-

softS check

we identify vulnerabilities others don't

Software Security

Cost-Effective ldentification of Zero-Day Vulnerabilities
with the Aid of Threat Modeling and Fuzzing

White Paper 22. June 2011

Prof. Dr. Hartmut Pohl
Geschaftsfuhrender Gesellschafter SOﬂSCheck GmbH Kéln

Hartmut.Pohl@soft5 check.com
www.soft5 check.com




Cost-Effective ldentification of Zero-Day Vulnerabilities
with the Aid of Threat Modeling and Fuzzing

Content

L0 01 T 0 1

Introduction to Threat Modeling and FUZZING.......ccviiiiiiiiiiiiii i eecceee e 1
2. There Is No Such Thing as Bug-Free Software.......... .o, 2
3. Software Development Life CycCle ... e 2
S N 1 =T= 1 A1, o To L= I o o 3
B SHALIC AN SIS . . e it 4
6.  DYNAMIC AN SIS ottt e, 5
/4 O o ] o Tod [ ] T o 7

FUrther Reading ... ... oot eaaas 8

1. Introduction to Threat Modeling and Fuzzing

The use of such tools as Threat Modeling (in the design phase) and Fuzzing (in the
verification phase) enables the cost-effective identification of hitherto undisclosed
vulnerabilities. This is because the effort required to fix and patch vulnerabilities is
considerably lower in the early stages of software development (requirements and
design phase) than in the release phase, when the software has already been
delivered to the customer (cf. Fig. 1 - Lifecycle of Secure Software Development).
Furthermore, these methods can be used in all areas of application: individual
software, standard software such as ERP, CRM software and company-specific
extensions, operating systems, web browsers, web applications, network protocols,
etc.

N

> Verification ) Release ‘Response

el Requirements \} Implementation

Threat Modeling Static Analysis Fuzzing
Security Architecture, Abuse Cases, Source Code Analysis Black Box &
Risk Analysis, Attack Surface Minimalization (White Box) White Box

Fig. 1: Lifecycle of Secure Software Development

Conventional methods of identifying and fixing vulnerabilities — especially undisclosed
(less-than-zero-day) vulnerabilities — are very expensive; moreover, many
vulnerabilities are detected only after the software has been delivered to the customer
— sometimes by third parties.

Fig. 2 ('Cost of Fixing Vulnerabilities in the Software Development Lifecycle’) illustrates
the exponentially rising cost of fixing (and patching) vulnerabilities during the
individual stages of development before release.

In fact, several studies, such as the one conducted by the National Institute of
Standards and Technology (NIST), claim that the cost of patching increases a
hundredfold from the design phase to the release phase. Our own studies show that
the use of Threat Modeling and Fuzzing is a very cost-effective way of identifying
vulnerabilities, even after the software has been released to the market.

Vulnerabilities can be detected as follows:



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 2

= Systematic (tool-based) identification of vulnerabilities with the aid of Threat
Modeling and Fuzzing

= Tool-based identification of the most essential and severe vulnerabilities, i.e. those
that can easily be exploited from a remote server over the Internet, as well as
evaluation (prioritization) of the remaining vulnerabilities.

Threat Modeling requires design documentation. Fuzzing does not require a source
code to achieve good results: The software is examined while it is being executed
(Black Box Testing). To this end, the software can be executed on a virtual machine or
another testing system.

2. There Is No Such Thing as Bug-Free Software

It is impossible to develop bug-free software. This makes it necessary to conduct
software reviews, which means there is a close link to quality assurance. Due to the
complexity of the code (e.g. the number of lines it includes), it is mostly impractical to
carry out manual checks. Tests are exclusively aimed at examining specified
functionalities. Non-functional tests are neglected.

With the aid of Threat Modeling and Fuzzing, it is possible to identify all the
vulnerabilities that support the following attacks by exploits:

= Breach of access rules
= Format string attacks
= SQL injections

= Buffer overflows

To achieve this, Fuzzing deliberately aims at providing unspecified, random data to the
attack surface, which causes the software to malfunction. Threat Modeling also reveals
design errors, for instance, by using and evaluating attack trees and data flow
diagrams.

3. Software Development Life Cycle

The techniques that are used to develop software nowadays are unable to avoid
vulnerabilities completely - human errors cannot be ruled out; even though
programming guidelines may be in place, they are not (strictly) adhered to and
(entirely) audited. And yet, there are effective tools - operating far beyond the scope
of classic testing technologies — that detect vulnerabilities as early as during the
design phase or at the latest during the verification phase (Fuzzing and Penetration
Testing). Still, many vulnerabilities are detected only after the software has been
delivered to the customer (release). The following will illustrate the methods used to
identify vulnerabilities, as well as mentioning some well-known tools.

The cost of eliminating software bugs depends on the time of their detection within the
Software Development Life Cycle (SDLC). If the bug is only identified after release

(i.e. by the customer), the cost increases by a factor of one hundred (cf. Fig. 2: Cost
of Fixing Vulnerabilities in the Software Development Lifecycle). The quality of
software products is often determined by a shortage of resources in the company
where the products have been developed. In addition, the market calls for very short
software life cycles.

Hence, the use of such methods as Threat Modeling and Fuzzing to identify
vulnerabilities meets market requirements. Compared to traditional testing
techniques, these methods do not require many resources — as has been confirmed by

research conducted during soft5check projects.

Fuzzing and Threat Modeling enable software developers, users and
customizers to enhance the efficiency and cost-effectiveness of software tests
by using appropriate tools. Thus they also improve software security: the tools
help reveal hitherto unknown bugs and vulnerabilities.



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 3

- — L
)y €Sy STy

Fig 2: Cost of Fixing Vulnerabilities in the Software Development Lifecycle

soft3check analyzed and continously evaluates more than 300 tools for Threat

Modeling and Fuzzing available worldwide Our work is based on a successfully
completed research project that was funded by the German Federal Ministry
for Education and Research and carried out at the Bonn-Rhine-Sieg University
of Applied Sciences (code: FKZ 01 IS 090 30).

4. Threat Modeling

This proactive and heuristic method advances the methodological development of a
trustworthy system design or architecture during the design phase, which makes it the
most cost-effective way of fixing vulnerabilities.

At the same time the existing system design and architecture can be verified — with
the aim of identifying, evaluating and fixing vulnerabilities.

Further goals include understanding the security architecture, identifying design bugs
and minimizing the number of possible attack surfaces.

Examples of Threat Modeling Tools:

e Microsoft Threat Analysis & Modeling

e Microsoft SDL Threat Modeling Tool

e Trike



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 4

Threat #1
Network Sniffing: Credentials

Threat #1.2
Attacker Uses Network
Monitoring Tools

Threat #1.1
Unencrypted Assignment
of Credentials

Threat #1.2.1
Attacker ldentifies
Credentials

Fig. 3: Threat Modeling - Attack Trees

The number of vulnerabilities identified through Threat Modeling is significant. For
instance, in one of the authors’ projects 1 critical and 29 high-ranked vulnerabilities
(that could have been exploited over the Internet) were identified as early as in the
design phase (cf. Fig. 4: Threat Modeling — Vulnerabilities Identified in Standard
Software).

Rating the
vulnerabilities
critical il

high 29

medium 26

low Fl

(] 5] 10 15 20 25 30 35
Number identified vulnerabilities

Fig. 4: Threat Modeling — Vulnerabilities Identified in Standard Software



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 5

5. Static Analysis

This method serves to analyze the source code of the target software without
executing it (in contrast to dynamic analysis techniques, such as Fuzzing). During the
implementation phase, the system checks whether the programming language
conforms to the programming guidelines — just like a parser that conducts a lexical,
syntactic and semantic analysis of the programming code.

Examples of static analysis tools include:
= Klocwork

= Pixy

= XDepend

6. Dynamic Analysis

Fuzzers examine software for its robustness by feeding it with random or targeted
data input. In this way, sporadic system failures and unintended data leakage — the
most common results of security-related software bugs - can be avoided, which
proactively mitigates the harmful consequences of considerable sales shortfalls, data
protection problems and reputational damage.

To this end, the Fuzzer identifies the input interfaces to which it sends the input data
(fuzz).

The quality of Fuzzing is largely determined by the code coverage of the tested input
space (which may be infinite) and the quality of the generated data.

Identification
Input Interfaces

5 Target
0000 0000 .. 11111111 :I Application
R
Report E ;
_Expert Advice: i
B Pos!t’ives, False Positives, ... Monltor

Fig. 5: The Fuzzing Process

The Fuzz Testing Process is part of the SDLC verification phase (cf. Fig. 1: Life Cycle of
Secure Software Development). Vulnerabilities should not be fixed later than at this
stage because the cost of fixing them increases dramatically after release (cf. Fig. 3:
Cost of Fixing Vulnerabilities in the Course of the Software Development Lifecycle).

Once the input interface of the target application has been identified and been
provided with the Fuzzer-generated data, a special tool monitors the target
application, informing the tester of such anomalies as program failures, high CPU or
storage utilization, etc. (cf. Fig. 5 — The Fuzzing Process). After that the system



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 6

analyst conducts an analysis to determine the severity of the vulnerability and the
extent to which it is reproducible and exploitable over the Internet.

For Fuzzing, it is not necessary to know the source code of the target application,
which can facilitate asking the advice of external security analysts. Fuzzers may be
used locally or remotely, depending on their type. A Command Line Fuzzer is an
example of a local Fuzzer. Network-based applications need to be analyzed by remote
Fuzzers. Additionally, there are Fuzzers to test web browser protocols and web
applications. Furthermore, Fuzzers may be subdivided into dumb and smart Fuzzers.

Examples of Fuzzing Tools

= AxMan

= beSTORM

= Defensics

= FileFuzz

= FTPStress Fuzzer
= Fuzz

= Peach

= SPIKE

= SPIKEfile

Smart Fuzzers run program-controlled and independent tests of a target application,
often without special preparation or support from the user; their use is mostly subject
to a license. Often only smart Fuzzers enable the system analyst to penetrate the
target application and test the programming code.

Dumb Fuzzers are not able to identify the structure of the target application; instead,
they generate unspecified, random input data. As there is no program control, the
user needs to have considerable experience of using them. Dumb Fuzzers can often be
downloaded from the Internet free of charge (cf. Fig. 6: Divergence Product Costs —
Staff Expenditure).

Fuzzing frameworks enable users to develop Fuzzers that are adjusted to their
individual needs — similar to a construction kit. However, their cost of development is
comparatively high — especially as there are already working Fuzzers available for all
common applications. Fuzzing frameworks are suitable for new proprietary target
applications - for example, new network protocols. In commercial tools, the command
line interface has often been replaced with a graphical user interface.

Fixed Costs

Variable Costs / Expertise Required

Fig. 6: Divergence Product Costs — Staff Expenditure



Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 7

7. Conclusion

Fuzzing and Threat Modeling are two different tool-supported methods that can be
used to identify software bugs — above all, security-related bugs. For instance, zero-
day attacks — which are among the 20 most frequent forms of attacks — can be
avoided with the aid of Threat Modeling and Fuzzing. Moreover, these tools help
increase the level of application security in an efficient way that meets market
requirements. In addition, the individual approach to Fuzzing can be adequately scaled
to the ever shorter software development life cycles using the methods available.

Conclusion drawn from employing the methods outlined above

= Systematic search for and successful () identification of the essential vulnerabilities

= And that in each software application: individual software, standard software such
as ERP, CRM and company-specific extensions, operating systems, etc.

= Source Code is not necessary for Threat Modeling and Fuzzing — executable files are
sufficient: Black Box Testing

Software developers can achieve a higher return on (security) investment by
combining the methods outlined above and integrating them into the Software
Development Life Cycle (SDLC). Moreover, they can proactively improve software
quality, reduce their times to market and make cost savings. Along with saving costs,
they may improve their reputation by developing more secure software.

Threat Modeling and Fuzzing can be used for all applications - from protocols to
individual software through to web applications. To support a more demand-actuated

choice of suitable tools, soft5check has drawn up a taxonomy that will be published
separately.

There is a considerable number of vulnerabilities discovered through Fuzzing (often
without any source code). This is the reason for the wider use and popularity of the
method.

Bawertung dear
SicherhaRsiickan

Hoch 6

Mittel 26

Niedng I 1

0 5 10 15 20 25 30

Anzahl dentifizierter Sicherheitsilcken

Figure 7: Vulnerabilities Detected through Fuzzing

For example, in another project conducted by the authors, five critical (hitherto
undisclosed) vulnerabilities were identified in standard software that had already been
delivered to the customer; these vulnerabilities could have been exploited over the
Internet (cf. Fig. 7: Vulnerabilities Detected through Fuzzing).




Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 8

And this is even though the software developer has put in place numerous guidelines
that also encompass “secure” software.

The Successful Methods
Threat Modeling

e Vulnerabilities are detected during the design phase.
e Systematic and tool-based methods.

e  Vulnerabilities can be prioritized: exploitable over the Internet and/or little effort required by the
attacker.

Fuzzing
e Black Box Testing — no source code required — executable files are sufficient!

e Commonly used methods — have been employed for more than five years by the biggest software
developing companies worldwide — in SMEs, too.

Static Analysis

e Tool-based code reading complements the two methods outlined above.

These are the most cost-effective methods for the successful identification of hitherto
undisclosed vulnerabilities.

Further Reading
Beyond Security (Ed.): Black Box Testing. McLean 2008. http://www.beyondsecurity.com/black-box-
testing.html

Beyond Security (Ed.): Beyond Security introduces 80/20 rule for ‘smart' blackbox testing in new version
of beSTORM. McLean 2006.
http://www.beyondsecurity.com/press/2006/press12090601.html

Codenomicon (Ed.): Buzz on Fuzzing. Cupertino 2007. http://www.codenomicon.com/products/buzz-on-
Fuzzing.shtml

Fox, D.: Fuzzing. DuD 30, 2006, 12, 798. 2006.

MITRE (Ed.): 2010 CWE/SANS Top 25: Focus Profiles - Automated vs. Manual Analysis. Eagle

River 2010c. http://cwe.mitre.org/top25/profiles.html#ProfileDesignimp

Peter, M.; Karen, S.; Romanosky, S.: Complete Guide to Complete Guide to the Common Vulnerability
Scoring System Version 2.0. Gaithersburg 2007. http://www.first.org/cvss/cvss-
guide.pdf

Pohl, H.: Zur Technik der heimlichen Online-Durchsuchung. DuD 31, 9, 2007.
http://www.dud.de/binary/DuD_Pohl_907.pdf

Rathaus, N.; Evron, G.: Open Source Fuzzing Tools. Amsterdam 2007.
Doyle, F.; Fly, R.; Jenik, R.; Manor, D. Miller, C.; Naveh, Y.: Open Source Fuzzing Tools. Amsterdam 2007

Pohl, H.: Entwicklungshelfer und Stresstester - Tool-gestitzte Identifizierung von
Sicherheitslucken in verschiedenen Stadien des Softwarelebenszyklus. In: <kes> -
Die Fachzeitschrift fur Informations-Sicherheit, 2, 2010.
http://www.softscheck.com/publications/Pohl%20Kosteng%C3%BCnstige%20Ildent
ifizierung%20von%620Sicherheitsl%C3%BCcken%20110320%20White%20Paper%o2
O.pdf

Schwab, F.; Findeisen, A.; Pohl, H.: Bedrohungsmodellierung (Threat Modeling) in der Softwareentwicklung.
Gl-Edition: Lecture Notes in Informatics. Heidelberg 2010.

Sutton, M,; Greene, A.; Amini, P.: Fuzzing - Brute Force Vulnerability Discovery. New York 2007.

Takanen, A.; Demott, J.D.; Miller, C.: Fuzzing For Software Security Testing And Quality Assurance.
Norwood 2008




	Cover Page White Paper 110622 
	softScheck Pohl Cost-Effective Identification of Vulnerabilities with Threat Modeling and Fuzzing Teil für Deckblatt .pdf

