International Technical Support Organization 5624-3910-01

IBM High Level Assembler for MVS & VM & VSE
Release 2 Presentation Guide

December 1995

International Technical Support Organization
San Jose Center

International Technical Support Organization 5624-3910-01

IBM High Level Assembler for MVS & VM & VSE
Release 2 Presentation Guide

December 1995

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page vii.

Second Edition (December 1995)

This edition applies to Version 1 Release 2 of IBM High Level Assembler for MVS & VM & VSE, Program Number
5696-234, for use with the MVS/ESA, VM/ESA, and VSE/ESA operating systems.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader’'s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471/E2 Building 080

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is unique in its comprehensive overview of the IBM High Level
Assembler for MVS & VM & VSE (HLASM). It focuses on the management and
organizational advantages of HLASM and provides helpful insights into the utility
and power of many of its advanced features.

This document also provides information about HLASM's powerful new language
features, many new options, enhanced diagnostic capabilities, greatly improved
usability, tailorability for individual and workgroup use, and numerous interfaces
for integration into advanced application development environments.

This document is written for those who design, code, debug, and maintain
Assembler Language programs and their managers. In the “Technical
Overview” presentation, familiarity with the IBM System/360, System/370, and
System/390 Assembler Language will be helpful in understanding some of the
examples.

(115 pages)

[0 Copyright IBM Corp. 1995 iii

iv High Level Assembler Presentation Guide

Contents

Abstract iii
Special Notices vii
Purpose of This Document viii
How This Document Is Organized viii
Related Publications iX
International Technical Support Organization Publications X
ITSO Redbooks on the World Wide Web (WWW) xi
Acknowledgments Xi
Chapter 1. High Level Assembler: Management Overview 1
1.1 Topic Overview 1
1.2 Why a New Assembler? 3
1.3 Key Benefits of HLASM (1) 5
1.4 Key Benefits of HLASM (2) 8
1.4.1 Human Resource Savingso 8
1.5 Key Benefits of HLASM (3) 11
1.5.1 System Resource Savings 11
1.5.2 Tool and Development Environment Support Facilities 12
1.6 Compatibility and Migration 13
1.7 HLASM Summary 15
Chapter 2. High Level Assembler: Technical Overview 17
2.1 Topic Overview 17
2.2 Key Features 19
2.3 New and Enhanced Options, 21
2.3.1 New Assembly-Time Options 21
2.3.2 New Installation-Time Option 24
2.3.3 Enhanced Assembly-Time Options 24
2.3.4 Source-File Options 25
2.3.5 Old, Unsupported Options 26
2.3.6 New Default Options 26
2.4 Listing Enhancements 27
2.5 Diagnostics Enhancements L 32
2.5.1 New FLAG Suboptions o 33
2.5.2 USING Warnings 34
2.6 Input-Output EXits 35
2.7 Assembler Data (SYSADATA) File, 37
2.8 Generalized Object File Format, 39
2.9 New and Enhanced Base Language (1) 40
2.10 New and Enhanced Base Language (2) 42
2.11 Examples of New USING Statements and Diagnostics 45
2.11.1 Labeled USINGS 45
2.11.2 Dependent USINGS 45
2.11.3 Labeled Dependent USINGs, 45
2.11.4 USING Diagnostics 45
2.12 New and Enhanced Base Language (3) 46
2.13 New and Enhanced Conditional-Assembly Language (1) 48
2.13.1 Internal Conditional-Assembly Functions 48
2.13.2 External Conditional-Assembly Functions 49
2.13.3 Inner Macro Arguments and the COMPAT(SYSLIST) Option 49

[0 Copyright IBM Corp. 1995 \'

Vi

2.14 New and Enhanced Conditional-Assembly Language (2) 50

2.15 System Variable Symbols
2.16 Installability and Usability Enhancements . .
2.17 Implementation Improvements
2.18 Compatibility and Migration
2.19 Incompatibilities with Assembler H
2.20 HLASM Summary

Chapter 3. Management Overview Presentation Foils

Chapter 4. Technical Overview Presentation Foils

High Level Assembler Presentation Guide

Special Notices

This publication will help programmers of the System/360, System/370, and
System/390 Assembler Language and their managers understand the many
benefits and features of High Level Assembler. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by IBM High Level Assembler/MVS & VM & VSE, Release 1*
and IBM High Level Assembler for MVS & VM & VSE, Release 2*. See the
PUBLICATIONS section of the IBM Programming Announcements for HLASM
Release 1 and HLASM Release 2 for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

You can reproduce a page in this document as a transparency, if that page has
the copyright notice on it. The copyright notice must appear on each page being
reproduced. Foils should be reviewed in their entirety.

[0 Copyright IBM Corp. 1995 Vii

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

DFSMS DFSMS/MVS

ESA Enterprise Systems Architecture/370

Enterprise Systems Architecture/390 High Level Assembler

HLASM IBM High Level Assembler/MVS & VM &
VSE

IBM High Level Assembler for MVS & VM IBM

& VSE

MVS/ESA MVS/SP

MVS/XA S/370

S/390 System/360

System/370 System/390

Virtual Machine/Enterprise Systems Virtual Machine/Extended Architecture

Architecture

VM/ESA VM/XA

VSE/ESA

The following terms are trademarks of other companies:
Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other trademarks are trademarks of their respective companies.

Purpose of This Document

This document provides an overview of the many new features of IBM High Level
Assembler for MVS & VM & VSE, a new high-function assembler for the IBM
System/360, System/370, and System/390 series of machines.

How This Document Is Organized

This document is intended to provide Assembler Language programmers and
their management with an introduction to the key features and benefits of IBM
High Level Assembler for MVS & VM & VSE, Release 2. It contains two
presentations, one emphasizing the organizational and managerial benefits of
High Level Assembler, and the other providing technical information about the
major enhancements supported by High Level Assembler.

Viii High Level Assembler Presentation Guide

The two presentations are:

1. A “Management Overview” presentation (with each foil prefixed with the
letters MGMT) summarizes the managerial and organizational benefits of
IBM High Level Assembler for MVS & VM & VSE.

—— Note to the Presenter

This presentation is nontechnical and should take about one-half hour.
Additional time may be allotted for questions.

2. A “Technical Overview” presentation (with each foil prefixed with the letters
TECH) provides an overview of the key technical features of IBM High Level
Assembler for MVS & VM & VSE, examples of their use, and some
indications of their benefits.

— Note to the Presenter

This presentation is technical and should take about one hour. It
assumes some familiarity with the Assembler Language, but detailed
knowledge of or experience with the language is not required for most
portions of the presentation.

Additional time may be allotted for questions. Because some of the topics
presented here may lead to further discussion, it may be appropriate to
allocate from 60 to 90 minutes for full coverage of these topics.

The presentation text in the first two chapters may be suitable for use as
handout materials. The Presentation Foils in Chapters 3 and 4 are identical to
the mini-foils in the first two chapters.

— Note to the Presenter

The two presentations have similar structure, but with a different emphasis.
There is a fairly small overlap between the two presentations, so that you
may want to select portions of each to suit the needs of your audience. You
will probably not want to give your presentation by simply following the full
text of the presentation materials, because more information is provided in
many places than you will typically require.

Related Publications

The publications listed in this section are considered particularly suitable for
more detailed discussions of the topics covered in this document.

HLASM Release 2, MVS & VM Edition

- IBM High Level Assembler for MVS & VM & VSE, Release 2 General
Information, MVS & VM Edition, GC26-4943-01

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Licensed
Program Specifications, GC26-4944-02

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Language
Reference, MVS & VM Edition, SC26-4940-01

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Programmer's
Guide, MVS & VM Edition, SC26-4941-01

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Installation
and Customization Guide, MVS & VM Edition, SC26-3494-00

Special Notices iX

HLASM Release 2, VSE Edition

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Licensed
Program Specifications, GC26-4944-02

- IBM High Level Assembler for MVS & VM & VSE, Release 2 General
Information, VSE Edition, GC26-8261-00

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Installation
and Customization Guide, VSE Edition, SC26-8263-00

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Programmer's
Guide, VSE Edition, SC26-8264-00

- IBM High Level Assembler for MVS & VM & VSE, Release 2 Language
Reference, VSE Edition, SC26-8265-00

HLASM Release 1

- IBM High Level Assembler/MVS & VM & VSE, Release 1 Fact Sheet,
GC26-3189-00

- IBM High Level Assembler/MVS & VM & VSE, Release 1 Diagnosis Guide,
SC26-3110-00

- IBM High Level Assembler/MVS & VM & VSE, Release 1 Language
Reference, SC26-4940-00

- IBM High Level Assembler/MVS & VM & VSE, Release 1 Programmer's
Guide, SC26-4941-00

- IBM High Level Assembler/MVS & VM & VSE, Release 1 Installation,
SC26-4942-00

International Technical Support Organization Publications

X

The following publication describes HLASM Release 1:
IBM High Level Assembler/MVS & VM & VSE, Release 1 Presentation Guide,
GG24-3910-00, which will be replaced by this new document, SG24-3910-01.
A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:
International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:
TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOPUB LISTALLX. This package is updated monthly.

—— How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

High Level Assembler Presentation Guide

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser (such as
WebExplorer from the OS/2 3.0 Warp BonusPak) to the following:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments

This project was designed and managed by the author:

John R. Ehrman

IBM Software Solutions Division
Santa Teresa Laboratory

San Jose, California USA

Thanks to:

Ueli Wabhli
International Technical Support Organization, San Jose Center

Maggie Cutler
Editor

for the invaluable advice and guidance provided in the production of this
document.

Special Notices Xi

Xii High Level Assembler Presentation Guide

Chapter 1. High Level Assembler: Management Overview

Topic Overview

IBM High Level Assembler for MVS & VM & VSE

. Why a new Assembler?
High Level Assembler:

Key benefits of HLASM

- Organizational savings

Summary

Assembler Language Products
IBM Santa Teresa Laboratory
Software Solutions Division
555 Bailey Avenue
San Jose, California 95141

Management Overview - Human resource savings
- System resource savings

- Tool and development environment support

Compatibility and migration

HLASM O 1BM Corporation, 1995

MGMT-1

1.1 Topic Overview

[0 Copyright IBM Corp. 1995

On May 5, 1992, IBM* announced IBM High Level Assembler/MVS & VM & VSE,
Release 1* (program number 5696-234). It is also known by a shorter name, High
Level Assembler*, and an acronym, HLASM*. It became generally available to
tens of thousands of customers worldwide on June 26, 1992. On January 26,
1995, IBM announced IBM High Level Assembler for MVS & VM & VSE, Release
2. It became available on March 24, 1995.

HLASM has many features important to developers and maintainers of
applications and application components written in Assembler Language. These
features provide savings in human and system resources as well as interfaces
for enabling integration into a wide variety of tools and environments.

HLASM is a complete replacement for the current IBM Assembler H Version 2
(program number 5668-962, also known as HASM, ASMH, or the “IEV
Assembler”), Assembler XF (program numbers 5741-SC103, 5749-SC103, and
5752-SC103, also known as the “IFOX Assembler”), and the DOS/VSE (program
number 5745-SC-ASM) and VSE/AF assemblers (program numbers 5686-066-14
and 5686-032, also known as the “IPK Assembler”).

This presentation provides a managerial (nontechnical) overview of the value
and benefits of HLASM. A technical overview and detailed examination of the
new features are provided in Chapter 2, “High Level Assembler: Technical
Overview” on page 17.

2 High Level Assembler Presentation Guide

Why a New Assembler?

Many customer applications contain critical
components written in Assembler Language

- Assembler components are still being developed,
enhanced, maintained

- Best vehicle for performance sensitivity, access to
system functions, compact code (no run-time library!),
application-specific language elements

Assembler applications represent major
investments

- HLASM helps protect that investment
- Can benefit from new features immediately
Assembler programmers: a critical resource

- Fewer people with Assembler Language skills;
must maximize organizational benefits of their
abilities and knowledge

- HLASM targeted to needs of application developers
and maintainers

Continuing customer requirements for
enhancements

- Many are satisfied by HLASM

Support for MVS/ESA, VM/ESA, and VSE/ESA with a
single, modern, high-function Assembler

HLASM O IBM Corporation, 1995 MGMT-2

1.2 Why a New Assembler?

IBM has recognized the continuing importance to its customers of Assembler
Language applications and their underlying Assembler support.

IBM's System/370 and System/390 “mainframe” customers have made
substantial investments in assembler-based applications and application

components.

Customer surveys and discussions have shown that these assembler-based
applications, which frequently are critical to the business of the enterprise,

are still under maintenance and development.

Among the reasons for continued investment in Assembler Language

applications are:

Assembler Language is the most flexible, adaptable, and universal

language on the System/360, System/370, and System/390 platforms. It
provides access to all permitted system services and interfaces easily
with any other language.

Assembler Language provides complete control over instruction
sequences (without depending on the capabilities or peculiarities of a
compiler) while giving maximum performance.

Assembler Language can be written to be highly portable across
System/360, System/370, and System/390 systems.

Chapter 1. High Level Assembler: Management Overview

3

4

- Using simple macro techniques, Assembler Language applications can
be made easily portable to other platforms, and developers can build
their own application-specific language elements in easily extended
increments.

HLASM helps protect customer investments in existing Assembler Language
applications by extending their productive lifetimes.

The new capabilities of HLASM can provide immediate benefits, with no
“learning curve.” With a small investment, the other new features can be
exploited to provide a wide variety of advantages.

People with the skills required to support Assembler Language applications
are becoming harder to find, train, and/or retain, and they are usually a
critical resource for their companies. It is important to maximize their
productivity.

Every increment in efficiency provided for assembler programmers helps to
“leverage” their increasingly rare and valuable skills; HLASM provides
extensive enhancements in areas that promote greater usability, efficiency,
reliability, and productivity.

HLASM contains many enhancements specifically targeted to satisfying the
needs of developers and maintainers of all Assembler Language
applications, especially medium- to large-sized applications.

There has been a steady stream of user requirements for enhancements and
improvements to the IBM assemblers.

HLASM satisfies a very large number of customer requests and user-group
requirements for assembler improvements.

The existing DOS/VSE Assembler and Assembler H were designed for the
small real-storage environments of the late 1960s; the fact that they have
served so well for so long is a remarkable tribute to the strength of their
designs. However, the needs of assembler programmers have changed and
evolved over the nearly 30 years since Assembler H and the DOS/VSE
Assembler were introduced: today's applications are larger, more complex,
and harder to manage.

- HLASM integrates almost all functions of past Assemblers into a single
product that runs on MVS/ESA, VM/ESA, and VSE/ESA. Thus application
developers no longer need to worry about the differences among
Assembler products.

- In particular, the needs of the VSE/ESA customer for new function,
performance, and usability have been addressed in a single high-function
Assembler that supports all of IBM's mainline System/370 and
System/390 operating systems.

High Level Assembler Presentation Guide

Key Benefits of HLASM (1)

Organizational Savings I

Protect investments in applications
- Improved support for existing code

- Reduced costs of functional upgrades, corrective
maintenance

Protect investments in people and skills

- Preserve existing application knowledge and project
management experience

- HLASM helps all aspects of development and
maintenance

Protect investments in procedures

- Existing policies, procedures need not change

- HLASM helps enforce organizational standards

- Migration is quick and simple

Avoid potentially significant costs of converting to
new languages

- Long learning curve for new language, compiler,
library, and OS environment

- Labor-intensive conversion efforts

- Delays in deploying new function, plus new bugs

HLASM O IBM Corporation, 1995 MGMT-3

1.3 Key Benefits of HLASM (1)

HLASM provides numerous benefits to you and your organization by protecting
your investments in applications, people, and procedures.

Protect investments in applications

By providing improved technology to support existing applications, HLASM
can extend the useful lifetimes of those applications while reducing the costs
of enhancement and maintenance.

Protect investments in people and skills

The knowledge and skills of an organization’s application programmers are
a valuable resource. HLASM helps to maximize the productivity of your
application programmers by relieving them of many tedious and
unproductive tasks that it can now do itself.

Protect investments in procedures

It takes many years to develop efficient and reliable project management
procedures such as estimation, tracking, and analysis. HLASM can extend
the useful lifetime of these procedures by making more efficient use of the
human and system resources.

Avoid potentially significant costs of converting to new languages

HLASM helps you avoid converting existing—and working—applications from
Assembler Language to other languages. Not only do such conversions

Chapter 1. High Level Assembler: Management Overview 5

delay the introduction of new function into applications, but they also
typically require a long “learning curve” for the new language, its compiler
and run-time behaviors, and its interactions with the operating system
environment. In addition, conversions tend to introduce new bugs into code
that previously ran correctly.

— Note to the Presenter

You can use the information below for background and discussion material if
your audience wants to discuss factors involved in converting to a new
programming language.

6 High Level Assembler Presentation Guide

A recent research paper helps in understanding some typical motivations for,
and results of, converting to new languages.* Research at 16 organizations
showed that the reasons for changing computer languages included:

Standardization on a smaller number of languages
Portability across multiple platforms

Industrial strength languages with greater power
Structured Query Language support

Bulk buying discounts.

The reasons for not changing computer language included:

Hardware cost due to increased overheads of the new language
Language capability and reliability uncertainties

Continuity loss due to new development methodologies, training costs, and

invalidated project estimation experience
Language translator cost, including run-time libraries.

The conclusions of the research were:
1. “(T)he key drivers of productivity are social and not technical.”

Standardization: “(T)he key motivation for changing computer language

was standardization. The use of only one language was expected to

improve staff productivity.... While this is a reasonable assumption it is

simplistic.... The goal of standardization may not be a practical one.”

Long term productivity: “The analysis ... shows that program writing
takes just 13% of a programmer’s time.”

. “The costs of changing languages were higher than expected” and include

delays due to the need for additional hardware acquisitions.

3. “(C)hanging languages hinders estimating, planning, and project

management.”

People costs: “The costs in staff time were high and often hidden

1

because of the need to alter the development life cycle.... It was difficult
for them to adopt a new life cycle. By rendering their experience invalid,
both estimating and project management were made more hazardous.
The costs of this were considerable.”

“(T)he key drivers for organization performance are sociological not
technical. Therefore the technocratic response of changing the computer
language is not appropriate.”

4. The overall conclusion was: “Changing languages should be avoided if
possible.”

Peter J. Middleton, The Costs of Changing to a Fourth Generation Computer Language, Journal of Programming Languages, 2,

(1994) 67-76.

Chapter 1. High Level Assembler: Management Overview

7

Key Benefits of HLASM (2)

Human Resource Savings I

Many powerful new and expanded cross reference
features

— Less time and effort to manage applications of
all sizes

Extensive, numerous usability enhancements
— Less time and effort on unproductive details

Many new and improved diaghostics

- HLASM helps detect common (but elusive and
previously undetected) coding defects

- More informative detail provided for many messages
— Pinpoint errors earlier and more accurately
Numerous language enhancements

- Some can actually improve program efficiency!

— Deliver applications faster, with higher quality
and reliability

Many new and/or enhanced options

— Better process controls

HLASM O IBM Corporation, 1995 MGMT-4

1.4 Key Benefits of HLASM (2)
HLASM provides many extensions to past IBM Assemblers. These extensions
enable substantial savings in time and human and machine resources and
support integration of HLASM into tool and development environments.

1.4.1 Human Resource Savings
Numerous enhancements in HLASM reduce the time and effort required to
develop and maintain Assembler Language applications.

— Note to the Presenter

For each item on the foil, additional detail is provided in the sublists below.
Use this detail if your audience wants specific examples of particular
benefits. (These items are described in greater detail in Chapter 2, “High
Level Assembler: Technical Overview” on page 17.)

Many new and expanded cross reference features are provided. These can
significantly shorten the time required to accomplish many of the tasks
involved in maintaining and managing applications.

The features include:

- A catalog and cross reference of macro and COPY-member usage,
source-file record origins, and additional information in the summary

8 High Level Assembler Presentation Guide

statistics allow HLASM to track the precise file or data set origin of every
input record used in the assembly.

Note: This feature alone can save hours of expensive and tedious
detective work in searching for the causes of versioning problems!

A summary of all DSECT definition-start statements and their lengths
A USING map summarizing all USING- and DROP-statement activity

Many symbol-XREF extensions, including tags for modification, branch,
and EXecute targets, and for appearance in USING and DROP
statements.

Note: This feature eliminates the tedium in hunting for the few
instructions that might have changed the value of a variable, or for
variables that might be part of an addressing expression.

Many large and small usability enhancements improve the ease with which
applications can be developed and maintained.

The enhancements include:

Extensive PRINT and listing controls
Mixed-case input
USINGs-in-effect headings on each page

Note: This enhancement greatly improves the understandability of the
code on each page of the program listing.

Blank lines for spacing

Improved terminal output.

HLASM provides many enhanced and new diagnostics. These help speed
the processes of locating and correcting errors as well as avoid other
possible sources of error. They also reduce the technical burdens on
individuals with Assembler Language expertise.

The enhanced and new diagnostics include:

Warnings are now issued for common (but previously undetected) USING
and statement-continuation errors, thus reducing the time needed to
produce a correct program.

More information is provided for many existing messages. For example,
every diagnostic may be accompanied by a second message identifying

the file and ordinal record number from which the flagged statement was
taken.

Messages may be requested in either uppercase or mixed-case English,
or in German, Spanish, or Japanese.

Program information in messages appears in a grammatically sensible
position, and the messages have been made more informative. For
example, the “Undefined Symbol” message includes the symbol in
question.

HLASM provides numerous language enhancements that can materially
improve the speed and accuracy of application development and the quality
and reliability of the resulting code.

Chapter 1. High Level Assembler: Management Overview 9

The language enhancements include:

Three new USING statements, which improve program reliability and
efficiency and let you manage complex data structures far more simply,
naturally, and effectively than was possible with previous Assemblers.

Note: Surprising as it may seem, these new USING statements allow you
to write more efficient code than you can today! (The details in the
“Technical Overview” presentation are described in 2.9, “New and
Enhanced Base Language (1)” on page 40 and 2.11, “Examples of New
USING Statements and Diagnostics” on page 45.)

Many new system variable symbols, which provide added powerful
function and richer access to properties of the assembly-time
environment, to facilitate the tailoring of applications to specific
requirements. They also let you easily capture useful information into the
object code.

Existing assembly-time options have been extended and enhanced, and
many new options have been added. These options allow increased
flexibility and precision in controlling the processes you use to manage
application development.

These assembly-time option enhancements include:

The USING option provides controls over several different warning
conditions. This option helps programmers diagnose and control one of
the most complex and error-prone aspects of managing Assembler
Language programs: USING statements and addressability controls.

The COMPAT option controls the treatment of areas where changes to
the source program might cause HLASM to behave differently from
previous Assemblers.

The PCONTROL option permits you to override source-program print
controls, thus allowing you to produce a “full” and readable assembly
listing for the entire program, without having to modify any source
statements. The PCONTROL(MCALL) option and the PRINT MCALL
statement allow you to direct the Assembler to produce information
about the actual text of all inner macro calls.

Key elements of the assembly-time environment are loaded dynamically
at Assembler invocation: the default options table, the translation table,
the operation-code table, and the messages table. This enhancement
permits simple install-time and invocation procedures for all Assembler
users in an installation.

The TRANSLATE option simplifies the creation of applications that
support national languages other than English.

The XOBJECT option enables Assembler support of new features of the
DFSMS/MVS Binder, allowing you to use external names up to 63
characters long to create multimodal and multicomponent modules, and
much more.

To assist in ensuring that organizational standards are followed, you can
install HLASM with selected options “fixed” so that they cannot be
overridden when the Assembler is invoked.

10 High Level Assembler Presentation Guide

Key Benefits of HLASM (3)

System Resource Savings I

Performance improvements
- Fewer processor cycles for almost all assemblies
Better memory utilization, more flexible controls

- Utilizes extended storage (“above the line”);
SIZE option controls allocation

- Reduced I/O's and elapsed time

Functional enhancements mean fewer reassemblies

Tool and Development Environment Support I

Optional “Assembler Data” file
- Data about every aspect of the assembly

- Basic data for program analyzers, debuggers,
cross-referencers, and other tools

Optional exits for all user files

- Smoother integration with librarians, configuration
managers, process controls, re-formatters

Assembly-time external functions

HLASM O I1BM Corporation, 1995 MGMT-5

1.5 Key Benefits of HLASM (3)

1.5.1 System Resource Savings
The performance of HLASM Release 2 has been improved over that of HLASM
Release 1 in several areas: reducing 1/O requirements and elapsed times to
complete assemblies, and processor utilization (in almost all cases).

Reduced processor utilization
- Small assemblies are initiated and completed more quickly.

- Large macro-bound assemblies (such as IMS system generation) require
between 10% and 15% less processor time than HLASM Release 1.

Overall, users will see relatively minor differences in processor utilization
between High Level Assembler and Assembler H.

Internal enhancements in HLASM are directed toward performance
improvements such as better memory utilization (for example, working
storage above 16MB and improved utility-file management) and controls (for
example, the new SIZE option). HLASM's ability to utilize storage above
16MB can reduce or eliminate the need for utility-file operations.

Another significant benefit of the many improvements in HLASM is that fewer
assembly steps and less elapsed time are required to produce a completed
application.

Chapter 1. High Level Assembler: Management Overview 11

1.5.2 Tool and Development Environment Support Facilities

12

HLASM provides facilities that support the integration of the Assembler into tool
and development environments. The most important support features are:

An optional Assembler Data file that contains data about every aspect of the
assembly: all input records and their sources, all messages, all symbols,
complete cross reference information, and much more. This file can be used
as a basic source of data to support a great variety of tools such as
analyzers and debuggers.

Optional user exits are provided for inspecting and monitoring the flow of
records to and from all user files. With this feature the Assembler can be
integrated with librarians, configuration managers, and other components
that can benefit from direct and immediate interaction with the Assembler’s
input and output streams.

HLASM supports assembly-time external functions. These provide the
application developer with essentially unlimited access to any capability of
the assembly-time environment and support the programming of complex
assembly-time computations and interactions that would be difficult or
impossible to achieve without them.

High Level Assembler Presentation Guide

Compatibility and Migration

Upward compatibility

- For code that assembled correctly under Assembler H
V2 and DOS/VSE assembler: almost always 100%

- Easy migration from old assemblers

Some previously undiagnosed situations now
flagged

- Options control level and detail of flagging
COMPAT options to suppress new treatment of
- Case sensitivity

- Substituted macro sublists

- Unquoted mixed-case macro arguments

Areas to check for possible differences

- New opcodes: ADATA, AEJECT, ALIAS, ASPACE,
CATTR, CEJECT, EXITCTL, SETAF, SETCF

- Many new system (&SYS) variable symbols
- Literals and attribute references

- Obscure errors in previous Assemblers corrected

HLASM O IBM Corporation, 1995 MGMT-6

1.6 Compatibility and Migration

A key design consideration for HLASM is that existing code should continue to
assemble correctly, with the appropriate option settings.

Because the enormous existing base of assembler code must continue to be
supported, HLASM provides as nearly full upward compatibility with previous
Assemblers as possible.

— Note to the Presenter

You may want to skip the details on this foil. However, if compatibility
questions are important to your audience, some specific factors are listed
here; more details are covered in the “Technical Overview” presentation.

Some possible compatibility differences are:

The COMPAT option controls HLASM's treatment of macro sublists and
mixed-case input text. If you set the COMPAT option appropriately, HLASM
behaves just as Assembler H (and, for cases not already documented as
significant differences, the DOS/VSE Assembler) behaved.

If you enable some of the new diagnostics, some conditions might be flagged
that were not detected by the DOS/VSE Assembler or by Assembler H.
Among these are USING-statement overlaps (and misuses) and common

Chapter 1. High Level Assembler: Management Overview 13

continuation-statement errors. You can control this flagging by using
appropriate option settings.

The areas to check for possible sources of incompatibility between HLASM and
previous Assemblers are few:

If you use macros with the names of the nine new opcodes:
ADATA, AEJECT, ALIAS, ASPACE, CATTR, CEJECT, EXITCTL, SETAF, SETCF

you might have to use OPSYNs or other bypasses to ensure that your
macros are used instead of the new “native” opcodes.

Many new system (&SYS) variable symbols have been introduced. If your
program defines its own local or global variable symbols starting with the
characters &SYS (it should not!), name collisions may occur.

HLASM supports literals and symbol attribute references in wider contexts
than previous Assemblers, so that certain complex or unusual constructions
may be interpreted differently.

A few minor (and very obscure) errors in the behavior of Assembler H have
been corrected.

Each IBM High Level Assembler for MVS & VM & VSE Programmer's Guide
provides a comprehensive list of differences between HLASM and its
predecessors.

14 High Level Assembler Presentation Guide

HLASM Summary

Enhanced Assembler Technology I

Preserves investments in code, people, processes
Supports critical applications

Maximizes productivity of critical skills

Supports modern tools and environments

Avoids conversion costs

New Productivity and Reliability Features I

Enhanced language and functional features
Extensive usability and adaptability enhancements

New, expanded diagnostic and cross reference
capabilities

Cost Savings I

Faster development cycles

Increased application maintainability and reliability
Greater programmer efficiency and productivity

Continuing IBM 's commitment to support
Assembler Language applications

HLASM O IBM Corporation, 1995 MGMT-7

1.7 HLASM Summary

This presentation necessarily provides only a brief overview of the many new
capabilities of High Level Assembler.

The usability, language, listing, and other enhancements embodied in HLASM
make development and maintenance of Assembler Language applications easy
and efficient. Thus the savings in people time alone justify the small effort
required to make the transition from previous Assemblers to HLASM.

In summary, HLASM provides greatly enhanced Assembler technology to:
Preserve investments in code, people, and processes
Improve support for critical assembler-based applications

Maximize the productivity of personnel with critical skills

Support integration of the Assembler with modern application development
tools and environments

Help avoid costs of unnecessary conversion of existing applications to other
languages.

Chapter 1. High Level Assembler: Management Overview 15

16

The productivity gains obtained from the use of HLASM can be found in many
areas:

Numerous enhancements to the base language, as well as to the inner
conditional-assembly or macro language improve the readability,
maintainability, and efficiency of Assembler Language applications.

Extensive usability enhancements improve the efficiency and productivity of
assembler programmers and maintainers.

Many new and expanded diagnostic capabilities help in delivering
higher-quality and more reliable applications.

Using HLASM will result in cost savings attributable to:
Faster development cycles due to performance and usability improvements

More maintainable and reliable applications due to new language,
diagnostic, and extensive support features

More efficient and productive programmers.
IBM has provided a significant tool that can help Assembler application
developers with every aspect of developing, debugging, and maintaining

Assembler Language applications on its “host” System/360, System/370, and
System/390 systems.

High Level Assembler Presentation Guide

Chapter 2. High Level Assembler: Technical Overview

Topic Overview

IBM High Level Assembler for MVS & VM & VSE

. Key features
High Level Assembler:
- Assembler “externals”

- Base language enhancements

Technical Overview - Conditional-assembly language extensions

- Installability enhancements

- Implementation enhancements
Compatibility and migration

- Incompatibilities with Assembler H

Assembler Language Products + Summary
IBM Santa Teresa Laboratory
Software Solutions Division
555 Bailey Avenue
San Jose, California 95141

HLASM O 1BM Corporation, 1995 TECH-1

2.1 Topic Overview

On May 5, 1992, IBM announced IBM High Level Assembler/MVS & VM & VSE,
Release 1 (program number 5696-234). It is also known by a shorter name, High
Level Assembler, and an acronym, HLASM. It became generally available to
tens of thousands of customers worldwide on June 26, 1992. On January 26,
1995, IBM announced IBM High Level Assembler for MVS & VM & VSE, Release
2. It became available on March 24, 1995.

HLASM has many features important to developers and maintainers of
applications and application components written in Assembler Language. These
features provide savings in human and system resources as well as interfaces
for enabling integration into a wide variety of tools and environments.

High Level Assembler is a complete replacement for the current IBM Assembler
H Version 2 (program number 5668-962, also known as HASM, ASMH, or the “IEV
Assembler”), Assembler XF (program numbers 5741-SC103, 5749-SC103, and
5752-SC103, also known as the “IFOX Assembler”), and the DOS/VSE (program
number 5745-SC-ASM) and VSE/AF assemblers (program numbers 5686-066-14
and 5686-032, also known as the “IPK Assembler”).

[0 Copyright IBM Corp. 1995 17

This presentation provides a technical overview of the value and benefits of the
most important new features of High Level Assembler. A management overview
describing the organizational benefits of HLASM is provided in Chapter 1, “High
Level Assembler: Management Overview” on page 1.

IBM High Level Assembler/MVS & VM & VSE, Release 1 supports the following
operating systems:

MVS/SP V2 R2 (MVS/XA)

MVS/SP V3 R1 (MVS/ESA)

MVS/ESA SP V4 R1

MVS/ESA SP V4 R2

VM/XA SP 2 running CMS 5.5

VM/XA SP 2.1 running CMS 5.6

VM/ESA R1 (370 feature) running CMS 7. (Note: CMS 5 and CMS 6 are
supported for migration; however, dependencies may preclude the running of
these levels of CMS in some VM/ESA environments.)

VM/ESA R1 (ESA feature) running CMS 7 and CMS 8. (Note: CMS 5, CMS
5.5, CMS 5.6, and CMS 6 are supported for migration; however,
dependencies may preclude the running of these levels of CMS in some
VM/ESA environments.)

VSE/ESA V1 R2

IBM High Level Assembler for MVS & VM & VSE, Release 2 supports the
operating systems listed below. It is expected to operate under subsequent
versions, releases, and modification levels of these systems:

MVS/ESA SP V4 R2

MVS/ESA SP V5 R1

MVS/ESA SP V5 R2

Note: Installation of High Level Assembler requires SMP/E.
VM/ESA R1 (370 feature) running CMS 7

VM/ESA R1 (ESA feature) running CMS 8

VM/ESA R2 running CMS 9, CMS 10, or CMS 11

Note: Installation of High Level Assembler requires VMSES/E and VMFPLC2.
VSE/ESA V1 R2

VSE/ESA V1 R3

VSE/ESA V2 R1

Note: Installation of High Level Assembler requires MSHP.

This presentation summarizes the technical aspects of the new features of
HLASM in the following categories:

Key assembler features, including enhancements to the Assembler
Language and its display

Major capabilities of High Level Assembler

Enhancements to installability and Assembler internals.

Finally, compatibility and migration issues are discussed, particularly with
respect to IBM Assembler H Version 2.1.

18 High Level Assembler Presentation Guide

Key Features

New and enhanced options
Listing enhancements
Diagnostics enhancements
Input-output exits

Assembler data (SYSADATA) file
Generalized object file format

New and enhanced base language

- Examples of new USING statements and diagnostics
New and enhanced conditional-assembly language
- System variable symbols

Installability and usability enhancements
Implementation improvements

Compatibility and migration

Special VSE/ESA feature

HLASM O IBM Corporation, 1995 TECH-2

2.2 Key Features

High Level Assembler provides numerous new and improved features that assist
developers and maintainers in many ways:

New and enhanced options

The new and enhanced options provide greater control over the operation of
the Assembler. See 2.3, “New and Enhanced Options” on page 21 for
details.

Listing enhancements

Extensive improvements have been made to the Assembler’'s listing file,
providing a great variety of useful information about the assembled program.
These improvements are described in 2.4, “Listing Enhancements” on

page 27.

Diagnostics enhancements

Error detection and diagnosis are greatly extended in HLASM. These
diagnostics can help you to create a more robust, reliable, error-free, and
maintainable program. The new diagnostic features are described in detail in
2.5, “Diagnostics Enhancements” on page 32.

Input-output exits

HLASM provides a full range of facilities for controlling all actions on its
input and output files, through a very general and powerful set of

Chapter 2. High Level Assembler: Technical Overview 19

20

input-output exits. These are described in 2.6, “Input-Output EXits” on
page 35.

Assembler data (SYSADATA) file

The SYSADATA (or ADATA) file provides complete information about every
aspect of the assembly. It is described in greater detail in 2.7, “Assembler
Data (SYSADATA) File” on page 37.

Generalized object file format

If requested by the XOBJECT option, HLASM Release 2 creates a new object
file format. See 2.8, “Generalized Object File Format” on page 39.

New and enhanced base and conditional-assembly languages

The Assembler Language supported by High Level Assembler is actually two
languages: the ordinary, or base, language in which machine instructions
and data definitions are written, and the conditional-assembly language used
to control and tailor statement sequences.

Extensive enhancements have been made in many areas of both of these
languages. See 2.9, “New and Enhanced Base Language (1)” on page 40
and 2.13, “New and Enhanced Conditional-Assembly Language (1)” on
page 48.

Installability and usability enhancements

HLASM improves and simplifies the installation process, allowing greater
controls over the content, options, and placement of the Assembler. See
2.16, “Installability and Usability Enhancements” on page 55.

Implementation improvements

Extensive internal improvements in HLASM increase its usability, reliability,
and maintainability. See 2.17, “Implementation Improvements” on page 57.

Compatibility and migration

A design goal of HLASM is that it should continue to assemble code that
assembled correctly under older assemblers. There are, however, some
minor differences between HLASM and its predecessors; see 2.18,
“Compatibility and Migration” on page 59 for details.

— Note to the Presenter

If your audience does not use VSE/ESA, skip the following points; for a
VSE/ESA audience, you should mention these items. No further operating
system distinctions are made in this presentation.

Special VSE/ESA feature

- Greatly enhanced language capabilities

- Support for XA and ESA instructions, and for generating object code
capable of 31-bit addressing

- Significantly improved CPU, I/0, and elapsed-time performance
compared to the DOS/VSE Assembler.

A specially tailored and lower-priced feature is provided for VSE/ESA
systems. HLASM functions not available for VSE systems are:

- Options: ASA, LIST(133), LIST(MAX), XOBJECT
- Statements: CATTR
- Sample exits: INPUT, LISTING, ADATA

High Level Assembler Presentation Guide

New and Enhanced Options

New assembly-time - New installation-time

options option

- ADATA - PESTOP

- ASA - Enhanced assembly-

_ COMPAT time options

- DXREF - FLAG

_ EXIT - LINECOUNT

- FOLD - LIST

- LANGUAGE - SYSPARM

- LIBMAC - TERM

- MXREF - XREF

- OPTABLE - Source-file options

- PCONTROL - *PROCESS statement

- PROFILE - Old, unsupported

- RA2 options

- SIZE - ALGN

- TRANSLATE T LopeNT=nn

- USING - MULT

- XOBJECT - MSGLEVEL

New default options

HLASM O I1BM Corporation, 1995 TECH-3

2.3 New and Enhanced Options

Options handling and diagnosis have been improved in HLASM. Conflicting
options are flagged with a low-severity warning, and attempts to override “fixed”
options are disallowed. Many new options are supported, and extensions have
been made to many existing options.

We describe HLASM options in these six areas:

New assembly-time options

New installation-time option
Enhanced assembly-time options
Source-file options

Old, unsupported options

New default options.

2.3.1 New Assembly-Time Options

HLASM provides 17 new options to help you control all aspects of the assembly
process.

ADATA
Under control of the ADATA option, HLASM produces an Assembler data
(SYSADATA) file containing useful and detailed information about every
aspect of the assembly: its environment, all input and output files, the
source program, all symbols and reference data, and the Assembler’'s object

Chapter 2. High Level Assembler: Technical Overview 21

22

code output. This valuable and reliable information can be used to support
tools for impact analysis, debugging, cross references, and a host of other
housekeeping activities. Most important, it completely eliminates any need
for listing scanners, system intrusions to trap supervisor calls,
data-collection probes, and specialized local assembler modifications. See
2.7, “Assembler Data (SYSADATA) File” on page 37.

ASA
The ASA option lets you select either ASA (standard) or “machine”
carriage-control spacing codes on the listing file. Thus you can integrate the
assembler listing file with those of environments that use program librarians
and similar configuration management tools.

COMPAT
The COMPAT option controls compatibility with Assembler H Version 2.1. It
supports three suboptions: CASE, MACROCASE, and SYSLIST.

CASE
COMPAT(CASE) specifies that HLASM not allow lowercase characters in
symbols and instruction mnemonics.

MACROCASE
HLASM allows symbols and other statement elements to be specified in
mixed case. In some situations, you may want to write macro argument
strings in mixed case, for macros that otherwise would be able to
handle only uppercase argument strings. COMPAT(MACROCASE)
specifies that HLASM should translate lowercase characters in
unguoted macro arguments to uppercase before the macro is expanded.

SYSLIST
COMPAT(SYSLIST) instructs the Assembler to treat inner macro sublists
as older assemblers treated them: as single character strings having no
list structure.

DXREF
The DXREF option controls whether or not a DSECT cross reference should
be printed in the output listing. The DSECT cross reference provides the
starting statement number for every DSECT definition, its relocation ID, and
its total length.

EXIT
The EXIT option allows you to specify exit routines to be invoked to monitor
and control all 1/0 actions on any user file, including completely supplanting
the Assembler’s actions. See 2.6, “Input-Output Exits” on page 35.

FOLD
The FOLD option causes lowercase characters to be folded to uppercase in
the listing file. Such a facility is required in some environments where the
Latin alphabet lowercase alphabetic code points are reserved for other uses
(for example, Katakana).

LANGUAGE
The LANGUAGE option accepts one suboption specifying the language to be
used for listing headings and diagnostic messages:

UE Uppercase English
EN Mixed-case English
DE German

ES Spanish

JP Japanese

High Level Assembler Presentation Guide

LIBMAC
The LIBMAC option causes HLASM to treat library macros as though they
were defined inline at the point of their first reference in the source
program. With this option you can detect and track the causes of errors in
library macro definitions without having to manually extract them from the
library for insertion at a proper place into the source program.

MXREF(XREF), MXREF(SOURCE), MXREF(FULL)
The MXREF option specifies whether or not macro and COPY-member
information should be included in the output listing. It has three suboptions:
SOURCE, XREF, and FULL.

The macro and COPY code source catalog specified by MXREF(SOURCE)
precisely identifies the data sets from which every macro definition or
COPY segment was retrieved. (Such information was not previously
obtainable without extreme effort.)

The cross reference specified by MXREF(XREF) provides data about the
definition and each use of a macro or a COPY segment.

MXREF(FULL) specifies that both the SOURCE catalog and the member
XREF should be produced.

OPTABLE(instruction-set)
The OPTABLE option permits you specify which of several sets of machine
instructions should be used for the assembly. This can also help to avoid
creating code that cannot execute on the target machine. The allowed
suboptions of OPTABLE are UNI, ESA, XA, 370, and DOS.

PCONTROL
The PCONTROL option can be used to override the internal settings of
selected listing control (PRINT) statements appearing in the source program:
[NO]DATA, [NO]GEN, [NO]JMCALL, [NO]JUHEAD, [NO]JMSOURCE, OFF, and
ON. With this option you can debug code that would otherwise be invisible
or obscured in normal listings, without having to modify any element of the
source code itself.

The PCONTROL(MCALL) option specifies that all macro calls should be
displayed, not just top-level calls from open code. Macro calls are displayed
in their original as-entered case, independent of the COMPAT(MACROCASE)
option.

PROFILE(member)
The PROFILE option causes the Assembler to automatically COPY into the
program all statements in the specified library member (or, by default, from
ASMAPROF) before the rest of the input statements are processed. The
statements included by PROFILE will follow any ICTL and *PROCESS
statements already in the source stream.

RA2
The RA2 option controls whether or not two-byte relocatable address
constants should be flagged. When the diagnostic is disabled, you can more
easily use HLASM as a “cross-assembler” to create relocatable object code
for smaller computers with 16-bit words.

SIZE
The SIZE option allows you to specify the amount of virtual storage to be
allotted to the assembly, and whether or not it should allocate storage
above 16MB.

Chapter 2. High Level Assembler: Technical Overview 23

TRANSLATE(table)
The TRANSLATE option lets you specify a translation table to be used to
translate single-byte character data in character constants and literals to a
different character set from the (default) EBCDIC. If you do not specify a
table with the TRANSLATE option, HLASM uses an ASCII table.

This option can help you produce Assembler Language applications that
support national language requirements.

USING
The USING option enables several new levels of diagnostic and listing
information, to provide much finer control over common errors in the use of
USING statements:

The MAP suboption controls the appearance of the USING map.

The WARN(nn) suboption controls several powerful diagnostics; see
2.5.2, “USING Warnings” on page 34.

The LIMIT(xx) suboption checks for displacements exceeding the
specified limit in addressability resolutions.

XOBJECT
Specifies that the object file should be written in the new extended object
file format. (XOBJECT is exclusive with DECK and OBJECT.) See 2.8,
“Generalized Object File Format” on page 39.

The ADATA suboption requests that Assembler Data (SYSADATA) be
included in the extended object file.

2.3.2 New Installation-Time Option

One new installation-time option is provided.

PESTOP
The PESTOP installation-time option controls whether or not assembly-time
option errors, or attempts to override options deleted at installation time,
should cause the Assembler to stop or continue.

Previous assemblers diagnosed option errors, assigned defaults, and
continued with the assembly. PESTOP requests that any error in the option
list should terminate the assembly, thereby saving human and system
resources by preventing wasted assemblies.

2.3.3 Enhanced Assembly-Time Options

24

Six existing options have been extended and enhanced.

FLAG
Four new suboptions are provided in the FLAG option. See 2.5.1, “New
FLAG Suboptions” on page 33.

LINECOUNT
The LINECOUNT option can specify very long page lengths, or zero lengths
to suppress automatic page skips. Specifying LINECOUNT(0) suppresses the

effect of TITLE and EJECT, which permits creation of a vertically compacted
listing.

High Level Assembler Presentation Guide

LIST(121), LIST(133), LIST(MAX)

The LIST option lets you specify one of two different listing formats.

121 The Assembler produces the traditional and familiar listing of source
statements with six-digit addresses

133 An expanded “wide” listing with eight-digit lengths and addresses
and other useful information is provided

MAX Specifies that the Assembler should produce the widest possible
listing consistent with the record length provided for the listing file
when the Assembler was invoked.

SYSPARM

The maximum length of the &SYSPARM variable has been increased to 255
characters. Previously, it was limited to 8 characters; this extension permits
greater flexibility in controlling the structure and content of Assembler
Language programs.

TERM(WIDE), TERM(NARROW)

The terminal output display (on SYSTERM) has been simplified and
improved; two new suboptions (WIDE and NARROW) may be specified. A
new blank-compressed “narrow” layout enhances readability and allows the
output to fit easily on an 80-character-wide display without wraparound.

A single-line summary is given for a successful assembly. This
summary line reduces the amount of clutter on your terminal when
assembling a “batch” of modules.

The Deck-ID (from a TITLE statement) is included in the summary
message. This information helps you monitor the progress of a batch of
assemblies and associate diagnostic messages with the proper portion
of the input file.

XREF(UNREFS)

The ordinary symbol cross reference has been enhanced to provide a
display of unreferenced symbols defined in nondummy control sections. This
display is normally much shorter than a FULL cross reference, and can help
in locating unneeded data or instructions. If XREF(FULL) is specified, HLASM
ignores this option.

2.3.4 Source-File Options
You can use the *PROCESS statement to tailor assembly options for each source
module. This source-file statement supplies option values for a single assembly.
You may provide up to 10 *PROCESS statements; they must be the first
statements in a source module, preceded only by an ICTL statement. Some
options are not allowed on *PROCESS statements, and some are allowed only on
the first assembly in a batch.

The hierarchy of options is:

1.
2.
3.

Options specified at Assembler invocation time

Options specified on *PROCESS statements

Default options specified when HLASM Release 2 was installed, unless the
option was specified as “fixed” at that time (in which case it cannot be
overridden).

Chapter 2. High Level Assembler: Technical Overview 25

2.3.5 0Old, Unsupported Options

Assembler H Version 2 supported some very old options (originally in the
E-Level and F-Level Assemblers) that are not supported in HLASM.?

ALGN This option must now be spelled ALIGN.

LINECNT=nn This option must now be specified as LINECOUNT(nn).
LOAD This option must now be specified as OBJECT.

MULT This option must now be specified as BATCH.

MSGLEVEL=nn This option must now be specified as FLAG(nn).

2.3.6 New Default Options

HLASM Release 2 provides different default option settings from both HLASM
Release 1 and Assembler H. These changes are intended to improve the quality
and reliability of Assembler Language applications. For details see Table 1 on
page 60.

2 |n about 1970, IBM regularized option names so they would be more consistent across products. These old options were
supported by Assembler H (which appeared in 1971) only for compatibility with its predecessor assemblers, none of which
have been in use for many years.

26 High Level Assembler Presentation Guide

Listing Enhancements

Listing Enhancements ...

General

- Print-line records 121 characters or longer
- Two listing formats: narrow (121), wide (133)
- Headings controlled by LANGUAGE option
Options summary page

- Displays invocation, *PROCESS, and actual options;
overriding ddnames

External symbol dictionary

- XOBJECT extensions, ALIAS information

Source and object code listing

- USINGs-in-effect heading lines

- LOC, C-LOC, D-LOC, R-LOC location counter headings
- USING resolution details: registers, offsets

- 'C' statement-number tag for COPYed statements,
"-" for AREAD

- Location counter displayed in PRINT NOGEN regions
- Improved page-break handling
Relocation dictionary

- Wide-format extensions

Ordinary symbol and literal XREF enhancements

- Relocation ID, relocatability tags, symbol type

- Compacted cross reference: leading zeros suppressed
- Branch, Drop, Modification, Using, eXecute tags

- XREF(UNREFS) for unreferenced non-DSECT symbols
Macro and COPY-member summary and XREF

- Data set ID, COPY and LIBMAC tags, where defined,
who called

- Cross reference shows all uses

DSECT cross reference

- Relocation ID, length, definition-start statement
USING map

- Statement-location data, base address, type of USING,
anchor location or registers, last-resolved statement,
USING text

Diagnostic and assembly summary page
- Pointers to origins of source statements
- Assembler name and fix level

- All files used, 1/0 and exit counts

- Start and stop times, estimate of processor time

HLASM O IBM Corporation, 1995 TECH-4

HLASM O IBM Corporation, 1995 TECH-5

2.4 Listing Enhancements

The following listing enhancements will assist developers and maintainers in

many ways:

- General

- HLASM supports any print line length of at least 121 characters. These
longer print-line records permit other tools (such as PRINT exits) to add
information to the print line.

- Listings may be requested in two forms, depending on the length
specified for the print lines. The traditional format fits on a 121-character
line; the new “wide” format fits on a line of at least 133 characters.

The extended (or wide) Source and Object Code listing format is used if
the record length specified for the listing (SYSPRINT) file is at least 133
characters, and this length is specified either explicitly or by default.
While required for XOBJECT support, this capability is independent of the

XOBJECT option.

The Location Counter and ADDR1 and ADDR?2 fields are expanded to
eight digits, the statement-number field is expanded to six digits, and the
full eight-character macro name appears in the sequence field of
macro-generated statements.

Chapter 2. High Level Assembler: Technical Overview 27

28

Page and section headings are controlled by the LANGUAGE option and
can therefore be in any of four languages, including uppercase or
mixed-case English.

The page heading has been improved to provide dates including the
century.

Address data for the External Symbol Dictionary (ESD), Source and
Object Code listing, Relocation Dictionary, Ordinary Symbol and Literal
Cross Reference, DSECT Cross Reference, USING Map, and other fields
are displayed as eight hexadecimal digits in almost all situations,
independent of the choice of wide or narrow listing format.

Options summary page

The first page of the listing file contains:

User-supplied options (from the invocation parameters)
*PROCESS options

List of all options in effect

List of overriding ddnames.

Additional information is provided about errors in the requested options.

External symbol dictionary

In addition to ALIAS information relating to the external symbol
substitutions specified by ALIAS statements, the listing displays extra
data when the XOBJECT option is active.

Source and object code listing

The page heading can contain a summary of USINGs currently active as
of the start of that page. Thus you can understand how symbolic
addresses on each page will be resolved, without having to read the
entire program up to that point.

A new location counter column heading indicates whether a CSECT,
DSECT, RSECT, or COM section is currently in effect. The heading will
be LOC, D-LOC, R-LOC, or C-LOC, respectively.

Much more detail is provided for USING-resolution displays. Both the
second operand value and the registers specified as bases are shown for
ordinary USINGs. The base-displacement resolution and first and second
operand addresses used are provided for dependent USINGSs.

Dependent USINGs display the actual offset of the anchor location.

When PRINT NOGEN is in effect, HLASM displays the location counter
value in effect for the first macro-generated code (if any) on the same
line as the source statement. This makes debugging simpler for
programs containing macro calls.

Records brought into the source program by COPY statements appear in
the listing with a C character in column position “zero” (suffixed to the
statement number), where a + character appears for macro-generated
statements. Similarly, a — character appears for source statements read
by AREAD statements.

HLASM provides improved page-break handling: it tries to eliminate
blank pages caused by successive EJECT statements or by its forcing a
page skip because a page was full (including conditions caused by
SPACE statements) only to encounter an EJECT as the next statement.

High Level Assembler Presentation Guide

Successive TITLE statements will cause no more than a single page skip,
and only the last title text will be displayed.

If the FLAG(RECORD) option is specified, each diagnostic message will
be followed by additional information about the statement such as its
data set number, whether it is from the primary input stream or the
library (and the member name if so), and the relative record number of
the statement within its file. The post-assembly summary of flagged
statements also includes this additional information.

Relocation Dictionary

The Relocation Dictionary has been expanded to accommodate 31-bit
addresses.

Ordinary symbol and literal cross reference enhancements

The title of the symbol XREF has been changed to “Ordinary Symbol and
Literal Cross Reference.”

The relocation ID (relocatability attribute) of each symbol is identified in
the symbol XREF, which relates the symbol directly to its “owning”
control section.

An additional column provides information about the relocatability
properties of each symbol. Absolute symbols are flagged with an A,
complexly relocatable symbols are flagged with a C, and simply
relocatable symbols (the most common case) are not flagged.

The type attribute of each symbol is displayed.

Reference statement numbers have leading zeros and blanks
suppressed, providing a more compact cross reference listing. That is,
the references are free-form, separated by commas, rather than being in
fixed columns. For cross reference and diagnostic summaries, most
columnar statement-number entries are expanded to six positions.

In the cross reference, HLASM provides indicator tags for symbol usage
in several contexts:

- In USING (U) and DROP (D) statements

- As targets of EXecute (X) instructions

- Modification (M) tags for operand symbols naming fields whose
contents may be modified by the action of the instruction

- Branch target (B) tags for symbols used as operands of branch
instructions.

Note: The modification (M) tags permit rapid determination of which
symbolic usages are for read references, and which are for write
references. This feature eliminates much of the tedium in hunting for the
few instructions that might have changed the value of a variable or the
contents of a named register.

Symbols defined in ordinary (nondummy) control sections but not
referenced elsewhere in the program may be selectively displayed by
specifying the XREF(UNREFS) option, without the necessity of displaying
all unreferenced symbols.

Note: This can help in eliminating unneeded constants, storage areas,
and “dead code” instructions.

Chapter 2. High Level Assembler: Technical Overview 29

30

Macro and COPY member source summary and cross reference

The MXREF option controls two parts of the macro and COPY member cross
reference:

- The source summary provides the data set or file name and volume
identification for every file from which a member was taken, as well as
an indication of whether it was a primary source (SYSIN) file or a library
(SYSLIB) file, and a concatenation number to distinguish among
concatenated input or library files. A list of members used is provided
for each library file.

- The cross reference provides, for each macro or COPY segment, its
member name (if from a library), the concatenation number, which macro
called it, the statement number at which it was defined, and the
statement numbers at which references to it were made. (If MCALL is
active, the information provided is even more accurate and detailed.)

This information helps with version control, impact analysis, recompilation
analysis, multiple library controls, and other code management tasks.

Note: This feature alone can save hours of expensive and tedious detective
work in searching for the causes of versioning problems!

Dummy control section (DSECT) cross reference

- The DSECT cross reference provides for each internal and external
dummy section:

- Section name

- Relocation ID (this helps in identifying all symbols “belonging” to the
section)

- Section length

- Statement number where the definition begins.

USING map

- The USING map summarizes all activity relating to the USING and DROP
(and PUSH and POP USING) statements in the program that control
resolutions of symbolic addresses into base-displacement form. The
information provided includes:

- Statement number of the USING or DROP

- Section ID and location counter in effect at that point

- Section ID and location counter specified as the base address of
USING statements

- All registers involved in USING or DROP actions

- Maximum displacement calculated against each USING

- Statement number for the last statement whose operand was
resolved with respect to each USING statement (that is, the end of
the USING's range)

- Text of the USING or DROP statement operands.

Diagnostic and assembly summary page

- All statements flagged are listed; if the FLAG(RECORD) option is active,
each statement number is accompanied with information specifying the
exact source record and the file from which it was read.

- Expanded end-of-assembly summary information and statistics provide
detailed information about the number of I/O actions, memory usage,
number of diagnostic messages, host system, Assembler version, and
other related data.

High Level Assembler Presentation Guide

All input and output data set names, member names, and volume IDs are
displayed, listed by ddname.

I/0 exit statistics describe the exit type, exit name, number of calls to the
exit, number of messages produced, and number of records added or
deleted.

The summary page includes the assembly start and stop times and an
estimate of processor utilization.

The final line of the summary page displays the return code for the
assembly.

Chapter 2. High Level Assembler: Technical Overview 31

Diagnostics Enhancements

Improved diagnostic messages
- Terminology clarified, better descriptions
- Text insertions at more sensible positions

- Messages in national languages (controlled by
LANGUAGE option)

- Severity-2 “Notifications” for low-impact conditions
New diagnostics for new features

- Options, initialization, exits, functions, statements
New diagnostics for common problem areas

- USING diagnostics

- FLAG suboptions

ALIGN check alignment

CONT check continuations

RECORD provide statement-origins detail
SUBSTR check conditional-assembly substrings

Note: Some warnings may apply to valid code
- Easy “corrections” can eliminate such warnings

- But: check first; don't suppress the warnings!

HLASM O IBM Corporation, 1995 TECH-6

2.5 Diagnostics Enhancements

32

Run-time program failures are expensive and often difficult to debug. HLASM
provides additional diagnostics to help detect programming errors earlier in the
development cycle.

These features assist developers and maintainers in many ways:
- Improved diagnostic messages

- The wording of all diagnostics has been clarified, regularized, and
extended, and a severity-indicator suffix letter has been added to every
message.

- Many existing messages have been enhanced to provide more detailed
information about the specific condition or object involved in the
diagnosis.

For example, the actual source-program variable or object that the
Assembler considered to be the origin of the error condition is identified
and inserted into the message text in a grammatically sensible place
rather than always being at the end of the message.

- You may request messages in four languages by setting the LANGUAGE
option appropriately.

High Level Assembler Presentation Guide

25.1 New FLAG

- Some diagnostics for low-impact conditions are now treated as
“Notifications,” with severity code 2.

New diagnostics for new features

Many new diagnostics have been added in support of other new capabilities.
For example:

Options-related messages

- Attempt to override fixed option
- Options conflicts
- Options errors on *PROCESS statements

- Assembler-invocation messages

- Failure to load various functions, modules, and phases
- Utility-file error conditions
- File-open errors

- Exit- and function-invocation messages

- Exit-requested diagnostic messages, with six severity levels
- Exit-requested or function-requested immediate termination
- Invalid print-line length from exit

- ALIAS-related messages

- Multiple ALIASes for one external symbol
- lllegal ALIAS
- ALIAS not declared as external symbol

- The CMS interface module, ASMAHL, provides numerous diagnostics for
conditions specifically related to CMS.

New diagnostics for common problem areas

The intent of many of the new diagnostics is to warn about possible error
conditions that previous assemblers ignored. Sometimes HLASM diagnoses
code that is actually correct; but it is always better to verify such situations
than to “automatically” suppress the warnings.

- New FLAG diagnostics help to detect common oversights. They are
described at 2.5.1, “New FLAG Suboptions.”

- New USING diagnostics are one of the most valuable features of High
Level Assembler. They are described further at 2.5.2, “USING Warnings”
on page 34.

Note: Occasionally, HLASM will flag correct code as possibly being incorrect.
While it is easy to suppress the diagnostics, it is worth verifying that the code is
indeed correct. It is usually very easy to modify the code to avoid the diagnostic,
which is preferable to disabling HLASM's checking entirely.

Suboptions
The FLAG option has been greatly extended, with four new suboptions:
FLAG(NOALIGN) causes HLASM to suppress the ASMA0O33W warning

message when an alignment inconsistency is detected between a storage
operand and a referencing instruction.

FLAG(CONT) helps you to find one of the most insidious types of Assembler
Language errors: when statements are continued, misplacement of a single
character can cause portions of statements to be ignored. Specifying this

Chapter 2. High Level Assembler: Technical Overview 33

option causes HLASM to flag unusual or suspicious but difficult-to-find errors
in specifying continued and continuation statements:

- An operand on a continued record ends with a comma, and a
continuation statement is present, but the continuing statement does not
begin in the “continue” column (usually, 16).

- A list of operands ends with a comma, but the continuation column
(usually, 72) is blank.

- The continuing statement starts in the continue column, but there is no
comma present following the operands on the previous continued record.

- The continued record is full, but the continuation record does not start in
the continue column.

The FLAG(RECORD) option causes HLASM to provide supplementary
information (with each diagnostic message, and in the diagnostic summary)
about the data set name and relative record number for the statement
involved. This option can help with locating the specific original source
statement requiring correction.

FLAG(SUBSTR) specifies that HLASM should diagnose improper character
substrings in the conditional-assembly language. For example:

& SETC ' ABCDE'(4,5)

specifies a substring (five characters, starting with ' DE') that extends beyond
the end of the original string; this is an error. Normally, HLASM issues the
ASMAQ094W warning message; if FLAG(NOSUBSTR) is specified, HLASM
suppresses the warning.

2.5.2 USING Warnings

34

The WARN(nn) suboption of the USING option enables checking for several (often
obscure) but common USING-statement errors and oversights. Because USING
statements are the most important (and probably, the most confusing) of the
Assembler Language's addressing facilities, these additional features help with
specifying them and diagnosing possible misuses:

When a USING statement overrides (or nullifies) the effect of another, the
associated warning message indicates the statement number of the other (or
remote) USING statement involved in the override.

A similar warning is provided when two USING ranges overlap, possibly
indicating that an incorrect base register might be used. (An overlap of
exactly one byte will not be flagged.)

Warnings can be issued if the range of addressability of a base register
exceeds a threshold specified in the LIMIT suboption.

The use of register zero as a base register, with a nonzero absolute base
address, may be detected.

New diagnostics are provided to help locate errors involving qualified USING
statements.

High Level Assembler Presentation Guide

Input-Output Exits

1/0 exits supported for all user files

- Primary source (SYSIN)

- Macro and COPY (SYSLIB)

- Listing (SYSPRINT)

- Punch (SYSPUNCH) and object (SYSLIN)

- Terminal (SYSTERM)

- Assembler data (SYSADATA)

Integrate HLASM into development environments
Full control over all I/O actions

- Record insertion, deletion, modification

- Cooperate with or replace assembler I/O
Three sample exits are provided

INPUT variable-format source records
LISTING suppress or move options page

ADATA call multiple record-selection and
analysis routines

HLASM O IBM Corporation, 1995 TECH-7

2.6 Input-Output EXxits

Exits are supported for all user input and output files:

Source (SYSIN)

Macro and COPY (SYSLIB)

Listing (SYSPRINT)

Punch (SYSPUNCH) and object (SYSLIN)
Terminal (SYSTERM)

Assembler data (SYSADATA).

Each exit can:
Delete, insert, or modify records as they flow to or from the assembler
Supplement or supplant the Assembler's input and output facilities

Insert informational messages of any severity into the Assembler’s listing.

These exits provide complete control over the Assembler’s input and output
interfaces to its external files. They therefore greatly enhance the flexibility of
integrating HLASM into programming environments with other tools such as
librarians, code managers, program analyzers, configuration managers, listing
reformatters, and debuggers.

Chapter 2. High Level Assembler: Technical Overview 35

A detailed description of the interface between High Level Assembler and the
exits is provided in all editions of the HLASM Programmer's Guide. Mapping
macros for the exit parameter lists and the following three sample exits are
provided as optional installation materials:

An INPUT exit (ASMAXINV) accepts variable-length source records,
converting them to fixed-length 80-character records (with continuation
records, if necessary).

A PRINT exit (ASMAXPRT) supports options to suppress or move the options
page and/or to suppress the summary page at the end of the assembly.

An ADATA exit (ASMAXADT) supports one or more filter routines that may
inspect or ignore selected ADATA records as HLASM produces them, and
extract information for other uses.

36 High Level Assembler Presentation Guide

Assembler Data (SYSADATA) File

A new programming interface for Assembler data
- Eliminates need for listing scanners

- Supports all analysis tools

HLASM produces 19 record types, containing
- Precise time stamp and character set ID
- All option information

- A

source statements, with fields identified

- A

generated object code and object-file data

- Al

symbols and attribute information

- A

cross reference data, including USING map
- All messages

- Al

files, members, and volumes referenced
- All summary data

- User-specified source-stream ADATA

ASMADATA macro provides record mappings

HLASM O IBM Corporation, 1995 TECH-8

2.7 Assembler Data (SYSADATA) File

The ADATA option causes HLASM to produce records containing information
about all aspects of the assembly. These ADATA records are intended as a
stable programming interface for Assembler data. They eliminate any need for
listing “scanners”; the availability of two listing formats in HLASM dictates the
use of a reliable interface: the SYSADATA file.

Each assembly produces a sequence of records, started and ended with a pair of
Compilation Unit records delimiting the boundaries of each assembly in a batch.
Among the records are:

An ldentification record containing a precise time stamp and the coded
character set ID (CCSID) used by the Assembler

Option information describing all options used for the assembly

Source statements, with the name, operation, operand, and remarks fields
identified

The generated object code, and object-file data such as the external symbol
and relocation dictionaries

Full symbol definition and attribute information

All symbol and other cross reference data, including the USING map, the
macro and COPY-member usage data, and the DSECT cross reference

Chapter 2. High Level Assembler: Technical Overview 37

All diagnostic messages issued by HLASM (or exits), with information to help
locate the flagged statement

All input and output files, identified by data set name, member name, and
volume ID

All assembly summary data
Any user-specified source-stream ADATA, if ADATA instruction statements

are present.

This Assembler-data file increases the usability of HLASM by making it simpler
to support programming tools and program development environments.

38 High Level Assembler Presentation Guide

Generalized Object File Format

Removes almost all limitations associated with old
object module format

- External names to 63 characters
- Section sizes up to 2GB (addresses to 31 bits)

- Multicomponent, multimodal modules

- One assembly can create many independently relocatable
RMODE(24) and RMODE(31) segments

- Entry points can have own AMODEs

- Ability to retain assembler data (SYSADATA) with
object code

- And much more...
Controlled by XOBJECT option

- Cannot be specified with DECK or OBJECT
- Requires wide (LIST(133)) listing format

Utilizes new capabilities of DFSMS/MVS Binder

HLASM O IBM Corporation, 1995 TECH-9

2.8 Generalized Object File Format

If requested by the XOBJECT option, High Level Assembler creates a new
Generalized Object File Format. This extended object file supports such
enhancements as external names longer than eight characters and control
sections and other external objects larger than 16MB. It is processed by a
forthcoming release of the DFSMS/MVS Binder.

Among the enhancements that the XOBJECT option provides are:

External names up to 63 characters long

Section lengths up to 2GB, and addresses and lengths 31 bits long
Multicomponent, multimodal modules, with a single assembly capable of
producing independently relocatable and independently loadable segments
with different RMODESs

AMODE attributes may be assigned to ENTRY points (not just to control
section names)

Assembler data (SYSADATA) may be included in the object stream, allowing
both the object code and all associated descriptive data to be kept together
in one program object.

XOBJECT requires a wide listing format, specified implicitly or explicitly, by
either the LIST(133) option or LIST(MAX) with a print-line record length of at least
133 characters. The new and old object module formats are mutually exclusive:
XOBJECT cannot be specified with either DECK or OBJECT.

Chapter 2. High Level Assembler: Technical Overview 39

New and Enhanced Base Language (1)

New Assembler Instruction Statements I

*PROCESS

- Specify selected options in source module
ADATA

- Provide source-stream data for SYSADATA file
AEJECT, ASPACE

- Control format of macro-definition listings
ALIAS

- Specify alternatives to normal external symbols
CATTR

- Place object code in “Text Classes” (XOBJECT only)
CEJECT

- Control page EJECTs conditionally

EXITCTL

- Pass control information for exit routines
RSECT

- Check reentrancy on per-section basis

HLASM O IBM Corporation, 1995 TECH-10

2.9 New and Enhanced Base Language (1)

40

HLASM provides a special extension to the comment statement, and eight new
Assembler instruction statements.

*PROCESS
The *PROCESS statement allows you to assign module-specific options in
the source statements of each assembled module. Further details are
discussed at 2.3.4, “Source-File Options” on page 25.

ADATA
The ADATA statement allows you to create source-stream data to be
inserted by HLASM into the SYSADATA output stream. This information
could be produced by a program editor, a preprocessor, or the programmer.

ASPACE, AEJECT
The ASPACE and AEJECT statements permit spacing and page ejects
among the lines of a macro definition, which helps to improve its readability.
(They are not model statements; when the macro is called, the ASPACE and
AEJECT statements do not appear in the generated code.)

ALIAS
The ALIAS statement for external symbols changes a syntactically valid
external symbol to another character string in the object module. This
permits Assembler output modules to be linked with those from other

High Level Assembler Presentation Guide

languages whose external symbols contain characters that would otherwise
be syntactically invalid in the “normal” Assembler Language.

The ALIAS statement permits 64-character external names when the
XOBJECT option is active.

CATTR
The CATTR statement, when used in combination with the XOBJECT option,
controls the placement of machine language instructions and data into
multicomponent executable modules called program objects.

CEJECT
A conditional page-EJECT statement, CEJECT, permits automatic
determination of the amount of space remaining on a listing page, with a
page skip occurring if less than a requested amount remains. This removes
the necessity of manually counting lines to determine where to put EJECT
statements.

EXITCTL
The EXITCTL statement passes data to exit routines to enhance the flexibility
of managing the behavior of 1/O exits.

RSECT
The RSECT statement permits reentrancy checking on a per-section basis;
thus an assembly may contain a mixture of reentrant and nonreentrant
control sections. (RSECT was undocumented and inconsistently
implemented in Assembler H; the HLASM implementation has been clarified
and corrected.)

Chapter 2. High Level Assembler: Technical Overview 41

New and Enhanced Base Language (2)

Enhanced Assembler Instruction Statements I

Two major extensions to USING statements:
labeled and dependent

- Labeled USINGs permit addressing multiple instances
of a DSECT

- Dependent USINGs permit addressing multiple
DSECTs with a single base register

- Labeled dependent USINGs combine their power!
DROP extensions to support new USINGs
COPY &member in open code

Listing-control enhancements

- New PRINT operands:
[NO]JMCALL, [NO]JMSOURCE, and [NOJUHEAD

- NOPRINT operand on PRINT, PUSH, POP

AREAD operands for current time values

HLASM O IBM Corporation, 1995 TECH-11

2.10 New and Enhanced Base Language (2)

42

HLASM adds many important new capabilities to existing statements:

There are two major extensions to the USING statement: /abeled and
dependent. They may be used in combination, as /labeled dependent
USINGs.

This powerful enhancement permits much greater control over the
assignment and resolution of base addresses in symbolic expressions and
provides a capability that can substantially improve the reliability of
Assembler Language applications.

- Labeled USINGs permit you to address multiple instances of a DSECT
without the usual additional USING and DROP statements, and without
the need to explicitly code offsets and base registers. Thus, you can
concurrently manage multiple copies of the same DSECT-defined data
structure using the full symbolic capabilities of the Assembler Language.

- Dependent USINGs permit you to address multiple DSECTs that are
anchored by a single base register, enabling you to describe nested
code or data structures. Thus (unlike the symbolic addressing
techniques required with all previous assemblers) you can actually
reduce the number of general registers required for addressing DSECTs
and assign them to other uses. This permits you to write more efficient

High Level Assembler Presentation Guide

code while retaining the traditional advantages of fully symbolic
addressing for DSECT-mapped data.

- Labeled dependent USINGs combine the benefits of both extensions.
You could, for example, describe record structures containing multiple
instances of nested substructures, or of substructures that depend on a
variable elsewhere in the containing structure.

These USING enhancements allow you to easily manage complex data
structures that are commonly used in higher level languages such as
COBOL, PL/I, Pascal, or FORTRAN. Previous assemblers could describe
those structures only with very complex and difficult coding.

The DROP statement has been extended in support of the above
enhancements to the USING statement.

The COPY statement has been enhanced to permit specifying a variable
symbol as its operand when the statement appears in “open code.” Thus a
program can selectively COPY program segments depending on other
variables and controls and can avoid errors due to attempts to COPY
nonexistent members.

There are two enhancements to listing controls:

- The PRINT statement supports the new [NO]JMCALL, [NOJMSOURCE,
and [NOJUHEAD operands. These provide dynamic, localized control
over the contents of the output listing.

- The MCALL operand causes the Assembler to display the actual text
of the calling statements for inner macro calls. This permits you to
easily debug complex nested macro interactions. (Macro calls
displayed by the MCALL facility are not affected by the
COMPAT(MACROCASE) option.)

- The NOMSOURCE operand suppresses the display of subsequent
macro-generated source statements while still showing the
generated object code.

- The UHEAD operand controls the presence of the USING heading at
the top of each page.

- The NOPRINT operand of the PRINT, PUSH, and POP statements can
help to eliminate distracting detail in the listing due to uninteresting
generated statements and makes it easier to use HLASM as a
“cross-assembler” for other hardware architectures.

The AREAD statement operands, CLOCKB and CLOCKD, return binary and
decimal time and date information, respectively. These values return the
current time (unlike the &SYSTIME variable symbol, which contains the time
at which the assembly started and does not vary during the assembly).

— Note to the Presenter

The next four foils provide technical details of the new USING statements and
diagnostics. If questions about these new features are important to your
audience, the foils will help to illustrate how they may be used. If your
audience does not want this greater level of detail, you may omit them and
continue with 2.12, “New and Enhanced Base Language (3)” on page 46.

Chapter 2. High Level Assembler: Technical Overview 43

Labeled USINGs

Dependent USINGs

Labeled USINGs permit addressing multiple
instances of a DSECT

Example: Insert a New instance of Block in a doubly
linked list between Left and Right elements

Left New Right

LPtr |«+—| LPtr |<«— LPtr

RPtr |—| RPtr |—| RPtr

Data Data Data
Block DSect
LPr DS A Left sibling pointer
RPr DS A

Right sibling pointer
Data DS XL273 Data area

Three instances of the DSECT named Block are
concurrently active:

RNew Equ 5 R5pointstoNEW

Left Using Blockz2 LabeledUsing

Right Using Block3 Labeled Using

New Using Block RNew Labeled Using
MvC New.LPtr,Right LPtr Link Newto Right
ST RNew,Right LPtr Link Rightto New
MvC New.RPtrLeft RPtr LinkNewto Left
ST RNew,Left RPtr Link LefttoNew

Dependent USINGs permit addressing multiple
DSECTs with a single base register

Example: Three distinct control blocks reside in
adjacent areas of storage, anchored with a single

register.
CB1 DSect, Define control block 1
CB1F1 DS D
CB1F2 DS CL40
LCB1 Equ * CBl Length of block 1
CcB2 DSect, Define control block 2
CB2F1 DS 24F
LCB2 Equ * CB2 Length of block 2
CB3 DSect, Define control block 3
CB3F1 DS XL1000
* Getstorage forall 3Blocks, addressin R7
UsingCB1,7 Anchorfull storage block
* Next2 USINGs are Dependent
UsingCB2,CB1+.CB1 AdjoinCB2toCB1
UsingCB3,CB2+L.CB2 AdjoinCB3toCB2

STM 14,12,CB2F1+12 Addressesresolvedwith
XC CB3F1(4)CB3F1 ..asinglebaseregister

HLASM O IBM Corporation, 1995 TECH-12

HLASM O IBM Corporation, 1995 TECH-13

Labeled Dependent USINGs

USING Diagnostics

Labeled dependent USINGs combine their benefits

Example: code and two DCB mappings addressed
with a single base register

Using *12

INDCB DCB DDNAME=..., efc.
OutDCB DCB DDNAME=.., etc.

In UsingIHADCB,INDCB LabeleddependentUsing
Out UsingIHADCB,OutDCB Labeled dependentUsing

* Following addressesare allresolved viaR12
MVC OutDCBLRECL,In.DCBLRECL

DCBD DSORG=PS Generate [HADCB DSect

Each instance of IHADCB DSect is “anchored” on a
DCB
Both DSects are active simultaneously

All code and DSect addressing based on R12

USING in statement 3 nullifies USINGs in 2 and 4
1 START CSect

R:A 00000 2 Using *10
RB 00000 3 Using *11
ASMA301W*WARNING ** Prior active USING on statement
number 2 overridden by this USING
R:9 00000 4 Using*9
ASMA300W*WARNING ** USING overridden by aprior active
USING onstatementnumber 2

Message for statement 6 requested by specifying
USING(LIMIT(X' FOO')) option

4120BFFA OOFFA 6 LA 2START+090
ASMA304W *WARNING ** Displacementexceeds limitvalue
specified

Overlapping USING ranges

R:7 00004 8 Using *7
ASMA303W*WARNING *Multiple address resolutions may
resultfromthis USING andthe USING
onstatementnumber4

RO is only sometimes a valid base register!

00002 10B Equ 2
11 Using B0
ASMA302W*WARNING ** USING specified Register Owitha
nonzeroabsolute orrelocatable
baseaddress

HLASM O IBM Corporation, 1995 TECH-14

HLASM O IBM Corporation, 1995 TECH-15

44 High Level Assembler Presentation Guide

2.11 Examples of New USING Statements and Diagnostics

The four examples on these foils illustrate some of the power of the new
USING-statement facilities and USING diagnostics.

2.11.1 Labeled USINGs

In this example, three distinct instances of a control block named BLOCK are
addressable at the same time, using registers 2, 3, and 5. (Previous assemblers
could address only one instance at a time.) References to the left- and
right-pointer fields, LPTR and RPTR, are qualified through the use of the
qualifying symbols LEFT, RIGHT, and NEW. In this small code sequence, the NEW
element (pointed to by register 5) is inserted into the list between elements LEFT
and RIGHT. (We assume that their addresses have been previously placed into
registers 2 and 3, respectively.)

Without labeled USINGs, the code for these operations would be much more
convoluted and difficult to read, understand, and maintain.

2.11.2 Dependent USINGs

In this example, we assume that a large block of working storage will be
acquired, and that it will contain several different independently defined data
structures or control blocks named CB1, CB2, and CB3 in contiguous segments
of the acquired storage. The dependent USING statements allow all of the
control blocks to be addressed with a single register.

Previous assemblers required using a separate register to address each control
block. Because several such blocks can now be referenced through a single
register, registers previously required for addressing can be allocated to other
useful purposes, thereby increasing the efficiency of the program.

2.11.3 Labeled Dependent USINGs

This small example shows how one might combine the benefits of labeled and
dependent USINGs in a single program. It assumes that there are two data
control blocks (DCBs) addressable in the same program as the code and other
items, and that we want to make symbolic references to fields in both DCBs at
the same time. The labeled dependent USINGs permit fully symbolic references
to both DCBs at the same time, and without needing additional registers.

As you can see from these three USING examples, the possibilities for mapping
and addressing complex data structures are much richer and more varied than
with previous assemblers.

2.11.4 USING Diagnostics

This small fragment of a program illustrates how the High Level Assembler
detects possible error conditions. The first two messages warn of a common
(and frequently erroneous) situation that previous assemblers did not detect. The
third message can be requested when you suspect that some portions of your
program are approaching the limits of addressability. The fourth warns of
possible overlapping USING ranges, and the last warns of an attempt to use
General Register zero as a base containing a nonzero address.

Chapter 2. High Level Assembler: Technical Overview 45

New and Enhanced Base Language (3)

New and Enhanced Language Elements I

Blank input records

Mixed-case input

- Controllable with COMPAT(CASE) option
Underscore permitted as alphabetic
Unary minus allowed in most expressions

Literals allowed in more places
TR NUM=Ct0123456789ABCDEE Qt0¢ Literalasaterm
IC 0=AL1(01,12,1,2231,2)(R7) Indexed lieral

Symbol attribute reference extensions and
enhancements

- Type, scale, integer attributes allowed in open code

And many other niceties...

HLASM O IBM Corporation, 1995 TECH-16

2.12 New and Enhanced Base Language (3)

46

HLASM has many new language features. Some of the more important and
useful are:

Blank input records are permitted and can also be encoded into macro
definitions as model statements. (This frequently requested capability
considerably improves the readability of programs.)

Mixed-case symbols and operation codes are accepted: case is ignored
internally for those items, so that all forms of a given symbol are equivalent.
(If the uppercase-only behavior of previous assemblers is required, you may
specify the COMPAT(CASE) option.)

The underscore character is permitted as an alphabetic character.
The unary minus operator is allowed in most arithmetic expressions.

Literals may be used as relocatable terms in expressions (but not in
expressions appearing in DC or DS statements). As symbols, they may be
indexed in RX-type instruction statements. These extensions relax
restrictions in previous assemblers and simplify situations where literals
provide greater flexibility and ease of use. For example, in the instructions:

TR NUM,=C'0123456789ABCDEF' -C' O’ Literal as a term
Ic 0,=AL1(0,1,1,2,1,2,2,3,1,2)(R7) Indexed Tliteral

High Level Assembler Presentation Guide

the first literal is used as a relocatable term in an expression; the second
literal is used in an RX-type instruction as an address indexed by register 7.

— Note to the Presenter
In case you are asked what these instructions do:

The use of the first literal is typical of instructions that unpack a string
of bytes into hexadecimal digits (one per byte) and then translate the

bytes to characters for display.

The second instruction replaces the rightmost byte in Register 0 with

a count of the number of one-bits in Register 7 (assuming the value in
R7 lies between 0 and 9).

Symbol attribute references for type (T'), length (L"), scale (S§'), and integer
(I'") are allowed for ordinary symbols, SETC symbols, and literals. All may
appear in conditional-assembly and other statements, in both macros and
open code. This permits greater flexibility in constructing statements with
greater degrees of parameterization, and it generalizes a capability
previously available only inside macros.

Note: Some unusual operands using character strings starting with a single
letter followed by an apostrophe might be recognized by HLASM as attribute
references where previous assemblers had ignored them.

Other helpful enhancements include the following:

- In the CNOP statement, symbols in operands are not always required to
be previously defined.

- Symbol resolutions for EQU statements relax some previous
requirements that certain symbols be previously defined.

Chapter 2. High Level Assembler: Technical Overview 47

New/Enhanced Conditional-Assembly Language (1)

Fourteen new internal conditional-assembly
functions

- Boolean XOR operator

- SETA masking: AND, OR, XOR, and NOT
- SETA shifts: SRA, SLA, SRL, SLL

- Unary character functions

- UPPER and LOWER: change “case” of letters
- DOUBLE: pairs apostrophes and ampersands
- Binary character functions
- INDEX: finds first match of a string within another

- FIND: locates first match of any character of one string
within another

External (user-supplied) functions
- SETAF statement: invokes an integer-valued function
- SETCF statement: invokes a character-valued function
- Both types may have zero to many arguments
Constructed lists may be passed as structures
OUTERMACA(BCD).E (BCD)(&P2)alist
OUTERMAC callsINNERMAC
INNERMAC STUFF &P2 Substituted&P2= ¢(BCD) ¢

*&P2treated by INNERMAC asastring (COMPAT(SYSLIST))
* orasalist(NOCOMPAT(SYSLIST))

HLASM O IBM Corporation, 1995 TECH-17

2.13 New and Enhanced Conditional-Assembly Language (1)

HLASM supports two types of conditional-assembly functions: internal (built-in)
and external (user-written). Both provide enormous simplification in writing
common but complex data manipulations as well as the potential for making
assemblies run faster.

2.13.1 Internal Conditional-Assembly Functions
Fourteen new internal functions let you write conditional-assembly statements,
such as in macros that perform common programming functions, with greater
ease and efficiency. These 14 new functions include:

- Boolean operation: XOR between Boolean expressions

- Masking: AND, OR, XOR, and NOT on fullword binary arithmetic data (SETA
expressions)

- Shifting: left and right arithmetic and logical shifts (the SRA, SLA, SRL, and
SLL functions are exactly equivalent to the similarly named machine
instructions) of fullword binary data (SETA expressions).

48 High Level Assembler Presentation Guide

Unary character functions

- The UPPER and LOWER functions change the case of the letters in a
character string to uppercase and lowercase, respectively.

- The DOUBLE function checks the string for apostrophes and ampersands
and replaces each with a pair, allowing direct substitution into DC
statement operands and literals.

Binary character functions

- The INDEX function finds the first match of one string within a second
string.

- The FIND function locates the first match of any character from one string
within a second string.

2.13.2 External Conditional-Assembly Functions
Two new statements are provided to support calls to external functions:

SETAF
The SETAF conditional-assembly statement is used to invoke an external
(user-written) function of arithmetic type, with any number of integer
arguments. For example, the statement:

&IntVar SETAF ' IntFunc',&1I1,23
calls the external function IntFunc with two integer arguments, &I and 23.

SETCF
The SETCF conditional-assembly statement is used to invoke an external
(user-written) function of character type, with any number of character
arguments. For example, the statement:

&CharVar SETCF ' CharFn&J','&C'," A*23BX'

calls the external function whose name is constructed from the characters
CharFn suffixed with the value of the variable &J, passing two character
arguments, &C and A*23BX.

The external function capability allows you to write your own functions to operate
on conditional-assembly data. External functions can perform any desired
action, such as accessing operating system services, interacting with the
programmer, reading or writing external files, or even replacing existing
functions that were difficult or inefficient (or even impossible) to code in the older
conditional-assembly language.

2.13.3 Inner Macro Arguments and the COMPAT(SYSLIST) Option

Previous assemblers always treated arguments passed from outer to inner
macros as simple, unstructured character strings. Thus, inner macros had to
parse the operands one character at a time. You may enforce this behavior in
HLASM by specifying the COMPAT(SYSLIST) option.

However, if you specify the NOCOMPAT(SYSLIST) option, HLASM can recognize
substituted sublists as having a list structure. Thus you can construct complex
macro operands in an outer macro to be passed as list structures to inner
macros. This capability can help remove many unnecessary distinctions
between outer and inner macros.

Chapter 2. High Level Assembler: Technical Overview 49

New/Enhanced Conditional-Assembly Language (2)

New Opcode attribute reference, 0’

New conditional-assembly substring notation
'&S' (n,*)

Predefined absolute symbols in
conditional-assembly expressions

ABS EQU 20 Absolute predefined symbol
&VAR SETA 10*ABS+4 SETA expression using ABS
AF (&XGTABS)A AlFwithpredefined symbol

Fewer restrictions on macro-call name field
operand

75 MYMAC TERMS,0OPTIONS Numericnamefield

Macro comment '.*' allowed in open code
No & required on LCLx/GBLx declarations

Many new system variable symbols

- Assembly environment

- Date and time

- Option-dependent

- Statement-oriented information

- Statement-location information

- Complete name/member/volume data for all files

HLASM O IBM Corporation, 1995 TECH-18

2.14 New and Enhanced Conditional-Assembly Language (2)

50

These new and enhanced conditional-assembly language features assist
developers and maintainers in many ways:

A new 0" attribute reference lets you check an operation-code mnemonic for
possible usage. This capability can help you to determine which opcodes
have been defined, or which library members may be accessible by macro
calls or COPY operations. The possible values of this attribute are:

Assembler instruction (such as TITLE, SPACE)
Extended mnemonic (such as BNM, BZ)

A known, defined macro

Machine instruction (such as L, ST)

A member of this name exists in SYSLIB
Undefined or unknown.

cCwnmwozm>»

A new notation has been introduced for substrings in the
conditional-assembly language. The length of the substring need not be
explicitly specified, as in the previous notation:

&C SetC '&CharVar'(&Start,K'&CharVar-&Start+1)
Instead, the new * notation for the default substring length:

&C SetC '&CharVar'(&Start,*)

indicates “from here to the end of the string.”

High Level Assembler Presentation Guide

Extensions to permit use of predefined absolute symbols in
conditional-assembly expressions (such as SETA, SETB, SETC, and AlF)
encourage a richer interaction between the ordinary Assembler Language
and the inner or conditional-assembly language. For example, you can now
use symbolic values defined by EQU statements in much more general ways
to control and parameterize conditional-assembly operations.

The name-field entry of a macro call instruction may be treated more flexibly
as an operand. This extension permits a more symmetric treatment of
name-field and operand-field parameters to macro calls.

r

Macro-comment statements (starting with the two characters
allowed in open code and are ignored in look-ahead mode.

.*") are now

In LCLx and GBLx statements declaring local and global variable symbols,
the requirement for an ampersand to be prefixed to the symbol has been
removed.

HLASM provides a wide variety of new system variable symbols, whose
values characterize many aspects of the internal and external assembly
environment. These are described in detail in 2.15, “System Variable
Symbols” on page 53.

— Note to the Presenter

You can omit the following discussion of system variable symbols if your
audience does not want this level of detail.

Chapter 2. High Level Assembler: Technical Overview 51

System Variable Symbols

System Variable Symbols ...

1. Assembly-environment variables
&SYSASM: Name of the Assembler

&SYSVER: Assembler version, release, and
modification level

&SYSTEM_ID: Operating system under which this
assembly is being performed

&SYSJOB, &SYSSTEP: Assembly job and step name
&SYSPARM: Assembler invocation parameter(*)

2. Date and time variables
&SYSDATC: Assembly date (format YYYYMMDD)
&SYSDATE: Assembly date (format MM/DD/YY)(*)

&SYSTIME: Assembly start time (format HH.MM)(*)

(*) Existed in Assembler H

3. Option-dependent variables
&SYSOPT_DBCS: DBCS option setting
&SYSOPT_RENT: RENT option setting

&SYSOPT_OPTABLE: Name of the operation-code
table used for the assembly; set by the OPTABLE
option

4. Statement-related variables

&SYSSEQF: Contents of the sequence field of the
current input statement

&SYSSTMT: Number of the next statement to be
processed by the Assembler

5. Current statement-location variables
&SYSLOC: Name of current location counter(*)

&SYSSTYP: Type of the current control section into
which statements are being grouped

&SYSNEST: Nesting level at which the current macro
was invoked (macros called from open code are at
level 1)

(*) Existed in Assembler H

HLASM O IBM Corporation, 1995 TECH-19

HLASM O IBM Corporation, 1995 TECH-20

System Variable Symbols ...

TERM

6. File-information variables (three variables per file)
&SYSxxx_DSN: data set or file name
&SYSxxx_MEMBER: member name (if any)

&SYSxxx _VOLUME: volume identification

XXX Input Files

IN Current primary input file
LIB Current library input file
XXX Output Files

PRINT Listing file

PUNCH Object-module file

LIN Object-module file
ADATA SYSADATA file

Terminal-display file

HLASM

[0 IBM Corporation, 1995

TECH-21

52 High Level Assembler Presentation Guide

2.15 System Variable Symbols

Thirty-four new system (&SYS) variable symbols are available. They provide
conditional-assembly access to a rich variety of information about the assembly
and its environment, allowing you both greater control over the generated object
code, and the ability to embed useful information about the assembly into the
object code for configuration management and diagnostic aids.

Note: HLASM supports all of the system variable symbols listed below.
Assembler H supported four of them: &SYSDATE, &SYSTIME, &SYSSECT, and
&SYSPARM.

Assembly-environment variables

&SYSASM, &SYSVER
These variables provide the name of the Assembler and its version,
release, and modification level.

&SYSTEM_ID
This variable provides an identification of the operating system under
which the current assembly is being performed.

SYSJOB, &SYSSTEP
These variables provide the job name and job-step name under which
the Assembler is running.

&SYSPARM
This variable provides the character string “xxx” supplied in the
SYSPARM(xxx) option when the Assembler was invoked.

Date and time variables

&SYSDATC
This variable provides the current date in the form YYYYMMDD.

&SYSDATE
This variable provides the current date, in the form MM/DD/YY.

&SYSTIME
This variable provides the time at which the assembly started, in the
form HH.MM.

Option-dependent variables

&SYSOPT_DBCS
This binary variable provides the setting of the DBCS option. Macros
might need to generate different code in DBCS contexts.

&SYSOPT_OPTABLE
This character variable provides the name of the current operation code
table used for this assembly, as established by the OPTABLE option.

&SYSOPT_RENT
This binary variable provides the setting of the RENT option. Macros
might need to generate different code for reentrant and nonreentrant
situations.

Chapter 2. High Level Assembler: Technical Overview 53

54

Statement-related variables

&SYSSEQF
This variable provides the contents of the sequence field of the current
input statement. This information can be used for debugging data.

&SYSSTMT
This variable provides the number of the next statement to be processed
by the Assembler. Debugger data that depends on statement numbers
can be generated with this variable.

Current statement-location variables

&SYSLOC
This variable provides the name of the current location counter
(typically, the name of the current control section).

&SYSNEST
This arithmetic variable provides the nesting level at which the current
macro was invoked (the outermost macro is at level 1; open code is at
level 0).

&SYSSTYP
This variable provides the type of the current control section into which
statements are grouped or assembled (CSECT, DSECT, or RSECT) when
a macro is invoked. If a macro must generate code in a different control
section, this variable permits the macro to restore the previous
environment before exiting.

Assembler input-output file variables

Each of the Assembler’'s input and output files has three associated
variables: the name of the file or data set, the member name (if any), and the
volume identifier for the volume on which the data set resides. There are
seven user input-output files; not all of them may be opened, depending on
the assembly options in effect:

IN Current primary input file (SYSIN)
LIB Current library input file (SYSLIB)
PRINT Listing file (SYSPRINT)

PUNCH Object module file (SYSPUNCH)

LIN Object module file (SYSLIN)
ADATA Assembler data file (SYSADATA)
TERM Terminal file (SYSTERM)

The characters xxx below are replaced by the two to five identifying
characters from the list above.

&SYSxxx_DSN
The name of the current file or data set.

&SYSxxx_MEMBER
The member name (if any) of the current file or data set.

&SYSxxx_VOLUME
The name of the current volume for this file or data set.

High Level Assembler Presentation Guide

Installability and Usability Enhancements

Greater tailorability
- Almost all options specifiable at invocation time

- Options, messages, translation, opcode tables loaded
dynamically

- Individualized options possible

Improvements to installation process
- Extensions to install-time macros

- Flexible installation choices, including aliasing to “old”
product names

- Uniform part names, with optional renaming steps

All product publications extensively revised

- New, improved (and more reliable!) examples

Fewer manuals

- General Information, Programmer’'s Guide, Language
Reference

- One manual for installation, customization, diagnosis,
and service information; eliminates need for Program
Directories

And much more...

HLASM O IBM Corporation, 1995 TECH-22

2.16 Installability and Usability Enhancements

Usability of HLASM has been enhanced in several additional ways:

HLASM makes most Assembler features selectable by options, rather than
being fixed at product installation time.

Key elements of the assembly environment—the default options table, the
messages table, the translation table, and the operation-code table—are
loaded dynamically at assembly invocation. Thus it is less necessary to
choose a single set of global default options for all users at installation time
to satisfy the needs of many different users.

Because HLASM dynamically loads the default options module at the start of
the assembly, users can create their own individualized options modules.
Resources are saved because it is unnecessary to generate separate
Assemblers with different defaults or specify option overrides on each
assembly.

The installation process has been made more flexible:

The install macros permit the HLASM installer to specify a greater variety of
features, and that certain options may not be overridden when invoking the
Assembler. This helps to enforce organizational coding standards and
prevent errors due to incorrectly chosen options.

Chapter 2. High Level Assembler: Technical Overview 55

56

An optional installation step allows you to assign to HLASM Release 2
appropriate “old-product” aliases for ASMA90 and HLASM. The alias for
ASMAQ90 is IEV90 (for Assembler H under MVS and CMS), and the alias for
HLASM is HASM (for Assembler H under CMS).

Part names have been regularized: all start with the characters ASMA, and an
optional install step is provided to allow you to rename the items to their
(occasionally nonstandard) HLASM Release 1 values.

The Assembler publications have been improved:

All product publications have been extensively revised and upgraded. There
are new and additional examples as well as some sample programs to
assist in the use of the new capabilities.

The IBM High Level Assembler/MVS & VM & VSE, Release 1 Installation
manual has been completely revised in HLASM R2 to contain all installation,
customization, diagnosis, and service information. Thus, the number of
manuals has been reduced, and there is no longer any need for Program
Directories.

Among other improvements are:

HLASM can be installed in shared storage on MVS, CMS, and VSE/ESA. For
many small, or for batched, assemblies, this eliminates the need for the
multiple phases of the DOS/VSE Assembler, or for the “managed overlays”
used in Assembler H. Thus, small- and medium-sized assemblies may run
more efficiently.

The Installation Verification Sample program has been updated to use some
of the new statements in HLASM.

Mapping macros are provided for SYSADATA records, external functions,
and 1/O exit work areas.

Installation support is provided for VM systems only with VMSES/E.

Under CMS, logical segment (LSEG) support has been added. When
installing HLASM, you may specify that searches for the Assembler should
(a) search segments only, (b) search disk only, or (c) search segments first
followed by a disk search if the Assembler cannot be found in shared
segments.

High Level Assembler Presentation Guide

Implementation Improvements

Improved memory management
- SIZE option controls storage allocation and use

- Utility-file 1/0 used only when required

Virtual storage constraint relief

- Assembler code and data may reside above 16MB

- One small I/0 module must remain in 24-bit storage

- Large storage reduces utility-file 1/0O
Improved reliability and serviceability

- Many internal enhancements and cleanups

- New internal trace facility

- Improved abnormal-termination information
CMS interface module redesigned and rewritten
Performance improvements

- For large assemblies, fewer cycles than HLASM R1

- QSAM used for all sequential nonutility files

- System-determined block size (SDB) on MVS

HLASM O IBM Corporation, 1995 TECH-23

2.17 Implementation Improvements

Many features of HLASM's implementation are not directly visible but assist
developers and maintainers in many ways:

- SIZE option

Previous assemblers used all available storage; the new SIZE option permits
much greater control over the amount of storage acquired by the Assembler.

Thus users can invoke the Assembler under the control of other monitors

and job-flow programs, enabling the Assembler to share storage with
concurrent processors if desired.

+ Improved memory management and reduced utility-file I/O

Previous assemblers use utility files either by necessity of design or when
they do not need to; HLASM uses central storage whenever possible and

does work-file 1/0 only when necessary.

« Virtual storage constraint relief

HLASM Release 2 can utilize storage above 16MB, thus reducing pressures

on scarce 24-bit-addressable storage and possibly eliminating the need for

utility-file 1/0.

The Assembler itself can be placed in 31-bit storage; only a small I/O
interface module must remain below 16MB.

Chapter 2. High Level Assembler: Technical Overview

57

58

High Level Assembler is based on Assembler H Version 2.1 and contains
major internal changes to data and control structures to improve its
reliability, availability, and serviceability.

Internal trace facility

Previous assemblers had no capability (other than formatting certain work
areas on abnormal termination) to assist maintainers in locating and
correcting errors in the Assembler. HLASM Release 2 supports a new
internal trace facility that service personnel can use to extract information
about the internal behavior of the Assembler to detect and isolate internal
problems efficiently and repair them expeditiously.

Terminal error conditions that otherwise cannot be delivered to the user are
written to the job log by the Assembler. Wherever they appear, these
messages give more precise information than messages from previous
Assemblers about the cause of internal problems or environmental
conditions forcing abnormal termination.

The CMS interface module has been revised and enhanced to support newer
levels of the CMS operating system and to handle options better; some old,
unsupported, and obsolete options have been removed.

Performance improvements

Assembler performance has been improved in many areas. In addition to
the resource savings available from utilizing large amounts of central
storage, processor utilization for large macro-based assemblies has been
reduced compared to HLASM Release 1.

- For assemblies with few or no macros, HLASM provides performance
benefits in all areas.

- For assemblies with heavy macro usage, CMS and MVS show that
additional processor and elapsed time are required. The reason is that
HLASM provides a much richer set of services and information for
macros (for example, the 34 new system variable symbols); more
processor time is needed to support them. Because machine resources
are becoming less expensive at the same time that human resources
with Assembler Language skills are becoming more expensive, it is a
design factor for HLASM to “trade machine time for people time.” Thus,
we expect that the added costs of machine time for assembling certain
macro-based applications will be more than repaid by the savings in the
time and effort needed to support them.

Substantial improvements are provided in the VSE/ESA environment, in
all cases.

HLASM uses QSAM I/O for all sequential nonutility files, to obtain greater
efficiency and increased reliability, availability, and serviceability. This
capability makes improvements in access methods automatically available to
the Assembler without recoding.

On MVS systems, SDB is supported if the appropriate level of DFSMS/MVS is
present.

HLASM Release 1 uses a very simple test for RENT checking (namely,
whether a literal may be used as an operand), which may occasionally cause
inaccurate diagnostics. HLASM Release 2 uses separate flags for RENT and
literal usage checking.

High Level Assembler Presentation Guide

Compatibility and Migration

Upward compatibility for code that assembled
correctly under Assembler H V2 and DOS/VSE
Assembler

COMPAT option to suppress new treatment of
- Case sensitivity

- Substituted macro sublists
- Mixed-case macro operands

Some previously undiagnosed situations now
flagged

- Options to control level and details of flagging

- Recommend not disabling by default
- New language elements

More storage required, in general

- HLASM is bigger: not a multiphase overlay structure
- More information is collected and displayed

- Table entries and macro dictionaries are larger

Many extensions to the DOS/VSE Assembler

New option defaults

HLASM O IBM Corporation, 1995 TECH-24

2.18 Compatibility and Migration

A key design consideration for HLASM is that existing code should continue to
assemble correctly, with the appropriate options settings.

Because the enormous existing base of Assembler Language code must
continue to be supported, HLASM provides as full upward compatibility with
previous assemblers as possible.

— Note to the Presenter

You may want to skip the details on this and the next foil. However, if
compatibility questions are important to your audience, the key factors
are listed here; more details are covered in the next foil.

The possible compatibility differences are:

The COMPAT option controls the High Level Assembler's treatment of
mixed-case unquoted macro arguments, macro sublists, and mixed-case
input text. If the COMPAT option is set appropriately, the High Level
Assembler will behave just as Assembler H (and, for cases not already
documented as significant differences, the DOS/VSE Assembler) behaved.

If you enable some of the new diagnostics, some conditions might be flagged
that the DOS/VSE Assembler or Assembler H did not detect. Among these

Chapter 2. High Level Assembler: Technical Overview 59

60

are possible continuation errors and USING-statement overlaps and misuses.
You can control this flagging with appropriate option settings.

New language elements in HLASM may be recognized in contexts where
previous assemblers ignored them. For example, the availability of new
attribute references in open code may cause operand strings beginning with
any of the pairs of characters T', I', or §' to be flagged.

In general, HLASM requires more storage (compared with previous
assemblers) to handle the same jobs, for several reasons:

- To allow the entire HLASM to execute in shared storage, it was
organized as a single module, rather than as a multiphase self-managed
overlay structure. The entire Assembler is reentrant and can be installed
in shared storage, allowing assemblies in a smaller working storage.

- More information is retained in internal tables, to allow HLASM to
produce the new cross references and diagnostics.

- The macro dictionaries hold more information (for example, the new
system variable symbol values).

The many enhancements over the DOS/VSE Assembler are too numerous to
mention here; a full list is provided in each edition of the HLASM
Programmer's Guide.

OPTABLE(DOS)
The OPTABLE option has been extended to accept a DOS suboption,
which specifies that HLASM Release 2 should use an operation-code
table containing instructions compatible with the DOS/VSE Assembler.
This option is useful for migrating Assembler Language applications
from DOS/VSE to VSE/ESA.

The VSE/ESA 2.1 system automatically generates substitute job control
statements in place of the // EXEC ASSEMBLY statement to invoke HLASM with
options making it more nearly compatible with the VSE/AF and DOS/VSE
Assemblers.

New option defaults are provided that will increase ease of use and the
reliability of assembled programs (see Table 1).

Table 1. Default Option Settings in HLASM Release 2, HLASM Release 1, and ASMH

HLASM Release 2 HLASM Release 1 Assembler H V2.1

BATCH NOBATCH NOBATCH
NODECK DECK DECK
FLAG(0,ALIGN,RECORD,CONT) FLAG(0) FLAG(0)
LANGUAGE(EN) LANGUAGE(UE) (Not available)
LINECOUNT(60) LINECOUNT(60) LINECOUNT(55)
LIST(121) LIST LIST
MXREF(SOURCE) MXREF (Not available)
OBJECT NOOBJECT NOOBJECT
NOPROFILE (Not available) (Not available)
NOTRANS (Not available) (Not available)
USING(WARN(15),MAP) NOUSING (Not available)
NOXOBJECT (Not available) (Not available)
XREF(SHORT,UNREFS) XREF(FULL) XREF(FULL)

High Level Assembler Presentation Guide

Remember that HLASM does not support the old options described at 2.3.5,
“Old, Unsupported Options” on page 26. Possible approaches to handling
migration concerns caused by the changes in default options in HLASM
Release 2 include the following:

- Change the invocation options

Specifying FLAG(NOSUBSTR), FLAG(NOCONT), or USING(WARN(11)) will
sometimes suppress unexpected diagnostics.

- Adding *PROCESS statements to modify assembly options

Inserting the added statements to each affected module requires extra
effort.

Note: One of the main justifications for modifying the defaults in HLASM
Release 2 to enable more diagnostics has been that customers have
stated that the new diagnostics have great value.

- Review the affected parts

Based on experiences with enabling the new diagnostics, we recommend
that you consider carefully checking the code in which the messages
appear.

Note that install-time aliasing can help with migration from HLASM Release 1
to HLASM Release 2.

Chapter 2. High Level Assembler: Technical Overview 61

Incompatibilities with Assembler H

1. Four new macro-time opcodes: ASPACE, AEJECT,
SETAF, SETCF

Name conflicts will require additional handling

2. Five new assembly-time opcodes: ADATA, ALIAS,
CATTR, CEJECT, EXITCTL

Name conflicts can be handled with OPSYN or COPY
3. Many new system (&SYS) variable symbols

Conflicts should not occur (symbols begin with &SYS,
which was always reserved for the assemblers)

4. Obscure errors have been corrected

Type attributes of declared uninitialized variable

symbols

- HLASM returns 0 for SETC symbols, N for SETA and SETB

- Assembler H returned 00 for SETA, U (with a diagnostic)
for SETB, and 0 for SETC

- Assembler XF returned N, N, and U, respectively

Type attribute of CNOP label is I, rather than J

Type attribute of literals is “reasonable” (not U)

5. Some previously unnoticed conditions now flagged

USING-range conditions, continuation ambiguities
- Options to control level and detail of flagging
Apparent attribute references in open code

HLASM O IBM Corporation, 1995 TECH-25

2.19 Incompatibilities with Assembler H
Some specific differences between HLASM and Assembler H are:
- If you used macros with the names of the nine new opcodes:
ADATA, AEJECT, ALIAS, ASPACE, CATTR, CEJECT, EXITCTL, SETAF, SETCF

it is possible that you might have to use OPSYNs or other bypasses to
ensure that your macros are used instead of the new native opcodes.

- Many new system variable symbols have been introduced. If your program
defines its own local or global variable symbols starting with the characters
&SYS, it is possible that name collisions may occur. (But, remember that such
&SYS variables have always been reserved for the assemblers!)

+ Several inconsistencies in the evaluation of the attributes of undefined
variable symbols have been corrected.

- A few minor (and very obscure) errors in the behavior of Assembler H have
been corrected.

A comprehensive list of differences between HLASM and its predecessors is
provided in Appendix A of each edition of the HLASM Programmer's Guide.

62 High Level Assembler Presentation Guide

HLASM Summary

Enhanced Assembler Technology I

Maximizes productivity of critical skills

Extensive support for application development,
management, and maintenance

New Productivity and Reliability Features I

Enhanced language and functional features
Extensive usability and adaptability enhancements

New, expanded diagnostic and cross reference
capabilities

Cost Savings I

Faster development cycles
Increased application maintainability and reliability
Greater programmer efficiency and productivity

Continuing IBM 's commitment to support
Assembler Language applications

HLASM

[0 IBM Corporation, 1995 TECH-26

2.20 HLASM Summary

This presentation necessarily provides only a brief overview of the many new

capabilities of HLASM.

The usability, language, listing, and other enhancements embodied in HLASM
make development and maintenance of Assembler Language applications easier
and efficient. Thus the savings in people time alone could justify the (small) effort
required to make the transition from previous assemblers to HLASM.

In summary, HLASM provides greatly enhanced Assembler technology to:

Support critical assembler-based applications

Maximize the productivity of staff with critical Assembler skills

Support integration with modern application development, debugging, and

maintenance tools and environments.

You will find productivity gains in many areas:

Numerous enhancements to the base language as well as to the inner
conditional-assembly or macro language improve the readability,
maintainability, and efficiency of Assembler Language applications

Extensive usability enhancements improve the efficiency and productivity of

Assembler Language programmers and maintainers

Chapter 2. High Level Assembler: Technical Overview

Many new and expanded diagnostic capabilities facilitate delivering
higher-quality and more reliable applications.

Using HLASM will result in cost savings attributable to:
Faster development cycles due to performance and usability improvements

More maintainable and reliable applications due to new language,
diagnostic, and extensive support features

More efficient and productive programmers.
IBM has provided a significant tool that can help Assembler application
developers with every aspect of developing, debugging, and maintaining

Assembler Language applications on its host System/360, System/370, and
System/390 systems.

64 High Level Assembler Presentation Guide

Chapter 3. Management Overview Presentation Foils

[0 Copyright IBM Corp. 1995

65

High Level Assembler:

Management Overview

Assembler Language Products
IBM Santa Teresa Laboratory
Software Solutions Division
555 Bailey Avenue
San Jose, California 95141

Topic Overview

IBM High Level Assembler for MVS & VM & VSE

« Why a new Assembler?

« Key benefits of HLASM
- Organizational savings
- Human resource savings

System resource savings

Tool and development environment support
« Compatibility and migration

« Summary

HLASM (1 IBM Corporation, 1995 MGMT-1

Why a New Assembler?

« Many customer applications contain critical components
written in Assembler Language

- Assembler components are still being developed, enhanced,
maintained

- Best vehicle for performance sensitivity, access to system
functions, compact code (no run-time library!),
application-specific language elements

« Assembler applications represent major investments
- HLASM helps protect that investment

- Can benefit from new features immediately

« Assembler programmers: a critical resource

- Fewer people with Assembler Language skills;
must maximize organizational benefits of their
abilities and knowledge

- HLASM targeted to needs of application developers and
maintainers

« Continuing customer requirements for enhancements

- Many are satisfied by HLASM

« Support for MVS/ESA, VM/ESA, and VSE/ESA with a
single, modern, high-function Assembler

HLASM (1 IBM Corporation, 1995 MGMT-2

Key Benefits of HLASM (1)

Organizational Savings I

« Protect investments in applications

- Improved support for existing code

- Reduced costs of functional upgrades, corrective maintenance

« Protect investments in people and skills

- Preserve existing application knowledge and project
management experience

- HLASM helps all aspects of development and maintenance

« Protect investments in procedures
- Existing policies, procedures need not change
- HLASM helps enforce organizational standards
- Migration is quick and simple

« Avoid potentially significant costs of converting to new
languages

- Long learning curve for new language, compiler, library, and
OS environment

- Labor-intensive conversion efforts

- Delays in deploying new function, plus new bugs

HLASM (1 IBM Corporation, 1995 MGMT-3

Key Benefits of HLASM (2)

‘ Human Resource Savings I

Many powerful new and expanded cross reference
features

- Less time and effort to manage applications of all
sizes

Extensive, numerous usability enhancements
- Less time and effort on unproductive details

Many new and improved diagnostics

- HLASM helps detect common (but elusive and previously
undetected) coding defects

- More informative detail provided for many messages
— Pinpoint errors earlier and more accurately

Numerous language enhancements

- Some can actually improve program efficiency!

— Deliver applications faster, with higher quality and
reliability

Many new and/or enhanced options

— Better process controls

HLASM (1 IBM Corporation, 1995 MGMT-4

Key Benefits of HLASM (3)

‘ System Resource Savings I

« Performance improvements

- Fewer processor cycles for almost all assemblies

- Better memory utilization, more flexible controls

- Utilizes extended storage (“above the line”);
SIZE option controls allocation

- Reduced 1/0O’s and elapsed time

 Functional enhancements mean fewer reassemblies

‘ Tool and Development Environment Support I

« Optional “Assembler Data” file

- Data about every aspect of the assembly

- Basic data for program analyzers, debuggers,
cross-referencers, and other tools

« Optional exits for all user files

- Smoother integration with librarians, configuration managers,
process controls, re-formatters

« Assembly-time external functions

HLASM (1 IBM Corporation, 1995 MGMT-5

Compatibility and Migration

Upward compatibility

- For code that assembled correctly under Assembler H V2 and
DOS/VSE assembler: almost always 100%

- Easy migration from old assemblers

Some previously undiagnosed situations now flagged

- Options control level and detail of flagging

COMPAT options to suppress new treatment of
- Case sensitivity
- Substituted macro sublists

- Unquoted mixed-case macro arguments

Areas to check for possible differences

- New opcodes: ADATA, AEJECT, ALIAS, ASPACE, CATTR,
CEJECT, EXITCTL, SETAF, SETCF

- Many new system (&SYS) variable symbols
- Literals and attribute references

- Obscure errors in previous Assemblers corrected

HLASM (1 IBM Corporation, 1995 MGMT-6

HLASM Summary

‘ Enhanced Assembler Technology I

Preserves investments in code, people, processes
Supports critical applications

Maximizes productivity of critical skills

Supports modern tools and environments

Avoids conversion costs

‘ New Productivity and Reliability Features I

Enhanced language and functional features
Extensive usability and adaptability enhancements

New, expanded diagnostic and cross reference
capabilities

‘ Cost Savings I

Faster development cycles
Increased application maintainability and reliability
Greater programmer efficiency and productivity

Continuing IBM 's commitment to support Assembler

Language applications

HLASM (1 IBM Corporation, 1995

MGMT-7

74 High Level Assembler Presentation Guide

Chapter 4. Technical Overview Presentation Foils

[0 Copyright IBM Corp. 1995

75

High Level Assembler:

Technical Overview

Assembler Language Products
IBM Santa Teresa Laboratory
Software Solutions Division
555 Bailey Avenue
San Jose, California 95141

Topic Overview

IBM High Level Assembler for MVS & VM & VSE

+ Key features
- Assembler “externals”
- Base language enhancements
- Conditional-assembly language extensions
- Installability enhancements

Implementation enhancements

« Compatibility and migration
- Incompatibilities with Assembler H

« Summary

HLASM (1 IBM Corporation, 1995 TECH-1

Key Features

New and enhanced options

« Listing enhancements

« Diagnostics enhancements

« Input-output exits

« Assembler data (SYSADATA) file
« Generalized object file format

« New and enhanced base language

- Examples of new USING statements and diagnostics

« New and enhanced conditional-assembly language

- System variable symbols
« Installability and usability enhancements
* Implementation improvements
« Compatibility and migration

« Special VSE/ESA feature

HLASM (1 IBM Corporation, 1995 TECH-2

New and Enhanced Options

 New assembly-time * New installation-time
options option
- ADATA - PESTOP
- ASA - Enhanced assembly-
_ COMPAT time options
. DXREF - FLAG
. EXIT - LINECOUNT
_ FOLD - LIST
_ LANGUAGE - SYSPARM
- LIBMAC - TERM
- MXREF - XREF
- OPTABLE « Source-file options
- PCONTROL - *PROCESS statement
- PROFILE « Old, unsupported options
- RA2 - ALGN
_ SIZE - LINECNT=nn
- LOAD
- TRANSLATE MULT
_ USING - MSGLEVEL
- XOBJECT New default options

HLASM

(1 IBM Corporation, 1995

TECH-3

Listing Enhancements

General
- Print-line records 121 characters or longer
- Two listing formats: narrow (121), wide (133)

- Headings controlled by LANGUAGE option

Options summary page

- Displays invocation, *PROCESS, and actual options; overriding
ddnames

External symbol dictionary

- XOBJECT extensions, ALIAS information

Source and object code listing
- USINGs-in-effect heading lines
- LOC, C-LOC, D-LOC, R-LOC location counter headings
- USING resolution details: registers, offsets

- ' C' statement-number tag for COPYed statements,
' =" for AREAD

- Location counter displayed in PRINT NOGEN regions
- Improved page-break handling
« Relocation dictionary

- Wide-format extensions

HLASM (1 IBM Corporation, 1995 TECH-4

Listing Enhancements ...

« Ordinary symbol and literal XREF enhancements
- Relocation ID, relocatability tags, symbol type
- Compacted cross reference: leading zeros suppressed
- Branch, Drop, Madification, Using, eXecute tags

- XREF(UNREFS) for unreferenced non-DSECT symbols

« Macro and COPY-member summary and XREF

- Data set ID, COPY and LIBMAC tags, where defined, who
called

- Cross reference shows all uses

« DSECT cross reference

- Relocation ID, length, definition-start statement

« USING map

- Statement-location data, base address, type of USING, anchor
location or registers, last-resolved statement, USING text

« Diagnostic and assembly summary page
- Pointers to origins of source statements
- Assembler name and fix level
- All files used, I/O and exit counts

- Start and stop times, estimate of processor time

HLASM (1 IBM Corporation, 1995 TECH-5

Diagnostics Enhancements

« Improved diagnostic messages
- Terminology clarified, better descriptions
- Text insertions at more sensible positions

- Messages in national languages (controlled by LANGUAGE
option)

- Severity-2 “Notifications” for low-impact conditions

- New diagnostics for new features

- Options, initialization, exits, functions, statements

« New diagnostics for common problem areas
- USING diagnostics
- FLAG suboptions

ALIGN check alignment

CONT check continuations

RECORD provide statement-origins detail
SUBSTR check conditional-assembly substrings

« Note: Some warnings may apply to valid code
- Easy “corrections” can eliminate such warnings

- But: check first; don't suppress the warnings!

HLASM (1 IBM Corporation, 1995 TECH-6

Input-Output Exits

« 1/O exits supported for all user files

Primary source (SYSIN)

Macro and COPY (SYSLIB)

Listing (SYSPRINT)

Punch (SYSPUNCH) and object (SYSLIN)
Terminal (SYSTERM)

Assembler data (SYSADATA)

* Integrate HLASM into development environments

 Full control over all I/O actions

Record insertion, deletion, modification

Cooperate with or replace assembler I/O

« Three sample exits are provided

INPUT variable-format source records

LISTING suppress or move options page

ADATA call multiple record-selection and analysis
routines
HLASM (1 IBM Corporation, 1995 TECH-7

Assembler Data (SYSADATA) File

A new programming interface for Assembler data
- Eliminates need for listing scanners

- Supports all analysis tools

« HLASM produces 19 record types, containing
- Precise time stamp and character set ID
- All option information
- All source statements, with fields identified
- All generated object code and object-file data
- All symbols and attribute information
- All cross reference data, including USING map
- All messages
- All files, members, and volumes referenced
- All summary data

- User-specified source-stream ADATA

« ASMADATA macro provides record mappings

HLASM (1 IBM Corporation, 1995 TECH-8

Generalized Object File Format

« Removes almost all limitations associated with old object
module format

- External names to 63 characters
- Section sizes up to 2GB (addresses to 31 hits)

- Multicomponent, multimodal modules

- One assembly can create many independently relocatable
RMODE(24) and RMODE(31) segments

- Entry points can have own AMODESs
- Ability to retain assembler data (SYSADATA) with object code

- And much more...
« Controlled by XOBJECT option

- Cannot be specified with DECK or OBJECT

- Requires wide (LIST(133)) listing format

« Utilizes new capabilities of DFSMS/MVS Binder

HLASM (1 IBM Corporation, 1995 TECH-9

New and Enhanced Base Language (1)

‘ New Assembler Instruction Statements I

+ *PROCESS

- Specify selected options in source module
« ADATA

- Provide source-stream data for SYSADATA file
« AEJECT, ASPACE

- Control format of macro-definition listings
 ALIAS

- Specify alternatives to normal external symbols
« CATTR

- Place object code in “Text Classes” (XOBJECT only)
« CEJECT

- Control page EJECTs conditionally
« EXITCTL

- Pass control information for exit routines

« RSECT

- Check reentrancy on per-section basis

HLASM (1 IBM Corporation, 1995 TECH-10

New and Enhanced Base Language (2)

‘ Enhanced Assembler Instruction Statements I

« Two major extensions to USING statements: labeled and
dependent

- Labeled USINGs permit addressing multiple instances of a
DSECT

- Dependent USINGs permit addressing multiple DSECTs with a
single base register

- Labeled dependent USINGs combine their power!
« DROP extensions to support new USINGs
« COPY &member in open code

 Listing-control enhancements

- New PRINT operands:
[NO]JMCALL, [NO]JMSOURCE, and [NOJUHEAD

- NOPRINT operand on PRINT, PUSH, POP

« AREAD operands for current time values

HLASM (1 IBM Corporation, 1995 TECH-11

Labeled USINGs

« Labeled USINGs permit addressing multiple instances of a
DSECT

Example: Insert a New instance of Block in a doubly linked
list between Left and Right elements

Left New Right

LPtr |<«— LPtr |<«— LPtr

RPtr —»| RPtr »| RPtr

Data Data Data
Block DSect
LPr DS A Left sbing pointer
RPr DS A Right sibing pointer
Daa DS XL273 Dala area

Three instances of the DSECT named Block are
concurrently active:

RNew Equ 5 R5pointstoNEW

Left Using Block2 LabeledUsing

Right Using Block3 Labeled Using

New Using Block RNew Labeled Using
MVC New.LPtr,Right LPtr LinkNewtoRight
ST RNew,Right LPtr LinkRighttoNew
MVC New.RPtr,Left RPtr LinkNewtoLeft
ST RNew,LeftRPtr LinkLefttoNew

HLASM (1 IBM Corporation, 1995 TECH-12

Dependent USINGs

« Dependent USINGs permit addressing multiple DSECTs
with a single base register

Example: Three distinct control blocks reside in adjacent
areas of storage, anchored with a single register.

CB1 DSect, Definecontrolblock 1
CB1F1 DS D

CB1F2 DS CL40

LCB1 Equ * CBl Length of block 1
CB2 DSect, Definecontrolblock2
CB2F1 DS 24F

LCB2 Equ * CB2 Length of block 2
CB3 DSect, Definecontrolblock3
CB3FL DS XL1000

* Getstorageforall3Blocks,addressinR7
UsingCB1,7 Anchorfullstorageblock

* Next2USINGsare Dependent

UsingCB2,CB1+LCB1
UsingCB3,CB2+.CB2

ST™M

XC CB3F1(4)CB3FL

AdioinCB2toCB1
AdioinCB3toCB2

1412 CB2F1+12 Addressesresolvedwith

..asinglebaseregister

HLASM

(1 IBM Corporation, 1995

TECH-13

Labeled Dependent USINGs

« Labeled dependent USINGs combine their benefits

Example: code and two DCB mappings addressed with a
single base register

Using *12

INDCB DCB DDNAME=.., €fc.
OuDCB DCB DDNAME=.., etc.

In UsingIHADCB,InDCB LabeleddependentUsing
Out UsingIHADCB,OutDCB LabeleddependentUsing

* FollowingaddressesareallresolvedviaR12
MVC OutDCBLRECL,InDCBLRECL

DCBD DSORG=PS GenerateIHADCBDSect

- Each instance of IHADCB DSect is “anchored” on a DCB
- Both DSects are active simultaneously

« All code and DSect addressing based on R12

HLASM (1 IBM Corporation, 1995 TECH-14

USING Diagnostics

« USING in statement 3 nullifies USINGs in 2 and 4

1 START CSect
RA 00000 2 Using *10
RB 00000 3 Using *11
ASMA301W*WARNING**Prioractive USINGonstatement
number2overriddenbythisUSING

R9 00000 4 Using*9
ASMA300W*WARNING*USINGovermddenbyaprioractive
USINGonstatementnumber2

« Message for statement 6 requested by specifying
USING(LIMIT(X' FOO")) option

4120BFFA O0FFA 6 LA 2START+090
ASMA30AWWARNING*Displacementexceedslimitvalue

Specified

« Overlapping USING ranges

R7 00004 8 Using *7
ASMA303W*WARNING*Multipleaddressresolutionsmay
resultfromthisUSINGandthe USING
onstatementnumber4

* RO is only sometimes a valid base register!

00002 10 B Equ 2
00000 11 Usng B0
ASMA302W**WARNING*USING specified RegisterOwitha
nonzeroabsoluteorrelocatable

baseaddress

HLASM (1 IBM Corporation, 1995 TECH-15

New and Enhanced Base Language (3)

‘ New and Enhanced Language Elements I

« Blank input records

« Mixed-case input
- Controllable with COMPAT(CASE) option
« Underscore permitted as alphabetic

* Unary minus allowed in most expressions

« Literals allowed in more places

TR NUM=Ct0123456780ABCDEE Qt0¢ Literalasaterm
IC 0=AL1(0112122312)R7) Indexed literal

« Symbol attribute reference extensions and enhancements

- Type, scale, integer attributes allowed in open code

« And many other niceties...

HLASM (1 IBM Corporation, 1995 TECH-16

New/Enhanced Conditional-Assembly Language (1)

* Fourteen new internal conditional-assembly functions
- Boolean XOR operator
- SETA masking: AND, OR, XOR, and NOT
- SETA shifts: SRA, SLA, SRL, SLL

- Unary character functions
- UPPER and LOWER: change “case” of letters
- DOUBLE: pairs apostrophes and ampersands
- Binary character functions
- INDEX: finds first match of a string within another

- FIND: locates first match of any character of one string within
another

- External (user-supplied) functions
- SETAF statement: invokes an integer-valued function

- SETCF statement: invokes a character-valued function

- Both types may have zero to many arguments

« Constructed lists may be passed as structures

OUTERMACAB,CD)E (B,C,D)(&P2)alist
OUTERMACCcalsINNERMAC
INNERMACSTUFF,&P2 Substiuted&P2= ¢(BCD) ¢
*&P2trea1ed byINNERMACasasting(COMPAT(SYSLIST))
orasalistNOCOMPAT(SYSLIST))

HLASM (1 IBM Corporation, 1995 TECH-17

New/Enhanced Conditional-Assembly Language (2)

 New Opcode attribute reference, 0'
« New conditional-assembly substring notation '&S' (n,*)

* Predefined absolute symbols in conditional-assembly
expressions

ABS EQU 20 Absolute pred efined symboal
&VAR SETA 10*ABSH4 SETA expression using ABS
AF (&XGTABS)A AlFwithpredefinedsymbol

« Fewer restrictions on macro-call name field operand

75 MYMAC TERMSOPTIONS Numerichamefield

« Macro comment ' . *' allowed in open code
 No & required on LCLx/GBLx declarations

« Many new system variable symbols

- Assembly environment

- Date and time

- Option-dependent

- Statement-oriented information

- Statement-location information

- Complete name/member/volume data for all files

HLASM (1 IBM Corporation, 1995 TECH-18

System Variable Symbols

1. Assembly-environment variables
« &SYSASM: Name of the Assembler
« &SYSVER: Assembler version, release, and modification level

« &SYSTEM_ID: Operating system under which this assembly is
being performed

« &SYSJOB, &SYSSTEP: Assembly job and step name

« &SYSPARM: Assembler invocation parameter(*)

2. Date and time variables
« &SYSDATC: Assembly date (format YYYYMMDD)
« &SYSDATE: Assembly date (format MM/DD/YY)(*)

« &SYSTIME: Assembly start time (format HH.MM)(*)

(*) Existed in Assembler H

HLASM (1 IBM Corporation, 1995 TECH-19

System Variable Symbols ...

3. Option-dependent variables

&SYSOPT_DBCS: DBCS option setting
&SYSOPT_RENT: RENT option setting

&SYSOPT_OPTABLE: Name of the operation-code table used
for the assembly; set by the OPTABLE option

4. Statement-related variables

&SYSSEQF: Contents of the sequence field of the current
input statement

&SYSSTMT: Number of the next statement to be processed
by the Assembler

5. Current statement-location variables

&SYSLOC: Name of current location counter(*)

&SYSSTYP: Type of the current control section into which
statements are being grouped

&SYSNEST: Nesting level at which the current macro was
invoked (macros called from open code are at level 1)

(*) Existed in Assembler H

HLASM

(1 IBM Corporation, 1995 TECH-20

System Variable Symbols ...

6. File-information variables (three variables per file)
+ &SYSxxx_ DSN: data set or file name
« &SYSxxx MEMBER: member name (if any)

+ &SYSxxx_ VOLUME: volume identification

XXX Input Files

IN Current primary input file
LIB Current library input file
XXX Output Files

PRINT Listing file

PUNCH Object-module file

LIN Object-module file
ADATA SYSADATA file

TERM Terminal-display file

HLASM (1 IBM Corporation, 1995 TECH-21

Installability and Usability Enhancements

« Greater tailorability

- Almost all options specifiable at invocation time

- Options, messages, translation, opcode tables loaded
dynamically

- Individualized options possible

* Improvements to installation process
- Extensions to install-time macros

- Flexible installation choices, including aliasing to “old”
product names

- Uniform part names, with optional renaming steps

« All product publications extensively revised

- New, improved (and more reliable!) examples

« Fewer manuals

- General Information, Programmer's Guide, Language
Reference

- One manual for installation, customization, diagnosis, and
service information; eliminates need for Program Directories

« And much more...

HLASM (1 IBM Corporation, 1995 TECH-22

Implementation Improvements

Improved memory management
- SIZE option controls storage allocation and use

- Utility-file I/O used only when required

« Virtual storage constraint relief

- Assembler code and data may reside above 16MB

- One small I/O module must remain in 24-bit storage

- Large storage reduces utility-file 1/0

« Improved reliability and serviceability
- Many internal enhancements and cleanups
- New internal trace facility

- Improved abnormal-termination information
« CMS interface module redesigned and rewritten

« Performance improvements
- For large assemblies, fewer cycles than HLASM R1
- QSAM used for all sequential nonutility files

- System-determined block size (SDB) on MVS

HLASM (1 IBM Corporation, 1995 TECH-23

Compatibility and Migration

« Upward compatibility for code that assembled correctly
under Assembler H V2 and DOS/VSE Assembler

« COMPAT option to suppress new treatment of

- Case sensitivity
- Substituted macro sublists
- Mixed-case macro operands

« Some previously undiagnosed situations now flagged
- Options to control level and details of flagging

- Recommend not disabling by default
- New language elements

« More storage required, in general

- HLASM is bigger: not a multiphase overlay structure
- More information is collected and displayed
- Table entries and macro dictionaries are larger

« Many extensions to the DOS/VSE Assembler

« New option defaults

HLASM (1 IBM Corporation, 1995 TECH-24

Incompatibilities with Assembler H

1. Four new macro-time opcodes: ASPACE, AEJECT, SETAF,
SETCF

« Name conflicts will require additional handling

2. Five new assembly-time opcodes: ADATA, ALIAS, CATTR,
CEJECT, EXITCTL

« Name conflicts can be handled with OPSYN or COPY

3. Many new system (&SYS) variable symbols

« Conflicts should not occur (symbols begin with &SYS, which
was always reserved for the assemblers)

4. Obscure errors have been corrected

« Type attributes of declared uninitialized variable symbols
- HLASM returns 0 for SETC symbols, N for SETA and SETB
- Assembler H returned 00 for SETA, U (with a diagnostic) for
SETB, and 0 for SETC
- Assembler XF returned N, N, and U, respectively
« Type attribute of CNOP label is I, rather than J

« Type attribute of literals is “reasonable” (not U)

5. Some previously unnoticed conditions now flagged

« USING-range conditions, continuation ambiguities
- Options to control level and detail of flagging

« Apparent attribute references in open code

HLASM (1 IBM Corporation, 1995 TECH-25

HLASM Summary

‘ Enhanced Assembler Technology I

« Maximizes productivity of critical skills

- Extensive support for application development,
management, and maintenance

‘ New Productivity and Reliability Features I

« Enhanced language and functional features

- Extensive usability and adaptability enhancements

 New, expanded diagnostic and cross reference
capabilities

‘ Cost Savings I

« Faster development cycles

* Increased application maintainability and reliability
« Greater programmer efficiency and productivity

Continuing IBM 's commitment to support Assembler
Language applications

HLASM (1 IBM Corporation, 1995 TECH-26

Chapter 4. Technical Overview Presentation Foils 103

104 High Level Assembler Presentation Guide

Glossary

Assembler . A program that converts source
statements written in Assembler Language into a
machine language object file and provides additional
useful information such as diagnostic messages, a
formatted listing of the source and object code, and
symbol usage cross references.

Assembler Language . The symbolic
machine-oriented source language accepted by High
Level Assembler.

machine language . The binary instructions and data

interpreted and manipulated by the processor when
the program is executed. It is not meant to be

[0 Copyright IBM Corp. 1995

intelligible to human beings. Compare Assembler
Language.

object file . A file, produced by the Assembler, that
contains the machine language representation of the
assembled program.

option . A directive to the Assembler specifying
various “global” controls over its behavior. For
example, the OBJECT option specifies that the
Assembler should produce an object file. The user
specifies options as a string of characters, usually as
part of the command or statement that invokes the
Assembler.

105

106 High Level Assembler Presentation Guide

Index

Special Characters
*comments 51
*PROCESS statement 25, 40, 61
&SYSADATA_DSN 54
&SYSADATA_MEMBER 54
&SYSADATA_VOLUME 54
&SYSASM 53
&SYSDATC 53
&SYSDATE 53
&SYSIN_DSN 54
&SYSIN_MEMBER 54
&SYSIN_VOLUME 54
&SYSJOB 53
&SYSLIB_DSN 54
&SYSLIB_MEMBER 54
&SYSLIB_VOLUME 54
&SYSLIN_DSN 54
&SYSLIN_MEMBER 54
&SYSLIN_VOLUME 54
&SYSLOC 54
&SYSNEXT 54
&SYSOPT_DBCS 53
&SYSOPT_OPTABLE 53
&SYSOPT_RENT 53
&SYSPARM 53
&SYSPRINT_DSN 54
&SYSPRINT_MEMBER 54
&SYSPRINT_VOLUME 54
&SYSPUNCH_DSN 54
&SYSPUNCH_MEMBER 54
&SYSPUNCH_VOLUME 54
&SYSSECT 53
&SYSSEQF 54
&SYSSTEP 53
&SYSSTMT 54
&SYSSTYP 54
&SYSTEM_ID 53
&SYSTERM_DSN 54
&SYSTERM_MEMBER 54
&SYSTERM_VOLUME 54
&SYSTIME 43, 53
&SYSVER 53

A

ADATA exit 20, 36

sample exit ASMAXADT 36
ADATA file

See ADATA records
ADATA instruction 14, 38, 40, 62
ADATA option 12, 21, 37
ADATA records 12, 37

diagnostics 38

DSECT cross reference 37

[0 Copyright IBM Corp. 1995

ADATA records (continued)
exit messages 38
external symbols 37
identification 37
character set ID 37
time stamp 37
in program objects 39
input-output files 38
macro and COPY-member usage
object code 37
options 37, 39
relocation data 37
source statements 37
summary data 38
symbol cross reference data 37
symbol table data 37
user-supplied data 38
ADATA instruction 38
USING map 37
addressability 10
AEJECT instruction 14, 40, 62
ALGN (old, unsupported option) 26
ALIAS instruction 14, 40, 62
ALIGN suboption 33
AMODE 39
entry points 39
AND function 48
application development 12, 15, 63
application efficiency 3, 63
application investment 3
application maintenance 63
application reliability 16, 64
application-specific languages 4
AREAD instruction 43
CLOCKB operand 43
CLOCKD operand 43
AREAD statement tags 28
ASA option 20, 22
ASCIl 24
ASMAHL module (CMS) 33, 58
ASMAPROF 23
PROFILE option 23
ASMAXADT ADATA exit 36
ASMAXINV input exit 36
ASMAXPRT print exit 36
ASMH
See Assembler H Version 2
ASPACE instruction 14, 40, 62
assembler (definition) 105
Assembler Data (ADATA) file
See ADATA records
assembler data in program object
assembler differences 14

37

39

107

Assembler H

See Assembler H Version 2

Assembler H Version 2 1, 4, 17

default options 60
differences from HLASM 62
errors corrected 14, 62
HASM aliasing 56

IEV90 aliasing 56

migration considerations 22
performance 11

RSECT 41

very old options 26

assembler initiation 10, 55
assembler instructions, new 14

*PROCESS statement 40
ADATA 14, 40
AEJECT 14, 40
ALIAS 14, 40
ASPACE 14, 40
CATTR 14, 41
CEJECT 14, 41
EXITCTL 14, 41
RSECT 41
SETAF 14, 49
SETCF 14, 49
USING 42, 43

Assembler Language 4

applications 4
efficiency 4
flexibility of control 4
portability 4
programming skills 4

Assembler XF 1, 17
assembly summary 30

file names 31
host system 30
1/0 activity 30
I1/0 exit statistics 31
member names 31
memory usage 30
return code 31
time 31
processor utilization 31
start and stop 31
volume IDs 31

attribute references 47, 50, 60

B

integer 47
length 47

migration considerations 47, 60

opcode 50
scale 47
type 47

base register zero 34
Binder

108

See DFSMS/MVS Binder

High Level Assembler Presentation Guide

blank input records 46
Boolean XOR operation 48

C

CATTR instruction 14, 20, 41, 62

CEJECT instruction 14, 41, 62

character set ID 37

character substrings 50

character translation 10, 24
ASCIl 24

character-valued functions 49
CLOCKB operand of AREAD 43
CLOCKD operand of AREAD 43

CNOP instruction 47
compact listing 24

COMPAT option 10, 13, 22, 59

COMPAT(CASE) option 22, 46
COMPAT(MACROCASE) option

22, 43

COMPAT(SYSLIST) option 22, 49

compatibility 13, 60
Assembler H 18, 60
attribute references 47
error detection 19
literals 14, 46, 47, 58, 62
new opcodes 14, 62
new system variable symbo

Is

14, 62

previous assemblers 20, 26, 59

statement flagging 60
continuation statements

symbol attribute references
upward compatibility
COMPAT option 59
with previous assemblers
conditional-assembly functions
external 48
SETAF 49
SETCF 49
internal 48
arithmetic AND 48
arithmetic NOT 48
arithmetic OR 48
arithmetic XOR 48
binary character function
Boolean XOR 48

14, 60
USING statements 13, 60

13

S

14

12, 48

49

character functions, binary 49
character functions, unary 49

DOUBLE 49

FIND 49

INDEX 49

LOWER 49

masking operations 48
shifting operations 48
SLA 48

SLL 48

SRA 48

SRL 48

unary character functions

UPPER 49

49

conditional-assembly functions (continued)
user-written 48

conditional-assembly language 12, 48, 50, 51, 53

functions 12, 48
GBLx instructions 51
LCLx instructions 51
predefined absolute symbols 51
AlIF expressions 51
SETx expressions 51
substring notation 50
symbol declarations 51
CONT suboption 33
continuation statement errors 34
FLAG(CONT) option 34
control section type 54
converting languages 5
avoidance 7
continuity 7
costs 7
delayed function 6
hardware costs 7
hidden costs 7
industrial strength language 7
language uncertainties 7
learning time 6
new errors 6
portability 7
productivity 7
project management 7
social factors 7
standardization 7
translator cost 7
COPY instruction 43
extensions 43
nonexistent members 43
COPY member 23
cost savings 16, 64
application development support 16
application reliability 16
faster development 16
cross reference, diagnostics 30
cross reference, DSECT 9, 22
cross reference, macro and COPY members
30, 37
cross reference, symbol 9, 29
compact references 29
ordinary symbols and literals 9
symbol reference tags 9
relocatability attribute 29
relocatability properties 29
absolute 29
complexly relocatable 29
relocation ID 29
symbol reference tags 29
branch targets 29
DROP operands 29
execute targets 29
modification targets 29
USING operands 29

cross reference, symbol (continued)
type attribute 29
unreferenced symbols 29
customer requirements 4

D

data structures
USING enhancements 43
default options 26, 55, 60
differences from Assembler H 26, 60
differences from HLASM R1 26, 60
unsupported (old) options 60
dependent USING 42, 45
deprecated options 26
ALGN 26
LINECNT 26
LOAD 26
MSGLEVEL 26
MULT 26
development environments 12, 63
ADATA records 12
external functions 12
input-output exits 12
DFSMS/MVS Binder 10, 39
diagnostic cross reference 30
diagnostics 16, 30
ALIAS-related 33
assembler invocation 33
CMS interface 33
cross reference 30
exit invocation 33
exit-requested 33
FLAG option 33
function invocation 33
LANGUAGE option 32
message clarification 32
multiple USING resolutions 34
national languages 32
notifications 33
options-related 33
previously ignored conditions 33
severity 2 33
severity indicator 32
text insertions 32
USING-related 33
DOS/VSE Assembler 4,13, 17
compability 60
differences 59, 60
multiple phases 56
OPTABLE(DOS) option 60
performance 20
DOUBLE function 49
DROP instruction 30, 43
extensions 43
DSECT cross reference 9, 30
relocation ID 30
DXREF option 22

Index

109

E

efficiency 16, 63
EJECT instruction 28
entry point AMODE 39
EQU instruction 47
EXIT option 22
EXITCTL instruction 14, 41, 62
exits, input-output
See input-output exits
external functions 12, 49
external names 10, 39, 41
effect of XOBJECT option 41

F

FIND function 49
FLAG option 24, 33
FLAG(ALIGN) option 33
FLAG(CONT) option 33
FLAG(NOALIGN) option 33
FLAG(NOCONT) option 33, 61
FLAG(NORECORD) option 34
FLAG(NOSUBSTR) 34
FLAG(NOSUBSTR) option 34, 61
FLAG(RECORD) option 29, 30, 34
FLAG(SUBSTR) option 34
FOLD option 22
functions
See also conditional-assembly functions
conditional-assembly 12
external 12
internal 12
user-written 12

G

generalized object file format 20, 39

H
HASM

See Assembler H Version 2
HASM aliasing 56
High Level Assembler 1, 17
HLASM

See High Level Assembler

IBM High Level Assembler for MVS & VM & VSE,

Release 2 1, 17

IBM High Level Assembler/MVS & VM & VSE, Release

1 1,17
IEV Assembler
See Assembler H Version 2
IEV90 aliasing 56
IFOX Assembler
See Assembler XF

110 High Level Assembler Presentation Guide

implementation features
based on Assembler H 58
CMS interface module 58
internal reorganization 58
Internal Trace Facility 58
performance improvements 58
QSAM I/O 58
reduced utility /O 57
reentrancy checking 58
SDB 58
SIZE option 57
storage above 16MB 57
system-determined block size (SDB)
terminal errors 58
virtual storage constraint relief 57
incompatibilities 59, 62
&SYS variables 62
ASMH and HLASM differences 62
Assembler H errors corrected 62
attribute references 60
default options 60
diagnostics 59
extra storage 60
new instructions 62

ADATA 62
AEJECT 62
ALIAS 62
ASPACE 62
CATTR 62
CEJECT 62
EXITCTL 62
SETAF 62
SETCF 62

new system variable symbols 62
unsupported (old) options 60
variable symbol attributes 62
with Assembler H 62
INDEX function 49
inner-macro arguments 49
INPUT exit 20, 36
sample exit ASMAXINV 36
input-output exits 12, 20, 35, 36
actions 35
control assembler I1/O 35
delete records 35
insert listing messages 35
insert records 35
modify records 35
support assembler 1/0 35
assembler data (SYSADATA) 35
sample exit ASMAXADT 35
input (SYSIN) 35
sample exit ASMAXINV 35
library (SYSLIB) 35
listing (SYSPRINT) 35
sample exit ASMAXPRT 35
object (SYSLIN) 35
object (SYSPUNCH) 35

58

input-output exits (continued)
sample exits 36
ADATA (ASMAXADT) 36
INPUT (ASMAXINV) 36
PRINT (ASMAXPRT) 36
terminal (SYSTERM) 35
input-output file variable symbols 54
installation 55, 58
CMS interface module 58
ASMAHL 58
CMS logical segments 56
mapping macros 56
options 55
Program Directory 56
shared storage 56
integer-valued functions 49
Internal Trace Facility 58
investment protection 5, 15
application investments 5
applications 5
people and skills 5
processes and procedures 5
project management 5
IPK Assembler
See DOS/VSE Assembler

L

labeled dependent USING 43, 45
labeled USING 42, 45
language conversion 5, 15
avoidance 7
continuity 7
costs 7
delayed function 6
hardware costs 7
hidden costs 7
industrial strength language 7
language uncertainties 7
learning time 6
new errors 6
portability 7
productivity 7
project management 7
social factors 7
standardization 7
translator cost 7
LANGUAGE option 22
LIBMAC option 23
library macros 23
LINECNT (old, unsupported option) 26
LINECOUNT option 24
LIST option 25
LIST(121) option 25
LIST(133) option 20, 25
LIST(MAX) option 20, 25
listing enhancements 27, 80
121-character format 27
133-character format 27

listing enhancements (continued)
address data 28
assembly summary 30
century dates 28
diagnostic cross reference 30
DSECT cross reference 30
EJECT instruction 28
External Symbol Dictionary 28
ALIAS information 28
XOBJECT 28
language-specific headings 28
literal cross reference 29
longer print lines 27

macro and COPY member cross reference 30

options summary page 28
*PROCESS options 28
options in effect 28
overriding ddnames 28

page breaks 28

page heading 28

PRINT NOGEN regions 28

Relocation Dictionary 29

source and object code 27, 80

SPACE instruction 28

statement tags 28
AREAD 28
COPY 28

USING map 30

USING resolution 28

wide format 27

XOBJECT 27
listing statement tags 28
AREAD 28
COPY 28
literal cross reference 29
literals 24

literals as terms 46

LOAD (old, unsupported option) 26
location counter heading 28
LOWER function 49

M

machine language (definition) 105
macro and COPY member cross reference
library members 30
member usage 30
primary input files 30
macro argument sublists 49
macro call operands 22
mixed case 22
name field entry 51
sublists 22
macro comments 51
Maintain System History Program 18
manuals 56
MCALL operand 43
MCALL suboption 10, 30

8, 30

Index

111

messages 9, 32
English 9, 32
German 9, 32
Japanese 9, 32
Spanish 9, 32
migration from old assemblers 60
*PROCESS statements 61
attribute references 47
correct assembly of old code 59
DOS/VSE compatibility 60
OPTABLE(DOS) option 60
extra storage 60
new diagnostics 59
Assembler H 60
DOS/VSE Assembler 59
new language elements 60
new option defaults 60
options 61
FLAG(NOCONT) 61
FLAG(NOSUBSTR) 61
USING(WARN) 61
upward compatibility 59
mixed-case input 9, 13, 46, 59
MSGLEVEL (old, unsupported option) 26
MSHP
See Maintain System History Program
MULT (old, unsupported option) 26
multiple USING resolutions 34
MVS/ESA support 4
MXREF option 23, 30
FULL suboption 23
SOURCE suboption 23
XREF suboption 23
MXREF(FULL) option 23
MXREF(SOURCE) option 23
MXREF(XREF) option 23

N

national language applications 10, 24
national language messages
English
mixed-case 9
uppercase 9

German 9
Japanese 9
Spanish 9

new base language 46
blank input records 46
CNOP statement operands 47
EQU statement resolution 47
literals as terms 46
mixed-case opcodes 46

COMPAT(CASE) option 46

mixed-case symbols 46
symbol attribute references 47
unary minus operator 46
underscore character 46

112 High Level Assembler Presentation Guide

new opcodes 14
*PROCESS statement 40
ADATA 14, 40
AEJECT 14, 40
ALIAS 14, 40
ASPACE 14, 40
CATTR 14, 41
CEJECT 14, 41
EXITCTL 14, 41
RSECT 41
SETAF 14, 49
SETCF 14, 49
USING 42, 43

new USING statements 10, 43, 45

NOALIGN suboption 33

NOCOMPAT(SYSLIST) option 49

NOCONT suboption 33

NOMSOURCE operand 43

NOPRINT operand 43
POP instruction 43
PRINT instruction 43
PUSH instruction 43

NORECORD suboption 34

NOSUBSTR suboption 34

NOT function 48

nullified USINGs 34

O

object file (definition) 105
opcode attribute reference 50
COPY segments 50
library members 50
macros 50
opcodes, new 14
*PROCESS statement 40
ADATA 14, 40
AEJECT 14, 40
ALIAS 14, 40
ASPACE 14, 40
CATTR 14, 41
CEJECT 14, 41
EXITCTL 14, 41
RSECT 41
SETAF 14, 49
SETCF 14, 49
USING 42, 43
operating systems
MVS/ESA SP V4 R1 18
MVS/ESA SP V4 R2 18
MVS/ESA SP V5 R1 18
MVS/ESA SP V5 R2 18
MVS/SP V2 R2 18
MVS/SP V3 R1 18
VM/ESA R1 18
CMS 7 18
CMS 8 18
VM/ESA R2 18
CMS 10 18
CMS 11 18

operating systems (continued)
VM/ESA R2 (continued)
CMS 9 18
VM/XA SP 2 18
VM/XA SP 2.1 18
VSE/ESA V1 R2 18
VSE/ESA V1 R3 18
VSE/ESA V2 R1 18
operation-code table 53, 55, 60
OPSYN instruction 14, 62
OPTABLE option 23
OPTABLE(DOS) option 60
option defaults differences 60
optional materials 56
mapping macros 56
external function interfaces
1/0-exit interfaces 56
SYSADATA records 56
options
*PROCESS statement 25
ADATA 12, 21, 37
ALGN 26
aliases 56
HASM 56
IEV90 56
ASA 22
COMPAT 10, 13, 22, 59
COMPAT(CASE) 22, 46
COMPAT(MACROCASE) 22
COMPAT(SYSLIST) 22, 49
DECK 39
defaults 55
definition 105
DXREF 22
EXIT 22
fixed 10, 55
FLAG 24, 33
FLAG(ALIGN) 33
FLAG(CONT) 33
FLAG(NOALIGN) 33
FLAG(NOCONT) 33, 61
FLAG(NORECORD) 34
FLAG(NOSUBSTR) 34, 61
FLAG(RECORD) 29, 30, 34
FLAG(SUBSTR) 34
FOLD 22
individualized 55
installation 55
LANGUAGE 22
LIBMAC 23
LINECNT 26
LINECOUNT 24
LIST 25
LIST(121) 25
LIST(133) 25, 39
LIST(MAX) 25, 39
LOAD 26
MCALL 30

56

options (continued)
module-specific 25, 40
MSGLEVEL 26
MULT 26
MXREF 23, 30
NOCOMPAT(SYSLIST) 49
OBJECT 39
OPTABLE 23
OPTABLE(DOS) 60
PCONTROL 10, 23
PCONTROL(DATA) 23
PCONTROL(MCALL) 10, 23
PCONTROL(MSOURCE) 23
PCONTROL(OFF) 23
PCONTROL(ON) 23
PCONTROL(UHEAD) 23
PESTOP 24
PROFILE 23
RA2 23
SIZE 11, 23, 57
SYSPARM 25
TERM 25
TRANSLATE 10, 24
USING 10, 24, 34, 61

LIMIT 24
MAP 24
WARN 24

USING(LIMIT) 34
USING(WARN) 34, 61
XOBJECT 10, 24, 39
XREF 25
XREF(UNREFS) 29
options hierarchy 25
options, default 26, 60
differences from Assembler H 26, 60
differences from HLASM R1 26, 60
unsupported (old) options 60
options, unsupported 26
ALGN 26
LINECNT 26
LOAD 26
MSGLEVEL 26
MULT 26
OR function 48

P

page breaks 28

page heading USING summary 28
PCONTROL option 10, 23
PCONTROL(DATA) option 23
PCONTROL(MCALL) option 10, 23
PCONTROL(MSOURCE) option 23
PCONTROL(OFF) option 23
PCONTROL(ON) option 23
PCONTROL(UHEAD) option 23
PESTOP option 24

POP instruction 43

Index

113

PRINT exit 20, 36
sample exit ASMAXPRT 36
PRINT instruction 10, 23, 43
MCALL operand 10, 43
MSOURCE operand 43
NOMCALL operand 23, 43
NOMSOURCE operand 23, 43
NOUHEAD operand 23, 43
UHEAD operand 43
PRINT MCALL instruction 10, 43
PRINT NOGEN regions 28
processor utilization 11, 58
productivity 15, 16, 63
PROFILE option 23
ASMAPROF default profile 23
Program Directory 56
program number
Assembler H Version 2
5668-962 1, 17
Assembler XF
5741-SC103 1, 17
5749-SC103 1, 17
5752-SC103 1, 17
DOS/VSE Assembler
5745-SC-ASM 1, 17
IBM High Level Assembler for MVS & VM & VSE
5696-234 1, 17
VSE/AF Assembler 17
5686-032 1, 17
5686-066-14 1, 17
program object 39, 41
See also CATTR instruction
See also XOBJECT option
protecting investments 5
application investments 5
applications 5
people and skills 5
processes and procedures 5
project management 5
publications 56
PUSH instruction 43

Q

QSAM 1/0 58

R
RA2 option 23
RECORD suboption 29, 34
Relocation Dictionary 29
RSECT instruction 41
Assembler H implementation 41

S

selective COPY 43
SETAF instruction 14, 49, 62
integer-valued functions 49

114 High Level Assembler Presentation Guide

SETCF instruction 14, 49, 62
character-valued functions 49
SIZE option 11, 23, 57
SLA function 48
SLL function 48
SMP/E 18
source and object code listing 27, 80
SPACE instruction 28
special VSE/ESA feature 20
SRA function 48
SRL function 48
storage utilization 11, 57
SUBSTR suboption 34
substring notation 50
symbol attribute references 47, 60
integer 47
length 47
migration considerations 47, 60
scale 47
type 47
symbol cross reference 29
compact references 29
relocatability attribute 29
relocatability properties 29
absolute 29
complexly relocatable 29
relocation ID 29
symbol reference tags 29
branch targets 29
DROP operands 29
execute targets 29
modification targets 29
USING operands 29
type attribute 29
unreferenced symbols 29
symbols, unreferenced
See symbol cross reference
SYSADATA file
See ADATA records
SYSPARM option 25
system variable symbols 10, 14, 53
&SYSADATA_DSN 54
&SYSADATA_MEMBER 54
&SYSADATA_VOLUME 54
&SYSASM 53
&SYSDATC 53
&SYSDATE 53
&SYSIN_DSN 54
&SYSIN_MEMBER 54
&SYSIN_VOLUME 54
&SYSJOB 53
&SYSLIB_DSN 54
&SYSLIB_MEMBER 54
&SYSLIB_VOLUME 54
&SYSLIN_DSN 54
&SYSLIN_MEMBER 54
&SYSLIN_VOLUME 54
&SYSLOC 54

system variable symbols (continued)
&SYSNEXT 54
&SYSOPT_DBCS 53
&SYSOPT_OPTABLE 53
&SYSOPT_RENT 53
&SYSPARM 53
&SYSPRINT_DSN 54
&SYSPRINT_MEMBER 54
&SYSPRINT_VOLUME 54
&SYSPUNCH_DSN 54
&SYSPUNCH_MEMBER 54
&SYSPUNCH_VOLUME 54
&SYSSECT 53
&SYSSEQF 54
&SYSSTEP 53
&SYSSTMT 54
&SYSSTYP 54
&SYSTEM_ID 53
&SYSTERM_DSN 54
&SYSTERM_MEMBER 54
&SYSTERM_VOLUME 54
&SYSTIME 43, 53
&SYSVER 53
Assembler H support 53
assembly environment 53
current statement location 54
date and time 53
input-output files 54
option-dependent 53
statement-related 54

system-determined block size (SDB) 58

T

tailorability 55
TERM option 25
TRANSLATE option 10, 24

U
UHEAD operand 23, 43
unary minus operator 46
underscore character 46
UNREFS suboption 29
unsupported options 26
ALGN 26
LINECNT 26
LOAD 26
MSGLEVEL 26
MULT 26
UPPER function 49
usability 16, 55, 63
user exits 12
USING instruction 30, 42, 45
dependent USING 42
labeled dependent USING 43
labeled USING 42
USING map 9, 30
base address 30

USING map (continued)
maximum displacement 30
registers 30
USING range 30

USING nullification 34

USING option 10, 24

USING ranges 34

USING resolution 28
dependent USINGs 28
ordinary USINGs 28

USING(LIMIT) option 24, 34

USING(MAP) option 24

USING(WARN) diagnostics 45
base register zero 34, 45
displacement limit 45
multiple resolutions 34, 45
nullified USINGs 34, 45
USING ranges 34, 45

USING(WARN) option 24, 34, 45, 61
See also USING(WARN) diagnostics

utility-file /O 11, 57

Vv

VM/ESA support 4, 18
VMFPLC2 18
VMSES/E 18
VSE/AF Assembler
See DOS/VSE Assembler
VSE/ESA support 4, 20, 60
enhanced language 20
OPTABLE(DOS) 60
performance improvements 20
special feature 20
ADATA exit 20
ASA option 20
CATTR instruction 20
INPUT exit 20
LIST(133) option 20
LIST(MAX) option 20
PRINT exit 20
XOBJECT option 20
XA/ESA instructions 20

X

XF Assembler

See Assembler XF
XOBJECT option 10, 20, 24, 39
XOR function 48
XREF option 25
XREF(UNREFS) option 29

Index

115

ITSO Technical Bulletin Evaluation REDOOO

International Technical Support Organization
High Level Assembler:

Technical Overview
December 1995

Publication No. SG24-3910-01

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

Mail it to the address on the back (postage paid in U.S. only)
Give it to an IBM marketing representative for mailing

Fax it to: Your International Access Code + 1 914 432 8246
Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information

Grammar/punctuation/spelling
Ease of reading and understanding

Relevance of the information Ease of finding information
Completeness of the information Level of technical detail
Value of illustrations Print quality

Please answer the following questions:
a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes No__
Are you in a Services Organization? Yes No__
b) Are you working in the USA? Yes_ No__
c) Was the Bulletin published in time for your needs? Yes No__
d) Did this Bulletin meet your needs? Yes No__

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

ITSO Technical Bulletin Evaluation

SG24-3910-01

Fold and Tape

REDO0O

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization

Department 471/E2
650 Harry Road
San Jose, CA
USA 95120-6099

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SG24-3910-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in U.S.A.

G24-

S

10-01

3910-0

	IBM High Level Assembler for MVS & VM & VSE Release 2 Presentation Guide
	Abstract
	Contents
	Special Notices
	Purpose of This Document
	How This Document Is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments

	Chapter 1. High Level Assembler: Management Overview
	Topic Overview
	Why a New Assembler?
	Key Benefits of HLASM (1)
	Key Benefits of HLASM (2)
	Human Resource Savings
	Key Benefits of HLASM (3)
	System Resource Savings
	Tool and Development Environment Support Facilities
	Compatibility and Migration
	HLASM Summary

	Chapter 2. High Level Assembler: Technical Overview
	Topic Overview
	Key Features
	New and Enhanced Options
	New Assembly- Time Options
	New Installation- Time Option
	Enhanced Assembly-Time Options
	Source- File Options
	Old, Unsupported Options
	New Default Options
	Listing Enhancements
	Diagnostics Enhancements
	New FLAG Suboptions
	USING Warnings
	Input- Output Exits
	Assembler Data (SYSADATA) File
	Generalized Object File Format
	New and Enhanced Base Language (1)
	New and Enhanced Base Language (2)
	Examples of New USING Statements and Diagnostics
	Labeled USINGs
	Dependent USINGs
	Labeled Dependent USINGs
	USING Diagnostics
	New and Enhanced Base Language (3)
	New and Enhanced Conditional- Assembly Language (1)
	Internal Conditional- Assembly Functions
	External Conditional-Assembly Functions
	Inner Macro Arguments and the COMPAT(SYSLIST) Option
	New and Enhanced Conditional- Assembly Language (2)
	System Variable Symbols
	Installability and Usability Enhancements
	Implementation Improvements
	Compatibility and Migration
	Incompatibilities with Assembler H
	HLASM Summary

	Chapter 3. Management Overview Presentation Foils
	Chapter 4. Technical Overview Presentation Foils
	Glossary
	Index
	Special Characters
	A
	C
	B
	D
	E
	F
	G
	H
	I
	L
	M
	O
	N
	P
	Q
	R
	S
	V
	T
	U
	X
	ITSO Technical Bulletin Evaluation RED000

