
Prof. Dr. Hartmut Pohl
Geschäftsführender Gesellschafter softScheck GmbH Köln

Hartmut.Pohl@softScheck.com

Software Security

Cost-Effective Identification of Zero-Day Vulnerabilities
with the Aid of Threat Modeling and Fuzzing

White Paper 22. June 2011

www.softScheck.com

Cost-Effective Identification of Zero-Day Vulnerabilities
with the Aid of Threat Modeling and Fuzzing

Content

Content .. 1

1. Introduction to Threat Modeling and Fuzzing .. 1

2. There Is No Such Thing as Bug-Free Software ... 2

3. Software Development Life Cycle ... 2

4. Threat Modeling .. 3

5. Static Analysis ... 4

6. Dynamic Analysis .. 5

7. Conclusion .. 7

Further Reading .. 8

1. Introduction to Threat Modeling and Fuzzing

The use of such tools as Threat Modeling (in the design phase) and Fuzzing (in the
verification phase) enables the cost-effective identification of hitherto undisclosed
vulnerabilities. This is because the effort required to fix and patch vulnerabilities is
considerably lower in the early stages of software development (requirements and
design phase) than in the release phase, when the software has already been
delivered to the customer (cf. Fig. 1 - Lifecycle of Secure Software Development).
Furthermore, these methods can be used in all areas of application: individual
software, standard software such as ERP, CRM software and company-specific
extensions, operating systems, web browsers, web applications, network protocols,
etc.

Training Requirements Design Implementation Verification Release Response

Threat Modeling
Security Architecture, Abuse Cases,

Risk Analysis, Attack Surface Minimalization

Static Analysis
Source Code Analysis

(White Box)

Fuzzing
Black Box &
White Box

Fig. 1: Lifecycle of Secure Software Development

Conventional methods of identifying and fixing vulnerabilities – especially undisclosed
(less-than-zero-day) vulnerabilities – are very expensive; moreover, many
vulnerabilities are detected only after the software has been delivered to the customer
– sometimes by third parties.

Fig. 2 (’Cost of Fixing Vulnerabilities in the Software Development Lifecycle’) illustrates
the exponentially rising cost of fixing (and patching) vulnerabilities during the
individual stages of development before release.

In fact, several studies, such as the one conducted by the National Institute of
Standards and Technology (NIST), claim that the cost of patching increases a
hundredfold from the design phase to the release phase. Our own studies show that
the use of Threat Modeling and Fuzzing is a very cost-effective way of identifying
vulnerabilities, even after the software has been released to the market.

Vulnerabilities can be detected as follows:

Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 2

 Systematic (tool-based) identification of vulnerabilities with the aid of Threat

Modeling and Fuzzing
 Tool-based identification of the most essential and severe vulnerabilities, i.e. those

that can easily be exploited from a remote server over the Internet, as well as
evaluation (prioritization) of the remaining vulnerabilities.

Threat Modeling requires design documentation. Fuzzing does not require a source
code to achieve good results: The software is examined while it is being executed
(Black Box Testing). To this end, the software can be executed on a virtual machine or
another testing system.

2. There Is No Such Thing as Bug-Free Software

It is impossible to develop bug-free software. This makes it necessary to conduct
software reviews, which means there is a close link to quality assurance. Due to the
complexity of the code (e.g. the number of lines it includes), it is mostly impractical to
carry out manual checks. Tests are exclusively aimed at examining specified
functionalities. Non-functional tests are neglected.

With the aid of Threat Modeling and Fuzzing, it is possible to identify all the
vulnerabilities that support the following attacks by exploits:
 Breach of access rules
 Format string attacks
 SQL injections
 Buffer overflows
 ...

To achieve this, Fuzzing deliberately aims at providing unspecified, random data to the
attack surface, which causes the software to malfunction. Threat Modeling also reveals
design errors, for instance, by using and evaluating attack trees and data flow
diagrams.

3. Software Development Life Cycle

The techniques that are used to develop software nowadays are unable to avoid
vulnerabilities completely - human errors cannot be ruled out; even though
programming guidelines may be in place, they are not (strictly) adhered to and
(entirely) audited. And yet, there are effective tools - operating far beyond the scope
of classic testing technologies – that detect vulnerabilities as early as during the
design phase or at the latest during the verification phase (Fuzzing and Penetration
Testing). Still, many vulnerabilities are detected only after the software has been
delivered to the customer (release). The following will illustrate the methods used to
identify vulnerabilities, as well as mentioning some well-known tools.

The cost of eliminating software bugs depends on the time of their detection within the
Software Development Life Cycle (SDLC). If the bug is only identified after release
(i.e. by the customer), the cost increases by a factor of one hundred (cf. Fig. 2: Cost
of Fixing Vulnerabilities in the Software Development Lifecycle). The quality of
software products is often determined by a shortage of resources in the company
where the products have been developed. In addition, the market calls for very short
software life cycles.

Hence, the use of such methods as Threat Modeling and Fuzzing to identify
vulnerabilities meets market requirements. Compared to traditional testing
techniques, these methods do not require many resources – as has been confirmed by
research conducted during softScheck projects.

Fuzzing and Threat Modeling enable software developers, users and
customizers to enhance the efficiency and cost-effectiveness of software tests
by using appropriate tools. Thus they also improve software security: the tools
help reveal hitherto unknown bugs and vulnerabilities.

Pohl, H.: Co

softScheck

Modeling
complete
for Educa
of Applie

4. Threa

This proac
trustworth
most cost

At the sam
the aim o

Further go
and minim

Example
 Micros
 Micros
 Trike

The Thr
 A

se
 Ev
 D
 D

Cf
 Re

vu

ost-Effective I

Fig 2: C

k analyzed

g and Fuzz
ed researc
ation and
d Sciences

at Modelin

ctive and h
hy system
t-effective w

me time the
f identifyin

oals include
mizing the n

s of Threa
soft Threat
soft SDL Th

eat Model
nalysis of d
ecurity des
valuation o

Description a
Developmen

f. Fig. 3: At
eport Generat
ulnerabilities

Identification

Cost of Fixing V

d and cont

ing availa
h project t
Research
s (code: F

ng

euristic me
design or a
way of fixin

e existing s
g, evaluatin

e understan
number of

at Modelin
 Analysis &
hreat Model

ing Proce
documentat
ign (and so

of program
and prioriti

nt of attack

ttack Trees
tion: Informat

of Vulnerabilit

Vulnerabilities

tinously ev

ble worldw
that was f
and carrie

FKZ 01 IS

ethod adva
architecture
ng vulnerab

system des
ng and fixin

nding the s
possible at

g Tools:
& Modeling
ling Tool

dure:
tion (if app
ource code)
 flowcharts
zation of p
 trees –

s in Threat
tion on and gu

ties with the A

s in the Softw

valuates m

wide Our w
funded by
ed out at t
090 30).

nces the m
e during the
bilities.

sign and arc
ng vulnerab

security arc
tack surfac

plicable) – e
)

ossible des

Modeling
uidance for ide

Aid of Threat M

are Developm

more than

work is bas
 the Germ
he Bonn-R

ethodologic
e design ph

chitecture c
bilities.

hitecture, i
ces.

especially

sign flaws

entified

Modeling and

ment Lifecycle

300 tools

sed on a s
man Federa
Rhine-Sieg

cal develop
hase, which

can be verif

identifying

 Fuzzing. Page

 for Threat

successfull
al Ministry
g Universit

pment of a
h makes it t

fied – with

design bug

e 3

t

ly

ty

the

gs

Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 4

Threat #1
Network Sniffing: Credentials

Threat #1.1
Unencrypted Assignment

of Credentials

Threat #1.2
Attacker Uses Network

Monitoring Tools

Threat #1.2.1
Attacker Identifies

Credentials

and

Fig. 3: Threat Modeling - Attack Trees

The number of vulnerabilities identified through Threat Modeling is significant. For
instance, in one of the authors’ projects 1 critical and 29 high-ranked vulnerabilities
(that could have been exploited over the Internet) were identified as early as in the
design phase (cf. Fig. 4: Threat Modeling – Vulnerabilities Identified in Standard
Software).

Fig. 4: Threat Modeling – Vulnerabilities Identified in Standard Software

1

26

29

1

0 5 10 15 20 25 30 35

low

medium

high

critical

Number identified vulnerabilities

Rating the
vulnerabilities

Pohl, H.: Co

5. Stati

This meth
executing
implemen
conforms
syntactic

Examples
 Klocwo
 Pixy
 XDepe

6. Dyna

Fuzzers ex
data input
most com
proactivel
protection

To this en
(fuzz).

The qualit
space (wh

The Fuzz
Secure So
stage bec
Cost of Fix

Once the
provided w
applicatio
storage u

ost-Effective I

c Analysis

hod serves
 it (in cont

ntation phas
 to the prog
and seman

 of static a
ork

nd

amic Analy

xamine sof
t. In this w

mmon result
ly mitigates
n problems

nd, the Fuzz

ty of Fuzzin
hich may be

Testing Pro
oftware Dev
cause the co
xing Vulner

input interf
with the Fu
n, informin
tilization, e

Identification

s

to analyze
rast to dyn
se, the syst
gramming g
ntic analysis

nalysis too

ysis

ftware for it
way, sporad
ts of securit
s the harmf
 and reputa

zer identifie

ng is largely
e infinite) a

ocess is par
velopment)
ost of fixing
rabilities in

face of the
uzzer-gener
ng the teste
etc. (cf. Fig

of Vulnerabilit

 the source
amic analy
tem checks
guidelines
s of the pro

ls include:

ts robustne
ic system f
ty-related s
ful consequ
ational dam

es the inpu

y determine
and the qua

Fig. 5: The

rt of the SD
). Vulnerab
g them incr
 the Course

 target app
rated data,
er of such a
. 5 – The F

ties with the A

e code of th
ysis techniq
s whether t
– just like a
ogramming

ess by feed
failures and
software bu
uences of c
mage.

t interfaces

ed by the c
ality of the

 Fuzzing Proce

DLC verifica
ilities shou
reases dram
e of the So

plication has
 a special t

anomalies a
Fuzzing Proc

Aid of Threat M

e target so
ues, such a

the program
a parser th
 code.

ing it with
d unintende
ugs - can b
onsiderable

s to which i

code covera
generated

ess

ation phase
ld not be fi
matically af
ftware Dev

s been iden
tool monito
as program
cess). After

Modeling and

oftware with
as Fuzzing)
mming lang
at conduct

random or
ed data leak
be avoided,
e sales sho

it sends the

age of the t
 data.

e (cf. Fig. 1
ixed later th
fter release
velopment L

ntified and
ors the targ
 failures, h
r that the s

 Fuzzing. Page

hout
). During th
guage
s a lexical,

 targeted
kage – the
 which
rtfalls, data

e input data

tested inpu

: Life Cycle
han at this

e (cf. Fig. 3
Lifecycle).

been
et
igh CPU or

system

e 5

he

a

a

t

e of

:

Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 6

analyst conducts an analysis to determine the severity of the vulnerability and the
extent to which it is reproducible and exploitable over the Internet.

For Fuzzing, it is not necessary to know the source code of the target application,
which can facilitate asking the advice of external security analysts. Fuzzers may be
used locally or remotely, depending on their type. A Command Line Fuzzer is an
example of a local Fuzzer. Network-based applications need to be analyzed by remote
Fuzzers. Additionally, there are Fuzzers to test web browser protocols and web
applications. Furthermore, Fuzzers may be subdivided into dumb and smart Fuzzers.

Examples of Fuzzing Tools

 AxMan
 beSTORM
 Defensics
 FileFuzz
 FTPStress Fuzzer
 Fuzz
 Peach
 SPIKE
 SPIKEfile

Smart Fuzzers run program-controlled and independent tests of a target application,
often without special preparation or support from the user; their use is mostly subject
to a license. Often only smart Fuzzers enable the system analyst to penetrate the
target application and test the programming code.

Dumb Fuzzers are not able to identify the structure of the target application; instead,
they generate unspecified, random input data. As there is no program control, the
user needs to have considerable experience of using them. Dumb Fuzzers can often be
downloaded from the Internet free of charge (cf. Fig. 6: Divergence Product Costs –
Staff Expenditure).

Fuzzing frameworks enable users to develop Fuzzers that are adjusted to their
individual needs – similar to a construction kit. However, their cost of development is
comparatively high – especially as there are already working Fuzzers available for all
common applications. Fuzzing frameworks are suitable for new proprietary target
applications - for example, new network protocols. In commercial tools, the command
line interface has often been replaced with a graphical user interface.

Fixed Costs

Variable Costs / Expertise Required

Automatic
Fuzzer

Manual
Fuzzer

Fig. 6: Divergence Product Costs – Staff Expenditure

Pohl, H.: Co

7. Conc

Fuzzing a
used to id
day attack
avoided w
increase t
requireme
to the eve

C
 System
 And th

as ERP
 Source

sufficie

Software
combining
Developm
quality, re
they may

Threat Mo
individual
choice of

separately

There is a
without a
method.

For exam
undisclose
delivered
Internet (

ost-Effective I

clusion

nd Threat M
dentify softw
ks – which

with the aid
the level of
ents. In add
er shorter s

Conclusion
matic search
at in each

P, CRM and
e Code is no
ent: Black B

developers
g the metho

ment Life Cy
educe their
 improve th

odeling and
 software t
suitable too

y.

a considera
ny source c

ple, in anot
ed) vulnera
 to the cust
(cf. Fig. 7: V

Identification

Modeling ar
ware bugs
 are among
 of Threat
 application
dition, the
software de

n drawn fr
h for and su
 software a
 company-s
ot necessar
Box Testing

s can achiev
ods outline
ycle (SDLC)
 times to m
heir reputat

d Fuzzing ca
through to w
ols, softSch

ble number
code). This

Figure 7:

ther projec
abilities wer
tomer; thes
Vulnerabilit

of Vulnerabilit

re two diffe
– above al

g the 20 mo
Modeling a
n security i
individual a

evelopment

rom emplo
uccessful (
pplication:
specific ext
ry for Threa
g

ve a higher
ed above an
). Moreover
market and
tion by dev

an be used
web applica
heck has dr

r of vulnera
 is the reas

 Vulnerabilitie

t conducted
re identified
se vulnerab
ties Detecte

ties with the A

erent tool-s
l, security-
ost frequen
nd Fuzzing
n an efficie
approach to
t life cycles

oying the m
!) identifica
 individual
tensions, op
at Modeling

r return on
nd integrati
r, they can
 make cost
veloping mo

 for all app
ations. To s
rawn up a t

abilities dis
son for the

es Detected th

d by the au
d in standa
bilities could
ed through

Aid of Threat M

supported m
related bug

nt forms of
. Moreover

ent way tha
o Fuzzing c
 using the m

methods o
ation of the
software, s
perating sy
g and Fuzzin

 (security)
ng them in
 proactively
 savings. A
ore secure

lications - f
support a m
axonomy t

covered th
wider use a

hrough Fuzzing

uthors, five
rd software
d have bee
 Fuzzing).

Modeling and

methods th
gs. For inst
attacks – c

r, these too
at meets ma
can be adeq
methods av

outlined ab
e essential v
standard so
ystems, etc
ng – execu

investment
nto the Soft
y improve s

Along with s
software.

from protoc
more dema
that will be

rough Fuzz
and popula

g

e critical (hi
e that had
en exploited

 Fuzzing. Page

at can be
ance, zero-
can be
ols help
arket
quately sca
vailable.

bove
vulnerabilit
oftware suc
.
table files a

t by
tware
software
saving cost

cols to
nd-actuate
 published

zing (often
arity of the

therto
already bee
d over the

e 7

-

led

ties
ch

are

s,

d

en

Pohl, H.: Cost-Effective Identification of Vulnerabilities with the Aid of Threat Modeling and Fuzzing. Page 8

And this is even though the software developer has put in place numerous guidelines
that also encompass ”secure” software.

The Successful Methods

Threat Modeling
 Vulnerabilities are detected during the design phase.
 Systematic and tool-based methods.
 Vulnerabilities can be prioritized: exploitable over the Internet and/or little effort required by the

attacker.

Fuzzing
 Black Box Testing – no source code required – executable files are sufficient!
 Commonly used methods – have been employed for more than five years by the biggest software

developing companies worldwide – in SMEs, too.

Static Analysis
 Tool-based code reading complements the two methods outlined above.

These are the most cost-effective methods for the successful identification of hitherto
undisclosed vulnerabilities.

Further Reading
Beyond Security (Ed.): Black Box Testing. McLean 2008. http://www.beyondsecurity.com/black-box-

testing.html
Beyond Security (Ed.): Beyond Security introduces 80/20 rule for 'smart' blackbox testing in new version

of beSTORM. McLean 2006.
http://www.beyondsecurity.com/press/2006/press12090601.html

Codenomicon (Ed.): Buzz on Fuzzing. Cupertino 2007. http://www.codenomicon.com/products/buzz-on-
Fuzzing.shtml

Fox, D.: Fuzzing. DuD 30, 2006, 12, 798. 2006.
MITRE (Ed.): 2010 CWE/SANS Top 25: Focus Profiles - Automated vs. Manual Analysis. Eagle

River 2010c. http://cwe.mitre.org/top25/profiles.html#ProfileDesignImp
Peter, M.; Karen, S.; Romanosky, S.: Complete Guide to Complete Guide to the Common Vulnerability

Scoring System Version 2.0. Gaithersburg 2007. http://www.first.org/cvss/cvss-
guide.pdf

Pohl, H.: Zur Technik der heimlichen Online-Durchsuchung. DuD 31, 9, 2007.
http://www.dud.de/binary/DuD_Pohl_907.pdf

Rathaus, N.; Evron, G.: Open Source Fuzzing Tools. Amsterdam 2007.
Doyle, F.; Fly, R.; Jenik, R.; Manor, D. Miller, C.; Naveh, Y.: Open Source Fuzzing Tools. Amsterdam 2007
Pohl, H.: Entwicklungshelfer und Stresstester - Tool-gestützte Identifizierung von

Sicherheitslücken in verschiedenen Stadien des Softwarelebenszyklus. In: <kes> -
Die Fachzeitschrift für Informations-Sicherheit, 2, 2010.
http://www.softscheck.com/publications/Pohl%20Kosteng%C3%BCnstige%20Ident
ifizierung%20von%20Sicherheitsl%C3%BCcken%20110320%20White%20Paper%2
0.pdf

Schwab, F.; Findeisen, A.; Pohl, H.: Bedrohungsmodellierung (Threat Modeling) in der Softwareentwicklung.
GI-Edition: Lecture Notes in Informatics. Heidelberg 2010.

Sutton, M,; Greene, A.; Amini, P.: Fuzzing - Brute Force Vulnerability Discovery. New York 2007.
Takanen, A.; Demott, J.D.; Miller, C.: Fuzzing For Software Security Testing And Quality Assurance.

Norwood 2008

	Cover Page White Paper 110622
	softScheck Pohl Cost-Effective Identification of Vulnerabilities with Threat Modeling and Fuzzing Teil für Deckblatt .pdf

