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Abstract. In 1965, with a Comptes rendus note of Vladimir Arnold, a new discipline,
symplectic topology, was born. In 1986, its (remarkable) first steps were reported by
Vladimir Arnold himself. In the meantime...

First step: a definition (1986)

First steps in symplectic topology, this was the (English) title of a 1986 paper [14]
of Vladimir Igorevich Arnold. Like any good mathematical paper, this one started
with a definition:

By symplectic topology, I mean the discipline having the same relation to
ordinary topology as the theory of Hamiltonian dynamical systems has to the
general theory of dynamical systems.

And, to make things clearer, the author added:

The correspondence here is similar to that between real and complex geometry.

Well... this was Arnold’s style. A definition by analogy (an analogy I am not sure I
understand clearly). Nobody could accuse him of formalism or, worse, of Bourbakism.

However, this paper was, is, “stimulating” (as the reviewer in Math. Reviews would
write (1)). Its first part (after the provocative introduction), entitled “Is there such a
thing as symplectic topology?”, even contains a proof of the “existence of symplectic
topology” (hence the answer to the question is yes), that the author attributed to
Gromov in [50] (as he notes, Eliashberg also contributed to the statement, see below):

Theorem. If the limit of a uniformly (C0) converging sequence of symplectomor-
phisms is a diffeomorphism, then it is symplectic.

1. This one was Jean-Claude Sikorav.
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No geometer would contest that such a statement is indeed a proof: this is a
theorem about the behavior of symplectic diffeomorphisms with respect to the C0-
topology; the terms of the sequence are defined via their first derivatives while the
convergence is in the C0-topology. This indeed belongs to symplectic topology. Hence
the latter is not empty.

But, whatever the credit Arnold decided to give to Gromov and Eliashberg in this
article, symplectic topology existed twenty years before Gromov’s seminal paper [50]
appeared: symplectic topology has an official birthdate, and this is October 27th,
1965.

In this paper, I plan to sketch a picture of how symplectic topology grew, in the
hands of Arnold, his students, and followers, between his two papers [3] of 1965
and [14] of 1986.

Acknowledgment. I thank Bob Stanton and Marcus Slupinski for their help with
the translation of the adjectives in footnote 17.

Many thanks to Alan Weinstein and Karen Vogtmann, who were so kind to send
me recollections and information and also to Alan, for allowing me to publish an
excerpt of a letter Arnold had sent to him.

I am very grateful to Mihai Damian, Leonid Polterovich and Marc Chaperon, who
kindly agreed to read preliminary versions of this paper, for their friendly comments
and suggestions.

The last sentence in this paper was inspired by [61].

October 27th 1965

This is the day when a short paper by Vladimir Arnold (so the author’s name
was spelled, see Figure 1), Sur une propriété topologique des applications globalement
canoniques de la mécanique classique, was presented to the Paris Academy of sciences
by Academician Jean Leray and became the Comptes rendus note [3].

Figure 1. A birth announcement (title and abstract of [3])

The so-called “applications globalement canoniques” would become symplectomor-
phisms, the topology was already in the title. Here are the statements of this note
(my translation):
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Theorem 1. The tori T and AT have at least 2n intersection points (counted with
multiplicities) assuming that AT is given by

(7) p = p(q)

∣∣∣∣∂p∂q
∣∣∣∣ <∞.

Here T is the zero section p = 0 in the “toric annulus” Ω = Tn×Bn (with coordinates
(q, p)) and the mapping A : Ω → Ω is globally canonical, namely, it is homotopic to
the identity and satisfies∮

γ

p dq =

∮
Aγ

p dq, (p dq = p1 dq1 + · · ·+ pn dqn)

for any closed curve (possibly not nullhomologous) γ.

Hence, Theorem 1 asserts that the image of the zero section in Tn × Bn under a
certain type of transformations should intersect the zero section itself. We shall come
back to this later. The second statement concerned fixed points. To this also we shall
come back.

Theorem 2. Let A be a globally canonical mapping, close enough to A0. The
mapping AN has at least 2n fixed points (counted with multiplicities) in a neigh-
borhood of the torus p = p0.

Here, A0 has the form (q, p) 7→ (q + ω(p), p), for a map ω : Bn → Rn such that

det

∣∣∣∣∂ω∂p
∣∣∣∣ 6≡ 0, so that there exist p0 ∈ Bn and integers m1, . . . ,mn, N with

ω1(p0) =
2πm1

N
, . . . , ωn(p0) =

2πmn

N

(this defining the p0 and the N in the statement).

Remark A. Replacing in the proofs the theory of M.Morse by that of L.A. Lusternik
and L.G. Schnirelman, we obtain, in Theorem 1, (n + 1) geometrically different
intersection points of T and AT . One could wonder whether there exist (n+ 1)
intersection points of T and AT for the globally canonical homeomorphisms A?

Remark B. The existence of infinitely many periodic orbits near a generic elliptic
orbit follows from Theorem 2 (extension of Birkhoff’s Theorem to n > 1).

Remark C. It is plausible that Theorem 1 is still true without the assumption (7),
if A is a diffeomorphism (2). From the proof, several “recurrence theorems” would
follow.

2. If A is not a diffeomorphism, counter-examples can be constructed with n = 1. Note of V.I.
Arnold.
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Remark D. It also seems plausible that Poincaré’s last theorem can be extended
as follows:

Let A : Ω → Ω (Ω = Br × Tn; Bn = {p, |p| ≤ 1}; Tn = {q mod 2π}) be
a canonical diffeomorphism such that, for any q ∈ Tn the spheres Sn−1(q) =
∂Bn × q and ASn−1(q) are linked in ∂Bn ×Rn (Rn being the universal cover
of Tn). Then A has at least 2n fixed points in Ω (counted with multiplicities).

Remark C is the statement that will become “Arnold’s conjecture”. The question
in Remark A will also be part of this conjecture. Note that, twenty years after, when
he wrote [14], Arnold mentioned that the statement in Remark D had still not been
proved.

Before I comment more on the statements and their descendants, let me go back
to one of their ancestors, the so-called last geometric theorem of Poincaré.

A theorem of geometry, 1912

On March 7th 1912, Henri Poincaré finished writing a paper and sent it to the
Rendiconti di Circolo matematico di Palermo. It was accepted at the meeting of the
Mathematical circle which took place three days later (adunanza del 10 marzo 1912),
together, e.g. with papers of Francesco Severi and Paul Lévy, and it was printed
in May (3) as [58]. In this paper, Poincaré stated what he called “un théorème de
géométrie”. Before that, he apologized for publishing a result

– that he would have liked to be true, because he had applications (to celestial
mechanics) for it,
– that he believed to be true, because he was able to prove some special cases
of it

but that he could not prove. Here is this statement (my translation). Poincaré denotes
by x and y (mod 2π for the latter) the polar coordinates of a point. He considers an
annulus a ≤ x ≤ b and a transformation T of this annulus (x, y) 7→ (X(x, y), Y (x, y)).

First condition. As T transforms the annulus into itself, it preserves the two
boundary circles x = a and x = b. [He then explains that T moves one of the
circle in a direction and the other in the opposite one. I shall (anachronistically)
call this the twist condition.]

Second condition. The transformation preserves the area, or, more generally,
it admits a positive integral invariant, that is, there exists a positive function
f(x, y), so that ∫∫

f(x, y) dx dy =

∫∫
f(X,Y ) dX dY,

the two integrals being relative to any area and its transform.

3. All of this was very fast, including the mail from Paris to Palermo (recall that there was no
air-mail and that Palermo was already on an island). All the dates given here can be found on the
printed journal. For some reason (which I was unable to understand), they were cut out in Poincaré’s
complete works, even the date he probably wrote himself at the end of his paper.
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If these two conditions are satisfied, I say that there will always exist in the
interior of the annulus two points that are not modified by the transformation.

Clearly, the two conditions are necessary: there exists
– maps preserving the area without fixed points, a rotation for instance, but it
does not satisfy the twist condition,
– twist maps without fixed points, e.g. (4) (x, y) 7→ (x2, x + y − π), but it does
not preserve the area.

Notice also that there exist twist maps preserving the area with exactly two fixed
points, like the one evoked by Figure 2. The picture show a part of an infinite strip.
The diffeomorphism is the flow of the vector field drawn. It descends to the quotient
(by the integral horizontal translation) annulus where it has two fixed points.

Figure 2. A twist map with two fixed points

Such area preserving maps of the annulus arose as Poincaré sections for Hamilto-
nian systems with two degrees of freedom—namely, in dimension 4—and their fixed
points would correspond to periodic orbits. Needless to say: celestial mechanicians
love periodic orbits. Hence the Poincaré problem.

Let me add that, in the introduction of his paper, Poincaré wrote that he had
thought of letting the problem mature for a few years and then of coming back to it
more successfully, but that, at his age, he could not be sure. He was actually only 58,
but he died, unexpectedly, four months later, on July 17th.

On October 26th, the same year, George David Birkhoff presented a proof of this
theorem to the American mathematical society, and his paper Proof of Poincaré’s
geometric theorem was published in the Transactions of this society [30]. Birkhoff
considered himself as a student (and even as the last student) of Poincaré. He and
Jacques Hadamard were probably the two mathematicians who knew Poincaré’s work
best. Although this was not as easy as it is nowadays, Birkhoff would go very often
to Paris and lecture at Hadamard’s Seminar, on Poincaré’s theorems, during the
1920’s and 1930’s. The main reference in his paper was a previous paper of him [29],
published, in French, by the French mathematical society. No wonder that his proof
of Poincaré’s theorem was translated and republished, in French, as “Démonstration
du dernier théorème de géométrie de Poincaré (5)” [31].

4. I copied this example from [54].
5. “Dernier”, which means last, was not in the American title. Also, the translation kept the

original phrasing “théorème de géométrie” rather than “théorème géométrique”, as in English.
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Note that, using a degree argument (that Poincaré attributed to Kronecker), the
existence of one fixed point implies that there are two of them... except that they
could coincide. It is not absolutely clear that the original proof of Birkhoff gave the
existence of two geometrically distinct fixed points. This is why he himself came back
to this theorem later. See his paper [32] and his book [33] (6).

For modern symplectic readers: there is a proof of the existence of one fixed point
in [54], which can be completed with [36].

Chapter VI of Birkhoff’s book is devoted to the application of Poincaré’s geometric
theorem. It starts as follows:

Poincaré’s last geometric theorem and modifications thereof (7) yield an addi-
tional instrument for establishing the existence of periodic motions. Up to the
present time no proper generalization of this theorem to higher dimensions has
been found, so that its application remains limited to dynamical systems with
two degrees of freedom.

At that time, the symplectic nature of Hamilton’s equations still needed some clar-
ification. Now we know that the good generalization of “preserving the area” is not
“preserving the volume”. And Arnold was (one of) the mathematicians who taught
us that. A Hamiltonian flow, namely a solution (q(t), p(t)) of Hamilton’s equations

q̇ =
∂H

∂p

ṗ = −∂H
∂q

preserves the symplectic form

ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn

and not only the volume form

dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn =
ω∧n

n!
.

This is written in Rn×Rn, but could also be understood in Tn×Rn (if H is periodic
in q), which is the same as T ?Tn, hence can be generalized to T ?V (which has a “p dq”
and thus also a “dp ∧ dq” form), and to any symplectic manifold W . To a function
H : W → R, the symplectic form ω associates a vector field (the Hamiltonian vector
field) XH by dH = iXH

ω and thus a flow (the Hamiltonian flow) which preserves ω
since

LXH
ω = diXH

ω = d dH = 0.

6. Note that, in the preface Marston Morse wrote for the 1966 edition of this 1927 book, he
insisted on the relationship between Birkhoff’s work on periodic orbits and “the work of Moser,
Arnold and others on stability”.

7. See my paper, An extension of Poincaré’s last geometric theorem, Acta Mathematica, vol.47
(1926). Note of G.D. Birkhoff.
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Back to Arnold and his golden sixties

In 1965, although he was a young man of 28, Arnold was not a beginner. Ten years
before, he had contributed (with his master Kolmogorov, as he would say) to Hilbert’s
thirteenth problem. Then he had worked on stability and had already proved the
theorem on invariant tori that would soon be known, first as “Kolomogorov-Arnold-
Moser”, and later as “KAM”. This was what he lectured on when he came to Paris at
the Spring of 1965, as the book [16] (8) shows (the “KAM” statement is Theorem 21.11
and there is a proof in Appendix 33). He had already published, for instance, the big
paper [1] (9), about which the reviewer of Math. Reviews (10) wrote:

It is to be hoped that this remarkable paper and exceptional work helps to
arouse the interest of more mathematicians in this subject.

This might have been the first appearance of the famous cat of Arnold, and of a figure
such as Figure 3 (11).

Small denominators and problems of stability of motion 93

  = const, where  ( ) is commensurate with 2π . On each ray going out from
  the invariant curves carve out a track like Cantor's perfect set, but of
positive measure.

1. Zones of instability. Let us consider an invariant circle of an

"unperturbed" transformation   rotated through an angle  ( ) 2K . On
 

an   fold iteration of   each point of the circle returns to its original
position. This property of   is not, generally speaking, retained for a
small perturbation and such an invariant circle is "scattered away".
G.D. Birkhoff proved that instead of a complete circle of points fixed
relative to Bn,  " has, in general, a finite even number of fixed points
close to this circle. Half of these points are of elliptic and half of
"hyperbolic" type.1

Pig. 6.

As we showed in 3., points of elliptic type are, generally speaking,
stable and surrounded by invariant curves not enclosing 0 (Pig. 6). Conse 
quently in the general case the neighbourhood of 0 is not stratified into
invariant closed curves. The divergence of Birkhoff s series, mentioned
above, follows from this (see 2.).

The separatrices of hyperbolic points intersecting each other create
an intricate network in the "zones of instability". In the neighbourhood

The reader will readily understand their construction by considering the

hyperbolic rotation    » 2p, q  *  q.

Figure 3. More fixed points... after [1]

Of course, KAM theorem was also the main topic of the half-an-hour talk Arnold
gave at the icm in Moscow in 1966, Problema ustoĭqivosti i �rgodiqeskie
svoĭstba klassiqeskih dinamiqeskih sistem (12) [4]. However, there was
a short section with the statements of (and reference to) the note [3].

8. Soon translated in English as [17].
9. This was also very fast: the translation in English in Russian mathematical surveys would

arrive in the libraries less than one year after the publication of the Russian original.
10. This one was Jürgen Moser.
11. Note that Figure 3 contains a 5-fold covering and a 3-fold covering of the map in Figure 2.
12. A stability problem and ergodic properties of classical dynamical systems
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Problems of present day mathematics, 1974

In May 1974, the American mathematical society had a Symposium on develop-
ments arising from Hilbert problems. The organizers also intended to make another
list of problems—for the present day. Arnold sent a problem (if I understand well,
the problems were collected by Jean Dieudonné and edited by Felix Browder), which
appeared in a list of “Problems for present day mathematics” in the book [35]. This
is Problem xx, on page 66:

XX. Fixed points of symplectic diffeomorphisms (V. Arnold). The
problem goes back to the “last geometric theorem” of Poincaré. The simplest
case is the following problem: Does every symplectic diffeomorphism of a 2-
dimensional torus, which is homologous to the identity, have a fixed point?

A symplectic diffeomorphism is a diffeomorphism which preserves a nonde-
generate closed 2-form (the area in the 2-dimensional case). It is homologous
to the identity iff it belongs to the commutator subgroup of the group of sym-
plectic diffeomorphisms homotopical to the identity. With coordinates, such a
diffeomorphism is given by x→ x+f(x), where x is a point of the plane and f is
periodic. It is symplectic iff the Jacobian det(D(x+ f(x))/Dx) is identically 1,
and it is homologous to the identity iff the mean value of f is 0.

The “last geometric theorem” of Poincaré (proved by G. D. Birkhoff) deals
with a circular ring. The existence of 2 geometrically different fixed points
for symplectic diffeomorphisms of the 2-sphere is also proved (A. Shnirelman,
N. Nikishin). In the general case, one may conjecture that the number of fixed
points is bounded from below by the number of critical points of a function (both
algebraically and geometrically).

The ams book appeared two years later, in 1976. Notice that the “simplest” ques-
tion is asked in dimension 2, but that the general case, at the very end of the text,
seems to refer to an arbitrary symplectic manifold. The complicated definition of
“homologous to the identity” given shows that Arnold was indeed thinking of a gen-
eral symplectic manifold. Note that, according to a theorem Augustin Banyaga [25]
would prove in 1980, and that Arnold would quote in [14] and in 1986, these are the
Hamiltonian diffeomorphisms.

Also note there was already a proof available, and this was for the S2 case: Arnold
was working... and his students were working too. The very first symplectic fixed
point theorem (after [3]) was that of N.A. Nikishin [57]—note that, although pub-
lished in 1974, the paper was submitted to the journal as soon as November 1972:

Theorem. A diffeomorphism of S2 which preserves the area has at least two geo-
metrically distinct fixed points.

Namely, at least as many as a function has critical points. The proof was not very
hard: Nikishin proved that the index of a fixed point of such a diffeomorphism should
be ≤ 1. But the Lefschetz number is 2.
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Arnold was working. For instance on singularity (or catastrophe) theory. One of
the people he met in Paris in Spring 1965 was René Thom (this we know at least
from [16] and from [59]), whose seminar he attended. Arnold was working. Starting
a seminar on singularity theory in Moscow (13). Lecturing on classical mechanics
in 1966–68. And writing up notes. Nikishin, in [57], quotes Arnold’s Lectures on
classical mechanics, dated 1968. They would become a famous book...

Mathematical methods in classical mechanics, 1974
(our golden seventies)

In 1974, the Soviet publishing house Nauka published Arnold’s Matema-
tiqeskie metody klassiqeskoĭ mehaniki [8].

At that time, a wicked bureaucracy had decided not to allow Arnold to travel
abroad anymore. However, his book was soon translated to French and published,
in Moscow, by the foreign language Soviet publishing house Mir, Mir, and [9] was
available in France, at a very low price, in 1976.

A few personal remarks. In the seventies, the only math books we could afford,
we Parisian students, were the Mir books. We would go quite often to their bookstore
la Librairie du Globe rue de Buci to fetch the new books (whatever they were). The
Soviet translation program was devoted helping French-speaking developing countries,
not French students. So what?

The word “translation” was already used at least seven times in this text. A
French mathematician publishing a paper in French in an Italian journal, an American
mathematician writing papers in French and in English, a Russian one writing in
Russian and in French. Before I leave the language question, let me comment on
that. When I visited Arnold in Moscow in the Fall of 1986, he told me that he
preferred to speak French than English, so we used to discuss in French. Of course,
he asked me to lecture in English, because of his students. So I spoke English...
but, he would interrupt quite often to ask a question or make a comment (well, this
was Arnold’s seminar, you know (14)), and, of course (?) he would do it in French,
then I would answer (or not), and he would translate and comment in Russian, for
his students (15). And of course, I would try to understand the comment: I knew
perfectly well that he was explaining things I was talking about but did not quite
understand (16). Arnold’s fast, intricate and subtle questions (17), plus two foreign
languages at the same time—hard work!

?

13. Let me mention here the beautiful little book [13] he wrote on this subject for a general
audience in the eighties.
14. If you don’t know, look at [59].
15. Again, you should read [59].
16. In any case, you should read [59].
17. Let me quote what I wrote at the very moment I learned his death in a short online paper [23]:

he was charming, provocative, brilliant, cultured, funny, caustic sometimes even wicked, adorable,
quick, lively, incisive, yes, all this together.
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There and then (I mean in [9] and in 1976), we discovered, after the Newtonian
and the Lagrangian mechanics, the third part of the book, Hamiltonian mechanics (18),
symplectic manifolds and action-angle variables, notably. So, mechanics was, after
all, geometry! Good news! And you could put so much mathematics in a series of
so-called “appendices”.

The symplectic community

Two years later, Springer published a translation in English, by Karen Vogtmann
and Alan Weinstein (19) [10]. In a letter to Alan Weinstein, Arnold complained:

There is something wrong with the occidental scientific books editions: the
prices are awful. e.g. my undergraduate ordinary differential equations text-
book (20) costs here 0,67 rbls (∼ 1/30 the price of a pair of boots), and 40 000
exemplairs where sold in few months, so it is impossible to buy it at Moscow at
present; the MIT Press translation by Silverman price was perhaps more than
20$ and the result – 650 sales the 1 year.

Now the 17 000 exemplaires of the “mechanics” disappeared here at few days,
the price being rbls 1,10. I think the right price for the translation must be less
than 1$, then the students will buy it.

As Weinstein pointed out in his answer, books were unsubsidized in the U.S. econ-
omy. And, as it could be added, scientific publishers were not non-profitmaking
organizations.

The English translation appeared. This time, this was no longer a short Comptes
rendus note in French, a cheap translation made in the Soviet Union for developing
countries or a paper in Russian. You (or your library) had to pay to read it. For
instance, Helmut Hofer [52] would remember:

As a student I read Arnold’s wonderful book Mathematical Methods of Clas-
sical Mechanics.

After the AMS volume [35] and the Springer book [10], nobody in the West could
ignore Arnold’s question! It was more or less at the same time that Gromov emi-
grated (21), first to the States, then to Paris. Thirteen years after, things started to
become serious (22).

18. Nothing is perfect. One thing I never understood and never dared to ask, is why there is a
Lagrangian but no Hamiltonian treatment of the spinning top in this book.
19. It seems that the idea was Jerry Marsden’s. The translation was made by Karen Vogtmann

and edited by Alan Weinstein, who knew the domain and its lexicon better.
20. This one was [5, 6, 7], before becoming [15].
21. Mikhail Gromov’s paper [49] (at icm Nice 1970), where the h-principle for Lagrangian immer-

sions was announced, should also be mentioned.
22. Math. Reviews waited until May 1979 to publish a review of the 1974 Russian edition. The

reviewer was very enthusiastic, so enthusiastic that he added a very elegant remark:

The reader should be aware that the reviewer participated in the English translation
of the work under review, and so has been prejudiced in favor of the book by the pleasure
which that project provided.

This one was Alan Weinstein.
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In Appendix 9 of [10], one can read:

Thus we come to the following generalization of Poincaré’s theorem:

Theorem. Every symplectic diffeomorphism of a compact symplectic manifold,
homologous to the identity, has at least as many fixed points as a smooth function
on this manifold has critical points (at least if this diffeomorphism is not too far
from the identity).

Quoting Hofer again [52]:

The symplectic community has been trying since 1965 to remove the par-
enthetical (23) part of the statement. After tough times from 1965 to 1982, an
enormously fruitful period started with the Conley-Zehnder theorem in 1982–83.

It is not absolutely clear to me that there existed a symplectic community in the
“tough times from 1965 to 1982”. I may be wrong, so I will not insist on the precise
date, but I would say that the “symplectic topology community” was born around
1982. So far, I have mainly mentioned Arnold (24) (and the Soviet Union). But there
were indeed mathematicians working on celestial mechanics and stability questions
elsewhere. The names of Marston Morse (who had been a student of Birkhoff) and
Jürgen Moser have already been written in this paper. That of Michel Herman should
be added. This would be connected to KAM rather than to actual symplectic geom-
etry (25). Working on periodic orbits in the States and in the 1970’s, Alan Weinstein
not only solved problems [63, 64], but wrote a series of lectures [62], on symplectic
geometry, which have also been quite useful. If I were to qualify all this activity in
only two words, I would probably say “variational methods”.

Well, another side of the story I have told so far, which also starts with the Poincaré-
Birkhoff theorem and also ends with Weinstein’s lecture notes, but is quite different—
and complementary—is given in [54, p. 2].

There were some connections. Of course the name of Alan Weinstein must be
repeated here. I should add that what we did not learn in [9], we learned it in [62].

However, it is around the Arnold conjecture (as it was named since then) that a
community began to aggregate, and, if we needed a birthdate for this community, I
would agree with Hofer and suggest March 1983, when Charles Conley and Eduard
Zehnder sent their paper [40] to Inventiones mathematicae. This was soon reviewed
by Marc Chaperon for the Bourbaki Seminar in Paris [37] (26). In this “report”,
Chaperon added a few personal (and new) ideas and results, in particular, he proved
the non-displacement property for tori. At the same time, Daniel Bennequin [26]
had succeeded in attacking the contact side of the story... and Gromov developed
solutions of an elliptic operator, pseudo-holomorphic curves—the powerful new tool.

23. The French translation has no parenthesis, only a comma.
24. and Gromov
25. Not taking Moser’s homotopy method [55] (see also [62]) into account.
26. Replacing Fourier series by a broken geodesics idea, Chaperon himself soon gave a more ele-

mentary proof in [39], which is the basis of the proof given in [54].
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Symplectic geometry/topology. I am not sure I can date the locution “symplectic-
topology”.

I shall not take sides in the question “what is symplectic topology/what is sym-
plectic geometry?”. For instance, where should I put the symplectic reduction pro-
cess [53]? And the glorious convexity theorem of Atiyah, Gullemin and Stern-
berg [19, 51], which appeared more or less at the same time as [40]? In geome-
try? But topologists use it a lot... And what about deformation quantization, which
originated—in the Soviet Union and in the seventies—in Berezin’s work [28]?

Let me just say that Arnold was a geometer in the widest possible sense of the
word, and that he was very fast to make connections between different fields.

One of Arnold’s important symplectic texts was published shortly before the “first
steps” of [14]. Written in collaboration with the young Sasha Givental, it was still
called “Symplectic geometry” [18]. This was in 1985. The Soviet Union was still pub-
lishing cheap books, in this case volumes of an “Encyclopedia” (27). This is probably
the best place to look at if you want to see the global idea Arnold had on the sub-
ject “symplectic geology-or-topometry”. Note first that this is part of a series called
“Dynamical systems”. And then, let me make a list:

Well... integrable systems with the so-called Liouville Theorem (and the invariant
tori some of which survive perturbations in KAM theory), Lagrangian and Legendrian
submanifolds, caustics and wavefronts (and through generating functions, singularity
theory, catastrophes and versal deformations), real algebraic geometry, the Maslov
class (which he had defined in [2] (28) and which is related to Fourier integral opera-
tors), Lagrange and Legendre cobordisms (this turned out to be symplectic algebraic
topology (29)), generating functions, and, yes, fixed points of symplectic diffeomor-
phisms.

Lagrangian submanifolds, statements of Arnold’s conjecture

A Lagrangian in a symplectic manifold is a submanifold of the maximal possible
dimension (which is half the dimension of the symplectic manifold) on which the
symplectic form vanishes.

Sections of a cotangent bundle and fixed points. For instance, the zero sec-
tion in a cotangent bundle T ?V is Lagrangian. Also the graph of a 1-form on V is
Lagrangian if and only if this 1-form is closed. Notice, in connection with Theorem 1
in Arnold’s note [3] (here page 3), that the graph of an exact 1-form df intersects the
zero section precisely at the critical points of f .

Let us now consider a Hamiltonian diffeomorphism ϕ of T ?V , that is, a diffeomor-
phism generated by a Hamiltonian vector fieldXH . A version of the Arnold conjecture
would be:

27. And this became one of the most expensive Springer series in the 1990’s.
28. The contents of [2] would deserve a whole paper... Note that the adjectives Lagrangian,

Legendrian, in the sense used in symplectic geometry, were invented in [2].
29. Allow me to mention that this was the way I entered symplectic geometry. See [44] and [20,

21, 22].
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Conjecture. The Lagrangian submanifold ϕ(V ) intersects the zero section V of T ?V
at at least as many points as a function on V has critical points.

Suppose that ϕ is C1-close to the identity. Then ϕ(V ) is a section of T ?V . The
fact that ϕ is symplectic implies that ϕ(V ) is Lagrangian and hence, the graph of
a closed 1-form; the fact that ϕ is Hamiltonian implies that this is the graph of the
differential of a function. Hence the result in this case. Note that the nondegenerate
case, that is, when ϕ(V ) is transverse to V , is the case where the function is a Morse
function. With the Morse inequalities, this leads to the weak (although nontrivial)
form of the conjecture: the number intersection points is not less than the sum of the
Betti numbers of V .

Now, according to a theorem of Weinstein [62], a tubular neighborhood of any
Lagrangian submanifold L in any symplectic manifold is isomorphic (as a symplectic
manifold) to a tubular neighborhood of the zero section in T ?L. Generalizations of
the statement above follow...

Graphs of symplectic diffeomorphisms. Another important class of examples
is the following. Denote by W a manifold endowed with a symplectic form ω. Let
ϕ : W →W be any map. Now,W×W , endowed with ω⊕−ω, is a symplectic manifold,
and the graph of ϕ is a submanifold therein. Clearly, this is a Lagrangian submanifold
if and only if ϕ?ω = ω, that is, if and only if ϕ is a symplectic diffeomorphism. And
the intersection points of the graph with the diagonal are the fixed points of ϕ. Hence
Lagrangian intersections are related to fixed points of symplectic diffeomorphisms.

Conjecture. A Hamiltonian diffeomorphism of a compact symplectic manifold W has
at least as many fixed points as a function on W has critical points.

Generating functions

A connection between symplectic geometry and catastrophe theory is via generat-
ing functions. Remember that, if S is a function, the graph of dS is a Lagrangian
submanifold of the cotangent bundle. Together with symplectic reduction, this has
the following generalization (see [62]). Let S : V ×Rk → R be a function, so that
the graph of dS is a Lagrangian submanifold in T ?(V ×Rk). If this is transversal to
the coisotropic submanifold T ?V ×Rk, the symplectic reduction process ensures that
the projection

graph(dS) ∩ (T ?V ×Rk) −−−−→ T ?V

is a Lagrangian immersion. In coordinates (q, a) ∈ V ×Rk, this is to say that, if

ΣS =

{
(q, a) ∈ V ×Rk | ∂S

∂a
= 0

}
is a submanifold, then

ΣS −−−−→ T ?V

(q, a) 7−−−−→
(
q,
∂S

∂q

)
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is a Lagrangian immersion. For instance (with V = Rn and k = 1), if we start from

S : Rn ×R −−−−→ R

(q, a) 7−−−−→ a ‖q‖2 +
a3

3
− a

then
ΣS =

{
(q, a) | ‖q‖2 + a2 = 1

}
= Sn

is an n-sphere and

Sn −−−−→ Rn ×Rn = T ?Rn

(q, a) 7−−−−→ (q, 2aq)

is a Lagrangian immersion. Note that it has a double point (q = 0, a = ±1): this is
a Lagrangian version of the “Whitney immersion”.

Caustics and wave fronts. The geometric version of a wave front is as follows.
Start with L ⊂ T ?V , a Lagrangian in a cotangent bundle (it may be only immersed)
and look at the projection L → T ?V → V . Using “canonical” coordinates (q, p), we
are just forgetting the p. The caustic is the singular locus in the projection.

Now comes the contact structure. We rather look at the jet space J1(V ;R), that
is, T ?V × R, with the 1-form dz − p dq. As the 2-form dp ∧ dq vanishes on L, the
1-form p dq is closed, hence (up to a covering) it is exact, p dq = df and, well, now we
can “draw” L in V ×R, namely in codimension 1 rather than n.

Figure 4. Two wave fronts

For instance if S is a generating function

ΣS −−−−→ V ×R

(q, a) 7−−−−→ (q, S(q, a))

is the wave front of the Lagrangian immersion defined by S.
The pictures in Figure 4 represent (in coordinates (q, z)) a round circle and a

figure eight (in coordinates (q, p)), the latter being the one-dimensional version of the
Whitney immersion. Of course, only exact Lagrangians give closed wavefronts. Note
also that any picture like the ones on Figures 4 or 5 would allow you to reconstruct
a Lagrangian. Namely: knowing z and q, you get p by dz = pdq. For instance, to
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the two points with the same abscissa and horizontal tangents on the “smile” (right
of Figure 4) correspond to the double point of the Whitney immersion.

Of course, this is related to the propagation, of light, say, this is related to evolvents,
and to what Arnold calls “Singularities of ray systems” [12] and Daniel Bennequin
the “Mystic caustic” [27].

So what? Well, this allowed Givental to construct examples of Lagrangian embed-
dings in R4 of all the surfaces which could have one, just by drawing them [48] in R3

(4 = 2n⇒ 3 = n+ 1) (and leaving the Klein bottle case to posterity (30)).

Figure 5

This also allowed Eliashberg to prove the Arnold conjecture for surfaces (31)—at
the same time as Floer dit it. Eliashberg even had a proof [41] of the “existence
theorem” of symplectic topology stated at the beginning of this article (see also [42])
using a decomposition of wave fronts.

Crossbows... The last wave front drawn (right of Figure 5) represents an exact La-
grangian immersion of the circle with two double points, which is regularly homotopic
to the standard embedding (exactness meaning that the total area enclosed by this
curve is zero). It appeared in Arnold’s papers on Lagrangian cobordisms [11]: this is
the generator of the cobordism group in dimension 1. Arnold calls it “the crossbow”.
Which reminds me of something Stein is supposed to have told Remmert in 1953
when he learned the use Cartan and Serre made of sheaves and their cohomology to
solve problems in complex analysis: “The French have tanks. We only have bows and
arrows” [34].

30. See [56].
31. Note that Nikishin’s article [57] quoted in [35] more or less disappeared from the literature.

The statement and a (different) proof were given in [37] without any reference. A few years later the
conjecture for CPn was announced by Fortune and Weinstein [47] then published by Fortune [46]
with no mention that the CP1-case was already known. Even in [14] the S2-case is mentioned as an
analogous of Poincaré’s geometric theorem, but not in connection with the proof of the conjecture
for surfaces (attributed both to Eliashberg [43] and Floer [45]).
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... and tanks. This time the tank was Floer theory. Well, we were not anymore in
1953. And the war metaphor is not the best possible to speak of the Floer Power...

The starting point was the action functional, like

AH(x) =

∫ 1

0

(p dq −Ht dt)

where x(t) is a path and Ht a (time-dependent) Hamiltonian... except that we are
on a general symplectic manifold, where p dq does not mean anything. Well this can
be arranged and replaced by a (closed) action form αH , defined on a path x and a
vector field Y along this path by

(αH)x(Y ) =

∫ 1

0

ωx(t)(ẋ(t)−XHt
(x(t)), Y (t)) dt.

The critical points are the solutions of the Hamilton equation. Once you have fixed a
compatible almost complex structure, the gradient lines connecting the critical points
are the solutions of the Floer equation:

∂u

∂s
+ J(u)

∂u

∂t
+ grad Ht(u) = 0.

Note that, when Ht ≡ 0, this is just the Cauchy-Riemann equation

∂u

∂s
+ J(u)

∂u

∂t
= 0

giving Gromov’s pseudo-holomorphic curves.
Taking in his hands both the variational methods (Morse theory) used by Conley

and Zehnder and the elliptic operators (pseudo-holomorphic curves) of Gromov, using
the “characteristic class entering in quantization conditions” of [2], Andreas Floer built
for us a Yellow-Brick-Road to prove the Arnold conjecture in greater and greater
generality. (And this is what we (32) did.)

Generating functions (continuation)

From the very description of wave fronts, it is clear that generating functions are
a good tool for the study of contact geometry/topology. Note also that there are
contact analogues of self-intersections of Lagrangians, namely chords of Legendrian
knots.

Much progress has been done, but there is not enough space here to mention all
this. The name of another former student of Arnold’s, Yuri Chekanov, should be
added here.

32. By “we” here, I mean the community. I could also mention that some of us (and here, by “us”,
I mean the two authors of [24]) wrote a textbook to explain all this (a translation to English will be
available soon).
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Twenty years after... First steps again

Let us go back to the 1986 paper [14] we started with. Poincaré’s geometric the-
orem was mentioned in the “Is there such a thing as symplectic topology?” section,
but not its possible generalizations, which appeared only in Section 2, where, quot-
ing [3, 4] for the statement and [40] for the proof, Arnold stated:

Theorem. A symplectomorphism of the torus homologous to the identity has no
fewer than four fixed points (taking multiplicities into account) and no fewer than
three geometrically distinct fixed points.

Four was for 2n, three for n+1, hence the torus in the statement was 2-dimensional—
this was the case, neither for the conjecture nor for the proof... The “multidimensional
generalization” was more than just multidimensional, and for it Arnold quoted the
problem in [35]... and his comments to the Russian edition of Poincaré’s selected
works (33), a book I never saw:

Conjecture. A symplectomorphism of a compact manifold, homologous to the
identity transformation (34), has at least as many fixed points as a smooth func-
tion on the manifold has critical points.

I think this was the first time the word “conjecture” (in reference to this problem)
appeared in a paper by Arnold himself.

And he listed the results obtained so far—a state of the art in 1986. That is, the
torus ([40, 37, 38]), the surfaces ([43, 45]), the complex projective space ([47]),
(many) Kähler manifolds of negative curvature ([45, 60]), diffeomorphisms that are
C0-close to the identity ([65]).

Epilogue (2012)

And now, this is 2012. Twenty-six years after the “first steps”. Three new appen-
dices have been added to a second (1989) edition of [10]. Some, many versions of
Arnold’s conjecture have been proved. Others are still open. Many powerful tech-
niques have been created, used, improved. Even the crossbows turned out to be very
efficient. Helping to solve old problems, the new tools generated new ones.

Vladimir Igorevich died in Paris on June 3rd, 2010.
Symplectic topology is not standing still.

33. See Review 52#5337 on Math. Reviews. Already in 1972, it was possible to publish double
translations without checking the signification. The title of our favorite Poincaré paper [58] became
there “A certain theorem of geometry”.
34. Joined by a one-parameter family of symplectomorphisms with single valued (but time-

dependent) Hamiltonians. Note of V.I. Arnold.
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