode ..cvveicncncncneeee 90

Vi Contents
GoTo Statementeevvveeeeeeiviiiiininininnns :GOTO @eXP.ciciiiiiiiciicecceecee 93
Return Statementcoeevveevviniiiniennennnnn. TRELUMN . e 93
Leave Statementccvvveveeiinriininineenn. tLeaAVEe o 93
Continue Statement........eveeveeeenneeennernnnes tContinue ., 94
TTI@EETS 1t eitee ettt ettt et et et e et e et te et eeabte e bt e enbteeabbeenseeensaeeseeentbeesaeensbeenneeanes 95
TdiOM RECOGNILION.cuviieiiieiiiiiiieie ettt ettt ettt be e esseesseesaesseesnaenas 98
Search Functions and Hash TablesS..........coooiiiiiiiiiiiiiiiiiiieiee e 104
Locked FUnctions & OPEIAtOLSeeueeruieriieieeieeieeiieeieeieeneeeaeeieesseesseeseeeneeeneeeneens 105
The State INAICATOTvvvviiiiiee ettt e e e e e e eaaaaeeeeeas 106
Dynamic Functions & OPErators.cueieeruierierrieeieeienieeeeeeeeeeesieeseeeseee e eeeeneeens 108
APL LINE EAITOTciiiiiiiiiiiiei ettt e e e e et e e e e e e eenaaaaees 123
CHAPTER 3 Object Oriented Programingcoomenennmmmsessssmssssssesssssssnses 133
INrOAUCING CIASSES ..ouvviviiiieiieiie ettt ettt ettt steebe e et eetaesta e beeseesseensesnnens 133
COMSLIUCTOTLS 1.vvvviieeeeeeiiieeeee e e e e et e e e e et e e e e e e e e ee e e e e e eenaaaeeeeeeeeesataeseeeeeeennssraneeeeeas 137
DIESIIUCLOLS 1.ttt et e e et e e e e e et e e e e e e e e et ereeeeeeeseasraneeeeeas 150
(O T\ (53501 o1 RPN 152
FIRLAS .o ee s 153
A 11 1 Lo RSP 158
PLOPETLICS ...ttt ettt et e et et et e s e et e se e seenneeseenneeneens 162
1S i Lo RSP 175
Including NAMESPACESeeuviuiiriiriiriietiiieietesteste sttt sttt ettt 177
INESEEA CLASSES.....eveeeeeeeee e et e e e e et e e e e e e e eaaeeeeareeeeereeeeenes 180
NAMESPACE SCTIPLS ..nvenveriirieiieiieienteste sttt ettt sttt ettt sttt et et nae st b eaeeae 189
Class Declaration StateIMEITScoivvuureieeeeeiiiieeeeeeeeeeeeteeeeeeeeeerareeeeeeeeeraareeeeeeeas 194
TFIEld StAtEMENT ...ovveeiiiiiiieeeeee et 199
B 00 01) N 1T 5 o o WU 201
CHAPTER 4 Primitive FUNCLIONSccccecererrcerrrerer et ses e enenaes 207
SCalAr FUNCHIONS ...t e e e et e e e e e e e eaes 207
MIXEA FUNCHIONS ..ttt e e e et e e e e e eeaaaaneeeeeas 210
CONFOIMADIIIEYvreviieiie ettt ettt et e beeseenseenseennens 213
FIlL EICIMENESooeiiiiieceeeeeee e et eane e eeaneens 213
AXIS SPECITICALION ...ttt ettt e e e sseeseenseenneas 214
FUNCHONS (A=Z) 1ottt ettt ettt et e et e aaesse e beeseenseenseennens 214
JaN s Yo} o SRR e 215
Add: e REXHY e 216
And, Lowest Common Multiple: REXAY e 217
ASSIZNMENT: .ovvvvvvvviririiiiirerirerereeeeeeeeeeees XY e 218
Assignment (Indexed): ...coeovvveeiveerneens {RIXLITCY oo, 220
Assignment (Selective):ccceveriiveeennnnee. (EXP X)€Y e 224
BINOmial: wuvuvvevevveeeereeeeeeeeeeeereeeeeeeeeeaeeen. ReX DY e, 225
Branch:coooeviviiiiiiiiiiiie s Y e 226
Catenate/Laminate:eeeeeererervennnn. REX,LKTY oo 230
Catenate FIrst: woeeeeveeeeeeeeeeeeeieeeeeeeeeeeennns REXTLIKTY oo, 231

Contents vii

Circular:oovvvevieerieerieiiien e REXOY it 233
Conjugate:eeveeeiiiiiiiiiiiieee REtY o 234
Deal: oo ReX2Y oo 235
Decode: .oovvviiiiiiiiee e REXLY oo, 236
DEPth: cevvecvieeiieiiecre et (OML) REEY oo, 238
Direction (Signum):cceeeeeeeeieieeeienninnnns REXY i 239
DISCIOSE: +rvvververerrreerierieeeenreeeessesneeeenees (OML) R«3Y or R«tY o, 240
Divide: ooviieeiiiiiee e REXTY e 241
DIOP: i REXVY e 242
Drop with AXES: .veveveeeriveerirererieerreens REXYLKTY oo 243
Enclose: ..oooceviiieeiiiiie ReCY o 244
Enclose With AXES: «eeeeveeeueneeeeeeeeeeeeeaannn. RECTKIY oo 245
Encode: ...cocovviiiiiiiiiii, REXTY e 246
Enlist: coooiviiiiiieeeeeeeeeeee e (OML21) R€€Y i 248
Equal: oo, REXZY i 249
Excluding: ...cooeeeeeiiiiieieie REX~Y i, 250
Execute (Monadic):cevvveveereeeevnnnnnnnnn. REDY i 251
Execute (Dyadic): .oooeveeeeeeeieieieeee REXLY oo, 251
Expand: ...cccceeeveieeeiiiieee e REXNLKTY oo 252
Expand First: ..ooooveeeeeieieieeceeee REXXY o 253
Exponential:ccoevvieiiiiiiiiininiiieiiiiinn, REXY i 253
Factorial:ccoovveeerniieeeinieeeeriee e ReDY e 253
Find: oo REXEY i, 254
FITSE: teveeeiieerie et (OML) R«2Y or RetY i, 255
20 (00 RELY e 255
Format (Monadic):cooovvvviiiiiiiiiinnnee ReFY oo 256
Format (Dyadic):ooovevvvvieiiiiiiiinnineen, REXTBY oo 260
Grade Down (Monadic):cceeeererssnannnns REVY oo 262
Grade Down (Dyadic): ..ccoocvveeerrneeeennnee. REXTY o 263
Grade Up (Monadic): ..ceeeeveeersesserinnnnannns REAY oo 266
Grade Up (Dyadic): .ocoeeeeervrveeeenineeeennnee. REXAY o 267
(€3S 1<) REeX>Y e 269
Greater Or Equal:cocoviviieiiiiiiiiiininen, ReX2Y Lo 269
Identity: covveveeeieeeieee e Re FY e 270
51T [S RedXIOY oo 270
Index With AXES: evvveeeeeeeeieeeeeeeereeinenss Re{XIOLKIY coeeoeeeeeeeeeeee, 272
Index Generator:coceeeeeeeieieirinennnnnns RETY o, 274
Index Off ooviiiiii e REXTY oo 275
INAEXING: ..vevevieeriieeriiee e niee e REXLY T o 275
INtersection:oceveeveviveviviiiecre ReXNY Lo 279
Left: o REXAY oo 279
LSS ettt REXQY e, 280
Less Or Equal: ..oooovvviiiiiiie REXSY e 281
Logarithm:cccccvviiiiiiniiiieiciiiiiiieeee, ReX@®Y Lo 282
Magnitude: ...ocoveeerveeriieeeiieeniee e RETY e 282
MatCh: .ooviiieiiiiiiiee e REXZY i, 283

Matrix Divide: ...cooovvvviiiiiiiiiiiiiiiiiiii REXBY oo 284

viii Contents
Matrix INVETSe: ..ooevvvvveereeeeeeieiiirreeeeeeennn RABIY oo, 286
MAXIMUITE eevveeeeeieiieeeeee e eeeeeiieeeeeeeeeeas REXTY oo 287
Membership:eeveveveeevveeveeevinieeeeeereeeeens REXEY i 287
IMINTIUIN neeeeeeeeeee e e e e e eeeeeenans REXLY oot 287
MINUS: cevvieieiiieeeeiiee e eeei e eraaeeeeees REX=Y e 287
AN SRS (OML) R«<t[KJY or Rea[K]Y...... 288
MUIIPLY: wevvvvviviviveririeiieeeeeveveeeeeeeeereeeeees REXXY Lo, 289
DA 3T R REXAY o 289
Natural Logarithm:cccoeeevieiiininnnnn. RE®Y oo 289
NEGAtIVE: e RE=Y o 290
DA Le) REXVY o 290
J Ao SRS RE~Y e, 290
Not Equal: coovvviiiiiiiiiiiiiiieeececeeiin, REXZY i 291
Not Match:ooevvviiiiiiiiiiiiiiiii, REXZY oo 291
Or, Greatest Common Divisor: REXVY e 292
Partition: ...eeeeeeeeeeeeiiiieeeeeeeeerrieeeeeeeeeeeanes (OML23) R<Xe[KIY oo, 293
Partitioned Enclose:ceevvevveuveereeervennnn. (OML<3) RXC[KIY e, 295
PiTimeS: .ieeeveeeieiiiieeeeeiieeeeece e eeee e REOY oo 296
PiCK: woiiiiiiiee e REXDY oo, 296
PIUS: oo ReEXHY e, 297
POWET: civiiiiiiiei e REX®Y e 297
Ravel: oo Re,Y o 298
Ravel With AXES: vuvvvvvvvvrvverrrerererereerennenns Re, LKTY oo, 298
Reciprocal:ccovvvviiieeiiiiiiiiiiiieeneeeeeeenes RETY o 301
REPHCALE: wvvvvviiriieiiirieeesiiieeeeiiee e REXZLKTY oo 301
Replicate First:ccccvveeervveeeeeiivieeeennnne REXALKTY oo, 302
Reshape:oveveveveeeeiiiiiiiieieiieeeeeeeeeeeeeee REXPY i 302
RESIAUE: wvvvvvereeeieeiiiireeiee e eeeecirreeee e REXTY i 303
REVEISE: wvvvveeieeiiiiiiiieeeeeeeeeeeeisaveeeeeeeeens REDLKIY oo 303
REVETrse First: weeeveerueeeeeeeeeeiiieeeeeeereeennns REOLKTY oo, 304
Right: e REXFY e 304
ROIL ettt ReY e, 304
ROTALE: evvvverieeeiieeiiieeeeeee e e ee e e e e REXOLKIY o 305
ROtAte FIrst: oveeeveeneeeeeeeeeeeeeiieeeseeeeeeennns REXOLKTY oo, 306
SAME: eiiiiiiiiieie e ReAY e 306
Shape: oeevviiiieeeieeiecee e REPY o 306
SIGNUM: cevviiiiiiiiiieec s ReXY L 307
SPIIL: weeeeieieieieieeeeeeeeeee e REVLKTY oo, 307
V1 0] ¢ 1o SN REX=Y e 307
Table: ovniieiiiiiiii e ReY oo 308
TaKe: eeerieeeeece e REXTY e, 309
Take With AXES: vuvvvvvverererreveerererreeeeennnnns REXALKIY oo 310
TIMES: tevreeeiieieeeeeiee e e e e e e eee REXXY e 311
Transpose (Monadic):ooeveuvvveeeeennn. REQY o 311
Transpose (Dyadic): ...eeeevvveeerirveeerennnnen REXQY i 311
TYPE: weerireeeeeieeee et (OML<1) R€€Y i 312

L8555} § RN ReEXUY e 313

Contents ix

UNIQUE: covviiiiiiiiiiiiiiiiiecececeeeceeeeeceeeee REUY e 313
WIthOUt: oo REX~Y e 313
ZAldE: coeiieiieee e REB o 313
CHAPTER 5 Primitive Operators........c.coonmrmmemesesmsssssmsmssesesessssssssssssssesesesens 315
OPETALOT SYNTAX .envtieiiieiiieiite ettt ettt ettt et ettt e st e se e sabeesabeesabeesnbeesbeenane 315
AXIS SPECTIICATION ...ttt ettt et et eeeesae et e e b e esseessessaesneenas 316
OPETALOTS (A=ZL) oottt ettt ettt ettt et e st esbeesab e e sabeesabeesabeeenbeesnseesnseesnseennne 317
Assignment (Modified):cccceevvveeeennnee. {RICXF€Y (e 317
Assignment (Indexed Modified): {RIXLITFCY e, 318
Assignment (Selective Modified): {R}IC(EXP X)f<Y i 319
Axis (with Monadic Operand): ReFIBIY oo 320
Axis (with Dyadic Operand): REXFIBIY o 321
COMIMULE: evvvvviieeeeeeeeeeiieneeeeeeeeernanes {RICXF=Y e, 324
Composition (Form I):cccceeevcveeeenee. {R}«fogY e 325
Composition (Form I1):ccvcveveiererneene {R}I“A0GY i 326
Composition (Form III):ccceeevvveeeennnee. {R}IC(FOoB)Y i 327
Composition (Form IV):ccccevrveeenneene {R}ICXFogY e 327
Each (with Monadic Operand): {RICEFTY e 328
Each (with Dyadic Operand): {RIEXFTY e 329
Inner Product:ccoovvviviiiiiieiiiiiiniin, ReXF ogY o 330
Outer Product: weeeeeeeeeeeeeeeeieeeeeeeeeveieens, {R}eXo.gY e 331
POWer OPErator: ...eeeveveeeerireeeeesiereesnnens {RYC{XI(F*g)Y s 332
ReEdUCHON: tevvvvreieeieeeieieiiee e eeeeeveeenns ReF/ZLKTY oo 334
Reduce First: .oooeeeeeeeeieeeeeeeee REFAY o 335
Reduce N-WISE: .ovvrvveriirreieeeeeeeereeenennss REXF/ZLKIY oo 336
SCAIL cevvrnieeieeeiiiiieee e e e e e e e e e e e eeeeaaes REFNLKTY oo 337
Scan First: ..eeeeeeeeeiiiiiieeieeeeieiiieeeeeeen REFRY e 338
SPAWN ceivieeeieeeieeeere e ree e e esere e e {RIC{XIFRY oo 339
VAN cetvivnieeeeeeeeeieiieeeeeeereeeaneeseeeeees {RI{XI(F Bl B)Yurooeooeeeeees 340
8 7T s R Re{XI(AT)Y coooioeeeeeeeeeee. 343
Syntax Colouring:cccceevvveviiiiiniinnne Re200TY .ot 344
Number of Threads:coeeveeiiiiiiinnnnnnn. ReTL1ITY e, 345
Parallel Execution Threshold: ReTILI2TY e 345
Thread Synchronisation Mechanism: ReTLI3TIY o 345
Memory Manager Statistics:coeeuueee R<2000IY ..o 346
Update DataTable:ccvveeevivveeeriineennns {X}2010TY oo 347
Read DataTable: .ooevveeeeeveeneeeeeeeeeeeiinnn, Re{X}2020IY .oooooeeeeeeeeeeeee 349
Export to Memory:oooevviiiiiiiiiiiinnnne Re2100TY oo 351
Fork New Task: (UNIX only)ccuveeee. ReOOO0TIY .o 352
Change User: (UNIX only)ccooevevnnnnnee ReWOOLIIY oo 353
Reap Forked Tasks: (UNIX only) ReULOO2IY i 354

Signal Counts: (UNIX only)cccceuenee ReWOOTIY oo 356

Contents

CHAPTER 6 System Functions & Variables...........cccovvnnnnnnnnnnnisninnnns 357
N 13 10 R 1 E21 o) TP 359
SYSEM NAMESPACESeeuvvieiieeiiieniieerite et ettt ettt e stte ettt et e si bt e sibeesabeessbeesabeesaneenane 360
System CONSLANTSoouiiiiiiiiiiiieeeeee ettt 361
SYStEM FUNCHIONS ...ttt e e nes 362
Character Input/Output:cccovvvveeeennn. D e 369
Evaluated Input/Output:ccccecvveeeennnee. O, 371
Underscored Alphabetic Characters: REDJA o 373
Alphabetic Characters:ccceevevveeeennnee. ReDIA o 373
Account Information:coceeiiiiiinnne REDAT oo 374
Account Name:oeevveeriieeenieenneeenineenns REDJAN Lo 374
Arbitrary INput: .vevevveeriveeeiiee e s R<{X}OARBIN Y oorooieeeeeereenn. 375
Arbitrary Output:eeeeeeeeeririiiiieeeeeennnn. {XYOARBOUT Y.t 378
AUITDULES: wvvveeviieeeerieee e R{XIOAT Yoo 379
AOMIC VECTOT: wvvvevvvrrereerieeieeseresenenenes REDAV oo 383
Atomic Vector - Unicode:cccevernnnee. OAVU oo 383
Base Class: ..vevevvreveerreenieenieenieeneesnenenns ReBASE .Y oo 385
CLaSS: tueerreeeeeeee ettt e e Re{X}IOCLASS Y oo, 386
Clear WOTKSPace:cveevveeevveeeirveeniveenns OCLEAR oo 389
Execute Windows Command: ROCMD Y oo 389
Start Windows Auxiliary Processor: X OCMD Y i 392
Canonical Representation: RCR Yoo 393
Change SPace:.....cceuvveeerrireeersnireeeesnnes {RY<{X}ICS Y. 395
Comparison Tolerance:ceeeereennnnn OCT o 397
Copy Workspace: ...ccceeeveveeeesnveeeennnnne {XYOCY Y e 398
DAGIES: vevveeeerreeeereeeereeeireeeereeeerreesree s RMID o 400
Decimal Comparison Tolerance: ODCT o 400
Display FOIm: ...cocvevvveriereereeneennennnns RODF Yoo 400
Division Method:ceeevvveeeinniienennnee. ODIV . 403
DEIAY: tvveriereeeiitieie et {RICODL Y oo 404
Diagnostic Message:cccooeevuuvveeeeennn. RMIDM ..o 404
Dequeue EVents:ccveeeeeveeeeeiveeeeenne {RICODQ Y oo, 405
Data Representation (Monadic):.............. RODR Yoo 408
Data Representation (Dyadic):eeeeeee ReX ODR Yoo 409
Edit Object: .oocevvvvriiiiiieeeeeeeiieeeeeeeee {R}I«{X}IOED Y. 410
Event MESSage: .ovvvvervrerreerrvereeseeesnennnns REOEM Yoo 411
Event NUmbEr: ...ccovvvveeiniiieeeiiieeeeene REDIEN oo 411
EXCEPHON: 1eevvveeereresreeereeeereeeevreesreens R<JEXCEPTION....ccooovieriiiereiirree, 411
Expunge ObJect:cccveeviererveeeireenneenns {RYCOEX Yo 412
EXPOrt ODJECt: veveurierrieeiirerieeeriieenreens {R}I<{XIOEXPORT Y seeeeoeeeeeeeeenn. 414
File Append Component:ccceeruveenne {R}<X OFAPPEND Y .ccoovrrrernen. 415
File System Available:ceevvvevennnee REOFAVAIL oo 415
File Check and Repair:cceeeeeenveeeennnee. Re{X} OFCHK Y cooiooeeeeeeeeecnn. 416
File COPY: werveeeeiiriiiiiiiieeeeeeeiiieeeee e ReX OFCOPY Y., 417
File Create:coovvvveveeeeeeeieniiiiiieeeeeeennn {R}«X OFCREATE Y .coeiirrerne. 418

File Drop COmponent:cceeeevveeruveenns {R}<OFDROP Y oeooieoeeeeeeeeeeeen, 420

Contents xi

File Brase: coeeeeemmeeeeeeeeeeeeeee e {R}<X OFERASE Y.ooooioooeeoeeeee, 421
File HOld: uvvvvniiiiiiiiiiiieicccecei, {R}<OFHOLD Yoo 421
Fix Script: coveveeiieeiieeeeiieeee e, {R}IC{XIOFIX Y. 423
Component File Library:ccccoceervene REOFLIB Yoo, 424
Format (Monadic):ccccevvveeeerirvenennnnne REOFMT Y i 425
Format (Dyadic):ccoveeerivereeriiienennnne ReX OFMT Y e 426
File NAMES: wuvvvvreeeeeeeeeiiiirrreeeeeeeeeeiernnenns ROFNAMES ..o 433
File NUMDETS: eveveeeeeeieeieeeeeieieieeeeeeeeeennnn ROFNUMS oo 434
File Properties: ...oooeeeveeeeeeeeeeeieieeeieiennns R<X OFPROPS Y .o, 434
Floating-Point Representation: OFR o 437
File Read ACCESS: ..eevvevrrrrreereeeeeeinrrnnenn, Re(FRDAC Y oo 439
File Read Component Information: R<OFRDCI Y oo, 440
File Read Component:ccccecvereennee. ROFREAD Y oo 440
File REName:eceeeeieiiieviiieeeeeeeeeeevinnn, {R}<X OFRENAME Y .ccotvviereerenn.. 441
File Replace Component:ccceevunen.. {R}<X OFREPLACE Y..oocovvverenn. 442
File RESIZE: civvvvrieiiiiiiiiiiiiee e {R}Y«{X}OFRESIZE Y.vooeorreeren... 442
File Size: covvvviiiiiiiiiiiiiii e REOFSIZE Y oo 443
File Set ACCESS: wuvrirriiiiririiieieeeeeeivinnnss {R}<X OFSTAC Y .eooioeeeeeeeeeeannn. 444
File Share Ti€: weueeeereeeeeiriiieeeeeeeeeeienenss {R}IX OFSTIE Y .o, 445
Exclusive File Ti€: ...coovvvveveeieeieeeiiiinnnnnn. {RYX OFTIE Y oo 446
File UNHE: tevvvvrreeeeeeeeeeeeiieeeeeeeeeveineenns {R}ICOFUNTIE Y eooiooeieeeeeeeeeen, 447
FixX Definition: ..eeeeeeeeeeeveeeieereeeeereeennnnss {RICOFX Y oo 447
INStances: ..ooovvveeiiiiiiiiee e RJINSTANCES Y .ooooioioieieienne. 448
Index OTIigIN: cvvveveveeeerieeereeereeesveeereens OI0 e 449
Key Label: .uovvvviieeeinieieeeieeeesieee e REOKL Yoo 450
Line COUNL: vevevverreeeeeitreeeeerreeeeenreeeeennnes RELC oo 450
Load Workspace:cccceeevvveeeerieenennnne OLOAD Y. 451
Lock Definition: .eeeeeeeeeeeeeneereeeeeeeeennenss {XIOLOCK Y oo 452
Latent EXPression:ccceceevvveeeseeenineenns OLX e 453
Map File: cooviriiiiieieeeieee e Re{XIOMAP Y oo 453
Migration Level:ccccevveerieeriieenineenns OML e 455
Set MONItOT: oevvveveeeeeeeeeeieeieeeeeeeereennens {R}<X OMONITOR Y .cooooieoreeeeanns 457
Query MOnitor:ecoveeeeeerireeeenrineeeennnnee R<OMONITOR Y..coooooiirireiirienennne 458
Name ASSOCIAION: wevvuueerereeerereriieereeeeees {RI{XIONA Y oo, 459
Native File Append:ccccovveevveerieeennnen. {R}«X ONAPPEND Y .coecevrrrrrrrrrnns 485
Name Classification:ccceeeeevvveeeersvnnnen REONC Yo 486
Native File Create:cccovvvvveveeeeennnnnn.. {R}«X ONCREATE Y .coorivieierene 498
Native File Brase: ...uuueeeeereeeeeieeeiiiieereeeenes {R}<X ONERASE Y.oooioooeeoeeeeans 498
New Instance:ccccccvvvveveeeiiiiiiiiiiienn, REONEW Y e 499
NAME LISt: wueeeeeeeeiiiiiieee e eeeeeeiieeeeeeeeeees Re{XIONL Y oo, 500
Native File Lock:cooovvviiiiiiiiiiiiiiiinnn, {R}«X ONLOCK Y .ooioieieieierene 504
Native File Names:ccccccevvveveeeeenennnnn. ROINNAMES ..o 506
Native File NUmbers:......ccoovvvvvveeeeeeeeennnns ROINNUMS ..o 506
Enqueue Event:coocveeeeviieeeeniienennnne, {RI{XIONQ Yoo 507
Nested Representation:eeeeveeeeenees REONR Yoo 509
Native File Read:cceevvveeeeeiinieeeiinenn, R[INREAD Y oo 511

Native File Rename:coeeevvvvveveereeeenns {R}<X ONRENAME Y .ooooiioeiee, 512

Xii Contents
Native File Replace: ...coeevvverveeeinneennnn. {R}<X ONREPLACE Y.oooevoreen... 512
Native File ReSIZE€: oeeveeeveeeeeeeeeeeeeeeennnnn {R}<X ONRESIZE Y oo 514
Create Namespace:eeeevevveeeerveeeeennnnes {RI{XIONS Y oo 514
Namespace Indicator:ccceeeeeieininnnee REONST o 516
Native File SiZ€: .uuueeiririeiiriiineiirieeeeennnn. RONSIZE Yoo 516
Native File Ti: wuuuueeeeeeeeeeeeeeeeeeeeeeeeeennnn {R}<X ONTIE Y oo, 517
NUull TEEM: cevvieeieiiieeeeeeeeeeee e, REONULL cooveeceeeeeceeeee e 518
Native File UNtie: ooeeeeeeeeeeeeeeeeeeeeeeeeennnnn {R}I<ONUNTIE Y oo, 519
Native File Translate:........cuveveererveerrennn. {R}I<{XIONXLATE Y coeeoeeereeenn 519
Sign Off APL: ooviiiiiiiiiiiiiiieeeeeeeeeeeeeee OFF e 520
VAN ceveeeeiiiiiiieeeeeeeeeeeriieeeeeeeessesnnns {R}«<{X}(f OOPT B)Y.ooorvoorreene.. 521
Object Representation:eeeeeveeeees RJOR Yoo 521
Search Path:ccccvveeeieiiiiiiiiiieeee e, OPATH oo 525
Program Function Key:ccceevvvvveeennnee. Re{XIOPFKEY Y soeeoeeeieereeeeean 527
Print Precision:cceveeeeevveeeeerivveeeennnne OPP oo 528
Profile Application:ccccovveuvvvieeeennnn. R<OPROFILE Y., 529
Print Width: ..ccovvvevvieeieeiieee e OPW oo 535
REPIACE: wevvveiriiiiieiiiiieeenireee e Re{X}(A OR B) Yueoorooreeeeeeenn 536
Cross References:ccooevveevveiiininnennnn, ROREFS Yoo, 554
Random Link:evvvvvvvvvveveneveeinereennnnn. ORL e 555
Space Indicator:cc.ceevveeriveeeireesreeene REORST oo 555
Response Time Limit:ccoveeeeueeennnennns ORTL ot 556
SEATCh: ciivviiiiee i Re{X}(A OS B) Yoo 556
Save WOrkspace:c..cceevveeereenreenneenne. {R}I<{XIOSAVE Y eotoieeeeeeeeeen 557
Screen DIimensions:cceeeeevveeeeennnnenn. RelISD o, 557
Session NameSpace: wuveeeereeerervvnnunrereenns OSE o 558
Execute (UNIX) Command: {RIGOSH Yoo, 558
Start (UNIX) Auxiliary Processor: X OSH Yo 559
Shadow Name:cveeeeeeeerreevrniiineeennnns OSHADOW Y oo 560
State INdiCator:coveeeeevvvereeiirrereeiinneees ReOST oo 561
Signal EVENnt:ccccvveeevriveeevniveeeeniineen {XIOSIGNAL Yoo 562
Size 0f ObJECE: vvvvreererrrrrrrereerieeseeenenes REOSIZE Yoo 563
Screen Map: ..ooceeevieeenieenieeeiee e OSM o 564
Screen Read: .ooovveevveveeeeeeieieeeiiieeeeeeeeens Re{XIOSR Yoo, 567
SOUICE: wevvrrriierereeeeereereeeeeeeeerererererreeeeens ReOSRC Y oo 571
State Indicator Stack:ccceevvereeernnnnen ReOSTACK oo, 572
State 0f ObJECt: evvervvvrerieenieeerieee e ROSTATE Yoo 573
St STOP: wvrerrrerreerreesreeereereeereenreesteenanes {R}«X OSTOP Y oo 574
QUETY SEOP: vevvevrreeriirieeesireeeeereee e e ReQSTOP Y. 576
Set Access CONtrol:coveeveveeeeereeeveeenne. ReX OSVC Yeoooiiiooeieeeeeeeeen. 576
Query Access Control:eeeeeeeveeenees ReOSVC Y e 578
Shared Variable Offer:ccccceevvnenenene. ReX OSVO Yoo 578
Query Degree of Coupling:eeeueneee RSVO Y oo 580
Shared Variable Query:cccceervueennee ReOSVQ Y oo 581
Shared Variable Retract Offer: ReOSVR Y oo 581
Shared Variable State:cevvvvvvvvvvnnnnns ReOSVS Y e, 581

Terminal Control:eveevevevvvereeeeeennnnns (OML) ROTCoeeeeeeeeeeeeeee 582

Thread Child Numbers:cccvveeeeennnnnns ROTCNUMS Y oo 583
Get TOKENS: covvvveeeeiiiiieeeiee e {R}<{X} OTGET Y.oooroooeeeeeeeen. 583
ThiS SPACE: vveeivrreireeeirreesreeereeesreesreeens ReOTHIS oo 585
Current Thread Identity:........cceevveerneenne REOTID oo 586
Kill Thread:covveeeeeevieeieiiieeeeviieeeeenens {R}<{XIOTKILL Y.oorrooiooioreerenen. 586
Current Thread Name:ccooeeeeeeeeeeeieiennn. OTNAME .o 587
Thread NUMDETS: ...ccovvveeeeeirreeeeenreeeeennne, RDOTNUMS Lo 587
Token Pool: cuvvveeeeeeiiiieeiieeeeeeee e ReOTPOOL oo 588
PUt TOKENS: cevvvvveeeeeeeieiviiieeeeeeeeeviies {R}<{X} OTPUT Y.oooiooieoeeecns 588
St TTACE: eeeeeeeeeeeeeee e e e e e {R}<X OTRACE Y oo, 589
QUETY TTaCE: cevveeireeeirreecieeereeeeree e R<OTRACE Y oo 590
Trap EVENt: wovvvvevieeecieecieecieeesiee e OTRAP oo 591
Token ReqUESES: ...uveeeevreerreeireeeciieesneeans REOTREQ Yoo 596
Time StAMP: cvvververerieesieesieeereeesveens ROTS o 596
Wait for Threads to Terminate: ROTSYNC Y oo 597
Unicode Convert:cccccevveveveeeeeeennnennn.. Re{X} OUCS Y. 599
Using (Microsoft .Net Search Path): OUSING ..o 601
Verify & Fix Input: ...cveeeevivveeeeniienennnnee, Re{XIOVFI Y oo 602
Vector Representation:ccevvuueeeeeeenes REOVR Yoo 603
Workspace Available:coceveeriierennee. REDOWA o 604
Windows Create Object:cceeeveennennn. {RI{XIOWC Yoo, 605
Windows Get Property:coeeeveevveennenns Re{XIOWG Y oo 608
Windows Child Names:ccooeveeeiereeennnn Re{XIOWN Y oo 609
Windows Set Property:ccceevevveennenns {RI{XIOWS Yoo, 610
Workspace Identification: OWSID oo 611
Window EXPOSE: ..cveervveeeireeerireeereeennen. OWX oo 611
XML CONVETT: evvevvveviiieeeeeeeeevviieeeeeeees Re{X} OXML Y.oooooeooieoeeeeeeeen, 613
Extended State Indicator:cceeeeeennnee. ReOXST oo 627
Set External Variable:ccccoeeveeeviieiiinnn. X OXT Yoo 628
Query External Variable:cccceeeuneens REOXT Yoo 630
CHAPTER 7 System Commands........c.coconmmrmrmmsmsesmssssmmsmssesessssssssssssssessssens 631
LiSt CIaSSES: wuvevvrueeeeiieeerinieeeeiiieeeeanneas JCLASSES oo, 633
Clear WorksSpace:occcvvvveeeeeeensncuvennenns YJCLEAR (oo 633
Windows Command Processor: JCMD cmd ..o, 634
Save Continuation:c.ccceeeeeeeeeeeeresennes JCONTINUE oo, 635
Copy WOTKSPACE: .vvveevveerereesrereniieesreeans YCOPY {ws {nms}} .. 636
Change SPace:ceeerveeriueerirerenieeeniveenns YCS {NM} o 638
Drop Workspace:ccceeveveescveresveesineens JDROP {WS} wooeeeeeeeeeeeeeeeeeeeeee 638
Edit Object: .ooevvvureeeiniiieeinieeeeniieee e JED NMS.oiiiiiiieicieeeeeeeeeene 638
Erase Object: ...ccveeerrieeeeinirieeeenieeee e JERASE NMS .o 639
| B TS 1 YEVENTS oo 640
List Global Defined Functions: YENS {nm} oo 640
Display Held Tokens:ccceeeerueeeennnnee. JHOLDS ..o 641
List Workspace Library:ccceecveeeennee. YLIB {dir} coeeoioiieeeieeeen, 642
Load Workspace:ccceveueercverenveeriveenns YLOAD {WS} e, 643

List Methods:ccoovvvviiiiiiiiiiiiiniiiinenen, JMETHODS ..o 644

Xiv Contents
Create NameSpace:ccvveervveersveeriveenns INS {NM} oo, 645
List Global Namespaces:ccveeeennnee YOBJECTS {nm} ooeeoeeeeeeee, 646
List Global Namespaces:cccveeeennnee YOBS {nM} oo, 646
Sign Off APL: .eoviviiiiiiiiiiieieeeeeeeeeeeeeeeeee YOF F e 646
List Global Defined Operators: YOPS {nMm} oo, 646
Protected COPY: wovveerveeereererreeeireesiveenns YJPCOPY {ws {nms}} .. 647
List Properties:cccvvveveeeererniiuveeeeeeeenns YPROPS ..o 648
Reset State Indicator:ceeeeeereeereenne. YRESET oo 648
Save WOrkSpace: ...veeeevevvereercuveeeesiuneeens YSAVE {WS oo, 649
Execute (UNIX) Command: YSH {emd} oo 650
State INdiCAtOT: .evvvvvvvereririerrerererereeereeenns) S T e 651
State Indicator & Name List:cceeeeeennees YSINL oot 652
Thread Tdentity: ...oceevveeeeriveeeeeriiee e YTID {tid} e, 653
List Global Defined Variables: YVARS {nm} oo, 654
Workspace Identification:cceeeuuuee. IWSID {WS oo, 654
Load without Latent Expression:............. YJXLOAD {WS} .o 655
CHAPTER 8 Error MeSSagesccummmmnmsinsmensssssssssssssssssssssssssesses 657
Standard Error ACHIONoooovuiiiiii et e e e e e e 658
APL EITOT IMESSAZES ...vvveeuvieeiiieiiieeiieeiteeteeeiteesaeestaeeaeesssaeeseeesseensnessseenssesnsseanseeens 663
Operating System Error MESSAZESccuvieuieiriiieiiieiiieenieeeiteeieeeireesite e esaaeeseveesaeeens 686
Appendices: PCRE SpecifiCations..........cccoumnmmnnmnsmnsssnssssssssssssssssssssssssssans 689
Appendix A — Search Pattern syntax SUMMATYcocceeeeererienieneneneneeieeeeenenaenes 689
APPENdiX B — LICENSE ...ttt 696

SYMbBOIIC INAEX ... 699

Chapter 1 Introduction

CHAPTER 1

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain
objects, namely operators, functions and variables defined by the user. APL
expressions may include references to operators, functions and variables provided by
APL. These objects do not reside in the workspace, but space is required for the actual
process of evaluation to accommodate temporary data. During execution, APL records
the state of execution through the STATE INDICATOR which is dynamically
maintained until the process is complete. Space is also required to identify objects in
the workspace in the SYMBOL TABLE. Maintenance of the symbol table is entirely
dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved workspace
into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise
unrestricted. See your UNIX documentation for details.

Under Windows, Dyalog APL workspaces are stored in files with the suffix ".DWS".
However, they are referred to from within APL by only the first part of the file name
which must conform to Windows file naming rules.

2 Dyalog APL/W Language Reference

Namespaces

A namespace is a nameclass 9 object in Dyalog APL. Namespaces are analogous to
nested workspaces.

‘Flat> APL Workspace Workspace with Namespaces
DISPLAY FOO MAT VEC
FOO MAT VEC DISPLAY
WsDoc_Init
WsDoc_Tree Init
WsDoc_Xref Mo [Init
Tree line
Xref [729e
WsDoc_prt_Init
WsDoc_prt_Page
WsDoc_current_Lline

They provide the same sort of facility for workspaces as directories do for filing
systems. The analogy might prove helpful:

Operation MS-DOS Namespace
Create MKDIR JNS or [INS
Change CD)CS

Relative name DIRI\DIR2\FILE

NS1.NS2.0BJ

Absolute name \DIR\FILE #.NS.0OBJ
Name separator \ .

Top (Root) object \ #

Parent object .. ##

Chapter 1 Introduction 3

Major Benefits of Namespaces

Namespaces provide static (as opposed to dynamic) local names. This means that a
defined function can use local variables and functions which persist when it exits and
which are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL’s traditional name-clash problem is ameliorated in several ways.

Workspaces can be arranged so that there are many fewer names at each namespace
level. This means that when copying objects from saved workspaces there is a much
reduced chance of a clash with existing names.

Utility functions in a saved workspace may be coded as a single namespace and
therefore on being copied into the active workspace consume only a single name.
This avoids the complexity and expense of a solution which is sometimes used in
'flat' workspaces, where such utilities dynamically fix local functions on each call.

In flat APL, workspace administration functions such as WSDOC must share names
with their subject namespace. This leads to techniques for trying to avoid name
clashes such as using obscure name prefixes like ' AAL1". This problem is now
virtually eliminated because such a utility can operate exclusively in its own
namespace.

The programming of GUI objects is considerably simplified.

An object’s callback functions may be localised in the namespace of the object
itself.

Static variables used by callback functions to maintain information between calls
may be localised within the object.

This means that the object need use only a single name in its namespace.

4 Dyalog APL/W Language Reference

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrangement
of items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the [JOR of an object. An array which is part of another
array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

e An array with 0 axes (rank 0) is called a scalar.
e An array with 1 axis (rank 1) is called a vector.
e An array with 2 axes (rank 2) is called a matrix.

e An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along each
axis of an array is called its shape. The shape of an array is itself a vector. Its first item
is the length of the first axis, its second item the length of the second axis, and so on.
An array, whose length along one or more axes is zero, is called an empty array.

Depth

An array whose items are all simple scalars (i.e. single numbers, characters or refs) is
called a simple array. If one or more items of an array is not a simple scalar (i.e. is
another array, or a [JOR), the array is called a nested array. A nested array may contain
items which are themselves nested arrays. The degree of nesting of an array is called its
depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-dimensional
array has depth 1. An array whose items are all depth 1 subarrays has depth 2; one
whose items are all depth 2 subarrays has depth 3, and so forth.

Chapter 1 Introduction 5

Type

An array, whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Numbers

Dyalog APL supports both real numbers and complex numbers.

Numbers are entered or displayed using conventional decimal notation (e.g.
299792.458) or using a scaled form (e.g. 2.999792458ES5).

On entry, a decimal point is optional if there is no fractional part. On output, a number
with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

a) an integer or decimal number called the mantissa,
b) the letter E or e,
c¢) an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

12 23.24% 23.0 2.145E2
12 23.24% 23 214.5

Negative numbers are preceded by the high minus (7) symbol, not to be confused with
the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example

T22 2.145E72 T10.25
722 0.02145 710.25

Complex numbers use the J notation introduced in IBM APL2 and are written as aJb or
ajb (without spaces) where the real and imaginary parts a and b are written as
described above. The capital J is always used to display a value.

Examples

2+471%.5

271

.3j.5

0.3J0.5
1.2E5J 4E™Y

120000J70.000%

The empty vector (10) may be represented by the numeric constant € called ZILDE.

Dyalog APL/W Language Reference

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples

'DYALOG APL'
DYALOG APL

"I DON''T KNOW'
I DON'T KNOW

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following means:
e Dby the enclose function (<)

e Dby inclusion in vector notation

e as the result of certain functions when applied to arrays

Examples

(c1 2 3),c'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

Chapter 1 Introduction

Legal Names

APL objects may be given names. A name may be any sequence of characters, starting
with an alphabetic character, selected from the following:

0123456789 (but not as the 1% character in a name)
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

Nza

ARARRECEEEETITIITONOOOOOBUUDUYR

0 >
>
V113

>
> o

432086861 1113M066560UGAMP

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Note that using a standard Unicode font (rather than APL385 Unicode used in the table

above), the last row above would appear as the circled alphabet, ® to @.

Examples
Legal Illegal
THISAISAAANAME BAD NAME
X123 3+21
SALES SIH|PRICE
pib_1 1_pjb

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow («).
Examples

A<'CHIPS WITH EVERYTHING'

A
CHIPS WITH EVERYTHING

X Y<'ONE' 'TWO'

X
ONE

Y
TWO

8 Dyalog APL/W Language Reference

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are the
enclosed arrays resulting from each expression. This is known as VECTOR (or
STRAND) NOTATION. Each expression in the series may consist of one of the

following:
a) a single numeric value;
b) a single character, within a pair of quotes;
c) more than one character, within a pair of quotes;
d) the name of a variable;
e) the evaluated input symbol [J;
f) the quote-quad symbol [1;
2) the name of a niladic, defined function yielding a result;
h) any other APL expression which yields a result, within parentheses.
Examples
pA«2 4 10
3

pTEXT«'ONE' 'TWO'
2

Numbers and characters may be mixed:
pX«'THE ANSWER IS ' 10

X[1]
THE ANSWER IS

X[2] + 32
42

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair '+~
indicates the phrase 'is equivalent to'.

Chapter 1 Introduction 9

1 2 > (1)(2) <=1 (2) <= (1) 2
2'X'3 > 2 'X' 3 > (2) ('X') (3)
1 (2+2) <= (1) ((2+2)) <= ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

pX « 1 (2 3 4) ('THIS' 'AND' 'THAT')

X[2]
2 3 4

X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:
Y « (2+2) 'IS' &4
Y

L IS &4

The following identity holds:
A B C <> (cA), (<B), <C

Restructuring Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (p), ravel, laminate and catenate (,), reversal
and rotation (¢), transpose (®), mix and take (1), split and drop (V), and enclose (<).
These functions are described in Chapter 4.

Examples
2 2p1 2 3 &
12
3 4
2 2 4p'ABCDEFGHIJKLMNOP'
ABCD
EFGH
IJKL

10

Dyalog APL/W Language Reference

42 4p'COWSHENS'
COWS HENS

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin. A
number is separated from the next adjacent element by a single space. The number of
significant digits to be printed is determined by the system variable [JPP whose default
value is 10. The fractional part of the number will be rounded in the last digit if it
cannot be represented within the print precision. Trailing zeros after a decimal point
and leading zeros will not be printed. An integer number will display without a decimal
point.

Examples

0.1 1.0 1.12
0.1 1 1.12

IAI 2 IBI ICI
A 2 BC

3 2 6

0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in PP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is represented
in scaled form. The mantissa will display up to PP significant digits, but trailing zeros
will not be displayed.

Examples
Opp<3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E77

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and width
for each column is determined independently of other columns. A column is treated as
numeric if it contains any numeric elements. The width of a numeric column is
determined such that the decimal points (if any) are aligned; that the E characters for
scaled formats are aligned, with trailing zeros added to the mantissae if necessary, and
that integer forms are right-adjusted one place to the left of the decimal point column (if
any). Numeric columns are right-justified; a column which contains no numeric
elements is left-justified. Numeric columns are separated from their neighbours by a
single column of blanks.

Chapter 1 Introduction 11

Examples

2 4Lp'HANDFIST'
HAND
FIST

123 00.x6 25
6 2 5
12 4 10
18 6 15

2 3p2 4+ 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4p4 'A' 'B' 5 T0.000000003 'C' 'D' 123.56
LEO AB 5
“3E79 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples

13
12 3

c13
12 3

cc13

123

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
ONE 1 TWO 2 THREE 3 FOUR &

2 4p'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TwWO 2
THREE 3 FOUR 4

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by
one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed in
the same manner as matrices.

12 Dyalog APL/W Language Reference

Examples
2 3 4pi2lk
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
3 1 1 3p'THEREDFOX'
THE
RED
FOX

The power of this form of display is made apparent when formatting informal reports.

Examples

+AREAS«'West' 'Central' 'East'
West Central East

+PRODUCTS«+'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES«50 5.25 75 250 20.15 900 500
SALES,«80.98 650 1000 90.03 1200
+SALES<«4 3pSALES
50 5.25 75
250 20.15 900
500 80.98 650
1000 90.03 1200

' ' PRODUCTS 5., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650

Rolls 1000 90.03 1200

Chapter 1 Introduction 13

If the display of an array is wider than the page width, as set by the system variable
0PW, it will be folded at or before JPW and the folded portions indented six spaces. The
display of a simple numeric or mixed array may be folded at a width less than [JPW so
that individual numbers are not split across a page boundary.

Example
OPW<40

73 20p100
54 22 5 68 68 9% 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49
1 39 7 42 69 49 94
76 100 37 25 99 73 76
90 91 7 91 51 52 32

The Display Function

The DISPLAY function is implemented as a user command]display distributed
with Dyalog APL and may be used to illustrate the structure of an array. Jdisplay is
monadic. Its result is a character matrix containing a pictorial representation of its
argument.]display is used throughout this manual to illustrate examples. An array
is illustrated with a series of boxes bordering each sub-array. Characters embedded in
the border indicate rank and type information. The top and left borders contain symbols
that indicate its rank. A symbol in the lower border indicates type. The symbols are
defined as follows:

Vector.

Matrix or higher rank array.
Empty along last axis.

Empty along other than last axis.
Nested array.

Numeric data.

Character data.

+ Mixed character and numeric data.
v [OR object.

array of refs.

ldisplay 'ABC

tm © 0 «

' (1 4pl 2 3 4)

- ~—————— |

14 Dyalog APL/W Language Reference

Prototypes and Fill ltems

Every array has an associated prototype which is derived from the array's first item.

If the first item is a number, the prototype is 0. Otherwise, if the first item is a character,
the prototype is ' ' (space). Otherwise, if the first item is a (ref to) an instance of a
Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:
Array Prototype
12 3.4 0
2 3 5p'hello’ b
99 'b' 66 0
(1 2)(3 4 5) 00
((1 2)3)(4 5 6) (0 0)0
'hello' 'world' ' '
ONEW MyClass MyClass
(88 ([ONEW MyClass)'X')7 | 0 MyClass ' '

Chapter 1 Introduction 15

Fill Items

Fill items for an overtake operation, are derived from the argument's prototype. For
each O or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and
for each class reference in the prototype, there is a ref to a (newly constructed and
distinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples:

b+1 2

1200
4t+'ab'

ab
Lt(1 2)(3 4 5)

12 345 00 00O

2+[ONEW MyClass

#.[Instance of MyClass] #.[Instance of MyClass]

In the last example, two distinct instances are constructed (the first by JNEW and the
second by the overtake).

Fill items are used in a number of operations including:
e First (> or 1) of an empty array
e Fill-elements for overtake

e For use with the Each operator on an empty array

16

Dyalog APL/W Language Reference

Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols or
constants or names representing arrays (variables) or functions. An expression which
produces an array is called an ARRAY EXPRESSION. An expression which produces
a function is called a FUNCTION EXPRESSION. Some expressions do not produce a
result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by parentheses.
If an entire expression results in an array that is not assigned to a name, then that array
value is displayed. (Some system functions and defined functions return an array result
only if the result is assigned to a name or if the result is the argument of a function or
operator.)

Examples
X«2x3-1
2x3-1

"

(2x3)-1

5

Either blanks or parentheses are required to separate constants, the names of variables,
and the names of defined functions which are adjacent. Excessive blanks or sets of
parentheses are redundant, but permitted. If F is a function, then:

F2es F(2) < (F)2 <> (F) (2) «= F (2) « F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

2 e (-)(2) <> () 2
Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic operator

must have its right argument available when encountered. The following syntactical
forms are accepted:

(+,x) «-> (+),x “«> +_(x)
The use of parentheses in the following examples is not accepted:

+(.)x or (+.)x

Chapter 1 Introduction 17

Functions

A function is an operation which is performed on zero, one or two array arguments and
may produce an array result. Three forms are permitted:

e NILADIC defined for no arguments
e MONADIC defined for a right but not a left argument
e DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially represents
both a monadic and a dyadic function, though it might not be defined for both. The
usage in an expression is determined by syntactical context. If the usage is not defined
an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic function
has short scope on the left; that is, the left argument of the function is the array
immediately to its left. Left scope may be extended by enclosing an expression in
parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be displayed
on completion of evaluation of the expression. This applies on assignment to a variable
name. It applies for certain system functions, and may also apply for defined functions.

Examples
10x5-2xk4
~30
2xl
8
5-8
-3
10x~3
~30
(10x5)-2xk

42

18

Dyalog APL/W Language Reference

Defined Functions

Functions may be defined with the system function OF X, or with the function editor. A
function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({ }). If an ambivalent function is called monadically, the
left argument has no value inside the function. If the explicit result is to be suppressed
for display purposes, the result is shown within braces. A function need not produce an
explicit result. Refer to Chapter 2 for further details.

Example

v R<{A} FOO B
[1] R<>'MONADIC' 'DYADIC'[IO+0=[NC'A"']
[2] V¥

FOO 1
MONADIC

X' FOO 'Y'
DYADIC

Functions may also be created by using assignment («).

Chapter 1 Introduction 19

Function Assignment & Display

The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dynamic Functions). If the result of a function-
expression is not given a name, its value is displayed. This is termed FUNCTION
DISPLAY.

Examples
PLUS«+
PLUS

+
SUM«+/
SUM

+/

Function expressions may include defined functions and operators. These are displayed
as a V followed by their name.

Example
vV R«<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
\'4
MEAN
VMEAN
AVERAGE<MEAN
AVERAGE
VMEAN
AVG<MEANo ,
AVG

VMEAN o,

20

Dyalog APL/W Language Reference

Operators

An operator is an operation on one or two operands which produces a function called a
DERIVED FUNCTION. An operand may be a function or an array. Operators are not
ambivalent. They require either one or two operands as applicable to the particular
operator. However, the derived function may be ambivalent. The derived function
need not return a result. Operators have higher precedence than functions. Operators
have long scope on the left. That is, the left operand is the longest function or array
expression on its left. The left operand may be terminated by:

1. the end of the expression

2. the right-most of two consecutive functions

3. afunction with an array to its left

4. an array with a function to its left

5. anarray or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an operator
is the single function or array on its right. Right scope may be extended by enclosing an
expression in parentheses.

Examples
p"X<'WILLIAM' 'MARY' 'BELLE'
7 4 5
pop X
1 1 1
(pep) X
1 1 1

Qo<«oQVR™'PLUS' 'MINUS'
V R<A PLUS B
[1] R<A+B
v
V R<A MINUS B
[1] R<A-B
v

PLUS/1 2 3 4
10

Chapter 1 Introduction 21

Defined Operators

Operators may be defined with the system function 0F X, or with the function editor. A
defined operator consists of a HEADER which identifies the syntax of the operator, and
a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax defines
the operator name, its operand(s), the argument(s) to its derived function, and the result
(if any) of its derived function. The names of the operator and its operand(s) are
separated from the name(s) of the argument(s) to its derived function by parentheses.

Example
vV R<A(F AND G)B
[1] R«(A F B)(A G B)
\4

The above example shows a dyadic operator called AND with two operands (F and G).
The operator produces a derived function which takes two arguments (A and B), and
produces a result (R).

12 +AND+ &
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) 4
12 3 4+ 12 5 4

12 (x AND 5) 4
48 12 5 4

22 Dyalog APL/W Language Reference

Complex Numbers

A complex number! is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and 7 is the standard
imaginary unit with the property = —1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of a
complex number which is written as aJb or a jb (without spaces). The former
representation (with a capital J) is always used to display a value.

Notation

2+71%.5
271

.3j.5
0.3J0.5

1.2E5J74E™ 4
120000J70.000%

Arithmetic

The arithmetic primitive functions handle complex numbers in the appropriate way.

2j3+.3j.5 A (a+bi)+(c+di) (a+c)+(b+d)i
2.3J3.5

2j3-.33j5 A (a+bi)-(c+di)
1.7J72

(a-c)+(b-d)i

ac+bci+adi+bdi?
(ac-bd)+(bc+ad)i

233x.3j5.5 A (a+bi)(c+di)
A

~0.9J1.9

1 http://en.wikipedia.org/wiki/Complex_number

Chapter 1 Introduction 23

The absolute value, or magnitude of a complex number is naturally obtained using the
Magnitude function

1334

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...
+3jk
3774
... which when multiplied by the complex number itself, produces the square of its
magnitude.

3j4x3j7 4
25

Furthermore, adding a complex number and its conjugate produces a real number:

3j4+3j7 4
6

The famous Euler's Identity may be expressed as follows:

1+%x00j1 @ Euler Identity

Circular functions

The basic set of circular functions XoY cater for complex values in Y, while the
following extended functions provide specific features for complex arguments. Note
that a and b are the real and imaginary parts of Y respectively and 6 is the phase of Y..

(-X) oY X |[XoyY

-8oY 8 | (-1+Y%x2)x%0.5
Y 9 a

+Y 10| 1Y

Yx0J1 11

*Yx0J1 12

Note that 90Y and 110Y return the real and imaginary parts of Y respectively:

9 1103.5J71.2
3.5 71.2

9 110.03.57J71.2 2J3 3J4
3.5 2 3
1.2 3 4

24 Dyalog APL/W Language Reference

Different Result for Power

In Version 13.0, the implementation of X*Y (Power) gives a different answer for
negative real X than in all previous Versions of Dyalog APL. This change is however in
accordance with the ISO/EEC 13751 Standard for Extended APL.

In Version 13.0, the result is the principal value; whereas in previous Versions the result
is a negative or positive real number or DOMAIN ERROR. The following examples
illustrate this point:

8 x 1 2 + 3 A Version 12.1
204

8 x 1 2 + 3 A Version 13.0
1J1.732050808 72J3.464101615

*x (1 2+ 3) xe 78 A Version 13.0
1J1.732050808 72J3.464101615

Chapter 1 Introduction 25

Comparison

In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y does
not exceed [JCT times the larger of the magnitudes of X and Y; geometrically, X=Y if the
number smaller in magnitude lies on or within a circle centred on the one with larger
magnitude, having radius [JCT times the larger magnitude.

A=R
A=LC
AzD B
' A
. D
r
r:\
0
FeOct=]|aA

As with real values, complex values sufficiently close to Boolean or integral values are
accepted by functions which require Boolean or integral values. For example:
2jle™14 p 12
12 12
0 vV 1j1e715
0
Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary
floating-point numbers, regardless of the setting of [JFR. Thus, comparisons between
complex numbers and decimal floating-point numbers are subject to JCT, not ODCT.
This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real plane.

26 Dyalog APL/W Language Reference

128 Bit Decimal Floating-Point Support

Introduction

The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point values,
does not have sufficient precision for certain financial computations — typically
involving large currency amounts. The binary representation also causes errors to
accumulate even when all values involved in a calculation are “exact” (rounded)
decimal numbers, since many decimal numbers cannot be accurately represented
regardless of the precision used to hold them. To reduce this problem, Dyalog APL
includes support for the 128-bit decimal data type described by IEEE-754-2008 as an
alternative representation for floating-point values.

System Variable: JFR

Computations using 128-bit decimal numbers require twice as much space for storage,
and run more than an order of magnitude more slowly on platforms which do not
provide hardware support for the type. At this time, hardware support is only available
from IBM (Power chips starting with the “P6”, and recent “z” series mainframes). Even
with hardware support, a slowdown of a factor of 4 can be expected. For this reason,
Dyalog allows users to decide whether they need the higher-precision decimal
representation, or prefer to stay with the faster and smaller binary representation.

A new system variable JFR (for Floating-point Representation) can be set to the value
645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal FP.
The default value of JFR is configurable.

Simply put, the value of [JFR decides the type of the result of any floating-point
calculation that APL performs. In other words, when entered into the session:

0Fr
OFr

(DR 1.23% A Type of a floating-point constant
DR 334 A Type of any floating-point result

Chapter 1 Introduction 27

[FR has workspace scope, and may be localised. If so, like most other system variables,
it inherits its initial value from the global environment.

However: Although (JFR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of is not
recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of JFR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of [JFR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body of a
function. If the function was edited and while suspended and execution is resumed, the
result would become 1. Also note:

[FR«1287
x«1+3

OFR«645

x=1+3
1
The decimal number has 17 more 3’s. Using the tolerance which applies to binary floats
(type 645), the numbers are equal. However, the “reverse” experiment yields 0, as
tolerance is much narrower in the 128-bit universe:

OFR«645
x«1+3

OFR«1287

x=1+3
0
Since (FR can vary, it will be possible for a single workspace to contain floating-point
values of both types (existing variables are not converted when [JFR is changed). For
example, an array that has just been brought into the workspace from external storage
may have a different type from [JFR in the current namespace. Conversion (if
necessary) will only take place when a new floating-point array is generated as the
result of “a calculation”. The result of a computation returning a floating-point result
will not depend on the type of the arrays involved in the expression: JFR at the time
when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

OFR«1287
x<«1.1 2.2 3.3

OFR«645
Odr x

Odr 2tx

1287
1287

28

Dyalog APL/W Language Reference

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range — from 1E6145 to 1E6145. Loss of precision
is accepted on conversion from 645 to 1287, but the magnitude of a number may make
the conversion impossible, in which case a DOMAIN ERROR is issued:

OFR<«1287
x<1E1000

OFR<645
x+0
DOMAIN ERROR

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not recommended,
because:

e any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, potentially
losing precision

e all comparisons are done using DCT when 0FR is 1287, and this is equivalent
to 0 for complex numbers.

Conversion between Decimal and Binary

Conversion of data from Binary to Decimal is logically equivalent to formatting, and
the reverse conversion is equivalent to evaluating input. These operations are performed
according to the same rules that are used when formatting (and evaluating) numbers
with PP set to 17 (guaranteeing that the decimal value can be converted back to the
same binary bit pattern). Because the precision of decimal floating-point numbers is
much higher, there will always be a large number of potential decimal values which
map to the same binary number: As with formatting, the rule is that the SHORTEST
decimal number which maps to a particular binary value will be used as its decimal
representation.

Data in component files will be stored without conversion, and only converted when a
computation happens. It should be stored in decimal form if it will repeatedly be used
by application code in which [JFR has the value 1287. Even in applications which use
decimal floating point everywhere, reading old component files containing arrays of
type 645, or receiving data via [INA, the .Net interface or other external sources, will
allow binary floating-point values to enter the system and require conversion.

ODCT - Decimal Comparison Tolerance

When [FR has the value 1287, the system variable [IDCT will be used to specify
comparison tolerance. The default value of IDCT is 1E~28, and the maximum value is
2.3283064365386962890625E7 10 (the value is chosen to avoid fuzzy
comparison of 32-bit integers).

Chapter 1 Introduction 29

Passing floating-point values using [OJNA

[ONA supports the data type “D” to represent the Densely Packed Decimal (DPD) form
of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard. Dyalog has
decided to use DPD, which is the format used by IBM for hardware support, on ALL
platforms, although “Binary Integer Decimal” (BID) is the format that Intel libraries use
to implement software libraries to do decimal arithmetic. Experiments have shown that
the performance of 128-bit DPD and BID libraries are very similar on Intel platforms.
In order to avoid the added complication of having two internal representations, Dyalog
has elected to go with the hardware format, which is expected to be adopted by future
hardware implementations.

The support libraries for writing AP’s and DLL’s include new functions to extract the
contents of a value of type D as a string or double-precision binary “float” — and convert
data to D format.

Decimal Floats and Microsoft.NET

The Microsoft. NET framework contains a type named System.Decimal, which
implements decimal floating-point numbers. However, it uses a different internal format
from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will
perform arithmetic on data represented using the “Binary Integer Decimal” format. All
computations performed by the Dyalog.Dec128 class will produce exactly the same
results as if the computation was performed in APL. A “DCT” property allows setting
the comparison tolerance to be used in comparisons, Ceiling/Floor, etc).

The Dyalog class is modelled closely after the existing System.Decimal type, providing
the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals, Finalize,
Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode,
MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*,
Truncate, TryParse) and operators (Addition, Decrement, Division, Equality, Explicit,
GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan,
LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

30 Dyalog APL/W Language Reference

The “bridge” between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other
reasonable casts to integer types etc). Casting a Dyalog.Dec128 to or from strings will
perform a “lossless” conversion.

The .Net type System.Int64 will now always be cast to a 128-bit decimal number when
entering Dyalog APL, regardless of the setting of [J[FR. So long as no 64-bit arithmetic
is performed on such a value, it will remain a 128-bit number and can be passed back to
.Net without loss.

Chapter 1 Introduction 31

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using a
. ' syntax; for example:

X.NUMB « 88
sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99

calls dyadic function FOO in namespace UTIL with left and right arguments of 88 and
99 respectively. The interpreter can distinguish between this use of ' . ' and its use as
the inner product operator, because the leftmost name: UTIL is a (class 9) namespace,
rather than a (class 3) function.

The general namespace reference syntax is:
SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR is
any APL expression to be resolved in the resulting namespace.

There are two special space names:
is the top level or 'Root' namespace.
is the parent or space containing the current namespace.

[SE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE.NO +<« 1 A Increment WSDOC page count
#.0ONL 2 A Variables in root space
UTIL.OFX 'Z<DUP A' 'Z<«A A' A Fix remote function
##.0ED'FOO' A Edit function in parent space

OSE.RECORD <« PERS.RECORD A Copy from PERS to [SE

UTIL.(OEX ONL 2) A Expunge variables in UTIL

(o0SE #).(e>¢[ONL 9).(ONL 2) A Vars in first [SE
A namespace.

UTIL.&STRING A Execute STRING in UTIL space

32

Dyalog APL/W Language Reference

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by JEXPORT and [JPATH. If you reference a name that is
undefined in the current space, the system searches for it in the list of exported names
defined for the namespaces specified by JPATH. See JEXPORT and OPATH for further
details.

Evaluation

When the interpreter encounters a namespace reference, it:

- Switches to the namespace.
- Evaluates the name.
- Switches back to the original namespace.

If for example, in the following, the current namespace is # . W, the interpreter evaluates
the line:

A « X.Y.DUP MAT
in the following way:

- Evaluate array MAT in current namespace W to produce argument for function.
- Switch to namespace X .Y within W,

- Evaluate function DUP in namespace W. X .Y with argument.

- Switch back to namespace W,

- Assign variable A in namespace W.

Static Vs Dynamic Localisation

The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by a
defined function or operator. If the name does not appear in the state indicator, then the
workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace.
When a name is referenced, the interpreter searches only those lines of the state
indicator which belong to the home namespace. If the name does not appear in any of
these lines, the home namespace-global value is assumed.

Chapter 1 Introduction 33

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FNUu, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FNG:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and in

addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

JNS NS1 A Make a namespace called NS1
NS1.A«1 A and populate it with variables A
NS1.B<«2 3p16 A and B
NS1 A expression results in a ref
#.NS1
You may assign a ref; for example:
X<NS1
X
#.NS1

In this case, the display of X informs you that X refers to the named namespace #.NS1.

34 Dyalog APL/W Language Reference

You may also supply a ref as an argument to a defined or dynamic function:

vV FOO ARG
[1] ARG

v

FOO NS1
#.NS1

The name class of a ref’is 9.
ONC 'X'
9

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

X.A
1

X.B
123
L 56

Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

X.A+<1
X.A
2
NS1.A
2

Similarly, a ref passed to a defined function is call-by-reference, so that modifications to
the content or properties of the argument namespace using the passed reference persist
after the function exits. For example:

V FOO nsref
[1] nsref.B+<nsref.A
\'
FOO NS1
NS1.8B
3 45
6 7 8

Chapter 1 Introduction 35

FOO X
NS1.B
56 17
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C<AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

Unnamed Namespaces

The monadic form of [INS makes a new (and unique) unnamed namespace and returns a
ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN<NS "'
JOHN
#.[Namespace]

JOHN.FirstName<«'John'
JOHN.FirstName
John

JOHN.LastName<«'Smith'

JOHN.Age<«50
Data variables for the second record, PAUL, can be established using strand, or vector,
assignment:

PAUL<[NS "'
PAUL.(FirstName LastName Age<«'Paul' 'Brown' Uul)

36

Dyalog APL/W Language Reference

The function SHOW can be used to display the data in each record (the function is split
into 2 lines only to fit on the printed page). Notice that its argument is a ref.

V R«SHOW PERSON
[1] R<PERSON.FirstName,' ',PERSON.LastName
[2] R, «' is ',sPERSON.Age

\

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 44

An alternative version of the function illustrates the use of the :With :EndWith
control structure to execute an expression, or block of expressions, within a namespace:

V R«<SHOW1 PERSON
[1] :With PERSON
[2] R<FirstName,' ',LastName,' is ', (wAge)
[3] :EndWith

\

SHOW1 JOHN
John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

V R<SHOW2 PERSON
[1] R<PERSON.(FirstName,' ',LastName,' is ',(sAge))
\
SHOW2 PAUL
Paul Brown is 44

Dynamic functions also accept refs as arguments:

SHOW3<«{
w.(FirstName,' ',LastName,' is ',sAge)

SHOW3 JOHN
John Smith is 50

Chapter 1 Introduction 37

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (p).

EMP«<JOHN PAUL
pEMP

EMP
#.[Namespace] #.[Namespacel

Like any other array, an array of refs has name class 2:

ONC 'EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as follows:

EMP[1].FirstName
John

(2oEMP) . Age
Ll

The each () operator may be used to apply a function to an array of refs:

SHOW EMP
John Smith is 50 Paul Brown is L4

An array of namespace references (refs) to the left of a ©.’ is expanded according to the
following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp = (x.exp)(y.exp)

If exp evaluates to a function, the items of its argument array(s) are distributed to each
referenced function. In the dyadic case, there is a 3-way distribution among: left
argument, referenced functions and right argument.

Monadic function f: (x y).f de > (x.f d)(y.f e)
Dyadic function g: ab(xy).g de > (a x.gd)(by.ge)
An array of refs to the left of an assignment arrow is expanded thus:

(x y).asc d > (x.a<«c)(y.a<d)

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref .exp.

38 Dyalog APL/W Language Reference

Note that the expression to the right of the ‘.’ pervades a nested array of refs to its left:
((u v)(x y)).exp » ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). .., the final number of
‘leaf” terms is the product of the number of refs at each level.

Examples:

JOHN.Children<[INS™'"' "'
pJOHN.Children

2
JOHN.Children[1].FirstName<'Andy'
JOHN.Children[1].Age<«23
JOHN.Children[2].FirstName«'Katherine'
JOHN.Children[2].Age<«19
PAUL.Children<NS™"'" "'
PAUL.Children[1].(FirstName Age<«'Tom' 25)
PAUL.Children[2].(FirstName Age<«'Jamie' 22)
pEMP

2
(2EMP).Children.(FirstName Age)

Andy 23 Katherine 19

Jdisplay (22EMP).Children.(FirstName Age)

| s . P mm———————

| | .- | S ||

| | ITom| 25 | | |Jamiel| 22 | |

| I '=--- I ' ||

IlE _________] IE ___________ II

le ____________________________ 1

EMP.Children a Is an array of refs
#.[Namespace] #.[Namespacel #.[Namespace]

EMP.Children. (FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Chapter 1 Introduction 39

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive functions
such as ‘+’. The mechanism can be viewed as a way of naming the parts of a structure.

Examples:

EMP. (FirstName Age)
JOHN 43 PAUL 44

EMP. (FirstName Age)<«('Jonathan' 21)('Pauline' 22)

EMP. (FirstName Age)
Johnathan 21 Pauline 22

A Distributed assignment is pervasive
JOHN.Children.(FirstName Age)
Andy 23 Katherine 19
JOHN.Children.(FirstName Age)<«('Andrew' 21)('Kate' 9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

More Examples:
((a b)(c d))«(1 2)(3 4) A a<l ¢ b«2 0 c«3 o d«k

((Oio Oml)vec)«0 Oav A Oio<0 ¢ Oml«0 ¢ vec<[av
(i (j k))+<l 2 A itel O j+e2 o k+<2
A Naming of parts:
((first last) sex (street city state))«nopvec
A Distributed assignment in :For loop:
:For (i j)(k L) :In array
A Ref array expansion:

(x y).(first last)«('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption«c'OK' 'Cancel'

40 Dyalog APL/W Language Reference

A Structure rearrangement:

rotatel«{ A Simple binary tree rotation.
(a b c)d ecw
a b(c d e)

rotate3«{ A Compound binary tree rotation.

(a b(c d e))f g«w
(a b c)d(e f g)

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT«+{twp"'0"}
JOHN.PLOT 10

1]
ao
000
00oo
0oo0oo
000000
0000000
00000000
000000000
0000000000
PAUL.PLOT«{(w, " 1)p"'O"}
PAUL.PLOT 110
0 00O0OCOOO OTO OTO OO O
0 00O0OOG0TO 0TQ QT oa
0 00O0O©0TU 0TQGaGQSao
0000000
o0 0a0a0ad
o000 a0
o0 0 o
o0 0
o 0
a
EMP.PLOTc110 @ (temporary vector of functions)
1l 0O o000 E 0o o 0 1l
0o 000000 0aa¢o0ad
0oo 0O O00O0O©0T 0TQGaQSao
0ooo O T 1 O O A
00000 O o00G0¢a0an
000000 O o00G0a0
0000000 O o000
00000000 oo 0
000000000 O O
0000000000 0

Chapter 1 Introduction 4

(x y).ONL 2 3 A

varx funy

(x y).0ONLc2 3
funx funy
varx vary

(x y).(ONL™)e2 3
varx funx vary funy

'v'(x y).ONL 2 3
varx

'vf'(x y).ONL 2 3
varx funy

'vf'(x y).0ONLe2 3
varx funy

x.ONL 2 3
funx
varx

(x y).0ONL<2 3
funx funy
varx vary

(Cu v)(x y)).ONLec2 3
funu funv funx funy
varu varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4)
23 55 728

A

tvars, y:fns

x&y: vars&fns

x&y: separate vars&fns
x:v-vars, y:v-fns
x:v-vars, y:f-fns
x:v-vars&fns,

y:f-vars&fns

depth 0 ref

depth 1 refs

depth 2 refs

argument distribution.

42

Dyalog APL/W Language Reference

Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an
argument, it executes in its home namespace, irrespective of the namespace from which

the operator was invoked or defined.

'Z<F R'

Examples
VAR<«99
NS X

#.X
X.VAR<77
X.OFX'Z«FN R' 'Z«R,VAR'
NS Y

#.Y
Y.VAR<88
Y.OFX'Z«(F OP)R'
X.FN"13

177 277 31717
X.FN 'VAR:'

VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

¢ Y.OP'VAR'
99

Summary

Apart from its use as a decimal separator (3. 14), .’ is interpreted by looking at the

type or class of the expression to its left:

A #.VAR

A X.VAR

A Y.VAR

Template | Interpretation Example

o, Outer product 2 3 o.x 4 5
function. | Inner product 2 3 +.x 45
ref. Namespace reference 2 3 x.foo 4 5

array . Reference array expansion

(x y).0nce'foo'

Chapter 1 Introduction 43

Threads

Overview

Dyalog APL supports multithreading - the ability to run more than one APL expression
at the same time.

This unique capability allows you to perform background processing, such as printing,
database retrieval, database update, calculations, and so forth while at the same time
perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.
A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling environment
is paused, pendent on the return of the called function. With an asynchronous call, both
calling environment and called function proceed to execute concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored or
its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace
availability. This implies a hierarchy in which a thread is said to be a child thread of its
parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching tree in
which the path from the base to each leaf is a thread.

44

Dyalog APL/W Language Reference

When a parent thread terminates, any of its children which are still running, become the
children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still in
use. The sequence is reinitialised when a)RESET command is issued, or the active
workspace is cleared, or a new workspace is loaded. A workspace may not be saved
with threads other than the base thread: 0, running.

Threads introduce new language elements.
e Primitive operator, spawn: &.
e System functions: JTID, OTCNUMS, OTNUMS, OTKILL, OTSYNC.
e Anextension to the GUI Event syntax to allow asynchronous callbacks.
e A control structure: :Hold.
e System commands:)HOLDS,) TID.
e Extended)SI and) SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by [IDQ when the event occurs, or by

OnQ.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

(wS'Event' 'Select' 'DoIt&'
tells JDQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object.

Chapter 1 Introduction 45

Thread Switching
Programming with threads requires care.
The interpreter may switch between running threads at the following points:
e Between any two lines of a defined (or dynamic) function or operator.
e While waiting for a JDL to complete.
e While waiting for a JFHOLD to complete.
e While awaiting input from:
0oQ
Osr
0eo
The session prompt or [J: or[J.
e While awaiting the completion of an external operation:
A call on an external (AP) function.
A call on a ONA (DLL) function
A call on an OLE function.
A call on a .Net function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread in
question passes through the switch point. It is the task of the application programmer to
organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Ho L d control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-priority
event which demands that the interpreter must return a result to Windows before it may
process any other event. Such high-priority events include Configure, ExitWindows,
DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not permitted to
use a : Ho L d control structure in a high-priority callback function.

46

Dyalog APL/W Language Reference

Name Scope

APL’s name scope rules apply whether a function call is synchronous or asynchronous.
For example when a defined function is called, names in the calling environment are
visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and ‘sibling’ functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of local
name clashes. For example, a GUI application can accommodate multiple concurrent
instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute, both
child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those children
will thenceforward ‘see’ local names in the environment that called the parent function.
In cases where a child function relies on its parent’s environment (the setting of a local
value of JIO for example), this would be undesirable, and the parent function would
normally execute a JTSYNC in order to wait for its children to complete before itself
exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls a
new function (either synchronously or asynchronously); names in the new function are
beyond the purview of the original child. In other words, a function can only ever see its
calling stack decrease in size — never increase. This is in order that the parent may call
new defined functions without affecting the environment of its asynchronous children.

Chapter 1 Introduction 47

Using Threads

Put most simply, multithreading allows you to appear fo run more than one APL
function at the same time, just as Windows (or UNIX) appears to run more than one
application at the same time. In both cases this is something of an illusion, although it
does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares
processing between threads. Although the mechanics are somewhat different, APL
multithreading is rather similar to the multitasking provided by Windows. If you are
running more than one application, Windows switches from one to another, allocating
each one a certain time slice before switching. At any point in time, only one
application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually running;
the others are paused. Each APL thread has its own State Indicator, or SI stack. When
APL switches from one thread to another, it saves the current stack (with all its local
variables and function calls), restores the new one, and then continues processing.

Stack Considerations

When you start a thread, it begins with the SI stack of the calling function and sees all
of the local variables defined in all the functions down the stack. However, unless the
calling function specifically waits for the new thread to terminate (see JTSYNC), the
calling functions will (bit by bit, in their turn) continue to execute. The new thread’s
view of its calling environment may then change. Consider the following example:

Suppose that you had the following functions: RUN[3] calls INIT which in turn calls
GETDATA but as 3 separate threads with 3 different arguments:

V RUN;A;B
1 A<1
[2] B<«'Hello World'
[3] INIT
[4] CALC
[5] REPORT

48

Dyalog APL/W Language Reference

v INIT;C;D
C«D+«0
GETDATA& 'Sales’
GETDATA&'Costs'
GETDATA& 'Expenses’
v

When each GETDATA thread starts, it immediately sees (via JSI) that it was called by
INIT which was in turn called by RUN, and it sees local variables A, B, C and D.
However, once INIT[4] has been executed, INIT terminates, and execution of the
root thread continues by calling CALC. From then on, each GETDATA thread no longer
sees INIT (it thinks that it was called directly from RUN) nor can it see the local
variables C and D that INIT had defined. However, it does continue to see the locals A
and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would still
see the values defined by RUN and not those defined by CALC. However, if CALC were
to modify A and B (as globals) without localising them, the GETDATA threads would
see the modified values of these variables, whatever they happened to be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-global
object (including GUI objects) is inherently dangerous (i.e. a source of programming
error) if more than one thread is running. Worse still, programming errors of this sort
may not become apparent during testing because they are dependent upon random
timing differences. Consider the following example:

vV BUG;SEMI_GLOBAL

m~mrersr
FWN ==
—t e e

[1] SEMI_GLOBAL<«0
[2] FOO8 1
[3] GOO& 1

v

v FOO

:If SEMI_GLOBAL=0

DO_SOMETHING SEMI_GLOBAL
tElse

DO_SOMETHING_ELSE SEMI_GLOBAL
:EndIf

[L Vo T T |
GOFWN -~
—

v GOO
[1] SEMI_GLOBAL<«1

Chapter 1 Introduction 49

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] » BUG[2] ~ FOO[1] -~ FOO[2] -
DO_SOMETHING[1]

or

BUG[1] » BUG[2] -» BUG[3] » GOO[1] ~
FOO[1] » FOO[2] » FOO[3] ~»
FOO[4] -~ DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines in a
defined function. In practice, because APL gives each thread a significant time-slice, it
is likely to execute many lines, maybe even hundreds of lines, in one thread before
switching to another. However, you must not rely on this; thread-switching may occur
at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to
DO_SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the value
of SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 ¢ DO_SOMETHING SEMI_GLOBAL
Even better, although less efficient, you may use : Ho L d to synchronise access to the
variable, for example:

vV FOO
[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold
\
v GOO
[1] :Hold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL<«1

[3] :EndHold
\

50

Dyalog APL/W Language Reference

Now, although you still cannot be sure which of FOO and GOO will run first, you can be
sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to : Ho L d is completely arbitrary, so long as
threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages, and
not just with Dyalog APL. If you want to take advantage of the additional power
provided by multithreading, it is advisable to think carefully about the potential
interaction between different threads.

Threads & Niladic Functions

In common with other operators, the spawn operator & may accept monadic or dyadic
functions as operands, but not niladic functions. This means that, using spawn, you
cannot start a thread that consists only of a niladic function

If you wish to invoke a niladic function asynchronously, you have the following
choices:

e Turn your niladic function into a monadic function by giving it a dummy
argument which it ignores.

e Call your niladic function with a dynamic function to which you give an
argument that is implicitly ignored. For example, if the function NIL is niladic,
you can call it asynchronously using the expression: {NIL}& 0

e Call your function via a dummy monadic function, e.g.

v NIL_M DUMMY
[1] NIL
\4
NIL_M& '

e Use execute, e.g.
& NIL'

Note that niladic functions can be invoked asynchronously as callback functions. For
example, the statement:

[OWS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because callback
functions are invoked directly by [0DQ rather than as an operand to the spawn operator.

Chapter 1 Introduction 51

Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the [INA interface
may be run in separate C threads. Such threads:

e take advantage of multiple processors if the operating system permits.

e allow APL to continue processing in parallel during the execution of a [JNA
function.

When you define an external function using [INA, you may specify that the function be
run in a separate C thread by appending an ampersand (&) to the function name, for
example:

'beep'[INA'user32|MessageBeep& i'
A MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded [JNA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads may
then run in parallel.

Note that when the [JNA call finishes and returns its result, its new C-thread is retained
to be re-used by any subsequent multithreaded [INA calls made within the same APL
thread. Thus any APL thread that makes any multi-threaded [JNA calls maintains a
separate C-thread for their execution. This C-thread is discarded when its APL thread
finishes.

Note that there is no point in specifying a [INA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your [INA call needs to access an APL GUI object (strictly, a window or
other handle) it should normally run within the same C-thread as APL itself, and not in
a separate C-thread. This is because Windows associates objects with the C-thread that
created them. Although you can use a multi-threaded [INA call to access (say) a Dyalog
APL Form via its window handle, the effects may be different than if the [INA call was
not multi-threaded. In general, (ONA calls that access APL (GUI) objects should not be
multi-threaded.

If you wish to run the same [INA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-safe,
must be prevented from running concurrently by using the : Ho l d control structure.
Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

52

Dyalog APL/W Language Reference

Synchronising Threads

Threads may be synchronised using fokens and a token pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from the
pool.

Tokens possess two separate attributes, a fype and a value.

The type of a token is a positive or negative integer scalar. The value of a token is any
arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique neither in
terms of their types nor of their values.

The following system functions are used to manage the token pool:

gTpuT Puts tokens into the pool.

OTGET If necessary waits for, and then retrieves some tokens from the pool.

OTPOOL | Reports the types of tokens in the pool

OTREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want one
thread to reach a certain point in processing before a second thread can continue.
Perhaps the first thread performs a calculation, and the second thread must wait until the
result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the pool
using JTPUT. The second thread waits (if necessary) for the new value to be available
by calling DTGET with the same token type.

Notice that when TGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by keeping
that number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads until
the coast is clear. At a signal from another thread, the latch is opened so that all of the
threads are released. The latch may (or may not) then be closed again to hold up
subsequently arriving threads. A practical example of a latch is a ferry terminal.

Chapter 1 Introduction 53

Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and return

it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open at

any one time.

sock«<99
OTPUT 5/sock

V sock_open

[1] :If sock=D+ééT sock
[.]

[.] OTPUT sock

[.] :Else

[.] error'sockets off'
[.] :EndIf

0 OTPUT Otreq Otnums

socket-token
any +ive number will do).
add 5 socket-tokens to pool.

grap a socket token
do stuff.
release socket token

sockets switched off by
retract (see below).

retract socket "service"
with 0 value.

54

Dyalog APL/W Language Reference

Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from another
thread, the latch is opened so that all of the threads are released. The latch may (or may
not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

tkt<b A 6-token: ferry ticket.
V car ...

[1] OTGET tkt A await ferry.

[2]
v ferry

[1] arrives in port
[2] OTPUT(t,/0Otreq Otnums)ntkt @A ferry tickets for all.
3

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_placest between OTPUT and its argument. If fewer
cars than the ferry capacity are waiting, the * will fill with trailing 0s. This will not
cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for traffic,
the barrier could be opened permanently by putting a negative ticket in the pool.

OTPUT -tkt A open ferry barrier permananently.
Cars could choose to take the last ferry if there are places:

V car ...
[1] :Select OTGET tkt
[2] :Case tkt ¢ take the last ferry.
[3] :Case -tkt ¢ ferry full: take the new bridge.
[4] :End

The above : Se lect works because by default, JTPUT -tkt puts a value of -tkt
into the token.

Chapter 1 Introduction 55

Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way. If

the Pause on Error option (see User Guide) is set, all other threads are paused. If Pause
on Error option (see User Guide) is not set, other threads will continue running and it is
possible for another thread to encounter an error and suspend.

Using the facilities provided by the Tracer and the Threads Tool (see User Guide) it is
possible to interrupt (suspend) and restart individual threads, and to pause and resume
individual threads, so any thread may be in one of three states - running, suspended or
paused.

The Tracer and the Session may be connected with any suspended thread and you can
switch the attention of the Session and the Tracer between suspended threads using
) TID or by clicking on the appropriate tab in the Tracer. At this point, you may:

e Examine and modify local variables for the currently suspended thread.
e Trace and edit functions in the current thread.

e (ut back the stack in the currently suspended thread.

e Restart execution.

e Start new threads

The error message from a thread other than the base is prefixed with its thread number:

260:DOMAIN ERROR
Div[2] rslt«num+div
A

State indicator displays:) ST and) SINL have been extended to show threads’ tree-like
calling structure.

)SI

#.Calc[1]

&5

. #.DivSub[1]
&7
. #.DivSub[1]
&6
#.Div[2]x

&L

#.Sub[3]

#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Di v
and Cal c. Function D1 v, after spawning Di vSub in each of threads 6 and 7, have
been suspended at line [2].

56

Dyalog APL/W Language Reference

Removing stack frames using Quit from the Tracer or -~ from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread) is
removed, the thread is expunged.

JRESET removes all but the base thread.
Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or
operator. It may be connected to the Session so that expressions executed in the Session
do so in the context of that thread. It may be restarted by executing ~ L i ne (typically,
~{LC).

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to [DQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A paused
thread resumes only in the sense that it ceases to be ignored by the thread scheduler and
will therefore be switched back to at some point in the future. It does not actually
continue executing until the switch occurs.

Chapter 1 Introduction 57

External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function OXT.
If at the time of association the file exists, the external variable assumes its value from
the contents of the file. If the file does not exist, the external variable is defined but a
VALUE ERROR occurs if it is referenced before assignment. Assignment of an array to
the external variable or to an indexed element of the external variable has the effect of
updating the file. The value of the external variable or the value of indexed elements of
the external variable is made available in the workspace when the external variable
occurs in an expression. No special restrictions are placed on the usage of external
variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different nodes
on a network, provided that the appropriate file access controls are established. Multi-
user access to an external variable may be controlled with the system function JF HOLD
between co-operating tasks.

Refer to the sections describing the system functions X T and OF HOLD in Chapter 6 for
further details.

Examples
"ARRAY' [OXT 'Vv'

V<110
v[2] + 5

Oex'v'
"ARRAY' [OXT 'F'

F
123456789 10

58 Dyalog APL/W Language Reference

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of APL
arrays known as components which are accessed by reference to their relative positions
or component number within the file. A set of system functions is provided to perform
a range of file operations. (See Chapter 6.) These provide facilities to create or delete
files, and to read and write components. Facilities are also provided for multi-user
access including the capability to determine who may do what, and file locking for
concurrent updates. (See User Guide.)

Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the Dyalog
APL interpreter through pipes (UNIX) or via an area of memory (Windows). Typically,
APs are used where speed of execution is critical, such as in screen management
software, or for utility libraries. Auxiliary Processors may be written in any compiled
language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it was
a locked defined function, but is in effect an entry point into the Auxiliary Processor.
An external function occupies only a negligible amount of workspace. (See User
Guide.)

Migration Level

(ML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes [JML has a value of 0.

Chapter 1 Introduction

59

Key to Notation

The following definitions and conventions apply throughout this manual:

f A function, or an operator's left argument when a function.
g A function, or an operator's right argument when a function.
A An operator's left argument when an array.

B An operator's right argument when an array.

X The left argument of a function.

Y The right argument of a function.

R The explicit result of a function.
[K] Axis specification.
[I] Index specification.

{X} The left argument of a function is optional.

{R}+« The function may or may not return a result, or the result may be suppressed.

The term function may refer to a primitive function, a system function, a defined
(canonical, dynamic or assigned) function or a derived (from an operator) function.

60 Dyalog APL/W Language Reference

61

CHAPTER 2

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2 functions
or arrays (known as operands) and produces a derived function as a result. To
simplify the text, the term operation is used within this chapter to mean function or
operator.

Canonical Representation

Operations may be defined with the system function [JF X (Fix) or by using the editor
within definition mode. Applying [JCR to the character array representing the name of
an already established operation will produce its canonical representation. A defined
operation is composed of lines. The first line (line 0) is called the operation HEADER.
Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,

2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol A.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

62

Dyalog APL/W Language Reference

Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of explicit
arguments or operands, either 0, 1 or 2; whence the operation is termed NILADIC,
MONADIC or DYADIC respectively. Only a defined function may be niladic. There
is no relationship between the valence of a defined operator, and the valence of the
derived function which it produces. Defined functions and derived functions produced
by defined operators may be ambivalent, i.e. may be executed monadically with one
argument, or dyadically with two. An ambivalent operation is identified in its model by
enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model within
braces. Such a suppressed result is termed SHY.

Figures 2(i), 2(ii) and 2(iii) show all possible models for defined functions and
operators respectively.

Defined Functions

Result Niladic Monadic Dyadic Ambivalent
None f fy X fy {X} f Y
Explicit R<f Ref Y ReX f Y R«{X} f Y
Suppressed {R}<f {R}<f Y {R}<X f Y | {R}«{X} Ff Y

Figure 2(i) : Models for Defined Functions

Note: The right argument Y and/or the result R may be represented by a single name,
or as a blank-delimited list of names surrounded by parentheses. For further
details, see Namelists.

Chapter 2 Defined Functions & Operators 63

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent
None (A op)Y X(A op)Y {X}(A op)Y
Explicit R<(A op)Y R<X(A op)Y R<{X}(A op)Y

Suppressed {R}«<(A op)Y | {R}«X(A op)Y | {R}«{X}(A op)Y

Figure 2(ii) : Models for Defined Operators (Monadic)

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent
None (A op B)Y X(A op B)Y {X}(A op B)Y
Explicit R<(A op B)Y R<X(A op B)Y R<{X}(A op B)Y

Suppress {R}«(A op B)Y {R}<X(A op B)Y {R}<{X}(A op B)Y

Figure 2(iii) : Models for Defined Operators (Dyadic)

64 Dyalog APL/W Language Reference

Statements

A statement is a line of characters understood by APL. It may be composed of:

1. aLABEL (which must be followed by a colon :), or a CONTROL STATEMENT
(which is preceded by a colon), or both,

2. an EXPRESSION (see Chapter 1),

3. aSEPARATOR (consisting of the diamond character ¢ which must separate
adjacent expressions),

4. a COMMENT (which must start with the character).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ¢. Any characters occurring to
the right of the first comment symbol (@) that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ¢ are taken in
left-to-right order as they occur in the line. For output display purposes, each separated
expression is treated as a separate statement.

Examples
5x10
50
MULT: 5x10
50
MULT: 5x10 ¢ 2xL4
50
8
MULT: 5x10 ¢ 2x4 @ MULTIPLICATION
50

8

Chapter 2 Defined Functions & Operators 65

Global & Local Names

The following names, if present, are local to the defined operation:
1. the result,
2. the argument(s) and operand(s),

3. additional names in the header line following the model, each name preceded by a
semi-colon character,

4. labels,
5. the argument list of the system function JSHADOW when executed,
6. aname assigned within a Dynamic Function.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic operation.
The name of a label may be the same as a name in the header line. More than one label
may have the same name. When the operation is executed, local names in the header
line after the model are initially undefined; labels are assigned the values of line
numbers on which they occur, taken in order from the last line to the first; the result (if
any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value of
the array to the right of the function when called. In the case of a defined operator, the
left operand takes the value of the function or array to the left of the operator when
called; and the right operand (if any) takes the value of the function or array to the right
of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or SHADOWING.
A value or meaning given to a local name will persist only for the duration of execution
of the defined operation (including any time whilst the operation is halted). A name
which is not local to the operation is said to be GLOBAL. A global name could itself
be local to a pendent operation. A global name can be made local to a defined operation
during execution by use of the system function JSHADOW. An object is said to be
VISIBLE if there is a definition associated with its name in the active environment.

66

Dyalog APL/W Language Reference

Examples
A<l
vV F
[1] A<10
[2] v

F A <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A

10

A<t

JERASE F

vV F3A
[1] A<10
[2] v

F A <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED

A
1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of the
line in the operation defined by system function [IF X or on closing definition mode.

The value of a label is available on entering an operation when executed, and it may be
used but not altered in any expression.

Example

OVR'PLUS'
v R<{A} PLUS B
[1] -DYADIC p=2=[NC'A' o R<«B ¢ -END
[2] DYADIC: R<«A+B
[3] END:
\%

1 OSTOP'PLUS'

2 PLUS 2
PLUS[1]

DYADIC
2

END

Chapter 2 Defined Functions & Operators 67

Namelists

The right argument and the result of a function may be specified in the function header
by a single name or by a Namelist. In this context, a Namelist is a blank-delimited list of
names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no need
to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument are
assigned to the names in the Namelist in the specified order.

Example:

vV IDN«Date2IDN(Year Month Day)
[1] 'Year is ',sYear
[2] 'Month is ',sMonth
[3] 'Day is ',sDay

'é.
Date2IDN 2004 4 30
Year is 2004

Month is &4
Day is 30

Date2IDN 2004 4

LENGTH ERROR
Date2IDN 2004 4
A

Note that if you specify a single name in the Namelist, the function may be called only
with a 1-element vector or a scalar right argument.

If the result of a function is declared as a Namelist, the values of the names will
automatically be stranded together in the specified order and returned as the result of the
function when the function terminates.

68 Dyalog APL/W Language Reference

Example:

V (Year Month Day)<«Birthday age
[1] Year«1949+age
[2] Month<y
[3] Day<«30

\4

Birthday 50

1999 4 30

Function Declaration Statements

Certain statements are used to identify the characteristics of a function in some way.
These statements are not executable statements and may appear anywhere in the body of
the function.

Access Statement :Access

:Access <Private|Public><Instance|Shared>
:Access <WebMethod>

The :Access statement is used to specify characteristics for functions that represent
Methods in classes (see chapter 3). It is also applicable to Classes and Properties.

Element Description

Private|Public Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The default
isPrivate.

Instance|Shared | Specifies whether the method runs in the Class or
Instance. The defaultis Instance.

WebMethod Specifies that the method is exported as a web method.
This applies only to a Class that implements a Web
Service.

Overridable Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher Class.
See below.

Override Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below

Chapter 2 Defined Functions & Operators 69

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridab Le is replaced in-situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base
Class Methods.

WebMethod
Note that : Access WebMethod is equivalent to:
:Access Public

tAttribute System.Web.Services.WebMethodAttribute

Attribute Statement :Attribute

:Attribute <Name> [ConstructorArgs]
The :Attribute statement is used to attach .Net Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Examples
:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

70 Dyalog APL/W Language Reference

Implements Statement :Implements

:Implements Constructor <[:Base expr]>
:Implements Destructor

:Implements Method <InterfaceName.MethodName>
:Implements Trigger <namel><,name2,name3,...

The :Implements statement identifies the function to be one of the following special
types.

Element Description

Constructor | Specifies that the function is a class constructor.

:Base expr Specifies that the Base Constructor be called with the result of
the expression expr as its argument.

Destructor Specifies that the method is a Class Destructor.

Method Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger Identifies the function as a Trigger Function which is activated

by changes to variables name 1, name2, etc. (see Triggers).

Signature Statement :Signature

:Signature <rslttype«><name><argltype arglname>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify a

different result type.
Element Description
rslttype Specifies the data type for the result of the
method
name Specifies the name of the exported method.
argntype Specifies the data type of the nth parameter
argnname Specifies the name of the nth parameter

Chapter 2 Defined Functions & Operators 7

Argument and result data types are identified by the names of .Net Types which are
defined in the .Net Assemblies specified by JUSING or by a : USING statement.

Examples

In the following examples, it is assumed that the .Net Search Path (defined by :Using
or JUSING includes 'System'

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[J]«Format Object Array

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The
second is of type System.Object and is named Argl. The third is of type
System.Object and is named Arg2.

:Signature Object<«Catenate Double Dimension,...
...0Object Argl, Object Arg2

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System. Int32 and which takes 2
parameters. The first parameter is of type System. Int32 and is named N. The
second is of type System.Int32 and is named Origin.

:Signature Int32[]«IndexGen Int32 N, Int32 Origin

The next block of statements specifies that the function is exported as a method named
Mix. The method has 4 different signatures; i.e. it may be called with 4 different
parameter/result combinations.

:Signature Int32[,]«Mix Double Dimension,
...Int32[] Vec!l, Int32[] Vec2
:Signature Int32[,]«Mix Double Dimension,...
Int32[] Vec!l, Int32[] Vec2, Int32 Vec3
:Signature Double[,]«Mix Double Dimension,
Double[] Vecl, Double[] Vec2
:Signature Double[,]«Mix Double Dimension, ...
Double[] Vecl, Double[] Vec2, Double[] Vec3

72

Dyalog APL/W Language Reference

Control Structures

Control structures provide a means to control the flow of execution in your APL
programs.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form “If this, do that; otherwise do the other”?

In APL this is often not a problem because many logical operations are easily
performed using the standard array handling facilities that are absent in other languages.
For example, the expression:

STATUS«(1+AGE<16)>'Adult' 'Minor'
sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to 'Minor'.

Things become trickier if, depending upon some condition, you wish to execute one set
of code instead of another, especially when the code fragments cannot conveniently be
packaged as functions. Nevertheless, careful use of array logic, defined operators, the
execute primitive function and the branch arrow can produce high quality maintainable
and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations and
decisions. Apart from providing greater affinity with more traditional languages,
Control structures may enhance comprehension and reduce programming errors,
especially when the logic is complex. Control structures are not, however, a
replacement for the standard logical array operations that are so much a part of the APL
language.

Control Structures are blocks of code in which the execution of APL statements follows
certain rules and conditions. Control structures are implemented using a set of control
words that all start with the colon symbol (:). Control Words are case-insensitive.

There are eight different types of control structures defined by the control words, : If,
:While, :Repeat, :For, :Select, :With, : Trap and :Hold . Each one of
these control words may occur only at the beginning of an APL statement and indicates
the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These are
tElse,:Elself, :AndIf, :0rIf, :Until, :Caseand :CaselList.

Chapter 2 Defined Functions & Operators 73

A third set of control words is used to identify the end of a particular control structure.
These are :EndIf, :EndWhile, :EndRepeat, :EndFor, :EndSelect,
:EndWith, :EndTrap and :EndHold. Although formally distinct, these control
words may all be abbreviated to : End.

Finally, the : GoTo, :Return, :Leave and :Cont inue control words may be used
to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as : Else and :E lseIf, may occur only at
the beginning of a line or expression in a diamond-separated statement. The only
exceptions are : In and : InEach which must appear on the same line withina : For
expression.

Key to Notation

The following notation is used to describe Control Structures within this section:

aexp an expression returning an array,

bexp an expression returning a single Boolean value (0 or 1),

var loop variable used by : For control structure,

code 0 or more lines of APL code, including other (nested) control structures,

andor either one or more : AndIf statements, or one or more :OrIf statements.

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

74

Dyalog APL/W Language Reference

If Statement :If bexp

The simplest : If control structure is a single condition of the form:

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] tEndIf

If the test condition (in this case AGE<21) is true, the statements between the : If and
the : EndIf will be executed. If the condition is false, none of these statements will be
run and execution resumes after the : EndIf. Note that the test condition to the right of
: If must return a single element Boolean value 1 (true) or 0 (false).

: If control structures may be considerably more complex. For example, the following
code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or
alternatively, the statement on line [6] if AGE<21 is 0 (false).

[1] :If AGE<21

[2] expr 1
[3] expr 2
[5] :Else
[6] expr 3
[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example,

[1] :If WINEAGE<S

[2] 'Too young to drink'

[5] :ElselIf WINEAGE<10

[6] "Just Right'

[7] :ElselIf WINEAGE<15

[8] '"A bit past its prime’
[9] :Else

[10] 'Definitely over the hill'

[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the : E L se if none of the conditions are true.

Chapter 2 Defined Functions & Operators 75

The : AndIf and :OrIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualify an : If oran :ElseIf with one
or more :AndIf statements or with one or more :OrIf statements. You may not
however mix : AndIf and :OrIf inthe same conditional block. For example:

[1] :If WINE.NAME='Chateau Lafitte'
[2] :AndIf WINE.YEARe1962 1967 1970
[3] 'The greatest?'

[4] :ElseIf WINE.NAME='Chateau Latour'
[5] :0rif WINE.NAME='Chateau Margaux'
[6] :0rif WINE.PRICE>100

[7] "Almost as good'
[8] :Else
[9] 'Everyday stuff'

[10] :EndIf

Please note that in a : If control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to true.
At that point, the APL statements following this condition block are executed. None of
the conditions associated with any other condition block are executed. Furthermore, if
an :AndIf condition yields O (false), it means that the entire block must evaluate to
false so the system moves immediately on to the next block without executing the other
conditions following the failing : AndIf. Likewise, ifan :OrIf condition yields I
(true), the entire block is at that point deemed to yield true and none of the following
:0OrIf conditions in the same block are executed.

76 Dyalog APL/W Language Reference

:If Statement

andor

_— — .
o
a
o

Chapter 2 Defined Functions & Operators 77

While Statement :While bexp

The simplest :Whi le loop is:

[1] I<0

[2] :While I<100
[3] expri
[4] expr2
[5] I<I+1

[6] :EndWhi le

Unless expr1 or expr2 alter the value of I, the above code will execute lines [3-14]
100 times. This loop has a single condition; the value of I. The purpose of the
:EndWhi Le statement is solely to mark the end of the iteration. It acts the same as if it
were a branch statement, branching back to the :Whi L e line.

An alternative way to terminate a :Wh1i Le structure isto use a :Unt i | statement.
This allows you to add a second condition. The following example reads a native file
sequentially as 80-byte records until it finds one starting with the string 'Widget ' or
reaches the end of the file.

[1] I<0

[2] :While I<[NSIZE ~1

[3] REC<[INREAD ~1 82 80
(4] I«I+pREC

[5] :Until 'Widget'=6pREC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using : AndIf and :OrIf. For example:

[1] :While 100>i
[2] :AndIf 100>j
[3] i jefoo i j
[4] :Until 100<i+j
[5] :0OrIf i<0

[6] :0rIf j<O

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than or
equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by f oo, the iteration stops if i+ j is equal to or greater than 100, or if
either i or j is negative.

78 Dyalog APL/W Language Reference

‘While Statement

I
:While bexp

|
:End[While] :Until bexp

Chapter 2 Defined Functions & Operators 79

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-5]
100 times. Notice that as there is no conditional test at the beginning of a :Repeat
structure, its code statements are executed at least once.

[1] I<0

[2] :Repeat
[3] expri
[4] expr2
[5] I«I+1

[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding : AndIf or
:0rIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget ' or
reaches the end of the file.

[1] :Repeat

[2] REC<«[JNREAD ~1 82 80
[3] :Until 'Widget'=6pREC
[4] :0rIf 0=pREC

A :Repeat structure may be terminated by an : EndRepeat (or : End) statement in
place of a conditional expression. If so, your code must explicitly jump out of the loop
using a : Leave statement or by branching. For example:

[1] :Repeat

[2] REC<[INREAD ~1 82 80
[3] :If 0=pREC

[4] :0rIf 'Widget'=6pREC
[5] :Leave

[6] :EndIf

[7] :EndRepeat

80 Dyalog APL/W Language Reference

:Repeat Statement

I
:Repeat
I

:End[Repeat]

I
:Until bexp

Chapter 2 Defined Functions & Operators 81

For Statement :For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] successively
for values of I from [JIO to 10

[1] :For I :In 110
[2] expri I
[3] expr2 I
[4] :EndFor

The way a : For loop operates is as follows. On encountering the : For, the
expression to the right of : In is evaluated and the result stored. This is the control
array. The control variable, named to the right of the : For, is then assigned the first
value in the control array, and the code between : For and : EndFor is executed. On
encountering the : EndF or, the control variable is assigned the next value of the
control array and execution of the code is performed again, starting at the first line after
the : For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the : F or structure is not executed.
Note too that the control array may be any rank and shape, but that its elements are
assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (0FLIB '')~"' "

[2] FILE OFTIE 1
[3] OFRESIZE 1
[4] OFUNTIE 1

[5] :EndFor

You may also nest : For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS<«0

[2] :For FILE :In (J0OFLIB "')~"" '

[3] FILE OFTIE 1

[4] START END<«2p[FSIZE 1

[5] :For COMP :In (START-1)4t1END-1
[6] TS[« 1400FREAD FILE COMP
[7] :EndFor

[8] [JFUNTIE 1

[9] :EndFor

82

Dyalog APL/W Language Reference

Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of doing
a strand assignment each time around the loop.

For example :For a b ¢ :in (1 2 3)(4 5 6),setsa b c«1 2 3, first
time around the loopand a b c<«4 5 6, the second time.

Another exampleis :For i j :In 1pMatrix, whichsets i and j to each row
and column index of Matrix.

:InEach Control Word

:For var ... :Inkach value
Ina :For control structure, the keyword : InEach is an alternative to : In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:
:For a b c :In (1 2 3)(3 4+ 5)(5 6 7)(7 8 9)

O«a b ¢
:EndFor
:For a b ¢ :InEach (1 35 7)(2 4 6 8)(3 57 9)
O«a b c
:EndFor
In each case, the output from the loop is:
123
3 45
56 7
789

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

:For a b ¢ :InkEach avec bvec cvec

:EndFor
Here, each time around the loop, control variable a is set to the next item of avec, b to
the next item of bvec and c to the next item of cvec.

Chapter 2 Defined Functions & Operators 83

:For Statement

:For var :In[Each] aexp

code

|
:End[For]
|

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon the
value of an array. For example, the following displays 'I is 1' if the variable I has
thevalue 1, 'I is 2'ifitis2,or 'I is neither 1 nor 2' ifithassome
other value.

[1] :Select I
[2] :Case 1

[3] 'T is 1'

[4] :Case 2

[5] 'T is 2'

[6] :Else

[7] 'IT is neither 1 nor 2'

[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the

: Select statement with each of the expressions to the right of the : Case statements
and executes the block of code following the one that matches. If none match, it
executes the code following the : E L se (which is optional). Note that comparisons are
performed using the = primitive function, so the arrays must match exactly. Note also
that not all of the : Case expressions are necessarily evaluated because the process
stops as soon as a matching expression is found.

Instead of a : Case statement, you may also use a : Casel ist statement. If so, the
enclose of the array expression to the right of : Se lect is tested for membership of the
array expression to the right of the : Casel i st using the € primitive function.

84 Dyalog APL/W Language Reference

[1] :Select 76 6
[2] :Case 6 6

[3] 'Box Cars'

[4] :Case 1 1

[5] 'Snake Eyes'
[6] :Caselist 2p~ 16

[7] 'Pair'

[8] :CaselList (16), 16
[9] 'Seven'

[10] :Else

[11] '"Unlucky'

[12] :EndSelect

:Select Statement

:Select aexp

I

<= -
I

:End[Select]

Chapter 2 Defined Functions & Operators

85

With Statement

:With obj

:With is a control structure that may be used to simplify a series of references to an
object or namespace. : Wi th changes into the specified namespace for the duration of
the control structure, and is terminated by : End[Wi th]. For example, you could
update several properties of a Grid object F . G as follows:

:With F.G
Values<«4 3p0

RowTitles«'North' 'South' 'East' 'West'
ColTitles«'Cakes' 'Buns' 'Biscuits'

:EndWith

:With is analogous to [JCS in the following senses:

The namespace argument to : Wi th is interpreted relative to the current space.

With the exception of those with name class 9, local names in the containing
defined function continue to be visible in the new space.

Global references from within the : Wi th control structure are to names in the

new space.

Exiting the defined function from within a : Wi th control structure causes the
space to revert to the one from which the function was called.

On leaving the :Wi th control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (=) out of the control
structure. : Wi th control structures can be nested in the normal fashion:

[1] :With 'x' A
[2] :With 'y A
[3] :With [SE A
[4] A
[5] :EndWith A
[6] :EndWith A
[7] :EndWith A
:With Statement

:With namespace (ref

code

|
:End[With]
I

Change to #.x
Change to #.x.y
Change to [SE
... in [OSE

Back to #.x.y
Back to #.x
Back to #

or name)

86 Dyalog APL/W Language Reference

Hold Statement t:Hold tkns

Whenever more than one thread tries to access the same piece of data or shared resource
at the same time, you need some type of synchronisation to control access to that data.
This is provided by : Ho l d.

:Ho L d provides a mechanism to control thread entry into a critical section of code.
tkns must be a simple character vector or scalar, or a vector of character vectors.
tkns represents a set of ‘tokens’, all of which must be acquired before the thread can
continue into the control structure. :Ho l d is analogous to the component file system
[FHOLD.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution
continues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of the
tokens is already in use:

1. Ifthereis no :E Lse clause in the control structure, execution of the thread is
blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the : E L se clause.

tkns can be either a single token:

a
'Red’
"#.UtiL'

'Program Files'

... or a number of tokens:

'red' 'green' 'blue'
'doe' 'a' 'deer'
, ‘'abc'
WOntl 9
Pre-processing removes trailing blanks from each token before comparison, so that, for

example, the following two statements are equivalent:

:Hold 'Red' 'Green'
:Hold V2 5p'Red Green'

Chapter 2 Defined Functions & Operators 87

Unlike (FHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when multiple
threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace, and
then updates a structure in its parent space. The holds will allow all ‘sibling’
namespaces to update concurrently, but will constrain updates to the parent structure to
be executed one at a time.

tHold [cs'' A Hold child space
“e A Update child space
:Hold ##.0cs'"' A Hold parent space
.. A Update Parent space
:EndHold
:EndHold

However, with the nesting of holds comes the possibility of a ‘deadlock’. For example,
consider the two threads:

Thread 1 Thread 2

tHold 'red' :Hold 'green'
‘Hold 'green' ‘Hold 'red’
:EndHold :EndHo L d

:EndHold :EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token. Fortunately, the interpreter detects such cases
and issues an error (1008) DEADLOCK. You can avoid deadlock by ensuring that
threads always attempt to acquire tokens in the same chronological order, and that
threads never attempt to acquire tokens that they already own.

Note that token acquisition for any particular : Ho L d is atomic, that is, either a// of the
tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2

:Hold 'red'

. tHold 'green' 'red'

:Hold 'green' ce

ce :EndHold
:EndHold

:EndHold

88 Dyalog APL/W Language Reference

Examples

:Ho ld could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token would
be the name of the data structure variable itself, although this is just a programming
convention: the interpreter does not associate the token value with the data variable.

tHold'Struct'
e A Update Struct
Struct « ...

:EndHold

The next example guarantees exclusive use of the current namespace:
tHold 0cs"'' A Hold current space
Endiold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold 3 to fm

:If >/vec[fm to]

vec[fm to]«vec[to fm]
:End
:End

Between obtaining the next available file tie number and using it:

:Hold '[JFNUMS'
tie<1+[/0,00FNUMS
fname [FSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:

fname [FSTIE tie<«1+[/0,FNUMS
or,

tie«fname OFSTIE O

Chapter 2 Defined Functions & Operators 89

Note that : Ho L d, like its component file system counterpart [JF HOLD, is a device to
enable co-operating threads to synchronise their operation.

:Ho L d does not prevent threads from updating the same data structures concurrently, it
prevents threads only from : Ho | d-ing the same tokens.

:Hold Statement

|
:Hold token(s)

:End[Hold]
|

90

Dyalog APL/W Language Reference

Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the JTRAP system variable. It is equivalent to APL2’s [JEA, except that
the code to be executed is not restricted to a single expression and is not contained
within quotes (and so is slightly more efficient).

Operation

The segment of code immediately following the : Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trapl.

If an error does occur, the event code (error number) is noted and:

e Ifthe error occurred within a sub-function, the system cuts the execution stack
back to the function containing the : Trap keyword. In this respect, : Trap
behaves like OTRAP witha 'C' qualifier.

e The system searches fora : Case[List] representing the event code.

e [Ifthereissucha :Case[List], or failing that, an : E L se keyword, execution
continues from this point.

Otherwise, control passes to the code following : End[Trap] and no error processing
occurs.

Note that the error trapping is in effect only during execution of the initial code
segment. It is disabled (or surrendered to outer level : Traps or J-TRAPs) immediately
a trapped error occurs. In particular, the error trap is no longer in effect during
processing of :Case[List]’s argument or in the code following the : Case[List]
or : E L se statement. This avoids the situation sometimes encountered with JTRAP
where an infinite ‘trap loop” occurs, If an error which is not specified occurs, it is
processed by outer : Traps, OTRAPs, or default system processing in the normal
fashion.

Chapter 2 Defined Functions & Operators 91

Examples

vV Lx
[1] :Trap 1000 A Cutback and exit on interrupt
[2] Main
[3] :EndTrap

\'4

V ftie<Fcreate file A Create null component file
[1] ftie<1+[/0,0fnums A next tie number.
[2] :Trap 22 A Trap FILE NAME ERROR
[3] file Ofcreate ftie A Try to create file.
[4] :Else
[5] file Oftie ftie A Tie the file.
[6] file [Oferase ftie A Drop the file.
[7] file Ofcreate ftie A Create new file.
[8] :EndTrap

v

V Lx A Distinguish various cases

:Trap 0 1000
] Main ...
J :Case 1002

'Interrupted ..
:CaselList 1 10 72 76

'Not enough resources'
:Caselist 17+120

'File System Problem'
:Else

'"Unexpected Error'
:EndTrap

Lo ¥ s s s ¥ s | s s | e 1 e [s | e |
PP, OONOUOITFWN -
it —

- O
—
<

Note that : Traps can be nested:

V ntie«<Ntie file A Tie native file
[1] ntie« 1+ /0,0nnums A Next native tie num
[2] :Trap 22 A Trap FILE NAME ERROR
[3] file Ontie ntie A Try to tie file
[4] :Else
[5] :Trap 22 A Trap FILE NAME ERROR
[6] (file,'.txt')dntie ntie A Try with .txt extn
[7] :Else
[8] file [Oncreate ntie A Create null file.
[9] :EndTrap
[10] :EndTrap

v

92 Dyalog APL/W Language Reference

:Trap Statement

:Trap <ecode>

code

|

[¢mmmmr - .
| |
- o= |
| | |
| :Else :Case[List] <ecode> |
| | | |
| | | |
| | | |
| code code |
| | | |
| Cmmm e ' N e e e e '
|

:End[Trap]
|

Where ecode is a scalar or vector of JTRAP event codes (see Chapter 6).

Note that within the : Trap control structure, : Case is used for a single event code
and :Caselist fora vector of event codes.

Chapter 2 Defined Functions & Operators 93

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to ~ (branch) and causes execution to jump to
the line specified by the first element of aexp.

The following are equivalent. See Branch for further details.
»Exit
:GoTo Exit

>(N<I<«I+1)/End
:GoTo (N<I«I+1)/End

>1+[LC
:GoTo 1+[JLC

-10
:GoTo 10

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same effect
as 0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of statements
withina : For, :Repeat or :Whi Le control structure.

The :Leave control word takes no argument.

94 Dyalog APL/W Language Reference

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :Whi le control loop.

When executed within a : For loop, the effect is to start the body of the loop with the
next value of the iteration variable.

When executed within a :Repeat or :Whi Le loop, if there is a trailing test that test is
executed and, if the result is true, the loop is terminated. Otherwise the leading test is
executed in the normal fashion.

Chapter 2 Defined Functions & Operators 95

Triggers

Triggers provide the ability to have a function called automatically whenever a variable
or a Field is assigned. Triggers are actioned by all forms of assignment («), but only by
assignment.

Triggers are designed to allow a class to perform some action when a field is modified —
without having to turn the field into a property and use the property setter function to
achieve this. Avoiding the use of a property allows the full use of the APL language to
manipulate data in a field, without having to copy field data in and out of the class
through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger from
a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the Trigger
Function. The name of a variable or Field which has an associated Trigger Function is
termed a Trigger.

A function is declared as aTrigger function by including the statement:
:Implements Trigger Namel,Name2,Name3,
where Name 1, Name?2 etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name Name of the Trigger whose change in value has caused
the Trigger Function to be invoked.

NewValue The newly assigned value of the Trigger

OldValue The previous value of the Trigger. If the Trigger was

not previously defined, a reference to this Field causes
a VALUE ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The precise
timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

96

Dyalog APL/W Language Reference

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be re-
established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this will
potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix the
Trigger function in the function in which the Trigger is localised; for example:

vV TRIG arg
[1] :Implements Trigger A
[2] e

VvV TEST;A

[1] OFX OOR'TRIG'
[2] A<10

[3] e.

Example

The following function displays information when the value of variables A or B
changes.

v TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 A VALUE ERROR
[4] arg.Name'was 'arg.0OldValue
[5] :Else
[6] arg.Name' was [undefined]"'
[7] :EndTrap
v

Note that on the very first assignment to A, when the variable was previously undefined,
arg.0OldValueisa VALUE ERROR.

Chapter 2 Defined Functions & Operators 97

A<10

A is now 10

A was [undefined]
A+<10

A is now 20

A was 10

A<'Hello World'
A is now Hello World
A was 20

A[1]«c2 3p16
A is now 1 2 3 ello World

b 56
A was Hello World
B<dA
B 1is now 321 ello World
6 5 4
B was [undefined]

A<[ONEW MyClass
A is now #.[Instance of MyClass]

A was 1 2 3 ello World
4L 5 6
'"F'OWC'Form'
A<F
A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a Form
using [JWC does not invoke TRIG.

"A'OWC'FORM' pa Note that Trigger Function is not
invoked

However, the connection (between A and TRIG) remains and the Trigger Function will
be invoked if and when the Trigger is re-assigned.

A<99
A is now 99
A was #.A

See Trigger Fields for information on how a Field (in a Class) may be used as a Trigger.

98

Dyalog APL/W Language Reference

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/ 1 pA (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate pA and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate 1temp1 and store result in temporary variable temp2.
3. Evaluate BV/temp2
4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the
resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Idiom List table will not be recognised.

For example, [JAV 1 will be recognised as an idiom, but (JAV) v will not. Similarly,
(,)/ would not be recognized as the Join idiom.

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector
B Boolean v Vector

N Numeric M Matrix

P Nested (pointer) A Atrray (any rank)

A Any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Chapter 2 Defined Functions & Operators

99

Expression
ppA
BV/1NS
BV/1i1pA
NA>"cA
A{}A
A{a}A
A{w}A
A{o w}A
{0}A
{0}7A
,/PV
5/PV
>hA
1A
>0, A
1o, A
0=pV
0=ppA
0==A
[JAViCA

M{(ta)1dw}M

YRIPV

1&oPV

A" '=CA

+/A\"' "=CA

+/~\BA

{(v\" "2w)/w}CV
{(+/M\" '=w)iw}CV

Description

Rank

Sequence selection

Index selection

Array selection

Sink

Left (Lev)

Right (Dex)

Link

Zero

Zero Each

Join

Join along last axis

Upper right item (Om <2)
Upper right item (Om >2)
Lower right item (Oml <2)
Lower right item (Om>2)
Zero shape

Zero rank

Zero depth

Atomic vector index (Classic Edition only; use

ducs)

Matrix Iota

Nested vector transpose (Oml <2)
Nested vector transpose ([m L >2)
Mask of leading blanks.

Number of leading blanks
Number of leading ones

Trim leading blanks

Trim leading blanks

Dyalog APL/W Language Reference

Expression
~o' '""JCA
{(+/v\"' '#éw)t " 4w}CA
5op”A
top”A
A,<A

As<A
{w[dw]}V
{w[Yw]}V
{wldw;]}M
{w[Yw;]}M
1==A

Description
No-blank split
No-trailing-blank split

Length of first axis of each sub-array (Om <2)
Length of first axis of each sub-array (Oml22)

Catenate To

Catenate to (along first axis)
Sort up vector

Sort down vector

Sort up matrix

Sort down matrix

Is depth 1

Is simple (depth 1 or 0)

Is null

Is non-null

First sub-array along first axis
First sub-array along last axis
Last sub-array along first axis
Last sub-array along last axis

Euler's idiom

Chapter 2 Defined Functions & Operators 101

Notes

Sequence Selection /1 and Index Selection /1 p, as well as providing an execution
time advantage, reduce intermediate workspace usage and consequently, the incidence
of memory compactions and the likelihood of a WS FULL.

Array Selection NV>""cA, is implemented as A[NV], which is significantly faster. The
two are equivalent but the former may now be used as a matter of taste with no
performance penalty.

Join , / is currently special-cased only for vectors of vectors or scalars. Otherwise, the
expression is evaluated as a series of concatenations. Recognition of this idiom turns
join from an n-squared algorithm into a linear one. In other words, the improvement
factor is proportional to the size of the argument vector.

Upper and Lower Right Item now take constant time. Without idiom recognition, the
time taken depends linearly on the number of items in the argument.

Zero Depth 0== takes a small constant time. Without idiom recognition, time taken
would depend on the size and depth of the argument, which in the case of a deeply
nested array, could be significant.

Nested vector transpose &1 is special-cased only for a vector of nested vectors, each
of whose items is of the same length.

Matrix Iota { (Vo) 1 Yw}. As well as being quicker, the Matrix lota idiom can
accommodate much larger matrices. It is particularly effective when bound with a left
argument using the compose operator:

find«mate{(ta) 1w} A find rows in mat table.

In this case, the internal hash table for mat is retained so that it does not need to be
generated each time the monadic derived function f ind is applied to a matrix
argument.

Trim leading blanks { (v\' '#w)/w} and { (+/A\"' '=w)w} are two codings of
the same idiom. Both use the same C code for evaluation.

No-blank split ~e ' ' { typically takes a character matrix argument and returns a
vector of character vectors from which, all blanks have been removed. An example
might be the character matrix of names returned by the system function ONL. In general,
this idiom accommodates character arrays of any rank.

102

Dyalog APL/W Language Reference

No-trailing-blank split { (+/v\"' '#dw)1t " dw} typically takes a character matrix
argument and returns a vector of character vectors. Any embedded blanks in each row
are preserved but trailing blanks are removed. In general, this idiom accommodates
character arrays of any rank.

Lengths 2op” A (Oml<2)or tep” A (Oml>2) avoids having to create an
intermediate nested array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each
vector.

sep™ 'Hi' 'Pete' A Vector Lengths
2 4

For an array of matrices, it returns a simple array of the number of rows in each matrix.

Sop [JCR™V[ONL 3 A Lines in functions
5 21...

Catenate To A, <A and A;<A optimise the catenation of an array to another array
along the last and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector to
an existing vector.

props,«c 'Posn' 0 O
props,«c'Size' 50 50
vector,«2+4

Note that the idiom is not applied if the value of vector V is shared with another symbol
in the workspace, as illustrated in the following examples:

In this first example, the idiom is used to perform the catenation to V1.

Vi<110
Vi,«11

In the second example, the idiom is not used to perform the catenation to V1, because
its value is at that point shared with V2.

Vi«110
V2<V1
Vi,«11

In the third example, the idiom is not used to perform the catenation to Vin Join[1]
because its value is at that point shared with the array used to call the function.

V V<V Join A
[1] V,<A
\
(110) Join 11
1234567 89 10 11

Chapter 2 Defined Functions & Operators 103

Sub-array selection idioms ~#A, /A, 4#A, and /A return the first (respectively.
last) rank (O] “1+ppA) sub-array along the first (respectively last) axis of A. For
example, if V is a vector, then:

-/V First item of vector

~/V Last item of vector

Similarly, if M is a matrix, then:

“#M First row of matrix
-+/M First column of matrix
+#M Last row of matrix
/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom *oN produces accurate results for right argument values that are a
multiple of 0J0. 5. This is so that Euler's famous identity 0=1+%*00J1 holds, even
though the machine cannot represent multiples of pi, including ©0J 1, accurately.

104 Dyalog APL/W Language Reference

Search Functions and Hash Tables

Primitive dyadic search functions, such as 1 (index of) and € (membership) have a
principal argument in which items of the other subject argument are located.

In the case of 1, the principal argument is the one on the left and in the case of €, it is
the one on the right. The following table shows the principal (P) and subject (s)
arguments for each of the functions.

P i1 s Index of

s € P Membership

s nP Intersection
Pus Union

s ~ P Without

P {(Va)ttw} s Matrix lota (idiom)
PoA and Poy Sort

The Dyalog APL implementation of these functions already uses a technique known as
hashing to improve performance over a simple linear search. (Note that € (find) does
not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is rewarded
by a considerably quicker search for each item in the subject. Unfortunately, the hash
table is discarded each time the function completes and must be reconstructed for a
subsequent call (even if its principal argument is identical to that in the previous one).

For optimal performance of repeated search operations, the hash table may be retained
between calls, by binding the function with its principal argument using the primitive °
(compose) operator. The retained hash table is then used directly whenever this monadic
derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent application
of the derived function. This usually occurs in one of two ways: either the derived
function is named for later (and repeated) use, as in the first example below or it is
applied repeatedly as the operand of a primitive or defined operator, as in the second
example.

Chapter 2 Defined Functions & Operators 105

Example: naming a derived function.
words«'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find«wordset A monadic find function
find'blk' 'blu' 'grn' 'ylo' n

7532
find'grn' 'brn' 'ylo' 'red' a fast find

3421

Example: repeated application by (") each operator.

€oJA"'This' 'And' 'That'
1000 100 10O0O

Locked Functions & Operators

A defined operation may be locked by the system function [JLOCK. A locked operation
may not be displayed or edited. The system function [JCR returns an empty matrix of
shape 0 0 and the system functions ONR and (VR return an empty vector for a locked
operation.

Stop, trace and monitor settings may be established by the system functions [JSTOP,
OTRACE and OMONITOR respectively. Existing stop, trace and monitor settings are
cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pendent
when execution is suspended. The state indicator is cut back as described below.

106

Dyalog APL/W Language Reference

The State Indicator

The state of execution is dynamically recorded in the STATE INDICATOR. The state
indicator identifies the chain of execution for operators, functions and the evaluated or
character input/output system variables ([J and [1). At the top of the state indicator is the
most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a
signal induced by the system function JSIGNAL or by a stop control set by the system
function (JSTOP. If the interrupt (or event which caused the interrupt) is not defined as
a trappable event by the system variable JTRAP, the state indicator is cut back to the
first of either a defined operation or the evaluated input prompt ([J) such that there is no
locked defined operation in the state indicator. The topmost operation left in the state
indicator is said to be SUSPENDED. Other operations in the chain of execution are
said to be PENDENT.

The state indicator may be examined when execution is suspended by the system
commands)SI and) SINL. The names of the defined operations in the state indicator
are given by the system functions [JST and XSI while the line numbers at which they
are suspended or pendent is given by the system variable [JLC.

Suspended execution may be resumed by use of the Branch function (see Chapter 4).
Whilst execution is suspended, it is permitted to enter any APL expression for
evaluation, thereby adding to the existing state indicator. Therefore, there may be more
than one LEVEL OF SUSPENSION in the state indicator. If the state indicator is cut
back when execution is suspended, it is cut back no further than the prior level of
suspension (if any).

Examples
vV F
[1] G
v
vV G
[1] "FUNCTION G'+
v
2IFI

SYNTAX ERROR
G[1] 'FUNCTION G'+
A

)SI
.G[1]*
FL1]

e 3 3

Chapter 2 Defined Functions & Operators 107

gLoCK'G'

g 1 F 1
SYNTAX ERROR
F[1] G

A

)SI
#.F[1]x
$
#.G[1]x
#.F[1]
$

A suspended or pendent operation may be edited by the system editor or redefined using
OF X provided that it is visible and unlocked. However, pendent operations retain their
original definition until they complete, or are cleared from the State Indicator. When a
new definition is applied, the state indicator is repaired if necessary to reflect changes to
the operations, model syntax, local names, or labels.

108 Dyalog APL/W Language Reference

Dynamic Functions & Operators

A Dynamic Function (operator) is an alternative function definition style suitable for
defining small to medium sized functions. It bridges the gap between operator
expressions: rank<pop and full ‘header style’ definitions such as:

V rslt<larg func rarg;local...

In its simplest form, a dynamic function is an APL expression enclosed in curly braces
{} possibly including the special characters o and w to represent the left and right
arguments of the function respectively. For example:

{(+/w)+pw} 1 2 3 4 A Arithmetic Mean (Average)
2.5

3 {wx+a} 64 A ath root
"

Dynamic functions can be named in the normal fashion:
mean«<{(+/w)+pw}
mean”(2 3)(4 5)
2.5 4.5

Dynamic Functions can be defined and used in any context where an APL function may
be found, in particular:

e In immediate execution mode as in the examples above.
e Within a defined function or operator.

e As the operand of an operator such as each (7).

e Within another dynamic function.

The last point means that it is easy to define nested local functions.

Chapter 2 Defined Functions & Operators 109

Multi-Line Dynamic Functions

The single expression which provides the result of the Dynamic Function may be
preceded by any number of assignment statements. Each such statement introduces a
name which is local to the function.

For example in the following, the expressions sum< and num< create local variables
sum and num.

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
sum+num A Mean

Note that Dynamic Functions may be commented in the usual way using fA.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
Oshadow name .

It is important to note the distinction between the two types of statement above. There
can be many assignment statements, each introducing a new local variable, but only a
single expression where the result is not assigned. As soon as the interpreter encounters
such an expression, it is evaluated and the result returned immediately as the result of
the function.

For example, in the following,

mean<{ A Arithmetic mean

sum<+/w A Sum of elements

num<pw A Number of elements

sum, num A Attempt to show sum,num (wrong)!
) sum+num A and return result.

... as soon as the interpreter encounters the expression sum, num, the function
terminates with the two element result (sum, num) and the following line is not
evaluated.

110 Dyalog APL/W Language Reference

To display arrays to the session from within a Dynamic function, you can use the
explicit display forms [0« or [I« as in:

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
[(«sum,num A show sum,num.
sum+num A and return result.

}

Note that local definitions can be used to specify local nested Dynamic Functions:

rms<{ A Root Mean Square
root<{wx0.5} A V Square root
mean<{(+/w)*pw} A V Mean
square«<{wxw} A V Square

root mean square w

}
Default Left Argument

The special syntax: a«<expr is used to give a default value to the left argument if a
Dynamic Function is called monadically. For example:

root<«{ A ath root
0«2 A default to sqrt
wx+o,

}

The expression to the right of o« is evaluated only if its Dynamic Function is called
with no left argument.

Chapter 2 Defined Functions & Operators 111

Guards

A Guard is a Boolean-single valued expression followed on the right by a . For

example:

0==w: A Right arg simple scalar
0<0: A Left arg negative

The guard is followed by a single APL expression: the result of the function.
w20: wx0.5 A Square root if non-negative.

A Dynamic function may contain any number of guarded expressions each on a separate
line (or collected on the same line separated by diamonds). Guards are evaluated in turn
until one of them yields a 1. The corresponding expression to the right of the guard is
then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default result
of the function. For example:

sign<{
w>0: '+ve' A Positive
w=0: 'zero' A zero
) ‘-ve' A Negative (Default)

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates the
function) could never be executed and would therefore be redundant.

Shy Result

Dynamic Functions are usually 'pure' functions that take arguments and return explicit
results. Occasionally, however, the main purpose of the function might be a side-effect
such as the display of information in the session, or the updating of a file, and the value
of a result, a secondary consideration. In such circumstances, you might want to make
the result 'shy’, so that it is discarded unless the calling context requires it. This can be
achieved by assigning a dummy variable after a (true) guard:

Append w to file a.

tie number for file,

new component number,
untie file,

comp number as shy result.

log«{
tie<a [Ofstie O
cno+w [Ifappend tie
tie<Jfuntie tie
1:rslt«cno

DDODODDO®D

112 Dyalog APL/W Language Reference

Static Name Scope

When an inner (nested) Dynamic Function refers to a name, the interpreter searches for
it by looking outwards through enclosing Dynamic Functions, rather than searching
back along the execution stack. This regime, which is more appropriate for nested
functions, is said to employ static scope instead of APL’s usual dynamic scope. This
distinction becomes apparent only if a call is made to a function defined at an outer
level. For the more usual inward calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within which
itself and within the inner function fn1. When fn1 calls outward to fn2 and fn2
refers to type, it finds the outer one (with value 'static ') rather than the one
defined in fn1i:

which<{
type<«'static'

fni<{
type<«'dynamic'
fn2 w

}

fn2<{
type w
}

fnl w
}

which'scope'
static scope

Chapter 2 Defined Functions & Operators 113

Tail Calls

A novel feature of the implementation of Dynamic Functions is the way in which tail
calls are optimised.

When a Dynamic Function calls a sub-function, the result of the call may or may not be
modified by the calling function before being returned. A call where the result is passed
back immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn’t
because the result is subsequently multiplied by w.

(oxw)fact w-1 A Tail call on fact.
wxfact w-1 A Embedded call on fact.

Tail calls occur frequently in Dynamic Functions, and the interpreter optimises them by
re-using the current stack frame instead of creating a new one. This gives a significant
saving in both time and workspace usage. It is easy to check whether a call is a tail call
by tracing it. An embedded call will pop up a new trace window for the called function,
whereas a tail call will re-use the current one.

114 Dyalog APL/W Language Reference

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch with
arguments. The tail call, in effect, branches to the first line of the function after
installing new values for w and o.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different order
depending on whether we want to test at the ‘top’ or the ‘bottom’ of the loop.

1. Initialise loop control variable(s). A init
2. Test loop control variable. A test
3. Process body of loop. A proc

4. Modify loop control variable for next iteration. A mod

5. Branch to step 2. A jump
For example, in classical APL you might find the following:

vV value<«<limit loop value A init
[1] top:~»(OCT>value-limit)/0 A test
[2] value«Next value A proc, mod
[3] >top A jump

\

Control structures help us to package these steps:

vV value<«limit loop value A init
[1] :While OCT<value-limit A test
[2] value«Next value A proc, mod
[3] :EndWhi le A jump
v
Using tail calls:
Loop<«{ A init
OCT>o-w:w A test
o V Next w A proc, mod, jump

Chapter 2 Defined Functions & Operators 115

Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers, followed
by the digraph: : :, followed by an expression, the body of the guard, to be evaluated as
the result of the function. For example:

11 5 :: wx0 A Trap DOMAIN and LENGTH errors.

In common with : Trap and JTRAP, error numbers 0 and 1000 are catchalls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for an
error-guard that matches the error. If one is found, the execution environment is
unwound to its state immediately prior to the error-guard’s execution and the body of
the error-guard is evaluated as the result of the function. This means that, during
evaluation of the body, the guard is no longer in effect and so the danger of a hang
caused by an infinite ‘trap loop’, is avoided.

Notice that you can provide ‘cascading’ error trapping in the following way:
O::try_2nd
O::try_1st

expr

In this case, if expr generates an error, its immediately preceding: 0: : catches it and
evaluates try_1st leaving the remaining error-guard in scope. If try_1st fails, the
environment is unwound once again and try_2nd is evaluated, this time with no
error-guards in scope.

Examples:

Open returns a handle for a component file. If the exclusive tie fails, it attempts a share-
tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open<{ A Handle for component file w.
::0 A Fails:: return 0 handle.
22::w [JFCREATE O A FILE NAME:: create new one.
24 25::w JFSTIE O A FILE TIED:: try share tie.
w [OFTIE 0 A Attempt to open file.

116

Dyalog APL/W Language Reference

An error in di v causes it to be called recursively with improved arguments.

div<{ A Tolerant division:: a+0 - o.
o<l A default numerator.
5::14Vv/4t0 w A LENGTH:: stretch to fit.
11::0 V w+w=0 A DOMAIN:: increase divisor.
oFw A attempt division.

}

Notice that some arguments may cause d1iv to recur twice:
6 4 2 div 3 2

> 6 4 2 div3 20
> 6 4 2 div 3 2 1
> 222

The final example shows the unwinding of the local environment before the error-
guard’s body is evaluated. Local name trap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to expose
trap’s statically correct value.

add<{
trap«'domain' ¢ 11::trap
trap<'length' ¢ 5::trap
o+w

}

2 add 3 A Addition succeeds

2 add 'three' A DOMAIN ERROR generated.
domain

2 3 add 4+ 5 6 A LENGTH ERROR generated.
length

Chapter 2 Defined Functions & Operators 117

Dynamic Operators

The operator equivalent of a dynamic function is distinguished by the presence of
either of the compound symbols ‘aa’ or ‘ww’ anywhere in its definition. oo and ww
represent the left and right operand of the operator respectively.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (') operator if the
operand function is costly and the argument contains a significant number of duplicate
elements. Note however, that if the operand function causes side effects, the operation
of dynamic and primitive versions will be different.

each<«{ A Fast each:
shp«pw A Shape and
vec<,w A ravel of arg.
nub«uvec A Vector of unique elements.
res<aa’ nub A Result for unique elts.
idx<nubivec A Indices of arg in nub
shppidx>"cres A distribute result.

}

The dyadic e L se operator applies its left (else right) operand to its right argument
depending on its left argument.

else<«{
o: oo W A True: apply Left operand
) ww W A Else, .. Right
01 [elsel™ 2.5 A Try both false and true.

118

Dyalog APL/W Language Reference

Recursion

A recursive Dynamic Function can refer to itself using its name explicitly, but because
we allow unnamed functions, we also need a special symbol for implicit self-reference:
'v'. For example:

fact<{ A Factorial w.
w<l: 1 A Small w, finished,
wxV w-1 A Otherwise recur.

}

Implicit self-reference using 'V ' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using 'V ' are particularly
efficient.

Recursive Dynamic Operators refer to their derived functions, that is the operator bound
with its operand(s) using V or the operator itself using the compound symbol: VV. The
first form of self reference is by far the more frequently used.

pow<{ A Function power.
0=0:w A Apply function operand o times.
(a-1)V 00t w A QO OO GO ... W

}

The following example shows a rather contrived use of the second form of (operator)
self reference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original operand
function:

exp+{ A Exponential fn application.
0=0:00 A Apply operand 2*a times.
(a-1)accaa VYV w A (aoceaa)e(...) ... w

succ<{1+w} A Successor (increment).
10 succ exp O
1024

Chapter 2 Defined Functions & Operators 119

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and
Operators in an attempt to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt«{wx0.5} A Square root.
sqrt 9 16 25
3 45
hyp«{sqrt+/>w*2} A Hypoteneuse of triangle.

hyp(3 4)(4 5)(5 12)
5 6.403124237 13

intge{w=lw} A Whole number?
intg 2.5 3 4.5

010
pyth«<{intg hyp w} A Pythagorean pair?
pyth(3 4)(4 9)(5 12)

101
pairs<{,tw w} A Pairs of numbers 1..w.
pairs 3

11 12 13 21 22 23 31 32 33

filter«{(ao w)/w} A Op: w filtered by aa.
pyth filter pairs 12 A Pythagorean pairs 1..12

34+ 43 512 68 86 912 125 12 9

120 Dyalog APL/W Language Reference

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

rpm<{ A Relatively prime?
w=0:a=1 p C.f. Euclid's gcd.
wV wlo

Y/ A Note the /~

rpm(2 4)(3 4)(6 8)(16 27)
0101

rpm filter pyth filter pairs 20
34+ 43 512 815 125 15 8

We can use an operator to combine the tests:

and<«{ A Lazy parallel 'And'.
mask<«ao w A Left predicate selects...
mask\ww mask/w A args for right predicate.

pyth and rpm filter pairs 20
34+ 43 512 815 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3).

less«{</>w}
less(3 4)(4 3)
10

less and pyth and rpm filter pairs 40
34 512 724 815 9 40O 12 35 20 21

And finally, as promised, triples:

{w,hyp w} less and pyth and rpm filter pairs 35
3 45 512 13 7 24 25 8 15 17 12 35 37 20 21 29

Chapter 2 Defined Functions & Operators 121

A Larger Example

Function tokens uses nested local D-Fns to split an APL expression into its
constituent tokens. Note that all calls on the inner functions: lex, acc, and the
unnamed D-Fn in each token case, are tail calls. In fact, the only stack calls are those on
function: a l |, and the unnamed function: {wv~ 19w}, within the ‘Char literal’ case.

tokens<{ i A Lex of APL src line.
alph«<0JA,0A,'_AA',2611740AV A Alphabet for names.
all«{+/*\ocew} A No. of leading oaew.
acc<{(a,t/w)lex>V/w} A Accumulate tokens.
lex<{
O=pw:0 ¢ hd«tw A Next char else done.

hd="' ':0{
size«w all'
0 acc size w

}w

hdealph:o{ A Name
size«w all alph,dD
0 acc size w

}w

hde '0: "' :a{ A System Name/Keyword
size«w all hd,alph
o acc size w

}w

hd=""'"":a{ A Char Lliteral
size«+/"\{wvT1dow}#\hd=w
0 acc size w

}w

hde[D, ' ™' :a{ A Numeric literal
size«w all OD,'.TE'
o acc size w

o)

White Space.

w
hd='n':0 acc(pw)w A Comment
o acc 1 w A Single char token.
(0pe' ') lex,w
}
display tokens'xtok<«sizetsrce A Next token'
- ->——— > ——— - ==

|
| |Ixtok| |<«| |sizel || |srce|l | | |a Next token| |
| 1]] -]]]] -]] 1 1 1 1 1

122

Dyalog APL/W Language Reference

Restrictions

Currently multi-line Dynamic Functions can’t be typed directly into the session. The
interpreter attempts to evaluate the first line with its trailing left brace and a SYNTAX
ERROR results.

Dynamic Functions need not return a result. However even a non-result-returning
expression will terminate the function, so you can’t, for example, call a non-result-
returning function from the middle of a Dynamic Function.

You can trace a Dynamic Function only if it is defined on more than one line.
Otherwise it is executed atomically in the same way as an execute (¢) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a line and
seeing nothing change on the screen.

Dynamic Functions do not currently support [cs.

Supplied Workspaces

You can find more examples of dynamic functions and operators in workspaces in the
samples\dfns directory.

DFNS.DWS - a selection of utility functions.

MIN.DWS - an example application.

Chapter 2 Defined Functions & Operators 123

APL Line Editor

The APL Line Editor described herein is included for completeness and for adherence
to the ISO APL standard. See User Guide for a description of the more powerful full-
screen editor, [JED.

Using the APL Line Editor, functions and operators are defined by entering Definition
Mode. This mode is opened and closed by the del symbol, V. Within this mode, all
evaluation of input is deferred. The standard APL line editor (described below) is used
to create and edit operations within definition mode.

Operations may also be defined using the system function OF X (implicit in a JED fix)
which acts upon the canonical (character), vector, nested or object representation form
of an operation. (See Chapter 6 and User Guide for details.)

Functions may also be created dynamically or by function assignment. (See above and
Chapter 4.)

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening V symbol is followed by the header line of a defined operation. Redundant
blanks in the request are permitted except within names. If acceptable, the editor
prompts for the first statement of the operation body with the line-number 1 enclosed in
brackets. On successful completion of editing, the defined operation becomes the active
definition in the workspace.

Example
VR<FO0O
[1] R<«10
[2] Vv
FOO

10

124

Dyalog APL/W Language Reference

The given operation name must not have an active referent in the workspace, otherwise
the system reports defn error and the system editor is not invoked:

JVARS
SALES X Y

VR<SALES Y
defn error

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

VR«A B C D:G
defn error

Listing Defined Operation

The v symbol followed by the name of a defined operation and then by a closing V,
causes the display of the named operation. Omitting the function name causes the
suspended operation (i.e. the one at the top of the state indicator) to be displayed and
opened for editing.

Example
VFOOV
vV R<«FOO
[1] R«<10
v
)SI
#.FOO[1] x
v
vV R«FO0
[1] R«<10

Chapter 2 Defined Functions & Operators 125

Editing Active Defined Operation

Definition mode is entered by typing V followed optionally by a name and editing
directive.

The V symbol on its own causes the suspended operation (i.e. the one at the top of the
state indicator) to be displayed. The editor then prompts for a statement or editing
directive with a line-number one greater than the highest line-number in the function. If
the state indicator is empty, the system reports defn error and definition mode is
not entered.

The V symbol followed by the name of an active defined operation causes the display of
the named operation. The editor then prompts for input as described above. If the name
given is not the name of an active referent in the workspace, the opening request is
taken to be the creation of a new operation as described in paragraph 1. If the name
refers to a pendent operation, the editor issues the message warning pendent
operation prior to displaying the operation. If the name refers to a locked operation,
the system reports defn error and definition mode is not entered.

The v symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the operation.
If the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to actioning the editing directive. If the name refers to a
locked operation, the system reports defn error and definition mode is not entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example
VFOO[2]
[2] R«Rx2

[3] v

126 Dyalog APL/W Language Reference

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

Syntax Description

v Closes definition mode

[0] Displays the entire operation

[On] Displays the operation starting at line n
[nO] Displays only line n

[an] Deletes Lline n

[nam] Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n
[n0Om] Edits line n placing the cursor at character

position m
Edit control symbols are:
/ - deletes character above
1 to 9 - inserts that number of spaces
A to Z - inserts multiples of 5 spaces

.text - inserts the text prior to the
character above '.'
,text - inserts the text as above but

continues the edit

Figure 2(iv) : Editing directives

Chapter 2 Defined Functions & Operators 127

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are assigned
as consecutive integers, beginning with [0] for the header line. The number associated
with an operation line remains the same for the duration of the definition mode unless
altered by editing directives. Additional lines may be inserted by decimal numbering.
Up to three places of decimal are permitted. On closing definition mode, operation
lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line or
an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

VR<A PLUS B
[1] Re«A+B
(2]

Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered. If a
statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

(2] _ [0.8]

[0.8] a MONADIC OR DYADIC +

[0.9] A A «> OPTIONAL ARGUMENT

(1]

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

[1] [0] R«{A} PLUS B
[1]

Delete

The editing directive [An], where n is a line number, causes the statement line to be
deleted. The form [nAm], where n is a line number and m is a positive integer, causes
m consecutive statement lines starting from line number n to be deleted.

128

Dyalog APL/W Language Reference

Edit

The editing directive [nm], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th} character
on a new line for editing. The response is taken to be edit control symbols selected

from:

/ - to delete the character immediately above the symbol.

1to9 - to insert from 1 to 9 spaces immediately prior to the character above the
digit.

AtoZ -toinsert multiples of 5 spaces immediately prior to the character above the

letter, where A =5, B =10, C =15 and so forth.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then re-display the line
for further editing with the text inserted and any preceding deletions or space
insertions also effected.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then complete the edit of
the line with the text inserted and any preceding deletions or space insertions
also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if there
are only deletion or space insertion symbols, the statement line is re-displayed with
characters deleted and spaces inserted as specified. The cursor is placed at the first
inserted space position or at the end of the line if none. Characters may be added to the
line which is then interpreted as seen.

The line number may be edited.

Chapter 2 Defined Functions & Operators 129

Examples
[1] (1071
[1] R<«A+B

,>(0=0NC'A")pi<LC o
[1] +(0=0NC'A")p1<JLC o R«A+B

.o>END
[2] R«B
[3] END:
[4]

The form [n[J0] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive [[]causes the entire operation to be displayed. The form [[On]
causes all lines from line number n to be displayed. The form [n[] causes only line
number n to be displayed:

[4] (o0}

[o] R<{A} PLUS B
[0]

[0]

(ol
[o] R<{A} PLUS B
[0.1] a MONADIC OR DYADIC +
[1] ~(0=0ONC'A')p1+[LC o R«A+B o-END

[2] Re<B
[3] 'END:
(4]

Close Definition Mode

The editing directive V causes definition mode to be closed. The new definition of the
operation becomes the active version in the workspace. If the name in the operation
header (which may or may not be the name used to enter definition mode) refers to a
pendent operation, the editor issues the message warning pendent operation
before exiting. The new definition becomes the active version, but the original one will
continue to be referenced until the operation completes or is cleared from the State
Indicator.

130 Dyalog APL/W Language Reference

If the name in the operation header is the name of a visible variable or label, the editor
reports defn error andremains in definition mode. It is then necessary to edit the
header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text on
the line. Backspace/linefeed editing may be used to alter or cancel the change:

[3] (o]l - display line 0

[0] R<{A} PLUS B

[0] R«{A} PLUS B:G;H - put syntax error in line O

defn error

[0] R«{A} PLUS B:G:;H - line redisplayed

[1] ;G;H - backspace/linefeed editing
1

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. If aname is repeated in the header line, the system reports "warning duplicate
name" immediately.

2. [Ifalabel has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. Ifalabel has the same name as another label, the system reports "warning duplicate
label" on closing definition mode.

Chapter 2 Defined Functions & Operators 131

Improper syntax in expressions within statement lines of the function is not detected by
the system editor with the following exceptions:

e If the number of opening parentheses in each entire expression does not equal the
number of closing parentheses, the system reports "warning unmatched
parentheses", but accepts the line.

e If the number of opening brackets in each entire expression does not equal the
number of closing brackets, the system reports "warning unmatched brackets", but
accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

[4] R«(A[:1)=2)#¢EXP, "'x2
warning unmatched parentheses
warning unmatched brackets

(5]

Note that there is an imbalance in the number of quotes. This will result ina SYNTAX
ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

132 Dyalog APL/W Language Reference

133

CHAPTER 3

Object Oriented Programing

Introducing Classes

A Class is a blueprint from which one or more /nstances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as
Members) which are defined within the body of the class script or are inherited from
other Classes. This version of Dyalog APL does not support Events although it is
intended that these will be supported in a future release. However, Classes that are
derived from .Net types may generate events using 4+ [INQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A class
script may also be constructed from a vector of character vectors, and fixed using
OFIX.

A class script begins with a : Class statement and ends witha :EndClass
statement.

134

Dyalog APL/W Language Reference

For example, using the editor:

JCLEAR
clear ws
JED oAnimal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

JCLASSES
Animal

[ONCec'Animal'
9.4

Editing Classes

Between the : Class and : EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not
add or alter functions by editing them independently and you may not add variables by
assignment or remove objects with JEX.

When you re-fix a Class Script using the Editor or with [JF IX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in its
entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so forth
that are created by actions external to the class.

For example, if X is not a public member of the class MyClass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X«99

The namespace is analogous to the namespace associated with a GUI object and will be
re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

Chapter 3 Object Oriented Programing 135

Inheritance

If you want a Class to derive from another Class, you simply add the name of that
Class to the : Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts to
locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is re-fixed, will the new base
class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or re-fixing the
derived class(es) after the base class has been substituted.

Classes that derive from .Net Types

You may define a Class that derives from any of the .Net Types by specifying the name
of the .Net Type and including a : USING statement that provides a path to the .Net
Assembly in which the .Net Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization

;éﬁdClass

136

Dyalog APL/W Language Reference

Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Po Ly object, the Class
specification would be:

:Class Duck: 'Poly"
:EndClass

The Base Constructor for such a Class is the OWC system function.

For further details see Writing Classes Based on the Dyalog GUI.

Instances

A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the ONEW system function which is monadic.

The 1-or 2-item argument to [INEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When [ONEW executes, it first creates an empty instance namespace and tags it with an
internal pointer to its Class.

When [ONEW executes, it creates a regular APL namespace to contain the Instance, and
within that it creates an Instance space, which is populated with any Instance Fields
defined by the class (with default values if specified), and pointers to the Instance
Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to [INEW. If [INEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of ONEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Chapter 3 Object Oriented Programing 137

Constructors

A Constructor is a special function defined in the Class script that is to be run when an
Instance of the Class is created by ONEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, witha : Access
Pub L i c statement, because like all Class members, Constructors default to being
Private. Private Constructors currently have no use or purpose, but it is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only one)
may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Constructor
argument. See Constructor Overloading for details.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by [INEW. See Base Constructors for further details.

When ONEW is executed with a 2-item argument, the appropriate monadic Constructor
is called with the second item of the INEW argument.

The niladic (default) Constructor is called when ONEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that [INEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example

The DomesticParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 2" item of the argument to [INEW) in a
Public Field called Name.

138 Dyalog APL/W Language Reference

:Class DomesticParrot:Parrot
:Field Public Name

V egg name
:Implements Constructor
tAccess Public
Name<name

\'4

:Endé[éss A DomesticParrot

pol<[INEW DomesticParrot 'Polly'
pol.Name
Polly

Constructor Overloading

NameList header syntax is used to define different versions of a Constructor each with
a different number of parameters, referred to as its signature. The Clover Class
illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is called.
If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by [INEW. See Base Constructors for further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
Make1l 1-item vector
Make2 2-item vector
Make3 3-item vector
MakeO No argument
MakeAny Any array accepted

Chapter 3 Object Oriented Programing

139

Clover Class Example

:Class Clover A Constructor Overload Example

:Field Public Con

v

v
v

v

MakeO

tAccess Public
:Implements Constructor
make O

Makel(arg)

:Access Public
:Implements Constructor
make arg

Make2(argl arg2?)
tAccess Public
:Implements Constructor
make argl arg2

Make3(argl arg2 arg3)
:Access Public
:Implements Constructor
make argl arg2 arg3

MakeAny args

:Access Public
:Implements Constructor
make args

make args
Con+«(pargs)(2>0SI)args

:EndClass A Clover

140

Dyalog APL/W Language Reference

In the following examples, the Make function (see Clover Class listing for details)
displays:

<shape of argument> <name of Constructor called><argument>
(see function make)

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Make1 Constructor. Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable arg1.

(ONEW Clover(,1)).Con
Makel 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively.

(ONEW Clover(1 2)).Con
2 Make2 1 2

(ONEW Clover(1 2 3)).Con
3 Make3 1 2 3

Creating an Instance with any other Constructor argument causes the system to choose
MakeAny.

(OONEW Clover(110)).Con
10 MakeAny 1 2 3 4567 8 9 10
(ONEW Clover(2 2pi4)).Con
2 2 MakeAny 1 2
3 4

Note that a scalar argument will call MakeAny and not Makel.

(ONEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose MakeO.

(ONEW Clover).Con
Make0O O

Chapter 3 Object Oriented Programing 141

Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when [INEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec

v default
:Access Public Instance
:Implements Constructor
Species«'Default Bird'

V R«Speak
:Access Public
R<'Tweet, tweet!'
\'4

:EndClass A Bird

The niladic Constructor (in this example, the function default) is invoked when
ONEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Fieldissetto ‘Default Bird'.

Birdy«[DNEW Bird
Birdy.Species
Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression (31Birdy), APL has to create two fill items of
Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:
TweetyPie«3210tBirdy

142 Dyalog APL/W Language Reference

The 101 (temporarily) creates a 10-element array comprising the single entity Birdy
padded with 9 fill-elements of Class Bi rd. To obtain the 9 fill-elements, APL calls the
niladic Constructor 9 times, one for each separate prototypical Instance that it is
required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name<''
:Field Public Strength<«&
vV make2(name strength)
tAccess Public
:Implements Constructor
Name Strength<name strength
v
vV makel name
tAccess Public
:Implements Constructor
Name Strength<name 1
v
V make_excuse
:Access Public
:Implements Constructor
O«'The cat ate the last one!'
v
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata«('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<{[INEW Cheese w} 'cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board«(cheeses.Strength<3)/cheeses
board.Name
Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board«(cheeses.Strength>5)/cheeses
board.Name
The cat ate the last one!

Chapter 3 Object Oriented Programing 143

Note that this message is not the result of the expression, but was explicitly displayed
by the make_excuse function. The clue to this behaviour is the shape of board; it is
empty!

pboard
0

When a reference is made to an empty array of Instances (strictly speaking, a reference
that requires a prototype), APL creates a new Instance by calling the niladic (default)
Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence,
in this example, the reference:

board.Name
caused APL to run the niladic Constructor make_excuse, which displayed:
The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely after
the behaviour of empty arrays in general. In particular, the Class designer is given the
task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty arrays,
a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs.

2. the default (niladic) Constructor is run in the new Instance

3. the appropriate value is obtained or assigned:
a. ifitis a reference is to a Field, the value of the Field is obtained
b. ifitis a reference is to a Property, the PropertyGet function is run
c. ifitis areference is to a Method, the method is executed

d. ifitis an assignment, the assignment is performed or the PropertySet
function is run

4. ifitis a reference, the result of step 3 is used to generate an empty result array
with a suitable prototype by the application of the function {Opcw} to it

5. the Class Destructor (if any) is run in the new Instance

6. the New Instance is deleted

144 Dyalog APL/W Language Reference

Example

:Class Bird
:Field Public Species

V egg spec
tAccess Public Instance
:Implements Constructor
[IDF Species<«spec

<<

default

:Access Public Instance
:Implements Constructor
[DF Species<«'Default Bird'
#.DISPLAY Species

<<

R«<Speak

tAccess Public

#.DISPLAY R«'Tweet, Tweet, Tweet'
v

:EndClass A Bird
First, we can create an empty array of Instances of Bird using Op.
Empty<Op0NEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke the
niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls #. DISPLAY which displays output to the Session.

DISPLAY Empty.Species

APL then retrieves the value of Species ('Default Bird'), applies the function
{0pcw} to it and returns this as the result of the expression.

A reference to Empty.Speak causes APL to create a new Instance and invoke the
niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 3 Object Oriented Programing 145

DISPLAY Empty.Speak

APL then invokes function Speak which displays 'Tweet, Tweet, Tweet' and
returns this as the result of the function.

APL then applies the function {Opcw} to it and returns this as the result of the
expression.

Base Constructors

Constructors in a Class hierarchy are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to
participate in the initialisation of an Instance.

Every Constructor function contains a: Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the : Base control word and an arbitrary expression.

The statement:
:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon
the rank and shape of the result of expr (see Constructor Overloading for details).

Whereas, the statement:

:Implements Constructor
or

:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

146

Dyalog APL/W Language Reference

Note that during the instantiation of an Instance, these calls potentially take place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails witha LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
witha LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way a
Constructor function may be invoked is by [ONEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when a
new Instance is instantiated. If Constructor functions were allowed to call one another,
there would be several calls on the Base Constructor. Similarly, if a Constructor could
be called directly it would potentially duplicate the Base Constructor call.

Chapter 3 Object Oriented Programing

147

Niladic Example

In the following example, DomesticParrot is derived from Parrot which is

derived from B i rd. They all share the Field Desc (inherited from B i rd). Each of the
3 Classes has its own niladic Constructor called egg0.

:Class Bird
:Field Public Desc
vV egg0
:Access Public
:Implements Constructor
Desc<«'Bird'

\'4
:EndClass A Bird

:Class Parrot: Bird
vV egg0
tAccess Public
:Implements Constructor
Desc,«'~>Parrot'
\'
:EndClass A Parrot

:Class DomesticParrot: Parrot
vV egg0
:Access Public
:Implements Constructor
Desc,«'~>DomesticParrot'
\'4
:EndClass A DomesticParrot

(ONEW DomesticParrot).Desc

Bird-Parrot-DomesticParrot

Explanation

[ONEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, [INEW calls the niladic constructor in the Base Class Parrot.egg0

Parrot.egg0 starts to execute and as soon as the line:

:Implements Constructor

is encountered, ONEW calls the niladic constructor in the Base Class Bird.egg0.

148

Dyalog APL/W Language Reference

When the line:
:Implements Constructor

is encountered, [INEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds ...

Bird.egg0 executes Desc«'Bird'’
Parrot.egg0 executes Desc,«'»Parrot'’
DomesticParrot.egg0 execute Desc,«'»DomesticParrot'"'

Monadic Example

In the following example, DomesticParrot is derived from Parrot which is
derived from Bird. They all share the Field Species (inherited from B i rd) but only
aDomesticParrot hasa Field Name. Each of the 3 Classes has its own Constructor
called egg.

:Class Bird
:Field Public Species
V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec
v

:EndClass A Bird

:Class Parrot: Bird
V egg species
:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species
v

:Endéiéss A Parrot

:Class DomesticParrot: Parrot
:Field Public Name
vV egg(name species)
tAccess Public Instance
:Implements Constructor :Base species
[ODF Name<name
\

:Endéiéss A DomesticParrot

pol<[INEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Chapter 3 Object Oriented Programing 149

Explanation

ONEW creates the new instance and runs the Constructor DomesticParrot.egg
The egg header splits the argument into two items name and species. As soon as
the line:

:Implements Constructor :Base species

is encountered, (ONEW calls the Base Class constructor Parrot . egg, passing it the
result of the expression to the right, which in this case is simply the value in species.

Parrot.egg starts to execute and as soon as the line:
:Implements Constructor :Base 'Parrot: ',species

is encountered, (ONEW calls izs Base Class constructor Bird.egg, passing it the result
of the expression to the right, which in this case is the character vector 'Parrot: '
catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.
At this point, the State Indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]x
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]
Bird.egg then returns to Parrot.egg which returns to DomesticParrot.egg.

Finally, DomesticParrot.egg[3] is executed, which establishes Field Name and
the Display Format (ODF) for the instance.

150 Dyalog APL/W Language Reference

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with an
Instance.

An Instance of a Class is destroyed when:

e The Instance is expunged using JEX or) ERASE.

e A function, in which the Instance is localised, exits.
But be aware that a destructor will also be called if:

e The Instance is re-assigned (see below)

e The result of ONEW is not assigned (the instance gets created then immediately
destroyed).

e APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has obtained
the appropriate value from the instance and no longer needs it.

e The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.

e On the execution of) CLEAR,) LOAD, [JLOAD or [JOFF.

Note that an Instance of a Class only disappears when the las? reference to it
disappears. For example, the sequence:

I1<[INEW MyClass
I2«I1
JERASE I1

will not cause the Instance of MyCl ass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement : Implements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot

v okill
:Implements Destructor
'This Parrot is dead'
v

:Endéiéss A Parrot
pol<[INEW Parrot 'Scarlet Macaw'

JERASE pol
This Parrot is dead

Chapter 3 Object Oriented Programing 151

Note that reassignment to po L causes the Instance referenced by pol to be destroyed
and the Destructor invoked:

pol<«[INEW Parrot 'Scarlet Macaw'
pol<«[INEW Parrot 'Scarlet Macaw'
This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:

DomesticParrot => Parrot => Bird
containing the following Destructors:

:Class DomesticParrot: Parrot

v kil
:Implements Destructor
'This ', (s0THIS),"' is dead'
v

:EndCiéés A DomesticParrot
:Class Parrot: Bird

v kil
:Implements Destructor
'This Parrot is dead'
v

:Endéiéss A Parrot
:Class Bird

v kil
:Implements Destructor
'This Bird is dead'

v

:Endéiéss A Bird

Destroying an Instance of DomesticParrot will run the Destructors in
DomesticParrot,Parrot and Bird and in that order.

pol<[INEW DomesticParrot
)CLEAR

This Polly is dead

This Parrot is dead

This Bird is dead

clear ws

152

Dyalog APL/W Language Reference

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together as
Members) which are defined within the body of the Class script or are inherited from
other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. D-fns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set
the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all sorts
of operations. In particular, the value of a Property is not stored in the Property and
may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

Chapter 3 Object Oriented Programing 153

Fields

A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However, Fields
differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a : F i e Ll d statement. This
specifies:

e the name of the Field

e whether the Field is Public or Private

e whether the Field is Instance or Shared
e whether or not the Field is ReadOnly

e optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

:EndClass A DomesticParrot
The Name field is initialised by the Class constructor.

pet<«[JNEW DomesticParrot'Polly"’
pet.Name
Polly

The Name field may also be modified directly:

pet.Name<¢pet.Name
pet.Name
ylloP

154 Dyalog APL/W Language Reference

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by OF IX.

:Class DomesticParrot: Parrot
:Field Public Name<«'Dicky'
:Field Public Talks<«1

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

:EndClass A DomesticParrot
Field Tal ks will be initialised to 1 in every instance of the Class.

pet«[INEW DomesticParrot 'Dicky’

pet.Talks
1

pet.Name
Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.
See also: Shared Fields

Chapter 3 Object Oriented Programing 155

Private Fields

A Private Field may only be referenced by code running inside the Class or an Instance
of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 157) has a Private Instance Field named t i e that
is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap O
tie<filename OFTIE O
tElse
tie«filename [FCREATE O
:EndTrap
ODOF filename, '(Component File)'
\'

As the field is declared to be Private, it is not accessible from outside an Instance of the
Class, but is only visible to code running inside.

F1«<[ONEW ComponentFile 'test1'
Fl.tie
VALUE ERROR
Fil.tie
A

156

Dyalog APL/W Language Reference

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the Class.
Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise a
Field.

:Class Example

:Using System.Globalization

:Field Public Shared ReadOnly Months<«12+ ([INEW
DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass A Example

A Shared Field is not only accessible from an instance...

EG<[INEW Example
EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a : Us i ng statement (or the equivalent
assignment to JUSING) in order to specify the .Net search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

[(QUSING«'System.Globalization'

12+ ([ONEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Chapter 3 Object Oriented Programing 157

Trigger Fields

A Fields may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in ctor) and those made from outside the Instance.

:Class MyClass

:Field Public Name

:Field Public Country«'England’

V ctor nm
tAccess Public
:Implements Constructor
Name<nm

v

v format
:Implements Trigger Name,Country
[ODF 'My name is ',Name,' and I live in ',Country

v
:EndClass A MyClass

me<[INEW MyClass 'Pete'’
me
My name is Pete and I live in England

me.Country<«'Greece'
me
My name is Pete and I live in Greece

me.Name<«'Kostas'
me
My name is Kostas and I live in Greece

158 Dyalog APL/W Language Reference

Methods

Methods are implemented as regular defined functions, but with some special attributes
that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a V, followed by a valid APL defined function header.
The method definition is terminated by a closing V.

The behaviour of a Method is defined by an : Access control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is not
visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods
Instance Methods may be declared with : Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e. within its own Class)
by a Method of the same name that is defined in a higher Class which itself is declared
with the Override keyword. See Superseding Base Class Methods.

Chapter 3 Object Oriented Programing 159

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

V R«<Speak times
:Access Public Shared
R<stimespc'Squark!"’

v

:EndClass A Parrot

wild<[JNEW Parrot
wild.Speak 2
Squark! Squark!

Note that Parrot . Speak may be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

160 Dyalog APL/W Language Reference

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class DomesticParrot hasa Speak method defined to be Public and Instance
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited Parrot.Speak.

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'4

V R«Speak times

tAccess Public Instance

R«cName,', ',Name

R«tR,timespc' Who's a pretty boy,then!’
v

tEndClass A DomesticParrot

pet<[JNEW DomesticParrot'Polly"’
pet.Speak 3

Polly, Polly

Who's a pretty boy,then!

Who's a pretty boy,then!

Who's a pretty boy,then!

bil<[JNEW DomesticParrot'Billy"
bil.Speak 1

Billy, Billy

Who's a pretty boy,then!

Chapter 3 Object Oriented Programing 161

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words in
the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base Class
method in the Base Class, by providing a method which is marked Override. The
typical use of this is to replace code in the Base Class which handles an event, with a
method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

V ErrorHandler
[1] :Access Public Overridable
[2] 0«+t0oM
v
In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

V ErrorHandler;TN
[1] :Access Public Override
[2] O<«t00M
[3] TN*'ErrorLog'DFSTIE 0
[4] [OOM [OFAPPEND TN
[5] OFUNTIE TN

If the derived class had a function which was not marked Override, then function in the
derived class which called ErrorHandler would call the function as defined in the
derived class, but if a function in the base class called ErrorHand ler, it would still
see the base class version of this function. With Override specified, the new function
supersedes the function as seen by code in the base class. Note that different derived
classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

162

Dyalog APL/W Language Reference

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined to
allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.
A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices. The Numbered Property
is designed to allow APL to perform selections and structural operations on the
Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance My Inst has a Simple Property Sprop and a Numbered Property Nprop,
the expressions

X«MyInst.SProp
X«MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of Sprop.
The second statement subsequently uses indexing to extract just the second element of
the value.

Whereas, the expression:
X«MyInst.NProp[2]

causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the
expression:

X«MyInst.NProp

Chapter 3 Object Oriented Programing 163

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty sectionina Class
Script.

Within the body of a Property Section there may be:

one or more :Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class (see page 157).

The Simple Property Count returns the number of components on a file.

:Property Count
:Access Public Instance
V r<get
r< 1+2>50FSIZE tie

v
:EndProperty A Count

F1«<[ONEW ComponentFile 'test1'
F1.Append'Hello World'

1
F1.Count
1
F1.Append 42
2
F1.Count
2

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR.

F1.Count<«99

SYNTAX ERROR
F1.Count<«99
A

164 Dyalog APL/W Language Reference

The Access Property has both get and set functions which are used, in this simple
example, to get and set the component file access matrix.

:Property Access
:Access Public Instance
V r<get
r<[JFRDAC tie
v
V set am;mat;OK
mat«am.NewValue
:Trap O
OK<+(2=ppmat)”(3=2>pmat)**/,mat=[mat
:Else
OK<«0
:EndTrap
'bad arg'[JSIGNAL (~OK)/11
mat OFSTAC tie
v
:EndProperty ma Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewValue
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been assigned.
The function may validate the value reject or accept it (as in this example), or perform
whatever processing is appropriate.

F1<[ONEW ComponentFile 'testt'
pFl.Access

F1.Access«3 3p28 2105 16385 0 2073 16385 31 "1 0
F1.Access
28 2105 16385
0 2073 16385
31 -1 0

Fi1.Access«'junk'
bad arg

Fi1.Access<«'junk'
A

F1.Access«l 2p10
bad arg
F1.Access«l 2p10
A

Chapter 3 Object Oriented Programing 165

Simple Shared Properties

The ComponentFile Class (see page 157) specifies a Simple Shared Property named
F i Les which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible
to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared
V r<get
r<dJFLIB""'
v
:EndProperty

Note that [JFLIB (invoked by the F i les get function) does not report the names of
tied files.

F1«<[ONEW ComponentFile 'testi'

OeEX'F1'

F2«<[ONEW ComponentFile 'test2'

F2.Files a NB [OFLIB does not report tied files
testt

Oex'F2'

Note that a Shared Property may be accessed from the Class itself. It is not necessary to

create an Instance first.

ComponentFile.Files
test!
test2

166

Dyalog APL/W Language Reference

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function. If
the expression specifies a single index, APL calls the PropertyGet or PropertySet
function once. If the expression specifies multiple indices, APL calls the function
successively.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet or
PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an
argument of type PropertyArguments.

Example

The ComponentFile Class (see page 157) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance
V r<shape
r<-1+2>50FSIZE tie
v
V r<get arg
r«(JFREAD tie arg.Indexers
v
V set arg
arg.NewValue [JFREPLACE tie,arg.Indexers

v
:EndProperty

Chapter 3 Object Oriented Programing 167

F1<[DJNEW ComponentFile 'test1l'

F1.Append (15)xcih
12345

F1.Count

F1.Component[4]
4L 8 12 16

4LoF1.Component
L 8 12 16

(et 3)[F1.Component
4 8 12 16 3 6 9 12

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1234 2468 369 12 4 812 16 5 10 15 20

((c4 3)[F1.Component)«'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]
INDEX ERROR
F1.Component[6]
A

F1.Component[1;2]
RANK ERROR
F1.Component[1;2]
A

168

Dyalog APL/W Language Reference

The Default Property

A single Numbered Property may be identified as the Default Property for the Class. If
a Class has a Default Property, indexing with the [] primitive functionand [. . .]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class (see page 157) can be
extended by adding the control word Default tothe :Property statement for the
Component Property.

Indexing may now be applied directly to the Instance F 1. In essence, F1[n] is simply
shorthand for F1.Component[n] and n[JF1 is shorthand for n[IF 1 .Component

:Property Numbered Default Component
tAccess Public Instance
V r<shape
r<-1+2>50FSIZE tie
v
V r<get arg
r<[JFREAD tie arg.Indexers
v
V set arg
arg.NewValue [FREPLACE tie,arg.Indexers

v
:EndProperty

F1<[ONEW ComponentFile 'testt'
F1.Append (15)xcil

12345
F1.Count
5
FI[l4]
4L 8 12 16
(4 3)[F1

4L 8 12 16 3 6 9 12
((e4 3)[JF1)«'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.

4oF1
DOMAIN ERROR
4oF 1

A

Chapter 3 Object Oriented Programing

169

ComponentFile Class Example

:Class ComponentFile
:Field Private Instance tie

v

v

Open filename
:Implements Constructor
tAccess Public Instance
:Trap O
tie<filename OFTIE O
tElse
tie<«filename [FCREATE O
:EndTrap
(ObF filename,'(Component File)'

Close
tAccess Public Instance
OFUNTIE tie

r<Append data
tAccess Public Instance
r<data [OFAPPEND tie

Replace(comp data)
:Access Public Instance
data [OFREPLACE tie,comp

:Property Count
:Access Public Instance

V r<get
r< 1+2>50FSIZE tie

v
:EndProperty A Count

170 Dyalog APL/W Language Reference

Component File Class Example (continued)

:Property Access
tAccess Public Instance
V r«get arg
r<[JFRDAC tie
v
V set am;mat;OK
mat<am.NewValue
:Trap O
OK<(2=ppmat)~(3=2>pmat)**/,mat=mat
:Else
OK<«0
:EndTrap
'bad arg'[JSIGNAL (~OK)/11
mat [FSTAC tie
v
:EndProperty na Access

:Property Files
:Access Public Shared
V r<get
r<QJFLIB"'
v
:EndProperty

:Property Numbered Default Component
tAccess Public Instance
V r<shape args
r< 1+2>50FSIZE tie
v
V r<get arg
r<c[JFREAD tie,arg.Indexers
v
V set arg
(oarg.NewValue)FREPLACE tie,arg.Indexers

v
:EndProperty

V Delete filestie
:Access Public Shared
tie«file OFTIE O
file [OFERASE tie
v
:EndClass A Class ComponentFile

Chapter 3 Object Oriented Programing 171

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restricted
to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assignment)
and the array returned by the get function (for an indexed reference). If the rank or
shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a RANK ERROR or LENGTH ERROR.

Note too that indices may not be elided. If KProp is a Keyed Property of Instance I1,
the following expressions would all generate NONCE ERROR.

I1.KProp

I1.KProp[]<10
I1.KProp[;]«10
I1.KProp['One' 'Two';]«10
I1.KProp[;'One' 'Two']<«10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse?2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Values. The following expressions show how it might be used.

SAL1<[INEW Sparse?
SAl.Values[c'Widgets';c'Jan']«100
SA1.Values[c'Widgets';c'Jan']
100
SAl.Values['Widgets' 'Grommets';'Jan' 'Mar'
'Oct']«10x2 3p16
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
10 20 30
40 50 60
SA1.Values[c'Widgets';'Jan' 'Oct']
10 30
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30

172 Dyalog APL/W Language Reference

Sparse2 Class Example

:Class Sparse2 A 2D Sparse Array
:Field Private keys
:Field Private values
vV make
tAccess Public
:Implements Constructor
keys‘-OpC" [
values<+@&
\4
:Property Keyed Values
tAccess Public Instance
V veget arg:;k
k<arg.Indexers
OSIGNAL (2#pk) /4
k<fixkeys k
v<(values,0)[keysik]

V set args;newsk;v;n
v<arg.NewValue
k<arg.Indexers
OSIGNAL (2#pk)/4
k<fixkeys k
v<(pk) (p*(=21=p,v))v
OSIGNAL((pk)#pv)/5
k ve,7k v
:If v/new<~kekeys

values,<«new/v
keys,«new/k
k v/=«c~new
:EndIf
:If O<pk
values[keysik]«v
:EndIf

v
:EndProperty

vV kefixkeys k
k<(22="k){, (c¥a)w} "k
k«a(o.{>,/c"a w})/k

v

:EndClass A 2D Sparse Array

Chapter 3 Object Oriented Programing 173

Internally, Sparse2 maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys (indices)
inarg.Indexer and values in arg.NewValue. The function updates the values of
existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding values,
inserting Os for non-existent keys.

Note that in the expression:
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg.Indexer is:

174 Dyalog APL/W Language Reference

Example

A second example of a Keyed Property is provided by the KeyedF i Le Class which is
based upon the ComponentFile Class (see page 168) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
OML<0

vV Open filename

:Implements Constructor :Base filename

:Access Public Instance

:If Count>0
Keys+{ow>o[IBASE.Component} "tCount

:Else
Keys<«0pc'

:EndIf

v

:Property Keyed Component
tAccess Public Instance
V r«get arg;keys;sink
keys<«2arg.Indexers
OSIGNAL(~~/keyseKeys)/3
r<{2>w>[BASE.Component} 'Keystikeys

V set arg;new;keys;vals
vals<«arg.NewValue
keys<«2arg.Indexers
OSIGNAL((p,keys)#p,vals)/5
:If v/new«~keyseKeys
sink<Append 4&t(cnew)/ keys vals
Keys,«new/keys
keys vals/=«c~new
:EndIf
:If O<p,keys
Replace +&t(Keystikeys) (¢®tkeys vals)
:EndIf

v
:EndProperty
:EndClass A Class KeyedFile
K1<[ONEW KeyedFile 'ktest'

K1.Count

0
K1.Component[c'Pete']«42
K1.Count

1

K1.Component['John' 'Geoff']«(110)(3 4pt12)
K1.Count

Chapter 3 Object Oriented Programing 175

K1.Component['Geoff' 'Pete']

1 2 3 L4 L2
5 6 7 8
9 10 11 12
K1.Component['Pete' 'Morten']«(3 4p'e')(113)
K1.Count
L
K1.Component['Morten' 'Pete' 'John']
111 112 113 cooo 1 23 4567 89 10
121 122 123 cooo

o0oo0o0

Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a
protocol that an application must follow in order to manipulate a Class in a particular
way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individual
version of Compare. An application can then be written that sorts Instances of any
Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method defined
in the Interface:

:Implements Method <InterfaceName.MethodName>

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The function
name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name,
however, need not be the same as that described in the Interface.

176 Dyalog APL/W Language Reference

Example

The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour

V R«<Swim A Returns description of swimming capability
\

:EndInterface A FishBehaviour

:Interface BirdBehaviour
R<Fly A Returns description of flying capability

v
v
V R<Lay A Returns description of egg-laying behaviour
v
V R«Sing A Returns description of bird-song
v
:EndInterface A BirdBehaviour
:Class Penguin: Animal,BirdBehaviour,FishBehaviour

V R«<NoCanFly

:Implements Method BirdBehaviour.Fly
R<'Although I am a bird, I cannot fly'

4

R<LayOnektgg
:Implements Method BirdBehaviour.Lay
R«'I lay one egg every year'

<

R«<Croak
:Implements Method BirdBehaviour.Sing
R<'Croak, Croak!'

R«<Dive
:Implements Method FishBehaviour.Swim
R«'I can dive and swim like a fish'
v
:EndClass A Penguin

<q

Chapter 3 Object Oriented Programing 177

In this case, the Penguin Class derives from Animal but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members
from both.

Pingo<[JNEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [OCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [OCLASS Pingo).Sing
Croak, Croak!

Including Namespaces

A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:
:Include NS

When the Class is fixed by the editor or by OF IX, all the defined functions and
operators in Namespace NS are included as methods in the Class. The functions and
operators which are brought in as methods from the namespace NS are treated exactly
as if the source of each function/operator had been included in the class script at the
point of the : Inc Lude statement. For example, if a function contains : Signature
or : Access statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

D-fns and D-ops in NS are also included in the Class but as Private members, because
D-fns and D-ops may not contain : Signature or : Access statements. Variables
and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in NS
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

178 Dyalog APL/W Language Reference

Class supersedes
Included Namespace, supersedes
Base Class

Any number of Namespaces may be included in a Class and the : Inc Lude statements
may occur anywhere in the Class script. However, for the sake of readability, it is
recommended that you have : Inc lude statements at the top, given that any
definitions in the script will supersede included functions and operators.

Example

In this example, Class Penguin inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass A Penguin

Namespace BirdStuf f contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
V R<Fly
tAccess Public Instance
R<'Fly, Fly '
v
V R<Lay
tAccess Public Instance
R«<'Lay, Lay '
v
:EndNamespace A BirdStuff

Namespace FishStuff contains a single function, also declared as a Public method.

:Namespace FishStuff
V R«Swim
:Access Public Instance
R«<'Swim, Swim
\
:EndNamespace A FishStuff

Pingo<[INEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...

Pingo.Fly

Fly, Fly

Chapter 3 Object Oriented Programing 179

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuf f.F ly method with Penguin.Fly. We can
hide BirdStuff.F ly with a Private method in Pengui n that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V Fly A Override BirdStuff.Fly
v
:EndClass A Penguin

Pingo<[JNEW Penguin
Pingo.Fly
VALUE ERROR
Pingo.Fly
A

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V R«Fly A Override BirdStuff.Fly
tAccess Public Instance
R«<'Sadly, I cannot fly'
v
:EndClass A Penguin

Pingo<[NEW Penguin
Pingo.Fly
Sadly, I cannot fly

180

Dyalog APL/W Language Reference

Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Pub lic. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Pub lic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.Net and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

GolfCourse A Class that represents a Golf Course, having Fields Code and
Name.

Slot A Class that represents a tee-time or match, having Fields Time
and Players. Up to 4 players may play together in a match.

Booking A Class that represents a reservation for a particular tee-time at a
particular golf course. This has Fields OK, Course, TeeTime
and Message. The value of TeeTime is an Instance of a Slot
Class.

StartingSheet | A Class that represents a day's starting-sheet at a particular golf
course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

Chapter 3 Object Oriented Programing 181

GolfService Example Class

:Class GolfService
:Using System

:Field Private GOLFILE<«'' A Name of Golf data file
:Field Private GOLFID«0 A Tie number Golf data file

:Class GolfCourse
:Field Public Code<«™1
:Field Public Name<«''

V ctor args
:Implements Constructor
tAccess Public Instance
Code Name<«args
(OOF Name,'(',(#sCode),"')"’
v

:EndClass

:Class Slot
:Field Public Time
:Field Public Players

V ctorl t
:Implements Constructor
tAccess Public Instance
Time<«t
Players«0Opc'"'

V ctor2 (t pl)
:Implements Constructor
:Access Public Instance
Time Players<«t pl

vV format
:Implements Trigger Players
[OFsTime Players

\'4
:EndClass

182 Dyalog APL/W Language Reference

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course TeeTime Message<«args
v
v format
:Implements Trigger OK,Message
ODFsCourse TeeTime(>0KdMessage'OK')

\
:EndClass

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots<«[INULL
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course Date<«args
v
v format
:Implements Trigger OK,Message
ODFs2 1p(sCourse Date) (13 Slots)
v
:EndClass

vV ctor file
:Implements Constructor
tAccess Public Instance
GOLFILE<«file
OFUNTIE(((+OFNAMES)~"' ')1cGOLFILE)>[FNUMS,0
:Trap 22
GOLFID«GOLFILE OFTIE O
tElse
InitFile
:EndTrap
\4

Chapter 3 Object Oriented Programing 183

vV dtor
:Implements Destructor
OFUNTIE GOLFID

V InitFile;COURSECODES;COURSES; INDEX;I
tAccess Public
:If GOLFID=0
GOLFILE [FERASE GOLFID
:EndIf
GOLFID+GOLFILE [JFCREATE O
COURSECODES+1 2 3
COURSES«+'St Andrews' 'Hindhead' 'Basingstoke’
INDEX<«(pCOURSES)pO
COURSECODES COURSES INDEX [OFAPPEND GOLFID
:For I :In 1pCOURSES
INDEX[I]«6& & [OFAPPEND 1
:EndFor
COURSECODES COURSES INDEX [OFREPLACE GOLFID 1

V R«GetCourses;COURSECODES ;COURSES; INDEX
:Access Public
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
R<{0ONEW GolfCourse w} '{{§tCOURSECODES COURSES

184

Dyalog APL/W Language Reference

V R«<GetStartingSheet ARGS;CODE;COURSE;DATE;COURSECODES

;s COURSES ; INDEX ; COURSEI; IDN
;DATES ; COMPS ; IDATE; TEETIMES
sGOLFERS;IT

tAccess Public

CODE DATE<«ARGS

COURSECODES COURSES INDEX<[JFREAD GOLFID 1

COURSEI<«COURSECODES1CODE

COURSE<«[INEW GolfCourse(CODE (COURSEI>COURSES,c"'"'))

R<[JNEW StartingSheet(0 COURSE DATE)

:If COURSEI>pCOURSECODES

R.Message«'Invalid course code'

:Return
:EndIf
IDN«2 [INQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX
IDATE«DATES1IDN

:If IDATE>pDATES
R.Message<«'No Starting Sheet available'
:Return
tEndIf
TEETIMES GOLFERS<«[JFREAD GOLFID,IDATE>COMPS
T«DateTime.New (cDATE.(Year Month Day)), "4[1]
24 60 I1TTEETIMES
R.Slots<{(ONEW Slot w} 'T,oc " IGOLFERS
R.0OK<«1

Chapter 3 Object Oriented Programing 185

V R«MakeBooking ARGS;CODE ;COURSE;SLOT;TEETIME
s COURSECODES ; COURSES ; INDEX
;COURSEI ; IDN;DATES; COMPS; IDATE
;TEETIMES ; GOLFERS;OLD; COMP ; HOURS
sMINUTES ;NEAREST ; TIME ; NAMES s FREE
sFREETIMES;I;J;DIFF
tAccess Public
A If GimmeNearest is 0, tries for specified time
A If GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST<+3tARGS
COURSECODES COURSES INDEX<[JFREAD GOLFID 1
COURSEI+COURSECODES1CODE
COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c"'"))
SLOT<[NEW Slot TEETIME
R<[ONEW Booking(0 COURSE SLOT'")
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
:EndIf
:If TEETIME.Now>TEETIME
R.Message<«'Requested tee-time is in the past'
:Return
:EndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message«'Requested tee-time is more than 30
days from now'
:Return
:EndIf
IDN«2 ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS«[JFREAD GOLFID,COURSEI->INDEX
IDATE«DATEStIDN
:If IDATE>pDATES
TEETIMES«(24 60L7 0)+10x~1+11+8x6
GOLFERS«((pTEETIMES),4)pc''llowed per tee time

:If 0=0OLD«>(DATES<2 [INQ'.' 'DateToIDN',3t0TS)/
1pDATES
COMP<«(TEETIMES GOLFERS)[JFAPPEND GOLFID
DATES,«IDN
COMPS ,«COMP
(DATES COMPS)JFREPLACE GOLFID,COURSEI-INDEX
tElse
DATES[OLD]<«IDN
(TEETIMES GOLFERS)JFREPLACE GOLFID,
COMP<+OLD>COMPS

DATES COMPS [JFREPLACE GOLFID,COURSEI-INDEX
:EndIf

186 Dyalog APL/W Language Reference

v

:Else
COMP<IDATE>COMPS
TEETIMES GOLFERS<«[JFREAD GOLFID COMP
:EndIf
HOURS MINUTES<«TEETIME. (Hour Minute)
NAMES<«(3VARGS)~8"'"
TIME<«24 60LHOURS MINUTES
TIME«10x|0.5+TIME+10
:If ~NEAREST
I<«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message<«'Not available'
:Return
:EndIf
:Else
:If ~v/FREE«(pNAMES)<>,/+/0=p GOLFERS
R.Message«'Not available'
:Return
:EndIf
FREETIMES«(FREEXTEETIMES)+32767x~FREE
DIFF<«|FREETIMES-TIME
I<DIFF1|/DIFF
tEndIf
J«(>,/0=p GOLFERS[I;])/1k4
GOLFERS[I;(pNAMES)tJ]<NAMES
(TEETIMES GOLFERS)FREPLACE GOLFID COMP
TEETIME<DateTime.New TEETIME.(Year Month Day),
3124 60TI-TEETIMES
SLOT.Time<«TEETIME
SLOT.Players«(>,/0<p "GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)<«1 SLOT

:EndClass

Chapter 3 Object Oriented Programing 187

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitF i Le if it doesn't already exist.

G<[INEW GolfService 'F:\HELP11.0\GOLFDATA'
G
#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .Net type System.DateTime, and the
following statements just set up some temporary variables for convenience later.

(J«Tomorrow<([JNEW DateTime(3t[JTS)).AddDays 1
31/03/2006 00:00:00

Od«TomorrowAt7«Tomorrow.AddHours 7
31/03/2006 07:00:00

The MakeBooking method takes between 4 and 7 parameters viz.
e the code for the golf course at which the reservation is required
e the date and time of the reservation
e a flag to indicate whether or not the nearest available time will do
e alist of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, [IDF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger oK

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-
player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack
OK

188

Dyalog APL/W Language Reference

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave Al
OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal Class
StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00

Chapter 3 Object Oriented Programing 189

Namespace Scripts

A Namespace Script is a script that begins with a : Namespace statement and ends
with a : EndNamespace statement. When a Namespace Script is fixed, it establishes
an entire namespace that may contain other namespaces, functions, variables and
classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a
d<[JNEW a1
e<[IJNEW bb2

:Class al
vV r«<foo
:Access Shared Public
r<[ONEW'b1 b2

\
:EndClass A al

V r<goo
r<al.foo
\'4

V r«foo
r<[ONEW'b1 b2
\'

:Namespace b
:Class b1
:EndClass A b1l
:Class b2
:Class bb2
:EndClass A bb2
:EndClass A b2
:EndNamespace A b
:EndNamespace A a

190

Dyalog APL/W Language Reference

a.d
#.a.[al]

a.e
#.a.[bb2]
a.foo
#.a.[b1] #.a.[b2]
Note that the names of Classes b1 (a.b.b1)and b2 (a.b.b2) are not visible from
their “uncle” al (a.al).

a.goo
VALUE ERROR
foo[2] r<NEW'b1 b2
Notice that Classes in a Namespace Script are fixed before other objects (hence the
assignments to d and e are evaluated affer Classes al and bb2 are fixed), although the
order in which Classes themselves are defined is still important if they reference one
another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes)
into a namespace defined by a script by any other means than editing the script, then
these objects will be lost the next time the script is edited and fixed. Also, if you
modify a variable which is defined in a script, the script will not be updated.

Chapter 3 Object Oriented Programing 191

Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a .NET DateTime
object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances which
causes the invocation of the default constructor DiaryEntry.MakeO when Diary
is fixed. See Empty Arrays of Instances for further explanation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed using
indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry

:Field Public When

:Field Public What

vV Make(ymdhm wot)
tAccess Public
:Implements Constructor
When What<([ONEW DateTime(6t5tymdhm))wot
[ODFsWhen What

v

vV MakeO
tAccess Public
:Implements Constructor
When What<[NULL"'

v
:EndClass A DiaryEntry

192 Dyalog APL/W Language Reference

:Class Diary
:Field Private entries<Op[INEW DiaryEntry
V R«Add(ymdhm wot)
tAccess Public
R<[JNEW DiaryEntry(ymdhm wot)
entries,«R

V R«<DoingOn ymd;X
tAccess Public
X<, (tentries.When.(Year Month Day))”*.=3 1p3tymd
R<X/entries

V R<Remove ymdhm;X
tAccess Public
:If Rev/X<«entries.When=[ONEW DateTime(615tymdhm)
entries«(~X)/entries
:EndIf
v
:Property Numbered Default Entry
vV R<Shape
R<«pentries
\4
V R<Get arg
R<arg.Indexers>entries
\4
vV Set arg
entries[arg.Indexers]«arg.NewValue

v
:EndProperty
tEndClass A Diary

:EndNamespace

Chapter 3 Object Oriented Programing

193

Create a new instance of Diary.
D<[JNEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April 30™

D.Add(2006 4 30 9 0)'Meeting with John'

30/04/2006 09:00:00 Meeting with John
Add another diary entry "Dentist at 10:00 on April 30™"

D.Add(2006 4 30 10 0) 'Dentist’
30/04/2006 10:00:00 Dentist

One of the benefits of the Namespace Script is that Classes defined within it (which are
typically related) may be used independently, so we can create a stand-alone instance

of DiaryEntry; "Doctor at 11:00"...

Doc+[INEW DiaryStuff.DiaryEntry((2006 4 30 11 0) 'Doctor')

Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:

D[2]<«Doc
and just to confirm it is there...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30™?

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John
30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 O
1

and the complete Diary is...

o
30/04/2006 09:00:00 Meeting with John

194

Dyalog APL/W Language Reference

Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements.

:Interface Statement

:Interface <interface name>

;éﬁdlnterface

An Interface is defined by a Script containing skeleton declarations of Properties and/or
Methods. The script must begin witha : Interface Statement and end with a
:EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that implement
the Interface, may not contain :Access Statements.

:Namespace Statement
:Namespace <namespace name>
;éﬁdNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of :Class and : EndClass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer
to one another where the use of nested classes is inappropriate.

Chapter 3 Object Oriented Programing 195

:Class Statement

:Class <class name><:base class name> <,interface name...>
:Include <namespace>
:EndClass

A class script begins with a : Class statement and ends witha :EndClass
statement. The elements that comprise the : Class statement are as follows:

Element Description

class name Optionally, specifies the name of the Class,
which must conform to the rules governing APL
names.

base class name | Optionally specifies the name of a Class from
which this Class is derived and whose members
this Class inherits.

interface name The names of one or more Interfaces which this
Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
: Inc lude statements. For further details, see Including Namespaces in Classes

Examples:

The following statements define a Class named Pengui n that derives from (is based
upon) a Class named Anima l and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
;éﬁdClass

The following statements define a Class named Pengui n that derives from (is based
upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

;éﬁdClass

196

Dyalog APL/W Language Reference

:Using Statement

:Using <NameSpace[,Assembly]>
This statement specifies a .NET namespace that is to be searched to resolve unqualified
names of .NET types referenced by expressions in the Class.

Element Description
NameSpace Specifies a .NET namespace.
Assembly Specifies the Assembly in which NameSpace is located. If the

Assembly is defined in the global assembly cache, you need only
specify its name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in mscorlib.dll is
automatically loaded when Dyalog APL starts. To access this namespace, it is not
necessary to specify the name of the Assembly.

When the class is fixed, JUSING is inherited from the surrounding space. Each
:Us i ng statement appends an element to JUSING, with the exception of :Using
with no argument:

If you omit <Namespace>, this is equivalent to clearing JUSING, which means that
no .NET namespaces will be searched (unless you follow this statement with additional
:Us i ng statements, each of which will append to JUSING).

To set JUSING, to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.dl1, you must write:

:Using , (note the presence of the comma)
or
:Using ,mscorlib.dll

(i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

Chapter 3 Object Oriented Programing 197

:Attribute Statement

:Attribute <Name> [ConstructorArgs]
The :Attribute statement is used to attach .Net Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods foo and goo within it.

:Class c1

tusing System
tattribute SerializableAttribute
tattribute CLSCompliantAttribute 1

v foo(pl p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute
v

vV goo(pl p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

v

:EndClass A ci

When this Class is exported as a .Net Class, the attributes are saved in its metadata. For
example, Visual Studio will warn developers if they make use of a member which has
the ObsoleteAttribute.

198 Dyalog APL/W Language Reference

:Access Statement

:Access <Private|Public><Instance|Shared><Overridable>

:Access <WebMethod>

<Override>

The :Access statement is used to specify characteristics for Classes, Properties and

Methods.

Element

Description

Private|Public

Specifies whether or not the (nested) Class,
Property or Method is accessible from
outside the Class or an Instance of the Class.
The defaultis Private.

Instance|Shared

For a Field, specifies if there is a separate
value of the Field in each Instance of the
Class, or if there is only a single value that is
shared between all Instances.

For a Property or Method, specifies whether

the code associated with the Property or
Method runs in the Class or Instance.

WebMethod

Applies only to a Method and specifies that
the method is exported as a web method.
This applies only to a Class that implements
a Web Service.

Overridable

Applies only to an Instance Method and
specifies that the Method may be
overridden by a Method in a higher
Class. See below.

Override

Applies only to an Instance Method and
specifies that the Method overrides the
corresponding Overridable Method
defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridab Le is replaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base

Class Methods.

Chapter 3 Object Oriented Programing 199

Nested Classes

The :Access statement is also used to control the visibility of one Class that is defined
within another (a nested Class). A Nested Class may be either Private or Public.
Note that the :Access Statement must precede the definition of any Class contents.

A Pub Lic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod
Note that : Access WebMethod is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute

:Field Statement

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
FieldName <<« expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|Public Specifies whether or not the Field is accessible
from outside the Class or an Instance of the
Class. The defaultis Private.

Instance|Shared | Specifies if there is a separate value of the Field
in each Instance of the Class, or if there is only a
single value that is shared between all Instances.

ReadOnly If specified, this keyword prevents the value in
the Field from being changed after initialisation.

FieldName Specifies the name of the Field (mandatory).

< expr Specifies an initial value for the Field.

200

Dyalog APL/W Language Reference

Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so may
be accessed (set or retrieved) from outside an Instance.

:Field Public Name
The following statement defines a Field called Months.

:Field Shared ReadOnly Months<12t([ONEW DateTimeFormatInfo)
.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may
not be altered after initialisation. It's initial value is calculated by an expression that
obtains the short month names that are appropriate for the current locale using the .Net
Type DateTimeFormatInfo.

Note that Fields are initialised when a Class script is fixed by the editor or by OF IX. If
the evaluation of expr causes an error (for example, a VALUE ERROR), an
appropriate message will be displayed in the Status Window and [JF IX will fail with a
DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Field statement.

In the second example above, the expression will only succeed if JUSING is set to the
appropriate path, in this case System.Globalization.

Chapter 3 Object Oriented Programing

201

:Property Section

A Property is defined by a :Property ... :EndProperty sectionina Class
Script. The syntax of the :Property Statement, and its optional : Access statement is

as follows:

:Property <Simple|Numbered|Keyed> <Default> Name<,Name>...
:Access <Private|Public><Instance|Shared>

:EndProperty

Element

Description

Name

Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour
may be specified by a comma-separated list
of names.

Simple|Numbered|Keyed

Specifies the type of Property (see below).
The defaultis Simple.

Default

Specifies that this Property acts as the
default property for the Class when indexing
is applied directly to an Instance of the
Class.

Private|Public

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-

assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and

structural operations on the Property.

202

Dyalog APL/W Language Reference

Within the body of a Property Section there may be:

e one or more : Access statements

e asingle PropertyGet function.

e asingle PropertySet function

e asingle PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

When a Class is fixed by the Editor or by OF IX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them. If anything is wrong, an error is generated and the Class is not

fixed.

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

Name The name of the property. This is useful when one function is
handling several properties.

NewValue Array containing the new value for the Property or for selected
element(s) of the property as specified by Indexers.

Indexers A vector that identifies the elements of the Property that are to
be referenced or assigned.

Chapter 3 Object Oriented Programing 203

:PropertyGet Function Syntax

PropertyGet Syntax: R<Get
R«Get ipa

The name of the PropertyGet function must be Get, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to the
rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class PropertyArguments

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers isundefined (VALUE ERROR).

If the Property is Numbered, i pa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be obtained. In this case, R
must be scalar.

If the Property is Keyed, ipa.Indexers isa vector containing the arrays that were
specified within the square brackets in the reference expression. Specifically,
ipa.Indexers will contain one more elements than the number of semi-colon (;)
separators.

204 Dyalog APL/W Language Reference

PropertySet Function Syntax
PropertySet Syntax: Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, s€t and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
ipa is an instance of the internal class PropertyArguments.

In all cases, i pa.Name contains the name of the Property being referenced and
NewVa lue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, i pa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of ipa.Indexers is
[NULL. However, if the Keyed Property is being assigned in its entirety, without
square-bracket indexing, ipa.Indexers is undefined (VALUE ERROR).

Chapter 3 Object Oriented Programing 205

PropertyShape Function Syntax

PropertyShape Syntax: R«<Shape
R«<Shape ipa

The name of the PropertyShape function must be Shape, but is case-independent. For
example, shape, Shape, sHape and SHAPE are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class PropertyArguments. i pa.Name
contains the name of the Property being referenced and NewValue and Indexers
are undefined (VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the Property.
Each element of R specifies the length of the corresponding dimension of the Property.
Otherwise, the reference or assignment to the Property will fail with DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimensions.
If not, the reference or assignment to the Property will fail with RANK ERROR or
LENGTH ERROR.

206 Dyalog APL/W Language Reference

207

CHAPTER 4

Primitive Functions

Scalar Functions

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Figure 4(i) below. Scalar functions are pervasive, i.e. their properties
apply at all levels of nesting. Scalar functions have the following properties:

Symbol Monadic Dyadic
+ Identity Plus (Add)
- Negative Minus (Subtract)
x Signum Times (Multiply)
+ Reciprocal Divide
| Magnitude Residue
L Floor Minimum
[Ceiling Maximum
* Exponential Power
® Natural Logarithm Logarithm
o Pi Times Circular
! Factorial Binomial
~ Not $
? Roll $
€ Type (See Enlist) $
A And
v Or
A Nand
v Nor
< Less
< Less Or Equal
= Equal
> Greater Or Equal
> Greater
Not Equal
$ Dyadic form is not scalar

Figure 4(i) : Scalar primitive functions

208

Dyalog APL/W Language Reference

Monadic Scalar Functions

a) The function is applied independently to each simple scalar in its argument.
Example
2 (1 4)
0.5 1 0.25
b) The function produces a result with a structure identical to its argument.
c) When applied to an empty argument, the function produces an empty result.

With the exception of + and €, the type of this result depends on the function,
not on the type of the argument. By definition + and € return a result of the
same type as their arguments.

Dyadic Scalar Functions

a) The function is applied independently to corresponding pairs of simple scalars
in its arguments.

Examples
234 +123
357
2 (3 4) +1 (2 3)
3 517
(1 2) 3 + U4 (5 6)
56 89
b) A simple scalar will be replicated to conform to the structure of the other

argument. If a simple scalar in the structure of an argument corresponds to a non-
simple scalar in the other argument, then the function is applied between the simple
scalar and the items of the non-simple scalar. Replication of simple scalars is called
SCALAR EXTENSION.

Chapter 4 Primitive Functions 209

Examples

10 x 2 (3 4)
20 30 40

2 4 =2 (4 6)
1 10

c) A simple unit is treated as a scalar for scalar extension purposes. A UNIT is a
single element array of any rank. If both arguments are simple units, the argument
with lower rank is extended.

Example
(1 1p5) - 1 (2 3)
L 3 2
d) The function produces a result with a structure identical to that of its

arguments (after scalar extensions).

e) If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric

type.)
Examples

14" '+10
0

1t(0pc’ ' (0 0))x""
0 0O

Note: The Axis operator applies to all scalar dyadic functions.

210 Dyalog APL/W Language Reference

Mixed Functions

Mixed rank functions are summarised in Figure 4(ii). For convenience, they are sub-
divided into five classes:

Structural These functions change the structure of the arguments in some
way.

Selection These functions select elements from an argument.

Selector These functions identify specific elements by a Boolean map or

by an ordered set of indices.

Miscellaneous These functions transform arguments in some way, or provide
information about the arguments.

Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from that
of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of the
arguments, not necessarily independently.

Examples
"CAT' 'DOG' 'MOUSE'i1c'DOG'

3t 1 '"TWO' 3 'FOUR'
1 TWO 3

Chapter 4 Primitive Functions

211

Class Symbol Monadic Dyadic
Structural | p $ Reshape
S Ravel [] Catenate []
Laminate []
s Table Catenate First[]
Laminate []
¢ Reverse [] Rotate []
e Reverse First[] Rotate First[]
& Transpose Transpose
t Mix/Disclose $
(First) []
' Split [] $
c Enclose [] Partitioned
Enclose []
€ Enlist $
(See Type)
Selection > Disclose/Mix Pick
1 $ Take []
¥ $ Drop []
/ Replicate []
a Replicate First[]
\ Expand []
X Expand First []
~ $ Without
(Excluding)
n Intersection
u Unique Union
- Same Left
- Identity Right
Selector 1 Index Generator Index Of
€ $ Membership
A Grade Up Grade Up
\ Grade Down Grade Down
? $ Deal
€ Find

[] Implies axis specification is optional
$ This function is in another class

Figure 4(ii) : Mixed Primitive Functions

212

Dyalog APL/W Language Reference

Class Symbol Monadic Dyadic
Miscellaneous p Shape $
= Depth Match
Not Match
¢ Execute Execute
3 Format Format
n Decode (Base)
T Encode
(Representation)
B Matrix Matrix
Divide Inverse
Special > Abort
(Niladic)
- Branch
« $ Assignment
[I]« $ Assignment
(Indexed)
(I)« Assignment
(Selective)
[] Indexing

[1 Implies axis specification is optional
$ This function is in another class

Figure 4(ii) : Mixed Primitive Functions (Continued)

Chapter 4 Primitive Functions 213

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element for
an array is the enclosed type of the disclose of the array (ce>Y for array Y). The Type
function (€) replaces a numeric value with zero and a character value with ' '

The Disclose function (2) returns the first item of an array. If the array is empty, 2V is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\ or
), Replicate (/ or #), Reshape (p) and Take (1).
Examples

€1b
000O00O

€2(13)("ABC")
000

ce>(13)('ABC")

ceo>c(13)('ABC")
00O

A<'ABC' (1 2 3)
A<0pA
cedA

111

'zceoA

214

Dyalog APL/W Language Reference

Axis Specification

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. If the primitive function is to
be applied without an axis specification, a default axis is implied, either the first or last.

Example
10 1/[1] 3 2p16
12
5 6
1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the value
(either of which might not exist).

Example
"NAMES',[0.5]'="

[I0 is an implicit argument of an axis specification.

Functions (A-Z)

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions are
described in terms of single element arguments. The rules for extension are defined at
the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the function
is implied by its syntax in the heading block.

Chapter 4 Primitive Functions 215

Abort:

->

This is a special case of the Branch function used in the niladic sense. Ifit occurs in a
statement it must be the only symbol in an expression or the only symbol forming an
expression in a text string to be executed by ¢. It clears the most recently suspended
statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain of
operators.

Examples

vV F
[1] 'FL1]!
G

[2]
[3] 'FL3]Y
v
VG
[1] ‘G[1]"
[2] >
[3] 'G[3]"
v
F
FL1)
G[1]
OVR'VALIDATE'
V VALIDATE
[1] +(12=1t0JAI)p0 ¢ 'ACCOUNT NOT AUTHORISED' ¢ -
v
VALIDATE

ACCOUNT NOT AUTHORISED

110AI
52

216

Dyalog APL/W Language Reference

Add

ReX+Y

Y must be numeric. X must be numeric. R is the arithmetic sum of X and Y. R is
numeric. This function is also known as Plus.
Examples

12 + 3 4
b 6

12+ 3,¢4 5
b 67

131 2J2 + 3373
4J4 535

“5+4J4 5J5
“1J4 0J5

Chapter 4 Primitive Functions 217

And, Lowest Common Multiple: ReXAY

Case 1: X and Y are Boolean

R is Boolean is determined as follows:

X Y R
0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret () will also be interpreted as an APL And (*).

Example

0101~0011
0001

Case 2: Either or both X and Y are numeric (non-Boolean)

R is the lowest common multiple of X and Y. Note that in this case, [JCT is an implicit
argument.
Example

15127 ~35140
105 1 4+ O

2 3 4A0j1 1j2 23j3
2 376 8712

2j2 2j4A575 4jb
10J10 ~#J12

218

Dyalog APL/W Language Reference

Assignment: X<«Y

Assignment allocates the result of the expression Y to the name or names in X.

If Y is an array expression, X must contain one or more names which are variables,
system variables, or are undefined. Following assignment, the name(s) in X become
variable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y.

The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples

A<2.3
A

A<13
A
12 3

More than one name may be specified in X by using vector notation. If so, Y must be a
vector or a scalar. If Y is a scalar, its value is assigned to all names in X. If Y is a
vector, each element of Y is assigned to the corresponding name in X.

Examples
A B<2
A
2
B
2
P IO Q«'TEXT' 1 (1 2 3)
p
TEXT
010
1
Q
123

For compatibility with IBM's APL2, the list of names specified in X may be enclosed in
parentheses.
Examples

(A B C)«t1 23
(D E)«'Hello' 'World'

Chapter 4 Primitive Functions 219

Multiple assignments are permitted. The value of Y is carried through each
assignment:

I«J«K<0

I,J7,K
00O

Function Assignment

If Y is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. X may not be the name of a
system function, or a primitive symbol.

Examples
PLUS«+
PLUS

+
SUM<«+/
SUM

+/

MEAN<{(+/w)+pw}

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

"f1'OWC'Form'

‘nst1' ONS '

N«ns1
[ONC'N' A name class of a scalar ref

Feft
ONC'F' A name class of a scalar ref

refs<N F A vector of refs.
[ONC'refs' A nameclass of vector.

F2«2>orefs
ONC 'F2'

220

Dyalog APL/W Language Reference

Re-Assignment

A name that already exists may be assigned a new value if the assignment will not alter
its name class, or will change it from 2 to 9 or vice versa. The table of permitted re-
assignments is as follow.

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes

Assignment (Indexed): {R}X[I]«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array. I must be a valid index
specification. The shape of Y must conform with the shape (implied) of the indexed
structure defined by I. If Y is a scalar or a unit vector it will be extended to conform.
A side effect of Indexed Assignment is to change the value of the indexed elements of
X.

R is the value of Y. If the result is not explicitly assigned or used it is suppressed.
(IO is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, I is a simple integer array whose items are from the set 1 pR. Elements
of X identified by index positions I are replaced by corresponding elements of Y.
Examples

+A<15
12345

A[2 3]«10 ¢ A
1 10 10 4 5

Chapter 4 Primitive Functions 221

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]+100 101 ¢ A
1 101 10 4+ 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples

+B«2 3p'REDSUN'
RED
SUN

B[2;2]<'0' o B
RED
SON

For higher-order array X, I is a series of simple integer arrays with adjacent arrays
separated by a single semicolon character (;). Each array selects indices from an axis
of X taken in row-major order.

Examples

C
11 12 13
14 15 16

21 22 23
24 25 26

C[1;1;3]«103 o C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [K] is implied:
Cls152 3]«2 2p112 113 122 123 ¢ C

11 112 113
14 15 16

21 122 123
24 25 26

222

Dyalog APL/W Language Reference

Cl;:;]«<0 o C

o o o o
o o o o
o o o o

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples

C
11 12 13 14
21 22 23 24

Clel 1]«101 o C
101 12 13 14
21 22 23 24

CL(1 2) (2 3)]«102 203 ¢ C
101 102 13 14
21 22 203 24

CL2 2p(1 3)(2 4)(2 1)(1 4)]«2 2p103 204 201 104oC
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' ¢ S
VECTOR
S[c10]«5 ¢ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24
1pC
11 12 13 14
21 22 23 24

Chapter 4 Primitive Functions 223

C[1 181pCl«1l 2 o C
112 13 14
21 2 23 24

C[2 "111pCJ+99 o C
1 12 13 99
21 2 23 99

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D«(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL'")

D
123 SMITH JONES
L 56 SAM BILL
=J«c2 (1 2)
3
D[J]«c'WILLIAMS' ¢ D
123 SMITH WILLIAMS
L 56 SAM BILL
DL(1 (1 1))(2 (2 2) 1)]«10 'W' o D
10 2 3 SMITH WILLIAMS
L 56 SAM WILL

m

GREEN YELLOW RED

E[c2 1]«'M' o E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

c2 1 «»> c(c2),(<c1)

224 Dyalog APL/W Language Reference

Assignment (Selective): (EXP X)«Y

X is the name of a variable in the workspace. EXP is an expression that selects
elements of X. Y is an array expression. The result of the expression Y is allocated to
the elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [].

t+ Take

{ Drop

s Ravel

¢ Reverse, Rotate
p Reshape

U

Disclose, Pick

® Transpose (Monadic and Dyadic)
/ Replicate

\ Expand

1} Index

Note that Mix and Split (monadic t and ¥) may not be used in the selection expression.

Examples
A<'HELLO'
((Ae"AEIOU')/A)«"'x'
A

HxLLx
7«3 4p112
(5%,2)«0
Z

0O 0 0 O

0 6 7 8

9 10 11 12
MAT<3 3p19
(1 1QMAT)<«0
MAT

~NF O
CoON
oo w

Chapter 4 Primitive Functions 225

Binomial:

ReX!Y

X and Y may be any numbers except that if Y is a negative integer then X must be a
whole number (integer). R is numeric. An element of R is integer if corresponding
elements of X and Y are integers. Binomial is defined in terms of the function Factorial
for positive integer arguments:

XY <> (1Y)+(!1X)x!Y=-X
For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) <= +Yx(X-1)IX+Y-1

For positive integer arguments, R is the number of selections of X things from Y things.

Example

1 1.2 1.4 1.6 1.8 215
5 6.105689248 7.219424686 8.281104786 9.227916704 10

213j2
135

226 Dyalog APL/W Language Reference

Branch:

->Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal sequence
of execution of expressions or to resume execution after a statement has been
interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Entered in
Statement in a Immediate
Defined Function Execution Mode
Continue with the Restart execution at
-LINE specific line the specific line of

the most recently
suspended function

Continue with the No effect
+10 next expression

In a defined function, if Y is non-empty then the first element in Y specifies a statement
line in the defined function to be executed next. If the line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist. (Note
that statement line numbers are independent of the index origin [JI0).

If Y is empty, the branch function has no effect. The next expression is executed on the
same line, if any, or on the next line if not. If there is no following line, the function is
terminated.

The : GoTo statement may be used in place of Branch in a defined function.

Chapter 4 Primitive Functions 227

Example

vV TEST
[1] 1
[2] >l
[3] 3
(4] 4

v

TEST
1
4

In general it is better to branch to a LABEL than to a line number. A label occurs in a
statement followed by a colon and is assigned the value of the statement line number
when the function is defined.

Example
v TEST
[1] 1
[2] ~FOUR
[3] 3
(4] FOUR: 4
\
TEST
1
y

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified:

228

Dyalog APL/W Language Reference

Branch Expression

Comment

~TEST/L1

~TESTpL1
~TESTHL1L
~L1p=TEST
~L1[TEST
~L1x1TEST
~(L1,L2,L3)[N]

+(T1,7T2,T3)/L1,L2,L3

+N¢éL1,L2,L3

Branches to label L1 if TEST
results in 1 but not if TEST
results in 0.

Similar to above.

Similar to above.

Similar to above.

Similar to above but only if
0I0«~1

Similar to above but only if
0I0«~>1

Unconditional branch to a
selected Llabel.

Branches to the first selected
label dependent on tests
T1,T2,T3. If all tests result
in 0, there is no branch.
Unconditional branch to the
first label after rotation.

A branch expression may occur within a statement including ¢ separators:
[5] >NEXTp=TEST ¢ A<A+1 ¢ -END

[6] NEXT:

In this example, the expressions 'A«A+1' and '>END' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

Chapter 4 Primitive Functions 229

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. If the state
indicator is empty, or if the argument Y is the empty vector, the branch expression has
no effect. If a statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Example
vV F
(1] 1
[2] 2
(3] 3
(4] v
2 (STOP'F'
F
1
FL2]
)SI
#.F[2]x
»2
2
3

The system constant [JL C returns a vector of the line numbers of statement lines in the
state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

~{LcC

230 Dyalog APL/W Language Reference

Catenate/Laminate: ReX,[K]Y

Y may be any array. X may be any array. The axis specification is optional. If
specified, K must be a numeric scalar or unit vector which may have a fractional value.
If not specified, the last axis is implied.

The form R«X35Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:
1. With an integer axis specification, or implied axis specification.

2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalar or unit
vector is extended to the shape of the other argument except that the required axis is
restricted to a unit dimension. X and Y must have the same shape (after extension)
except along the required axis, or one of the arguments may have rank one less than the
other, provided that their shapes conform to the prior rule after augmenting the array of
lower rank to have a unit dimension along the required axis.

The rank of R is the greater of the ranks of the arguments, but not less than 1.

Examples

"FUR', 'LONG'
FURLONG

1,2
12

(2 4p ' THISWEEK')s'="
THIS
WEEK

Chapter 4 Primitive Functions 231

S,[1]+#5«2 3p16

Ul F -
~N oI
Vo w

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length. Otherwise,
the data type of R will be that of X.

Lamination with Fractional Axis Specification

The arrays X and Y are joined along a new axis created before the [Kth axis. The new
axis has a length of 2. K must exceed JIO (the index origin) minus 1, and K must be
less than [JI0 plus the greater of the ranks of X and Y. A scalar or unit vector argument
is extended to the shape of the other argument. Otherwise X and Y must have the same
shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples

"HEADING',[0.5]'-"'
HEADING

"NIGHT',[1.5]"x"'

010<«0

"HEADING',[70.5]"'-"
HEADING

Catenate First: ReXs[K]Y

The form R«X5Y implies catenation along the first axis whereas the form R«X,Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

232 Dyalog APL/W Language Reference

Ceiling:

R«[Y

Ceiling is defined in terms of Floor as [Y«»>-|-Y
Y must be numeric.

If an element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

If an element of Y is complex, the corresponding element of R, depends on the
relationship between the real and imaginary parts of the numbers in Y.

Examples
[T2.3 0.1 100 3.3
“2 1 100 4

[1.2j2.5 1.2j72.5
133 1372

For further explanation, see Floor.

(CT is an implied argument of Ceiling.

Chapter 4 Primitive Functions 233

Circular:

R«XoY

Y must be numeric. X must be an integer in the range ~12

<

X

<

12. R is numeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and
complex functions to apply to Y, from the following table. Note that when Y is
complex, a and b are used to represent its real and imaginary parts, while 6 represents

its phase.

(-X) oY X X oY
(1-Y*2)x.5 0 [(1-Y*x2)x.5
Arcsin Y 1 |[Sine Y
Arccos Y 2 |[Cosine Y
Arctan Y 3 |[Tangent Y
(Y+1)x((Y-1)+Y+1)x0.5 |4 [(1+Y*2)x.5
Arcsinh Y 5 |Sinh Y
Arccosh Y 6 |Cosh Y
Arctanh Y 7 |Tanh Y
-80Y 8 |(-1+Y%x2)x0.5
Y 9 Ja
+Y 10 [|Y
Yx0J1 11 |b
*Yx0J1 12 |6

234 Dyalog APL/W Language Reference

Examples
07101
0 1.570796327

1o(PI«01)+2 3 4
1 0.8660254038 0.7071067812

20PI+3

0.5
9 1103.5J71.2

3.5 1.2
9 110,03.5J71.2 2J3 3JT4

3.5 2 3
1.2 3 4
Conjugate: Re+Y

If' Y is complex, R is Y with the imaginary part of all elements negated.

If Y is real or non-numeric, R is the same array unchanged.

Examples

+3j4
3774

+1j2 233 3j4
1J72 2373 3774

3j4++3]j4
6

3jx+3jk4
25

+A<15
12345

+JEX'A"

Chapter 4 Primitive Functions 235

Deal:

ReX?Y

Y must be a simple scalar or unit vector containing a non-negative integer. X must be a
simple scalar or unit vector containing a non-negative integer and X<Y.

R is an integer unit vector obtained by making X random selections from 1Y without
repetition.
Examples

13?752
7 40 24 28 12 3 36 49 20 44 2 35 1

13?752
20 4 22 36 31 49 45 28 5 35 37 48 4O

IO and ORL are implicit arguments of Deal. A side effect of Deal is to change the
value of [IRL.

236 Dyalog APL/W Language Reference

Decode:

ReX1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the evaluation of Y in the number system with radix X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required length.
If the last axis of X or the first axis of Y has a length of 1, the array is extended along
that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the shape
of Y less the first dimension. That is:

pR <> (T1ipX),1ipY
For vector arguments, each element of X defines the ratio between the units for
corresponding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Examples

60 6013 13
193

0 6013 13
193

6013 13
193

211 010
10

Polynomial Evaluation
If X is a scalar and Y a vector of length n, decode evaluates the polynomial

(Index origin 1)

211 2 3 &
26

311 2 3 &
58

1j111 2 3 &4

5J9

Chapter 4 Primitive Functions 237

For higher order array arguments, each of the vectors along the last axis of X is taken as
the radix vector for each of the vectors along the first axis of Y.

Examples

M
00001111
00110011
01010101

A
111
2 22
3 33
b o4y

ALM
o112 1 2 2 3
0123 4 5 6 7
0134 910 12 13
014 5 16 17 20 21

Scalar extension may be applied:

21M
01234567

Extension along a unit axis may be applied:

+A«2 1p2 10
2
10
ALM
01 2 3 4 5 6 7
01 10 11 100 101 110 111

238 Dyalog APL/W Language Reference

Depth:

(OML) Re=Y

Y may be any array. R is the number of levels of nesting of Y. A simple scalar (rank-0
number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array and
has a depth of 1. An array whose items are not all simple scalars is nested and has a
depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.

If[OML <2 and Y is not of uniform depth then R is negated.

If ML <2, a negative value of R indicates non-uniform depth.

Examples

=1
0

EIAI
0

='ABC'?
1

El IAI
1

OML<0

12
00

=A<(1 2)(3 (4 5)) A Non-uniform array

1]
.

A A A[1] is uniform, A[2] is non-uniform

e
1

o

OML<2

1]} 1
: >
>

o
I

Chapter 4 Primitive Functions 239

Direction (Signum): RexyY

Y may be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (7 1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y+ | Y.

Examples

x~15.3 0 101
101

x3j4 435
0.6J0.8 0.6246950476J0.780868809k

{w:|w}3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

|x3j4 435

240 Dyalog APL/W Language Reference

Disclose:

(OML) R«>Y or R«tY

The symbol chosen to represent Disclose depends on the current Migration Level.
If OML <2, Disclose is represented by the symbol: >.
If OML 22, Disclose is represented by the symbol: t.

Y may be any array. R is an array. IfY is non-empty, R is the value of the first item of
Y taken in ravel order. If Y is empty, R is the prototype of Y.

Disclose is the inverse of enclose. The identity R«~><R holds for all R. Disclose is
also referred to as First.

Examples
o1
1
22 4 6
2
>'MONDAY' 'TUESDAY'
MONDAY
5(1 (2 3)) (4 (5 6))
1 23
210
0
1 I=Dll
1
>1lcl,c2 3

0 00

Chapter 4 Primitive Functions 241

Divide: ReX+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array resulting
from X divided by Y. System variable [JDIV is an implicit argument of Divide.

IfODIV=0 and Y=0 then if X=0, the result of X+Y is 1; if X#0 then X+Y is a DOMAIN
ERROR.

IfODIV=1 and Y=0, the result of X+Y is O for all values of X.

Examples

2 0 5+4+ 0 2
0.51 2.5

3j1 2.5 4j5+2 1j1 .2
1.5J0.5 1.25J71.25 20325

Oo1Iv«1
2 054+ 0 O
0.500

242

Dyalog APL/W Language Reference

Drop:

ReX{VY

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-clement vector. If'Y is a scalar, it is treated as an array whose shape
is (pX)p1. After any scalar extensions, the shape of X must be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

1. if X[I] is positive, all but the first X[I] elements of the vectors result.
2. if X[I] is negative, all but the last X[I] elements of the vectors result.

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4} 'OVERBOARD'
BOARD
~54 'OVERBOARD'
OVER
p104 'OVERBOARD'
0
M
ONE
FAT
FLY
0 "2IM
0
F
F
T2 T1IM
ON
14M
FAT
FLY
M3<2 3 4p[A
1 1IM3
QRST
UVWX
“1 T1IM3
ABCD

EFGH

Chapter 4 Primitive Functions 243

Drop with Axes: ReX+[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a
vector of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed. Elements
are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:

PPR <> pp¥

The size of each axis of R is determined by the corresponding element of X:
(pR)[,K] <= O[(pY)[,K]-1],X

Examples

OeMe<2 3 4pr2k
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

14[2IM
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

24[3IM

2 14[3 2]M

244 Dyalog APL/W Language Reference

Enclose: RecY

Y may be any array. R is a scalar array whose item is the array Y. If Y is a simple
scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude is
one greater than the magnitude of the depth of Y.

Examples
ci

10

Chapter 4 Primitive Functions 245

Enclose with Axes: Rec[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array of the
elements of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

pR <= (pY)[(1ppR)~K]
The shape of each element of R is the shape of the K'th axes of Y:
p>R <> (pY)[,K]

Examples

Vo e e,
| IDUCK]| |SWAN| |BIRD]
I |____| |____| |____|
| IWORM| |CAKE| |SEED]
I]))))]

4DUCK	4WORM]			
[SWAN	[CAKE]			
	BIRD		SEED]	
I])) I

| ¢DUCK| +SWAN]| 4BIRD]
| |WORM| |CAKE| |SEED]
I]

246 Dyalog APL/W Language Reference

Encode:

ReXTY

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the representation of Y in the number system defined by X.

The shape of R is (pX) , pY (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. If Y is greater than can be
expressed in the number system, the result is equal to the representation of the residue
(x/X) |Y. If the first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1075 15 125
555

0 1075 15 125

01 12
55 5

Chapter 4 Primitive Functions 247

If X is a higher order array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

NNNNNNNN
OO OOO
[e N Yoo oNoNoNe]

(I

AT75

PP, OFR,LOORO
W, OOOOO
R FOOOOOO

[N

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples
0 171.25 10.5
1 10
0.25 0.5
4 13713752
310 23201 31231
12 2 41217 6 31010 3 8

248 Dyalog APL/W Language Reference

Enlist: (OML21) ReeY

Migration level must be such that JML >1 (otherwise see function Type).

Y may be any array, R is a simple vector created from all the elements of Y in ravel

order.
Examples
OML<«1 A Migration level 1
MAT«2 2p'MISS' 'IS' 'SIP' 'PI' o MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI
Mel (2 2p2 3 4 5) (6(7 8))
M
1 23 6 78
4 5
eM

12345678

Chapter 4 Primitive Functions 249

Equal:

ReX=Y

Y may be any array. X may be any array. R is Boolean. [ICT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (| X-Y) is not greater than

acTxCIX)riy.

For complex numbers X=Y is 1 if the magnitude of X-Y does not exceed [JCT times the
larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, having
radius JCT times the larger magnitude.

Fedot=|A

250 Dyalog APL/W Language Reference

Examples

3=3.1 3 72 73
0100

a«<2+0j1x0CT

a
2J1E” 14

a=23.00000000000001 2j.0000000000001
101

'CAT'='FAT'
011

"CAT'=1 2 3
00O

"CAT'='C' 2 3
100

OCT<«1E~10
1=1.000000000001

1=1.0000001

Excluding: ReX~Y

X must be a scalar or vector. R is a vector of the elements of X excluding those
elements which occur in Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
(CT is an implicit argument of Excluding.

This function is also known as Without.

Examples

"HELLO'~"'GOODBYE'
HLL

"MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see Search Functions and Hash Tables in Chapter 2.

Chapter 4 Primitive Functions 251

Execute (Monadic): ResY

Y must be a simple character scalar or vector. If Y is an empty vector, it is treated as an
empty character vector. Y is taken to be an APL statement to be executed. R is the
result of the last-executed expression. If the expression has no value, then ¢Y has no
value. If'Y is an empty vector or a vector containing only blanks, then ¢Y has no value.

If Y contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples
'2+2"
4
h=¢'2+2"
1
A
123
4L 56
2'A'
123
4L 56
¢'A<2|T1t0TS © »0p=A o A'
0
A
0

Execute (Dyadic): ReX2Y

Y must be a simple character scalar or vector. If Y is an empty vector, it is treated as an
empty character vector. X must be a namespace reference or a simple character scalar
or vector representing the name of a namespace. Y is then taken to be an APL
statement to be executed in namespace X. R is the result of the last-executed
expression. If the expression has no value, then X¢Y has no value.

Example
OSE ¢ 'ONL 9

252 Dyalog APL/W Language Reference

Expand:

R«X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, K must be a simple integer scalar or unit vector. The value of K
must be an axis of Y. If absent, the last axis of Y is implied. The form R<XXY implies
the first axis. If Y is a scalar, it is treated as a one-element vector.

The number of positive elements in X must be the length of Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kth axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the Jth sub-array along the Kth axis of Y is
replicated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y
(ce>Y) isreplicated | X[I] times and inserted in relative order along the Kth axis of
the result. If X[I] is zero, it is treated as the value ~1. The shape of R is the shape of
Y except that the length of the Kth axis is +/1T | X.

Examples

0\10

1 72 3 74 5\'A'
A AAA AAAAA

2 2 0 1\M
506
1 0 1xM

FOmr-
GION
oo w

1 0 1\[1]M

FOr
gaIonN
O w

1 72 1\(1 2)(3 4 5)
12 00 00 345

Chapter 4 Primitive Functions 253

Expand First: R«XX\Y

The form R«XXY implies expansion along the first axis whereas the form R«<X\Y
implies expansion along the last axis (columns). See Expand above.

Exponential: RexY
Y must be numeric. R is numeric and is the Yth power of e, the base of natural
logarithms.

Example
x1 0

2.718281828 1

x0j1 132
0.5403023059J0.8414709848 ~1.131204384J2.471726672

1+%x00j1 A Euler Identity

Factorial: RelY

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, 1Y is
equivalent to the gamma function of Y+1.

Examples

112345
12 6 24 120

171,50 1.5 3.3
~3.544907702 1 1.329340388 8.85534336

1031 152
0.4980156681J70.1549498283 0.1122942423J0.3236128855

254

Dyalog APL/W Language Reference

Find:

ReXeY

X and Y may be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of X is larger than the rank of Y, no occurrences of X are found in Y.

(CT and 0I0 are implicit arguments to Find.

Examples

"AN'€e 'BANANA'
010100

"ANA"'€'BANANA'
010100

'BIRDS' 'NEST'e'BIRDS' 'NEST' 'SOUP'
100

MAT
IS YOU IS
OR IS YOU
IS'NT

"IS'eMAT
100000010
000100000
100000000

"IS YOU'eMAT
100000000
000100000
000000000

Chapter 4 Primitive Functions 255

First:

(OML) Re«>Y or R«tY

See function Disclose.

Floor:

RelY

Y must be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the
comparison tolerance (JCT.

Examples
[72.3 0.1 100 3.3
“3 0 100 3

L0.5 + 0.4 0.5 0.6
011

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

l1j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~3773

The following (deliberately) simple function illustrates one way to express the rules for
evaluating complex Floor.

vV fl«CpxFloor cpxssasb
1] A Complex floor of scalar complex number (a+ib)
2] a b«9 11locpxs

3] :If 1>(a-la)+b-|b

4] fle(la)+0J1x|b

5] :Else

6] :If (a-la)<b-Lb

7] fle(la)+0J1x1+|b

8] :Else

9] fle(1+la)+0J1x|b

10] :EndIf

11] tEndIf

Lo | s s | s ¥ s Y s ¥ e s | | |

v

CpxFloor™1j3.2 3.3j2.5 73.3j72.5
1J3 3J2 73773

OCT is an implicit argument of Floor.

256

Dyalog APL/W Language Reference

Format (Monadic): ResY

Y may be any array. R is a simple character array which will display identically to the
display produced by Y. The result is independent of JPW. If Y is a simple character
array, then R is Y.

Example
+B«3A«2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B = A
1

If Y is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable JPP. [PP is ignored when formatting integers.

Examples
OpP<5
pC«310
0
pC+310
2
C
10
pC«712.34
5
C
12.34
3123456789
123456789
$123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to
represent with [JPP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 4 Primitive Functions 257

Examples

$123456.7
1.2346E5

50.0000001234
1.234E77

If Y is a simple numeric vector, then R is a character vector in which each element of Y
is independently formatted with a single separating space between formatted elements.

Example

pC«3~123456 1 22.5 70.000000667 5.00001
27

C
“1.2346E5 1 22.5 T6.67E77 5

If Y is a simple numeric array rank higher than one, R is a character array with the same
shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a) the decimal points for floating point or scaled formats are aligned.

b) the E characters for scaled formats are aligned, with trailing zeros added to the
mantissae if necessary.

c) integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d) each formatted column is separated from its neighbours by a single blank
column.

e) the exponent values in scaled formats are left-adjusted to remove any blanks.

Examples

C«<22 70.000000123 2.34% 7212 123456 6.00002 O

pC«3s2 2 3pC
2 2 29
C
22 ~1.2300E77 2.3400EO
212 1.2346E5 6.0000EO
0 2.2000E1 ~1.2300E77

2.34% 72.1200E2 1.2346E5

If Y is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

258 Dyalog APL/W Language Reference

Examples
B<sA<'ABC' 100 (1 2 (3 4 5)) 10

pA
4

=A
-3

pB
26

=B
1

A

ABC 100 1 2 3 45 10

ABC 100 1 2 3 4 5 10
By replacing spaces with #, it is clearer to see how the result of % is formed:
AABCANLOQANLIA2AAZALABAANLQ

If Y is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Chapter 4 Primitive Functions 259

Example
D«sC«1 'AB' (2 2pi+14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pC
Ly
=C
-2
D
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with #, it is clearer to see how the result of is formed:
1/\/\ABI\I\2I\3I\I\CDEI\
I\I\I\I\I\I\I\H.I\SI\I\FGHI\
ANAAANANAANANANAANAANANAANNAN
I\I\I\I\I\I\I\I\I\I\I\I\IJKI\
I\I\I\I\I\I\I\I\I\I\I\I\LMNI\

OPP is an implicit argument of Monadic Format.

260

Dyalog APL/W Language Reference

Format (Dyadic):

Y must be a simple real (non-complex) numeric array. X must be a simple integer
scalar or vector. R is a character array displaying the array Y according to the
specification X. R hasrank 1[ppY and "1 4pR is "1+ pY. In formatting complex
numbers, the imaginary parts are ignored.

Conformability requires that if X has more than two elements, then p X must be
2x~11pY. If X contains one element, it is extended to (2x~14pY)p0,X. If X
contains 2 elements, it is extended to (2x~1tpY)pX.

X specifies two numbers (possibly after extension) for each column in Y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in X
identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
5073 2 3p16
1 2 3
L 5 6

4 0s1.1 2 "4 2.547
1 2 74 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.
Example

b 1s1.1 2 4 2,547
1.1 2.074.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 “3%5 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

R«X3Y

Chapter 4 Primitive Functions 261

If W is 0 or absent, then the width of the corresponding columns of R are determined by
the maximum width required by any element in the corresponding columns of Y, plus
one separating space.

Example

332 3p10 15.2346 "17.1 2 3 &4
10.000 15.235 717.100
2.000 3.000 4.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

306 2 3% 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
x%xx 22.36

101 *x*x*x%x %%

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".
Example

2632%100
1267650600228229

p26352%100
59

0 203%+3
0.3333333333333333_

0 720%+3
3.333333333333333____E"1
The shape of R is the same as the shape of Y except that the last dimension of Y is the

sum of the field widths specified in X or deduced by the function. If Y is a scalar, the
shape of R is the field width.

p5 2 5 2 3 4pi2k
2 3 20

If any element of Y is complex, dyadic s reports a DOMAIN ERROR.

262

Dyalog APL/W Language Reference

Grade Down (Monadic): R«YY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 111 pY that places the sub-arrays of Y along
the first axis in descending order. The indices of any set of identical sub-arrays in Y
occur in R in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Example
M
2532
3 411
2545
2532
2534
M
23514
MLYM;]
3 411
2545
2534
2532
2532

If Y is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters in
OAV (Classic Edition).

[I0 is an implicit argument of Grade Down.

Chapter 4 Primitive Functions 263

Note that character arrays sort differently in the Unicode and Classic Editions.

Example
M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
¥M ¥M
2 314 314 2
MLYM;] ML¥M;]
porridge Porridge
Porridge Goldilocks
Goldilocks 3 bears
3 bears porridge

Grade Down (Dyadic): R«XVYY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector of shape 11 pY containing the
permutation of 111 pY that places the sub-arrays of Y along the first axis in descending
order according to the collation sequence X. The indices of any set of identical sub-
arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:
XYY <> yXuY

A left argument of rank greater than 1 allows successive resolution of duplicate
orderings in the following way.

Starting with the last axis:

e The characters in the right argument are located along the current axis of the left
argument. The position of the first occurrence gives the ordering value of the
character.

e Ifa character occurs more than once in the left argument its lowest position along
the current axis is used.

264

Dyalog APL/W Language Reference

If a character of the right argument does not occur in the left argument, the ordering
value is one more than the maximum index of the current axis - as with dyadic iota.

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

Ac

Along last axis:

Character: Value: Ordering:

ab
ac
Aa
Ac

12 3

13 =1 &= duplicate ordering with
11 L

13 =1 &= respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:

ac
Ac

11 2
21 1
So the final row ordering is:
ab 3
ac 2
Aa 4
Ac 1
That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:
Ac 1
ac

2
ab 3
Aa L

Chapter 4 Primitive Functions

265

Examples
pS1
2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz

S3
AaBbCcDdEeF fGgHhIiJjKkL IMmNNnOoPpQqRrSsTtUuVvWwXxYyZz

Sk
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgqrstuvwxyz
abcdefghijklmnopgqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1vX;] X[S2vX;] X[S3v¥X;] X[S4vXs]
FIRsT TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsT
TAPE FiRST FiRST FiRST FiRST
MAT FIRsT FIRsT FIRsT FIRST
RAT FIRST FIRST FIRST fIRST

0I0 is an implicit argument of Grade Down.

266

Dyalog APL/W Language Reference

Grade Up (Monadic): R«AY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 111 pY that places the sub-arrays along the first
axis in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Examples

422.5 1 15 3 74
52431

M

N -
w F w
~N o

N
w
£FF oo

AM
321

If Y is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters in
[AV (Classic Edition).

[I0 is an implicit argument of Grade Up

Chapter 4 Primitive Functions 267

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
AM AM
L 1 3 2 2 413
MLAM;] M[AM;]
3 bears porridge
Goldilocks 3 bears
Porridge Goldilocks
porridge Porridge

Grade Up (Dyadic): R«XAY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector being the permutation of 11tpY
that places the sub-arrays of Y along the first axis in ascending order according to the
collation sequence X.

If X is a vector, the following identity holds:
X4AY <> AXrY

If X is a higher order array, each axis of X represents a grading attribute in increasing
order of importance. If a character is repeated in X, it is treated as though it were
located at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

268 Dyalog APL/W Language Reference

Examples

(2 2p'ABBA') A '"AB'[?5 2p2] A A AND B ARE EQUIVALENT
12345

Jdisplay A«2 14p' abcdegiklmnrt ABCDEGIKLMNRT'

P ———————

i abcdegiklmnrti
| ABCDEGIKLMNRT|

V<'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,<'Abelian' 'black' 'blackball' 'black belt'
V,«'blacking' 'Black Mass'

Jdisplay M<«tV

{Ab |
| AB |
|aba |
| ABA |
|abaca |
| abecedarian|
|Abelian |
|black |
|[blackball |
|[black belt |
|[blacking |
|Black Mass |

ldisplay™™ (ML(,A)AM;]) (ML(,RA)AM;]) (M[AAM;])
+Ab | ‘aba | ‘aba | VAb |
AB	labaca	labaca		AB		
aba		abecedarian		abecedarian		aba
ABA	Iblack		Ab		ABA	
abaca	Iblack belt		Abelian	labaca		
abecedarian		blackball		AB		abecedarian]
Abelian	Iblacking		ABA		Abelian	
black		Ab		black		black
[blackball		Abelian	Iblack belt		black belt	
[black belt		AB		blackball		[Black Mass
[blacking		ABA	[blacking		blackball	
[Black Mass	[Black Mass		Black Mass		blacking	

Chapter 4 Primitive Functions 269

Greater:

ReX>Y

Y must be numeric. X must be numeric. R is Boolean. R is 1 if X is greater than Y and
X=Y is 0. Otherwise R is 0.

OCT is an implicit argument of Greater.

Examples
12345 >2

00111
OcT<1E710

1 1.00000000001 1.000000001 > 1
001

Greater Or Equal: ReX2Y

Y must be numeric. X must be numeric. R is Boolean. R is 1 if X is greater than Y or
X=Y. Otherwise R is 0.

OCT is an implicit argument of Greater Or Equal.

Examples
12345 >3
00111
QcT«1E710
121
1

1>1.00000000001

1>1.00000001

270 Dyalog APL/W Language Reference

Identity

RerY

Y may be any array. The result R is the argument Y.

Example

Index:

R«{X}0Y

Dyadic case

X must be a scalar or vector of depth <2 of integers each 2[JI0. Y may be any array. In
general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ... 0VY) = VY[I:J:...]

The length of left argument X must be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding axis
of Y.

Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape of the result is the concatenation of the shapes of the
items of the left argument:

(pXOY) = t,/p7X
Index is sometimes referred to as squad indexing.
Note that index may be used with selective specification.

[I0 is an implicit argument of index.

Chapter 4 Primitive Functions 27

Examples
010+1
VEC«111 222 333 4uh
3[VEC
333
(et 3)[VEC
Lu4 333
(e2 3p3 1 4 1 2 3)[JVEC
333 111 Ly
111 222 333
O«MAT«101713 4
11 12 13 14
21 22 23 24
31 32 33 34
2 1[IMAT
21
2[IMAT
21 22 23 24
3(2 1)[OMAT
32 31
(2 3)1[IMAT
21 31
(2 3)(,1)0MAT
21
31
p(2 1p1)(3 4p2)[MAT
2134
p8 6[0MAT
00

(3(2 1)[MAT)<«0 © MAT A Selective assignment.
11 12 13 14
21 22 23 24
0 0 33 34

Monadic case
If Y is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if Item is the default property of
MyClass, and imc is an Instance of MyCl ass, then by definition:

imc.Item=[imc

272

Dyalog APL/W Language Reference

NONCE ERROR is reported if the Default Property is Keyed, because in this case APL
has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p, t, ¥, 2) as opposed to functions that
operate on the values of the index set (functions such as +, [, ,p"), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to the
PropertyGet and PropertySet functions is the same as the set of functions that applies to
selective specification.

If for example, CompF i L e is an Instance of a Class with a Default Numbered
Property, the expression:

11¢[ICompFile

would only call the PropertyGet function (for CompF i L e) once, to get the value of the
last element.

Note that similarly, the expression
10000p[JCompFile

would call the PropertyGet function 10000 times, on repeated indices if CompF i le
has less than 10000 elements. The deferral of access function calls is intended to be an
optimisation, but can have the opposite effect. You can avoid unnecessary repetitive
calls by assigning the result of [] to a temporary variable.

Index with Axes: Re{X}OL[K]Y

X must be a scalar or vector of depth <2, of integers each 2[1I0. Y may be any array. K
is a simple scalar of vector specifying axes of Y. The length of K must be the same as
the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J0[13]Y <> Y[I;;J]

Note that index with axis may be used with selective specification. JI0 is an implicit
argument of index with axis.

Chapter 4 Primitive Functions 273

Examples
010+1

0«CUBE«10L"12 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2[[[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2[][3]CUBE
112 122 132
212 222 232

CUBE[;:;2] = 2[0[3]CUBE

(1 3)4[[2 3]CUBE
114 134
214 234

CUBE[s;1 354] = (1 3)4[[2 3]CUBE

(2(1 3)0[1 3]CUBE)«0 © CUBE n Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234

274 Dyalog APL/W Language Reference

Index Generator: RerY

Y must be a simple scalar or vector array of non-negative numbers. R is a numeric array
composed of the set of all possible coordinates of an array of shape Y. The shape of R
is Y and each element of R occurs in its self-indexing position in R. In particular, the
following identity holds:

1Y <> (wY)[1Y]

[I0 is an implicit argument of Index Generator. This function is also known as

Interval.
Examples
1o
1
pt0
0
15
12345
12 3
11 12 13
21 22 23
+A<2 Lp'MAINEXIT'
MAIN
EXIT
A[1pA]
MAIN
EXIT
10«0
15
01234
12 3
00 01 02
10 11 12
Al1pA]
MAIN

EXIT

Chapter 4 Primitive Functions 275

Index Of:

ReX1Y

Y may be any array. X may be any vector. R is a simple integer array with the same
shape as Y identifying where elements of Y are first found in X. If an element of Y
cannot be found in X, then the corresponding element of R will be JI0+pX.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.

0I0 and [OCT are implicit arguments of Index Of.

Examples
010«1

2 431411 2345
L1326

"CAT' 'DOG' 'MOUSE':'DOG' 'BIRD'
2 4

For performance information, see Search Functions and Hash Tables in Chapter 2.

Indexing:

R«X[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.
0IO0 is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

276

Dyalog APL/W Language Reference

Simple Indexing

For vector X, Y is a simple integer array composed of items from the set 1 pX.

R consists of elements selected according to index positions in Y. R has the same shape
as Y.

Examples
A<10 20 30 40 50

A[2 3p1 1 1 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples

+M<2 4p10x18
10 20 30 40
50 60 70 80

M[2;:3]
70

For higher order array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

+A<2 3 Lpl0Ox124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al1:1:1]
10

Chapter 4 Primitive Functions 277

A[2:3 234 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector 1 (pX) [K] is assumed
for that axis.

Examples
Al3525]

50 60 70 80

170 180 190 200

M
10 20 30 40
50 60 70 80

ML]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 40

M[s1]
10 50

Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.

Examples

M
10 20 30 40
50 60 70 80

Mlc1 2]
20

M[2 2pc2 4]
80 80
80 80

ML(2 1)(1 2)]
50 20

278 Dyalog APL/W Language Reference

A scalar may be indexed by the enclosed empty vector:
S«'7'
S[3pc10]

111

Simple and Choose indexing are indistinguishable for vector X:

V<10 20 30 40

Vic2]
20

c?2
2

v[2]
20

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or scalars)
forming sets of indices that index arrays at successive levels of X starting at the top-
most level. A set of indices has one element per axis at the respective level of nesting
of X in row-major order.

Examples

G<('ABC' 1)('DEF" 2)('GHI' 3)('JKL"' &)
G«<2 3pG,('MNO' 5)('PQR"' 6)
G

ABC 1 DEF 2 GHI 3
JKL & MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2pc(2 2)2]

oo
oo

G[cct 1]
ABC 1

G[ctl 1]
ABC 1

V<,G

V[eet]
ABC 1

V[iel]
ABC 1

V1]
ABC 1

Chapter 4 Primitive Functions 279

Intersection: ReXnY

Y must be a scalar or vector. X must be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in the
order of occurrence in X. If an item is repeated in X and also occurs in Y, the item is
also repeated in R.

Items in X and Y are considered the same if X=Y returns 1 for those items.

(CT is an implicit argument of Intersection.

Examples

"ABRA'n'CAR'
ARA

1 'PLUS' 2 n 15
12

For performance information, see Search Functions and Hash Tables in Chapter 2.

Left:

ReX-Y

X and Y may be any arrays.

The result R is the left argument X.

Example

42-4'abc' 1 2 3
42

Note that when - is applied using reduction, the derived function selects the first sub-
array of the array along the specified dimension. This is implemented as an idiom.

Examples
4/1 2 3

mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
“#mat A first row

scent
4/mat A first column

Scarf

4/[2]2 3 4p124% A first row from each plane
1 2 3 4
13 14 15 16

280 Dyalog APL/W Language Reference

Similarly, with expansion:

-\mat
$SSSSS
ccccec
aaaaa
rrrrr
fffff
-Xmat
scent
scent
scent
scent
scent

Less: ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris | if X is
less than Y and X=Y is 0. Otherwise R is 0.

0CT is an implicit argument of Less.

Examples

(2 4+) (6 8 10) < 6
11 000

OcT«1E~10

1 0.99999999999 0.9999999999<1

Chapter 4 Primitive Functions 281

Less Or Equal: ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. R is 1 if X is
less than Y or X=Y. Otherwise R is 0.

0CT is an implicit argument of Less Or Equal.

Examples
2 4 6 8 10 < 6
11100
OcT«<1E710

1 1.00000000001 1.00000001 < 1
110

282

Dyalog APL/W Language Reference

Logarithm: ReXeY

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic @) is defined in terms of Natural Logarithm (monadic &)
as:

XeY«>(oY)xreX

Examples

10 © 100 2
2 0.3010299957

2 10e0J1 1J2
0J2.2661800709 0.34948500217J0.48082857878

Magnitude: Re«|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned) values
of Y.

Note that the magnitude of a complex number is defined to be
Examples

2 73.4 0 72.7
2 3.4 0 2.7

1334

Chapter 4 Primitive Functions 283

Match:

ReXsY

Y may be any array. X may be any array. R is a simple Boolean scalar. If X is
identical to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and
the same prototype (disclosed nested structure).

OCT is an implicit argument of Match.

Examples

8=10
1

"'=10
0

A
THIS
WORD

A=2 4p'THISWORD'
1

A=110
0

+B«A A
THIS THIS
WORD WORD

A=>B
1

(0pA)=0p8B
0

' '=o0pB
1111
1111

| I=DOPA

284 Dyalog APL/W Language Reference

Matrix Divide: R<XEY

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
of rank 2 or less. Y must be non-singular. A scalar argument is treated as a matrix with
one-element. If'Y is a vector, it is treated as a single column matrix. If X is a vector, it
is treated as a single column matrix. The number of rows in X and Y must be the same.
Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR)*2 is minimised.

The shape of Ris (1¢pY),14pX.

Examples
OPP<«5

B

NE—,W
(o 6
U110 F

35 89 79 H B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

AHBHB
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

Chapter 4 Primitive Functions 285

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P =a + bQ are determined:

Q

11

12

13

14

15

16
)

12.03 8.78 6.01 3.75 70.31 72.79
PHQ

14.941 72.9609

Example: linear regression on complex numbers

x<j#750+272 13 4p100
y<(x+.x3 4 5 6) + j#0.0001x"50+?2 13p100
pXx
13 4

py
13

y B x
2.99999J0.0000134459 4.00001J70.000044302
4.99995J0.0000031282 5.99999J70.00000939231

A i.e. yBHx recovered the coefficients 3 4 5 6

286 Dyalog APL/W Language Reference

Matrix Inverse: R<HEY

Y must be a simple array of rank 2 or less. Y must be non-singular. If Y is a scalar, it is
treated as a one-element matrix. If'Y is a vector, it is treated as a single-column matrix.
Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. Thatis, R+.xY is an identity matrix.

The shape of R is ¢pY.

Examples
M
L |
2 1
+A<EM

0.1666666667 0.1666666667
~0.3333333333 0.6666666667

Within calculation accuracy, A+ . xM is the identity matrix.
A+.xM

o -
- O

ORL«7x5

j«{o«0 ¢ a+0J1xw}
x<j£750+?2 5 5p100

X
~37J741 25J015 ~5J°09 3J020 ~29J041
“46J026 177724 173746 43J023 127718
1J013 33J025 "47J049 "L457714 2J726
17J048 ~50J022 712J025 "44J015 T9J743
183013 8J038 43J723 34J707 2J026
X
55
jd«{e.==1w} A identity matrix of order w
[/,] (id 1tpx) - x+.xHEx
3.6638LET16

Chapter 4 Primitive Functions 287

Maximum: ReXTY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
larger of the numbers X and Y.
Example

72.01 0.1 15.3 [73.2 "1.1 22.7
~2.01 0.1 22.7

Membership: R«XeY

Y may be any array. X may be any array. R is Boolean. An element of R is 1 if the
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X=Y returns 1 for those
elements.

OCT is an implicit argument of Membership.

Examples

"THIS NOUN' € 'THAT WORD'
110010100

"CAT' 'DOG' 'MOUSE' € 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see Search Functions and Hash Tables in Chapter 2.

Minimum: ReXLY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
smaller of X and Y.
Example

“2.1 0.1 15.3 | 3.2 1 22
3.2 0.1 15.3

Minus: ReX-Y

See function Subtract.

288

Dyalog APL/W Language Reference

Mix:

(OML) R«t[K]Y or Rea[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.
If OML < 2, Mix is represented by the symbol: t.
If OML 2 2, Mix is represented by the symbol: >.

Y may be any array. All of the items of Y must be scalars and/or arrays of the same
rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The
value of K must be a fractional number indicating the two axes of Y between which
new axes are to be inserted. If absent, new ones are added at the end.

R is an array composed from the items of a Y assembled into a higher order array with
one less level of nesting. If items of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along each axis
of all items in Y. The shape of R is the shape of Y with the shape of a typical
(extended) item of Y inserted between the | Kth and the [Kth axes of Y.

Examples
t+(1)(1 2)(1 2 3)

- -
NN O
w oo

1[0.57(1) (1 2) (1 2 3)

leNaN
ON —
WN =~

A<('andy' 19)('geoff' 37)('pauline' 21)

tA
andy 19
geoff 37
pauline 21

1[0.5]A
andy geoff pauline
19 37 21

Chapter 4 Primitive Functions 289

Multiply: ReXxY
Y may be any numeric array. X may be any numeric array. R is the arithmetic product
of Xand Y.
This function is also known as Times.
Example
3210x2496
6 890
2j3x.3j.5 1j2 3j4 .5
“0.931.9 "4J7 T6J17 1J1.5
~
Nand: ReXAY
Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "not both X and Y", and is determined as follows:
X Y | R
0 0 1
0 1 1
1 0 1
1 1 0
Example
(0 1)(1 0) A (0 0)(1 1)
11 01
Natural Logarithm: ReeY

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of Y whose base is the mathematical constant e=2.71828....

Example

®1 2
0 0.6931471806

®2 2p0j1 1j2 233 3ju
0.0000000000J1.5707963268 0.80471895622J1.1071487178
1.2824746787J0.98279372325 1.60943791240J0.927295218

290 Dyalog APL/W Language Reference

Negative:

Re-Y

Y may be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.
Example
-4+ 20 73 75
4 72 035

- 1j2 "233 4J75
~1J72 2373 “4J5

Nor:

ReXVY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y|R

0 o0 1

0o 1 0

1 0 0

1 1 0
Example

0011v0101
1000

Not:

Re~Y

Y must be a Boolean array. R is Boolean. The value of Ris0if Yis 1,and Ris 1 if Y
is 0.
Example

~0 1
10

Chapter 4 Primitive Functions 291

Not Equal: ReX#Y

Y may be any array. X may be any array. R is Boolean. R is 0 if X=Y. Otherwise R is
1.

For Boolean X and Y, the value of R is the “exclusive or” result, determined as
follows:

mR, 0O |Xx
OO |=<
oOr O |™

OCT is an implicit argument of Not Equal.

Examples

123=#1.123
100

OcT«1E~10

1#1 1.00000000001 1.0000001
001

1 2 3 #'CAT'
111

Not Match: ReX#Y

Y may be any array. X may be any array. R is a simple Boolean scalar. If X is
identical to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and
the same prototype (disclosed nested structure).

OCT is an implicit argument of Not Match.

Examples
8#10

"'#10

292

Dyalog APL/W Language Reference

+A<c(13) 'ABC'
123 ABC

A#(13) 'ABC'

A#c(13) 'ABC'

8#0pA

(110pA)#<(0 0 0) '

Or, Greatest Common Divisor: ReXvY

Case 1: X and Y are Boolean

R is Boolean and is determined as follows:

X Y|R

0 o0 0

0o 1 1

1 0 1

1 1 1
Example

0011vo0o101
0111

Case 2: X and Y are numeric (non-Boolean)

R is the Greatest Common Divisor of X and Y.

Examples

15127 v35 140
5127

rational«{tw 1+civw} A rational (OCT) approximation
A to floating array.
rational 0.4321 0.1234% 6.66, +1 2 3
4321 617 333 1 1 1
10000 5000 501 2 3

(CT is an implicit argument in case 2.

Chapter 4 Primitive Functions 293

Partition: (OML=23) ReX<[K]Y

Y may be any non scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to Os in X are not included in
the result.

Examples
OML<«3

Jdisplay 1 1 1 2 2 3 3 3<'NOWISTHE'

iNOW| JIsi ITHE]

€
Jdisplay 1 1 1 0 0 3 3 3c'NOWISTHE'

e T—

I INOW| |THE]| I

1 E ____________ 1
TEXT<' NOW IS THE TIME '
Jdisplay(' '#TEXT)cTEXT

| e e e, amme,
| INOW| [IS| |THE| |TIME| |
I 1 - 1 1 - 1 1 - - 1 1] I

Buns 0 1000 500

€mmmmmmmmm e
Jdisplay CMAT<0OFMT(' ',ROWS),COLS;NMAT

i Jan Feb Mar i

| Cakes 0 100 150 |

| Biscuits 0 0 350 |

I I

Dyalog APL/W Language Reference

294

A Split at blank cols.

'#CMAT) cCMAT

Jdisplay (v#'

|
Pp— Pp— Pp— Py
I 1 1 o1 1ol 1ol
I @l 1Ol 1wl 1ol I
F D I N B N o o I I N Vo N I |
Pp— Pp— Pp— o —= |

|
Pp— Pp— Pp— Py
ol 1ol 1ol 1ol |
I) I I B e I B | 1ol
e~ 1ol
4 [[[S T I
Pp— Pp— Pp— Py

|
Pp— Pp— Pp— Py
I 1 1 o1 1ol 1ol
I @ 1 | [[[
[T [[[
Pp— Pp— Pp— Py

|
. —— — . —— —]
| [LI 7, I B | [
| [LI I | [
| [LI BT | [
| [I N7 O SR e S B | [
| | IR R) R Y N I A 7, I |
| | IR R I 7 I O I = |
| I 1 @1 &= 1 1 31 1
4 1 401 01 201 |
Pp— Pp— Pp— o — = |

w
- —_—_—— -

Jdisplay N«<4 Lpi16

3
7

1
5
9
13

¢ = ——

~——— e —

Jdisplay 1 1 0 1cN

S ———

Jdisplay 1 1 0 1<[1]N

g i g =
.

->—— ->——
. o . .

I ——
. .

Chapter 4 Primitive Functions 295

Partitioned Enclose: (OML<3) ReX<c[K]Y

Y may be any array. X must be a simple Boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or one-
element vector. The value of K must be an axis of Y. If absent, the last axis of Y is
implied.

X must have the same length as the Kth axis of Y. However, if X is a scalar or one-
element vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X (or
the last element of X) become the successive items of Y. The length of R is +/X (after
possible extension).

Examples

010011000 <9
234 5 6789

101 c[1] 3 4pr12

1234% 910 11 12
5678

1001 c[2]3 4p112
1 2 3 4
5 6 7 8
9 10 11 12

296 Dyalog APL/W Language Reference

Pi Times:

R«oOY

Y may be any numeric array. R is numeric. The value of R is the product of the
mathematical constant 1=3.74159... (Pi), and Y.

Example

o0.5 1 2
1.570796327 3.141592654 6.283185307

o0J1
0J3.1415926536

*00J1 A Euler
-1

Pick:

R«XoY

Y may be any array. X is a scalar or vector of indices of Y, viz. 1pY. R is an item
selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items of
X are simple integer scalars or vectors which identify a set of indices, one per axis at
the particular level of nesting of Y in row-major order. Simple scalar items in Y may

be picked by empty vector items in X to any arbitrary depth.

(IO is an implicit argument of Pick.

Examples
G<('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)
G<2 3pG,('MNO' 5)('PQR' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((c2 1),1)>G

JKL

(e2 1)>G
JKL 4

((2 1)1 2)-G
K

(5pc10)>10
10

Chapter 4 Primitive Functions

297

Plus:

ReX+Y

See function Add.

Power:

ReXxY

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R

is X raised to the power of Y.
If' Y is zero, R is defined to be 1.
If X is zero, Y must be non-negative.

If X is negative, and Y can be approximated as a rational number of the form P+Q
where P and Q are relatively prime integers, then:

e ifQiseven, XxY givesa DOMAIN ERROR
e ifQisoddand P iseven, then X*Y <-> (|X)x*Y
e if Q and P are both odd, then XxY <»> —(|X)xY
If X is negative, and Y cannot be approximated as a rational number, then:

XxY <> =([|X)*Y.

Examples

2%2 T2
4 0.25

9 64x0.5
38

T27%x2 3,(1 2+3),1.2
729 719683 3 9 52.19591521

x2 2p0j1 1j2 23j3 ~4j75
0.5403023059J0.8414709848 ~1.131204384000J2.471726672
~7.3151100950J1.042743656 0.005195454155J0.01756331074

*00J1 A Euler
-1

298 Dyalog APL/W Language Reference

Ravel: Re,Y

Y may be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M
123
b 56
»M
123456
A
ABC
DEF
GHI
JKL
> A
ABCDEFGHIJKL
p,10
1

Ravel with Axes: Re«,[K]Y

Y may be any array.
K is either:

e A simple fractional scalar adjacent to an axis of Y, or
e A simple integer scalar or vector of axes of Y, or
e Anempty vector.

Ravel with axis can be used with selective specification.
R depends on the case of K above.

If K is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the K'th position.

ppR <> 1+ppY
PR <> (1,pY)[4K,1ppY]

Chapter 4 Primitive Functions 299

Examples

,[0.5]"ABC'
ABC

p,[0.5]'ABC'
13

,[1.5]"'ABC'
A
B
c

p,[1.5]'ABC'
31

MAT<3 4p112

p,[0.5IMAT
1 3 4

p,[1.5IMAT
314

p,[2.5IMAT
341

If K is an integer scalar or vector of axes of Y, then:

e K must contain contiguous axes of Y in ascending order.
e R contains the elements of Y raveled along the indicated axes.

Note that if K is a scalar or single element vector, R <~ V.

ppR <> 1+(ppY)-p,K

Examples

300 Dyalog APL/W Language Reference

,[1 2IM
3 4
5 6 7 8
9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

p,[1 2IM

,[2 3IM
1 2 3 4+ 5 6 7 8 910 11 12
13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3IM
2 12

If K is an empty vector a new last axis of length 1 is created.
pR <> (pY),1

Examples

Ql«'January' 'February' 'March’
ldisplay Q1

oo |

| . .
| |February]| |
| "

PG —

X
W)
3
0
>

Chapter 4 Primitive Functions 301

Reciprocal: RetY

Y must be a numeric array. R is numeric. R is the reciprocal of Y; thatis 1+Y. If
[DIV=0, =0 results ina DOMAIN ERROR. If[JDIV=1, +0 returns 0.

0DIV is an implicit argument of Reciprocal.

Examples

4 2 5
0.25 0.5 0.2

$0j1 0371 232 4ju
0J71 0J1 0.25J70.25 0.125J70.125

OpIiv « 1
+0 0.5

Replicate:

R«X/[KJ]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, K must be a simple integer scalar or unit
vector. The value of K must be an axis of Y. If absent, the last axis of Y is implied.
The form R«<X#Y implies the first axis of Y.

The length of X must be the length of the Kth (or implied) axis of Y. However, if X is a
scalar or one-element vector, it will be extended to the length of the Kth axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y (ce€>Y) is replicated | X[I] times. Each of the (replicated) sub-arrays
and fill items are joined along the Kth axis in the order of occurrence. The shape of R
is the shape of Y except that the length of the (implied) Kth axis is +/ | X (after possible
extension).

This function is sometimes called Compress when X is Boolean.

Examples

1010 1/15
135

1 72 3 "4 5/15
10033300005555H5

302 Dyalog APL/W Language Reference

M

Eoge
[GEN)
ow

2 0 1/M

-
-
o w

0 1#M

0 1/[11M
L 56

IfY is a singleton (1=x/p,Y) its value is notionally extended to the length of X along
the specified axis.

10 1/4
b4

101/,3
33

10 1/1 1p5
55

Replicate

First: ReX£A[K]Y

The form R«X#Y implies replication along the first axis of Y. See Replicate above.

Reshape:

ReXpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R is
an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically if required. If Y is empty, R is composed of fill elements of Y
(ce>Y). If X contains at least one zero, then R is empty. If X is an empty vector, then
R is scalar.

Examples
2 3p18

aN
o w

1
L
2 3pik

F -
- N
N W

2 3p10
00
00

oo

Chapter 4 Primitive Functions 303

Residue:

ReX1Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, R is Y. For
other argument values, R is Y-NxX where N is some integer such that R lies between 0
and X, but is not equal to X.

0CT is an implicit argument of Residue.

Examples
3373 73|55 44
127172

0.513.12 71 0.6
0.12 0 0.4

1 0 1]175.25 0 2.41
“0.25 0 0.41

1j2123j3 3j4 536
1J1 ~1J1 o0J1

Note that the ASCII pipe (}) may also be interpreted as Residue (|).

Reverse:

R«¢[K]Y

Y may be any array. The axis specification is optional. If present, K must be an integer
scalar or one-element vector. The value of K must be an axis of Y. If absent, the last
axis is implied. The form R«eY implies the first axis.

R is the array Y rotated about the Kth or implied axis.

Examples

1 2 3 4 5
54321

M

£
(4]
o w

oM

eM

Ll 5 o w
6, (6}
w o + =

$[1IM

- F
(6]
w o

304 Dyalog APL/W Language Reference

Reverse First: R«e[K]Y

The form R«eY implies reversal along the first axis. See Reverse above.

Right: ReX-Y

X and Y may be any arrays. The result R is the right argument Y.

Example

42 +'abc' 1 2 3
abc 1 2 3

Note that when *+ is applied using reduction, the derived function selects the last sub-
array of the array along the specified dimension. This is implemented as an idiom.

Examples
/12 3

mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
~#mat A last row

fleet
~/mat A last column

Tenet

+/[2]2 3 4pi24 A last row from each plane

9 10 11 12
21 22 23 24

Roll: Re?Y

Y may be any positive integer array. R is an integer, pseudo-randomly selected from
the integers 1Y with each integer in this population having an equal chance of being
selected.

[I0 and ORL are implicit arguments of Roll. A side effect of Roll is to change the
value of [RL.
Examples

79 9 9
275

Chapter 4 Primitive Functions 305

Rotate:

R«X$[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. If present, K must be a simple integer scalar or one-clement vector. The

value of K must be an axis of Y. If absent, the last axis of Y is implied. The form
R«XeY implies the first axis.

If Y is a scalar, it is treated as a one-element vector. X must have the same shape as the
rank of Y excluding the Kth dimension. If X is a scalar or one-element vector, it will be
extended to conform. If'Y is a vector, then X may be a scalar or a one-element vector.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. If the value is
positive, the rotation is in the sense of right to left. If the value is negative, the rotation
is in the sense of left to right.

Examples
3
4+ 567

L5123

306 Dyalog APL/W Language Reference

Rotate First: ReXe[K]Y

The form R«XeY implies rotation along the first axis. See Rotate above.

Same:

ReaY

Y may be any array.

The result R is the argument Y.

Examples
-4'abc' 1 2 3
abc 1 2 3

Shape:

RepY

Y may be any array. R is a non-negative integer vector whose elements are the
dimensions of Y. If Y is a scalar, then R is an empty vector. The rank of Y is given by

ppY.

Examples
pl10
p'CAT'
3
p3 4prl2
3 4

+G+(2 3p16)('CAT' 'MOUSE' 'FLEA')

1 2 3 CAT MOUSE FLEA
4L 5 6
pG
2
ppG
1
oG
23 3
G

Chapter 4 Primitive Functions 307

Signum: RexyY

Y may be any numeric array. R is an integer array whose value indicates whether the
value of Y is negative (T 1), zero (0) or positive (1).
Example

x~15.3 0 101
101

Split: R«‘[K]Y

Y may be any array. The axis specification is optional. If present, K must be a simple
integer scalar or one-element vector. The value of K must be an axis of Y. If absent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R is a scalar if Y is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (Kz1ppY)/pY.
Examples

+3 4p'MINDTHATSTEP'
MIND THAT STEP

42 5p110
12345 6789 10

+[112 5p110
16 27 38 49 510

Subtract: ReX-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example
3 7240-21"7"24
1 736 74

2j3-.335 A (a+bi)-(c+di) = (a-c)+(b-d)i
1.7372

308

Dyalog APL/W Language Reference

Table:

Res

Y

Y may be any array. R is a 2-dimensional matrix of the elements of Y taken in row-
major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC
13751:2001).

Examples
Jdisplay {w (pw)} 5'a’

(o3
-
-

Jdisplay {w (pw)} 5'hello’

r
{h 51

e

L

L

o
Le

ldisplay {w (pw)} 52 3 Lpi24

T

{1 2 3 4 5 6 7 8 9 10 11 12 2 12

13 14 15 16 17 18 19 20 21 22 23 24

Chapter 4 Primitive Functions 309

Take:

ReXtY

Y may be any array. X must be a simple integer scalar or vector.

If Y is a scalar, it is treated as a one-element array of shape (p,X)p1. The length of X
must be the same as or less than the rank of Y. If the length of X is less than the rank of
Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape | X. If
X[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
of the Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from the end
of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (ce2Y).
Examples

5t'ABCDEF"
ABCDE

511 2 3
12300

511 2 3
00123

54(13) (i4) (15)
123 1234 12345 000 0O00O0

M
1234
56 7 8
2 3tM
123
56 7
“1 T24M
78
M3<2 3 Lp[lA
11M3
ABCD
EFGH
IJKL
~1tM3
MNOP
QRST

UVWX

310 Dyalog APL/W Language Reference

Take with Axes: ReXt[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a
vector of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:
ppR <> ppY
The size of each axis of R is determined by the corresponding

element of X:

(pR)[,K] <= |,X

Examples

O<M<2 3 4pi2k
1 2 3 4
5 6 7 8
9 10 11 12

2t[2IM
3 4
5 6 7 8

[N
N

13 14 15 16
17 18 19 20

2¢[3IM

9 10
13 14
21 22

2 T21[3 2IM

17 18
21 22

Chapter 4 Primitive Functions 311

Times: ReXxY

See function Multiply.

Transpose (Monadic): R«QY

Y may be any array. R is an array of shape ¢pY, similar to Y with the order of the axes
reversed.

Examples
M

123
4 5 6
&M

WN =
oo F

Transpose (Dyadic): R«XQY

Y may be any array. X must be a simple scalar or vector whose elements are included
in the set 1ppY. Integer values in X may be repeated but all integers in the set 1[/X
must be included. Also the number of elements in X must not exceed the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or more
axes of Y to the same axis, the elements used to fill this axis are those whose indices on
the relevant axes of Y are equal.

0I0 is an implicit argument of Dyadic Transpose.

312 Dyalog APL/W Language Reference

Examples

1 2 3 &
17 18 19 20

Type: (OML<1) R«eY

Migration level must be such that [JML <1 (otherwise € means Enlist).

Y may be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by ' '

Examples
€(2 3p16)(1 4p'TEXT')

000
000

Chapter 4 Primitive Functions 313

Union: ReXuY
Y must be a vector. X must be a vector. If either argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of X catenated with the elements of Y
which are not found in X.
Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT is an implicit argument of Union.
Examples
‘WASH' v 'SHOUT'
WASHOUT
'ONE' 'TWO' v 'TWO' 'THREE'
ONE TWO THREE
For performance information, see Search Functions and Hash Tables in Chapter 2.
Unique: RevY

Y must be a vector. R is a vector of the elements of Y omitting non-unique elements
after the first.

OCT is an implicit argument of Unique.

Examples

u 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
CAT DOG MOUSE FOX

u 22 10 22 22 21 10 5 10
22 10 21 5

Without:

ReX~Y

See function Excluding.

Zilde:

R«

The empty vector (10) may be represented by the numeric constant & called ZILDE.

314 Dyalog APL/W Language Reference

315

CHAPTER 5

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Chapter 1). A dyadic operator has short scope on the
right. Right scope may be extended by the use of parentheses.

An operand may be an array, a primitive function, a system function, a defined
function or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived function
may be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15

(x02)13
1 49

PLUS « + o TIMES <« x
1 PLUS.TIMES 2

2
ONL 2
A
X
OeX™+0ONL 2

ONL 2

316 Dyalog APL/W Language Reference

Axis Specification

Some operators may include an axis specification. Axis is itself an operator. However
the effect of axis is described for each operator where its specification is permitted.
[I0 is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of the
derived function is specifically identified to the right of the heading block.

Class of Name Producing Monadic Producing Dyadic
Operator derived function derived function
Monadic Assignment Xf<Y
Assignment X[I]f<Y
Assignment (EXP X)f<«Y
Commute Xf=Y
Each Y XFY
I-Beam AIY
Reduction f/7Yy [1]
fAY []
Scan fiAY []
fxY []
Spawn f&Y Xf8&Y
Dyadic Axis f[B]Y Xf[B]Y
Composition fogyY XfogY
AegY
(foB)Y
Inner Product Xf.gy¥
Outer Product Xeo.gY
Power fxgy Xf¥gY
Variant fllgY XflElgY

[] Indicates optional axis specification

Figure 5(i) : Primitive Operators

Chapter 5 Primitive Operators 317

Operators (A-Z)
Monadic and Dyadic primitive operators are presented in alphabetical order of their

descriptive names as shown in Figure 5(i).

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified): {R}«Xf<Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the

result of XfY.
Examples
A
12345
A+<10
A
11 12 13 14 15
OeAx<2
2
A

22 24 26 28 30

vec« 4+9?79 ¢ vec
351717240732

vec/=«vec>0 ovec
35142

318 Dyalog APL/W Language Reference

Assignment (Indexed Modified): {R}«X[I]f«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array. I
must be a valid index specification. The items of the indexed portion of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, thatis X[I], to
the result of X[I]fY. This result must have the same shape as X[I].

Examples

A
12345

+A[2 4]+«1
1

A
13355

A[3]%<2

A
131.555

If an index is repeated, function f will be applied to the successive values of the
indexed elements of X, taking the index occurrences in left-to-right order.

Example
B<5p0

B[2 4+ 1 2 1 4 2 4 1 3]+<«1
B

Chapter 5 Primitive Operators 319

Assignment (Selective Modified): {R}«(EXP X)f<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
EXP is an expression that selects elements of X. (See Selective Assignment in Chapter
4 for a list of allowed selection functions.) The selected elements of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[I]fY where X[I] defines the elements of X selected by EXP.

Example

A
12 36 23 78 30

((A>30)/A) =« 100
A
12 3600 23 7800 30

320

Dyalog APL/W Language Reference

Axis (with Monadic Operand): R«f[B]Y

f must be a monadic primitive mixed function taken from those shown in Figure 5(ii)
below, or a function derived from the operators Reduction (/) or Scan (\). B must be a
numeric scalar or vector. Y may be any array whose items are appropriate to function
f. Axis does not follow the normal syntax of an operator.

Function Name Range of B

¢ or e Reverse BeippY

t Mi x (0%1]B)A(B>0I0-1)A(B<0I0+ppY)

¥ Split BeippY

s Ravel fraction, or zero or more axes of Y
c Enclose (B=10)v(~r/BerppY)

Figure 5(ii) : Primitive monadic mixed functions with optional axis.

In most cases, B is required to be an integer which identifies a specific axis of Y. An
exception occurs when f'is the Mix function (1) in which case B is a fractional value
whose lower and upper integer bounds select an adjacent pair of axes of Y or an
extreme axis of Y. For Ravel (,) and Enclose (<), B can be a vector of two or more
axes.

(IO is an implicit argument of the derived function which determines the meaning of
B.
Examples

$[1]2 3pr6
4 5 6
123

t[.1]'ONE" 'TWO'

Chapter 5 Primitive Operators 321

Axis (with Dyadic Operand): ReXf[B]Y

f must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Figure 5(iii) below. B must be a numeric scalar or vector. X and Y may be
any arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Function | Name Range of B

/ or # | Replicate BeippY

\ or X | Expand BeippY

c Partitioned
Enclose BeippY

¢ or e | Rotate BeippY

, or 5 | Catenate/ (0=1|B)A(B>0I0-1)A(B<OI0+(ppX)[ppY)
Laminate

1 Take zero or more axes of Y

‘ Drop zero or more axes of Y

Figure 5(iii) : Primitive dyadic mixed functions with optional axis.

In most cases, B must be an integer value identifying the axis of X and Y along which
function f is to be applied. Exceptionally, B must be a fractional value for the
Laminate function (,) whose upper and lower integer bounds identify a pair of axes or
an extreme axis of X and Y. For Take (1) and Drop (¥), B can be a vector of two or
more axes.

0IO0 is an implicit argument of the derived function which determines the meaning of
B.

322

Dyalog APL/W Language Reference

Examples
145 =[1] 3 2p16
10
01
10
2 72 1/[2]2 3p'ABCDEF"
AA
DD F
"ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]"'="
ABC
10«0
"ABC',[70.5]'="

n x>
n
no

Axis with Scalar Dyadic Functions

The axis operator [X] can take a scalar dyadic function as operand. This has the effect
of ‘stretching’ a lower rank array to fit a higher rank one. The arguments must be
conformable along the specified axis (or axes) with elements of the lower rank array
being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis
specification, and f a scalar dyadic function, then the expressions Hf [XL and

L f [XH are conformable if (pL)<«>(pH) [X]. Each element of L is replicated along
the remaining (pH)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. if R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression L f [X]R is
conformable if (pL)<«>(pR)[X].

Chapter 5 Primitive Operators

323

Examples

10 20
40 50

11 21
42 52

11 22
41 52

100
400
700
1000
101
401
702
1002
101
401
701
1001
110
440
710
1040
110
410

740
1040

mat
30
60

mat+[1]1 2
31
62

mat+[2]1 2 3

33

63

cube

200 300

500 600

800 900

1100 1200
cube+[1]1 2
201 301

501 601

802 902

1102 1202
cube+[3]1 2 3
202 303

502 603

802 903

1102 1203
cube+[2 3]Imat
220 330

550 660

820 930

1150 1260
cube+[1 3]Imat
220 330

520 630

850 960

1150 1260

A add along first axis

A add along last axis

324

Dyalog APL/W Language Reference

Commute: {R}=XFf=Y

f may be any dyadic function. X and Y may be any arrays whose items are appropriate
to function f.

The derived function is equivalent to Y f X. The derived function need not return a
result.

If left argument X is omitted, the right argument Y is duplicated in its place, i.e.
f=Y <> Y f=Y

Examples
N
3254613
N/~2|N
3513
p=3
333
mean<+/o(+op~) A mean of a vector
mean 110
5.5
The following statements are equivalent:
F/=<1
FeF/~I
F<I/F

Commute often eliminates the need for parentheses

Chapter 5 Primitive Operators 325

Composition (Form): {R}<«fogY

f may be any monadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. The items of gY
must be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex functions.

Examples

RANK <« pep
RANK ™ "JOANNE' (2 3p16)
1 2

+/0172 4 6
3 10 21

OVR'SuM'
V R«<SUM X
[1] Re+/X
v

SUMe1™2 4 6
3 10 21

326

Dyalog APL/W Language Reference

Composition (Form ll):

{R}<«AogY

g may be any dyadic function. A may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples

2 20p 7 'AB'
AA BB
AA BB

SINE « 100

SINE 10 20 30
“0.5440211109 0.9129452507 ~0.9880316241

The following example uses Composition Forms I and II to list functions in the
workspace:

ONL 3
ADD
PLUS

Oo«oOVR™ONL 3

vV ADD X
[1] ~LABp~0#[NC'SUM' o SUM<«O
[2] LAB: SUM«SUM++/X

v

V R<A PLUS B
[1] R<A+B

v

Chapter 5 Primitive Operators 327

Composition (Form Ill): {R}«(foB)Y

f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.

The derived function is equivalent to Y fB. The derived function need not return a
result.
Examples

(x20.5)4 16 25
2 45

SQRT « xo.5

SQRT 4 16 25
2 45

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV): {R}«XfogY¥

f may be any dyadic function. g may be any monadic function which returns a result.
Y may be any array whose items are appropriate to function g. Also gY must return a
result whose items are appropriate as the right argument of function f. X may be any
array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.
Examples

+o0+/40p1 A Golden Ratio! (Bob Smith)
1.618033989

0,°1715
o1 012 0123 01234 012345

328 Dyalog APL/W Language Reference

Each (with Monadic Operand): {R}«fY

f may be any monadic function. Y may be any array, each of whose items are
separately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If a result is returned, R has the same shape as Y, and
its elements are the items produced by the application of function f to the
corresponding items of Y.

IfY is empty, the prototype of R is determined by applying the operand function once
to the prototype of Y.

Examples
G<('TOM" (13))('DICK' (14%))('HARRY' (15))
pG
3
oG
2 2 2
076

3 3 b 4 5 5

+0FX"('FOO1' 'A«1')('FO02' 'A«2')
FOO1 FOO2

Chapter 5 Primitive Operators 329

Each (with Dyadic Operand): {R}«XFY

f may be any dyadic function. X and Y may be any arrays whose corresponding items
(after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of X
and Y. If X or Y is a scalar or single-element array, it will be extended to conform with
the other argument. The derived function need not produce an explicit result. Ifa
result is returned, R has the same shape as Y (after possible scalar extension) whose
elements are the items produced by the application of the derived function to the
corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the first items of X and
Y to determine the prototype of R.

Examples

+G<(1 (2 3))(4 (5 6))(8 9)10
1 23 L 56 8 9 10
167G
23 1 56 4 98 10

1 23 L 56 8 9 10

123 417G
1 4 56 890 10000

"ABC','XYZ'
AX BY CZ

330

Dyalog APL/W Language Reference

Inner Product: R«Xf.gY

f must be a dyadic function. g may be any dyadic function which returns a result. The
last axis of X must have the same length as the first axis of Y.

The result of the derived function has shape (T1+pX), 1¥pY. Each item of R is the
result of f/xg”"y where x and y are typical vectors taken from all the combinations of
vectors along the last axis of X and the first axis of Y respectively.

Function f (and the derived function) need not return a result in the exceptional case
when 2="11pX. In all other cases, function f must return a result.

If the result of xg™"y is empty, for any x and y, a DOMAIN ERROR will be reported
unless function f is a primitive scalar dyadic function with an identity element shown
in Figure 5(iv).

Examples

1 2 3+.x10 12 14
76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.='WILLIAM '
0100

Chapter 5 Primitive Operators 331

Outer Product: {R}«Xo.gY¥

g may be any dyadic function. The left operand of the operator is the symbol . X and
Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of Ris (pX), pY. Each element of R is the item returned by
function g when applied to the particular combination of elements of X and Y.

Examples

1 2 30.x10 20 30 4O
10 20 30 4O
20 40 60 80
30 60 90 120

1 2 30.p'AB'
A B
AA BB
AAA BBB
°o.,1 23
3
3

(13)e.=13

[eNeN g
o0
~ OO

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.

332 Dyalog APL/W Language Reference

Power Operator: {R}«{X}(f%xg)Y

If right operand g is a numeric integer scalar, power applies its left operand function f
cumulatively g times to its argument. In particular, g may be Boolean 0 or 1 for
conditional function application.

If right operand g is a scalar-returning-returning dyadic function, then left operand
function f is applied repeatedly until ((f Y) g Y) or until a strong interrupt
occurs. In particular, if g is = or =, the result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:
X (f ¥ g) Y > (Xef ¥ g) Y

A negative right operand g applies the inverse of the operand function f, (| g) times.
In this case, f may be a primitive function or an expression of primitive functions
combined with primitive operators:

° compose

h each

o, outer product
= commute

[] axis
\ scan
x power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

Chapter 5 Primitive Operators

333

Examples

14
7

(,0co,%(1==,vec))vec
ab cel 0 1{(c*a)w} "abc
cap<{(aoa¥Xa)w}

a b cel 0 lccap abc
succ«+lo+

(succ¥4)10

(succx™3)10

{+o+%x=1

1.618033989

f<(320+)0(x01,8)

f 0 100
32 212

cefx71

c 32 212
0 100

invs«{(aa*"1)w}

+\invs 1 3 6 10
3 4

201invs 9
01

dual«{ww*™1 oo ww w}
mean<{(+/w)*pw}

mean duale 1 2 3 4 5

2.605171085

+/dual+ 1 2 3 4 5

0.4379562044

mean dual(x=)1 2 3 4 5

3.31662479

hw

®dualt 'hello' 'world'

eo Llr Ll od

ravel-enclose if simple.

enclose first and last.

conditional application.

enclose first and last.
successor function.

fourth successor of 10.

third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.

Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.

geometric mean.

parallel resistance.

root-mean-square.

vector transpose.

334 Dyalog APL/W Language Reference

Reduction: Ref/[K]Y

f must be a dyadic function. Y may be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«f#Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the Kth
(or implied) axis of Y.

Function APL | Identity

Plus (Add)

Minus (Subtract)
Times (Multiply)
Divide

Residue

Minimum

Maximum

Power

Binomial

And

Or

Less

Less Or Equal
Equal

Greater

Greater Or Equal
Not Equal

Encode

Union

Replicate

Expand

Rotate

XOFr OO

|
X

OFRr P POOFRPROFRPRFPLPOORF PP

g;QCAHNVMMA<>_*ﬂr—+x|+

M is the largest number which can be represented on the
machine.

Figure 5(iv) : Identity Elements

Chapter 5 Primitive Operators 335

For a typical vector Y, the result is:
c(12Y)f(22Y)f...... f(naY)

The shape of R is the shape of Y excluding the Kth axis. If Y is a scalar then R is a
scalar. If the length of the Kth axis is 1, then R is the same as Y. If the length of the
Kth axis is 0, then DOMAIN ERROR is reported unless function f occurs in Figure
5(iv), in which case its identity element is returned in each element of the result.

Examples
v/ 001 0010

[

+/[11IM
+/(1 2 3)(+ 5 6)(7 8 9)
12 15 18

,/'ONE' 'NESS'
ONENESS

+/10
’/II

DOMAIN ERROR
,/I 1
A

Reduce First: Ref£Y

The form R«<f #Y implies reduction along the first axis of Y. See Reduce above.

336

Dyalog APL/W Language Reference

Reduce N-Wise: ReXf/[K]Y

f must be a dyadic function. X must be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent, the
last axis of Y is implied. The form R<Xf #Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a ‘window” which moves along vectors drawn from
the Kth axis of Y.

If X is zero, the resultisa (pY)+(ppY)=1ppY array of identity elements for the
function f. See Figure 5(iv).

If X is negative, each sub-vector is reversed before being reduced.

Examples

il
1234

3+/1k4 A (1+2+3) (2+3+4)
6 9

2+/14 A (1+2) (2+3) (3+4)
357

1+/14 A (1) (2) (3) (&)
12 3 4

0+/14 A Identity element for +
00O0O00O

0x/1k4 A Identity element for x
11111

2,/14 A (1,2) (2,3) (3,4)

12 23 34
“2,/4 A (2,1) (3,2) (4,3)

21 32 43

Chapter 5 Primitive Operators 337

Scan:

R«f\[K]Y

f may be any dyadic function that returns a result. Y may be any array whose items in
the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«fXY implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. If V is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined as
f/ItV.

The shape of R is the same as the shape of Y. If Y is an empty array, then R is the same
empty array.

Examples
v\0 01 0010
0011111

“N\N11101 11
1110000

+\1 2 3 4 5
136 10 15

+\(1 2 3)(4+ 5 6)(7 8 9)
123 579 12 15 18

338 Dyalog APL/W Language Reference

+\[1IM

,\"ABC'
A AB ABC

T<'ONE(TWO) BOOK(S)'

#\Te' ()"
0o0o01111000000110

((Te'()")v=\Te' () ')/T
ONE BOOK

Scan First: RefXY

The form R«fXY implies scan along the first axis of Y. See Scan above.

Chapter 5 Primitive Operators 339

Spawn:

{R}«{X}f&Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread in
which f is applied to its argument Y (monadic case) or between its arguments X and Y
(dyadic case). The shy result of this application is the number of the newly created
thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active JTSYNC, the thread result appears as the
result of JTSYNC. If no TSYNC is in effect, the thread result is displayed in the
session in the normal fashion.

Note that & can be used in conjunction with the each operator ~ to launch many
threads in parallel.

Examples
+8&4 A Reciprocal in background
0.25
O«+84 A Show thread number
3.25
FO0&88 A Spawn monadic function.
2 FOO&3 A dyadic
{NIL}&0 A niladic
& 'NIL' A

X.GO0&99 A thread in remote space.
¢&'0dL 2' A Execute async expression.
‘NS'2&'FOO' A .. remote

PRT& 4[nl 9 a PRT spaces in parallel.

340 Dyalog APL/W Language Reference

Variant:

{R}«{X}(f B B)Y

The Variant operator [specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and Mode
which respectively determine whether or not case is ignored and in what manner the
input document is processed.

One of the set of options may be designated as the Principal option whose value may
be set using a short-cut form of syntax as described below. For example, the Principal
option for the Search and Replace operators is IC.

[and OPT are synonymous though only the latter is available in the Classic Edition.

In Version 13.0 the Variant operator is used solely to specify options for the 0S and [JR
operators but it is anticipated that its use will become more widespread in later
versions.

For the operand function with right argument Y and optional left argument X, the right
operand B specifies the values of one or more options that are applicable to that
function. B may be a scalar, a 2-element vector, or a vector of 2-element vectors which
specifies values for one or more options as follows:

e If B isa2-element vector and the first element is a character vector, it
specifies an option name in the first element and the option value (which may
be any suitable array) in the second element.

e If B is a vector of 2-element vectors, each item of B is interpreted as above.

e [f B isa scalar (a rank-0 array of any depth), it specifies the value of the
Principal option,

Option names and their values must be appropriate for the left operand function,
otherwise an OPTION ERROR (error code 13) will be reported.

Chapter 5 Primitive Operators 341

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B
The following expression sets the IC option to 1, the Mode optionto 'D' and the EOL
optionto 'LF"'.

El('Mode' 'D')('IC' 1)('EOL' 'LF')
The following expression sets just the EOL property to 'CR".

['eoL"' 'CR'
The following expression sets just the Principal option (which for the Search and
Replace operators is IC) to 1.

[1

The order in which options are specified is typically irrelevant but if the same option is
specified more than once, the rightmost one dominates. The following expression sets
the option IC to 1:

E('IC' 0) ('IC' 1)

The Variant operator generates a derived function f[EIB and may be assigned to a name.
The derived function is effectively function f bound with the option values specified
by B.

The derived function may itself be used as a left operand to Variant to produce a
second derived function whose options are further modified by the second application
of the operator. The following sets the same options as the first example above:

[l'Mode' 'D'['IC' 1['EOL' 'LF'
When the same option is specified more than once in this way, the outermost
(rightmost) one dominates. The following expression also sets the option IC to 1:
['ICc' of'IC' 1

342 Dyalog APL/W Language Reference

Further Examples
The following derived function returns the location of the word 'variant ' within its

right argument using default values for all the options.

f1 « 'variant' 0OS O
f1 'The variant Variant operator'
I

It may be modified to perform a case-insensitive search:

(f1 B 1) 'The variant Variant operator'
b 12

This modified function may be named:

f2 « f1 [1
f2 'The variant Variant operator'

b 12
The modified function may itself be modified, in this case to revert to a case sensitive
search:
f3 « f2 [O
f3 'The variant Variant operator'
N

This is equivalent to:

(fF1 1 1 [0) 'The variant Variant operator'
"

Chapter 5 Primitive Operators 343

|-Beam:

R«{X}(AT)Y

[-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for [-Beam functions, any service
provided using [-Beam should be considered as “experimental” and subject to change —
without notice - from one release to the next. Any use of [-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if

necessary.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X is currently unused.

R is the result of the derived function.

A
200
1111
1112
1113
2000
2010
2020
2100
4000
4001
4002
4007

Derived Function

Syntax Colouring

Number of Threads

Parallel Execution Threshold
Thread Synchronisation Mechanism
Memory Manager Statistics
Update DataTable

Read DataTable

Export to Memory

Fork New Task

Change User

Reap Forked Tasks

Signal Counts

344 Dyalog APL/W Language Reference

Syntax Colouring: R«200xY

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the [JNR representation of a function or
operator.

R is a vector of integer vectors with the same shape and structure of Y in which each
number identifies the syntax colour element associated with the corresponding
character in Y.

{(tw),* 2001w} 'foo; local' 'global'
"local«pp''hello' "’

foo; local 21 21 21 19 3 31 31 313131 00000
global 7. 17 7 7 7 7 0 0O O OO0OOOOO
local«pp'hello’ 31 31 31 31 31 19 23 23 4 4 4 4 4 4 4

In this example:

21 is the syntax identifier for “function name”
19 is the syntax identifier for “primitive”

3 is the syntax identifier for “white space”

31 is the syntax identifier for “local name”

7 is the syntax identifier for “global name”

23 is the syntax identifier for “idiom”

Chapter 5 Primitive Operators 345

Number of Threads: Re11111Y

Specifies how many threads are to be used for parallel execution.

Y is an integer that specifies the number of threads that are to be used henceforth for
parallel execution. Prior to this call, the default number of threads is specified by an
environment variable named APL. MAX THREADS. If this variable is not set, the
default is the number of CPUs that the machine is configured to have.

R is the previous value

Note that (unless APL_MAX THREADS is set), the number of CPUs for which the
machine is configured is returned by the first execution of 1111I. The following
expression obtains and resets the number of threads back to this value.

{}11111 ncpu«111111

Parallel Execution Threshold: Re11121Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of elements
is equal to or greater than this threshold, execution takes place in parallel. If not, it
doesn’t.

Prior to this call, the default value of the threshold is specified by an environment
variable named APL_MIN PARALLEL. If this variable is not set, the default is 32768.

R is the previous value

Thread Synchronisation Mechanism: R«11131Y

Y is Boolean and specifies whether or not the main thread does a busy wait for the
others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided
only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support
Posix semaphores. Later versions of AIX do not have this restriction.

R is the previous value

346 Dyalog APL/W Language Reference

Memory Manager Statistics: R«2000xY

This function returns information about the state of the workspace. This [-Beam is
provided for performance tuning and is VERY LIKELY to change in the next release.

Y is a simple integer scalar or vector.

The result R is an array with the same structure as Y, but with values in Y replaced by
the following statistics. For any value in Y outside those listed below, the result is
undefined.

Value Description

0 Workspace available (a "quick" OWA)

1 Workspace used

2 Number of compactions since the workspace was loaded
3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending upon
the size and state of the workspace.

Examples

200010
65374272

2000 0 1

3 4
65374272 184256 10

Chapter 5 Primitive Operators 347

Update DataTable: {X}2010xY

This function performs a block update of an instance of the ADO.NET object
System.Data.DataTable. This object may only be updated using an explicit row-wise
loop, which is slow at the APL level. 2010 implements an infernal row-wise loop
which is much faster on large arrays. Furthermore, the function handles NULL values
and the conversion of internal APL data to the appropriate .Net datatype in a more
efficient manner than can be otherwise achieved. These 3 factors together mean that the
function provides a significant improvement in performance compared to calling the
row-wise programming interface directly at the APL level.

Y is a2, 3 or 4-item array containing dtRef, Data, Nul lValues and Rows as
described in the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the table
below.

Argument Description

dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.
NullValues An optional vector with one element per column,

containing the value which should be mapped to DBNull
when this column is written to the DataTable.

Rows Row indices (zero origin) of the rows to be updated. If not
provided, data will be appended to the DataTable.

Parseflags A Boolean vector, where a 1 indicates that the
corresponding element of Data is a string which needs to be
passed to the Parse method of the data type of column in
question.

Example

First for comparison is shown the type of code that is required to update a DataTable
by looping,

JUSING+'System' 'System.Data,system.data.dll’

dt<[INEW DataTable

ac<{dt.Columns.Add o w}

'S1' 's2' 'I1' 'D1' ac’’String String Int32 DateTime
St S2 I1 D1

NextYear<DateTime.Now+{[ONEW TimeSpan (4tw)} "tn«365
data<(s in),(np'odd' 'even'),(10|in),;NextYear
2 Ltdata

364+ even 4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

348 Dyalog APL/W Language Reference

ar<{(row<dt.NewRow).ItemArray<w ¢ dt.Rows.Add row}
t«3o50ai ¢ aridata o (3=20ai)-t
449

This result shows that this code can only insert roughly 100 rows per second (3>[0AI
returns elapsed time in milliseconds), because of the need to /oop on each row and
perform a noticeable amount of work each time around the loop.

2010z does all the looping in compiled code:

dt.Rows.Clear A Delete the rows inserted above

SetDT«2010z
t<«35[AI ¢ SetDT dt data ¢ (3o0AI)-t
"

So in this case, using 201 0T achieves something like 10,000 rows per second.

Using ParseFlags

Sometimes it is more convenient to handle .Net datatypes in the workspace as strings
rather than as the appropriate APL array equivalent. The System.DateTime datatype
(which by default is represented in the workspace as a 6-element numeric vector) is one
such example. 2010T will accept such character data and convert it to the appropriate
.Net datatype internally.

If specified, the optional left argument X (ParseF Lags) instructs the system to pass
the corresponding columns of Dat a to the Parse () method of the data type in
question prior to performing the update.

NextYear<«s 'DateTime.Now+{[ONEW TimeSpan (4tw)} "1n<«365

data<(s " tn),(np'odd' 'even'),(10|in),NextYear
2 4tdata

364+ even 4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

SetDT+«2010I
0 0 01 SetDT dt data

Handling Nulls

If applicable, Nul LValues is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNul L as data is
written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear A Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

Chapter 5 Primitive Operators 349

Above, we have declares that the string ' <nul L > "' should be considered to be a null
value in the first column, 'even' in the second column, and the integer 99 in the
third.

Updating Selected Rows

Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can be
provided as the fourth element of the argument to 201 01I. If you are not using

Nul LValues, you can just use an empty vector as a placeholder. Continuing from the
example above, we could replace the first row in our DataTable using:

SetDT+2010z1
SetDT dt (1 4p'one' 'odd' 1 DateTime.Now) € O

Note

e the values must be provided as a matrix, even if you only want to update a
single row,
e row indices are zero origin (the first row has number 0).

Warning

If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you
will end up with a very large number of rows after a while.

Read DataTable: R«{X}2020xY

This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable. This object may only be read using an explicit row-wise loop,
which is slow at the APL level. 2020I implements an internal row-wise loop which is
much faster on large arrays. Furthermore, the function handles NULL values and the
conversion of .Net datatypes to the appropriate internal APL form in a more efficient
manner than can be otherwise achieved. These 3 factors together mean that the function
provides a significant improvement in performance compared to calling the row-wise
programming interface directly at the APL level.

Y is a scalar or a 2-item array containing dtRef, and Nul LValues as described in
the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the table
below.

The result R is the array Dat a as described in the table below.

350

Dyalog APL/W Language Reference

Argument Description
dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.

Nul lValues

An optional vector with one element per column,
containing the value to which a DBNull in the
corresponding column of the DataTable should be mapped
in the result array Data.

Parseflags

A Boolean vector, where a 1 indicates that the
corresponding element of Dat a should be converted to a
string using the ToString () method of the data type of
column in question.

It is envisaged that this argument may be extended in the

future, to allow other conversions — for example converting
Dates to a floating-point format.

Example

First for comparison is shown the type of code that is required to read a DataTable by

looping:

t<3>5[JAI ¢ datal«t([ldt.Rows).ItemArray ¢ (3>[AI)-t

191

The above expression turns the dt . Rows collection into an array using [], and mixes
the ItemArray properties to produce the result. Although here there is no explicit loop,
involved, there is an implicit loop required to reference each item of the collection in
succession. This operation performs at about 200 rows/sec.

20101 does the looping entirely in compiled code and is significantly faster:

GetDT«2011z

t«3o50AI ¢ data2«GetDT dt ¢ (320AI)-t

25

ParseFlags Example

In the example shown above, 20201 created 365 instances of System.DateTime
objects in the workspace. If we are willing to receive the timestamps in the form of
strings, we can read the data almost an order of magnitude faster:

t«<3o5[AI ¢ data3«0 0 0 1 GetDT dt ¢ (3°0AI)-t

Chapter 5 Primitive Operators 351

The left argument to 20201 allows you to flag columns which should be returned as
the ToString () value of each object in the flagged columns. Although the resulting
array looks identical to the original, it is not: The fourth column contains character
vectors:

2 Ltdata3
364+ even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth column
in some way — but the overall performance will probably still be very much better than
it would be if DateTime objects were used.

Handling Nulls

Using the DataTable produced by the corresponding example shown for 201 0T it can
be shown that by default null values will be read back into the APL workspace as
instances of System.DBNul L

GetDT+«2020I
O«z<GetDT dt
odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 18z).GetType
System.DBNull System.DBNull System.DBNull

However, by supplying a Nul LValues argument to 2020I, we can request that nulls
in each column are mapped to a corresponding value of our choice; in this case,
"<null>', 'even', and 99 respectively.

GetDT dt ('<null>' 'even' 99 ''")
<null> odd 1 21-01-2010 14:50:19

two even 2 22-01-2010 14:50:19

three odd 99 23-01-2010 14:50:19

Export to Memory: R«2100IY

This function exports the current active workspace as an in-memory .NET.Assembly.
Y may be any array and is ignored.

The result R is 1 if the operation succeeded or O if it failed.

352

Dyalog APL/W Language Reference

Fork New Task: (UNIX only) R«4000IY

Y must be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same execution stack and set of APL objects and
values. However, none of the external interfaces and resources in the parent process
will exist in the newly forked child process.

The function will return a result in both processes.

e In the parent process, R is the process id of the child (forked) process.
e In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

Component file ties

Native file ties

Mapped file associations
Auxiliary Processors

.NET objects

Edit windows

Clipboard entries

GUI objects (all children of ' . ")
I/O to the current terminal

Note that External Functions established using [DNA are replicated in the child process.
The function will fail with a DOMAIN ERROR if there is more than one APL thread
running.

The function will fail witha FILE ERROR 11 Resource temporarily
unavailable if an attempt is made to exceed the maximum number of processes
allowed per user.

Chapter 5 Primitive Operators 353

Change User: (UNIX only) R«<4001IY

Y is a character vector that specifies a valid UNIX user name. The function changes the
userid (uid) and groupid (gid) of the process to values that correspond to the specified
user name.

Note that it is only possible to change the user name if the current user name is root
(uid=0).

This call is intended to be made in the child process after a fork (4000I8) in a process
with an effective user id of root. It can however be used in any APL process with an
effective user id of root.

If the operation is successful, R is the user name specified in Y.
If the operation fails, the function generatesa FILE ERROR 1 Not Owner error.

If the argument to 4001 I is other than a non-empty simple character vector, the
function generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generates a FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function returns
that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the
current process, and that effective user id is not root the function generates a FILE
ERROR 1 Not owner.

354 Dyalog APL/W Language Reference

Reap Forked Tasks: (UNIX only) R«<4002IY

Under UNIX, when a child process terminates, it signals to its parent that it has
terminated and waits for the parent to acknowledge that signal. 4002T is the
mechanism to allow the APL programmer to issue such acknowledgements.

Y must be is a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with
information about each of those processes as described below.

R[;117 is the process ID (PID) of the terminated child

R[;2] is ~1 if the child process terminated normally, otherwise it is the signal number
which caused the child process to terminate.

R[;3] is ~1 if the child process terminated as the result of a signal, otherwise it is the
exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3 () system call. Note that the two timeval structs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru utime; /* user time used */
struct timeval ru stime; /* system time used */

long ru maxrss; /* maximum resident set size
*/

long ru_ixrss; /* integral shared memory
size */

long ru_idrss; /* integral unshared data
size */

long ru isrss; /* integral unshared stack
size */

long ru minflt; /* page reclaims */

long ru majflt; /* page faults */

long ru_nswap; /* swaps */

long ru inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* messages sent */

long ru msgrcv; /* messages received */

long ru nsignals; /* signals received */

long ru nvcsw; /* voluntary context switches
*/

long ru_nivcsw; /* involuntary context

switches */

3

Chapter 5 Primitive Operators 355

40021 may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of
the list of processes that have been started.

Example

V tryforks;pid;fpid;rpid
[1] rpids<fpids<8

[2] :For i :In 15

[3] fpid«<40001'' @A fork() a process
[4] p if the child, hang around for a while
[5] :If fpid=0

[6] 0oL 2xi

[7] [JoFF

[8] :Else

[9] A if the parent, save child's pid
[10] +fpids,«fpid

[11] tEndIf

[12] :EndFor

[13]

[14] :For i :In 120

[15] 0oL 3

[16] A get list of newly terminated child processes
[17] rpid«4+002x""
[18] A and if not empty, make note of their pids

[19] :If O#>prpid

[20] +rpids,«rpid[;1]

[21] tEndIf

[22] @A if all fork()'d child processes accounted for
[23] :If fpids=fpidsnrpids

[24] :Leave A quit

[25] tEndIf

[26] :EndFor

356

Dyalog APL/W Language Reference

Signal Counts: (UNIX only) R«40071Y

Y must be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely on
the length.

Each element is a count of the number of signals that have been generated since the last
call to this function, or since the start of the process. R[1] is the number of
occurrences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and so
forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call it
in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are counted
and all other corresponding elements of R are 0.

357

CHAPTER 6

System Functions & Variables

System Functions, Variables, Constants and Namespaces provide information and
services within the APL environment. Their case-insensitive names begin with [.

0 0 0A 0A 0AI

OAN OARBIN OARBOUT OAT OAv

OAvVU OBASE OCLASS OCLEAR Ocmp

Ocr gcs gcT gcy 0o

OocTt OoF Oo1v 0oL OoM

0oQ OoR Oeb OEM OEN

Oex OEXCEPTION | OEXPORT OFAPPEND OFAVAIL
OF CHK OFcoPy OFCREATE OFDROP OFERASE
OFHOLD OFIX OFLIB OFMT OFNAMES
OFNUMS OFPROPS OFrR OFRDAC OFRDCI
OFREAD OFRENAME OFREPLACE | OFRESIZE OFSIZE
OFSTAC OFSTIE OFTIE OFUNTIE OF X
OINSTANCES | 0IO OKL gLc OLOAD
gLockK OLx OMAP OML OMONITOR
ONA ONAPPEND ONC ONCREATE ONERASE
ONEW ONL ONLOCK ONNAMES ONNUMS
anNQ ONR ONREAD ONRENAME ONREPLACE
ONRESIZE ONS ONSI ONSIZE ONTIE
ONULL ONUNTIE ONXLATE OOFF gopT

Oor OPATH OPFKEY aep OPROFILE
aOpPw OrR OREFS ORL ORSI
ORTL as OSAVE gsb Ose

OSH OSHADOW OsI OSIGNAL OSIZE

358 Dyalog APL/W Language Reference

OsM OsR OSRC OSTACK OSTATE
gsTop gsvce gsvo osve OSVR
gsvs aTc OTCNUMS OTGET OTHIS
gTip OTKILL OTNAME OTNUMS gTPooOL
gTPuT OTRACE OTRAP OTREQ aTs
OTSYNC gucs OUSING OVFI OVR
OwA Owc Owe OWN aws
OwWSID Owx OXML OXsI OxT

Chapter 6 System Functions & Variables 359

System Variables

System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate;
otherwise an error will be reported immediately.

Example

010+«3

DOMAIN ERROR
0I10<3
A

System variables may be localised by inclusion in the header line of a defined function
or in the argument list of the system function JSHADOW. When a system variable is
localised, it retains its previous value until it is assigned a new one. This feature is
known as “pass-through localisation”. The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

0 Character Input/Output Session

0 Evaluated Input/Output Session
JAvuU Atomic Vector — Unicode Namespace
dct Comparison Tolerance Namespace
fdocTt Decimal Comp Tolerance Namespace
(o1v Division Method Namespace
OFRr Floating-Point Representation | Workspace
Q1o Index Origin Namespace
aLx Latent Expression Workspace
ML Migration Level Namespace
OPATH Search Path Session
Qpp Print Precision Namespace
Opw Print Width Session
OrL Random Link Namespace
OrRTL Response Time Limit Namespace
Qsm Screen Map Workspace
OTRAP Event Trap Workspace
QUSING Microsoft .Net Search Path Namespace
QwsIib Workspace Identification Workspace
Owx Window Expose Namespace

360 Dyalog APL/W Language Reference

In other words, (0, [1, JSE, OPATH and [JPW relate to the session. [JLX, JSM, OTRAP
and [OWSID relate to the active workspace. All the other system variables relate to the
current namespace.

Session Workspace | Namespace

0 OFR OAvU

O OLx gct

OPATH OsMm OocTt

apw OTRAP do1v

Qse Owsib Q1o
OML
Opp
OrRL
ORTL
OUSING
Owx

System Namespaces

[SE is currently the only system namespace.

Chapter 6 System Functions & Variables

361

System Constants

System constants, which can be regarded as niladic system functions, return

information from the system. They have distinguished names, beginning with the quad
symbol, [J. A system constant may not be assigned a value. System constants may not

be localised or erased. System constants are summarised in the following table:

Name

Description

0A

0A
0AI
OAN
OAv
0o
OEN
OEXCEPTION
gLc
ONULL
gso
arc
aTs
OwA

Underscored Alphabetic upper case characters
Alphabetic upper case characters

Account Information

Account Name

Atomic Vector

Digits

Event Number

Reports the most recent Microsoft .net Exception
Line Count

Null Item

Screen (or window) Dimensions

Terminal Control (backspace, linefeed, newline)
Time Stamp

Workspace Available

362

Dyalog APL/W Language Reference

System Functions

System functions provide various services related to both the APL and the external
environment. System functions have distinguished names beginning with the [
symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories. Each

function is described in alphabetical order in this chapter

System Commands

These functions closely emulate system commands (see Chapter 6)

Name Description

[CLEAR Clear workspace (WS)

dcy Copy objects into active WS
Qex Expunge objects

(LOAD Load a saved WS

ONL Name List

[oFF End the session

[SAVE Save the active WS

External Environment

These functions provide access to the external environment, such as file systems,
Operating System facilities, and input/output devices.

Name Description

JARBIN Arbitrary Input

JARBOUT Arbitrary Output

fcmp Execute the Windows Command Processor or another program
cmD Start a Windows AP

OMAP Map a file

[ONA Declare a DLL function

N Execute a UNIX command or another program

OsH Start a UNIX AP

Chapter 6 System Functions & Variables

363

Defined Functions and Operators

These functions provide services related to defined functions and operators.

Name Description

OAT Object Attributes

Ocr Canonical Representation
dcs Change Space

0ebp Edit one or more objects
OEXPORT Export objects

OF X Fix definition

dLock Lock a function
(OMONITOR Monitor set
OMONITOR Monitor query

ONR Nested Representation
ONS Create Namespace
0or Object Representation
OPATH Search Path
OPROFILE Profile Application
OREFS Local References
OSHADOW Shadow names
gsTor Set Stop vector
gstop Query Stop vector
OTHIS This Space

OTRACE Set Trace vector
OTRACE Query Trace vector
OvrR Vector Representation

364 Dyalog APL/W Language Reference

Error Trapping
These functions are associated with event trapping and the system variable JTRAP.
Name Description
Oem Event Messages
[OSIGNAL Signal event
Shared Variables
These functions provide the means to communicate between APL tasks and with other
applications.
Name Description
gsvc Set access Control
gsvc Query access Control
gsvo Shared Variable Offer
fsvo Query degree of coupling
dsvQ Shared Variable Query
QSVR Retract offer
asvs Query Shared Variable State

Object Oriented Programming

These functions provide object oriented programming features.

Name Description
[OBASE Base Class
[CLASS Class

(or Display Format
OrFIXx Fix
[JINSTANCES | Instances
[ONEW New Instance
QsrcC Source

OTHIS This

Chapter 6 System Functions & Variables

365

Graphical User Interface

These functions provide access to GUI components.

Name Description

0oQ Await and process events
ONQ Place an event on the Queue
Oawc Create GUI object

OweG Get GUI object properties
OwWN Query GUI object Names
aws Set GUI object properties
OwXx Expose GUI property names

External Variables

These functions are associated with using external variables.

OFHOLD

Name Description
OxT Associate External variable
OxT Query External variable

External variable Hold

366 Dyalog APL/W Language Reference

Component Files

The functions provide the means to store and retrieve data on APL Component Files.
See User Guide for further details.

Name

Description

OFAPPEND
OFAVAIL
OF CHK
gFcopy
OFCREATE
OFDROP
OFERASE
OFHOLD
OFLIB
OFNAMES
OFNUMS
OFPROPS
OFRDAC
OFRDCI
OFREAD
OFRENAME
OFREPLACE
OFRESIZE
OFSIZE
OFSTAC
OFSTIE
OFTIE
OFUNTIE

Append a component to File
File system Availability
File Check and Repair

Copy a File

Create a File

Drop a block of components
Erase a File

File Hold

List File Library

Names of tied Files

Tie Numbers of tied Files
File Properties

Read File Access matrix
Read Component Information
Read a component from File
Rename a File

Replace a component on File
File Resize

File Size

Set File Access matrix
Share-Tie a File

Tie a File exclusively

Untie Files

Chapter 6 System Functions & Variables 367

Native Files

The functions provide the means to store and retrieve data on native files.

Name Description
ONAPPEND Append to File
[ONCREATE Create a File
ONERASE Erase a File
ONLOCK Lock a region of a file
[ONNAMES Names of tied Files
ONNUMS Tie Numbers of tied Files
ONREAD Read from File
ONRENAME Rename a File
ONREPLACE | Replace data on File
ONRESIZE File Resize
ONSIZE File Size
ONTIE Tie a File exclusively
ONUNTIE Untie Files
ONXLATE Specify Translation Table
Threads
These functions are associated with threads created using the Spawn operator (&).
Name Description
OTGET Get Tokens
gTio Current Thread Identity
OTCNUMS Thread Child Numbers
OTKILL Kill Threads
OTNAME Current Thread Name
OTNUMS Thread Numbers
gTpooL Token Pool
aTpPuT Put Tokens
OTREQ Token Requests
OTSYNC Wait for Threads to Terminate

368 Dyalog APL/W Language Reference

Search and Replace

These operators implement Search and Replace functionality utilising the open-source
regular-expression search engine PCRE.

Name Description

R Replace

as Search

dorT Variant Operator

Miscellaneous

These functions provide various miscellaneous services.

Name Description

JAvu Atomic Vector - Unicode
doL Delay execution

(oM Diagnostic Message
OFMmMT Resolve display

OFMT Format array

OKL Key Labels

0NC Name Classification
[NSI Namespace Indicator
OPFKEY Programmable Function Keys
0rsI Space Indicator

0s1 State Indicator

OsIze Size of objects

Qsr Screen Read

[STACK Report Stack

[STATE Return State of an object
Qucs Unicode Convert

OvrI Verify and Fix numeric
Oxs1I Extended State Indicator

Chapter 6 System Functions & Variables 369

Character Input/Output: 0

[1is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [is assigned with a vector or a scalar, the array is displayed without the normal
ending new-line character. Successive assignments of vectors or scalars to [1 without
any intervening input or output cause the arrays to be displayed on the same output
line.

Example

O<'2+2" o [I«'=" o [O«k
2+2=4
Output through [1 is independent of the print width in [JPW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the characteristics
of the terminal. Numeric output is formatted in the same manner as direct output (see
Display of Arrays in Chapter I).

When [is assigned with a higher-order array, the output is displayed in the same
manner as for direct output except that the print width [JPW is ignored.

When [1 is referenced, terminal input is expected without any specific prompt, and the
response is returned as a character vector.

If the [] request was preceded by one or more assignments to [] without any intervening
input or output, the last (or only) line of the output characters are returned as part of the
response.

Example
ma t«t¢00000

370

Dyalog APL/W Language Reference

Examples

[0«'OPTION : ' o R+l
OPTION : INPUT

R
OPTION : INPUT

pR
14
The output of simple arrays of rank greater than 1 through [] includes a new-line
character at the end of each line. Input through [includes the preceding output
through [] since the last new-line character. The result from [J, including the prior
output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [] is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R<[]
(Interrupt)

INPUT INTERRUPT
A time limit is imposed on input through [1if ORTL is set to a non-zero value:

ORTL«5 ¢ [1«'PASSWORD ? ' ¢ R+l
PASSWORD ?
TIMEOUT
ORTL«5 ¢ [J«'PASSWORD : ' ¢ R+l
A

The TIMEOUT interrupt is a trappable event.

Chapter 6 System Functions & Variables 3N

Evaluated Input/Output: 0

[is a variable which communicates between the user’s terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [J is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Display of Arrays in Chapter 1).

Example

J«2+15
34567

0«2 4p'WINEMART'
WINE
MART

When [is referenced, a prompt (0:) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTRAP definition) and the prompt (0) is again displayed for input. An EOF interrupt
reports INPUT INTERRUPT and the prompt (0) is again displayed for input. A soft
interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt ([J:) is
redisplayed for input.

Examples
10x[]+2
13
30 40 50
2+
0.
X
VALUE ERROR
X
A
0.
2+13

567

372

Dyalog APL/W Language Reference

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3.0
JWSID
WS/MYWORK
0O:
)SI
O
0O:
JCLEAR
CLEAR WS
If the response to a [J: prompt is an abort statement (=), the execution will be aborted:
123-=10
O:

A trap definition on interrupt events set for the system variable JTRAP in the range
1000-1006 has no effect whilst awaiting input in response to a [J: prompt.

Example
OTRAP«(11 'C" '''ERROR''')(1000 'C' "''STOP''")
2+0
(Interrupt Signal)
INTERRUPT
0O:
'C'+2
ERROR

A time limit set in system variable [JRTL has no effect whilst awaiting input in
response to a[J: prompt.

Chapter 6 System Functions & Variables 373

Underscored Alphabetic Characters: R«[JA

0A is a deprecated feature. Dyalog strongly recommends that you move away from the
use of [JA and of the underscored alphabet itself, as these symbols now constitute the
sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, [JA was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was in
use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

0A
ABCDEFGHIJKLMNOPQRSTUVWXYZ

For compatibility with previous versions of Dyalog APL, functions that contain
references to [JA will continue to return characters with the same index in [JAV as
before. However, the display of A is now [A, and the old underscored symbols appear
as they did in previous Versions when the Dyalog Alt font was in use.

Current Version

AAAGEEEIIIIPOOOOUN0YPE1505

Alphabetic Characters: R«[JA

This is a simple character vector, composed of the letters of the alphabet.

Example

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ

374 Dyalog APL/W Language Reference

Account Information: R<[JAI

This is a simple integer vector, whose four elements are:
OAI[1] - user identification.

Under Windows, this is the ap1nid (network ID from
configuration dialog box).Under UNIX and LINUX, this is the
UID of the account.

JAI[2] - compute time for the APL session in milliseconds.
OAI[3] - connect time for the APL session in milliseconds.
OAI[4] - keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example

OAI
52 7396 2924216 2814831

Account Name: R<[JAN

This is a simple character vector containing the user (login) name.

Example

OAN
Pete

pOAN

Chapter 6 System Functions & Variables 375

Arbitrary Input: R«{X}OARBIN Y

This transmits the prompt Y to an output device specified by X prior to reading from an
input device specified by X.

Under Windows, the use of JARBIN to the screen or in conjunction with RS232 ports
is not supported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character, or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the

standard [JAV to ASCII translation. If Y is an empty vector, no codes are sent to the
output device.

X may take several forms:
terminate (input output) JARBIN prompt
terminate input OARBIN prompt
terminate OARBIN prompt
OARBIN prompt

Each of these elements is discussed separately.

<terminate>

This defines how the read should be terminated.

If it is omitted, the read terminates on receipt of a Newline character.

If supplied, it must be a simple numeric scalar or vector.

e [fitis a numeric scalar, it defines the number of characters to be read.
e Ifit is a numeric vector, it defines a set of terminating characters.

e [fitis the null vector, the read terminates on Newline.

376

Dyalog APL/W Language Reference

<input>

This defines the input device.

If this is omitted, input is taken from standard input (usually the keyboard).
If supplied, it must be a simple numeric scalar or a simple text vector.

e [fitis a numeric scalar, it must correspond to a DOS handle or UNIX stream
number.

e Ifitis a text vector, it must correspond to a valid device or file name.

You must have permission to read from the chosen device.

<output>

This defines the output device.

If this is omitted, output is sent to standard output (usually the screen).
If supplied, it must be a simple numeric scalar or a simple text vector.

e Ifitis a numeric scalar, it must correspond to a DOS handle or UNIX stream
number.

e Ifitis a text vector, it must correspond to a valid device or file name.
You must have permission to write to the chosen device.

The result R is a simple numeric vector. Each item of R is the numeric representation
of an 8-bit code in the range 0 to 255 received from the input device. The meaning of
the code is dependent on the characteristics of the input device. If a set of delimiters
was defined by <terminate>, the last code returned will belong to that set.

ORTL (Response Time Limit) is an implicit argument of JARBIN. This allows a time
limit to be imposed on input. If the time limit is reached, JARBIN returns with the
codes read up to that point.

Chapter 6 System Functions & Variables 377

Examples
Write HELLO on the screen, and read a line of input from the keyboard:
R <« JARBIN 'HELLO'

Beep three times, send ARE YOU AWAKE? to the screen and wait for a 1 character
answer from the keyboard:

R « 1 JARBIN 7 7 7 'ARE YOU AWAKE (Y/N)'
Read a line from MYFILE:

R« '' 'MYFILE' [ARBIN "'
Read MYFILE until a SPACE (code 32):

R « (,32) 'MYFILE' [ARBIN "'
Read MYF ILE until a SPACE (code 32) or a TAB (code 9):

R « (32 9) 'MYFILE' [JARBIN "'

Write HELLO on /dev/ttyl (a UNIX terminal screen), then read a line from /dev/ttyl (a
UNIX terminal keyboard):

R« '"'" ('"/dev/ttyl' '/dev/tty1') OARBIN 'HELLO'

Write TITLE to LPT1 (a DOS printer device), then read from COM1 (a DOS serial
port) up to the first NEWLINE character:

R« (,13) ('coM1' 'LPT1') [ARBIN 'TITLE'
Read 100 characters from COM1; timeout after 10 secs:

ORTL+«10
R<100 'COM1' [JARBIN ''
¢(100#pR)/"'"''Read timed out'"''

Read until DELIM from COMI1; timeout after 10 secs:

ORTL<«10
R«<(,DELIM) 'cOM1' [JARBIN ''
¢(DELIM#™1tR)/"'"' 'Read timed out'"''

378

Dyalog APL/W Language Reference

Arbitrary Output: {X}OARBOUT Y

This transmits Y to an output device specified by X.
Under Windows, the use of JARBOUT to the screen or to RS232 ports is not supported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard JAV to ASCII translation. If Y is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output (usually
the screen). If X is supplied, it must be a simple numeric scalar or a simple text vector.

If it is a numeric scalar, it must correspond to a DOS handle or UNIX stream number.
If it is a text vector, it must correspond to a valid device or file name.

You must have permission to write to the chosen device.

Examples
Write ASCII digits ‘123" to UNIX stream 9:
9 [ARBOUT 49 50 51

Write ASCII characters 'ABC' to MYFILE:
'"MYFILE' [JARBOUT 'ABC'

Beep 3 times:
JARBOUT 7 7 7

Prompt for input:

O« 'Prompt: ' o [arbout 12 ¢ ans+<[]

Chapter 6 System Functions & Variables 379

Attributes: Re«{X}OAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it returns
information that is more appropriate for Dyalog APL.

Monadic Use

If X is omitted, R is a 4 column matrix with the same number of rows as functions in Y
containing the following attribute information:

R[;1] Each item is a 3-element integer vector representing the function
header syntax:

Item[1] result:
0 - Noresult
1 - Explicit result
~1 - Shy result

Item[2] Function valence:

o
|

Niladic function
1 - Monadic function
2 - Dyadic function

~2 - Ambivalent function

Item[3] Operator valence
0 - Not an operator
1 - Monadic operator
2 - Dyadic operator

The following values correspond to the syntax shown alongside:

0 0 O vV FOO

1 0 O vV Z<+FOO

1 0 O v {Z}«FOO

072 O v {A} FOO B
11 2 v {Z}«(F OP G)B

380 Dyalog APL/W Language Reference

R[;2] Each item is the (OTS form) timestamp of the time the function was
last fixed.

R[;3] Each item is an integer reporting the current [JLOCK state of the
function:

Not locked

Cannot display function

0
1
2 - Cannot suspend function
3

Cannot display or suspend.

RL;4] Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example
v {z}«{Ll}(fn myop)r

vV z<foo
(1]
v z«{larg}util rarg
[1] R
JLOCK'foo'
util2«util
Jdisplay OAT 'myop' 'foo' 'util' 'util2'
J m—————— P > ———

| 171 ~2 1] [1996 8 2 2 13 56 0] 0 |johni

| ~—————— e _———

| owmmmm. L wmmmmmmemee °

I 1 1 1 1
__________________ -

| S ————- B i >———

—~
o
o
o
o
o
o
o
o
o
w

I 1 1
~————— e e e [R—

| 1t 2 0] [1998 8 26 16 16 42 0] O [graeme| |
1] 1 1 |

Chapter 6 System Functions & Variables 381

Dyadic Use

The dyadic form of JAT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as possible.

If Y specifies a single name, the result R is a vector. If Y specifies more than one name,
R is a matrix with one row per name in Y. The number of elements (columns) and their
meaning depends upon the value of X which may be 1, 2, 3 or 4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 | Explicit result 1 if the object has an explicit result or is a
variable; 0 otherwise

2 | Function valence | O if the object is a niladic function or not a
function

1 if the object is a monadic function
2 if the object is an ambivalent function

3 | Operator valence | 0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

Year
Month
Day

Hour

Minute

Second

N[~]WIN|—

Milliseconds (this is always reported as 0)

382 Dyalog APL/W Language Reference

If X is 3, R specifies execution properties and contains 4 elements (or columns) whose

meaning is as follows:

1 | Displayable

0 if the object is displayable
1 if the object is not displayable

2 | Suspendable

0 if execution will suspend in the object
1 if execution will not suspend in the object

3 | Weak Interrupt
behaviour

0 if the object responds to interrupt
1 if the object ignores interrupt

4

(always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both report

the SIZE of the object.

Chapter 6 System Functions & Variables 383

Atomic Vector: R«JAV

OAV is a deprecated feature and is replaced by [JUCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL
character.

In the Classic Edition the contents of [JAV are defined by the Output Translate Table.
In the Unicode Edition, the contents of JAV are defined by the system variable JAVU.

Examples

OAv[48+110]
0123456789

5 52p124[Jav
%'aw_abcdefghijklmnopqrstuvwxyz__7. 901A§45§18?,¥¥$§§
AABCDEFGHIJKLMNOPQRSTUVWXYZ__y-OQAAAACEEEIIIIHOOOOUUU
Yp3ai306{€}- ARAA~ENOPURA4aFa2ceE861TiAL/A\\<s=2>%vA
—+ix?ep~ 1¢t°*fLV°(c3nULTI,,VAVAQ¢GGE'$¢v——¢ooo¢"# g

@UAUG G [T:e¢io«>n)]ONSON*% "' aw_abcdefghi jk

N

Atomic Vector - Unicode: OJAVU

OAVU specifies the contents of the atomic vector, JAV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

e Unicode Edition loads or copies a Classic Edition workspace or a workspace
saved by a Version prior to Version 12.0.

e Unicode Edition reads character data from a non-Unicode component file, or
receives data type 82 from a TCP socket.

e Unicode Edition writes data to a non-Unicode component file

e Unicode Edition reads or writes data from or to a Native File using conversion
code 82.

e (lassic Edition loads or copies a Unicode Edition workspace

e (lassic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

e C(Classic Edition writes data to a Unicode component file.

OAVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in [JAV.

384

Dyalog APL/W Language Reference

Note

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, [JAV. When a character is displayed
or printed, the index in [JAV is translated to a number in the range 0-255 which
represents the index of the character in an Extended ASCII font. This mapping is done
by the Output Translate Table which is user-configurable. Note that although ASCII
fonts typically all contain the same symbols in the range 0-127, there are a number of
different Extended ASCII font layouts, including proprietary APL fonts, which provide
different symbols in positions 128-255. The actual symbol that appears on the screen or
on the printed page is therefore a function of the Output Translate Table and the font in
use. Classic Edition provides two different fonts (and thus two different [JAV layouts)
for use with the Development Environment, named Dyalog Std (with APL underscores)
and Dyalog Alt (without APL underscores

The default value of JAVU corresponds to the use of the Dyalog Alt Output Translate
Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13p[AVU[97+126]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
0UCS.2 13p0AVU[97+126]
EI11700
0Yp3i506

edpatd

ARAGE
0o0oouu

[AVU has namespace scope and can be localised, in order to make it straightforward to
write access functions which receive or read data from systems with varying atomic
vectors. If you have been using Dyalog Alt for most things but have some older code
which uses underscores, you can bring this code together in the same workspace and
have it all look “as it should” by using the Alt and Std definitions for JAVU as you
copy each part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.0AVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13p[AVU[97+126]
9398 9399 9400 9401 9402 9403 9404+ 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423

ucs 2 13p[AVU[97+126]
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Chapter 6 System Functions & Variables 385

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source, function
comments and character data of type 82 are converted to Unicode. When the Classic
Edition imports APL objects from a Unicode source, this translation is performed in
reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a
workspace that contains its own value of JAVU) the value of #.[JAVU (the value of
AVU in the root) in the source workspace is used. Otherwise, such as when APL
objects are imported from a pre-Version 12 workspace, from a component file, or from
a TCP socket, the local value of JAVU in the targer workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such as a
non-Unicode Component File or non-Unicode TCPSocket Object, function comments
(in ORs) and character data of type 82 are converted to [JAV indices using the local
value of JAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in [JORs)
and character data of type 82 are converted to Unicode using the local value of JAVU.

In all cases, if a character to be translated is not defined in JAVU, a TRANSLATION
ERROR (event number 92) will be signalled.

Base Class: R<[JBASE.Y

OBASE is used to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided by
the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been superseded
by a Method in the current Class.

Note that [(IBASE . Y is special syntax and any direct reference to JBASE on its own or
in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot and
supersedes its Speak method. DomesticParrot.Speak calls the Speak method
in its Base Class Parrot, via [JBASE.

386 Dyalog APL/W Language Reference

:Class Parrot: Bird
V R<Speak
tAccess Public
R<'Squark!"’
\'4
:EndClass A Parrot

:Class DomesticParrot: Parrot
V R<«Speak
:Access Public
R<[BASE.Speak,' Who's a pretty boy,then!’
\
:EndClass A DomesticParrot

Maccaw<[INEW Parrot
Maccaw.Speak
Squark!

Pol ly«[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

Class: R«{X}OCLASS Y

Monadic Case

Monadic JCLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)

Parrot (derived from Bird)

Chapter 6 System Functions & Variables 387

:Class Animal
:EndClass A Animal
:Class Bird: Animal
:EndClass A Bird
:Class Parrot: Bird

;éﬁdClass A Parrot

[OCLASS Eeyore<[INEW Animal
#.Animal

OCLASS Robin<[INEW Bird
#.Bird #.Animal

[OCLASS Pol Lly«[INEW Parrot
#.Parrot #.Bird #.Animal

OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

Example 2
The Penguin Class example (see page 164) illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting
members from both.
Pingo<[NEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, Y must be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cas? in order to
access members of Y that correspond to members of Interface of (Base) Class X.

388

Dyalog APL/W Language Reference

Example 1:

Once again, the Penguin Class example (see page 164) is used to illustrate the use of
Interfaces.

Pingo<[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [JCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [OCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [JCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [JCLASS Pingo).Sing
Croak, Croak!

Example 2:

This example illustrates the use of dyadic [JCLASS to cast an Instance to a lower Class
and thereby access a member in the lower Class that has been superseded by another
Class higher in the tree.

Pol ly«[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

Note that the Speak method invoked above is the Speak method defined by Class
DomesticParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
Parrot and Bird.

(Parrot [OCLASS Polly).Speak
Squark!

(Bird [OCLASS Polly).Speak
Tweet, tweet!

Chapter 6 System Functions & Variables 389

Clear Workspace: OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace is
lost. All system variables assume their default values. The maximum size of
workspace is available.

The contents of the session namespace [JSE are not affected.

Example

OCLEAR
OwsID
CLEAR WS

Execute Windows Command: R<[JCMD Y

[CMD executes a Windows Command Processor or UNIX shell or starts another
Windows application program. [JCMD is a synonym of [JSH. Either system function
may be used in either environment (Windows or UNIX) with exactly the same effect.
[CMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and JSH under Windows. See [JSH for a discussion of the
behaviour of these system functions under UNIX.

The system commands) CMD and) SH provide similar facilities but may only be
executed from the APL Session.

Executing a Windows Command

If Y is a simple character vector, JCMD invokes the Windows Command Processor
(normally cmd . exe) and passes Y to it for execution. R is a vector of character
vectors containing the result of the command. Each element in R corresponds to a line
of output produced by the command.

Example

Z<[ICMD'DIR'
pZ

390

Dyalog APL/W Language Reference

+Z
Volume in drive C has no label
Directory of C:\DYALOG

<DIR> 5-07-89 3.02p
.. <DIR> 5-07-89 3.02p
SALES DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. If the command specified
by Y issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. If this is done, APL detects the presence ofa ">" in
the command line, runs the command processor in a visible window, and does not
direct output to the pipe. If you fail to do this your system will appear to hang because
there is no mechanism for you to receive or respond to the prompt.

Example

[0cMD 'DATE <CON >CON'
(Command Prompt window appears)

Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(COMMAND PROMPT window disappears)

Implementation Notes

The right argument of [JCMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, JCMD will execute the string ('cmd.exe /c',Y); where Y is the
argument given to [JCMD. However, the implementation permits the use of alternative
command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD PREFIX and CMD_ POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "/c". If COMSPEC is
not defined, it defaults to cmd . exe. If CMD_POSTFIX is not defined, it defaults to
an empty vector.

Chapter 6 System Functions & Variables 391

[JCMD treats certain characters as having special meaning as follows:

marks the start of a trailing comment,

: divides the command into sub-commands,

> if found within the last sub-command, causes [JCMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the
command as a Windows Program (see below). For example:

[OCMD 'cmd.exe' ''

Executing a Windows Program

If'Y is a 2-element vector of character vectors, [JCMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy result
is an integer scalar containing the window handle allocated by the window manager.

Y [1] must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories:

1. the current directory,

2. the Windows directory,

3. the Windows system directory,

4. the directories specified by the PATH variable,
5. the list of directories mapped in a network.

Note that Y[1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
OCMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. If not, a
DOMAIN ERROR is reported.

‘Normal' Application is started in a normal window, which is given the

t input focus

'Unfocused' | Application is started in a normal window, which is NOT given
the input focus

'Hidden' Application is run in an invisible window

'Minimized' Application is started as an icon which is NOT given the input

'Minimised' | focus

‘Maximized' | Application is started maximized (full screen) and is given the

‘Maximised' | input focus

392

Dyalog APL/W Language Reference

An application started by JCMD may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, if the window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and has
no means to close it.

Examples

Path«<'c:\Program Files\Microsoft Office\Office\'
O«0CMD (Path, 'excel.exe') ''

(JcMD (Path, 'winword /mMyMacro') 'Minimized'

Start Windows Auxiliary Processor: X 0OcMD Y

Used dyadically, [JCMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. [JCMD is a synonym of [JSH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect. JCMD
is probably more natural for the Windows user. This section describes the behaviour of
[0CMD and OSH under Windows. See [0SH for a discussion of the behaviour of these
system functions under UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

[0CMD loads the Auxiliary Processor into memory. If no other APs are currently
running, [(JCMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same way
as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are passed
to the AP for processing via the communications area described above. APL halts
whilst the AP is processing, and waits for a result. Under Windows, unlike under
UNIX, it is not possible for external functions to run in parallel with APL.

Chapter 6 System Functions & Variables 393

Canonical Representation: R«[JCR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

If' Y is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading indentation
of control structures, trailing blanks that pad each row, and the blanks in comments. If
Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty matrix whose shape is 0 0.

Example

VR<MEAN X A Arithmetic mean
[1] R«(+/X)+pX
[2] W

+F<[JCR'MEAN'
R<MEAN X A Arithmetic mean
Re(+/X)+pX

pF
2 30

The definition of [JCR has been extended to names assigned to functions by
specification («), and to local names of functions used as operands to defined
operators.

If Y is a name assigned to a primitive function, R is a one-element vector containing the
corresponding function symbol. If'Y is a name assigned to a system function, R is a
one element nested array containing the name of the system function.

Examples
PLUS<«+
+F<[JCR'PLUS"
pF
Cc+[CR
c'c'

0cr

pC'C'

394

Dyalog APL/W Language Reference

VR<CONDITION (FN1 ELSE FN2) X
[1] ~CONDITION/L1
[2] R<«FN2 X o =0
[3] L1:R<FN1 X
(4] v

2 (0STOP 'ELSE'
(X20) | ELSE [X<72.5

ELSE[2]
X

~2.5
OCR'FN2'
~{LC

2

If' Y is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent
functions are represented by their own [JCRs, so in this respect the definition of [JCR is
recursive. Primitive operators are treated like primitive functions, and are represented
by their corresponding symbols. Arrays are represented by themselves.

Example
BOX<«2 20p
+F<[JCR'BOX"'
2 2 op
pF
3
Jdisplay F
| - |
| 12 2] o p |
| et
Emmmmmmmm e

If Y is a name assigned to a defined function, R is the [JCR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
[OCR'AVERAGE'
R«<MEAN X A Arithmetic mean
Re(+/X)+pX

Chapter 6 System Functions & Variables 395

Change Space: {R}«{X}0CS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of character
vectors identifying zero or more workspace objects to be exported into the namespace
Y.

The identifiers in X and Y may be simple names or compound names separated by ' .
and including the names of the special namespaces '00SE"', '#',and '##".

The result R is the full name (starting #.) of the space in which the function or
operator was executing prior to the (JCS.

0CS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously
running, as a shy result. After the JCS, references to global names (with the exception
of those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are, with the exception
of those with name class 9, unaffected. Local names with name class 9 are however no
longer visible.

When the function or operator terminates, the calling function resumes execution in its
original space.

The names listed in X are temporarily exported to the namespace Y. If objects with the
same name exist in Y, these objects are effectively shadowed and are inaccessible.

Note that calling JCS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how [JCS may be used to avoid typing long pathnames
when building a tree of GUI objects. Note that the objects NEW and OPEN are created

as children of the F ILE menu as a result of using [ICS to change into the F .MB.FILE
namespace.

396

Dyalog APL/W Language Reference

vV MAKE_FORM;F;OLD

[1] '"F'OWC'Form'
[2] 'F.MB'0OWC'MenuBar'
E3% '"F.MB.FILE'[JWC'Menu' '&File’
L
[5] OLD«[JCS'F.MB.FILE'
[6] "NEW'[OJWC 'MenuItem' '&New'
[7] 'OPEN'[OWC'Menultem' '&Open'
[8] Jcs oLD
[9]
%10% '"F.MB.EDIT'[OWC'Menu' '&Edit'
11
[12] OLD<[JCS'F.MB.EDIT'
[13] '"UNDO'OWC'MenuItem' '&Undo'
[14] '"REDO'[OWC 'MenuItem' '&Redo'
[15] [Jcs oLD
[16] ..
\
Example

Suppose a form F 1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total
number of button presses. The single callback function PRESS and its subfunction FMT
can reside in the form itself

#.F1

mreem
WN +—~
—_—t e

(1]

)CS F1

A Note that both instances reference
A the same callback function
'B1'OWS'Event' 'Select' 'PRESS'
'B2'[0WS'Event' 'Select' 'PRESS'

A Initialise total and instance counts.
TOTAL <« B1.COUNT <« B2.COUNT <« O

PRESS MSG

"FMT' 'TOTAL '0JCS=MSG n Switch to instance space
(TOTAL COUNT)++«1 A Incr total & instance count
(WS 'Caption' (COUNT FMT TOTAL)m Set instance caption

CAPT«INST FMT TOTL A Format button caption.
CAPT«(sINST),'/',sTOTL A E.g. 40/100.

Chapter 6 System Functions & Variables 397

Example

This example uses [JCS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

V tabs tree space;subs A Display namespace tree
[1] tabs,space
[2] "tree'[JCS space
[3] >(psubs<{[INL 9)10
[4] (tabs, '. 'Yotreesubs
v
Jns Xx.y
#.x.y
)ns z
#.z
""tree '#'
#
. X
. Y
z
Comparison Tolerance: gdcT

The value of JCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(IX=-Y)<OCT=x(IX)[|Y where < is applied without tolerance.

OCT may be assigned any value in the range from 0 to 16*~8. A value of 0 ensures
exact comparison. The value in a clear workspace is 1E7 14,

OCT is an implicit argument of the monadic primitive functions Ceiling (), Floor (L)
and Unique (v), and of the dyadic functions Equal (=), Excluding (~), Find (P), Greater
(>), Greater or Equal (2), Index of (1), Intersection (n), Less (<), Less or Equal (<),
Match (=), Membership (€), Not Match (#), Not Equal (#), Residue (|) and Union (v),
as well as DFMT O-format.

Examples

OcT«1E~10
1.00000000001 1.0000001 = 1
10

398 Dyalog APL/W Language Reference

Copy Workspace: {xxacy vy

Y must be a simple character scalar or vector identifying a saved workspace. X is
optional. If present, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of X is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that
workspace are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the object
can be copied. A copied label is re-defined to be a variable of numeric type. If the
name of the copied object has an active referent in the active workspace, the name is
disassociated from its value and the copied object becomes the active referent to that
name. In particular, a function in the state indicator which is disassociated may be
executed whilst it remains in the state indicator, but it ceases to exist for other
purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The object
will be copied to the current namespace in the active workspace, losing its original
parent and gaining a new one in the process. You may only copy a GUI object into a
namespace that is a suitable parent for that object. For example, you could only copy a
Group object from a saved workspace if the current namespace in the active workspace
is itself a Form, SubForm or Group.

See) COPY for further information and, in particular, the manner in which dependant
objects are copied.

A DOMAIN ERROR is reported in any of the following cases:

1. Y isill-formed, or is not the name of a workspace with access authorised for the
active user account.

2. Anyname in X is ill-formed.
3. Anobject named in X does not exist as an active object in workspace named in Y.
4. An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, JCY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails conversion
between Unicode and AV indices, whether or not that object is specified by X. See
[AVU for further details.

Chapter 6 System Functions & Variables 399

A WS FULL is reported if the active workspace becomes full during the copying
process.

Example

OvrR'FoOO'
vV R<«F0O
[1] R«10
v
'FOO' [CY 'BACKUP'
OvrR'FoOO'
V R«FOO X
[1] R<10xX
v
System variables are copied if explicitly included in the left argument, but not if the left
argument is omitted.

Example
OLx

(2 3p'0OLX X')OCY'WS/CRASH'
OLx
~RESTART

A copied object may have the same name as an object being executed. If so, the name
is disassociated from the existing object, but the existing object remains defined in the
workspace until its execution is completed.

Example

)SI
#.FOO[1]*

OvVR'FOO'
V R«FOO
[1] R«<10
v

"FOO'[CY 'WS/MYWORK '

FOO
123

)SI
#.FOO[1]*

~{LC
10

400 Dyalog APL/W Language Reference

Digits:

R«<D

This is a simple character vector of the digits from 0 to 9.

Example

0o
0123456789

Decimal Comparison Tolerance: gdocCT

The value of JDCT determines the precision with which two numbers are judged to be
equal when the value of JFR is 1287. If[JFR is 645, the system uses [JCT.

[DCT may be assigned any value in the range from 0 to
2.3283064365386962890625E710. A value of 0 ensures exact comparison. The
value in a clear workspace is 1E728.

For further information, see [JCT

Examples

ODCT«1E~10
1.00000000001 1.0000001 = 1
10

Display Form: R<[DF Y

[DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and OFMT instead of the
default for the object in question. This also applies to the string that is displayed when
the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ONULL.

'"F'OWC'Form'
3F
#.F
p3F
3
OFMT F
#.F
pOFMT F
1 3

F n default display uses 3

Chapter 6 System Functions & Variables 401

F.ODF 'Pete''s Form'

FF
Pete's Form
p3F
11
OFMT F
Pete's Form
pFMT F
1 11

Notice that 0DF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 5p0A
F

ABCDE

FGHIJ

KLMNO
PQRST
p3F
2 25
pO«0FMT F
ABCDE
FGHIJ

KLMNO
PQRST
55

Note that [IDF defines the Display Form statically, rather than dynamically.

'"F'OWC'Form' 'This is the Caption'
F

F.(ODF Caption)m set display form to current caption
F
This is the Caption
F.Caption«'New Caption' a changing caption does not
A change the display form

F
This is the Caption

402 Dyalog APL/W Language Reference

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:
:Class MyClass
vV Make arg
:Access Public

:Implements Constructor
[DF arg

v
:EndClass A MyClass

PD<[INEW MyClass 'Pete’

PD
Pete
It is possible to set the Display Form for the Root and for (JSE
JCLEAR
clear ws
#
#
0oF OWSID
#
CLEAR WS
0se
Ose
OSE.ODF 'Session'
0se
Session

Note that [IDF applies directly to the object in question and is not automatically applied
in a hierarchical fashion.

IXIDNS [)
X
#.X
"Y'X.ONS "
X.Y
#.X.Y
X.ODF 'This is X'
X
This is X
X.Y

#.X.Y

Chapter 6 System Functions & Variables 403

Division Method: go1v

The value of JDIV determines how division by zero is to be treated. IfJDIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0+0 returns
1.

If0dDIV=1, division by 0 returns 0.
DIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

0DIV is an implicit argument of the monadic function Reciprocal (%) and the dyadic
function Divide ().

Examples
OpIv«0

102 +201
0.51 2

=0 1
DOMAIN ERROR

<0 1

A

ODIV«1

+0 2
0 0.5

102 +004
0 0 0.5

404 Dyalog APL/W Language Reference

Delay: {R}<{DL Y

Y must be a simple non-negative numeric scalar or one element vector. A pause of
approximately Y seconds is caused.

The shy result R is an integer scalar value indicating the length of the pause in seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message: R<[JDM

This niladic function returns the last reported APL error as a three-element vector,
giving error message, line in error and position of caret pointer.

Example

2+0
DOMAIN ERROR
230

A

(oM
DOMAIN ERROR 220 A

Chapter 6 System Functions & Variables 405

Dequeue Events: {R}<DQ Y

0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects which
exist, but are not named in Y, are effectively disabled (do not respond to the user).

IfYis '. ', all objects currently owned and subsequently created by the current thread
are included in the JDQ. Note that because the Root object is owned by thread 0, events
on Root are reported only to thread 0.

If Y is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events are
to be processed. Effectively, this is the list of objects with which the user may interact.
A DOMAIN ERROR is reported if an element of Y refers to anything other than an
existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by [JDQ. The "action" may
be a number with the value 0, 1 or ™1, or a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

OBJ OWS 'Event' 'Select' O

OBJ (WS 'Event' 'Select' 1

OBJ [OWS 'Event' 'Select' 'FOO'
OBJ [OWS 'Event' 'Select' 'FOO' 10
OBJ (WS 'Event' 'Select' 'FOO0&'

These are treated as follows:

406 Dyalog APL/W Language Reference

Action = O (the default)

0DQ performs "standard" processing appropriate to the object and type of
event. For example, the standard processing for a KeyPress event in an Edit
object is to action the key press, i.e. to echo the character on the screen.

Action = 71

This disables the event. The "standard" processing appropriate to the object
and type of event is not performed, or in some cases is reversed. For
example, if the "action code" for a KeyPress event (22) is set to ~1, [IDQ
simply ignores all keystrokes for the object in question.

Action = 1

[DQ terminates and returns information pertaining to the event (the event
message in R as a nested vector whose first two elements are the name of the
object (that generated the event) and the event code. R may contain additional
elements depending upon the type of event that occurred.

Action = fn {larg}

f n is a character vector containing the name of a callback function. This
function is automatically invoked by ODQ whenever the event occurs, and
prior to the standard processing for the event. The callback is supplied the
event message (see above) as its right argument, and, if specified, the array
larg as its left argument. If the callback function fails to return a result, or
returns the scalar value 1, [IDQ then performs the standard processing
appropriate to the object and type of event. If the callback function returns a
scalar 0, the standard processing is not performed or in some cases is
reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An
example would be the processing of a keystroke message where the callback
function substitutes upper case for lower case characters. The exact nature of
this processing is described in the reference section on each event type.

Action = sexpr

If Action is set to a character vector whose first element is the execute
symbol (¢) the remaining string will be executed automatically whenever the
event occurs. The default processing for the event is performed first and may
not be changed or inhibited in any way.

Action = fn& {larg}

f n is a character vector containing the name of a callback function. The
function is executed in a new thread. The default processing for the event is
performed first and may not be changed or inhibited in any way.

Chapter 6 System Functions & Variables 407

0DQ terminates in one of four instances. Note that its result is shy.

Firstly, 0DQ terminates when an event occurs whose "action code" is 1. In this case, its
result is a nested vector containing the event message associated with the event. The
structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first is
a character vector containing the name of the object, and the second is a numeric code
specifying the event type.

0DQ also terminates if all of the objects named in Y have been deleted. In this case, the
result is an empty character vector. Objects are deleted either using [JE X, or on exit
from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, [IDQ terminates if the object named in its right argument is a special modal
object, such as aMsgBox, FileBox or Locator, and the user has finished
interacting with the object (e.g. by pressing an "OK" button). The return value of IDQ
in this case depends on the action code of the event.

Finally, JDQ terminates with a VALUE ERROR if it attempts to execute a callback
function that is undefined.

408 Dyalog APL/W Language Reference

Data Representation (Monadic): R<DR Y

Monadic [JDR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Value Data Type

11 1 bit Boolean
80 8 bits character
83 8 bits signed integer

160 16 bits character

163 16 bits signed integer
320 32 bits character

323 32 bits signed integer
326 32 bits Pointer

645 64 Dbits Floating

1287 128 bits Decimal

Unicode Edition

Value Data Type

11 1 bit Boolean
82 8 bits character
83 8 bits signed integer

163 16 bits signed integer
323 32 bits signed integer
326 32 bits Pointer

645 64 bits Floating

1287 128 bits Decimal

Classic Edition

Note that types 80, 160 and 320 and 83 and 163 and 1287 are exclusive to Dyalog
APL.

Chapter 6 System Functions & Variables 409

Data Representation (Dyadic): R«X [DR Y

Dyadic [DR converts the data type of its argument Y according to the type specification
X. See monadic [JDR on the previous page for a list of data types but note that 1287 is
not a permitted value in X.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements of
an array of type X. The shape of the resulting new array will typically be changed along
the last axis. For example, a character array seen as Boolean will have 8 times as many
elements along the last axis.

Case 2:

X is a 2-element integer value. The bits in the right argument are interpreted as type
X[1]. The system then attempts to convert the elements of the resulting array to type
X[2] without loss of precision. The result R is a two element nested array comprised
of:

[1] The converted elements or a fill element (0 or blank) where the conversion
failed
[2] A Boolean array of the same shape indicating which elements were

successfully converted.

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argument
are interpreted as elements of an array of type X[1]. The system then converts them to
the character representation of the corresponding 16 bit integers. This case is provided
primarily for compatibility with APL*PLUS. For new applications, the use of the
[conv] field with ONAPPEND and [INREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
ONXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace
compaction. For example, numeric arrays and (in the Unicode Edition) character arrays
will, if possible, be squeezed to occupy the least possible amount of memory.
However, the internal representation of the result R is guaranteed to remain unmodified
until it is re-assigned (or partially re-assigned) with the result of any function.

410

Dyalog APL/W Language Reference

Edit Object: {R}«{X}OED Y

[ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many elements
as there are names in Y. Each element of X specifies the type of the corresponding
(new) object named in Y, where:

v function/operator

-~ | simple character vector

€ vector of character vectors

- character matrix

® | Namespace script

o | Class script

° Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

If0ED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by [JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

IfED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-screen"
mode (ZOOMED). In all implementations, the user is restricted to those windows
named in Y. The user may not skip to the Session even though the Session may be
visible

[ED terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been changed, and has the same structure as Y.

Chapter 6 System Functions & Variables 41

Event Message: R<(JEM Y

Y must be a simple non-negative integer scalar or vector of event codes. If Y isa
scalar, R is a simple character vector containing the associated event message. If Y is a
vector, R is a vector of character vectors containing the corresponding event messages.

If Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".
Example

OeM 11
DOMAIN ERROR

Event Number: R<JEN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the JSTGNAL
system function. Its value in a clear workspace is 0.

Exception: R«[JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a Microsoft
Net object.

OEXCEPTION derives from the Microsoft .Net class System.Exception. Among its
properties are the following, all of which are strings:

Source The name of the .Net namespace in which the exception was
generated

StackTrace The calling stack

Message The error message

JUSING«'System'

DT«DateTime.New 100000 0 O
EXCEPTION

DT«DateTime.New 100000 0 O

OEN
90

412

Dyalog APL/W Language Reference

[JEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

[JEXCEPTION.Source
mscorlib

[JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year, Int32 month,
Int32 day)

Expunge Object: {R}<0EX Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name in
Y.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that name.
A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The
result is suppressed if not used or assigned.

Examples

OEX'VAR'

+JEX'FOO' 'OI0' 'X' '123'
1010

If a named object is being executed the existing value will continue to be used until its
execution is completed. However, the name becomes available immediately for other
use.

Chapter 6 System Functions & Variables 413

Examples
)SI
#.FOO[1]x
OVR'FOO'
vV R<«FOO
[1] R«10
v
+[JEX'FOO'
1
)SI
#.FOO[1]x
vFoo[[]
defn error
FOO«1 2 3
~[LC
10
FOO
1 23

If a named object is an external variable, the external array is disassociated from the
name:

OXT'F'
FILES/COSTS

OEX'F' o OXT'F'
If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression JEX ' . ' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is
executed by thread 0, it resets all the properties of ' . ' to their default values.
Furthermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

414 Dyalog APL/W Language Reference

Export Object: {R}«{X}OEXPORT Y

[JEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the JPATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

0 - not exported.
1 - exported (default).
A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the JPATH system variable, it examines the function’s export type:

0 This instance of the function is ignored and the search is resumed at the next
namespace in the JPATH list. Type-0 is typically used for functions residing
in a utility namespace which are not themselves utilities, for example the
private sub-function of a utility function.

1 This instance of the function is executed in the namespace in which is was
found and the search terminated. The effect is exactly as if the function had
been referenced by its full path name.

Warning: The left domain of [JEXPORT may be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while [JEXPORT returns a Boolean result in the first version, this may not be the case in
the future. If you need a Boolean result, use 0# or an equivalent.

(020EXPORT Onl 3 4)#0nl 3 4 A list of exported
A functions and operators.

Chapter 6 System Functions & Variables 415

File Append Component: {R}«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is

assumed to be zero. X may be any array including, for example, the JOR of a
namespace.

The shy result R is the number of the component to which X is written, and is 1 greater
than the previously highest component number in the file, or 1 if the file is new.

Examples
(100071000) [FAPPEND 1

O«(2 3p16) 'Geoff' (LOR'FOO') [FAPPEND 1
12

O«A B8 C [OFAPPEND™1
13 14 15

Dump<{
tie<«o [OFCREATE O A create file.
(OFUNTIE tie){}w OFAPPEND tie A append and untie.

File System Available: R«(JFAVAIL

This niladic function returns the scalar value 1 unless the component file system is
unavailable for some reason, in which case it returns scalar 0. IfJFAVAIL does return
0, most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE
See User Guide for further details.

416

Dyalog APL/W Language Reference

File Check and Repair: R«{X} OFCHK Y

[F CHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or operating
system.

Y must be a simple character scalar or vector which specifies the name of the file to be
exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or absolute
pathname. The file must exist and must not be tied. For files associated with external
variables, any filename extension must be specified even if JXT would not require it.
See User Guide for file naming conventions under Windows and UNIX. The file must
exist and must not be associated with an external variable.

The optional left-argument X must be a vector of zero or more character vectors from
among 'force', 'repair' and 'rebuild', which determine the detailed
operation of the function. Note that these options are case-sensitive.

e IfX contains ' force' 0FCHK will validate the file even if it appears to have
been cleanly untied.

e If X contains 'repair' [OF CHK will repair the file, following validation, if it
appears to be damaged. This option may be used in conjunction with
‘force'.

e IfX contains 'rebuild"' OFCHK will repair the file unconditionally.
If X is omitted, the default behaviour is as follows:

1. Ifthe file appears to have been cleanly untied previously, return 8, i.e. report
that the file is OK.

2. Otherwise, validate the file and return the appropriate result. If the file is
corrupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. R may
include non-positive numbers of "pseudo components" that indicate damage to parts of
the file other than in specific components:

0 ACCESS MATRIX.
~1 Free-block tree.
~2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be
extended in the future.

Chapter 6 System Functions & Variables 47

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not be
recovered. Un-recovered components will givea FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those
components that were written with the checksum option enabled (see JFPROPS).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.

File Copy: R«X OFCOPY Y

Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

OF COPY creates a copy of the tied file specified by Y, named X. The new file X will be
a 64-bit file, but will otherwise be identical to the original file. In particular all
component level information, including the user number and update time, will be the
same. The operating system file creation, modification and access times will be set to
the time at which the copy occurred.

The result R is the file tie number associated with the new file X.

Example

told<'oldfile32'0FTIE O
'S'" [OFPROPS told
32
tnew<'newfileé4' [JFCOPY told

'S' OFPROPS tnew
64

If X specifies the name of an existing file, the operation fails witha FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

418

Dyalog APL/W Language Reference

File Create: {R}«X OFCREATE Y

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the
internal component addresses to be represented by 32-bit values which allow a
maximum file size of 4GB. A value of 64 (the default) causes the internal component
addresses to be represented by 64-bit values which allows file sizes up to operating
system limits. Note that 32-bit component files will. See below.

Note:
e a32-bit component file may not contain Unicode character data.

e a 64-bit component file may not be accessed by versions of Dyalog APL prior
to Version 10.1.0

X must be either

a) asimple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Windows.

b) avector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.

ii. an integer scalar specifying the file size limit in bytes.
The newly created file is tied for exclusive use.

The shy result of JF CREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

tie<1+[/0,00FNUMS A With next available number,
file [OFCREATE tie A ... create file.

to:

tie<file [JFCREATE O A Create with first available..

Chapter 6 System Functions & Variables 419

Examples
'..\BUDGET\SALES" [(FCREATE 2 A Windows
'../budget/SALES.85' [JFCREATE 2 A UNIX
"COSTS' 200000 [JFCREATE 4 A max size 200000
"LARGE' [JFCREATE 5 64 A 64-bit file
"SMALL' [JFCREATE 6 32 A 32-bit file

Important Note

Dyalog intends to withdraw support for 32-bit component files in future releases.

If you have any existing 32-bit component files, or applications which create and/or use
them, Dyalog recommends that you prepare for this in the following ways:

e Ensure that Dyalog is not started with the command-line option —F32. This
option sets the default component file type which is created to 32-bit.

e Ensure that no JF CREATE within your applications explicitly specifies that
32-bit files are to be created.

e Make plans to convert any existing 32-bit component files to 64-bit using
OFCOPY. OF COPY will create a 64-bit copy even if the file being copied is
32-bit.

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog will
continue to provide a means to convert 32-bit files to supported formats for a minimum
of 10 years after direct support is withdrawn.

420

Dyalog APL/W Language Reference

File Drop Component: {R}<«[JFDROP Y

Access code 32
Y must be a simple integer vector of length 2 or 3 whose elements are:
[1] a file tie number

[2] anumber specifying the position and number of components to be dropped. A
positive value indicates that components are to be removed from the beginning of
the file; a negative value indicates that components are to be removed from the
end of the file

[3] an optional passnumber which if omitted is assumed to be zero

The shy result of a JFDROP is a vector of the numbers of the dropped components.
This is analogous to [JF APPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,«vec [JFAPPEND 'tie A Append index to dictionary

cnos~<[JFDROP tie,-pvec A Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples

OFsIzE 1
1 21 5436 4294967295

OFDROP 1 3 ¢ [FSIZE 1
4 21 5436 4294967295

OFDROP 1 ~2 o QOFSIZE 1
4 19 5436 4294967295

Chapter 6 System Functions & Variables 421

File Erase: {R}«X OFERASE Y

Access code 4

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. X must be a character scalar or vector containing the name of the file associated
with the tie number Y. This name must be identical with the name used to tie the file,
and the file must be exclusively tied. The file named in X is erased and untied. See
User Guide for file naming conventions under UNIX and Windows.

The shy result of [JFERASE is the tie number of the erased file.

Examples
"SALES'JFERASE 'SALES' QOFTIE O

"./temp' [OFCREATE 1

"temp' OFERASE 1
FILE NAME ERROR

"temp 'FERASE 1

A

File Hold:

{R}«[JFHOLD Y

Access code 2048
This function holds component file(s) and/or external variable(s).

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a non-simple scalar or vector of character
vectors, each of which is the name of an external variable. (NOT the file names
associated with those variables).

422

Dyalog APL/W Language Reference

If applied to component files and external variables, Y is a vector whose elements are
either integer scalars representing tie numbers, or character vectors containing names
of external variables.

The effect is as follows:
1. The user's preceding holds (if any) are released.

2. Execution is suspended until the designated files are free of holds by any other
task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using [JF HOLD on any of the designated files will wait.

If' Y is empty, the user's preceding hold (if any) is released, and execution continues.
A hold is released by any of the following:
1. Another JFHOLD

2. Untying or retying all the designated files. If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

3. Termination of APL.
4. Any untrapped error or interrupt.
5. A return to immediate execution.
Note that a hold is not released by a request for input through 0 or [.

Note also that point 5 above implies that JF HOLD is generally useful only when called
from a defined function, as holds set in immediate execution (desk calculator) mode are
released immediately.

The shy result of JFHOLD is a vector of tie numbers of the files held.

Examples:
[JFHOLD 1

[FHOLD &

[(FHOLD <'XTVAR'

QFHOLD 1 2,[0.5]0 16385
OFHOLD 1 'XTVAR'

Chapter 6 System Functions & Variables 423

Fix Script:

(R}«{X}OFIX Y

OF IX fixes a Class from the script specified by Y.

Y must be a vector of character vectors or character scalars that contains a well-formed
Class script. If so, the shy result R is a reference to the new Class fixed by OF IX.

The Class specified by Y may be named or unnamed.

If specified, X must be a numeric scalar. If X is omitted or non-zero, and the Class
script Y specifies a name (for the Class), JF IX establishes that Class in the workspace.

If X is O or the Class specified by Y is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyC lass) but the result of
OF IX is discarded. The end-result is that MyC L as s is established in the workspace as
a Class.

O<0FIX ':Class MyClass' ':EndClass'
#.MyClass

In the second example, the Class specified by Y is named (MyClass) and the result of
OF IX is assigned to a different name (MYREF). The end-result is that a Class named
MyClass is established in the workspace, and MYREF is a reference to it.

MYREF<[JFIX ':Class MyClass' ':EndClass'
JCLASSES
MyClass MYREF
[ONC'MyClass' 'MYREF'
9.4 9.4
MYREF
#.MyClass

In the third example, the left-argument of O causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF<0 [OFIX ':Class MyClass' ':EndClass'
JCLASSES

MYREF
MYREF

#.MyClass

424 Dyalog APL/W Language Reference

The final example illustrates the use of un-named Classes.

MYREF

Pete

src+':Class' 'VMake n'

src,«'Access Public' 'Implements Constructor'
src,«'0DF n' 'v' ':EndClass'

MYREF<OFIX src

JCLASSES

MYINST<[NEW MYREF 'Pete’
MYINST

Component File Library: R<(FLIB Y

Y must be a simple character scalar or vector which specifies the name of the directory
whose APL component files are to be listed. If Y is empty, the current working
directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in question,
the result is an empty character matrix with 0 rows and 0 columns.

Note that if a file is exclusively tied (as opposed to share tied) then it is not reported by

0FLIB.

Examples

grLis '

SALESFILE

COSTS

gfLis '.'

./SALESFILE
./COSTS

OFLIB '../budget'

../budget/SALES.85
../budget/COSTS. 85

Chapter 6 System Functions & Variables 425

Format (Monadic): ROFMT Y

Y may be any array. R is a simple character matrix which appears the same as the
default display of Y. If Y contains control characters from [JTC, they will be resolved.

Examples
A<QOFMT 'n' ,0OTC[1],'e"’

pA

A<[OVR 'FOO'

A
V R«FOO
[1] R«10
v

pA
31
B<[JFMT A

B
V R«FOO
[1] R«10
v

pB
3 12

426

Dyalog APL/W Language Reference

Format (Dyadic): ReX OFMT Y

Y must be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y must
be homogeneous, either character or numeric. All numeric values in Y must be simple;
if Y contains any complex numbers, dyadic OFMT will generate a DOMAIN ERROR. X
must be a simple character vector. R is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalar in Y is treated as a one-element matrix. A simple vector in Y
is treated as a one-column matrix. Each column of the simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of rows as the longest column (or implied column) in Y, and the
number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format
rEw.s Scaled format
rqfFw.d Decimal format
rqGlpattern(Pattern

rqlw Integer format

Tn Absolute tabulation
Xn Relative tabulation
0t0 Text insertion.

(Alternative surrounding pairs for Pattern or Text insertion are
<>, e, OJ0or ™ ™)
where:

r is an optional repetition factor indicating that the
format phrase is to be applied to r columns of Y.

q is an optional usage of qualifiers or affixtures from
those described below.

W is an integer value specifying the total field width
per column of Y, including any affixtures.

Chapter 6 System Functions & Variables 427

pattern

Qualifiers q are as follows:

B

Km

ov[1t[]
SOpl

is an integer value specifying the number of significant
digits in Scaled format; s must be less than w-1.

is an integer value specifying the number of places of
decimal in Decimal format; d must be less than w.

is an integer value specifying a tab position relative to
the notional left margin (for T-format) or relative to the
last formatted position (for X-format) at which to begin
the next format.

is any arbitrary text excluding the surrounding
character pair. Double quotes imply a single quote in
the result.

see following section G format

leaves the field blank if the result would otherwise be
Z€ro.

inserts commas between triads of digits starting from
the rightmost digit of the integer part of the result.

scales numeric values by 1Em where m is an integer;
negation may be indicated by ~ or - preceding the
number.

left justifies the result in the field width.
replaces specific numeric value v with the text t.

substitutes standard characters. p is a string of pairs of
symbols enclosed between any of the Text Insertion
delimiters. The first of each pair is the standard symbol
and the second is the symbol to be substituted.
Standard symbols are:

* overflow fill character
decimal point

s triad separator for C qualifier

0 fill character for Z qualifier

loss of precision character

428 Dyalog APL/W Language Reference

9

Affixtures are as follows:

MOt0

NOtO
POtO
QOt0
ROtO

fills unused leading positions in the result with
zeros (and commas if C is also specified).

digit selector

prefixes negative results with the text t instead of
the negative sign.

post-fixes negative results with the text t.
prefixes positive or zero results with the text t.
post-fixes positive or zero results with the text t.

presets the field with the text t which is repeated as
necessary to fill the field. The text will be replaced
in parts of the field filled by the result, including the
effects of other qualifiers and affixtures except the
B qualifier.

The surrounding affixture delimiters may be replaced by the alternative pairs described

for Text Insertion.

Examples

A vector is treated as a column:

'I5' OFMT 10 20 30

10
20
30

The format specification is used cyclically to format the columns of the right argument:
'I3,F5.2"' [IFMT 2 4p18

1 2.00 3 4.00
5 6.00 7 8.00

Chapter 6 System Functions & Variables 429

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

2I4,F7.1" OFMT (t4)(2 2p O.1x1k)
0 0.2
0 0.4

FWE -

Characters are right justified within the specified field width, unless the L qualifier is
specified:

"A2' [OFMT 1 6p'SPACED'
SPACED

If the result is too wide to fit within the specified width, the field is filled with
asterisks:

'F5.2"' OFMT 0.1x5 1000 ~100
0.50

% % % % %
% % % % %

Relative tabulation (X-format) identifies the starting position for the next format phrase
relative to the finishing position for the previous format, or the notional left margin if
none. Negative values are permitted providing that the starting position is not brought
back beyond the left margin. Blanks are inserted in the result, if necessary:

'I2,X3,3A1" OFMT (13)(2 3p'TOPCAT")

1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format
relative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as required.
Over-written columns in the result contain the most recently formatted array columns
taken in left-to-right order:

X«<'6I1,T5,A1,T1,3A1,T7,F5.1"'

X OFMT (1 6p16)('x')(1 3p'ABC')(22.2)
ABCLx6 22.2

430

Dyalog APL/W Language Reference

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol _:

"F20.1' [FMT 1E18+3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN<3 5p'FRED BILL JAMES'
WOMEN<2 5p'MARY JUNE

'5A1,<|>" OFMT MEN WOMEN

FRED |MARY |
BILL |JUNE |
JAMES | |

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X<'F5.1,BF6.1,X1,2F5.1,X1,LF5.1,K3CS<.,,.>F10.1"

X OFMT &5 3p~1.5 0 25
1.5 71.5 701.5 1.5 ~1.500,0
0.0 000.0 0.0 0,0
25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended by
the inclusion of affixtures. N and Q affixtures shift the result to the left by the number
of characters in the text specification. Affixtures may be used to enclose negative
results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2"' [FMT 150.3 ~50.25 0 1114.9
150.30
(50.25)
0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an
optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'I2,2(</>,212)"' OFMT 1 3p$100]|310TS
20/07/89

Chapter 6 System Functions & Variables 431

G Format
Only the B, K, S and O qualifiers are valid with the G option

[Opatternlis an arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits than
digit selectors, the data digits are padded with leading zeros. If there are more data
digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on either side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on either
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples

'Gc99/99/99>"'0FMT 0 100 100 .8 7 89
08/07/89

'GeZZ/17/17>'0FMT 80789 + 0 1
8/07/89
8/07/9

'GeAndy ZZ Pauline ZZ>' [FMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

p«'K2GeDM 7.227.229,99>"' [FMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234,56
2 15

An error will be reported if:
1. Numeric data is matched against an A control phrase.
2. Character data is matched against other than an A control phrase.
3. The format specification is ill-formed.
4. For an F control phrase, d>w-2
5

For an E control phrase, s>w-2

432

Dyalog APL/W Language Reference

O Format Qualifier

The O format qualifier replaces a specific numeric value with a text string and may be
used in conjunction with the E, F, I and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value which
is to be substituted (if omitted, the default is 0) and then the text string within pairs of
symbols such as "<>". For example:

O - qualifier Description
O<nil> Replaces the value 0 with the text "nil"
O42<N/A> Replaces the value 42 with the text "N/A"

00.001<1/1000> Replaces the value 0.001 with the text "1/1000"

The replacement text is inserted into the field in place of the numeric value. The text is
normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is [CT sensitive.

Examples
"O<NIL>F7.2'0FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>LF7.2'00FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>O42<N/A>I6'OFMT 12 0 42 13
12
NIL
N/A
13
'099<replace>F20.2'0fmt 99 100 101
replace
100.00

101.00

Chapter 6 System Functions & Variables 433

File Names: R<[JFNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files
are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples
"/usr/pete/SALESFILE' [OFSTIE 16

'../budget/COSTFILE' [OFSTIE 2
"PROFIT' [OFCREATE 5

OFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

pOFNAMES
319

OFNUMS ,0F NAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

434

Dyalog APL/W Language Reference

File Numbers: R<[JFNUMS

The result is an integer vector of the tie numbers of all tied files. If no files are tied,
the result is empty. The elements of the result are in the order in which the files were
tied.

Examples

"/usr/pete/SALESFILE' OFSTIE 16
'../budget/COSTFILE' QOFSTIE 2
'"PROFIT' [JFCREATE 5

OF NUMS
16 2 5

OFNUMS ,0F NAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

OFUNTIE OFNUMS
p0OF NUMS

File Properties: R«X [OFPROPS Y

Access Code 1 (to read) or 8192 (to change properties)
[OFPROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or a 1 or 2-element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted, it is
assumed to be 0.

X must be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier and
a (new) value for that property. To set new values for more than one property, X must
be is a vector of 2-element vectors, each of which contains an Identifier and a (new)
value for that property.

If the left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Chapter 6 System Functions & Variables 435

Identifier | Property Description / Legal Values
S File Size 32 = Small Component Files (<4Gb)
(read only) 64 = Large Component Files
E Endian-ness 0 = Little-endian
(read only) 1 = Big-endian
u Unicode 0 = Characters must be written as type 82 arrays

1 = Characters must be written as Unicode arrays

J Journaling 0 = Disable Journaling

1 = Enable APL crash proof Journaling

2 = Enable System crash proof Journaling; repair
needed on recovery

3 = Enable full System crash proof Journaling

C Checksum 0 = Disable checksum
1 = Enable checksum

The default properties for a newly created file are as follows:

S=64

U =1 (Unicode Edition and 64-bit file) or O (otherwise)
I=0

Cc=0

E depends upon the computer architecture.

Journaling Levels

Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will be
implicitly committed between updates and an incomplete update will automatically be
rolled forward or back when the file is re-tied. In the event of an operating system
crash the file may be more seriously damaged. If checksum was also enabled it may be
repaired using JF CHK but some components may be restored to a previous state or not
restored at all.

Level 2 journaling (system crash-proof — repair needed on recovery) extends level 1 by
ensuring that a component file is fully repairable using [JF CHK with no component loss
in the event of an operating system failure. If an update was in progress when the
system crashed the affected component will be rolled back to the previous state. Tying
and modifying such a file without first running [JF CHK may however render it un-
repairable.

Level 3 journaling (system crash-proof) extends level 1 further by protecting a
component file from damage in the event of abnormal termination of the APL process
and also the operating system. Rollback of an incomplete update will be automatic and
no explicit repair will be needed.

436

Dyalog APL/W Language Reference

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

Checksum Option

Enabling the checksum option for a component file will enable a damaged file to be
repaired using [JF CHK. It will however will reduce the performance of file updates
slightly and result in larger component files. The use of Check Sums is highly
recommended, but in order to provide compatibility with earlier versions of Dyalog, it
is not enabled by default. When version 12.1 becomes the oldest supported version,
Check Sums will probably be enabled by default.

Enabling the checksum option on an existing non-empty component file, will mean that
all components that had previously been written without a checksum, will be check-
summed and converted. This operation which will take place when OF PROPS is
changed, may not, therefore, be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively tied.

Component files written with Checksum enabled cannot be read by versions of
Dyalog APL prior to Version 12.1.

Example

tn<'myfile6t' [JFCREATE O
"SEUJ' OFPROPS tn
64 0 10

tn<'myfile32' OFCREATE 0 32
'SEUT' OFPROPS tn
32000

The following expression disables Unicode and switches Journaling on. The function
returns the previous settings:

(‘u' 0)('J" 1) OFPROPS tn
10
Note that to set the value of just a single property, the following two statements are
equivalent:

'J' 1 OFPROPS tn
(,'J' 1) OFPROPS tn

Chapter 6 System Functions & Variables 437

The Unicode property applies only to 64-bit component files. 32-bit component files
may not contain Unicode character data and the value of the Unicode property is
always 0. To convert a 32-bit component file to a 64-bit component file, use JF COPY.

Properties may be read by a task with [JFREAD permission (access code 1), and set by a
task with JF STAC access (8192). To set the value of the Journaling property, the file
must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior to
Version 12.0. If journaling is set to a value higher than 1, or checksums are enabled,
the file cannot be tied by versions prior to 12.1.

Floating-Point Representation: OFR

The value of JFR determines the way that floating-point operations are performed.

IfOFR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented internally
using binary64? floating-point format.

If0FR is 1287, all floating-point calculations are performed using IEEE 754-2008 128-
bit decimal floating-point operations and the results of these operations are represented
internally using decimall283 format.

Note that when you change [OF R, its new value only affects subsequent floating-point
operations and results. Existing floating-point values stored in the workspace remain
unchanged.

The default value of [JFR (its value ina c Lear ws) is configurable.

OFR has workspace scope, and may be localised. If so, like most other system
variables, it inherits its initial value from the global environment.

However: Although [0FR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of is not
recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of JFR
when the function is fixed. Thus, it would be possible for the first line of code above to
return 0, if it is in the body of a function. If the function was edited and while
suspended and execution is resumed, the result would become 1.

2 http://en.wikipedia.org/wiki/Double_precision_floating-point_format
3 http://en.wikipedia.org/wiki/Decimal128_floating-point_format

438

Dyalog APL/W Language Reference

Also note:
OFR<«1287
x<1+3
OFR<645
x=1+3

1

The decimal number has 17 more 3’s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the decimal universe:

OFR<645
x<1+3

OFR<+1287

x=1+3
0
Since [JFR can vary, it will be possible for a single workspace to contain floating-point
values of both types (existing variables are not converted when [JFR is changed). For
example, an array that has just been brought into the workspace from external storage
may have a different type from [FR in the current namespace. Conversion (if
necessary) will only take place when a new floating-point array is generated as the
result of “a calculation”. The result of a computation returning a floating-point result
will not depend on the type of the arrays involved in the expression: [FR at the time
when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

[OFR«1287
x<«1.1 2.2 3.3

[JFR«645

DR x
1287

ODR 21x
1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range — from 1E6145 to 1E6145. Loss of precision
is accepted on conversion from 645 to 1287, but the magnitude of a number may make
the conversion impossible, in which case a DOMAIN ERROR is issued:

OFR<1287
x«<1E1000

[OFR«645 o x+0
DOMAIN ERROR

Chapter 6 System Functions & Variables 439

When experimenting with 0F R it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of JFR that
pertained before the line was entered. For example:

OFR<645
OFr
645

OFR<1287 o [DR 0.1
645

ObR 0.1
1287

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not recommended,
because:

e any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, potentially
losing precision.

e all comparisons are done using [IDCT when [JFR is 1287, and this is
equivalent to 0 for complex numbers.

File Read Access: R<[JFRDAC Y

Access code 4096

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

Examples

OFRDAC 1
28 2105 16385
0 2073 16385
31 1 0

440 Dyalog APL/W Language Reference

File Read Component Information: R«(JFRDCI Y

Access code 512

Y must be a simple integer vector of length 2 or 3 containing the file tie number,
component number and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:
a) the size of the component in bytes (i.e. how much disk space it occupies).
b) the user number of the user who last updated the component.

c) the time of the last update in 60ths of a second since 1st January 1970 (UTC).

Example

OFRDCI 1 13
2200 207 3.702094494E10

File Read Component: R«[JFREAD Y

Access code 1

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is the value of the array stored on the tied file at the given component
number.

Examples

pSALES<+[JFREAD 1 241
3 2 12

GetFile«{io<0
tie«w [fstie O
fm to<«2t0fsize tie
cnos<«fm+itto-fm
cvec<{[fread tie w} 'cnos
cvec{a}dfuntie tie

Extract contents.

new tie number.

first and next component.

vector of component nos.

vector of components.
untie and return.

DO®DODDO®DDODD

Chapter 6 System Functions & Variables 441

File Rename: {R}«X OFRENAME Y

Access code 128

Y must be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. If the passnumber is omitted it is assumed to be zero.

X must be a simple character scalar or vector containing the new name of the file. This
name must be in accordance with the operating system's conventions, and may be
specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.

The shy result of JFRENAME is the tie number of the file.

Examples

"SALES' [OFTIE 1
"PROFIT" OFTIE 2

OFNAMES
SALES
PROFIT

"SALES.85' [FRENAME 1
'../profits/PROFIT.85"' [OFRENAME 2

OFNAMES
SALES.85
../profits/PROFITS.85

Rename<{
fm to<«w
[OFUNTIE to OFRENAME fm [OFTIE O

442 Dyalog APL/W Language Reference

File Replace Component: {R}«X OFREPLACE Y

Access code 16

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's
component number limits.

X is any array (including, for example, the [JOR of a namespace), and overwrites the
value of the specified component. The component information (see JFRDCI) is also
updated.

The shy result of JFREPLACE is the file index (component number of replaced
record).

Example
SALES<[JFREAD 1 241
(SALESx1.1) [OFREPLACE 1 241

Define a function to replace (index, value) pairs in a component file JIMS.DCF:
Frep«<{
tie«o (OFTIE O

_«{w OFREPLACE tie o}/ w
OFUNTIE tie

"jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

File Resize: {R}«{X}OFRESIZE Y

Access code 1024

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
Zero.

X is an integer that specifies the maximum permitted size of the file in bytes. For a 64-
bit file, the value 0 means that there will be no explicit limit put on the size of the file.
For a 32-bit file, the value 0 is ignored and has no effect on the maximum file size.

An attempt to update a component file that would cause it to exceed its maximum size
will fail witha FILE FULL error (21).

Chapter 6 System Functions & Variables 443

A side effect of JFRESIZE is to cause the file to be compacted. Any interrupt entered
at the keyboard during the compaction is ignored. Note that if the left argument is
omitted, the file is simply compacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by
amalgamating the free areas at the end of the file. The file is then truncated and excess
disk space is released back to the operating system. For a large file with many
components, this process may take a significant time.

The shy result of JFRESIZE is the tie number of the file.

Example

"test'JFCREATE 1 o [OFSIZE 1
11 120 1.844674407E19

(10 1000p1.1)0FAPPEND 1 ¢ [OFSIZE 1
1 2 80288 1.84L4674L4OT7ELY

100000 OFRESIZE 1 a Limit size to 100000 bytes
(10 1000p1.1)0FAPPEND 1

FILE FULL
(10 1000p1.1)FAPPEND 1

A

OFRESIZE 1 A Force file compaction.

File Size:

R<JFSIZE Y

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is a 4 element numeric vector containing the following:

Element | Description

1 the number of first component

2 1 + the number of the last component, (i.e. the result of the next
OFAPPEND)

3 the current size of the file in bytes

4 the file size limit in bytes (0 means no limit)

Example
OFsIze 1

1 21 65271 4294967295

444 Dyalog APL/W Language Reference

File Set Access: {R}«X OFSTAC Y

Access code 8192

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number

followed by an optional passnumber. If the passnumber is omitted it is assumed to be
Zero.

X must be a valid access matrix, i.e. a 3 column integer matrix with any number of
TOWS.

See "File Access Control" in User Guide for further details.

The shy result of JF STAC is the tie number of the file.

Examples

SALES [FCREATE 1

(3 3p28 2105 16385 0 2073 16385 31 ~1 0) [FSTAC 1
((OFRDAC 1)521 2105 16385) [FSTAC 1

(1 3p0 ~1 0)OFSTAC 2

Chapter 6 System Functions & Variables 445

File Share Tie: {R}«X OFSTIE Y

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
tied. The file must be named in accordance with the operating system's conventions,
and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. If it is already tied by another task, it
must not be tied exclusively.

The shy result of JF STIE is the tie number of the file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number and returns it as an explicit result. This
allows you to simplify code. For example:

from:

tie«1+[/0,0FNUMS @ With next available number,

file OFSTIE tie A ... share tie file.
to:

tie<file (JFSTIE O A Tie with first available number.
Example

"SALES' [OFSTIE 1
'../budget/COSTS' QOFSTIE 2

446 Dyalog APL/W Language Reference

Exclusive File Tie: {R}«X OFTIE Y

Access code 2

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
exclusively tied. The file must be named in accordance with the operating system's
conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by another
user.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number, and returns it as an explicit result. This
allows you to simplify code. For example:

from:

tie<1+[/0,JFNUMS A With next available number,
file OFTIE tie A ... tie file.
to:

tie«file OFTIE O A Tie with first available number.
The shy result of JF TIE is the tie number of the file.

Examples
"SALES' OFTIE 1

'../budget/COSTS"' OFTIE 2
'../budget/expenses' [OFTIE O

Chapter 6 System Functions & Variables 447

File Untie: {R}<[FUNTIE Y

Y must be a simple integer scalar or vector (including Zilde). Files whose tie numbers
occur in Y are untied. Other elements of Y have no effect.

If Y is empty, no files are untied, but all internal file buffers are written to disk. Under
UNIX this is achieved with £sync; under Windows with the Commit File function
(Int 21h Function 68h); on Win32 systems it is achieved with

FlushFileBuffers (). This special facility allows the programmer to add extra
security (at the expense of performance) for application data files.

The shy result of JFUNTIE is a vector of tie numbers of the files actually untied.

Example
OFUNTIE OFNUMS a Unties all tied files

[(OFUNTIE ¢ A Flushes all buffers to disk

Fix Definition: {R}<FX Y

Y is the representation form of a function or operator which may be:

1. its canonical representation form similar to that produced by [CR except that
redundant blanks are permitted other than within names and constants.

2. its nested representation form similar to that produced by ONR except that
redundant blanks are permitted other than within names and constants.

3. its object representation form produced by [JOR.

4. its vector representation form similar to that produced by OVR except that
additional blanks are permitted other than within names and constants.

OF X attempts to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. (IO is an implicit argument of [JF X.

If the function or operator is successfully fixed, R is a simple character vector
containing its name and the result is shy. Otherwise R is an integer scalar containing
the (IO dependent) index of the row of the canonical representation form in which the
first error preventing its definition is detected. In this case the result R is not shy.

Functions and operators which are pendent, that is, in the State Indicator without a
suspension mark (), retain their original definition until they complete, or are cleared
from the State Indicator. All other occurrences of the function or operator assume the
new definition. The function or operator will fail to fix if it has the same name as an
existing variable, or a visible label.

443 Dyalog APL/W Language Reference

Instances: R<[JINSTANCES Y

[JINSTANCES returns a list all the current instances of the Class specified by Y.
Y must be a reference to a Class.

R is a vector of references to all existing Instances of Class Y.

Examples

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)

Parrot (derived from Bird)

:Class Animal
:EndClass A Animal
:Class Bird: Animal
;éﬁdClass A Bird
:Class Parrot: Bird

;éﬁdClass A Parrot

Eeyore<[JNEW Animal
Robin<[ONEW Bird
Pol Lly«[INEW Parrot

JINSTANCES Parrot
#.[Parrot]

[JINSTANCES Bird
#.[Bird] #.[Parrot]

[JINSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Eeyore.[JDF 'eeyore'
Robin.[ODF 'robin'
Polly.[DF 'polly'

Chapter 6 System Functions & Variables 449

OINSTANCES Parrot
polly

OINSTANCES Bird
robin polly

OINSTANCES Animal
eeyore robin polly

Index Origin: gdIo

(IO determines the index of the first element of a non-empty vector.
0IO0 may be assigned the value 0 or 1. The value in a clear workspace is 1.

0I0 is an implicit argument of any function derived from the Axis operator ([K]), of
the monadic functions Fix (OF X), Grade Down (¥), Grade Up (4), Index Generator (1),
Roll (?), and of the dyadic functions Deal (?), Find (P), Grade Down (V), Grade Up
(4), Index Of (1), Indexed Assignment, Indexing, Pick (2) and Transpose (&).

Examples
010+1

12345

0123%4
+/[0]2 3p16

"ABC',[7.5]'="

n x>
n w
no

450 Dyalog APL/W Language Reference

Key Label: R«OKL Y

Classic Edition only.

Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with
Keyboard Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If Y specifies codes that are not defined, the corresponding
elements of R are the codes in Y.

OKL provides the information required to build device-independent help messages into
applications, particularly full-screen applications using [JSM and [JSR.
Examples:

OKkL 'RC'
Right

OkKL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count: R<[LC

This is a simple vector of line numbers drawn from the state indicator (See Chapter 2).
The most recently activated line is shown first. If a value corresponds to a defined
function in the state indicator, it represents the current line number where the function
is either suspended or pendent.

The value of (L C changes immediately upon completion of the most recently activated
line, or upon completion of execution within ¢ or [J. Ifa JSTOP control is set, [(JLC
identifies the line on which the stop control is effected. In the case where a stop
control is set on line 0 of a defined function, the first entry in JLC is 0 when the control
is effected.

The value of (DL C in a clear workspace is the null vector.

Examples

)SI
#.TASK1[5]*

-3
#.BEGIN[3]
dLc

Chapter 6 System Functions & Variables 451

-[LC
0Lc

pLC

Load Workspace: OLOAD Y

Y must be a simple character scalar or vector containing the identification of a saved
workspace.

If Y is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. If the loaded workspace was saved by the) SAVE system
command, the latent expression (0L X) is immediately executed, unless APL was
invoked with the -x option. If the loaded workspace was saved by the JSAVE system
function, execution resumes from the point of exit from the JSAVE function, with the
result of the JSAVE function being 0.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose Visib Le property is 1, these
objects will be displayed. If the workspace contains a non-empty [JSM but does not
contain an SM GUI object, the form defined by OSM will be displayed in a window on
the screen.

452

Dyalog APL/W Language Reference

Lock Definition: {X}OLOCK Y

Y must be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace.

The active referent to the name in the workspace is locked. Stop, trace and monitor
settings, established by the JSTOP, JTRACE and [JMONITOR functions, are cancelled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form
using JCR, OVR or [ONR.

2. Execution cannot be suspended with the locked function or operator in the
state indicator. On suspension of execution the state indicator is cut back to
the statement containing the call to the locked function or operator.

3. Both 1 and 2 apply. You can neither display the locked object nor suspend
execution within it.

Locks are additive, so that the following are equivalent:

1 OLOCK'FOO'
2 [LOCK'FoOO'
3 0LOCK'FOO'

DOMAIN ERROR is reported if:
1. Y isill-formed.

2. The name in Y is not the name of a visible defined function or operator which
is not locked.

Examples

QvrR'FoO'
V R«FOO
[1] R«<10
v

fLocK'FoO'
QvrR'FoO"

fLock'Foo'

DOMAIN ERROR
fLocK'Foo'
A

Chapter 6 System Functions & Variables 453

Latent Expression: dLx

This may be a character vector or scalar representing an APL expression. The
expression is executed automatically when the workspace is loaded. If APL is invoked
using the -x flag, this execution is suppressed.

L)

The value of (L X in a clear workspace is

Example
OLX<'''GOOD MORNING PETE'''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

JLOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File:

R«{X}OMAP Y

OMAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; 4PL and raw. An APL mapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the supplied utility function AMPUT. When you map an
APL file, the rank, shape and data type of the array is obtained from the information on
the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to [JMAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Y may be a simple character vector, or a 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)
2. access code (character scalar/vector) : one of : 'R', "W, 't or 'W'
3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0)

If X is specified, it defines the type and shape to be associated with raw data on file. X
must be an integer scalar or vector. The first item of X specifies the data type and must
be one of the following values:

454 Dyalog APL/W Language Reference

Classic Edition 11, 82, 83, 163, 323 or 645
Unicode Edition | 11, 80, 83, 160, 163, 320, 323 or 645

Following items determine the shape of the mapped array. A value of ~1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this way.

NB: If X is a singleton, the data on the file is mapped as a scalar and only the first
value on the file is accessible.

If no left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc).

Mapped files may be updated by changing the associated array using indexed
assignment: var[a]<«b.

Note that a raw mapped file may be updated only if its file offset is 0.

Examples
Map raw file as a read-only vector of doubles:
vec<645 ~1 [OMAP'c:\myfile'
Map raw file as a 20-column read-write matrix of 1-byte integers:
mat«83 ~1 20 [MAP'c:\myfile' 'W'
Replace some items in mapped file:
mat[2 3;4 5]«2 2pi4
Map bytes 100-180 in raw file as a 5x2 read-only matrix of doubles:
dat«<645 5 2 [IMAP'c:\myfile' 'R' 100
Put simple 4-byte integer array on disk ready for mapping:
(83 323 [IDR 2 3 4pi124)AMPUT'c:\myvar'
Then, map a read-write variable:

var<[JMAP'c:\myvar' 'w'

Chapter 6 System Functions & Variables 455

Note that a mapped array need not be named. In the following example, a ‘raw’ file is
mapped, summed and released, all in a single expression:

+/163 ~1 [OMAP'c:\shorts.dat'
42

If you fail to specify the shape of the data, the data on file will be mapped as a scalar
and only the first value in the file will be accessible:

83 OMAP 'myfile' A map FIRST BYTE of file.
~86
Compatibility between Editions

In the Unicode Edition [JMAP will fail witha TRANSLATION ERROR (event number
92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was written
using data type 82, the file may be mapped with data type 83 and the characters
extracted by indexing into JAVU.

Migration Level: OML

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of 0 changes the
interpretation of certain symbols and language constructs.

OML<«0 Native Dyalog (Default)
OML<1 Z+€R Monadic '€ ' is interpreted as 'enlist' rather than
'type'.
OML<«2 Z+1R Monadic 't ' is interpreted as 'first' rather than 'mix'.
Z+>5R Monadic '>" is interpreted as 'mix' rather than 'first'.
Z«=R Monadic '="' returns a positive rather than a negative
value, if its argument has non-uniform depth.
OML<3 R«X<[K]Y Dyadic 'c' follows the APL2 (rather than the
original Dyalog APL) convention.
grc The order of the elements of JTC is the same as in
APL2.

Subsequent versions of Dyalog APL may provide further migration levels.

456 Dyalog APL/W Language Reference

Examples
X«2(3 4)
[OML<0
exX

0 0O
t+X

20

3 4
>X

2
=X

-2
OML<1
exX

2 3 4
+X

20

3 4
> X

2
=X

-2
OML<2
exX

2 3 4
+X

2
>X

20

3 4
=X

Chapter 6 System Functions & Variables 457

Set Monitor: {R}«X [OMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function or
operator (other than 0) are ignored. The number 0 indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of JI0.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned.

The effect of JMONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Monitor Query for details.
Examples

+(0,110) [OMONITOR 'FOO'
012345

Existing monitors are cancelled before new ones are set:

+1 [JMONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:
& OMONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

458 Dyalog APL/W Language Reference

Query Monitor: R«(JMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer matrix of 5 columns
with one row for each line in the function or operator Y which has the monitor set,

giving:

Column 1 : Line number

Column 2 : Number of times the line was executed
Column 3 : CPU time in milliseconds

Column 4 : Elapsed time in milliseconds

Column 5 : Reserved

The value of 0 in column one indicates that the monitor is set on the function or
operator as a whole.

Example
vV FOO
[1] A«?25 25p100
[2] B<HA
[3] c<E8

[4] R1«[0.5+A+.xB
[5] R2«A=C
v

(0,15) OMONITOR 'FOO' @ Set monitor

FOO A Run function
[OMONITOR 'FOO' A Monitor query

01 1418 1000 O

11 83 00

2 1 400 00

31 397 00

4 1 467 1000 O

51 100 00

Chapter 6 System Functions & Variables 459

Name Association: {R}«{X}ONA Y

ONA provides access from APL to compiled functions within a Dynamic Link
Library (DLL). A DLL is a collection of functions typically written in C (or C++)
each of which may take arguments and return a result.

Instructional examples using [INA can be found in supplied workspace: QUADNA . DWS.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the [INA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function that
was fixed.

For example, math.d11 might be a library of mathematical functions containing a
function divide. To associate the APL name di v with this external function:

‘div' ONA 'F8 math|divide I4 Iu'

where F 8 and I4, specify the types of the result and arguments expected by divide.
The association has the effect of establishing a new function: di v in the workspace,
which when called, passes its arguments to divide and returns the result.

)fns
div

div 10 4
2.5

460

Dyalog APL/W Language Reference

Type Declaration

In a compiled language such as C, the types of arguments and results of functions must
be declared explicitly. Typically, these types will be published with the documentation
that accompanies the DLL. For example, function divide might be declared:

double divide (int32 t, int32 t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration and
the right argument of [INA:

C: double divide (int32_t, int32 t);
APL:'div' [ONA 'F8 math|divide Iy Iy !

It is imperative that care be taken when coding type declarations. A DLL cannot check
types of data passed from APL. A wrong type declaration will lead to erroneous results
or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of [INA is:
[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Pathname: APL uses the LoadLibrary () system function under Windows and
dlopen () under UNIX and LINUX to load the DLL. If a full or relative pathname is
omitted, these functions search standard operating system directories in a particular
order. For further details, see the operating system documentation about these
functions.

Alternatively, a full or relative pathname may be supplied in the usual way:
ONA'... c:\mydir\mydll]|foo ..."

Chapter 6 System Functions & Variables 461

Errors: If the specified DLL (or a dependent DLL) fails to load it will generate:
FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it will
generate:

VALUE ERROR

File Extension: Under Windows, if the file extension is omitted, .dll is assumed. Note
that some DLLs are in fact .exe files, and in this case the extension must be specified
explicitly:

ONA'... mydll.exe|foo ...'

Example
ONA'... mydll.exe.P32|foo ...'A 32 bit Pascal

Call by Ordinal Number

Under Windows, a DLL may associate an ordinal number with any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using [NA to call by ordinal number uses the same syntax but with the function
name replaced with its ordinal number. For example:

ONA'... mydlLL]|57 ...'
Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be run
in its own system thread. For example:

ONA'... mydll]|foo& ...'

This means that other APL threads can run concurrently with the one that is calling the
ONA function.

462 Dyalog APL/W Language Reference

Data Type Coding Scheme

The type coding scheme introduced above is of the form:
[direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed below.

Description Symbol Meaning

Direction < Pointer to array input to DLL function.

> Pointer to array output from DLL function

Pointer to input/output array.

Special Null-terminated string.

Byte-counted string

Type int

unsigned int

char

—H|O0o|Cc|H|#®*|O

Classic Edition char: translated to/from ANSI
Unicode Edition char

float

decimal

complex

= |O|™m

uintptr-t (equivalent to U4 on 32-bit Versions and
U8 on 64-bit Versions)

>

APL array

N

APL array with header (as passed to a TCP/IP
socket)

PP Pocket pointer This provides support for direct
access to data in the workspace.

Width 1-byte

2-byte

4-byte

O |FIN|(+—

8-byte

16 16-byte (128-bit)

Array [n] Array of length » elements

[] Array, length determined at call-time

Structure {...} | Structure.

Chapter 6 System Functions & Variables 463

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from JAV.

In the Unicode Edition, C and T are identical (no translation of character data is
performed) except that for C the default width is 1 and for T the default width is "wide"
(2 bytes under Windows, 4 bytes under UNIX).

The use of T with default width is recommended to ensure portability between
Editions.

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a **” or []’ in the argument declaration:

int numl; // value of numl passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in the
ONA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an input
or an output variable. An output variable means that the C function overwrites values at
the supplied address. Because APL is a call-by-value language, and doesn’t have
pointer types, we accommodate this mechanism by distinguishing output variables, and
having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

< indicates that the address of the argument will be used by C as an input variable and
values at the address will not be over-written.

> indicates that C will use the address as an output variable. In this case, APL must
allocate an output array over which C can write values. After the call, this array will
be included in the nested result of the call to the external function.

= indicates that C will use the address for both input and output. In this case, APL
duplicates the argument array into an output buffer whose address is passed to the
external function. As in the case of an output only array, the newly modified copy
will be included in the nested result of the call to the external function.

Examples

<I2 Pointer to 2-byte integer - input to external function
>C Pointer to character output from external function.

= Pointer to character input to and output from function.

= Pointer to APL array modified by function.

464

Dyalog APL/W Language Reference

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <OT[], and an output one coded as >0T[].

Note that while appending the array specifier ‘[]’ is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the ‘[1> may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A, Z
and PP) and widths. For example, in the Classic Edition, <0U2 may be useful for
dealing with Unicode.

Type

The data type of the argument is represented by one of the symbols i, u, c, t, f, a,
which may be specified in lower or upper case:

Type Description
I Integer The value is interpreted as a 2s complement signed integer.
U | Unsigned The value is interpreted as an unsigned integer.

integer

C Character

The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code
point.

In the Classic Edition, the value is interpreted as an index into [JAV.
This means that JAV positions map onto corresponding ANSI
positions.

For example, with JI0=0:
0JAv[35] = 's"', maps to ANST [35] = '

Chapter 6 System Functions & Variables 465

Type Description
T | Translated | The value is interpreted as a character.

character
In the Unicode Edition, the value maps directly onto a Unicode code
point.
In the Classic Edition, the value is translated using standard Dyalog
OAV to ANSI translation. This means that AV characters map onto
corresponding ANSI characters.
For example, with JI0=0:
OAv[35] = 's"', mapsto ANSI[115] = ’s’.

F | Float The value is interpreted as an IEEE 754-2008 binary64 floating
point number.

D | Decimal The value is interpreted as an IEEE 754-2008 decimal128 floating
point number (DPD format).

Complex

P | uintptr-t This is equivalent to U4 on 32-bit versions and U8 on 64-bit
Versions.

A | APL array | A pointer to the whole array (including header information) is
passed. This type is used to communicate with DLL functions which
have been written specifically to work with Dyalog APL. See the
User Guide section on Writing Auxiliary Processors. Note that type
A is always passed as a pointer, so is of the form <A, =A or >A.

Z | APL array | This is the same format as is used to transmit APL arrays over

with TCP/IP Sockets.
header
PP | Pocket Provides direct access to data in the workspace.

Pointer

466 Dyalog APL/W Language Reference

Width
The type specifier may be followed by the width of the value in bytes. For example:
Iy 4-byte signed integer.
u2 2-byte unsigned integer.
F8 8-byte floating point number.
Fl 4-byte floating point number.
D16 16-byte decimal floating-point number
Type Possible values for Width Default value for Width
I 1,2,4,8 4
u 1,2,4,8 4
C 1,2,4 1
T 1,2,4 wide character(see below)
F 4,8 8
D 16 16
J 16 16
P Not applicable
A Not applicable
A Not applicable
PP Not applicable

In the Unicode Edition, the default width is the width of a wide character according to
the convention of the host operating system. This translates to T2 under Windows and

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer

T4 under UNIX or Linux.
results.
Examples
I2 16-bit integer
<I4 Pointer to input 4-byte integer
u Default width unsigned integer.
=Fl

Pointer to input/output 4-byte floating point number.

Chapter 6 System Functions & Variables 467

Arrays

Arrays are specified by following the basic data type with [n] or [], where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.
U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C and
ONA. In C, an argument declaration may be given to receive a pointer to either a single
scalar item, or to the first element of an array. This is because in C, the address of an
array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";
foo (&ch) ; // call with address of scalar.
foo (ptr) ; // call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: '<T"'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]".
Note that it is perfectly acceptable in such circumstances to define more than one name
association to the same DLL function specifying different argument types:

'FooScalar'[ONA'mydll|foo <T' ¢ FooScalar'a'
'FooVector '[INA'mydlLl|foo <T[]' ¢ FooVector'abc'

468

Dyalog APL/W Language Reference

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] means an
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct

{
double £;
short iz
} mystruct;

A function defined to receive a count followed by an input pointer to an array of such
structures:

void foo (unsigned count, mystruct *str);

An appropriate ONA declaration would be:
[ONA'mydlLl.foo U <{F8 I2}[]"

A call on the function with two arguments - a count followed by a vector of structures:
foo 4,c(1.4% 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an 8-
byte float and a 2-byte int, respectively.

Chapter 6 System Functions & Variables 469

Specifying Pointers Explicitly

ONA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun (int wvalu, int *addr);
You might declare and call it:
ONA'mydlLl]|fun I <I' o fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is
if the DLL function requires a null pointer, and the second is where you want to pass
on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass the
pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate [INA definition.

"fun_null'ONA'mydlLl]|fun I P' ¢ fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit
processes, you will ensure that the code will run unchanged under both 32-bit and 63-
bit Versions of Dyalog APL.

470

Dyalog APL/W Language Reference

Using a Function

A DLL function may or may not return a result, and may take zero or more arguments.
This syntax is reflected in the coding of the right argument of [INA. Notice that the
corresponding associated APL function is niladic or monadic (never dyadic), and that it
always returns a vector result - a null one if there is no output from the function. See
Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

[ONA "'mydlLLl]fnt' A Niladic
ONA 'mydll]|fn2 <OT' Monadic - 1-element arg
ONA 'mydlLl]|fn3 =0T <OT' Monadic - 2-element arg

D

DLL function Result-returning:

ONA '"I4% mydlLl]|fn4' A Niladic
ONA 'I4% mydlLl|fn5 F8' A Monadic - 1-element arg
ONA 'I4 mydll|fné >I4[] <OT'm Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the ONA definition. Using the example functions defined
above:

fni A Niladic Function.
fn2, c<'Single String' A 1l-element arg
fn3 'This' 'That' A 2-element arg

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type of
a numeric argument if necessary, so for example in fn5 defined above, a Boolean value
would be converted to double floating point (F8) prior to being passed to the DLL
function.

Chapter 6 System Functions & Variables 47

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer: In this case you must supply the data array itself as argument to the
function. A pointer to its first element is then passed to the DLL function.

fn2 c'hello’

> Output pointer: Here, you must supply the number of elements that the output
will need in order for APL to allocate memory to accommodate the resulting array.

fné 10 'world' @ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause the
interpreter to crash with a System Error (syserr 999 on Windows or SIGSEGV on
Unix).

= Input/Output: As with the input-only case, a pointer to the first element of the
argument is passed to the DLL function. The DLL function then overwrites some or
all of the elements of the array, and the new value is passed back as part of the
result of the call. As with the output pointer case, if the input array were too short,
so that the DLL wrote beyond the end of the array, the interpreter would almost
certainly crash.

fn3 '..... ' 'hello'

472

Dyalog APL/W Language Reference

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first
item of the result is the defined explicit result of the external function, and subsequent
items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an
explicit result) + the number of output or input/output arguments.

ONA Declaration Result Output Result

Arguments Length
mydlLl]|fnil 0 0
mydlLl|fn2 <OT 0 0 0
mydlLl|fn3 =0T <OT 0 10 1
I4 mydll]|fnk 1 1
I4 mydlLl]|fn5 F8 1 0 1
I4 mydll]|fné6 >I4[] <OT 1 10 2

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

pfnd '..... ' 'abc'
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has been
disclosed.

Chapter 6 System Functions & Variables 473

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return
character results have two forms: one Unicode (Wide) and one ANSI. For example, a
function such as MessageBox (), has two forms MessageBoxA () and
MessageBoxW (). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA () for the Classic Edition, but
MessageBoxW () for the Unicode Edition.

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the
Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to ONA), will
be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and complex
data types using its #define and typedef mechanisms. Using such abstractions
enables the C programmer to write code that will be portable across many operating
systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally
refer to the type of function arguments using defined names such as HANDLE or
LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list a// the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to
convert typedefs to primitive C types and thence to ONA declarations. The
documentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their ONA
equivalents might prove useful.

474

Dyalog APL/W Language Reference

Windows typedef ONA equivalent
HWND P

HANDLE P
GLOBALHANDLE P
LOCALHANDLE P

DWORD U4

WORD u2

BYTE Ut

LPSTR =0T[] (note 1)
LPCSTR <0T[] (note2)
WPARAM u

LPARAM Uk
LRESULT Iy

BOOL I

UINT u

ULONG Uk

ATOM u2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P
HPALETTE P
HMETAFILE P

HMODULE P
HINSTANCE P
COLORREF {u1l4]}
POINT {I 1}
POINTS {12 12}
RECT {IIT1I1}
CHAR T or C

Chapter 6 System Functions & Variables 475

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indicate
whether this is input or output, so the safest coding would be =0T [] (providing the
vector you supply for input is long enough to accommodate the result). You may be
able to improve simplicity or performance if the documentation indicates that the
pointer is ‘input only’ (<OT[]) or ‘output only’ (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore coding
<0T[] is safe.

3. Note that the use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width specifier)
implies 1-byte characters which are translated between [JAV and ASCII, while In
the Unicode Edition, T (with no width specifier) implies 2-byte (Unicode)
characters.

Dyalog32.dll or Dyalog64.dl

Included with Dyalog APL are utility DLLs called dyalog32.dll and dyalog64.dll.
These DLLs contain two functions: MEMCPY and STRNCPY.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY (// copy memory
void *to, // target address
void *fm, // source address
size t size // number of bytes to copy

) ;

MEMCPY copies size bytes starting from source address fm, to destination address
to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY’s versatility stems from being able to associate to it using many different type
declarations.

476

Dyalog APL/W Language Reference

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

"doubles' [ONA 'dyalog32|MEMCPY >F8[] Ik U4'
doubles numb addr (numbx8)

Notice that:

As the first argument to doub L es is an output argument, we must supply the number
of elements to reserve for the output data.

MEMCPY is defined to take the number of byfes to copy, so we must multiply the
number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {

int empno; // employee number.
float salary; // salary.
char name[20]; // name.

} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' [ONA 'dyalog32|MEMCPY I4 <{P F4 T[20]} U4
prec addr(99 12345.60 'Charlie Brown
") (4+4+20)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY (// copy null-terminated string
char *to, // target address
char *fm, // source address
size t size // MAX number of chars to copy

) ;i

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination strings
overlap, the result is the first argument.

Chapter 6 System Functions & Variables 477

If the source string is shorter than size, null characters are appended to the
destination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that
contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

‘get '[INA'dyalog32|STRNCPY >0T[] P U4’
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

Note that on a 64-bit Version, [JFR will need to be 1287 for the addition to be
reliable.

To copy data from the workspace info an already allocated (new) structure:

'put 'ONA'dyalog32|STRNCPY I4 <OT[] U4'
put new 'Bo' 20
put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough space
to include the trailing null, which would probably cause the application to fail.

478

Dyalog APL/W Language Reference

Examples

The following examples all use functions from the Microsoft Windows user32.dlL.

This DLL should be located in a standard Windows directory, so you should not
normally need to give the full path name of the library. However if trying these
examples results in the error message ‘FILE ERROR 1 No such file or directory’, you
must locate the DLL and supply the full path name (and possibly extension).

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned inz and is declared as follows:

UINT GetCaretBlinkTime (void) ;

The following statements would provide access to this routine through an APL function
of the same name.

[ONA 'U user32|GetCaretBlinkTime'
GetCaretBlinkTime
530

The following statement would achieve the same thing, but using an APL function
called BLINK.

'"BLINK' [ONA 'U user32|GetCaretBlinkTime'
BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime (UINT) ;

The following statements would provide access to this routine through an APL function
of the same name:

[ONA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

Chapter 6 System Functions & Variables 479

Example 3

The Windows function "MessageBox" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned int.
The second and third arguments are both pointers to null-terminated strings containing
the message to be displayed in the Message Box and the caption to be used in the
window title bar. The 4th argument is an unsigned inf that specifies the Message Box
type. The result is an inf which indicates which of the buttons in the message box the
user has pressed. The function is declared as follows:

int MessageBox (HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of the
same name. Note that the 2nd and 3rd arguments are both coded as input pointers to
type T null-terminated character arrays which ensures portability between Editions.

ONA 'I user32|MessageBoxx P <0T <OT U'

The following statement displays a Message Box with a stop sign icon together with 2
push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0 'Messa