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Abstract. We show that uniform families of ACC circuits of subexponential size cannot compute
the permanent function. This also implies similar lower bounds for certain sets in PP. This is one of
the very few examples of a lower bound in circuit complexity whose proof hinges on the uniformity

condition; it is still unknown if there is any set in Ntime (2n
O(1)

) that does not have nonuniform
ACC circuits.
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1. Introduction. Circuit complexity classes consisting of circuits of constant
depth and polynomial size have been intensely studied in the last decade. The �rst
such class to be studied was AC0, the class of languages accepted by polynomial size,
constant depth circuits consisting of NOT gates and unbounded fan-in AND and OR
gates. Machinery for proving lower bounds for AC0 has been developed in a series
of papers, culminating in the powerful and elegant techniques of [18, 29, 3]. These
papers provide exponential size lower bounds for constant depth circuits computing
the PARITY function. These lower bounds prompted people to look at constant
depth, polynomial size circuits with PARITY gates along with AND, OR and NOT
gates but Razborov [22] proved that these circuits could not compute the MAJORITY
function. Smolensky [25] extended Razborov's method to show that an AC0 circuit
with MODp gates cannot compute the MODq function if p and q are distinct primes.
This implies that no AC0 circuit containingMOD gates for a single prime can compute
the MAJORITY function. Therefore, the next natural extension of the above class
was to allow MODm gates for composite moduli m. This extension is known as the
class ACC, and it was introduced (implicitly) by Barrington in [4]. Though there has
been a fair amount of research on ACC, we still do not know much about this class
except the trivial fact that AC0 ( ACC � NC1 where NC1 is the class of languages
accepted by polynomial size, O(logn) depth circuits with NOT gates and bounded
fan-in AND and OR gates. Barrington [4] has conjectured that ACC ( NC1.

Yao [30] proved the �rst nontrivial upper bounds on the power of ACC circuits,
showing that each set in ACC is accepted by a family of depth three threshold circuits

of size 2(logn)
O(1)

; these bounds were slightly improved by Beigel and Tarui [10]. These
results have been proved for nonuniform ACC. We are, however, interested in the
uniform version of ACC.

A circuit family consists of a sequence of circuits C1; C2; : : :, where circuit Cn

takes n Boolean inputs. The circuit family is uniform if a description of Cn can be
computed e�ciently from n; otherwise the circuit family is said to be nonuniform.
The original motivation for studying uniform circuit families came from a desire to
relate time and space complexity classes to circuit complexity (see, e.g., [11]). Some
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sort of uniformity condition is essential for this endeavor to succeed, since it is an
easy observation that there are sets with trivial circuit complexity that are not even
recursive. The question of exactly which uniformity condition one should use has
proved to be somewhat controversial, and largely it has been a matter of taste. When
providing upper bounds, or when de�ning complexity classes, as a practical matter
it usually makes no di�erence which uniformity condition one uses. For example,
Ruzzo [23] considers a number of related uniformity conditions, and shows that, for
all k � 2, NCk consists of languages de�ned by uniform circuits of polynomial size and
O((logn)k) depth, no matter which of those uniformity conditions is considered. For
very small complexity classes, however, the uniformity condition is sometimes crucial.
For example, P-uniform NC1 circuits are known for division [8], but it remains an
open question whether one can improve this result using a more restrictive uniformity
condition. Similarly, [6] presents a number of beautiful characterizations of subclasses
of NC1 using Dlogtime uniformity, but these characterizations are not believed to hold
if less restrictive uniformity conditions are used. In this paper, we consider uniform
circuits out of necessity. The lower bounds that we present are not known to hold in
the nonuniform setting.

Before we can state our results, we need a few technical de�nitions. We are
interested in two classes of subexponential functions that we call subexp and subsubexp.
Let us call a function f constructible if f(n) = 2g(n), where g(n) can be computed
from n (in binary) in time polynomial in g(n). Let subexp denote the class of all
monotonic functions that are bounded above by some constructible function f such
that 8� > 0; f(n) = o(2n

�

). Let subsubexp denote any class of monotonic functions
closed under composition with polynomials, such that for any two functions f and g

in this class, the composition of f and g is in subexp.

A typical example of a function in subexp is 2n
1= log� n

, and typical choices for

subsubexp are nlog
O(1) n or 2(logn)

O(log log n)

. It is not hard to prove that if s is in

subexp, then so is s(log s)
k

, for any constant k.

In this paper, we provide lower bounds for the classes of languages accepted by
uniform circuit families of ACC circuits of subsubexponential and subexponential
size. Let those classes be denoted by ACC(subexp) and ACC(subsubexp). Formal
de�nitions can be found in Section 2 (De�nition 2.10). For the rest of this section, we
assume that ACC, ACC(subexp) and ACC(subsubexp) denote the uniform versions
of these classes for the notion of uniformity de�ned in Section 2 (De�nition 2.9).
Any other notions of uniformity that we use will be mentioned explicitly. We show
that PERM (the permanent of a matrix) is not in ACC(subexp) and that PP 6�
ACC(subsubexp). We are also able to show that ACC ( C=P and that C=P 6�
ACC(subsubexp). Our main tool in proving these results is the following theorem:

Theorem 1.1. There is a set Y in PP such that ACC(subexp), � Dtime(n2)Y .

Theorem 1.1 trivially gives us an important corollary (which also follows from a
more general lower bound proved in Theorem 3.5 later in the paper):

Corollary 1.2. ACC ( PP.

Proof. Theorem 1.1 implies that ACC � Dtime(n2)Y for some Y 2 PP. Since
ACC � PP, suppose for the sake of contradiction that ACC = PP. Then ACC = P =
PP. Therefore, Dtime(n3)Y � PY �P = ACC �Dtime(n2)Y . But this contradicts
the time hierarchy theorem of [17].

This seems to be one of the very few instances where lower bounds are known for
the uniform circuit complexity of certain languages or functions, but where nothing
is known about the nonuniform circuit complexity. In fact, the only other instance
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that we are aware of is that it is not known if EXPTIME contains sets that are not in
P/poly (the class of languages accepted by nonuniform circuit families of polynomial
size), whereas it does contain sets that are not in P (which is the class of languages
accepted by uniform circuit families of polynomial size). In contrast with our results,
the combinatorial and algebraic techniques developed in [18, 22, 25] make no use
of uniformity, and thus they provide lower bounds on nonuniform circuit size. The
uniformity condition is critical in the proof of Theorem 1.1; it is still unknown if PP
= Dlogspace-uniform ACC. Although Dlogspace-uniform ACC is trivially seen to be
properly contained in PSPACE, it is not known if P-uniform ACC = PSPACE. In

fact, it is even unknown if there is any set in Ntime (2n
O(1)

) that is not accepted by
a nonuniform ACC circuit family.

To prove Theorem 1.1, we will �rst use the results of Toda [26], Yao [30] and
Beigel and Tarui [10] to convert a circuit family in ACC(subexp) into an equivalent
circuit family of depth two circuits with a symmetric gate at level two, AND gates
of small fan-in at level one and the input gates at level zero. However, since we need
the resulting circuit family to be uniform as well, we need to show that the above
conversion process can be done uniformly. We then show that the language recognized
by the new circuit family can be quickly recognized by a deterministic Turing machine
that has access to a particular oracle set in PP. Results about PERM then follow from
Valiant's [27] results about the class #P.

Section 2 presents some basic de�nitions. The following section states Theorem
3.1, which is a uniform version of the main result of [10]. Theorem 3.1 is then used to
prove the main results of the paper. The �nal section of the paper presents conclusions
and open problems.

The proof of Theorem 3.1, which is the longest and most technically-involved part
of the paper is presented in the Appendix. Even though the basic machinery of the
proof was developed in [30, 10], there are many obstacles to overcome to ensure that
one maintains uniformity.

2. Preliminaries. We will assume that the reader is familiar with circuits and
standard complexity classes such as NP, PP, PH, etc., and the various notions of
reducibility.

Definition 2.1. Let m be a positive integer. A MODm gate outputs 1 if the sum
of its (binary) inputs is 0 modulo m; 0, otherwise. That is,

MODm(x1; : : : ; xn) =

�
1 if

P
i xi � 0 (mod m)

0 otherwise.

Definition 2.2. A MAJORITY gate with n inputs outputs 1 if n
2 or more of its

inputs are 1; 0, otherwise. That is,

MAJORITY(x1; : : : ; xn) =

�
1 if

P
i xi �

n
2

0 otherwise.

Definition 2.3. ([21, 4, 7]) A language L is in ACC if there exists a positive
integer m such that L is recognized by a family of constant depth polynomial size
circuits containing NOT gates and unbounded fan-in AND, OR and MODm gates.

ACC was �rst de�ned and studied in [21, 4, 7] under the name ACC0. Barring-
ton and Th�erien showed that ACC is equal to the class of languages recognized by
polynomial length programs over solvable monoids [7]. Razborov [22] and Smolensky
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[25] also studied bounded depth circuits containing AND, OR and MOD gates. Yao's
de�nition of ACC is slightly di�erent from the one given by Barrington et al; it allows
a �xed �nite set S of moduli instead of a single modulus m. It is easy to see that
a MODm gate can simulate a MODk gate for any k that divides m. Letting m be
the least common multiple of the elements in S makes the two de�nitions equivalent.
Yao [30] showed that every language in ACC is recognized by a family of depth two

probabilistic circuits with a symmetric gate at level two and 2(logn)
O(1)

AND gates
having fan-in (logn)O(1) at level one. Beigel and Tarui [10] improved this to show the
existence of deterministic circuit families of this sort.

Definition 2.4. For an NP machine M , let #M be the function #M : �� ! N
de�ned by #M(x) = number of accepting paths of M on input x. Then #P = f#M
: M is an NP machineg.

It is well known from [27] that PERM is complete for #P under polynomial time
many-one reductions (�p

m). (See also [31, 9].)
Definition 2.5. A language L is said to be in PrTime(t(n)) if there exists a

nondeterministic machine M that runs in time t(n) such that for all x 2 ��,
x 2 L() more than half of the computation paths of M on input x are accepting.

Definition 2.6. A language L is said to be in C=Time(t(n)) if there exists a
nondeterministic machine M that runs in time t(n) such that for all x 2 ��,
x 2 L() exactly half of the computation paths of M on input x are accepting.

In particular, for polynomial running times we get the well known classes PP =
PrTime(nO(1)) and C=P = C=Time(nO(1)).

Definition 2.7. Let fCng be a family of circuits. Following [23], we de�ne the
direct connection language L of fCng as:

L = fhn; g1; g2i : g1 = g2 and g1 is a gate in Cn

or g1 6= g2 and g2 is an input to g1 in Cng.
Here g1 and g2 are names of gates and n is in binary notation.

Definition 2.8. A circuit family fCng is dlogtime-uniform if its direct con-
nection language can be recognized in linear time by a deterministic Turing machine.
The Turing machine that recognizes the direct connection language of fCng will be
referred to as the uniformity machine for fCng.

The above notion of uniformity is the one that is generally used for small com-
plexity classes (see [6, 12, 23]). However, we are going to use a slightly less restrictive
notion of uniformity for our results. Our notion of uniformity can be informally re-
ferred to as Polylogtime-uniformity. The reason that we use this notion is that we
are dealing with circuits of possibly superpolynomial size and the proofs are much
simpler with this uniformity condition. It should be noted that a set has uniform
ACC(subexp) circuits with respect to our notion of uniformity if and only if it has
Dlogtime-uniform ACC(subexp) circuits. This can be established by \padding" a
circuit with many dummy gates.

Definition 2.9. A circuit family fCng is uniform if its direct connection lan-
guage can be recognized in polynomial time by a deterministic Turing machine. Note
that the time is polynomial with respect to the length of the strings in the language
(jhn; g1; g2ij) and not merely polynomial in n.

Definition 2.10. Let ACC(s(n)) denote the class of languages accepted by circuit
families of constant depth circuits with NOT gates and unbounded fan-in AND, OR
and MODm gates (for some integer m � 2) of size s(n). Then

ACC(subexp) =
[

s2subexp

ACC(s(n))
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ACC(subsubexp) =
[

s2subsubexp

ACC(s(n))

Throughout the rest of the paper, classes ACC, ACC(subexp) and ACC(subsubexp)
denote uniform circuit classes according to the notion of uniformity in De�nition 2.9
unless the uniformity condition is mentioned explicitly.

3. The main results. For the proof of Theorem 1.1, we will �rst show the
following.

Theorem 3.1. Suppose L is accepted by an ACC(subexp) circuit family. Then
L is accepted by a uniform, depth two circuit family1 of s(n) sized circuits that have
the following properties:

1. Level one consists of a subexponential number of AND gates having fan-in
(log s(n))O(1). Furthermore, given the name of one of these AND gates, the exact
fan-in of this AND gate can be computed deterministically in time (log s(n))O(1).

2. There is a symmetric gate at level two. Furthermore, given the number m

of AND gates that evaluate to one, it can be determined deterministically in time
(log s(n))O(1) if the symmetric gate will evaluate to one.

The above theorem is the most important part of the argument. It is equivalent
to saying that the main theorem of [10] holds also in the setting of uniform circuit
complexity. Unfortunately, transformations that are obvious in the nonuniform set-
ting require considerable care when undertaken in the uniform setting; we present a
complete proof of Theorem 3.1 in the Appendix. The rest of this section assumes that
Theorem 3.1 is true and uses it to prove our main results.

Proof. (of Theorem 1.1) Let fCng be a circuit family in ACC(subexp) that accepts
L. Using the result in Theorem 3.1, we can get a uniform family of circuits fDng
such that for every n, Dn is a deterministic depth two circuit having the properties
mentioned in the statement of Theorem 3.1.

Let ML be a nondeterministic Turing machine that, on input x, guesses the name
of one of the AND gates ofDn (n = jxj) and the names of all the inputs ofDn that are
connected to this gate. It veri�es that the guesses are correct (using the uniformity
machine for fDng). It then accepts if and only if the AND gate evaluates to 1 when
x is the input to Dn. Since fDng is uniform and the AND gates have fan-in o(n�)
(for every �), ML can do this computation in linear time. Note that #ML(x) is the
number of AND gates of Dn that evaluate to 1 on input x.

LetM1;M2; : : : be an enumeration of nondeterministic machines running in linear
time. De�ne the set Y to be fhi; x; li : x 2 f0; 1g� and#Mi(x) > lg. Note that Y
is in PP2. With oracle Y , a deterministic machine (say M ) can compute #ML(x) in
time n2 using the binary search technique. Then, since this is the number of AND
gates of Dn that evaluate to 1 on input x, it can then in linear time determine if Dn

accepts x, using the properties guaranteed by Theorem 3.1. Thus membership of x
in L can be determined in time n2 relative to oracle Y . (Note that the running time

1 This circuit family is not an ACC(subexp) circuit family because the circuits have arbitrary
symmetric gates at their roots. When we say that it is uniform, we are using a slightly di�erent
notion of uniformity which is explained in De�nition A.22.

2 Let M be a nondeterministic machine that is given input hi; x; li. Suppose t(jxj) is the total
number of paths of Mi on input x. The computation of M will have 2t(jxj) paths; the �rst t(jxj) of
those consist of t(jxj)� l trivially accepting and l trivially rejecting paths, and the other t(jxj) paths
will simulate the computation of Mi on x. It is easy to see that hi; x; li 2 Y i� #Mi(x) > l i� more
than half of the paths of M are accepting.
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can actually be brought down to o(n) by modifying the oracle Turing machine model,
but we choose not to do so for the sake of clarity.)

Corollary 3.2. The following statements are true:

1. ACC(subexp) � Dtime(n9)PERM [1] where PERM[1] refers to the case when
only one call is made to PERM.

2. There is a set Z in C=P such that ACC(subexp) � Ntime(n2)Z .

Proof.

1. Let ML and M be the machines from the proof of Theorem 1.1. Note that
if M has access to PERM, it can compute #ML(x) in time n9 with just one call to
PERM because PERM gives the exact number of accepting paths. The bound n9

comes from a na��ve analysis of Valiant's reduction [27] applied to nondeterministic
Turing machines running in linear time.

2. As before, let M1;M2; : : : be an enumeration of nondeterministic Turing ma-
chines running in linear time. Let Z be the set fhi; x; li : x 2 f0; 1g� and#Mi(x) = lg.
It is not hard to see that Z is in C=P (much like Y 2 PP in Theorem 1.1). Let ML

be as above. A nondeterministic machine can compute #ML(x) in time n2 using Z

as an oracle. It guesses a value l for #ML(x) and asks the appropriate query hi; x; li
to Z.

Theorem 3.3. ACC ( C=P.

Proof. Corollary 3.2 implies that ACC � Ntime(n2)Z for a set Z 2 C=P. Since
ACC � C=P, for the sake of contradiction assume that ACC = C=P. Since co-NP �
C=P and ACC is closed under complement, it follows that ACC = P = NP = C=P.
Therefore, Ntime(n3)Z � NPZ � NPACC = NPP = NP = ACC � Ntime(n2)Z , which
contradicts the hierarchy theorem of [15] for nondeterministic time classes.

Theorem 3.4. The permanent function (PERM) does not have ACC(subexp)
circuits.

Proof. Corollary 3.2 states that ACC(subexp)� Dtime(n9)PERM[1]. By the hierar-
chy theorem of [17], we know that Dtime(n9)PERM[1](Dtime(n10)PERM[1]. Suppose
PERM has ACC(subexp) circuits. Let L 2 Dtime(n10)PERM[1] and let M be the ora-
cle machine that accepts L making at most one call to PERM. Let L0 = fhx; zi : M
accepts x if z is used as the answer to the query made by M to PERM on input x g.
Clearly, L0 2 P. Similarly, let L00 = fhx; ii : the ith bit of the query by M on input
x is 1g. Clearly, L00 2 P as well. A careful reading of Valiant's proof [27] reveals that
the membership question for any set in P can be reduced to PERM via uniform AC0

circuits. (In brief, Valiant's reduction takes an input y to a #P function f , builds
a CNF formula � such that f(y) is equal to the number of satisfying assignments
to �, and then builds a weighted graph whose permanent is equal to f(y). It has
been noted before (e.g., in [19]) that � can be built in uniform AC0. An inspection
of Valiant's graph construction shows that the presence or absence of each edge de-
pends only on the presence of a literal in a given clause, and thus can be computed
in uniform AC0.) Therefore, by the hypothesis, P has ACC(subexp) circuits. Now
we can describe an ACC(subexp) circuit family for L. On any input, the query made
to PERM is constructed using the circuits for L00, the circuits for PERM are then
used to get the answer to the query and �nally we use the circuits for L0 to determine
whether x 2 L. Since L0, L00 and PERM all have ACC(subexp) circuit families, the
resulting family for L is also in ACC(subexp). Therefore, using the result in Theorem
1.1, L 2 Dtime(n9)PERM[1] which contradicts the hierarchy theorem of [17] since we
started with an arbitrary L in Dtime(n10)PERM[1].
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Theorem 3.5. PP 6� ACC(subsubexp):
Proof. We claim that if PP � ACC(subsubexp), then PrTime(subsubexp) �

ACC(subexp). To see this, note that if L 2 PrTime(t(n)) for some t 2 subsubexp, then
L0 2 PP, where L0 = fx10t(jxj) : x 2 Lg. Since by assumption L0 2 ACC(subsubexp),
one can build subexponential size circuits for L because the composition of two func-
tions in subsubexp is in subexp. This implies that PrTime(subsubexp) � ACC(subexp).

Note that using the result in Theorem 1.1 and the hierarchy theorem of [17], we
know that there are sets in PPP that are not in ACC(subexp). However, if PP is
contained in ACC(subsubexp), then
PPP � PACC(subsubexp)

� PDtime(subsubexp)

� Dtime(subsubexp)
� PrTime(subsubexp)
� ACC(subexp)

The last step follows from the claim above. Hence, PPP � ACC(subexp), which is a
contradiction, and the theorem follows.

Theorem 3.6 below is stronger than Theorem 3.5; we include both results to
demonstrate the proof technique.

Theorem 3.6. C=P 6� ACC(subsubexp).
Proof. We note, as above, that if C=P � ACC(subsubexp), then ACC(subexp) con-

tains C=Time(subsubexp). We also have that co-C=Time(subsubexp) � ACC(subexp)
since ACC(subexp) is closed under complement.

Using the result in Corollary 3.2 and the hierarchy theorem of [15] for nondeter-
ministic time, we know that there are sets in NPC=P that are not in ACC(subexp). If
C=P � ACC(subsubexp), then
NPC=P � NPACC(subsubexp)

� NPDtime(subsubexp)

� Ntime(subsubexp)
� co-C=Time(subsubexp)
� ACC(subexp)

which is a contradiction.

4. Conclusion. We have shown that uniform ACC circuits of subexponential
size cannot compute the permanent function. We have also proved a somewhat weaker
bound for some sets in PP. The proofs are based on a simulation of ACC given by
Beigel and Tarui in [10]. We have shown how to carry out this simulation in the
uniform setting. Some of the obvious open problems are:

1. Is uniformity really necessary? Our lower bound proofs work only in the
uniform setting. Can we prove a lower bound for the permanent with respect to
nonuniform ACC circuits?

2. How powerful are nonuniform ACC circuits? It is still unknown if Ntime

(2n
O(1)

) contains sets that are not accepted by nonuniform ACC circuit families.
3. The lower bound that we have for PP is not as strong as the one for perma-

nent. Can it be improved? Even though the permanent function seems to provide
more information about the number of accepting paths of NP machines (the perma-
nent gives us all the bits whereas PP only gives us the most signi�cant bit) we still
think that a subexponential lower bound can be proved for PP as well.

The work presented here originally started o� as the study of sets that are immune
to small complexity classes such as AC0 and ACC. An in�nite set L is immune to a
complexity class C if no in�nite subset of L is in C. In [1], we show that PPP contains
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sets that are immune to ACC, and that nonrelativizing proof techniques suitable for
attacking the Dtime vs. Ntime question about exponential time would result from a
proof of existence as well as a proof of nonexistence of sets in NP that are immune to
AC0.

It should be emphasized that our results about the complexity of PERM do not
rely on any unproven complexity-theoretic assumptions. This is in contrast to other
results such as [14], which proves stronger intractability results about PERM under
the hypothesis that the polynomial hierarchy is in�nite.

We conclude with a few remarks about some related work that has been done
recently. In [16], Green, K�obler, Regan, Schwentick and Tor�an have studied the class
of languages that can be recognized in polynomial time with the information about
just one bit from the value of a #P function. They de�ne the class MidBitP and show
that the classes MODkP, for every k, and the class PH are all low for MidBitP. They
have also improved the existing upper bounds for ACC by introducing the idea of
MidBit gates. A MidBit gate over w inputs x1; x2; : : : ; xw is a gate that outputs the
value of the middle bit in the binary representation of the number

Pw

i=1 xi. They show
that every language in ACC can be accepted by a family of depth two deterministic
circuits of size 2(logn)

c

with a MidBit gate at the root and AND gates of fan-in (logn)c

at the second level. It would be interesting to see if our techniques can be used in
this setting to obtain stronger lower bounds.

Barrington has written a very nice article [5] about the power of circuits of con-

stant depth and 2(logn)
O(1)

(quasipolynomial) size. The article surveys many results
that deal with these kinds of circuits and provides an overview of the new complexity
classes that have been introduced. The paper also shows that the notion of unifor-
mity introduced for constant depth circuit families of polynomial size in [6] can be
extended to quasipolynomial size as well. It should be noted that this extended notion
of uniformity coincides with the one that we have used. Independently of our work,
Barrington's paper outlines a proof that shows that the simulation of Beigel and Tarui
[10] is uniform according to this new notion of uniformity; thus [5] may be consulted
for an alternative approach to proving Theorem 3.1. (The proof in [5] leaves many
details to the reader.) In addition, it also shows that the simulation of Green, K�obler,
Regan, Schwentick and Tor�an [16] is uniform under this notion as well.

Acknowledgments. We thank the anonymous referees for suggestions that im-
proved the presentation of these results. We also thank Richard Beigel for suggesting
that our results concerning PP could be extended to C=P.
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A. Appendix. The appendix is devoted to the proof of Theorem 3.1, which can
be regarded as a uniform version of the main theorem of [10]. The de�nitions, lemmas
and theorems presented in this section all lead up to the proof. Since the proof of
Theorem 3.1 is fairly involved, we �rst start with a very high level outline.

Outline: Since our goal in this section is to prove that the construction of [10] can be
done uniformly, it is necessary to prove some preliminary results about uniform con-
stant depth circuits. To that end, we de�ne the notions of \clean" and \nice" circuits,
which are circuits that have certain properties that we �nd essential in presenting our
uniformity results. The proof of Theorem 3.1 consists of a number of transformations
of a circuit. Without loss of generality, we start out with a \nice" circuit family.
After each transformation, we will have a circuit that may not obviously satisfy the
\niceness" condition, but at least satis�es the weaker notion of being \clean". We
show that this clean circuit can then be transformed into a nice circuit of the same
depth, and the process repeats.

The main steps in the transformation are:

1. All the AND and OR gates in the circuits are replaced by constant depth
probabilistic subcircuits. This step removes all the OR gates from the circuits and the
only remaining AND gates have small fan-in. The circuits are probabilistic but the
number of probabilistic bits used in each case is small and is in fact a simple function
of the size of Cn.

2. All the MOD gates in the circuit with composite moduli are replaced with
equivalent subcircuits so that the resultant circuits consist only of MOD gates with
prime moduli.

3. The circuits are now made deterministic by taking separate copies of those
for each setting of the probabilistic bits and connecting all outputs to a MAJORITY
gate.

4. A general technique is used, showing how nice circuits with small fan-in AND
gates can be replaced by equivalent circuits with the same depth, whose outputs are
MOD gates.

5. An induction is begun, where each step reduces the depth of the circuit. At
the beginning of the inductive step, the circuit consists of a symmetric gate on the
output level, where the inputs to the symmetric gate are \nice" ACC circuits with
MODp gates feeding into the symmetric gate. Then, using techniques developed by
Toda [26], Yao [30] and Beigel and Tarui [10], we create an equivalent circuit with a
new symmetric gate that \absorbs" the level of MODp gates; thus the new circuit has
smaller depth.

A.1. Nice Circuits. In this section, we present a series of \niceness" conditions,
and prove that it is no loss of generality to deal only with \nice" circuits.

Definition A.1. A circuit family fCng is well-named if for every n, the name
of the output gate of Cn can be computed from n (in binary) in polynomial time (i.e.,
in (logn)O(1) time).

Definition A.2. A circuit family fCng is said to have the strong connection
property if for all n, for every connection g ! h in Cn, where i is the number such
that g is the ith input to h (assuming lexicographic ordering), it is the case that h
can be computed in polynomial time from hn; g; ii, and additionally, given hn; h; gi,
the number i can be computed in polynomial time. Under the weaker assumption that
this condition holds whenever h is an AND gate then fCng is said to have the strong
connection property for ANDs.
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Definition A.3. A circuit family fCng is said to have small fan-in AND gates
if for every n, the fan-in of each AND gate in Cn is polylogarithmic in the size of
Cn.

Definition A.4. Let C be a circuit and let P be a path in C from the output
gate to an input gate (say t). Let G1; G2; : : : ; Gk be the sequence of the types of gates
occurring on P so that G1 is the type of the output gate of C and Gk is the type of
the gate that t is connected to. Then the sequence (G1; G2; : : : ; Gk) is de�ned as the
signature of the path P .

Definition A.5. The compression of a signature s is the sequence s0 that results
from applying the following operation as many times as possible to s: replace \AND,
AND" by \AND" and replace \OR, OR" by \OR". That is, the compression of s
contains no two adjacent ANDs or ORs.

Definition A.6. A circuit family fCng is clean if

1. It is well-named.
2. It has the strong connection property for ANDs.
3. Every path from an output gate to an input gate in Cn (for every n) has the

same signature. (Note that only constant depth circuit families can be clean, since the
signature does not depend on n:)

Definition A.7. A circuit family fCng of size s(n) is nice if it has the following
properties:

1. It is clean.
2. For every n, the fan-in of every gate g in Cn can be computed from g in time

(log s(n))O(1).
3. For every n, the depth of a gate g in Cn can be computed from g in time

(log s(n))O(1).
4. Each circuit Cn is in tree form (excluding the inputs and negated inputs,

which may fan out to many gates at level 1):
5. It has the strong connection property.
6. For all input lengths n, all the MOD gates in Cn have the same fan-in.

Our main lemma in this section is Lemma A.8, which states that any uniform
ACC(subexp) circuit family can be transformed into an equivalent nice family.

Lemma A.8. Suppose fCng is an ACC(subexp) circuit family. Then there exists
an equivalent nice family fDng of subexponential size. Furthermore,

1. If fCng is clean, then the signature of fDng is the compression of the sig-
nature of fCng.

2. If fCng is clean and has small fan-in AND gates, then fDng has small fan-in
AND gates.

The proof of the above lemma follows from a sequence of lemmas that are pre-
sented below. The proofs of these lemmas make use of a version of the Alternating
Turing Machine (ATM) model of computation. For background on alternation, see
[13]. It should be noted that the model that we use here is somewhat di�erent from
the one de�ned in [13]. Some of the lemmas that follow are similar in 
avor to the
results in [23], in which correspondences between ATMs and uniform circuits were
�rst established; the reader may wish to consult [23].

The following \road map" is intended to explain how the following lemmas com-
bine to prove Lemma A.8:

(i) Lemma A.15: circuit 7! ATM.
(ii) Lemma A.16: ATM 7! clean ATM.
(iii) Lemma A.17: clean ATM 7! nice ATM.
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(iv) Lemma A.18: nice ATM 7! nice circuits.
The transformations in Lemmas A.15, A.17, and A.18 preserve various properties,
such as the property of having small fan-in AND gates.

The existential and universal states in our ATMs behave as usual. Each con-
�guration of an ATM has either zero, one, or two successor con�gurations (i.e., the
fan-out of any node in the computation tree is at most two). We follow the convention
that the ATM is always provided the length of the input (in binary) on the work tape
as part of its initial con�guration on a particular input. This convention has been
introduced to simplify the proof.3 We consider ATMs that access their input only
at the leaves. (That is, the only con�gurations that depend on the input are halting
con�gurations. These are of two types: those that accept if and only if bit i of the
input is 1, and those that accept if and only if the complement of bit i is 1 (for some
i that is recorded on the address tape). The results in [24] show that this convention
can be introduced without loss of generality.)

The MOD states and other aspects of our ATM model are described in the fol-
lowing de�nitions.

Definition A.9. For a modulus m, a MODm con�guration (say �) is the root of
a subtree of associated con�gurations. This tree is called the subtree associated with
� and is represented as T� . We say that � is accepting if and only if the number of
leaves of T� that are accepting is congruent to 0 modulo m. We also use the term
MOD-tree at times to refer to a subtree associated with a MOD con�guration.

Definition A.10. There is said to be an alternation between two con�gurations
�1 and �2 of an ATM if and only if �2 follows from �1 via one step of the ATM and
one of the following conditions hold:

1. �1 is the leaf of a MOD-tree, and �2 is of type 9, 8 or MOD.
2. �1 is of type 9 and �2 is of type 8 or MOD.
3. �1 is of type 8 and �2 is of type 9 or MOD.

Let T denote the computation tree of an ATMM on a particular input. The root of the
tree is said to have alternation depth 1, and a node in the tree labeled by con�guration
�2 with parent labeled by con�guration �1 is de�ned to have alternation depth one
greater than the alternation depth of �1 if there is an alternation between �1 and �2,
and the alternation depth of �2 is equal to that of �1 otherwise. The alternation depth
of a tree is the maximum alternation depth of all nodes in the tree. The alternation
depth of an ATM is the maximum alternation depth of all its alternation trees.

It is necessary for us to de�ne a notion of \clean" ATMs corresponding to our
notion of \clean" circuit families. This is accomplished using the following de�nitions:

Definition A.11. Let � and � be two di�erent con�gurations of an ATM. If �
is reached from � via a path that contains an alternation only in the step at which �

is reached, then � is called a primary descendent of �.
Definition A.12. For a computation path of an ATM on an input, let C1; C2; : : :,

Ck be the sequence of con�gurations such that C1 is the initial con�guration, and Ci+1

is a primary descendent of Ci. The signature of the path is the sequence t1; t2; : : : tk
such that if con�guration Ci is existential (universal, MODm), then ti = OR (AND,
MODm).

Definition A.13. An ATM is clean if every path in every alternation tree of
the ATM on every input has the same signature. (Note that only ATMs making O(1)
alternations can be clean.)

3 It is worthwhile to note that the input length can be computed deterministically in logarithmic
time (see [12]) but this requires multiple accesses to the input along a given computation path.
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Definition A.14. An ATM running in time t(n) has well-behaved universal
con�gurations if each universal con�guration has t(n)O(1) primary descendents, and
given a universal con�guration � and a number i, the ith primary descendent of � can
be computed in time t(n)O(1).

Lemma A.15. Let L � f0; 1g�, let s be a function in subexp, and let L be accepted
by a uniform family fCng of depth d circuits (d = O(1)) of type ACC(s(n)): Then L

is accepted by an ATM M that has existential (9), universal (8) and MOD states (for
the same set of moduli), that runs in time (log s(n))O(1) and has alternation depth
a = O(1). Moreover,

1. If fCng is clean, then the signature of M is the compression of the signature
of fCng.

2. If fCng is clean and has small fan-in AND gates, then M has well-behaved
universal con�gurations.

Proof. Suppose L is accepted by a uniform circuit family fCng. Let U be the
uniformity machine for fCng. M behaves as follows:

On input x, (with n = jxj on the work tape)
(9) guess the name of the output gate (say g) of Cn of length (log s(n))O(1).
Use U to verify that g is indeed a gate in Cn. (I.e., check that U
accepts hn; g; gi.)
(8) gates h of length (log s(n))O(1) check that U rejects hn; h; gi
(so that g is indeed the output gate).
Call Eval(g).

Eval(g)
If g is an OR gate then

(9) guess h (an input to g) of length (log s(n))O(1).
If U rejects hn; g; hi then reject
else call Eval(h).

If g is an AND gate then
(8) guess h (an input to g) of length (log s(n))O(1).
If U rejects hn; g; hi then accept
else call Eval(h).

If g is a MODm gate then
Switch to a MODm con�guration.
(9) guess h (an input to g) of length (log s(n))O(1).

(This is the subtree associated with the MODm con�guration.)
If U rejects hn; g; hi then reject
else call Eval(h).

If g is a constant gate then
Accept i� g is the constant 1 gate.

If g is an input gate then
Accept i� the corresponding input is 1.

end (Eval).

It is fairly obvious that M accepts x i� Cjxj evaluates to 1 on input x. Note that
M consults its input only at the leaves. It is clear that M makes a constant number
of alternations and runs in time (log s(n))O(1). Indeed, the most time-consuming part
of the simulation involves running the uniformity machine U . The constructibility
conditions on s are also essential here.
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If fCng is clean, then it is well-named, and thus the name of the output gate
g can be computed deterministically. Also, since all circuits in fCng have the same
signature, each output gate is of the same type. If the type of the output gate
is MODm, for instance, we can avoid the extra two levels of alternation caused by
the processing outside the routine Eval, by starting out in a MODm con�guration,
deterministically computing g, existentially guessing h, rejecting if U rejects hn; g; hi,
and otherwise proceeding to Eval(h). The case when the output gate is an AND or
OR gate is handled similarly. Thus if fCng is clean, the signature of M can easily be
seen to be the compression of the signature of fCng.

If fCng has the strong connection property for ANDs and all AND gates have
fan-in (log s(n))c, then instead of universally guessing an input h to an AND gate g,
universally guess a number i � (log s(n))c and deterministically compute the name of
the gate h. If M is simulating r consecutive levels of AND gates of Cn, it is not hard
to see that each universal con�guration of M will have at most (log s(n))rc primary
descendents, and M thus has well-behaved universal con�gurations.

The other claims of the Lemma are easily seen to hold.

Lemma A.15 does not guarantee the existence of a clean ATM accepting a lan-
guage when the given circuit family is not already clean. This is remedied by the
following lemma.

Lemma A.16. If L is accepted by an ATM M that makes a constant number of
alternations between MODm1 ;MODm2 ; : : : ;MODmk ; 9 and 8 states and runs in time
t(n) then L is accepted by a clean ATM N running in O(t(n)) time with a constant
number of alternations between MODm1 ;MODm2 ; : : : ;MODmk ; 9 and 8 states.

Proof. Suppose M makes at most � alternations on any input. Then N has the
sequence MODm1 , MODm2 , : : :, MODmk , 9; 8 (repeated � times) hardwired into its
�nite control. N simply simulates M but follows the signature in its �nite control. If
N is trying to simulate a move that does not involve an alternation or that involves
moving into a state that has the same type as the next type in its signature, it simply
proceeds with the simulation and behaves exactly as M does. In the case of a type
mismatch, N behaves as follows:

1. If the next state in the sequence is universal (existential), then it executes
a one-ary universal (existential) branch and continues the simulation. (Note that
amounts to adding a \dummy" node in the alternating tree.)

2. If the next state in the sequence is a MODm state for somem, then it executes
a m-way MODm branch. It trivially accepts along m� 1 of these branches (following
the signature) and continues the simulation on the remaining one.

It is fairly obvious that N is clean and for every x, N accepts x i� M accepts x.

Our main reason for introducing the ATM model is the following lemma, which
enables us to construct \nice" circuits.

Lemma A.17. Let 2t(n) be constructible, and suppose L is accepted by a clean
ATM M running in time t(n). Then L is accepted by a clean ATM N with the same
signature (and hence with the same alternation depth) that runs in time t(n)O(1) and
also has the following properties:

1. Given a con�guration � on an input of length n, the number of primary
descendents of � is computable from � in time t(n)O(1).

2. Given a con�guration � on an input of length n, the alternation depth of �
is computable from � in time t(n)O(1).

3. Given a con�guration � and number i � the number of primary descendents
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of �, the ith primary descendent of � (under the usual lexicographic ordering) can be
computed in time time t(n)O(1) from the encoding of �.

4. All the MOD con�gurations in the computation tree have the same number
of primary descendents.

5. IfM has well-behaved universal con�gurations, then N also has this property.
Proof. The proof is very similar to the proof of Lemma A.15. We will need to

settle on some convention of encoding paths in an alternation tree, with the property
that for every path of length i � t(n) in an alternation tree, there is exactly one
string of length 2 �t(n) that denotes that path. This can easily be accomplished by
encoding sequences in fleft, right, stopg� in the obvious way; note that there will be
many strings that do not correspond to any path in the tree. Similarly, pick some
encoding of con�gurations of M so that any con�guration � of M on inputs of length
n has a unique encoding using c�t(n) bits (for some constant c). Again, many strings
of length c�t(n) will not correspond to any con�guration of M .

N will begin its computation on x by �rst computing (deterministically) t(n).
(Note that this can be done regardless of whether the initial con�guration of N is
existential, universal, or MODm.) If M has well-behaved universal con�gurations,
then let I(n) = b log t(n) for some constant b; otherwise let I(n) = t(n). (Note that
the decision of which value to use for I(n) can be encoded in the �nite control of N .)
Then N will set � to be equal to the initial con�guration of M , and run the routine
Eval(�).

Eval(�)
If � is an existential or MODm non-halting con�guration then

existentially guess strings w of length 2�t(n) and � of length c�t(n).
If w encodes a path from � to con�guration � , where the last step
in the path involves an alternation (so � is a primary descendent of �)

then enter a con�guration of the same type as � and call Eval(� )
else call Trivial(reject)

If � is a universal non-halting con�guration then there are two cases:
(1) We are simulating a machine M with well-behaved universal
con�gurations.

Universally guess i � b log t(n). Let � be the ith primary descendent
of �. Call Eval(� ).
(If there is no such � , then call Trivial(accept).)

(2) Otherwise.
Universally guess strings w of length 2�t(n) and � of length c�t(n).
If w encodes a path from � to con�guration � , where the last step in
the path involves an alternation (so � is a primary descendent of �)

then enter a con�guration of the same type as � and call Eval(� )
else call Trivial(accept)

If � is a halting con�guration, then
Accept i� � is accepting. (Note that this may involve accessing the input,
if � depends on input bit i for some i.)

end (Eval).
The routine Trivial(d) (for d 2 faccept, rejectg) used in the routine Eval is a

simple routine that depends on the number of alternations executed thus far by N in
its simulation of M . If the next step in the signature calls for computation of type 9
(8), then N executes a 2(c+2)t(n)-way existential (universal) branch, all of which in turn
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call Trivial(d). If the next step in the signature calls for computation of type MODm,
and d = accept (respectively, d = reject), then N enters a MODm state, executes a
2(c+2)t(n)-way existential branch all of which call Trivial(reject) (respectively, the �rst
of which calls Trivial(accept) and the rest of which call Trivial(reject)).

Machine N uses its worktape to record the path in the alternation tree leading
to the current con�guration. Thus no con�guration of N will label two distinct nodes
in the alternation tree.

Let us now verify the various properties claimed in the statement of the lemma.
Given � a con�guration of N , one can trace through the path in the alternation

tree leading to � (since this information is recorded in �). This allows one to compute
the alternation depth of �, as well as to �nd the con�guration � reached after the
last alternation on this path, and compute the number j of moves with fan-out 2 that
have occurred along this path between � and �. If � is an 9 or MOD con�guration,
the number of primary descendents of � is 2(c+2)t(n)�j. If � is a 8 con�guration, then
this number is 2(c+2)I(n)�j. In the particular case that � is a MOD con�guration,
note that j = 0; thus all the MOD con�gurations have the same number of primary
descendents. Furthermore, if �0 is the ith primary descendent of �, then the number i
is encoded in (c+ 2)t(n)� j consecutive positions in the bit string encoding the path
leading to �0, thus enabling us to compute �0 given hn; �; ii. The other claims of the
lemma are easy to verify.

Lemma A.18. Let L be accepted by an ATM M satisfying the conditions of
Lemma A.17, running in time t(n). Then there is a nice ACC(2O(t(n))) circuit family
fCng accepting L, such that the signature of fCng is the same as the signature of M .
Furthermore, if M has well-behaved universal con�gurations, then fCng has small
fan-in AND gates.

Proof. The proof of this lemma is by a standard simulation of the sort introduced
by [23]. The output gate of Cn will be labeled by the initial con�guration of N on
an input of length n (i.e., with n recorded on the worktape, as per the conventions
of our ATM model). The inputs to any gate labeled with con�guration � will be all
of the primary descendents of �. Universal con�gurations are represented by AND
gates, existential con�gurations by OR gates, and MODm con�gurations by MODm

gates. Halting con�gurations are either constant 1 or 0 gates (if they do not depend
on the input) or are input gates connected to (negated) input i (if they access input
bit i).

It is easily veri�ed that fCng satis�es the requirements of the lemma.
Proof. (of Lemma A.8) This follows immediately from Lemmas A.15, A.16, A.17

and A.18.

A.2. Transformations on Circuits. In this section we prove a general lemma,
enabling us to replace gates by equivalent subcircuits. (This, of course, is completely
obvious in the nonuniform setting. However, in the uniform setting, where we need
the additional property that the fan-in of a circuit be easy to compute, we need all of
the \niceness" conditions guaranteed by the preceding section.) Then we apply this
lemma to remove OR gates, large fan-in AND gates, and composite MOD gates from
ACC circuits.

Definition A.19. Suppose G is a particular type of gate. Let fGrg denote a
family of gates such that the gate Gr is of type G and takes r inputs. Let fErg be a
family of subcircuits so that for every r, Er takes r inputs and has a single output.
We will assume an ordering on the inputs of Gr and Er and let x1; x2; : : : ; xr denote
the inputs to Gr and y1; y2; : : : ; yr denote the inputs to Er. We say that Er replaces
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Gr in a circuit C if we remove Gr from C and put Er in its place in such a way that
the output gate of Er is connected to exactly the gates that Gr is connected to in C,
and the inputs to Gr now become inputs to Er so that for all i, 1 � i � r, xi = yi. In
general, when we talk about replacing a gate type G in a circuit, we will mean that all
occurrences of G in the circuit are replaced simultaneously.

Lemma A.20. Suppose fCng and fErg are nice circuit families. Let G denote a
particular type of gate used in the circuits of fCng. For every n, let fDng denote the
circuit family obtained by replacing all occurrences of G (of the form Gr for various
r) by a subcircuit Er. Then the circuit family fDng is clean.

Proof. It is clear that fDng is well-named and that every path from output to
input has the same signature. Thus we need only show that fDng is uniform and has
the strong connection property.

Consider the transformation from Cn to Dn for a particular value of n. Let g
(with fan-in r) be an instance of G in Cn and let Er be the subcircuit that replaces
g. Suppose Er consists of the gates h0; h1; : : : ; hs where h0 is the output gate of Er.
The names of these gates in the new circuit Dn will be g#hi, for 0 � i � s. Let L0 be
the direct connection language for fCng, L1 for fErg and L for fDng. Similarly, let
f0, f1, and f be the functions that, given hn; g; hi, compute the number i such that
h is the ith input to g in Cn, En and Dn, respectively, and let f 00; f

0
1 and f 0 be the

related functions that compute h given hn; g; ii. To accept L, and to compute f , one
has to consider the following cases:

1. Strings of the form hn; g; hi where neither g nor h are of type G. In this case
hn; g; hi 2 L() hn; g; hi 2 L0. Also, f(n; g; h) = f0(n; g; h).

2. Strings of the form hn; g#h; g#hi. This is done as follows:
a. Check that hn; g; gi 2 L0 and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that hr; h; hi 2 L1.

3. Strings of the form hn; g#h; g#h0i with h 6= h0. This is done as follows:
a. Check that hn; g; gi 2 L0 and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that hr; h; h0i 2 L1.
d. Note that f(n; g#h; g#h0) = f1(n; g#h; g#h0).

4. Strings of the form hn; g0; g#h0i where G is not the type of g0. This is done
as follows:
a. Check that hn; g0; g0i and hn; g; gi 2 L0, and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that hr; h0; h0i 2 L1 (h0 is the output gate of Er).
d. Check that hn; g0; gi 2 L0.
e. Note that f(n; g0; g#h0) = f0(n; g

0; g).
5. Strings of the form hn; g#h; g0i, where G is not the type of g0. This is done

as follows:
a. Check that hn; g; gi and hn; g0; g0i are in L0, where g has type G.
b. Check that hn; g; g0i 2 L0.
c. Compute the fan-in r of g from its description.
d. Check that hr; h; hi 2 L1.
e. Compute the number j such that g0 is the jth input to g (using the

strong connection property).
f. Let x1; x2; : : : ; xr denote the inputs to Er. Check that hr; h; xji 2 L1.
g. Note that f(n; g#h; g0) = j.
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6. Strings of the form hn; g0#h; g#h0i where both g and g0 are of type G.
a. Check that hn; g; gi and hn; g0; g0i are in L0.
b. Compute the fan-in r of g and check that h0 is the output gate of Er.
c. Compute the fan-in r0 of g0 and check that hr0; h; hi 2 L1.
d. As in the previous case, check that g is the jth input to g0 and that h is

connected to input j of Er0 .
It is not hard to see that all the above cases can be checked within the required

time bounds and hence the new circuit family fDng is uniform as well.
A similar analysis shows that f 0 can also be computed in time polynomial in the

length of its input, and thus fDng has the strong connection property.
Lemma A.21. Suppose L is accepted by an ACC(subexp) family fCng. Then L

is accepted by a nice probabilistic ACC(subexp) circuit family fDng
4 such that

1. fDng has no MODm gates for composite modulus m.
2. fDng has small fan-in AND gates.
3. For every n, the number of probabilistic inputs in Dn is polylogarithmic in

the size of Dn.
Proof. By Lemma A.8, we may assume that fCng is nice.
Let n be �xed. The transformation Cn ! Dn is carried out by performing the

following sequence of steps:
1. By a construction in the proof of Lemma 13 in [2], one can replace the AND

and OR gates in the circuit by nice depth 6 probabilistic circuits with MOD2

gates and small fan-in AND gates. (This construction is based on an idea
of Valiant and Vazirani in [28]; similar constructions may be found in work
by Toda [26] and Kannan, Venkateswaran, Vinay and Yao [20].) The size of
the new circuit is only polynomially more than that of the old one. If the
AND or OR gate being replaced has r inputs, then the probabilistic circuit
that replaces it uses O((log r)3) random bits. The probabilistic circuits have
the property that the probability of error for the whole circuit is less than
1
4 after all the AND and OR gates have been replaced by these probabilistic
circuits, even when the same O((log s(n))3) probabilistic bits are fed into
the probabilistic inputs of each of these subcircuits. (Even though Allender
and Hertrampf discuss space uniformity, it is clear from their proof that the
probabilistic circuits are uniform even in our sense of uniformity.) We can now
apply Lemma A.20 to prove that the new circuit family (now probabilistic)
is clean, and thus by Lemma A.8 there is an equivalent nice circuit family
fC1

ng. Note that fC
1
ng has small fan-in AND gates and has no OR gates.

2. Suppose the circuit C1
n contains a MODm gate (call it G) where m is com-

posite. Let

m =
tY

i=1

aeii

where ai < ai+1 for all i such that 1 � i � t � 1 and for all i, 1 � i � t,
ai is prime and ei > 0. We use the elementary fact that x � 0 (mod m)
() x � 0 (mod aeii ) for all i, 1 � i � t to change G into an AND of
MODa

ei
i
's. Suppose G has r inputs. For each m, the subcircuit family fErg

4 Note that the circuits in fDng are probabilistic and hence also have probabilistic inputs, but
when we say Dn we mean the circuit that has n nonprobabilistic inputs. We follow this convention
because the proof shows how to convert Cn into Dn for every n.
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that replaces the MODm gates is easily seen to be nice. The subcircuit Er

has depth two, with an AND gate at the top level and MODa
ei
i
gates at the

bottom level for all i, 1 � i � t. The top level AND gate has fan-in t and is
connected to each of the MOD gates at the second level. All the MOD gates
at the second level have fan-in r and are all connected to each of the inputs of
the gate G. We can now use the result of Lemma A.20 to conclude that the
new circuit family is clean. Moreover, the family contains MOD gates with
only prime power moduli. The subcircuit Er, other than its input gates, con-
tains only a constant number of gates that depends on m. Since the original
circuit family fCng only has MOD gates for a �xed set of moduli, the size
of the circuit after this step goes up by at most a constant factor. We again
use Lemma A.8 to get a nice family of probabilistic circuits fC2

ng that has no
composite MOD gates, no OR gates, and small fan-in AND gates.

3. This step eliminates all the MOD gates that have moduli of the form pe where
p is prime and e > 1 from C2

n and replaces them with subcircuits consisting
of AND and MODp gates. Suppose C2

n contains a MODpe gate G for some
prime p and e > 1. This step uses the following result (for references, see e.g.,
[10]):

x is congruent to 0 (mod pe) if and only if each of x;
�
x

p

�
;
�
x

p2

�
;

: : : ,
�

x
pe�1

�
are congruent to 0 (mod p). If x =

Pr

i=1 xi, then for
1 � j � e � 1:

�
x

pj

�
=
�
x1+x2+���+xr

pj

�
=

X
S� f1;2;:::;rg;jSj=pj

^
k2S

xk:

The subcircuit that replaces G is a three level subcircuit that is described as
follows:
(a) The top level consists of an AND gate that has fan-in e.
(b) The middle level consists of eMODp gates and each of those is connected

to the top level AND gate. For all j, 0 � j � e� 1, the jth MODp gate
outputs 1 if and only if

�
x

pj

�
� 0 (mod p). If G has fan-in r, then the

jth MODp gate at this level has fan-in
�
r

pj

�
, one corresponding to each

subset of the inputs of size pj .
(c) The bottom level consists of

Pe�1
j=1

�
r
pj

�
AND gates divided into e � 1

groups. For all j, 1 � j � e� 1, the jth group consists of
�
r

pj

�
AND

gates, one corresponding to each subset of the inputs of size pj. The
inputs to a particular gate in the jth group are the pj inputs in the
subset to which it corresponds and it fans out to the jth MODp gate
at the middle level. Note that all the AND gates introduced here have
constant fan-in.

It is not hard to see that the subcircuit family described above is nice for
every prime power pe. (The only point that is not completely obvious is
checking that the strong connection property holds, but this is straightforward
to verify.) Using Lemma A.20 we can now replace every MOD gate with a
prime power modulus with a subcircuit that consists only of MOD gates with
prime moduli and we now get a clean circuit family that only has AND gates
and MOD gates with prime moduli. The size of the subcircuit that replaces a
MODpe gate is O(

Pe�1
j=1

�
r

pj

�
) which is a polynomial in the size of the circuit

C2
n, and thus the new circuit family also has subexponential size. The proof
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is completed by appeal to Lemma A.8.
.

A.3. Circuits with Symmetric Gates. In order to prove Theorem 3.1 we need
to show how to convert an ACC(subexp) circuit family into a uniform deterministic
depth two circuit family that has a symmetric gate at the root and AND gates of
small fan-in at the bottom level. So far we have only dealt with ACC type circuits.
To proceed, we need to deal with circuits that have arbitrary symmetric gates (but
only at the root). However, since most of the results proved so far only deal with
uniform ACC type circuits, we need to expand the notion of uniformity a little so
that the results can also be used with circuits that have arbitrary symmetric gates at
the root. The new notion of uniformity is explained in the following de�nition:

Definition A.22. Let f : N ! N be a function. Then fCn;t : n 2 N, 1 � t �
f(n)g is a uniform family of ACC sequences if there is a constant d and a �nite set S
such that for all n and for all t, Cn;t is a circuit of depth d taking inputs from the set
fx1; x2; : : : ; xng and having AND, OR and MODm gates (for m 2 S) and the direct
connection language de�ned as

fhn; t; g1; g2i : g1 = g2 and g1 is a gate in Cn;t

or g1 6= g2 and g2 is an input to g1 in Cn;tg
can be recognized in polynomial time. A uniform family of ACC sequences fCn;t : n 2
N, 1 � t � f(n)g together with a function SYM : N�N ! f0; 1g, de�nes a uniform
SYMACC circuit family fDng such that for every n,

1. Dn is a circuit with a symmetric gate at the output level that computes
SYM(n; i) where i is the number of its inputs that evaluate to 1.

2. The symmetric gate has fan-in f(n) and the output gates of Cn;t, 1 � t �
f(n), are connected to it.

3. Given n and i, f(n) and SYM(n; i) can be computed in time polylogarithmic
in the size of Dn.

Note that the results proved so far also hold with this new notion of uniformity. In
particular, letting f(n) = 1 for all n and letting SYM be the identity function reduces
this to the old notion of uniformity. Also, we will use the fact that Lemma A.8 also
holds in this new setting. That is, given a uniform clean family of ACC sequences,
there is an equivalent nice family of ACC sequences with the same signature and
of approximately the same size. (In proving the analog of Lemma A.8 in this new
setting, the index t of circuit Cn;t would be provided to the ATM as an additional
parameter on the worktape, along with n.)

Lemma A.23. Let L be accepted by an ACC(subexp) circuit family fCng. Then
there is a constructible subexponential function s and there is a constant c such that
L is accepted by a deterministic circuit family fDng where for every n, Dn has a
MAJORITY gate at the root, connected to the output gates of Cn;t, 1 � t � 2(log s(n))

c

where fCn;t : n 2 N, 1 � t � 2(log s(n))
c

g is a uniform family of ACC sequences with
small fan-in AND gates, no OR gates, and no MODm gates for composite m.

Proof. By Lemma A.21, if L is accepted by an ACC(subexp) circuit family, then
L is accepted by a nice ACC(subexp) family of probabilistic circuits with small fan-
in AND gates, no OR gates, and no MODm gates for composite m, using at most
(log s(n))c probabilistic bits (for some constant c), where s(n) bounds the size of Cn.

Now construct the sequence of circuits fCn;tg where t is a bit string of length
(log s(n))c. The gates in fCn;tg will have names of the form ht; gi where g is a gate
in Cn, and the connections among all gates are the same, except that if gate g in Cn

is connected to probabilistic bit number j, then gate ht; gi will be connected to the
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jth bit of t. (i.e., the new circuit sequence consists of identical copies of Cn, with
particular choices of probabilistic bits hardwired in.)

Let Dn consist of a MAJORITY gate with inputs from the various Cn;t. It is
clear that the new circuit accepts the same language as fCng. The size of Dn is
O(s(n)2(log s(n))

c

) which is subexponential. It is immediate that the other required
properties also hold.

The following lemma shows how one can in e�ect \push" an AND gate below a
level of MOD gates (much as multiplication distributes over addition).

Lemma A.24. Let fCn;tg be a nice family of ACC sequences of subexponential
size, having small fan-in AND gates, no OR gates, and no MODm gates where m is
composite, where the output gate of each circuit is an AND gate, and the inputs to that
AND gate are MODp gates. Then there is an equivalent nice sequence fDn;tg with the
same depth, also of subexponential size with small fan-in AND gates, no OR gates,
and no MODm gates where m is composite, where the output gate of each circuit is a
MODp gate, and the inputs to that MODp gate are AND gates.

Proof. Our proof again follows the outline given in [10] (see also [2, 20]), where
we must be careful to see that the transformation can be done uniformly.

Suppose G is an AND gate (the output gate of some Cn;t that has r MODp gates
G1; G2; : : : ; Gr as inputs). Note that r is polylogarithmic in s(n), where s(n) bounds
the size of Cn;t. Since the sequence Cn;t is nice, all the MODp gates G1; G2; : : : ; Gr

have the same fan-in. Let this fan-in be denoted by n0 and let fxijg, 1 � j � n0
denote the set of inputs to Gi. Finally, let xi =

P
1�j�n0

xij. Consider the AND of
G1; G2; : : : ; Gr. By Fermat's Little Theorem, for 1 � i � r,

1� xi
p�1 �

�
0 (mod p) if xi 6� 0 (mod p)
1 (mod p) otherwise

Therefore,

r̂

i=1

[xi � 0 (mod p)]() 1�
rY

i=1

(1� xi
p�1) � 0 (mod p)

Note that 1�
rY

i=1

(1 � xi
p�1) is a polynomial of degree r(p � 1) in the variables xij,

1 � i � r, 1 � j � n0. Let [r] denote the set f1; 2; : : :; rg.

1�
rY

i=1

(1� xi
p�1) = 1� (

rY
i=1

(1� (
n0X
j=1

xij)
p�1))

=
rX

k=1

X
I�[r];jIj=k

(�1)k�1
Y
i2I

(

n0X
j=1

xij)
p�1

=
rX

k=1

(�1)k�1
X

I�[r];jIj=k

Y
i2I

(
n0X
j=1

xij)
p�1

=
rX

k=1

(�1)k�1
X

I�[r];jIj=k

Y
i2I

X
Ji=hji;1 ;ji;2;:::;ji;p�1 i2[n0]p�1

p�1Y
l=1

xiji;l

=
rX

k=1

(�1)k�1
X

I�[r];I=fi1;i2;:::;ikg

X
Ji1 ;Ji2 ;:::;Jik

kY
s=1

p�1Y
l=1

xisjis;l (�)
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This expression can be realized by a MODp gate (call it g) with AND gates of fan-
in at most r(p � 1) as inputs. Since r is (log s(n))O(1), the fan-in of these AND
gates is also polylogarithmic in s(n). The only thing we need to take care of are
the negative coe�cients in the above expression. That is done by multiplying5 the
negative coe�cients by (1 � p). The expression is changed slightly and the term
(�1)k�1 is replaced by ck where ck = 1 if k is even and ck = p�1 if k is odd. Now we
interpret scalar multiplication as repeated addition and the multiplication of variables
is realized by AND gates. From the expression (�), it is not hard to see that the
number of AND gates that are input to the new MODp gate g is

Pr

k=1 ck
�
r

k

�
(np�10 )k.

Note that since r is polylogarithmic in s(n), this expression (i.e., the fan-in of the new
MOD gate) can be computed in time (log s(n))O(1) from hG;G1; : : : ; Gri.

To show that this step can be done uniformly, we must show how the new gates
created in this step should be named so that the direct connection language of the new
circuit family can be recognized within the required time bound. The name of the new
MODp gate is g = hG#hG1; G2; : : : ; Gri;MODpi. Looking at the expression (�), it is
clear that a typical AND gate has k(p�1) inputs where 1 � k � r. The k(p�1) inputs
can be divided up into k groups of size (p�1) each. Every group represents a distinct
gate in the set fG1; G2; : : : ; Grg. The (p�1) inputs in a particular group (representing
say Gi) are simply some of the input gates to Gi (with repetitions allowed) in Cn;t.
Depending on the value of ck, such an AND gate either appears once or (p�1) times.
The name of such an AND gate is hG#hhH1#L1i; hH2#L2i; : : : ; hHk#Lkii#m;ANDi
where H1;H2; : : : ;Hk are distinct gates from the set fG1; G2; : : : ; Grg and each Li,
1 � i � k is a list of (p � 1) of the gates that are input to Hi in the original circuit.
Note that Li is allowed to have repetitions. The number m is either 0 (indicating
only one copy of the gate; this will be the case if k is even) or between 1 and (p� 1)
and is used for indexing the (p � 1) di�erent copies.

We now show how to recognize the direct connection language for the new circuit
family that we get after applying this transformation. Let L0 be the direct connec-
tion language before the step and L the one after the step. Note that the strings
in L conform to the naming scheme discussed above. The following cases must be
considered:

1. Let g be a new6 gate. To check if hn; t; g; gi 2 L, we have the following two
subcases:
(a) g is a new MODp gate of the form hG#hG1; G2; : : : ; Gri;MODpi. We

do the following:
i. check that G is the output gate of Cn;t. (This can be done because
the circuits are well-named.)

ii. check that hn; t;G;Gii 2 L0 for all i, 1 � i � r, where r is the fan-in
of G. (Recall that r can be computed from G, by one of the niceness
properties.)

(b) g is a new AND gate of the form

hG#hhH1#L1i; hH2#L2i; : : : ; hHk#Lkii#m;ANDi:

We do the following:
i. check that G is the output gate of Cn;t.
ii. verify that H1;H2; : : : ;Hk are all distinct.
iii. check that for all i, 1 � i � k, hn; t;G;Hii 2 L0.

5 Note that this does not change the value of the expression mod p.
6 The word \new" will hereafter be used to refer to gates that were created in the current step.
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iv. check that m has the right value based on the parity of k.
v. For all i, 1 � i � k, verify that Li is indeed a list of (p � 1) gates

that are all input to Hi.
2. Let g1 be an old gate and g2 a new gate. Then hn; t; g1; g2i 62 L.
3. Let g1 be a new gate and g2 an old gate. The only way for hn; t; g1; g2i 2 L

to hold is that g1 is a new AND gate created in this step.
Hence g1 has the form hG#hhH1#L1i; hH2#L2i; : : : ; hHk#Lkii#m;ANDi.
We do the following to check if hn; t; g1; g2i 2 L:
(a) check that hn; t; g1; g1i 2 L.
(b) check that hn; t; g2; g2i 2 L0.
(c) verify that 9 i, 1 � i � k, such that g2 belongs to the list of gates Li.

4. Let g1 and g2 both be new gates. The only way for g2 to be an input to g1 is
if

g1 = hG#hG1; G2; : : : ; Gri;MODpi and
g2 = hG#hhH1#L1i; hH2#L2i; : : : ; hHk#Lkii#m;ANDi

where fH1; : : : ;Hkg � fG1; : : : ; Grg. This is obviously easy to check.

The only remaining property that needs to be checked is the strong connection prop-
erty for ANDs. However this is immediate using the naming system that we use, since
the name of each new AND gate explicitly lists the names of each of its inputs.

Let us now consider the size of the new circuit after a single level of AND gates has
been pushed below a level of MOD gates. The increase in size comes mainly because
of all the new AND gates that get created. For a circuit of size s, the number of new
AND gates created to change an AND of rMODp gates is �

Pr

k=1 ck
�
r

k

�
s(p�1)k � (p�

1)2rs(p�1)r. Therefore, the overall size of the new circuit is at most O(2rs(p�1)r+1).
Since s is subexponential and r is polylogarithmic in s, the size of the new circuits is
still subexponential.

Note that this step does not preserve the tree structure of the circuit so we use
Lemma A.8 to produce an equivalent nice circuit sequence.

Lemma A.25. Let L be accepted by a uniform nice SYMACC circuit family fCng
of subexponential size, with small fan-in AND gates, no OR gates, and no MODm

gates for composite m, such that each path from the output gate to an input passes
through k � 1 MOD gates. Then there is an equivalent SYMACC circuit family fDng
satisfying the same conditions, such that each path from the output gate to an input
gate passes through k � 1 MOD gates.

Proof. Our proof follows the outline in [10], using techniques developed in [30, 26].

Let L and fCng be as in the statement of the lemma, where the output gate
of Cn computes the function A(n; �), where � is the number of elements of fCn;i :
1 � i � f(n)g that evaluate to 1. By Lemma A.24, we may assume without loss of
generality that the output of each circuit Cn;i is a MODp gate. Since fCng is nice,
for each n there is some n0 so that each MODp gate in Cn;t has fan-in n0 (where n0
can be computed in (log s(n))O(1) time from n). For each i � f(n), let the inputs to
the ith of these MODp gates be denoted by xi;j, 1 � j � n0. Then the value of fCng

can be expressed as A(n;
X

1�i�f(n)

MODp(xi;1; xi;2; : : : ; xi;n0)).

Let k(n) = 1+ blogp f(n)c so that p
k(n) > f(n). Note that k(n) is computable in

time (log s(n))O(1). For the rest of this discussion, �x n, and let k denote k(n).
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It is shown in [10] that the polynomial Pk de�ned by

Pk(y) = (�1)k+1(y � 1)k(
k�1X
j=0

�
k+j�1

j

�
yj ) + 1

satis�es the property that for every m � 1 and y � 0,

y � 0 (mod m) =) Pk(y) � 0 (mod mk)

and

y � 1 (mod m) =) Pk(y) � 1 (mod mk)

Let Qk(y) = 1� Pk(yp�1). Then

Qk(y) �

�
1 (mod pk) if y � 0 (mod p)
0 (mod pk) otherwise.

If y =
rX

i=1

yi then

Qk(
rX

i=1

yi) � MODp(y1; y2; : : : ; yr) (mod pk)

Thus, recalling that the value of the circuit Cn is

A(n;
X

1�i�f(n)

MODp(xi;1; xi;2; : : : ; xi;n0));

we see that this can also be expressed as

A(n;
X

1�i�f(n)

(Qk(
X

1�j�n0

xi;j) (mod pk))):

Since f(n) < pk and Qk is always 0 or 1 (mod pk), we can bring the outer sum inside
the modulus to obtain the equivalent expression

A(n; (
X

1�i�f(n)

Qk(
X

1�j�n0

xi;j)) (mod pk)):

Let B(n; i) be de�ned to be A(n; (i mod pk)). Thus the value of fCng is equal to

B(n;
X

1�i�f(n)

Qk(
X

1�j�n0

xi;j)):

Note that B is computable in time polylogarithmic in s(n).

Note that (
X

1�i�f(n)

Qk(
X

1�j�n0

xi;j)) is a low degree polynomial in the variables

fxi;jg. As in the proof of Lemma A.24, our strategy will be to implement scalar
multiplication with AND gates, and multiply the negative coe�cients by (1� pk) to
make them positive7, to obtain a realization of this polynomial in terms of circuits.

7 This does not change the value of the expression mod pk.
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Our �rst task is to compute the coe�cients in the polynomial

(
X

1�i�f(n)

Qk(
X

1�j�n0

xi;j)):

Since this is just a sum of f(n) similar polynomials, we can consider each of them
separately.

Recall that Qk(y) = 1 � Pk(y
p�1). Let z = yp�1. After a little simpli�cation we

get 1�Pk(z) = (1� z)k(
Pk�1

j=0

�
k+j�1

j

�
zj). This is a polynomial of degree 2k� 1. For

i � 0, let bi = 1 if i is even, and bi = pk � 1 if i is odd. The coe�cients of zm, say
cm, are given by

cm =

8>><
>>:

1 if m = 0.
0 if 1 � m � k � 1.X
0�i�k;0�j�k�1;i+j=m

bi
�
k

i

��
k+j�1

j

�
if k � m � 2k � 1.

These coe�cients cm can be computed in (log s(n))O(1) time, because we only need
to compute O(k) binomial coe�cients each involving numbers that are O(k logk) bits
long. It can be veri�ed that O(k4 logk) time su�ces which is polylogarithmic in the
size of the circuit since k is logarithmic in the size.

Now observe that the value of circuit fCng is given by

B(n;

f(n)X
i=1

Qk(

n0X
j=1

xi;j)) = B(n;

f(n)X
i=1

1� Pk((

n0X
j=1

xi;j)
p�1))

= B(n;

f(n)X
i=1

2k�1X
m=0

cm(

n0X
j=1

xi;j)
(p�1)m)

= B(n;

f(n)X
i=1

2k�1X
m=0

cmX
c=1

X
hj1 ;j2;:::;jp�1 i2[n0 ](p�1)m

(p�1)m^
l=1

xi;jl)

In place of each circuit Cn;t in the original sequence of circuits, there will be several
new circuits, each of the formDn;hi;m;c;j1;:::;j(p�1)m i where 0 � m � 2k�1; 1 � c � cm;

and each jl is in [n0]. (Of course, by our conventions, there will also be circuits Dn;t

where t is not of this form; each such circuit Dn;t will be a trivial rejecting circuit
that will therefore have no e�ect on the output of the symmetric gate.)

The output gate of each circuit Dn;hi;m;c;j1;:::;j(p�1)m i will be an AND gate with
the name

g =hn; i;m; c; j1; : : : ; j(p�1)m;ANDi.

The inputs to g will be the (p�1)m gates that are the jthl inputs to the MODp gate Gi

in the original circuit Cn;i. Note that since Cn;i has the strong connection property,
one can show that Dn;hi;m;c;j1;:::;j(p�1)m i does, too.

Note that the number of bits needed to express hi;m; c; j1; : : : ; j(p�1)mi is bounded

by (log s(n))b for some constant b, and thus if we de�ne f 0(n) to be equal to 2(log s(n))
b

,
it follows that the symmetric gate computing B in circuit Dn has fan-in f 0(n), where
f 0(n) is computable in time polylogarithmic in s(n).

Since the new circuit consists of a subexponential number of circuits, each of
which is of subexponential size, the new circuit is also of subexponential size.
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The depth of the new circuit family is the same as fCng but the top layer of
MODp gates has been \absorbed" into the symmetric gate computing B and been
replaced by a layer of AND gates of small fan-in. Now, by an appeal to Lemma A.8,
the circuit can be converted into nice form, which completes the proof.

Proof. (of Theorem 3.1)
By Lemma A.23, every language in ACC(subexp) is accepted by a deterministic

SYMACC circuit family of subexponential size, with small fan-in AND gates, no
OR gates, and no MODm gates for composite m. Successive applications of Lemma
A.24 and Lemma A.25 remove all MOD gates from the circuit, while maintaining the
property that all AND gates have small fan-in. This su�ces to prove the theorem.


