
Prof. Dr. Hartmut Pohl
Geschäftsführender Gesellschafter softScheck GmbH Köln

Hartmut.Pohl@softScheck.com

Software Security 

Cost-Effective Identification of Zero-Day Vulnerabilities
with the Aid of Threat Modeling and Fuzzing

White Paper 22. June 2011

www.softScheck.com



Cost-Effective Identification of Zero-Day Vulnerabilities 
with the Aid of Threat Modeling and Fuzzing 

Content 

Content ........................................................................................................ 1 

1.  Introduction to Threat Modeling and Fuzzing ................................................ 1 

2.  There Is No Such Thing  as Bug-Free Software ............................................. 2 

3.  Software Development Life Cycle ............................................................... 2 

4.  Threat Modeling ...................................................................................... 3 

5.  Static Analysis ......................................................................................... 4 

6.  Dynamic Analysis .................................................................................... 5 

7.  Conclusion .............................................................................................. 7 

Further Reading ...................................................................................... 8 

 

1. Introduction to Threat Modeling and Fuzzing 

The use of such tools as Threat Modeling (in the design phase) and Fuzzing (in the 
verification phase) enables the cost-effective identification of hitherto undisclosed 
vulnerabilities. This is because the effort required to fix and patch vulnerabilities is 
considerably lower in the early stages of software development (requirements and 
design phase) than in the release phase, when the software has already been 
delivered to the customer (cf. Fig. 1 - Lifecycle of Secure Software Development). 
Furthermore, these methods can be used in all areas of application: individual 
software, standard software such as ERP, CRM software and company-specific 
extensions, operating systems, web browsers, web applications, network protocols, 
etc.  
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Fig. 1: Lifecycle of Secure Software Development 

Conventional methods of identifying and fixing vulnerabilities – especially undisclosed 
(less-than-zero-day) vulnerabilities – are very expensive; moreover, many 
vulnerabilities are detected only after the software has been delivered to the customer 
– sometimes by third parties.  

Fig. 2 (’Cost of Fixing Vulnerabilities in the Software Development Lifecycle’) illustrates 
the exponentially rising cost of fixing (and patching) vulnerabilities during the 
individual stages of development before release.  

In fact, several studies, such as the one conducted by the National Institute of 
Standards and Technology (NIST), claim that the cost of patching increases a 
hundredfold from the design phase to the release phase. Our own studies show that 
the use of Threat Modeling and Fuzzing is a very cost-effective way of identifying 
vulnerabilities, even after the software has been released to the market.  

Vulnerabilities can be detected as follows: 
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 Systematic (tool-based) identification of vulnerabilities with the aid of Threat 

Modeling and Fuzzing 
 Tool-based identification of the most essential and severe vulnerabilities, i.e. those 

that can easily be exploited from a remote server over the Internet, as well as 
evaluation (prioritization) of the remaining vulnerabilities. 

Threat Modeling requires design documentation. Fuzzing does not require a source 
code to achieve good results: The software is examined while it is being executed 
(Black Box Testing). To this end, the software can be executed on a virtual machine or 
another testing system. 

2. There Is No Such Thing  as Bug-Free Software 

It is impossible to develop bug-free software. This makes it necessary to conduct 
software reviews, which means there is a close link to quality assurance. Due to the 
complexity of the code (e.g. the number of lines it includes), it is mostly impractical to 
carry out manual checks. Tests are exclusively aimed at examining specified 
functionalities. Non-functional tests are neglected. 

With the aid of Threat Modeling and Fuzzing, it is possible to identify all the 
vulnerabilities that support the following attacks by exploits: 
 Breach of access rules 
 Format string attacks 
 SQL injections 
 Buffer overflows 
 ... 

To achieve this, Fuzzing deliberately aims at providing unspecified, random data to the 
attack surface, which causes the software to malfunction. Threat Modeling also reveals 
design errors, for instance, by using and evaluating attack trees and data flow 
diagrams. 

3. Software Development Life Cycle 

The techniques that are used to develop software nowadays are unable to avoid 
vulnerabilities completely - human errors cannot be ruled out; even though 
programming guidelines may be in place, they are not (strictly) adhered to and 
(entirely) audited. And yet, there are effective tools - operating far beyond the scope 
of classic testing technologies – that detect vulnerabilities as early as during the 
design phase or at the latest during the verification phase (Fuzzing and Penetration 
Testing). Still, many vulnerabilities are detected only after the software has been 
delivered to the customer (release). The following will illustrate the methods used to 
identify vulnerabilities, as well as mentioning some well-known tools. 

The cost of eliminating software bugs depends on the time of their detection within the 
Software Development Life Cycle (SDLC). If the bug is only identified after release 
(i.e. by the customer), the cost increases by a factor of one hundred (cf.  Fig. 2: Cost 
of  Fixing Vulnerabilities in the Software Development Lifecycle). The quality of 
software products is often determined by a shortage of resources in the company 
where the products have been developed. In addition, the market calls for very short 
software life cycles. 

Hence, the use of such methods as Threat Modeling and Fuzzing to identify 
vulnerabilities meets market requirements. Compared to traditional testing 
techniques, these methods do not require many resources – as has been confirmed by 
research conducted during softScheck projects.  

Fuzzing and Threat Modeling enable software developers, users and 
customizers to enhance the efficiency and cost-effectiveness of software tests 
by using appropriate tools. Thus they also improve software security: the tools 
help reveal hitherto unknown bugs and vulnerabilities. 
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Threat #1
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Fig. 3: Threat Modeling - Attack Trees 

The number of vulnerabilities identified through Threat Modeling is significant. For 
instance, in one of the authors’ projects 1 critical and 29 high-ranked vulnerabilities 
(that could have been exploited over the Internet) were identified as early as in the 
design phase (cf. Fig. 4: Threat Modeling – Vulnerabilities Identified in Standard 
Software). 
 

 

Fig. 4: Threat Modeling – Vulnerabilities Identified in Standard Software  
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analyst conducts an analysis to determine the severity of the vulnerability and the 
extent to which it is reproducible and exploitable over the Internet. 

For Fuzzing, it is not necessary to know the source code of the target application, 
which can facilitate asking the advice of external security analysts. Fuzzers may be 
used locally or remotely, depending on their type. A Command Line Fuzzer is an 
example of a local Fuzzer. Network-based applications need to be analyzed by remote 
Fuzzers. Additionally, there are Fuzzers to test web browser protocols and web 
applications. Furthermore, Fuzzers may be subdivided into dumb and smart Fuzzers. 

Examples of Fuzzing Tools 

 AxMan 
 beSTORM 
 Defensics 
 FileFuzz 
 FTPStress Fuzzer 
 Fuzz 
 Peach 
 SPIKE 
 SPIKEfile 

Smart Fuzzers run program-controlled and independent tests of a target application, 
often without special preparation or support from the user; their use is mostly subject 
to a license. Often only smart Fuzzers enable the system analyst to penetrate the 
target application and test the programming code. 

Dumb Fuzzers are not able to identify the structure of the target application; instead, 
they generate unspecified, random input data. As there is no program control, the 
user needs to have considerable experience of using them. Dumb Fuzzers can often be 
downloaded from the Internet free of charge (cf. Fig. 6: Divergence Product Costs – 
Staff Expenditure). 

Fuzzing frameworks enable users to develop Fuzzers that are adjusted to their 
individual needs – similar to a construction kit. However, their cost of development is 
comparatively high – especially as there are already working Fuzzers available for all 
common applications. Fuzzing frameworks are suitable for new proprietary target 
applications - for example, new network protocols. In commercial tools, the command 
line interface has often been replaced with a graphical user interface. 
 

Fixed Costs

Variable Costs / Expertise Required

Automatic
Fuzzer

Manual
Fuzzer

 

Fig. 6: Divergence Product Costs – Staff Expenditure 
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And this is even though the software developer has put in place numerous guidelines 
that also encompass ”secure” software. 
 

The Successful Methods 

Threat Modeling  
 Vulnerabilities are detected during the design phase. 
 Systematic and tool-based methods. 
 Vulnerabilities can be prioritized: exploitable over the Internet and/or little effort required by the 

attacker. 

Fuzzing 
 Black Box Testing  – no source code required – executable files are sufficient! 
 Commonly used methods – have been employed for more than five years by the biggest software 

developing companies worldwide – in SMEs, too. 

Static Analysis 
 Tool-based code reading complements the two methods outlined above. 

These are the most cost-effective methods for the successful identification of hitherto 
undisclosed vulnerabilities. 
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